1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 36 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 38 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/SubtargetFeature.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/SMLoc.h" 53 #include "llvm/Support/TargetParser.h" 54 #include "llvm/Support/TargetRegistry.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 #include <vector> 66 67 #define DEBUG_TYPE "asm-parser" 68 69 using namespace llvm; 70 71 namespace { 72 73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 74 75 static cl::opt<ImplicitItModeTy> ImplicitItMode( 76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 77 cl::desc("Allow conditional instructions outdside of an IT block"), 78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 79 "Accept in both ISAs, emit implicit ITs in Thumb"), 80 clEnumValN(ImplicitItModeTy::Never, "never", 81 "Warn in ARM, reject in Thumb"), 82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 83 "Accept in ARM, reject in Thumb"), 84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 85 "Warn in ARM, emit implicit ITs in Thumb"))); 86 87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 88 cl::init(false)); 89 90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 91 92 class UnwindContext { 93 using Locs = SmallVector<SMLoc, 4>; 94 95 MCAsmParser &Parser; 96 Locs FnStartLocs; 97 Locs CantUnwindLocs; 98 Locs PersonalityLocs; 99 Locs PersonalityIndexLocs; 100 Locs HandlerDataLocs; 101 int FPReg; 102 103 public: 104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 105 106 bool hasFnStart() const { return !FnStartLocs.empty(); } 107 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 109 110 bool hasPersonality() const { 111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 112 } 113 114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 119 120 void saveFPReg(int Reg) { FPReg = Reg; } 121 int getFPReg() const { return FPReg; } 122 123 void emitFnStartLocNotes() const { 124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 125 FI != FE; ++FI) 126 Parser.Note(*FI, ".fnstart was specified here"); 127 } 128 129 void emitCantUnwindLocNotes() const { 130 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 131 UE = CantUnwindLocs.end(); UI != UE; ++UI) 132 Parser.Note(*UI, ".cantunwind was specified here"); 133 } 134 135 void emitHandlerDataLocNotes() const { 136 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 137 HE = HandlerDataLocs.end(); HI != HE; ++HI) 138 Parser.Note(*HI, ".handlerdata was specified here"); 139 } 140 141 void emitPersonalityLocNotes() const { 142 for (Locs::const_iterator PI = PersonalityLocs.begin(), 143 PE = PersonalityLocs.end(), 144 PII = PersonalityIndexLocs.begin(), 145 PIE = PersonalityIndexLocs.end(); 146 PI != PE || PII != PIE;) { 147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 148 Parser.Note(*PI++, ".personality was specified here"); 149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 150 Parser.Note(*PII++, ".personalityindex was specified here"); 151 else 152 llvm_unreachable(".personality and .personalityindex cannot be " 153 "at the same location"); 154 } 155 } 156 157 void reset() { 158 FnStartLocs = Locs(); 159 CantUnwindLocs = Locs(); 160 PersonalityLocs = Locs(); 161 HandlerDataLocs = Locs(); 162 PersonalityIndexLocs = Locs(); 163 FPReg = ARM::SP; 164 } 165 }; 166 167 class ARMAsmParser : public MCTargetAsmParser { 168 const MCRegisterInfo *MRI; 169 UnwindContext UC; 170 171 ARMTargetStreamer &getTargetStreamer() { 172 assert(getParser().getStreamer().getTargetStreamer() && 173 "do not have a target streamer"); 174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 175 return static_cast<ARMTargetStreamer &>(TS); 176 } 177 178 // Map of register aliases registers via the .req directive. 179 StringMap<unsigned> RegisterReqs; 180 181 bool NextSymbolIsThumb; 182 183 bool useImplicitITThumb() const { 184 return ImplicitItMode == ImplicitItModeTy::Always || 185 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 186 } 187 188 bool useImplicitITARM() const { 189 return ImplicitItMode == ImplicitItModeTy::Always || 190 ImplicitItMode == ImplicitItModeTy::ARMOnly; 191 } 192 193 struct { 194 ARMCC::CondCodes Cond; // Condition for IT block. 195 unsigned Mask:4; // Condition mask for instructions. 196 // Starting at first 1 (from lsb). 197 // '1' condition as indicated in IT. 198 // '0' inverse of condition (else). 199 // Count of instructions in IT block is 200 // 4 - trailingzeroes(mask) 201 // Note that this does not have the same encoding 202 // as in the IT instruction, which also depends 203 // on the low bit of the condition code. 204 205 unsigned CurPosition; // Current position in parsing of IT 206 // block. In range [0,4], with 0 being the IT 207 // instruction itself. Initialized according to 208 // count of instructions in block. ~0U if no 209 // active IT block. 210 211 bool IsExplicit; // true - The IT instruction was present in the 212 // input, we should not modify it. 213 // false - The IT instruction was added 214 // implicitly, we can extend it if that 215 // would be legal. 216 } ITState; 217 218 SmallVector<MCInst, 4> PendingConditionalInsts; 219 220 void flushPendingInstructions(MCStreamer &Out) override { 221 if (!inImplicitITBlock()) { 222 assert(PendingConditionalInsts.size() == 0); 223 return; 224 } 225 226 // Emit the IT instruction 227 unsigned Mask = getITMaskEncoding(); 228 MCInst ITInst; 229 ITInst.setOpcode(ARM::t2IT); 230 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 231 ITInst.addOperand(MCOperand::createImm(Mask)); 232 Out.EmitInstruction(ITInst, getSTI()); 233 234 // Emit the conditonal instructions 235 assert(PendingConditionalInsts.size() <= 4); 236 for (const MCInst &Inst : PendingConditionalInsts) { 237 Out.EmitInstruction(Inst, getSTI()); 238 } 239 PendingConditionalInsts.clear(); 240 241 // Clear the IT state 242 ITState.Mask = 0; 243 ITState.CurPosition = ~0U; 244 } 245 246 bool inITBlock() { return ITState.CurPosition != ~0U; } 247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 249 250 bool lastInITBlock() { 251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 252 } 253 254 void forwardITPosition() { 255 if (!inITBlock()) return; 256 // Move to the next instruction in the IT block, if there is one. If not, 257 // mark the block as done, except for implicit IT blocks, which we leave 258 // open until we find an instruction that can't be added to it. 259 unsigned TZ = countTrailingZeros(ITState.Mask); 260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 261 ITState.CurPosition = ~0U; // Done with the IT block after this. 262 } 263 264 // Rewind the state of the current IT block, removing the last slot from it. 265 void rewindImplicitITPosition() { 266 assert(inImplicitITBlock()); 267 assert(ITState.CurPosition > 1); 268 ITState.CurPosition--; 269 unsigned TZ = countTrailingZeros(ITState.Mask); 270 unsigned NewMask = 0; 271 NewMask |= ITState.Mask & (0xC << TZ); 272 NewMask |= 0x2 << TZ; 273 ITState.Mask = NewMask; 274 } 275 276 // Rewind the state of the current IT block, removing the last slot from it. 277 // If we were at the first slot, this closes the IT block. 278 void discardImplicitITBlock() { 279 assert(inImplicitITBlock()); 280 assert(ITState.CurPosition == 1); 281 ITState.CurPosition = ~0U; 282 } 283 284 // Return the low-subreg of a given Q register. 285 unsigned getDRegFromQReg(unsigned QReg) const { 286 return MRI->getSubReg(QReg, ARM::dsub_0); 287 } 288 289 // Get the encoding of the IT mask, as it will appear in an IT instruction. 290 unsigned getITMaskEncoding() { 291 assert(inITBlock()); 292 unsigned Mask = ITState.Mask; 293 unsigned TZ = countTrailingZeros(Mask); 294 if ((ITState.Cond & 1) == 0) { 295 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 296 Mask ^= (0xE << TZ) & 0xF; 297 } 298 return Mask; 299 } 300 301 // Get the condition code corresponding to the current IT block slot. 302 ARMCC::CondCodes currentITCond() { 303 unsigned MaskBit; 304 if (ITState.CurPosition == 1) 305 MaskBit = 1; 306 else 307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 308 309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 310 } 311 312 // Invert the condition of the current IT block slot without changing any 313 // other slots in the same block. 314 void invertCurrentITCondition() { 315 if (ITState.CurPosition == 1) { 316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 317 } else { 318 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 319 } 320 } 321 322 // Returns true if the current IT block is full (all 4 slots used). 323 bool isITBlockFull() { 324 return inITBlock() && (ITState.Mask & 1); 325 } 326 327 // Extend the current implicit IT block to have one more slot with the given 328 // condition code. 329 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 330 assert(inImplicitITBlock()); 331 assert(!isITBlockFull()); 332 assert(Cond == ITState.Cond || 333 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 unsigned NewMask = 0; 336 // Keep any existing condition bits. 337 NewMask |= ITState.Mask & (0xE << TZ); 338 // Insert the new condition bit. 339 NewMask |= (Cond == ITState.Cond) << TZ; 340 // Move the trailing 1 down one bit. 341 NewMask |= 1 << (TZ - 1); 342 ITState.Mask = NewMask; 343 } 344 345 // Create a new implicit IT block with a dummy condition code. 346 void startImplicitITBlock() { 347 assert(!inITBlock()); 348 ITState.Cond = ARMCC::AL; 349 ITState.Mask = 8; 350 ITState.CurPosition = 1; 351 ITState.IsExplicit = false; 352 } 353 354 // Create a new explicit IT block with the given condition and mask. The mask 355 // should be in the parsed format, with a 1 implying 't', regardless of the 356 // low bit of the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 366 return getParser().Note(L, Msg, Range); 367 } 368 369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 370 return getParser().Warning(L, Msg, Range); 371 } 372 373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 374 return getParser().Error(L, Msg, Range); 375 } 376 377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 378 unsigned ListNo, bool IsARPop = false); 379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 380 unsigned ListNo); 381 382 int tryParseRegister(); 383 bool tryParseRegisterWithWriteBack(OperandVector &); 384 int tryParseShiftRegister(OperandVector &); 385 bool parseRegisterList(OperandVector &); 386 bool parseMemory(OperandVector &); 387 bool parseOperand(OperandVector &, StringRef Mnemonic); 388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 390 unsigned &ShiftAmount); 391 bool parseLiteralValues(unsigned Size, SMLoc L); 392 bool parseDirectiveThumb(SMLoc L); 393 bool parseDirectiveARM(SMLoc L); 394 bool parseDirectiveThumbFunc(SMLoc L); 395 bool parseDirectiveCode(SMLoc L); 396 bool parseDirectiveSyntax(SMLoc L); 397 bool parseDirectiveReq(StringRef Name, SMLoc L); 398 bool parseDirectiveUnreq(SMLoc L); 399 bool parseDirectiveArch(SMLoc L); 400 bool parseDirectiveEabiAttr(SMLoc L); 401 bool parseDirectiveCPU(SMLoc L); 402 bool parseDirectiveFPU(SMLoc L); 403 bool parseDirectiveFnStart(SMLoc L); 404 bool parseDirectiveFnEnd(SMLoc L); 405 bool parseDirectiveCantUnwind(SMLoc L); 406 bool parseDirectivePersonality(SMLoc L); 407 bool parseDirectiveHandlerData(SMLoc L); 408 bool parseDirectiveSetFP(SMLoc L); 409 bool parseDirectivePad(SMLoc L); 410 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 412 bool parseDirectiveLtorg(SMLoc L); 413 bool parseDirectiveEven(SMLoc L); 414 bool parseDirectivePersonalityIndex(SMLoc L); 415 bool parseDirectiveUnwindRaw(SMLoc L); 416 bool parseDirectiveTLSDescSeq(SMLoc L); 417 bool parseDirectiveMovSP(SMLoc L); 418 bool parseDirectiveObjectArch(SMLoc L); 419 bool parseDirectiveArchExtension(SMLoc L); 420 bool parseDirectiveAlign(SMLoc L); 421 bool parseDirectiveThumbSet(SMLoc L); 422 423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 424 bool &CarrySetting, unsigned &ProcessorIMod, 425 StringRef &ITMask); 426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 427 bool &CanAcceptCarrySet, 428 bool &CanAcceptPredicationCode); 429 430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 431 OperandVector &Operands); 432 bool isThumb() const { 433 // FIXME: Can tablegen auto-generate this? 434 return getSTI().getFeatureBits()[ARM::ModeThumb]; 435 } 436 437 bool isThumbOne() const { 438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 439 } 440 441 bool isThumbTwo() const { 442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 443 } 444 445 bool hasThumb() const { 446 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 447 } 448 449 bool hasThumb2() const { 450 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 451 } 452 453 bool hasV6Ops() const { 454 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 455 } 456 457 bool hasV6T2Ops() const { 458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 459 } 460 461 bool hasV6MOps() const { 462 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 463 } 464 465 bool hasV7Ops() const { 466 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 467 } 468 469 bool hasV8Ops() const { 470 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 471 } 472 473 bool hasV8MBaseline() const { 474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 475 } 476 477 bool hasV8MMainline() const { 478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 479 } 480 481 bool has8MSecExt() const { 482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 483 } 484 485 bool hasARM() const { 486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 487 } 488 489 bool hasDSP() const { 490 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 491 } 492 493 bool hasD16() const { 494 return getSTI().getFeatureBits()[ARM::FeatureD16]; 495 } 496 497 bool hasV8_1aOps() const { 498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 499 } 500 501 bool hasRAS() const { 502 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 503 } 504 505 void SwitchMode() { 506 MCSubtargetInfo &STI = copySTI(); 507 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 508 setAvailableFeatures(FB); 509 } 510 511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 512 513 bool isMClass() const { 514 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 515 } 516 517 /// @name Auto-generated Match Functions 518 /// { 519 520 #define GET_ASSEMBLER_HEADER 521 #include "ARMGenAsmMatcher.inc" 522 523 /// } 524 525 OperandMatchResultTy parseITCondCode(OperandVector &); 526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 530 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 531 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 532 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 533 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 534 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 535 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 536 int High); 537 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 538 return parsePKHImm(O, "lsl", 0, 31); 539 } 540 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 541 return parsePKHImm(O, "asr", 1, 32); 542 } 543 OperandMatchResultTy parseSetEndImm(OperandVector &); 544 OperandMatchResultTy parseShifterImm(OperandVector &); 545 OperandMatchResultTy parseRotImm(OperandVector &); 546 OperandMatchResultTy parseModImm(OperandVector &); 547 OperandMatchResultTy parseBitfield(OperandVector &); 548 OperandMatchResultTy parsePostIdxReg(OperandVector &); 549 OperandMatchResultTy parseAM3Offset(OperandVector &); 550 OperandMatchResultTy parseFPImm(OperandVector &); 551 OperandMatchResultTy parseVectorList(OperandVector &); 552 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 553 SMLoc &EndLoc); 554 555 // Asm Match Converter Methods 556 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 557 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 558 559 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 560 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 561 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 562 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 563 bool isITBlockTerminator(MCInst &Inst) const; 564 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 565 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 566 bool Load, bool ARMMode, bool Writeback); 567 568 public: 569 enum ARMMatchResultTy { 570 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 571 Match_RequiresNotITBlock, 572 Match_RequiresV6, 573 Match_RequiresThumb2, 574 Match_RequiresV8, 575 Match_RequiresFlagSetting, 576 #define GET_OPERAND_DIAGNOSTIC_TYPES 577 #include "ARMGenAsmMatcher.inc" 578 579 }; 580 581 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 582 const MCInstrInfo &MII, const MCTargetOptions &Options) 583 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 584 MCAsmParserExtension::Initialize(Parser); 585 586 // Cache the MCRegisterInfo. 587 MRI = getContext().getRegisterInfo(); 588 589 // Initialize the set of available features. 590 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 591 592 // Add build attributes based on the selected target. 593 if (AddBuildAttributes) 594 getTargetStreamer().emitTargetAttributes(STI); 595 596 // Not in an ITBlock to start with. 597 ITState.CurPosition = ~0U; 598 599 NextSymbolIsThumb = false; 600 } 601 602 // Implementation of the MCTargetAsmParser interface: 603 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 604 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 605 SMLoc NameLoc, OperandVector &Operands) override; 606 bool ParseDirective(AsmToken DirectiveID) override; 607 608 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 609 unsigned Kind) override; 610 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 611 612 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 613 OperandVector &Operands, MCStreamer &Out, 614 uint64_t &ErrorInfo, 615 bool MatchingInlineAsm) override; 616 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 617 SmallVectorImpl<NearMissInfo> &NearMisses, 618 bool MatchingInlineAsm, bool &EmitInITBlock, 619 MCStreamer &Out); 620 621 struct NearMissMessage { 622 SMLoc Loc; 623 SmallString<128> Message; 624 }; 625 626 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 627 628 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 629 SmallVectorImpl<NearMissMessage> &NearMissesOut, 630 SMLoc IDLoc, OperandVector &Operands); 631 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 632 OperandVector &Operands); 633 634 void onLabelParsed(MCSymbol *Symbol) override; 635 }; 636 637 /// ARMOperand - Instances of this class represent a parsed ARM machine 638 /// operand. 639 class ARMOperand : public MCParsedAsmOperand { 640 enum KindTy { 641 k_CondCode, 642 k_CCOut, 643 k_ITCondMask, 644 k_CoprocNum, 645 k_CoprocReg, 646 k_CoprocOption, 647 k_Immediate, 648 k_MemBarrierOpt, 649 k_InstSyncBarrierOpt, 650 k_TraceSyncBarrierOpt, 651 k_Memory, 652 k_PostIndexRegister, 653 k_MSRMask, 654 k_BankedReg, 655 k_ProcIFlags, 656 k_VectorIndex, 657 k_Register, 658 k_RegisterList, 659 k_DPRRegisterList, 660 k_SPRRegisterList, 661 k_VectorList, 662 k_VectorListAllLanes, 663 k_VectorListIndexed, 664 k_ShiftedRegister, 665 k_ShiftedImmediate, 666 k_ShifterImmediate, 667 k_RotateImmediate, 668 k_ModifiedImmediate, 669 k_ConstantPoolImmediate, 670 k_BitfieldDescriptor, 671 k_Token, 672 } Kind; 673 674 SMLoc StartLoc, EndLoc, AlignmentLoc; 675 SmallVector<unsigned, 8> Registers; 676 677 struct CCOp { 678 ARMCC::CondCodes Val; 679 }; 680 681 struct CopOp { 682 unsigned Val; 683 }; 684 685 struct CoprocOptionOp { 686 unsigned Val; 687 }; 688 689 struct ITMaskOp { 690 unsigned Mask:4; 691 }; 692 693 struct MBOptOp { 694 ARM_MB::MemBOpt Val; 695 }; 696 697 struct ISBOptOp { 698 ARM_ISB::InstSyncBOpt Val; 699 }; 700 701 struct TSBOptOp { 702 ARM_TSB::TraceSyncBOpt Val; 703 }; 704 705 struct IFlagsOp { 706 ARM_PROC::IFlags Val; 707 }; 708 709 struct MMaskOp { 710 unsigned Val; 711 }; 712 713 struct BankedRegOp { 714 unsigned Val; 715 }; 716 717 struct TokOp { 718 const char *Data; 719 unsigned Length; 720 }; 721 722 struct RegOp { 723 unsigned RegNum; 724 }; 725 726 // A vector register list is a sequential list of 1 to 4 registers. 727 struct VectorListOp { 728 unsigned RegNum; 729 unsigned Count; 730 unsigned LaneIndex; 731 bool isDoubleSpaced; 732 }; 733 734 struct VectorIndexOp { 735 unsigned Val; 736 }; 737 738 struct ImmOp { 739 const MCExpr *Val; 740 }; 741 742 /// Combined record for all forms of ARM address expressions. 743 struct MemoryOp { 744 unsigned BaseRegNum; 745 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 746 // was specified. 747 const MCConstantExpr *OffsetImm; // Offset immediate value 748 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 749 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 750 unsigned ShiftImm; // shift for OffsetReg. 751 unsigned Alignment; // 0 = no alignment specified 752 // n = alignment in bytes (2, 4, 8, 16, or 32) 753 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 754 }; 755 756 struct PostIdxRegOp { 757 unsigned RegNum; 758 bool isAdd; 759 ARM_AM::ShiftOpc ShiftTy; 760 unsigned ShiftImm; 761 }; 762 763 struct ShifterImmOp { 764 bool isASR; 765 unsigned Imm; 766 }; 767 768 struct RegShiftedRegOp { 769 ARM_AM::ShiftOpc ShiftTy; 770 unsigned SrcReg; 771 unsigned ShiftReg; 772 unsigned ShiftImm; 773 }; 774 775 struct RegShiftedImmOp { 776 ARM_AM::ShiftOpc ShiftTy; 777 unsigned SrcReg; 778 unsigned ShiftImm; 779 }; 780 781 struct RotImmOp { 782 unsigned Imm; 783 }; 784 785 struct ModImmOp { 786 unsigned Bits; 787 unsigned Rot; 788 }; 789 790 struct BitfieldOp { 791 unsigned LSB; 792 unsigned Width; 793 }; 794 795 union { 796 struct CCOp CC; 797 struct CopOp Cop; 798 struct CoprocOptionOp CoprocOption; 799 struct MBOptOp MBOpt; 800 struct ISBOptOp ISBOpt; 801 struct TSBOptOp TSBOpt; 802 struct ITMaskOp ITMask; 803 struct IFlagsOp IFlags; 804 struct MMaskOp MMask; 805 struct BankedRegOp BankedReg; 806 struct TokOp Tok; 807 struct RegOp Reg; 808 struct VectorListOp VectorList; 809 struct VectorIndexOp VectorIndex; 810 struct ImmOp Imm; 811 struct MemoryOp Memory; 812 struct PostIdxRegOp PostIdxReg; 813 struct ShifterImmOp ShifterImm; 814 struct RegShiftedRegOp RegShiftedReg; 815 struct RegShiftedImmOp RegShiftedImm; 816 struct RotImmOp RotImm; 817 struct ModImmOp ModImm; 818 struct BitfieldOp Bitfield; 819 }; 820 821 public: 822 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 823 824 /// getStartLoc - Get the location of the first token of this operand. 825 SMLoc getStartLoc() const override { return StartLoc; } 826 827 /// getEndLoc - Get the location of the last token of this operand. 828 SMLoc getEndLoc() const override { return EndLoc; } 829 830 /// getLocRange - Get the range between the first and last token of this 831 /// operand. 832 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 833 834 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 835 SMLoc getAlignmentLoc() const { 836 assert(Kind == k_Memory && "Invalid access!"); 837 return AlignmentLoc; 838 } 839 840 ARMCC::CondCodes getCondCode() const { 841 assert(Kind == k_CondCode && "Invalid access!"); 842 return CC.Val; 843 } 844 845 unsigned getCoproc() const { 846 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 847 return Cop.Val; 848 } 849 850 StringRef getToken() const { 851 assert(Kind == k_Token && "Invalid access!"); 852 return StringRef(Tok.Data, Tok.Length); 853 } 854 855 unsigned getReg() const override { 856 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 857 return Reg.RegNum; 858 } 859 860 const SmallVectorImpl<unsigned> &getRegList() const { 861 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 862 Kind == k_SPRRegisterList) && "Invalid access!"); 863 return Registers; 864 } 865 866 const MCExpr *getImm() const { 867 assert(isImm() && "Invalid access!"); 868 return Imm.Val; 869 } 870 871 const MCExpr *getConstantPoolImm() const { 872 assert(isConstantPoolImm() && "Invalid access!"); 873 return Imm.Val; 874 } 875 876 unsigned getVectorIndex() const { 877 assert(Kind == k_VectorIndex && "Invalid access!"); 878 return VectorIndex.Val; 879 } 880 881 ARM_MB::MemBOpt getMemBarrierOpt() const { 882 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 883 return MBOpt.Val; 884 } 885 886 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 887 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 888 return ISBOpt.Val; 889 } 890 891 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 892 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 893 return TSBOpt.Val; 894 } 895 896 ARM_PROC::IFlags getProcIFlags() const { 897 assert(Kind == k_ProcIFlags && "Invalid access!"); 898 return IFlags.Val; 899 } 900 901 unsigned getMSRMask() const { 902 assert(Kind == k_MSRMask && "Invalid access!"); 903 return MMask.Val; 904 } 905 906 unsigned getBankedReg() const { 907 assert(Kind == k_BankedReg && "Invalid access!"); 908 return BankedReg.Val; 909 } 910 911 bool isCoprocNum() const { return Kind == k_CoprocNum; } 912 bool isCoprocReg() const { return Kind == k_CoprocReg; } 913 bool isCoprocOption() const { return Kind == k_CoprocOption; } 914 bool isCondCode() const { return Kind == k_CondCode; } 915 bool isCCOut() const { return Kind == k_CCOut; } 916 bool isITMask() const { return Kind == k_ITCondMask; } 917 bool isITCondCode() const { return Kind == k_CondCode; } 918 bool isImm() const override { 919 return Kind == k_Immediate; 920 } 921 922 bool isARMBranchTarget() const { 923 if (!isImm()) return false; 924 925 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 926 return CE->getValue() % 4 == 0; 927 return true; 928 } 929 930 931 bool isThumbBranchTarget() const { 932 if (!isImm()) return false; 933 934 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 935 return CE->getValue() % 2 == 0; 936 return true; 937 } 938 939 // checks whether this operand is an unsigned offset which fits is a field 940 // of specified width and scaled by a specific number of bits 941 template<unsigned width, unsigned scale> 942 bool isUnsignedOffset() const { 943 if (!isImm()) return false; 944 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 945 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 946 int64_t Val = CE->getValue(); 947 int64_t Align = 1LL << scale; 948 int64_t Max = Align * ((1LL << width) - 1); 949 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 950 } 951 return false; 952 } 953 954 // checks whether this operand is an signed offset which fits is a field 955 // of specified width and scaled by a specific number of bits 956 template<unsigned width, unsigned scale> 957 bool isSignedOffset() const { 958 if (!isImm()) return false; 959 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 960 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 961 int64_t Val = CE->getValue(); 962 int64_t Align = 1LL << scale; 963 int64_t Max = Align * ((1LL << (width-1)) - 1); 964 int64_t Min = -Align * (1LL << (width-1)); 965 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 966 } 967 return false; 968 } 969 970 // checks whether this operand is a memory operand computed as an offset 971 // applied to PC. the offset may have 8 bits of magnitude and is represented 972 // with two bits of shift. textually it may be either [pc, #imm], #imm or 973 // relocable expression... 974 bool isThumbMemPC() const { 975 int64_t Val = 0; 976 if (isImm()) { 977 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 978 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 979 if (!CE) return false; 980 Val = CE->getValue(); 981 } 982 else if (isMem()) { 983 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 984 if(Memory.BaseRegNum != ARM::PC) return false; 985 Val = Memory.OffsetImm->getValue(); 986 } 987 else return false; 988 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 989 } 990 991 bool isFPImm() const { 992 if (!isImm()) return false; 993 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 994 if (!CE) return false; 995 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 996 return Val != -1; 997 } 998 999 template<int64_t N, int64_t M> 1000 bool isImmediate() const { 1001 if (!isImm()) return false; 1002 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1003 if (!CE) return false; 1004 int64_t Value = CE->getValue(); 1005 return Value >= N && Value <= M; 1006 } 1007 1008 template<int64_t N, int64_t M> 1009 bool isImmediateS4() const { 1010 if (!isImm()) return false; 1011 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1012 if (!CE) return false; 1013 int64_t Value = CE->getValue(); 1014 return ((Value & 3) == 0) && Value >= N && Value <= M; 1015 } 1016 1017 bool isFBits16() const { 1018 return isImmediate<0, 17>(); 1019 } 1020 bool isFBits32() const { 1021 return isImmediate<1, 33>(); 1022 } 1023 bool isImm8s4() const { 1024 return isImmediateS4<-1020, 1020>(); 1025 } 1026 bool isImm0_1020s4() const { 1027 return isImmediateS4<0, 1020>(); 1028 } 1029 bool isImm0_508s4() const { 1030 return isImmediateS4<0, 508>(); 1031 } 1032 bool isImm0_508s4Neg() const { 1033 if (!isImm()) return false; 1034 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1035 if (!CE) return false; 1036 int64_t Value = -CE->getValue(); 1037 // explicitly exclude zero. we want that to use the normal 0_508 version. 1038 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1039 } 1040 1041 bool isImm0_4095Neg() const { 1042 if (!isImm()) return false; 1043 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1044 if (!CE) return false; 1045 // isImm0_4095Neg is used with 32-bit immediates only. 1046 // 32-bit immediates are zero extended to 64-bit when parsed, 1047 // thus simple -CE->getValue() results in a big negative number, 1048 // not a small positive number as intended 1049 if ((CE->getValue() >> 32) > 0) return false; 1050 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1051 return Value > 0 && Value < 4096; 1052 } 1053 1054 bool isImm0_7() const { 1055 return isImmediate<0, 7>(); 1056 } 1057 1058 bool isImm1_16() const { 1059 return isImmediate<1, 16>(); 1060 } 1061 1062 bool isImm1_32() const { 1063 return isImmediate<1, 32>(); 1064 } 1065 1066 bool isImm8_255() const { 1067 return isImmediate<8, 255>(); 1068 } 1069 1070 bool isImm256_65535Expr() const { 1071 if (!isImm()) return false; 1072 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1073 // If it's not a constant expression, it'll generate a fixup and be 1074 // handled later. 1075 if (!CE) return true; 1076 int64_t Value = CE->getValue(); 1077 return Value >= 256 && Value < 65536; 1078 } 1079 1080 bool isImm0_65535Expr() const { 1081 if (!isImm()) return false; 1082 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1083 // If it's not a constant expression, it'll generate a fixup and be 1084 // handled later. 1085 if (!CE) return true; 1086 int64_t Value = CE->getValue(); 1087 return Value >= 0 && Value < 65536; 1088 } 1089 1090 bool isImm24bit() const { 1091 return isImmediate<0, 0xffffff + 1>(); 1092 } 1093 1094 bool isImmThumbSR() const { 1095 return isImmediate<1, 33>(); 1096 } 1097 1098 bool isPKHLSLImm() const { 1099 return isImmediate<0, 32>(); 1100 } 1101 1102 bool isPKHASRImm() const { 1103 return isImmediate<0, 33>(); 1104 } 1105 1106 bool isAdrLabel() const { 1107 // If we have an immediate that's not a constant, treat it as a label 1108 // reference needing a fixup. 1109 if (isImm() && !isa<MCConstantExpr>(getImm())) 1110 return true; 1111 1112 // If it is a constant, it must fit into a modified immediate encoding. 1113 if (!isImm()) return false; 1114 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1115 if (!CE) return false; 1116 int64_t Value = CE->getValue(); 1117 return (ARM_AM::getSOImmVal(Value) != -1 || 1118 ARM_AM::getSOImmVal(-Value) != -1); 1119 } 1120 1121 bool isT2SOImm() const { 1122 // If we have an immediate that's not a constant, treat it as an expression 1123 // needing a fixup. 1124 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1125 // We want to avoid matching :upper16: and :lower16: as we want these 1126 // expressions to match in isImm0_65535Expr() 1127 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1128 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1129 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1130 } 1131 if (!isImm()) return false; 1132 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1133 if (!CE) return false; 1134 int64_t Value = CE->getValue(); 1135 return ARM_AM::getT2SOImmVal(Value) != -1; 1136 } 1137 1138 bool isT2SOImmNot() const { 1139 if (!isImm()) return false; 1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1141 if (!CE) return false; 1142 int64_t Value = CE->getValue(); 1143 return ARM_AM::getT2SOImmVal(Value) == -1 && 1144 ARM_AM::getT2SOImmVal(~Value) != -1; 1145 } 1146 1147 bool isT2SOImmNeg() const { 1148 if (!isImm()) return false; 1149 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1150 if (!CE) return false; 1151 int64_t Value = CE->getValue(); 1152 // Only use this when not representable as a plain so_imm. 1153 return ARM_AM::getT2SOImmVal(Value) == -1 && 1154 ARM_AM::getT2SOImmVal(-Value) != -1; 1155 } 1156 1157 bool isSetEndImm() const { 1158 if (!isImm()) return false; 1159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1160 if (!CE) return false; 1161 int64_t Value = CE->getValue(); 1162 return Value == 1 || Value == 0; 1163 } 1164 1165 bool isReg() const override { return Kind == k_Register; } 1166 bool isRegList() const { return Kind == k_RegisterList; } 1167 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1168 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1169 bool isToken() const override { return Kind == k_Token; } 1170 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1171 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1172 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1173 bool isMem() const override { 1174 if (Kind != k_Memory) 1175 return false; 1176 if (Memory.BaseRegNum && 1177 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1178 return false; 1179 if (Memory.OffsetRegNum && 1180 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1181 return false; 1182 return true; 1183 } 1184 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1185 bool isRegShiftedReg() const { 1186 return Kind == k_ShiftedRegister && 1187 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1188 RegShiftedReg.SrcReg) && 1189 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1190 RegShiftedReg.ShiftReg); 1191 } 1192 bool isRegShiftedImm() const { 1193 return Kind == k_ShiftedImmediate && 1194 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1195 RegShiftedImm.SrcReg); 1196 } 1197 bool isRotImm() const { return Kind == k_RotateImmediate; } 1198 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1199 1200 bool isModImmNot() const { 1201 if (!isImm()) return false; 1202 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1203 if (!CE) return false; 1204 int64_t Value = CE->getValue(); 1205 return ARM_AM::getSOImmVal(~Value) != -1; 1206 } 1207 1208 bool isModImmNeg() const { 1209 if (!isImm()) return false; 1210 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1211 if (!CE) return false; 1212 int64_t Value = CE->getValue(); 1213 return ARM_AM::getSOImmVal(Value) == -1 && 1214 ARM_AM::getSOImmVal(-Value) != -1; 1215 } 1216 1217 bool isThumbModImmNeg1_7() const { 1218 if (!isImm()) return false; 1219 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1220 if (!CE) return false; 1221 int32_t Value = -(int32_t)CE->getValue(); 1222 return 0 < Value && Value < 8; 1223 } 1224 1225 bool isThumbModImmNeg8_255() const { 1226 if (!isImm()) return false; 1227 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1228 if (!CE) return false; 1229 int32_t Value = -(int32_t)CE->getValue(); 1230 return 7 < Value && Value < 256; 1231 } 1232 1233 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1234 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1235 bool isPostIdxRegShifted() const { 1236 return Kind == k_PostIndexRegister && 1237 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1238 } 1239 bool isPostIdxReg() const { 1240 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1241 } 1242 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1243 if (!isMem()) 1244 return false; 1245 // No offset of any kind. 1246 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1247 (alignOK || Memory.Alignment == Alignment); 1248 } 1249 bool isMemPCRelImm12() const { 1250 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1251 return false; 1252 // Base register must be PC. 1253 if (Memory.BaseRegNum != ARM::PC) 1254 return false; 1255 // Immediate offset in range [-4095, 4095]. 1256 if (!Memory.OffsetImm) return true; 1257 int64_t Val = Memory.OffsetImm->getValue(); 1258 return (Val > -4096 && Val < 4096) || 1259 (Val == std::numeric_limits<int32_t>::min()); 1260 } 1261 1262 bool isAlignedMemory() const { 1263 return isMemNoOffset(true); 1264 } 1265 1266 bool isAlignedMemoryNone() const { 1267 return isMemNoOffset(false, 0); 1268 } 1269 1270 bool isDupAlignedMemoryNone() const { 1271 return isMemNoOffset(false, 0); 1272 } 1273 1274 bool isAlignedMemory16() const { 1275 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1276 return true; 1277 return isMemNoOffset(false, 0); 1278 } 1279 1280 bool isDupAlignedMemory16() const { 1281 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1282 return true; 1283 return isMemNoOffset(false, 0); 1284 } 1285 1286 bool isAlignedMemory32() const { 1287 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1288 return true; 1289 return isMemNoOffset(false, 0); 1290 } 1291 1292 bool isDupAlignedMemory32() const { 1293 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1294 return true; 1295 return isMemNoOffset(false, 0); 1296 } 1297 1298 bool isAlignedMemory64() const { 1299 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1300 return true; 1301 return isMemNoOffset(false, 0); 1302 } 1303 1304 bool isDupAlignedMemory64() const { 1305 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1306 return true; 1307 return isMemNoOffset(false, 0); 1308 } 1309 1310 bool isAlignedMemory64or128() const { 1311 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1312 return true; 1313 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1314 return true; 1315 return isMemNoOffset(false, 0); 1316 } 1317 1318 bool isDupAlignedMemory64or128() const { 1319 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1320 return true; 1321 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1322 return true; 1323 return isMemNoOffset(false, 0); 1324 } 1325 1326 bool isAlignedMemory64or128or256() const { 1327 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1328 return true; 1329 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1330 return true; 1331 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1332 return true; 1333 return isMemNoOffset(false, 0); 1334 } 1335 1336 bool isAddrMode2() const { 1337 if (!isMem() || Memory.Alignment != 0) return false; 1338 // Check for register offset. 1339 if (Memory.OffsetRegNum) return true; 1340 // Immediate offset in range [-4095, 4095]. 1341 if (!Memory.OffsetImm) return true; 1342 int64_t Val = Memory.OffsetImm->getValue(); 1343 return Val > -4096 && Val < 4096; 1344 } 1345 1346 bool isAM2OffsetImm() const { 1347 if (!isImm()) return false; 1348 // Immediate offset in range [-4095, 4095]. 1349 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1350 if (!CE) return false; 1351 int64_t Val = CE->getValue(); 1352 return (Val == std::numeric_limits<int32_t>::min()) || 1353 (Val > -4096 && Val < 4096); 1354 } 1355 1356 bool isAddrMode3() const { 1357 // If we have an immediate that's not a constant, treat it as a label 1358 // reference needing a fixup. If it is a constant, it's something else 1359 // and we reject it. 1360 if (isImm() && !isa<MCConstantExpr>(getImm())) 1361 return true; 1362 if (!isMem() || Memory.Alignment != 0) return false; 1363 // No shifts are legal for AM3. 1364 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1365 // Check for register offset. 1366 if (Memory.OffsetRegNum) return true; 1367 // Immediate offset in range [-255, 255]. 1368 if (!Memory.OffsetImm) return true; 1369 int64_t Val = Memory.OffsetImm->getValue(); 1370 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1371 // have to check for this too. 1372 return (Val > -256 && Val < 256) || 1373 Val == std::numeric_limits<int32_t>::min(); 1374 } 1375 1376 bool isAM3Offset() const { 1377 if (isPostIdxReg()) 1378 return true; 1379 if (!isImm()) 1380 return false; 1381 // Immediate offset in range [-255, 255]. 1382 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1383 if (!CE) return false; 1384 int64_t Val = CE->getValue(); 1385 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1386 return (Val > -256 && Val < 256) || 1387 Val == std::numeric_limits<int32_t>::min(); 1388 } 1389 1390 bool isAddrMode5() const { 1391 // If we have an immediate that's not a constant, treat it as a label 1392 // reference needing a fixup. If it is a constant, it's something else 1393 // and we reject it. 1394 if (isImm() && !isa<MCConstantExpr>(getImm())) 1395 return true; 1396 if (!isMem() || Memory.Alignment != 0) return false; 1397 // Check for register offset. 1398 if (Memory.OffsetRegNum) return false; 1399 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1400 if (!Memory.OffsetImm) return true; 1401 int64_t Val = Memory.OffsetImm->getValue(); 1402 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1403 Val == std::numeric_limits<int32_t>::min(); 1404 } 1405 1406 bool isAddrMode5FP16() const { 1407 // If we have an immediate that's not a constant, treat it as a label 1408 // reference needing a fixup. If it is a constant, it's something else 1409 // and we reject it. 1410 if (isImm() && !isa<MCConstantExpr>(getImm())) 1411 return true; 1412 if (!isMem() || Memory.Alignment != 0) return false; 1413 // Check for register offset. 1414 if (Memory.OffsetRegNum) return false; 1415 // Immediate offset in range [-510, 510] and a multiple of 2. 1416 if (!Memory.OffsetImm) return true; 1417 int64_t Val = Memory.OffsetImm->getValue(); 1418 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1419 Val == std::numeric_limits<int32_t>::min(); 1420 } 1421 1422 bool isMemTBB() const { 1423 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1424 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1425 return false; 1426 return true; 1427 } 1428 1429 bool isMemTBH() const { 1430 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1431 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1432 Memory.Alignment != 0 ) 1433 return false; 1434 return true; 1435 } 1436 1437 bool isMemRegOffset() const { 1438 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1439 return false; 1440 return true; 1441 } 1442 1443 bool isT2MemRegOffset() const { 1444 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1445 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1446 return false; 1447 // Only lsl #{0, 1, 2, 3} allowed. 1448 if (Memory.ShiftType == ARM_AM::no_shift) 1449 return true; 1450 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1451 return false; 1452 return true; 1453 } 1454 1455 bool isMemThumbRR() const { 1456 // Thumb reg+reg addressing is simple. Just two registers, a base and 1457 // an offset. No shifts, negations or any other complicating factors. 1458 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1459 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1460 return false; 1461 return isARMLowRegister(Memory.BaseRegNum) && 1462 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1463 } 1464 1465 bool isMemThumbRIs4() const { 1466 if (!isMem() || Memory.OffsetRegNum != 0 || 1467 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1468 return false; 1469 // Immediate offset, multiple of 4 in range [0, 124]. 1470 if (!Memory.OffsetImm) return true; 1471 int64_t Val = Memory.OffsetImm->getValue(); 1472 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1473 } 1474 1475 bool isMemThumbRIs2() const { 1476 if (!isMem() || Memory.OffsetRegNum != 0 || 1477 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1478 return false; 1479 // Immediate offset, multiple of 4 in range [0, 62]. 1480 if (!Memory.OffsetImm) return true; 1481 int64_t Val = Memory.OffsetImm->getValue(); 1482 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1483 } 1484 1485 bool isMemThumbRIs1() const { 1486 if (!isMem() || Memory.OffsetRegNum != 0 || 1487 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1488 return false; 1489 // Immediate offset in range [0, 31]. 1490 if (!Memory.OffsetImm) return true; 1491 int64_t Val = Memory.OffsetImm->getValue(); 1492 return Val >= 0 && Val <= 31; 1493 } 1494 1495 bool isMemThumbSPI() const { 1496 if (!isMem() || Memory.OffsetRegNum != 0 || 1497 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1498 return false; 1499 // Immediate offset, multiple of 4 in range [0, 1020]. 1500 if (!Memory.OffsetImm) return true; 1501 int64_t Val = Memory.OffsetImm->getValue(); 1502 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1503 } 1504 1505 bool isMemImm8s4Offset() const { 1506 // If we have an immediate that's not a constant, treat it as a label 1507 // reference needing a fixup. If it is a constant, it's something else 1508 // and we reject it. 1509 if (isImm() && !isa<MCConstantExpr>(getImm())) 1510 return true; 1511 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1512 return false; 1513 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1514 if (!Memory.OffsetImm) return true; 1515 int64_t Val = Memory.OffsetImm->getValue(); 1516 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1517 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1518 Val == std::numeric_limits<int32_t>::min(); 1519 } 1520 1521 bool isMemImm0_1020s4Offset() const { 1522 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1523 return false; 1524 // Immediate offset a multiple of 4 in range [0, 1020]. 1525 if (!Memory.OffsetImm) return true; 1526 int64_t Val = Memory.OffsetImm->getValue(); 1527 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1528 } 1529 1530 bool isMemImm8Offset() const { 1531 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1532 return false; 1533 // Base reg of PC isn't allowed for these encodings. 1534 if (Memory.BaseRegNum == ARM::PC) return false; 1535 // Immediate offset in range [-255, 255]. 1536 if (!Memory.OffsetImm) return true; 1537 int64_t Val = Memory.OffsetImm->getValue(); 1538 return (Val == std::numeric_limits<int32_t>::min()) || 1539 (Val > -256 && Val < 256); 1540 } 1541 1542 bool isMemPosImm8Offset() const { 1543 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1544 return false; 1545 // Immediate offset in range [0, 255]. 1546 if (!Memory.OffsetImm) return true; 1547 int64_t Val = Memory.OffsetImm->getValue(); 1548 return Val >= 0 && Val < 256; 1549 } 1550 1551 bool isMemNegImm8Offset() const { 1552 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1553 return false; 1554 // Base reg of PC isn't allowed for these encodings. 1555 if (Memory.BaseRegNum == ARM::PC) return false; 1556 // Immediate offset in range [-255, -1]. 1557 if (!Memory.OffsetImm) return false; 1558 int64_t Val = Memory.OffsetImm->getValue(); 1559 return (Val == std::numeric_limits<int32_t>::min()) || 1560 (Val > -256 && Val < 0); 1561 } 1562 1563 bool isMemUImm12Offset() const { 1564 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1565 return false; 1566 // Immediate offset in range [0, 4095]. 1567 if (!Memory.OffsetImm) return true; 1568 int64_t Val = Memory.OffsetImm->getValue(); 1569 return (Val >= 0 && Val < 4096); 1570 } 1571 1572 bool isMemImm12Offset() const { 1573 // If we have an immediate that's not a constant, treat it as a label 1574 // reference needing a fixup. If it is a constant, it's something else 1575 // and we reject it. 1576 1577 if (isImm() && !isa<MCConstantExpr>(getImm())) 1578 return true; 1579 1580 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1581 return false; 1582 // Immediate offset in range [-4095, 4095]. 1583 if (!Memory.OffsetImm) return true; 1584 int64_t Val = Memory.OffsetImm->getValue(); 1585 return (Val > -4096 && Val < 4096) || 1586 (Val == std::numeric_limits<int32_t>::min()); 1587 } 1588 1589 bool isConstPoolAsmImm() const { 1590 // Delay processing of Constant Pool Immediate, this will turn into 1591 // a constant. Match no other operand 1592 return (isConstantPoolImm()); 1593 } 1594 1595 bool isPostIdxImm8() const { 1596 if (!isImm()) return false; 1597 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1598 if (!CE) return false; 1599 int64_t Val = CE->getValue(); 1600 return (Val > -256 && Val < 256) || 1601 (Val == std::numeric_limits<int32_t>::min()); 1602 } 1603 1604 bool isPostIdxImm8s4() const { 1605 if (!isImm()) return false; 1606 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1607 if (!CE) return false; 1608 int64_t Val = CE->getValue(); 1609 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1610 (Val == std::numeric_limits<int32_t>::min()); 1611 } 1612 1613 bool isMSRMask() const { return Kind == k_MSRMask; } 1614 bool isBankedReg() const { return Kind == k_BankedReg; } 1615 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1616 1617 // NEON operands. 1618 bool isSingleSpacedVectorList() const { 1619 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1620 } 1621 1622 bool isDoubleSpacedVectorList() const { 1623 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1624 } 1625 1626 bool isVecListOneD() const { 1627 if (!isSingleSpacedVectorList()) return false; 1628 return VectorList.Count == 1; 1629 } 1630 1631 bool isVecListDPair() const { 1632 if (!isSingleSpacedVectorList()) return false; 1633 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1634 .contains(VectorList.RegNum)); 1635 } 1636 1637 bool isVecListThreeD() const { 1638 if (!isSingleSpacedVectorList()) return false; 1639 return VectorList.Count == 3; 1640 } 1641 1642 bool isVecListFourD() const { 1643 if (!isSingleSpacedVectorList()) return false; 1644 return VectorList.Count == 4; 1645 } 1646 1647 bool isVecListDPairSpaced() const { 1648 if (Kind != k_VectorList) return false; 1649 if (isSingleSpacedVectorList()) return false; 1650 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1651 .contains(VectorList.RegNum)); 1652 } 1653 1654 bool isVecListThreeQ() const { 1655 if (!isDoubleSpacedVectorList()) return false; 1656 return VectorList.Count == 3; 1657 } 1658 1659 bool isVecListFourQ() const { 1660 if (!isDoubleSpacedVectorList()) return false; 1661 return VectorList.Count == 4; 1662 } 1663 1664 bool isSingleSpacedVectorAllLanes() const { 1665 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1666 } 1667 1668 bool isDoubleSpacedVectorAllLanes() const { 1669 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1670 } 1671 1672 bool isVecListOneDAllLanes() const { 1673 if (!isSingleSpacedVectorAllLanes()) return false; 1674 return VectorList.Count == 1; 1675 } 1676 1677 bool isVecListDPairAllLanes() const { 1678 if (!isSingleSpacedVectorAllLanes()) return false; 1679 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1680 .contains(VectorList.RegNum)); 1681 } 1682 1683 bool isVecListDPairSpacedAllLanes() const { 1684 if (!isDoubleSpacedVectorAllLanes()) return false; 1685 return VectorList.Count == 2; 1686 } 1687 1688 bool isVecListThreeDAllLanes() const { 1689 if (!isSingleSpacedVectorAllLanes()) return false; 1690 return VectorList.Count == 3; 1691 } 1692 1693 bool isVecListThreeQAllLanes() const { 1694 if (!isDoubleSpacedVectorAllLanes()) return false; 1695 return VectorList.Count == 3; 1696 } 1697 1698 bool isVecListFourDAllLanes() const { 1699 if (!isSingleSpacedVectorAllLanes()) return false; 1700 return VectorList.Count == 4; 1701 } 1702 1703 bool isVecListFourQAllLanes() const { 1704 if (!isDoubleSpacedVectorAllLanes()) return false; 1705 return VectorList.Count == 4; 1706 } 1707 1708 bool isSingleSpacedVectorIndexed() const { 1709 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1710 } 1711 1712 bool isDoubleSpacedVectorIndexed() const { 1713 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1714 } 1715 1716 bool isVecListOneDByteIndexed() const { 1717 if (!isSingleSpacedVectorIndexed()) return false; 1718 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1719 } 1720 1721 bool isVecListOneDHWordIndexed() const { 1722 if (!isSingleSpacedVectorIndexed()) return false; 1723 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1724 } 1725 1726 bool isVecListOneDWordIndexed() const { 1727 if (!isSingleSpacedVectorIndexed()) return false; 1728 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1729 } 1730 1731 bool isVecListTwoDByteIndexed() const { 1732 if (!isSingleSpacedVectorIndexed()) return false; 1733 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1734 } 1735 1736 bool isVecListTwoDHWordIndexed() const { 1737 if (!isSingleSpacedVectorIndexed()) return false; 1738 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1739 } 1740 1741 bool isVecListTwoQWordIndexed() const { 1742 if (!isDoubleSpacedVectorIndexed()) return false; 1743 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1744 } 1745 1746 bool isVecListTwoQHWordIndexed() const { 1747 if (!isDoubleSpacedVectorIndexed()) return false; 1748 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1749 } 1750 1751 bool isVecListTwoDWordIndexed() const { 1752 if (!isSingleSpacedVectorIndexed()) return false; 1753 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1754 } 1755 1756 bool isVecListThreeDByteIndexed() const { 1757 if (!isSingleSpacedVectorIndexed()) return false; 1758 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1759 } 1760 1761 bool isVecListThreeDHWordIndexed() const { 1762 if (!isSingleSpacedVectorIndexed()) return false; 1763 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1764 } 1765 1766 bool isVecListThreeQWordIndexed() const { 1767 if (!isDoubleSpacedVectorIndexed()) return false; 1768 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1769 } 1770 1771 bool isVecListThreeQHWordIndexed() const { 1772 if (!isDoubleSpacedVectorIndexed()) return false; 1773 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1774 } 1775 1776 bool isVecListThreeDWordIndexed() const { 1777 if (!isSingleSpacedVectorIndexed()) return false; 1778 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1779 } 1780 1781 bool isVecListFourDByteIndexed() const { 1782 if (!isSingleSpacedVectorIndexed()) return false; 1783 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1784 } 1785 1786 bool isVecListFourDHWordIndexed() const { 1787 if (!isSingleSpacedVectorIndexed()) return false; 1788 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1789 } 1790 1791 bool isVecListFourQWordIndexed() const { 1792 if (!isDoubleSpacedVectorIndexed()) return false; 1793 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1794 } 1795 1796 bool isVecListFourQHWordIndexed() const { 1797 if (!isDoubleSpacedVectorIndexed()) return false; 1798 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1799 } 1800 1801 bool isVecListFourDWordIndexed() const { 1802 if (!isSingleSpacedVectorIndexed()) return false; 1803 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1804 } 1805 1806 bool isVectorIndex8() const { 1807 if (Kind != k_VectorIndex) return false; 1808 return VectorIndex.Val < 8; 1809 } 1810 1811 bool isVectorIndex16() const { 1812 if (Kind != k_VectorIndex) return false; 1813 return VectorIndex.Val < 4; 1814 } 1815 1816 bool isVectorIndex32() const { 1817 if (Kind != k_VectorIndex) return false; 1818 return VectorIndex.Val < 2; 1819 } 1820 bool isVectorIndex64() const { 1821 if (Kind != k_VectorIndex) return false; 1822 return VectorIndex.Val < 1; 1823 } 1824 1825 bool isNEONi8splat() const { 1826 if (!isImm()) return false; 1827 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1828 // Must be a constant. 1829 if (!CE) return false; 1830 int64_t Value = CE->getValue(); 1831 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1832 // value. 1833 return Value >= 0 && Value < 256; 1834 } 1835 1836 bool isNEONi16splat() const { 1837 if (isNEONByteReplicate(2)) 1838 return false; // Leave that for bytes replication and forbid by default. 1839 if (!isImm()) 1840 return false; 1841 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1842 // Must be a constant. 1843 if (!CE) return false; 1844 unsigned Value = CE->getValue(); 1845 return ARM_AM::isNEONi16splat(Value); 1846 } 1847 1848 bool isNEONi16splatNot() const { 1849 if (!isImm()) 1850 return false; 1851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1852 // Must be a constant. 1853 if (!CE) return false; 1854 unsigned Value = CE->getValue(); 1855 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1856 } 1857 1858 bool isNEONi32splat() const { 1859 if (isNEONByteReplicate(4)) 1860 return false; // Leave that for bytes replication and forbid by default. 1861 if (!isImm()) 1862 return false; 1863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1864 // Must be a constant. 1865 if (!CE) return false; 1866 unsigned Value = CE->getValue(); 1867 return ARM_AM::isNEONi32splat(Value); 1868 } 1869 1870 bool isNEONi32splatNot() const { 1871 if (!isImm()) 1872 return false; 1873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1874 // Must be a constant. 1875 if (!CE) return false; 1876 unsigned Value = CE->getValue(); 1877 return ARM_AM::isNEONi32splat(~Value); 1878 } 1879 1880 static bool isValidNEONi32vmovImm(int64_t Value) { 1881 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1882 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1883 return ((Value & 0xffffffffffffff00) == 0) || 1884 ((Value & 0xffffffffffff00ff) == 0) || 1885 ((Value & 0xffffffffff00ffff) == 0) || 1886 ((Value & 0xffffffff00ffffff) == 0) || 1887 ((Value & 0xffffffffffff00ff) == 0xff) || 1888 ((Value & 0xffffffffff00ffff) == 0xffff); 1889 } 1890 1891 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 1892 assert((Width == 8 || Width == 16 || Width == 32) && 1893 "Invalid element width"); 1894 assert(NumElems * Width <= 64 && "Invalid result width"); 1895 1896 if (!isImm()) 1897 return false; 1898 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1899 // Must be a constant. 1900 if (!CE) 1901 return false; 1902 int64_t Value = CE->getValue(); 1903 if (!Value) 1904 return false; // Don't bother with zero. 1905 if (Inv) 1906 Value = ~Value; 1907 1908 uint64_t Mask = (1ull << Width) - 1; 1909 uint64_t Elem = Value & Mask; 1910 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 1911 return false; 1912 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 1913 return false; 1914 1915 for (unsigned i = 1; i < NumElems; ++i) { 1916 Value >>= Width; 1917 if ((Value & Mask) != Elem) 1918 return false; 1919 } 1920 return true; 1921 } 1922 1923 bool isNEONByteReplicate(unsigned NumBytes) const { 1924 return isNEONReplicate(8, NumBytes, false); 1925 } 1926 1927 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 1928 assert((FromW == 8 || FromW == 16 || FromW == 32) && 1929 "Invalid source width"); 1930 assert((ToW == 16 || ToW == 32 || ToW == 64) && 1931 "Invalid destination width"); 1932 assert(FromW < ToW && "ToW is not less than FromW"); 1933 } 1934 1935 template<unsigned FromW, unsigned ToW> 1936 bool isNEONmovReplicate() const { 1937 checkNeonReplicateArgs(FromW, ToW); 1938 if (ToW == 64 && isNEONi64splat()) 1939 return false; 1940 return isNEONReplicate(FromW, ToW / FromW, false); 1941 } 1942 1943 template<unsigned FromW, unsigned ToW> 1944 bool isNEONinvReplicate() const { 1945 checkNeonReplicateArgs(FromW, ToW); 1946 return isNEONReplicate(FromW, ToW / FromW, true); 1947 } 1948 1949 bool isNEONi32vmov() const { 1950 if (isNEONByteReplicate(4)) 1951 return false; // Let it to be classified as byte-replicate case. 1952 if (!isImm()) 1953 return false; 1954 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1955 // Must be a constant. 1956 if (!CE) 1957 return false; 1958 return isValidNEONi32vmovImm(CE->getValue()); 1959 } 1960 1961 bool isNEONi32vmovNeg() const { 1962 if (!isImm()) return false; 1963 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1964 // Must be a constant. 1965 if (!CE) return false; 1966 return isValidNEONi32vmovImm(~CE->getValue()); 1967 } 1968 1969 bool isNEONi64splat() const { 1970 if (!isImm()) return false; 1971 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1972 // Must be a constant. 1973 if (!CE) return false; 1974 uint64_t Value = CE->getValue(); 1975 // i64 value with each byte being either 0 or 0xff. 1976 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1977 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1978 return true; 1979 } 1980 1981 template<int64_t Angle, int64_t Remainder> 1982 bool isComplexRotation() const { 1983 if (!isImm()) return false; 1984 1985 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1986 if (!CE) return false; 1987 uint64_t Value = CE->getValue(); 1988 1989 return (Value % Angle == Remainder && Value <= 270); 1990 } 1991 1992 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1993 // Add as immediates when possible. Null MCExpr = 0. 1994 if (!Expr) 1995 Inst.addOperand(MCOperand::createImm(0)); 1996 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1997 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1998 else 1999 Inst.addOperand(MCOperand::createExpr(Expr)); 2000 } 2001 2002 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2003 assert(N == 1 && "Invalid number of operands!"); 2004 addExpr(Inst, getImm()); 2005 } 2006 2007 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2008 assert(N == 1 && "Invalid number of operands!"); 2009 addExpr(Inst, getImm()); 2010 } 2011 2012 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2013 assert(N == 2 && "Invalid number of operands!"); 2014 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2015 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2016 Inst.addOperand(MCOperand::createReg(RegNum)); 2017 } 2018 2019 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2020 assert(N == 1 && "Invalid number of operands!"); 2021 Inst.addOperand(MCOperand::createImm(getCoproc())); 2022 } 2023 2024 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2025 assert(N == 1 && "Invalid number of operands!"); 2026 Inst.addOperand(MCOperand::createImm(getCoproc())); 2027 } 2028 2029 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2030 assert(N == 1 && "Invalid number of operands!"); 2031 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2032 } 2033 2034 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2035 assert(N == 1 && "Invalid number of operands!"); 2036 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2037 } 2038 2039 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2040 assert(N == 1 && "Invalid number of operands!"); 2041 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2042 } 2043 2044 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2045 assert(N == 1 && "Invalid number of operands!"); 2046 Inst.addOperand(MCOperand::createReg(getReg())); 2047 } 2048 2049 void addRegOperands(MCInst &Inst, unsigned N) const { 2050 assert(N == 1 && "Invalid number of operands!"); 2051 Inst.addOperand(MCOperand::createReg(getReg())); 2052 } 2053 2054 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2055 assert(N == 3 && "Invalid number of operands!"); 2056 assert(isRegShiftedReg() && 2057 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2058 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2059 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2060 Inst.addOperand(MCOperand::createImm( 2061 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2062 } 2063 2064 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2065 assert(N == 2 && "Invalid number of operands!"); 2066 assert(isRegShiftedImm() && 2067 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2068 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2069 // Shift of #32 is encoded as 0 where permitted 2070 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2071 Inst.addOperand(MCOperand::createImm( 2072 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2073 } 2074 2075 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2076 assert(N == 1 && "Invalid number of operands!"); 2077 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2078 ShifterImm.Imm)); 2079 } 2080 2081 void addRegListOperands(MCInst &Inst, unsigned N) const { 2082 assert(N == 1 && "Invalid number of operands!"); 2083 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2084 for (SmallVectorImpl<unsigned>::const_iterator 2085 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2086 Inst.addOperand(MCOperand::createReg(*I)); 2087 } 2088 2089 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2090 addRegListOperands(Inst, N); 2091 } 2092 2093 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2094 addRegListOperands(Inst, N); 2095 } 2096 2097 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2098 assert(N == 1 && "Invalid number of operands!"); 2099 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2100 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2101 } 2102 2103 void addModImmOperands(MCInst &Inst, unsigned N) const { 2104 assert(N == 1 && "Invalid number of operands!"); 2105 2106 // Support for fixups (MCFixup) 2107 if (isImm()) 2108 return addImmOperands(Inst, N); 2109 2110 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2111 } 2112 2113 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2114 assert(N == 1 && "Invalid number of operands!"); 2115 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2116 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2117 Inst.addOperand(MCOperand::createImm(Enc)); 2118 } 2119 2120 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2121 assert(N == 1 && "Invalid number of operands!"); 2122 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2123 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2124 Inst.addOperand(MCOperand::createImm(Enc)); 2125 } 2126 2127 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2128 assert(N == 1 && "Invalid number of operands!"); 2129 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2130 uint32_t Val = -CE->getValue(); 2131 Inst.addOperand(MCOperand::createImm(Val)); 2132 } 2133 2134 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2135 assert(N == 1 && "Invalid number of operands!"); 2136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2137 uint32_t Val = -CE->getValue(); 2138 Inst.addOperand(MCOperand::createImm(Val)); 2139 } 2140 2141 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2142 assert(N == 1 && "Invalid number of operands!"); 2143 // Munge the lsb/width into a bitfield mask. 2144 unsigned lsb = Bitfield.LSB; 2145 unsigned width = Bitfield.Width; 2146 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2147 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2148 (32 - (lsb + width))); 2149 Inst.addOperand(MCOperand::createImm(Mask)); 2150 } 2151 2152 void addImmOperands(MCInst &Inst, unsigned N) const { 2153 assert(N == 1 && "Invalid number of operands!"); 2154 addExpr(Inst, getImm()); 2155 } 2156 2157 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2158 assert(N == 1 && "Invalid number of operands!"); 2159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2160 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2161 } 2162 2163 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2164 assert(N == 1 && "Invalid number of operands!"); 2165 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2166 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2167 } 2168 2169 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2170 assert(N == 1 && "Invalid number of operands!"); 2171 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2172 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2173 Inst.addOperand(MCOperand::createImm(Val)); 2174 } 2175 2176 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2177 assert(N == 1 && "Invalid number of operands!"); 2178 // FIXME: We really want to scale the value here, but the LDRD/STRD 2179 // instruction don't encode operands that way yet. 2180 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2181 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2182 } 2183 2184 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2185 assert(N == 1 && "Invalid number of operands!"); 2186 // The immediate is scaled by four in the encoding and is stored 2187 // in the MCInst as such. Lop off the low two bits here. 2188 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2189 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2190 } 2191 2192 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2193 assert(N == 1 && "Invalid number of operands!"); 2194 // The immediate is scaled by four in the encoding and is stored 2195 // in the MCInst as such. Lop off the low two bits here. 2196 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2197 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2198 } 2199 2200 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2201 assert(N == 1 && "Invalid number of operands!"); 2202 // The immediate is scaled by four in the encoding and is stored 2203 // in the MCInst as such. Lop off the low two bits here. 2204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2205 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2206 } 2207 2208 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2209 assert(N == 1 && "Invalid number of operands!"); 2210 // The constant encodes as the immediate-1, and we store in the instruction 2211 // the bits as encoded, so subtract off one here. 2212 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2213 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2214 } 2215 2216 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2217 assert(N == 1 && "Invalid number of operands!"); 2218 // The constant encodes as the immediate-1, and we store in the instruction 2219 // the bits as encoded, so subtract off one here. 2220 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2221 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2222 } 2223 2224 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2225 assert(N == 1 && "Invalid number of operands!"); 2226 // The constant encodes as the immediate, except for 32, which encodes as 2227 // zero. 2228 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2229 unsigned Imm = CE->getValue(); 2230 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2231 } 2232 2233 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2234 assert(N == 1 && "Invalid number of operands!"); 2235 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2236 // the instruction as well. 2237 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2238 int Val = CE->getValue(); 2239 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2240 } 2241 2242 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2243 assert(N == 1 && "Invalid number of operands!"); 2244 // The operand is actually a t2_so_imm, but we have its bitwise 2245 // negation in the assembly source, so twiddle it here. 2246 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2247 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2248 } 2249 2250 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2251 assert(N == 1 && "Invalid number of operands!"); 2252 // The operand is actually a t2_so_imm, but we have its 2253 // negation in the assembly source, so twiddle it here. 2254 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2255 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2256 } 2257 2258 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2259 assert(N == 1 && "Invalid number of operands!"); 2260 // The operand is actually an imm0_4095, but we have its 2261 // negation in the assembly source, so twiddle it here. 2262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2263 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2264 } 2265 2266 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2267 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2268 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2269 return; 2270 } 2271 2272 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2273 assert(SR && "Unknown value type!"); 2274 Inst.addOperand(MCOperand::createExpr(SR)); 2275 } 2276 2277 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2278 assert(N == 1 && "Invalid number of operands!"); 2279 if (isImm()) { 2280 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2281 if (CE) { 2282 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2283 return; 2284 } 2285 2286 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2287 2288 assert(SR && "Unknown value type!"); 2289 Inst.addOperand(MCOperand::createExpr(SR)); 2290 return; 2291 } 2292 2293 assert(isMem() && "Unknown value type!"); 2294 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2295 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2296 } 2297 2298 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2299 assert(N == 1 && "Invalid number of operands!"); 2300 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2301 } 2302 2303 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2304 assert(N == 1 && "Invalid number of operands!"); 2305 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2306 } 2307 2308 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2309 assert(N == 1 && "Invalid number of operands!"); 2310 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2311 } 2312 2313 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2314 assert(N == 1 && "Invalid number of operands!"); 2315 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2316 } 2317 2318 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2319 assert(N == 1 && "Invalid number of operands!"); 2320 int32_t Imm = Memory.OffsetImm->getValue(); 2321 Inst.addOperand(MCOperand::createImm(Imm)); 2322 } 2323 2324 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2325 assert(N == 1 && "Invalid number of operands!"); 2326 assert(isImm() && "Not an immediate!"); 2327 2328 // If we have an immediate that's not a constant, treat it as a label 2329 // reference needing a fixup. 2330 if (!isa<MCConstantExpr>(getImm())) { 2331 Inst.addOperand(MCOperand::createExpr(getImm())); 2332 return; 2333 } 2334 2335 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2336 int Val = CE->getValue(); 2337 Inst.addOperand(MCOperand::createImm(Val)); 2338 } 2339 2340 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2341 assert(N == 2 && "Invalid number of operands!"); 2342 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2343 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2344 } 2345 2346 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2347 addAlignedMemoryOperands(Inst, N); 2348 } 2349 2350 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2351 addAlignedMemoryOperands(Inst, N); 2352 } 2353 2354 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2355 addAlignedMemoryOperands(Inst, N); 2356 } 2357 2358 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2359 addAlignedMemoryOperands(Inst, N); 2360 } 2361 2362 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2363 addAlignedMemoryOperands(Inst, N); 2364 } 2365 2366 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2367 addAlignedMemoryOperands(Inst, N); 2368 } 2369 2370 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2371 addAlignedMemoryOperands(Inst, N); 2372 } 2373 2374 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2375 addAlignedMemoryOperands(Inst, N); 2376 } 2377 2378 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2379 addAlignedMemoryOperands(Inst, N); 2380 } 2381 2382 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2383 addAlignedMemoryOperands(Inst, N); 2384 } 2385 2386 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2387 addAlignedMemoryOperands(Inst, N); 2388 } 2389 2390 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2391 assert(N == 3 && "Invalid number of operands!"); 2392 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2393 if (!Memory.OffsetRegNum) { 2394 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2395 // Special case for #-0 2396 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2397 if (Val < 0) Val = -Val; 2398 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2399 } else { 2400 // For register offset, we encode the shift type and negation flag 2401 // here. 2402 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2403 Memory.ShiftImm, Memory.ShiftType); 2404 } 2405 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2406 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2407 Inst.addOperand(MCOperand::createImm(Val)); 2408 } 2409 2410 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2411 assert(N == 2 && "Invalid number of operands!"); 2412 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2413 assert(CE && "non-constant AM2OffsetImm operand!"); 2414 int32_t Val = CE->getValue(); 2415 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2416 // Special case for #-0 2417 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2418 if (Val < 0) Val = -Val; 2419 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2420 Inst.addOperand(MCOperand::createReg(0)); 2421 Inst.addOperand(MCOperand::createImm(Val)); 2422 } 2423 2424 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2425 assert(N == 3 && "Invalid number of operands!"); 2426 // If we have an immediate that's not a constant, treat it as a label 2427 // reference needing a fixup. If it is a constant, it's something else 2428 // and we reject it. 2429 if (isImm()) { 2430 Inst.addOperand(MCOperand::createExpr(getImm())); 2431 Inst.addOperand(MCOperand::createReg(0)); 2432 Inst.addOperand(MCOperand::createImm(0)); 2433 return; 2434 } 2435 2436 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2437 if (!Memory.OffsetRegNum) { 2438 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2439 // Special case for #-0 2440 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2441 if (Val < 0) Val = -Val; 2442 Val = ARM_AM::getAM3Opc(AddSub, Val); 2443 } else { 2444 // For register offset, we encode the shift type and negation flag 2445 // here. 2446 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2447 } 2448 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2449 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2450 Inst.addOperand(MCOperand::createImm(Val)); 2451 } 2452 2453 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2454 assert(N == 2 && "Invalid number of operands!"); 2455 if (Kind == k_PostIndexRegister) { 2456 int32_t Val = 2457 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2458 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2459 Inst.addOperand(MCOperand::createImm(Val)); 2460 return; 2461 } 2462 2463 // Constant offset. 2464 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2465 int32_t Val = CE->getValue(); 2466 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2467 // Special case for #-0 2468 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2469 if (Val < 0) Val = -Val; 2470 Val = ARM_AM::getAM3Opc(AddSub, Val); 2471 Inst.addOperand(MCOperand::createReg(0)); 2472 Inst.addOperand(MCOperand::createImm(Val)); 2473 } 2474 2475 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2476 assert(N == 2 && "Invalid number of operands!"); 2477 // If we have an immediate that's not a constant, treat it as a label 2478 // reference needing a fixup. If it is a constant, it's something else 2479 // and we reject it. 2480 if (isImm()) { 2481 Inst.addOperand(MCOperand::createExpr(getImm())); 2482 Inst.addOperand(MCOperand::createImm(0)); 2483 return; 2484 } 2485 2486 // The lower two bits are always zero and as such are not encoded. 2487 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2488 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2489 // Special case for #-0 2490 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2491 if (Val < 0) Val = -Val; 2492 Val = ARM_AM::getAM5Opc(AddSub, Val); 2493 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2494 Inst.addOperand(MCOperand::createImm(Val)); 2495 } 2496 2497 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2498 assert(N == 2 && "Invalid number of operands!"); 2499 // If we have an immediate that's not a constant, treat it as a label 2500 // reference needing a fixup. If it is a constant, it's something else 2501 // and we reject it. 2502 if (isImm()) { 2503 Inst.addOperand(MCOperand::createExpr(getImm())); 2504 Inst.addOperand(MCOperand::createImm(0)); 2505 return; 2506 } 2507 2508 // The lower bit is always zero and as such is not encoded. 2509 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2510 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2511 // Special case for #-0 2512 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2513 if (Val < 0) Val = -Val; 2514 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2515 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2516 Inst.addOperand(MCOperand::createImm(Val)); 2517 } 2518 2519 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2520 assert(N == 2 && "Invalid number of operands!"); 2521 // If we have an immediate that's not a constant, treat it as a label 2522 // reference needing a fixup. If it is a constant, it's something else 2523 // and we reject it. 2524 if (isImm()) { 2525 Inst.addOperand(MCOperand::createExpr(getImm())); 2526 Inst.addOperand(MCOperand::createImm(0)); 2527 return; 2528 } 2529 2530 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2531 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2532 Inst.addOperand(MCOperand::createImm(Val)); 2533 } 2534 2535 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2536 assert(N == 2 && "Invalid number of operands!"); 2537 // The lower two bits are always zero and as such are not encoded. 2538 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2539 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2540 Inst.addOperand(MCOperand::createImm(Val)); 2541 } 2542 2543 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2544 assert(N == 2 && "Invalid number of operands!"); 2545 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2546 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2547 Inst.addOperand(MCOperand::createImm(Val)); 2548 } 2549 2550 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2551 addMemImm8OffsetOperands(Inst, N); 2552 } 2553 2554 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2555 addMemImm8OffsetOperands(Inst, N); 2556 } 2557 2558 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2559 assert(N == 2 && "Invalid number of operands!"); 2560 // If this is an immediate, it's a label reference. 2561 if (isImm()) { 2562 addExpr(Inst, getImm()); 2563 Inst.addOperand(MCOperand::createImm(0)); 2564 return; 2565 } 2566 2567 // Otherwise, it's a normal memory reg+offset. 2568 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2569 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2570 Inst.addOperand(MCOperand::createImm(Val)); 2571 } 2572 2573 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2574 assert(N == 2 && "Invalid number of operands!"); 2575 // If this is an immediate, it's a label reference. 2576 if (isImm()) { 2577 addExpr(Inst, getImm()); 2578 Inst.addOperand(MCOperand::createImm(0)); 2579 return; 2580 } 2581 2582 // Otherwise, it's a normal memory reg+offset. 2583 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2584 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2585 Inst.addOperand(MCOperand::createImm(Val)); 2586 } 2587 2588 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2589 assert(N == 1 && "Invalid number of operands!"); 2590 // This is container for the immediate that we will create the constant 2591 // pool from 2592 addExpr(Inst, getConstantPoolImm()); 2593 return; 2594 } 2595 2596 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2597 assert(N == 2 && "Invalid number of operands!"); 2598 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2599 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2600 } 2601 2602 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2603 assert(N == 2 && "Invalid number of operands!"); 2604 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2605 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2606 } 2607 2608 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2609 assert(N == 3 && "Invalid number of operands!"); 2610 unsigned Val = 2611 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2612 Memory.ShiftImm, Memory.ShiftType); 2613 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2614 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2615 Inst.addOperand(MCOperand::createImm(Val)); 2616 } 2617 2618 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2619 assert(N == 3 && "Invalid number of operands!"); 2620 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2621 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2622 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2623 } 2624 2625 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2626 assert(N == 2 && "Invalid number of operands!"); 2627 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2628 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2629 } 2630 2631 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2632 assert(N == 2 && "Invalid number of operands!"); 2633 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2634 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2635 Inst.addOperand(MCOperand::createImm(Val)); 2636 } 2637 2638 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2639 assert(N == 2 && "Invalid number of operands!"); 2640 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2641 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2642 Inst.addOperand(MCOperand::createImm(Val)); 2643 } 2644 2645 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2646 assert(N == 2 && "Invalid number of operands!"); 2647 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2648 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2649 Inst.addOperand(MCOperand::createImm(Val)); 2650 } 2651 2652 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2653 assert(N == 2 && "Invalid number of operands!"); 2654 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2655 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2656 Inst.addOperand(MCOperand::createImm(Val)); 2657 } 2658 2659 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2660 assert(N == 1 && "Invalid number of operands!"); 2661 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2662 assert(CE && "non-constant post-idx-imm8 operand!"); 2663 int Imm = CE->getValue(); 2664 bool isAdd = Imm >= 0; 2665 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2666 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2667 Inst.addOperand(MCOperand::createImm(Imm)); 2668 } 2669 2670 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2671 assert(N == 1 && "Invalid number of operands!"); 2672 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2673 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2674 int Imm = CE->getValue(); 2675 bool isAdd = Imm >= 0; 2676 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2677 // Immediate is scaled by 4. 2678 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2679 Inst.addOperand(MCOperand::createImm(Imm)); 2680 } 2681 2682 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2683 assert(N == 2 && "Invalid number of operands!"); 2684 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2685 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2686 } 2687 2688 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2689 assert(N == 2 && "Invalid number of operands!"); 2690 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2691 // The sign, shift type, and shift amount are encoded in a single operand 2692 // using the AM2 encoding helpers. 2693 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2694 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2695 PostIdxReg.ShiftTy); 2696 Inst.addOperand(MCOperand::createImm(Imm)); 2697 } 2698 2699 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2700 assert(N == 1 && "Invalid number of operands!"); 2701 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2702 } 2703 2704 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2705 assert(N == 1 && "Invalid number of operands!"); 2706 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2707 } 2708 2709 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2710 assert(N == 1 && "Invalid number of operands!"); 2711 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2712 } 2713 2714 void addVecListOperands(MCInst &Inst, unsigned N) const { 2715 assert(N == 1 && "Invalid number of operands!"); 2716 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2717 } 2718 2719 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2720 assert(N == 2 && "Invalid number of operands!"); 2721 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2722 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2723 } 2724 2725 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2726 assert(N == 1 && "Invalid number of operands!"); 2727 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2728 } 2729 2730 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2731 assert(N == 1 && "Invalid number of operands!"); 2732 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2733 } 2734 2735 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2736 assert(N == 1 && "Invalid number of operands!"); 2737 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2738 } 2739 2740 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2741 assert(N == 1 && "Invalid number of operands!"); 2742 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2743 } 2744 2745 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2746 assert(N == 1 && "Invalid number of operands!"); 2747 // The immediate encodes the type of constant as well as the value. 2748 // Mask in that this is an i8 splat. 2749 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2750 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2751 } 2752 2753 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2754 assert(N == 1 && "Invalid number of operands!"); 2755 // The immediate encodes the type of constant as well as the value. 2756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2757 unsigned Value = CE->getValue(); 2758 Value = ARM_AM::encodeNEONi16splat(Value); 2759 Inst.addOperand(MCOperand::createImm(Value)); 2760 } 2761 2762 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2763 assert(N == 1 && "Invalid number of operands!"); 2764 // The immediate encodes the type of constant as well as the value. 2765 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2766 unsigned Value = CE->getValue(); 2767 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2768 Inst.addOperand(MCOperand::createImm(Value)); 2769 } 2770 2771 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2772 assert(N == 1 && "Invalid number of operands!"); 2773 // The immediate encodes the type of constant as well as the value. 2774 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2775 unsigned Value = CE->getValue(); 2776 Value = ARM_AM::encodeNEONi32splat(Value); 2777 Inst.addOperand(MCOperand::createImm(Value)); 2778 } 2779 2780 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2781 assert(N == 1 && "Invalid number of operands!"); 2782 // The immediate encodes the type of constant as well as the value. 2783 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2784 unsigned Value = CE->getValue(); 2785 Value = ARM_AM::encodeNEONi32splat(~Value); 2786 Inst.addOperand(MCOperand::createImm(Value)); 2787 } 2788 2789 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 2790 // The immediate encodes the type of constant as well as the value. 2791 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2792 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2793 Inst.getOpcode() == ARM::VMOVv16i8) && 2794 "All instructions that wants to replicate non-zero byte " 2795 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2796 unsigned Value = CE->getValue(); 2797 if (Inv) 2798 Value = ~Value; 2799 unsigned B = Value & 0xff; 2800 B |= 0xe00; // cmode = 0b1110 2801 Inst.addOperand(MCOperand::createImm(B)); 2802 } 2803 2804 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2805 assert(N == 1 && "Invalid number of operands!"); 2806 addNEONi8ReplicateOperands(Inst, true); 2807 } 2808 2809 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 2810 if (Value >= 256 && Value <= 0xffff) 2811 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2812 else if (Value > 0xffff && Value <= 0xffffff) 2813 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2814 else if (Value > 0xffffff) 2815 Value = (Value >> 24) | 0x600; 2816 return Value; 2817 } 2818 2819 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2820 assert(N == 1 && "Invalid number of operands!"); 2821 // The immediate encodes the type of constant as well as the value. 2822 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2823 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 2824 Inst.addOperand(MCOperand::createImm(Value)); 2825 } 2826 2827 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2828 assert(N == 1 && "Invalid number of operands!"); 2829 addNEONi8ReplicateOperands(Inst, false); 2830 } 2831 2832 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 2833 assert(N == 1 && "Invalid number of operands!"); 2834 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2835 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 2836 Inst.getOpcode() == ARM::VMOVv8i16 || 2837 Inst.getOpcode() == ARM::VMVNv4i16 || 2838 Inst.getOpcode() == ARM::VMVNv8i16) && 2839 "All instructions that want to replicate non-zero half-word " 2840 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 2841 uint64_t Value = CE->getValue(); 2842 unsigned Elem = Value & 0xffff; 2843 if (Elem >= 256) 2844 Elem = (Elem >> 8) | 0x200; 2845 Inst.addOperand(MCOperand::createImm(Elem)); 2846 } 2847 2848 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2849 assert(N == 1 && "Invalid number of operands!"); 2850 // The immediate encodes the type of constant as well as the value. 2851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2852 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 2853 Inst.addOperand(MCOperand::createImm(Value)); 2854 } 2855 2856 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 2857 assert(N == 1 && "Invalid number of operands!"); 2858 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2859 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 2860 Inst.getOpcode() == ARM::VMOVv4i32 || 2861 Inst.getOpcode() == ARM::VMVNv2i32 || 2862 Inst.getOpcode() == ARM::VMVNv4i32) && 2863 "All instructions that want to replicate non-zero word " 2864 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 2865 uint64_t Value = CE->getValue(); 2866 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 2867 Inst.addOperand(MCOperand::createImm(Elem)); 2868 } 2869 2870 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2871 assert(N == 1 && "Invalid number of operands!"); 2872 // The immediate encodes the type of constant as well as the value. 2873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2874 uint64_t Value = CE->getValue(); 2875 unsigned Imm = 0; 2876 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2877 Imm |= (Value & 1) << i; 2878 } 2879 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2880 } 2881 2882 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2883 assert(N == 1 && "Invalid number of operands!"); 2884 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2885 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2886 } 2887 2888 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2889 assert(N == 1 && "Invalid number of operands!"); 2890 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2891 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2892 } 2893 2894 void print(raw_ostream &OS) const override; 2895 2896 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2897 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2898 Op->ITMask.Mask = Mask; 2899 Op->StartLoc = S; 2900 Op->EndLoc = S; 2901 return Op; 2902 } 2903 2904 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2905 SMLoc S) { 2906 auto Op = make_unique<ARMOperand>(k_CondCode); 2907 Op->CC.Val = CC; 2908 Op->StartLoc = S; 2909 Op->EndLoc = S; 2910 return Op; 2911 } 2912 2913 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2914 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2915 Op->Cop.Val = CopVal; 2916 Op->StartLoc = S; 2917 Op->EndLoc = S; 2918 return Op; 2919 } 2920 2921 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2922 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2923 Op->Cop.Val = CopVal; 2924 Op->StartLoc = S; 2925 Op->EndLoc = S; 2926 return Op; 2927 } 2928 2929 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2930 SMLoc E) { 2931 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2932 Op->Cop.Val = Val; 2933 Op->StartLoc = S; 2934 Op->EndLoc = E; 2935 return Op; 2936 } 2937 2938 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2939 auto Op = make_unique<ARMOperand>(k_CCOut); 2940 Op->Reg.RegNum = RegNum; 2941 Op->StartLoc = S; 2942 Op->EndLoc = S; 2943 return Op; 2944 } 2945 2946 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2947 auto Op = make_unique<ARMOperand>(k_Token); 2948 Op->Tok.Data = Str.data(); 2949 Op->Tok.Length = Str.size(); 2950 Op->StartLoc = S; 2951 Op->EndLoc = S; 2952 return Op; 2953 } 2954 2955 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2956 SMLoc E) { 2957 auto Op = make_unique<ARMOperand>(k_Register); 2958 Op->Reg.RegNum = RegNum; 2959 Op->StartLoc = S; 2960 Op->EndLoc = E; 2961 return Op; 2962 } 2963 2964 static std::unique_ptr<ARMOperand> 2965 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2966 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2967 SMLoc E) { 2968 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2969 Op->RegShiftedReg.ShiftTy = ShTy; 2970 Op->RegShiftedReg.SrcReg = SrcReg; 2971 Op->RegShiftedReg.ShiftReg = ShiftReg; 2972 Op->RegShiftedReg.ShiftImm = ShiftImm; 2973 Op->StartLoc = S; 2974 Op->EndLoc = E; 2975 return Op; 2976 } 2977 2978 static std::unique_ptr<ARMOperand> 2979 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2980 unsigned ShiftImm, SMLoc S, SMLoc E) { 2981 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2982 Op->RegShiftedImm.ShiftTy = ShTy; 2983 Op->RegShiftedImm.SrcReg = SrcReg; 2984 Op->RegShiftedImm.ShiftImm = ShiftImm; 2985 Op->StartLoc = S; 2986 Op->EndLoc = E; 2987 return Op; 2988 } 2989 2990 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2991 SMLoc S, SMLoc E) { 2992 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2993 Op->ShifterImm.isASR = isASR; 2994 Op->ShifterImm.Imm = Imm; 2995 Op->StartLoc = S; 2996 Op->EndLoc = E; 2997 return Op; 2998 } 2999 3000 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3001 SMLoc E) { 3002 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 3003 Op->RotImm.Imm = Imm; 3004 Op->StartLoc = S; 3005 Op->EndLoc = E; 3006 return Op; 3007 } 3008 3009 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3010 SMLoc S, SMLoc E) { 3011 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 3012 Op->ModImm.Bits = Bits; 3013 Op->ModImm.Rot = Rot; 3014 Op->StartLoc = S; 3015 Op->EndLoc = E; 3016 return Op; 3017 } 3018 3019 static std::unique_ptr<ARMOperand> 3020 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3021 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 3022 Op->Imm.Val = Val; 3023 Op->StartLoc = S; 3024 Op->EndLoc = E; 3025 return Op; 3026 } 3027 3028 static std::unique_ptr<ARMOperand> 3029 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3030 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3031 Op->Bitfield.LSB = LSB; 3032 Op->Bitfield.Width = Width; 3033 Op->StartLoc = S; 3034 Op->EndLoc = E; 3035 return Op; 3036 } 3037 3038 static std::unique_ptr<ARMOperand> 3039 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3040 SMLoc StartLoc, SMLoc EndLoc) { 3041 assert(Regs.size() > 0 && "RegList contains no registers?"); 3042 KindTy Kind = k_RegisterList; 3043 3044 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 3045 Kind = k_DPRRegisterList; 3046 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 3047 contains(Regs.front().second)) 3048 Kind = k_SPRRegisterList; 3049 3050 // Sort based on the register encoding values. 3051 array_pod_sort(Regs.begin(), Regs.end()); 3052 3053 auto Op = make_unique<ARMOperand>(Kind); 3054 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 3055 I = Regs.begin(), E = Regs.end(); I != E; ++I) 3056 Op->Registers.push_back(I->second); 3057 Op->StartLoc = StartLoc; 3058 Op->EndLoc = EndLoc; 3059 return Op; 3060 } 3061 3062 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3063 unsigned Count, 3064 bool isDoubleSpaced, 3065 SMLoc S, SMLoc E) { 3066 auto Op = make_unique<ARMOperand>(k_VectorList); 3067 Op->VectorList.RegNum = RegNum; 3068 Op->VectorList.Count = Count; 3069 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3070 Op->StartLoc = S; 3071 Op->EndLoc = E; 3072 return Op; 3073 } 3074 3075 static std::unique_ptr<ARMOperand> 3076 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3077 SMLoc S, SMLoc E) { 3078 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3079 Op->VectorList.RegNum = RegNum; 3080 Op->VectorList.Count = Count; 3081 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3082 Op->StartLoc = S; 3083 Op->EndLoc = E; 3084 return Op; 3085 } 3086 3087 static std::unique_ptr<ARMOperand> 3088 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3089 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3090 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3091 Op->VectorList.RegNum = RegNum; 3092 Op->VectorList.Count = Count; 3093 Op->VectorList.LaneIndex = Index; 3094 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3095 Op->StartLoc = S; 3096 Op->EndLoc = E; 3097 return Op; 3098 } 3099 3100 static std::unique_ptr<ARMOperand> 3101 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3102 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3103 Op->VectorIndex.Val = Idx; 3104 Op->StartLoc = S; 3105 Op->EndLoc = E; 3106 return Op; 3107 } 3108 3109 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3110 SMLoc E) { 3111 auto Op = make_unique<ARMOperand>(k_Immediate); 3112 Op->Imm.Val = Val; 3113 Op->StartLoc = S; 3114 Op->EndLoc = E; 3115 return Op; 3116 } 3117 3118 static std::unique_ptr<ARMOperand> 3119 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3120 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3121 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3122 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3123 auto Op = make_unique<ARMOperand>(k_Memory); 3124 Op->Memory.BaseRegNum = BaseRegNum; 3125 Op->Memory.OffsetImm = OffsetImm; 3126 Op->Memory.OffsetRegNum = OffsetRegNum; 3127 Op->Memory.ShiftType = ShiftType; 3128 Op->Memory.ShiftImm = ShiftImm; 3129 Op->Memory.Alignment = Alignment; 3130 Op->Memory.isNegative = isNegative; 3131 Op->StartLoc = S; 3132 Op->EndLoc = E; 3133 Op->AlignmentLoc = AlignmentLoc; 3134 return Op; 3135 } 3136 3137 static std::unique_ptr<ARMOperand> 3138 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3139 unsigned ShiftImm, SMLoc S, SMLoc E) { 3140 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3141 Op->PostIdxReg.RegNum = RegNum; 3142 Op->PostIdxReg.isAdd = isAdd; 3143 Op->PostIdxReg.ShiftTy = ShiftTy; 3144 Op->PostIdxReg.ShiftImm = ShiftImm; 3145 Op->StartLoc = S; 3146 Op->EndLoc = E; 3147 return Op; 3148 } 3149 3150 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3151 SMLoc S) { 3152 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3153 Op->MBOpt.Val = Opt; 3154 Op->StartLoc = S; 3155 Op->EndLoc = S; 3156 return Op; 3157 } 3158 3159 static std::unique_ptr<ARMOperand> 3160 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3161 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3162 Op->ISBOpt.Val = Opt; 3163 Op->StartLoc = S; 3164 Op->EndLoc = S; 3165 return Op; 3166 } 3167 3168 static std::unique_ptr<ARMOperand> 3169 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3170 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3171 Op->TSBOpt.Val = Opt; 3172 Op->StartLoc = S; 3173 Op->EndLoc = S; 3174 return Op; 3175 } 3176 3177 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3178 SMLoc S) { 3179 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3180 Op->IFlags.Val = IFlags; 3181 Op->StartLoc = S; 3182 Op->EndLoc = S; 3183 return Op; 3184 } 3185 3186 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3187 auto Op = make_unique<ARMOperand>(k_MSRMask); 3188 Op->MMask.Val = MMask; 3189 Op->StartLoc = S; 3190 Op->EndLoc = S; 3191 return Op; 3192 } 3193 3194 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3195 auto Op = make_unique<ARMOperand>(k_BankedReg); 3196 Op->BankedReg.Val = Reg; 3197 Op->StartLoc = S; 3198 Op->EndLoc = S; 3199 return Op; 3200 } 3201 }; 3202 3203 } // end anonymous namespace. 3204 3205 void ARMOperand::print(raw_ostream &OS) const { 3206 switch (Kind) { 3207 case k_CondCode: 3208 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3209 break; 3210 case k_CCOut: 3211 OS << "<ccout " << getReg() << ">"; 3212 break; 3213 case k_ITCondMask: { 3214 static const char *const MaskStr[] = { 3215 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3216 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3217 }; 3218 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3219 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3220 break; 3221 } 3222 case k_CoprocNum: 3223 OS << "<coprocessor number: " << getCoproc() << ">"; 3224 break; 3225 case k_CoprocReg: 3226 OS << "<coprocessor register: " << getCoproc() << ">"; 3227 break; 3228 case k_CoprocOption: 3229 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3230 break; 3231 case k_MSRMask: 3232 OS << "<mask: " << getMSRMask() << ">"; 3233 break; 3234 case k_BankedReg: 3235 OS << "<banked reg: " << getBankedReg() << ">"; 3236 break; 3237 case k_Immediate: 3238 OS << *getImm(); 3239 break; 3240 case k_MemBarrierOpt: 3241 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3242 break; 3243 case k_InstSyncBarrierOpt: 3244 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3245 break; 3246 case k_TraceSyncBarrierOpt: 3247 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3248 break; 3249 case k_Memory: 3250 OS << "<memory " 3251 << " base:" << Memory.BaseRegNum; 3252 OS << ">"; 3253 break; 3254 case k_PostIndexRegister: 3255 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3256 << PostIdxReg.RegNum; 3257 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3258 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3259 << PostIdxReg.ShiftImm; 3260 OS << ">"; 3261 break; 3262 case k_ProcIFlags: { 3263 OS << "<ARM_PROC::"; 3264 unsigned IFlags = getProcIFlags(); 3265 for (int i=2; i >= 0; --i) 3266 if (IFlags & (1 << i)) 3267 OS << ARM_PROC::IFlagsToString(1 << i); 3268 OS << ">"; 3269 break; 3270 } 3271 case k_Register: 3272 OS << "<register " << getReg() << ">"; 3273 break; 3274 case k_ShifterImmediate: 3275 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3276 << " #" << ShifterImm.Imm << ">"; 3277 break; 3278 case k_ShiftedRegister: 3279 OS << "<so_reg_reg " 3280 << RegShiftedReg.SrcReg << " " 3281 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3282 << " " << RegShiftedReg.ShiftReg << ">"; 3283 break; 3284 case k_ShiftedImmediate: 3285 OS << "<so_reg_imm " 3286 << RegShiftedImm.SrcReg << " " 3287 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3288 << " #" << RegShiftedImm.ShiftImm << ">"; 3289 break; 3290 case k_RotateImmediate: 3291 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3292 break; 3293 case k_ModifiedImmediate: 3294 OS << "<mod_imm #" << ModImm.Bits << ", #" 3295 << ModImm.Rot << ")>"; 3296 break; 3297 case k_ConstantPoolImmediate: 3298 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3299 break; 3300 case k_BitfieldDescriptor: 3301 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3302 << ", width: " << Bitfield.Width << ">"; 3303 break; 3304 case k_RegisterList: 3305 case k_DPRRegisterList: 3306 case k_SPRRegisterList: { 3307 OS << "<register_list "; 3308 3309 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3310 for (SmallVectorImpl<unsigned>::const_iterator 3311 I = RegList.begin(), E = RegList.end(); I != E; ) { 3312 OS << *I; 3313 if (++I < E) OS << ", "; 3314 } 3315 3316 OS << ">"; 3317 break; 3318 } 3319 case k_VectorList: 3320 OS << "<vector_list " << VectorList.Count << " * " 3321 << VectorList.RegNum << ">"; 3322 break; 3323 case k_VectorListAllLanes: 3324 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3325 << VectorList.RegNum << ">"; 3326 break; 3327 case k_VectorListIndexed: 3328 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3329 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3330 break; 3331 case k_Token: 3332 OS << "'" << getToken() << "'"; 3333 break; 3334 case k_VectorIndex: 3335 OS << "<vectorindex " << getVectorIndex() << ">"; 3336 break; 3337 } 3338 } 3339 3340 /// @name Auto-generated Match Functions 3341 /// { 3342 3343 static unsigned MatchRegisterName(StringRef Name); 3344 3345 /// } 3346 3347 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3348 SMLoc &StartLoc, SMLoc &EndLoc) { 3349 const AsmToken &Tok = getParser().getTok(); 3350 StartLoc = Tok.getLoc(); 3351 EndLoc = Tok.getEndLoc(); 3352 RegNo = tryParseRegister(); 3353 3354 return (RegNo == (unsigned)-1); 3355 } 3356 3357 /// Try to parse a register name. The token must be an Identifier when called, 3358 /// and if it is a register name the token is eaten and the register number is 3359 /// returned. Otherwise return -1. 3360 int ARMAsmParser::tryParseRegister() { 3361 MCAsmParser &Parser = getParser(); 3362 const AsmToken &Tok = Parser.getTok(); 3363 if (Tok.isNot(AsmToken::Identifier)) return -1; 3364 3365 std::string lowerCase = Tok.getString().lower(); 3366 unsigned RegNum = MatchRegisterName(lowerCase); 3367 if (!RegNum) { 3368 RegNum = StringSwitch<unsigned>(lowerCase) 3369 .Case("r13", ARM::SP) 3370 .Case("r14", ARM::LR) 3371 .Case("r15", ARM::PC) 3372 .Case("ip", ARM::R12) 3373 // Additional register name aliases for 'gas' compatibility. 3374 .Case("a1", ARM::R0) 3375 .Case("a2", ARM::R1) 3376 .Case("a3", ARM::R2) 3377 .Case("a4", ARM::R3) 3378 .Case("v1", ARM::R4) 3379 .Case("v2", ARM::R5) 3380 .Case("v3", ARM::R6) 3381 .Case("v4", ARM::R7) 3382 .Case("v5", ARM::R8) 3383 .Case("v6", ARM::R9) 3384 .Case("v7", ARM::R10) 3385 .Case("v8", ARM::R11) 3386 .Case("sb", ARM::R9) 3387 .Case("sl", ARM::R10) 3388 .Case("fp", ARM::R11) 3389 .Default(0); 3390 } 3391 if (!RegNum) { 3392 // Check for aliases registered via .req. Canonicalize to lower case. 3393 // That's more consistent since register names are case insensitive, and 3394 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3395 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3396 // If no match, return failure. 3397 if (Entry == RegisterReqs.end()) 3398 return -1; 3399 Parser.Lex(); // Eat identifier token. 3400 return Entry->getValue(); 3401 } 3402 3403 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3404 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3405 return -1; 3406 3407 Parser.Lex(); // Eat identifier token. 3408 3409 return RegNum; 3410 } 3411 3412 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3413 // If a recoverable error occurs, return 1. If an irrecoverable error 3414 // occurs, return -1. An irrecoverable error is one where tokens have been 3415 // consumed in the process of trying to parse the shifter (i.e., when it is 3416 // indeed a shifter operand, but malformed). 3417 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3418 MCAsmParser &Parser = getParser(); 3419 SMLoc S = Parser.getTok().getLoc(); 3420 const AsmToken &Tok = Parser.getTok(); 3421 if (Tok.isNot(AsmToken::Identifier)) 3422 return -1; 3423 3424 std::string lowerCase = Tok.getString().lower(); 3425 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3426 .Case("asl", ARM_AM::lsl) 3427 .Case("lsl", ARM_AM::lsl) 3428 .Case("lsr", ARM_AM::lsr) 3429 .Case("asr", ARM_AM::asr) 3430 .Case("ror", ARM_AM::ror) 3431 .Case("rrx", ARM_AM::rrx) 3432 .Default(ARM_AM::no_shift); 3433 3434 if (ShiftTy == ARM_AM::no_shift) 3435 return 1; 3436 3437 Parser.Lex(); // Eat the operator. 3438 3439 // The source register for the shift has already been added to the 3440 // operand list, so we need to pop it off and combine it into the shifted 3441 // register operand instead. 3442 std::unique_ptr<ARMOperand> PrevOp( 3443 (ARMOperand *)Operands.pop_back_val().release()); 3444 if (!PrevOp->isReg()) 3445 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3446 int SrcReg = PrevOp->getReg(); 3447 3448 SMLoc EndLoc; 3449 int64_t Imm = 0; 3450 int ShiftReg = 0; 3451 if (ShiftTy == ARM_AM::rrx) { 3452 // RRX Doesn't have an explicit shift amount. The encoder expects 3453 // the shift register to be the same as the source register. Seems odd, 3454 // but OK. 3455 ShiftReg = SrcReg; 3456 } else { 3457 // Figure out if this is shifted by a constant or a register (for non-RRX). 3458 if (Parser.getTok().is(AsmToken::Hash) || 3459 Parser.getTok().is(AsmToken::Dollar)) { 3460 Parser.Lex(); // Eat hash. 3461 SMLoc ImmLoc = Parser.getTok().getLoc(); 3462 const MCExpr *ShiftExpr = nullptr; 3463 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3464 Error(ImmLoc, "invalid immediate shift value"); 3465 return -1; 3466 } 3467 // The expression must be evaluatable as an immediate. 3468 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3469 if (!CE) { 3470 Error(ImmLoc, "invalid immediate shift value"); 3471 return -1; 3472 } 3473 // Range check the immediate. 3474 // lsl, ror: 0 <= imm <= 31 3475 // lsr, asr: 0 <= imm <= 32 3476 Imm = CE->getValue(); 3477 if (Imm < 0 || 3478 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3479 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3480 Error(ImmLoc, "immediate shift value out of range"); 3481 return -1; 3482 } 3483 // shift by zero is a nop. Always send it through as lsl. 3484 // ('as' compatibility) 3485 if (Imm == 0) 3486 ShiftTy = ARM_AM::lsl; 3487 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3488 SMLoc L = Parser.getTok().getLoc(); 3489 EndLoc = Parser.getTok().getEndLoc(); 3490 ShiftReg = tryParseRegister(); 3491 if (ShiftReg == -1) { 3492 Error(L, "expected immediate or register in shift operand"); 3493 return -1; 3494 } 3495 } else { 3496 Error(Parser.getTok().getLoc(), 3497 "expected immediate or register in shift operand"); 3498 return -1; 3499 } 3500 } 3501 3502 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3503 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3504 ShiftReg, Imm, 3505 S, EndLoc)); 3506 else 3507 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3508 S, EndLoc)); 3509 3510 return 0; 3511 } 3512 3513 /// Try to parse a register name. The token must be an Identifier when called. 3514 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3515 /// if there is a "writeback". 'true' if it's not a register. 3516 /// 3517 /// TODO this is likely to change to allow different register types and or to 3518 /// parse for a specific register type. 3519 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3520 MCAsmParser &Parser = getParser(); 3521 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3522 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3523 int RegNo = tryParseRegister(); 3524 if (RegNo == -1) 3525 return true; 3526 3527 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3528 3529 const AsmToken &ExclaimTok = Parser.getTok(); 3530 if (ExclaimTok.is(AsmToken::Exclaim)) { 3531 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3532 ExclaimTok.getLoc())); 3533 Parser.Lex(); // Eat exclaim token 3534 return false; 3535 } 3536 3537 // Also check for an index operand. This is only legal for vector registers, 3538 // but that'll get caught OK in operand matching, so we don't need to 3539 // explicitly filter everything else out here. 3540 if (Parser.getTok().is(AsmToken::LBrac)) { 3541 SMLoc SIdx = Parser.getTok().getLoc(); 3542 Parser.Lex(); // Eat left bracket token. 3543 3544 const MCExpr *ImmVal; 3545 if (getParser().parseExpression(ImmVal)) 3546 return true; 3547 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3548 if (!MCE) 3549 return TokError("immediate value expected for vector index"); 3550 3551 if (Parser.getTok().isNot(AsmToken::RBrac)) 3552 return Error(Parser.getTok().getLoc(), "']' expected"); 3553 3554 SMLoc E = Parser.getTok().getEndLoc(); 3555 Parser.Lex(); // Eat right bracket token. 3556 3557 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3558 SIdx, E, 3559 getContext())); 3560 } 3561 3562 return false; 3563 } 3564 3565 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3566 /// instruction with a symbolic operand name. 3567 /// We accept "crN" syntax for GAS compatibility. 3568 /// <operand-name> ::= <prefix><number> 3569 /// If CoprocOp is 'c', then: 3570 /// <prefix> ::= c | cr 3571 /// If CoprocOp is 'p', then : 3572 /// <prefix> ::= p 3573 /// <number> ::= integer in range [0, 15] 3574 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3575 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3576 // but efficient. 3577 if (Name.size() < 2 || Name[0] != CoprocOp) 3578 return -1; 3579 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3580 3581 switch (Name.size()) { 3582 default: return -1; 3583 case 1: 3584 switch (Name[0]) { 3585 default: return -1; 3586 case '0': return 0; 3587 case '1': return 1; 3588 case '2': return 2; 3589 case '3': return 3; 3590 case '4': return 4; 3591 case '5': return 5; 3592 case '6': return 6; 3593 case '7': return 7; 3594 case '8': return 8; 3595 case '9': return 9; 3596 } 3597 case 2: 3598 if (Name[0] != '1') 3599 return -1; 3600 switch (Name[1]) { 3601 default: return -1; 3602 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3603 // However, old cores (v5/v6) did use them in that way. 3604 case '0': return 10; 3605 case '1': return 11; 3606 case '2': return 12; 3607 case '3': return 13; 3608 case '4': return 14; 3609 case '5': return 15; 3610 } 3611 } 3612 } 3613 3614 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3615 OperandMatchResultTy 3616 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3617 MCAsmParser &Parser = getParser(); 3618 SMLoc S = Parser.getTok().getLoc(); 3619 const AsmToken &Tok = Parser.getTok(); 3620 if (!Tok.is(AsmToken::Identifier)) 3621 return MatchOperand_NoMatch; 3622 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3623 if (CC == ~0U) 3624 return MatchOperand_NoMatch; 3625 Parser.Lex(); // Eat the token. 3626 3627 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3628 3629 return MatchOperand_Success; 3630 } 3631 3632 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3633 /// token must be an Identifier when called, and if it is a coprocessor 3634 /// number, the token is eaten and the operand is added to the operand list. 3635 OperandMatchResultTy 3636 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3637 MCAsmParser &Parser = getParser(); 3638 SMLoc S = Parser.getTok().getLoc(); 3639 const AsmToken &Tok = Parser.getTok(); 3640 if (Tok.isNot(AsmToken::Identifier)) 3641 return MatchOperand_NoMatch; 3642 3643 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3644 if (Num == -1) 3645 return MatchOperand_NoMatch; 3646 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3647 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3648 return MatchOperand_NoMatch; 3649 3650 Parser.Lex(); // Eat identifier token. 3651 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3652 return MatchOperand_Success; 3653 } 3654 3655 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3656 /// token must be an Identifier when called, and if it is a coprocessor 3657 /// number, the token is eaten and the operand is added to the operand list. 3658 OperandMatchResultTy 3659 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3660 MCAsmParser &Parser = getParser(); 3661 SMLoc S = Parser.getTok().getLoc(); 3662 const AsmToken &Tok = Parser.getTok(); 3663 if (Tok.isNot(AsmToken::Identifier)) 3664 return MatchOperand_NoMatch; 3665 3666 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3667 if (Reg == -1) 3668 return MatchOperand_NoMatch; 3669 3670 Parser.Lex(); // Eat identifier token. 3671 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3672 return MatchOperand_Success; 3673 } 3674 3675 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3676 /// coproc_option : '{' imm0_255 '}' 3677 OperandMatchResultTy 3678 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3679 MCAsmParser &Parser = getParser(); 3680 SMLoc S = Parser.getTok().getLoc(); 3681 3682 // If this isn't a '{', this isn't a coprocessor immediate operand. 3683 if (Parser.getTok().isNot(AsmToken::LCurly)) 3684 return MatchOperand_NoMatch; 3685 Parser.Lex(); // Eat the '{' 3686 3687 const MCExpr *Expr; 3688 SMLoc Loc = Parser.getTok().getLoc(); 3689 if (getParser().parseExpression(Expr)) { 3690 Error(Loc, "illegal expression"); 3691 return MatchOperand_ParseFail; 3692 } 3693 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3694 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3695 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3696 return MatchOperand_ParseFail; 3697 } 3698 int Val = CE->getValue(); 3699 3700 // Check for and consume the closing '}' 3701 if (Parser.getTok().isNot(AsmToken::RCurly)) 3702 return MatchOperand_ParseFail; 3703 SMLoc E = Parser.getTok().getEndLoc(); 3704 Parser.Lex(); // Eat the '}' 3705 3706 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3707 return MatchOperand_Success; 3708 } 3709 3710 // For register list parsing, we need to map from raw GPR register numbering 3711 // to the enumeration values. The enumeration values aren't sorted by 3712 // register number due to our using "sp", "lr" and "pc" as canonical names. 3713 static unsigned getNextRegister(unsigned Reg) { 3714 // If this is a GPR, we need to do it manually, otherwise we can rely 3715 // on the sort ordering of the enumeration since the other reg-classes 3716 // are sane. 3717 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3718 return Reg + 1; 3719 switch(Reg) { 3720 default: llvm_unreachable("Invalid GPR number!"); 3721 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3722 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3723 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3724 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3725 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3726 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3727 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3728 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3729 } 3730 } 3731 3732 /// Parse a register list. 3733 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3734 MCAsmParser &Parser = getParser(); 3735 if (Parser.getTok().isNot(AsmToken::LCurly)) 3736 return TokError("Token is not a Left Curly Brace"); 3737 SMLoc S = Parser.getTok().getLoc(); 3738 Parser.Lex(); // Eat '{' token. 3739 SMLoc RegLoc = Parser.getTok().getLoc(); 3740 3741 // Check the first register in the list to see what register class 3742 // this is a list of. 3743 int Reg = tryParseRegister(); 3744 if (Reg == -1) 3745 return Error(RegLoc, "register expected"); 3746 3747 // The reglist instructions have at most 16 registers, so reserve 3748 // space for that many. 3749 int EReg = 0; 3750 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3751 3752 // Allow Q regs and just interpret them as the two D sub-registers. 3753 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3754 Reg = getDRegFromQReg(Reg); 3755 EReg = MRI->getEncodingValue(Reg); 3756 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3757 ++Reg; 3758 } 3759 const MCRegisterClass *RC; 3760 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3761 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3762 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3763 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3764 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3765 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3766 else 3767 return Error(RegLoc, "invalid register in register list"); 3768 3769 // Store the register. 3770 EReg = MRI->getEncodingValue(Reg); 3771 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3772 3773 // This starts immediately after the first register token in the list, 3774 // so we can see either a comma or a minus (range separator) as a legal 3775 // next token. 3776 while (Parser.getTok().is(AsmToken::Comma) || 3777 Parser.getTok().is(AsmToken::Minus)) { 3778 if (Parser.getTok().is(AsmToken::Minus)) { 3779 Parser.Lex(); // Eat the minus. 3780 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3781 int EndReg = tryParseRegister(); 3782 if (EndReg == -1) 3783 return Error(AfterMinusLoc, "register expected"); 3784 // Allow Q regs and just interpret them as the two D sub-registers. 3785 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3786 EndReg = getDRegFromQReg(EndReg) + 1; 3787 // If the register is the same as the start reg, there's nothing 3788 // more to do. 3789 if (Reg == EndReg) 3790 continue; 3791 // The register must be in the same register class as the first. 3792 if (!RC->contains(EndReg)) 3793 return Error(AfterMinusLoc, "invalid register in register list"); 3794 // Ranges must go from low to high. 3795 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3796 return Error(AfterMinusLoc, "bad range in register list"); 3797 3798 // Add all the registers in the range to the register list. 3799 while (Reg != EndReg) { 3800 Reg = getNextRegister(Reg); 3801 EReg = MRI->getEncodingValue(Reg); 3802 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3803 } 3804 continue; 3805 } 3806 Parser.Lex(); // Eat the comma. 3807 RegLoc = Parser.getTok().getLoc(); 3808 int OldReg = Reg; 3809 const AsmToken RegTok = Parser.getTok(); 3810 Reg = tryParseRegister(); 3811 if (Reg == -1) 3812 return Error(RegLoc, "register expected"); 3813 // Allow Q regs and just interpret them as the two D sub-registers. 3814 bool isQReg = false; 3815 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3816 Reg = getDRegFromQReg(Reg); 3817 isQReg = true; 3818 } 3819 // The register must be in the same register class as the first. 3820 if (!RC->contains(Reg)) 3821 return Error(RegLoc, "invalid register in register list"); 3822 // List must be monotonically increasing. 3823 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3824 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3825 Warning(RegLoc, "register list not in ascending order"); 3826 else 3827 return Error(RegLoc, "register list not in ascending order"); 3828 } 3829 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3830 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3831 ") in register list"); 3832 continue; 3833 } 3834 // VFP register lists must also be contiguous. 3835 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3836 Reg != OldReg + 1) 3837 return Error(RegLoc, "non-contiguous register range"); 3838 EReg = MRI->getEncodingValue(Reg); 3839 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3840 if (isQReg) { 3841 EReg = MRI->getEncodingValue(++Reg); 3842 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3843 } 3844 } 3845 3846 if (Parser.getTok().isNot(AsmToken::RCurly)) 3847 return Error(Parser.getTok().getLoc(), "'}' expected"); 3848 SMLoc E = Parser.getTok().getEndLoc(); 3849 Parser.Lex(); // Eat '}' token. 3850 3851 // Push the register list operand. 3852 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3853 3854 // The ARM system instruction variants for LDM/STM have a '^' token here. 3855 if (Parser.getTok().is(AsmToken::Caret)) { 3856 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3857 Parser.Lex(); // Eat '^' token. 3858 } 3859 3860 return false; 3861 } 3862 3863 // Helper function to parse the lane index for vector lists. 3864 OperandMatchResultTy ARMAsmParser:: 3865 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3866 MCAsmParser &Parser = getParser(); 3867 Index = 0; // Always return a defined index value. 3868 if (Parser.getTok().is(AsmToken::LBrac)) { 3869 Parser.Lex(); // Eat the '['. 3870 if (Parser.getTok().is(AsmToken::RBrac)) { 3871 // "Dn[]" is the 'all lanes' syntax. 3872 LaneKind = AllLanes; 3873 EndLoc = Parser.getTok().getEndLoc(); 3874 Parser.Lex(); // Eat the ']'. 3875 return MatchOperand_Success; 3876 } 3877 3878 // There's an optional '#' token here. Normally there wouldn't be, but 3879 // inline assemble puts one in, and it's friendly to accept that. 3880 if (Parser.getTok().is(AsmToken::Hash)) 3881 Parser.Lex(); // Eat '#' or '$'. 3882 3883 const MCExpr *LaneIndex; 3884 SMLoc Loc = Parser.getTok().getLoc(); 3885 if (getParser().parseExpression(LaneIndex)) { 3886 Error(Loc, "illegal expression"); 3887 return MatchOperand_ParseFail; 3888 } 3889 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3890 if (!CE) { 3891 Error(Loc, "lane index must be empty or an integer"); 3892 return MatchOperand_ParseFail; 3893 } 3894 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3895 Error(Parser.getTok().getLoc(), "']' expected"); 3896 return MatchOperand_ParseFail; 3897 } 3898 EndLoc = Parser.getTok().getEndLoc(); 3899 Parser.Lex(); // Eat the ']'. 3900 int64_t Val = CE->getValue(); 3901 3902 // FIXME: Make this range check context sensitive for .8, .16, .32. 3903 if (Val < 0 || Val > 7) { 3904 Error(Parser.getTok().getLoc(), "lane index out of range"); 3905 return MatchOperand_ParseFail; 3906 } 3907 Index = Val; 3908 LaneKind = IndexedLane; 3909 return MatchOperand_Success; 3910 } 3911 LaneKind = NoLanes; 3912 return MatchOperand_Success; 3913 } 3914 3915 // parse a vector register list 3916 OperandMatchResultTy 3917 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3918 MCAsmParser &Parser = getParser(); 3919 VectorLaneTy LaneKind; 3920 unsigned LaneIndex; 3921 SMLoc S = Parser.getTok().getLoc(); 3922 // As an extension (to match gas), support a plain D register or Q register 3923 // (without encosing curly braces) as a single or double entry list, 3924 // respectively. 3925 if (Parser.getTok().is(AsmToken::Identifier)) { 3926 SMLoc E = Parser.getTok().getEndLoc(); 3927 int Reg = tryParseRegister(); 3928 if (Reg == -1) 3929 return MatchOperand_NoMatch; 3930 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3931 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3932 if (Res != MatchOperand_Success) 3933 return Res; 3934 switch (LaneKind) { 3935 case NoLanes: 3936 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3937 break; 3938 case AllLanes: 3939 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3940 S, E)); 3941 break; 3942 case IndexedLane: 3943 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3944 LaneIndex, 3945 false, S, E)); 3946 break; 3947 } 3948 return MatchOperand_Success; 3949 } 3950 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3951 Reg = getDRegFromQReg(Reg); 3952 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3953 if (Res != MatchOperand_Success) 3954 return Res; 3955 switch (LaneKind) { 3956 case NoLanes: 3957 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3958 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3959 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3960 break; 3961 case AllLanes: 3962 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3963 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3964 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3965 S, E)); 3966 break; 3967 case IndexedLane: 3968 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3969 LaneIndex, 3970 false, S, E)); 3971 break; 3972 } 3973 return MatchOperand_Success; 3974 } 3975 Error(S, "vector register expected"); 3976 return MatchOperand_ParseFail; 3977 } 3978 3979 if (Parser.getTok().isNot(AsmToken::LCurly)) 3980 return MatchOperand_NoMatch; 3981 3982 Parser.Lex(); // Eat '{' token. 3983 SMLoc RegLoc = Parser.getTok().getLoc(); 3984 3985 int Reg = tryParseRegister(); 3986 if (Reg == -1) { 3987 Error(RegLoc, "register expected"); 3988 return MatchOperand_ParseFail; 3989 } 3990 unsigned Count = 1; 3991 int Spacing = 0; 3992 unsigned FirstReg = Reg; 3993 // The list is of D registers, but we also allow Q regs and just interpret 3994 // them as the two D sub-registers. 3995 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3996 FirstReg = Reg = getDRegFromQReg(Reg); 3997 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3998 // it's ambiguous with four-register single spaced. 3999 ++Reg; 4000 ++Count; 4001 } 4002 4003 SMLoc E; 4004 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4005 return MatchOperand_ParseFail; 4006 4007 while (Parser.getTok().is(AsmToken::Comma) || 4008 Parser.getTok().is(AsmToken::Minus)) { 4009 if (Parser.getTok().is(AsmToken::Minus)) { 4010 if (!Spacing) 4011 Spacing = 1; // Register range implies a single spaced list. 4012 else if (Spacing == 2) { 4013 Error(Parser.getTok().getLoc(), 4014 "sequential registers in double spaced list"); 4015 return MatchOperand_ParseFail; 4016 } 4017 Parser.Lex(); // Eat the minus. 4018 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4019 int EndReg = tryParseRegister(); 4020 if (EndReg == -1) { 4021 Error(AfterMinusLoc, "register expected"); 4022 return MatchOperand_ParseFail; 4023 } 4024 // Allow Q regs and just interpret them as the two D sub-registers. 4025 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4026 EndReg = getDRegFromQReg(EndReg) + 1; 4027 // If the register is the same as the start reg, there's nothing 4028 // more to do. 4029 if (Reg == EndReg) 4030 continue; 4031 // The register must be in the same register class as the first. 4032 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 4033 Error(AfterMinusLoc, "invalid register in register list"); 4034 return MatchOperand_ParseFail; 4035 } 4036 // Ranges must go from low to high. 4037 if (Reg > EndReg) { 4038 Error(AfterMinusLoc, "bad range in register list"); 4039 return MatchOperand_ParseFail; 4040 } 4041 // Parse the lane specifier if present. 4042 VectorLaneTy NextLaneKind; 4043 unsigned NextLaneIndex; 4044 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4045 MatchOperand_Success) 4046 return MatchOperand_ParseFail; 4047 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4048 Error(AfterMinusLoc, "mismatched lane index in register list"); 4049 return MatchOperand_ParseFail; 4050 } 4051 4052 // Add all the registers in the range to the register list. 4053 Count += EndReg - Reg; 4054 Reg = EndReg; 4055 continue; 4056 } 4057 Parser.Lex(); // Eat the comma. 4058 RegLoc = Parser.getTok().getLoc(); 4059 int OldReg = Reg; 4060 Reg = tryParseRegister(); 4061 if (Reg == -1) { 4062 Error(RegLoc, "register expected"); 4063 return MatchOperand_ParseFail; 4064 } 4065 // vector register lists must be contiguous. 4066 // It's OK to use the enumeration values directly here rather, as the 4067 // VFP register classes have the enum sorted properly. 4068 // 4069 // The list is of D registers, but we also allow Q regs and just interpret 4070 // them as the two D sub-registers. 4071 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4072 if (!Spacing) 4073 Spacing = 1; // Register range implies a single spaced list. 4074 else if (Spacing == 2) { 4075 Error(RegLoc, 4076 "invalid register in double-spaced list (must be 'D' register')"); 4077 return MatchOperand_ParseFail; 4078 } 4079 Reg = getDRegFromQReg(Reg); 4080 if (Reg != OldReg + 1) { 4081 Error(RegLoc, "non-contiguous register range"); 4082 return MatchOperand_ParseFail; 4083 } 4084 ++Reg; 4085 Count += 2; 4086 // Parse the lane specifier if present. 4087 VectorLaneTy NextLaneKind; 4088 unsigned NextLaneIndex; 4089 SMLoc LaneLoc = Parser.getTok().getLoc(); 4090 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4091 MatchOperand_Success) 4092 return MatchOperand_ParseFail; 4093 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4094 Error(LaneLoc, "mismatched lane index in register list"); 4095 return MatchOperand_ParseFail; 4096 } 4097 continue; 4098 } 4099 // Normal D register. 4100 // Figure out the register spacing (single or double) of the list if 4101 // we don't know it already. 4102 if (!Spacing) 4103 Spacing = 1 + (Reg == OldReg + 2); 4104 4105 // Just check that it's contiguous and keep going. 4106 if (Reg != OldReg + Spacing) { 4107 Error(RegLoc, "non-contiguous register range"); 4108 return MatchOperand_ParseFail; 4109 } 4110 ++Count; 4111 // Parse the lane specifier if present. 4112 VectorLaneTy NextLaneKind; 4113 unsigned NextLaneIndex; 4114 SMLoc EndLoc = Parser.getTok().getLoc(); 4115 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4116 return MatchOperand_ParseFail; 4117 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4118 Error(EndLoc, "mismatched lane index in register list"); 4119 return MatchOperand_ParseFail; 4120 } 4121 } 4122 4123 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4124 Error(Parser.getTok().getLoc(), "'}' expected"); 4125 return MatchOperand_ParseFail; 4126 } 4127 E = Parser.getTok().getEndLoc(); 4128 Parser.Lex(); // Eat '}' token. 4129 4130 switch (LaneKind) { 4131 case NoLanes: 4132 // Two-register operands have been converted to the 4133 // composite register classes. 4134 if (Count == 2) { 4135 const MCRegisterClass *RC = (Spacing == 1) ? 4136 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4137 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4138 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4139 } 4140 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4141 (Spacing == 2), S, E)); 4142 break; 4143 case AllLanes: 4144 // Two-register operands have been converted to the 4145 // composite register classes. 4146 if (Count == 2) { 4147 const MCRegisterClass *RC = (Spacing == 1) ? 4148 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4149 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4150 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4151 } 4152 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4153 (Spacing == 2), 4154 S, E)); 4155 break; 4156 case IndexedLane: 4157 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4158 LaneIndex, 4159 (Spacing == 2), 4160 S, E)); 4161 break; 4162 } 4163 return MatchOperand_Success; 4164 } 4165 4166 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4167 OperandMatchResultTy 4168 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4169 MCAsmParser &Parser = getParser(); 4170 SMLoc S = Parser.getTok().getLoc(); 4171 const AsmToken &Tok = Parser.getTok(); 4172 unsigned Opt; 4173 4174 if (Tok.is(AsmToken::Identifier)) { 4175 StringRef OptStr = Tok.getString(); 4176 4177 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4178 .Case("sy", ARM_MB::SY) 4179 .Case("st", ARM_MB::ST) 4180 .Case("ld", ARM_MB::LD) 4181 .Case("sh", ARM_MB::ISH) 4182 .Case("ish", ARM_MB::ISH) 4183 .Case("shst", ARM_MB::ISHST) 4184 .Case("ishst", ARM_MB::ISHST) 4185 .Case("ishld", ARM_MB::ISHLD) 4186 .Case("nsh", ARM_MB::NSH) 4187 .Case("un", ARM_MB::NSH) 4188 .Case("nshst", ARM_MB::NSHST) 4189 .Case("nshld", ARM_MB::NSHLD) 4190 .Case("unst", ARM_MB::NSHST) 4191 .Case("osh", ARM_MB::OSH) 4192 .Case("oshst", ARM_MB::OSHST) 4193 .Case("oshld", ARM_MB::OSHLD) 4194 .Default(~0U); 4195 4196 // ishld, oshld, nshld and ld are only available from ARMv8. 4197 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4198 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4199 Opt = ~0U; 4200 4201 if (Opt == ~0U) 4202 return MatchOperand_NoMatch; 4203 4204 Parser.Lex(); // Eat identifier token. 4205 } else if (Tok.is(AsmToken::Hash) || 4206 Tok.is(AsmToken::Dollar) || 4207 Tok.is(AsmToken::Integer)) { 4208 if (Parser.getTok().isNot(AsmToken::Integer)) 4209 Parser.Lex(); // Eat '#' or '$'. 4210 SMLoc Loc = Parser.getTok().getLoc(); 4211 4212 const MCExpr *MemBarrierID; 4213 if (getParser().parseExpression(MemBarrierID)) { 4214 Error(Loc, "illegal expression"); 4215 return MatchOperand_ParseFail; 4216 } 4217 4218 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4219 if (!CE) { 4220 Error(Loc, "constant expression expected"); 4221 return MatchOperand_ParseFail; 4222 } 4223 4224 int Val = CE->getValue(); 4225 if (Val & ~0xf) { 4226 Error(Loc, "immediate value out of range"); 4227 return MatchOperand_ParseFail; 4228 } 4229 4230 Opt = ARM_MB::RESERVED_0 + Val; 4231 } else 4232 return MatchOperand_ParseFail; 4233 4234 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4235 return MatchOperand_Success; 4236 } 4237 4238 OperandMatchResultTy 4239 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4240 MCAsmParser &Parser = getParser(); 4241 SMLoc S = Parser.getTok().getLoc(); 4242 const AsmToken &Tok = Parser.getTok(); 4243 4244 if (Tok.isNot(AsmToken::Identifier)) 4245 return MatchOperand_NoMatch; 4246 4247 if (!Tok.getString().equals_lower("csync")) 4248 return MatchOperand_NoMatch; 4249 4250 Parser.Lex(); // Eat identifier token. 4251 4252 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4253 return MatchOperand_Success; 4254 } 4255 4256 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4257 OperandMatchResultTy 4258 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4259 MCAsmParser &Parser = getParser(); 4260 SMLoc S = Parser.getTok().getLoc(); 4261 const AsmToken &Tok = Parser.getTok(); 4262 unsigned Opt; 4263 4264 if (Tok.is(AsmToken::Identifier)) { 4265 StringRef OptStr = Tok.getString(); 4266 4267 if (OptStr.equals_lower("sy")) 4268 Opt = ARM_ISB::SY; 4269 else 4270 return MatchOperand_NoMatch; 4271 4272 Parser.Lex(); // Eat identifier token. 4273 } else if (Tok.is(AsmToken::Hash) || 4274 Tok.is(AsmToken::Dollar) || 4275 Tok.is(AsmToken::Integer)) { 4276 if (Parser.getTok().isNot(AsmToken::Integer)) 4277 Parser.Lex(); // Eat '#' or '$'. 4278 SMLoc Loc = Parser.getTok().getLoc(); 4279 4280 const MCExpr *ISBarrierID; 4281 if (getParser().parseExpression(ISBarrierID)) { 4282 Error(Loc, "illegal expression"); 4283 return MatchOperand_ParseFail; 4284 } 4285 4286 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4287 if (!CE) { 4288 Error(Loc, "constant expression expected"); 4289 return MatchOperand_ParseFail; 4290 } 4291 4292 int Val = CE->getValue(); 4293 if (Val & ~0xf) { 4294 Error(Loc, "immediate value out of range"); 4295 return MatchOperand_ParseFail; 4296 } 4297 4298 Opt = ARM_ISB::RESERVED_0 + Val; 4299 } else 4300 return MatchOperand_ParseFail; 4301 4302 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4303 (ARM_ISB::InstSyncBOpt)Opt, S)); 4304 return MatchOperand_Success; 4305 } 4306 4307 4308 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4309 OperandMatchResultTy 4310 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4311 MCAsmParser &Parser = getParser(); 4312 SMLoc S = Parser.getTok().getLoc(); 4313 const AsmToken &Tok = Parser.getTok(); 4314 if (!Tok.is(AsmToken::Identifier)) 4315 return MatchOperand_NoMatch; 4316 StringRef IFlagsStr = Tok.getString(); 4317 4318 // An iflags string of "none" is interpreted to mean that none of the AIF 4319 // bits are set. Not a terribly useful instruction, but a valid encoding. 4320 unsigned IFlags = 0; 4321 if (IFlagsStr != "none") { 4322 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4323 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4324 .Case("a", ARM_PROC::A) 4325 .Case("i", ARM_PROC::I) 4326 .Case("f", ARM_PROC::F) 4327 .Default(~0U); 4328 4329 // If some specific iflag is already set, it means that some letter is 4330 // present more than once, this is not acceptable. 4331 if (Flag == ~0U || (IFlags & Flag)) 4332 return MatchOperand_NoMatch; 4333 4334 IFlags |= Flag; 4335 } 4336 } 4337 4338 Parser.Lex(); // Eat identifier token. 4339 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4340 return MatchOperand_Success; 4341 } 4342 4343 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4344 OperandMatchResultTy 4345 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4346 MCAsmParser &Parser = getParser(); 4347 SMLoc S = Parser.getTok().getLoc(); 4348 const AsmToken &Tok = Parser.getTok(); 4349 4350 if (Tok.is(AsmToken::Integer)) { 4351 int64_t Val = Tok.getIntVal(); 4352 if (Val > 255 || Val < 0) { 4353 return MatchOperand_NoMatch; 4354 } 4355 unsigned SYSmvalue = Val & 0xFF; 4356 Parser.Lex(); 4357 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4358 return MatchOperand_Success; 4359 } 4360 4361 if (!Tok.is(AsmToken::Identifier)) 4362 return MatchOperand_NoMatch; 4363 StringRef Mask = Tok.getString(); 4364 4365 if (isMClass()) { 4366 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4367 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4368 return MatchOperand_NoMatch; 4369 4370 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4371 4372 Parser.Lex(); // Eat identifier token. 4373 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4374 return MatchOperand_Success; 4375 } 4376 4377 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4378 size_t Start = 0, Next = Mask.find('_'); 4379 StringRef Flags = ""; 4380 std::string SpecReg = Mask.slice(Start, Next).lower(); 4381 if (Next != StringRef::npos) 4382 Flags = Mask.slice(Next+1, Mask.size()); 4383 4384 // FlagsVal contains the complete mask: 4385 // 3-0: Mask 4386 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4387 unsigned FlagsVal = 0; 4388 4389 if (SpecReg == "apsr") { 4390 FlagsVal = StringSwitch<unsigned>(Flags) 4391 .Case("nzcvq", 0x8) // same as CPSR_f 4392 .Case("g", 0x4) // same as CPSR_s 4393 .Case("nzcvqg", 0xc) // same as CPSR_fs 4394 .Default(~0U); 4395 4396 if (FlagsVal == ~0U) { 4397 if (!Flags.empty()) 4398 return MatchOperand_NoMatch; 4399 else 4400 FlagsVal = 8; // No flag 4401 } 4402 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4403 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4404 if (Flags == "all" || Flags == "") 4405 Flags = "fc"; 4406 for (int i = 0, e = Flags.size(); i != e; ++i) { 4407 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4408 .Case("c", 1) 4409 .Case("x", 2) 4410 .Case("s", 4) 4411 .Case("f", 8) 4412 .Default(~0U); 4413 4414 // If some specific flag is already set, it means that some letter is 4415 // present more than once, this is not acceptable. 4416 if (Flag == ~0U || (FlagsVal & Flag)) 4417 return MatchOperand_NoMatch; 4418 FlagsVal |= Flag; 4419 } 4420 } else // No match for special register. 4421 return MatchOperand_NoMatch; 4422 4423 // Special register without flags is NOT equivalent to "fc" flags. 4424 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4425 // two lines would enable gas compatibility at the expense of breaking 4426 // round-tripping. 4427 // 4428 // if (!FlagsVal) 4429 // FlagsVal = 0x9; 4430 4431 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4432 if (SpecReg == "spsr") 4433 FlagsVal |= 16; 4434 4435 Parser.Lex(); // Eat identifier token. 4436 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4437 return MatchOperand_Success; 4438 } 4439 4440 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4441 /// use in the MRS/MSR instructions added to support virtualization. 4442 OperandMatchResultTy 4443 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4444 MCAsmParser &Parser = getParser(); 4445 SMLoc S = Parser.getTok().getLoc(); 4446 const AsmToken &Tok = Parser.getTok(); 4447 if (!Tok.is(AsmToken::Identifier)) 4448 return MatchOperand_NoMatch; 4449 StringRef RegName = Tok.getString(); 4450 4451 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4452 if (!TheReg) 4453 return MatchOperand_NoMatch; 4454 unsigned Encoding = TheReg->Encoding; 4455 4456 Parser.Lex(); // Eat identifier token. 4457 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4458 return MatchOperand_Success; 4459 } 4460 4461 OperandMatchResultTy 4462 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4463 int High) { 4464 MCAsmParser &Parser = getParser(); 4465 const AsmToken &Tok = Parser.getTok(); 4466 if (Tok.isNot(AsmToken::Identifier)) { 4467 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4468 return MatchOperand_ParseFail; 4469 } 4470 StringRef ShiftName = Tok.getString(); 4471 std::string LowerOp = Op.lower(); 4472 std::string UpperOp = Op.upper(); 4473 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4474 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4475 return MatchOperand_ParseFail; 4476 } 4477 Parser.Lex(); // Eat shift type token. 4478 4479 // There must be a '#' and a shift amount. 4480 if (Parser.getTok().isNot(AsmToken::Hash) && 4481 Parser.getTok().isNot(AsmToken::Dollar)) { 4482 Error(Parser.getTok().getLoc(), "'#' expected"); 4483 return MatchOperand_ParseFail; 4484 } 4485 Parser.Lex(); // Eat hash token. 4486 4487 const MCExpr *ShiftAmount; 4488 SMLoc Loc = Parser.getTok().getLoc(); 4489 SMLoc EndLoc; 4490 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4491 Error(Loc, "illegal expression"); 4492 return MatchOperand_ParseFail; 4493 } 4494 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4495 if (!CE) { 4496 Error(Loc, "constant expression expected"); 4497 return MatchOperand_ParseFail; 4498 } 4499 int Val = CE->getValue(); 4500 if (Val < Low || Val > High) { 4501 Error(Loc, "immediate value out of range"); 4502 return MatchOperand_ParseFail; 4503 } 4504 4505 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4506 4507 return MatchOperand_Success; 4508 } 4509 4510 OperandMatchResultTy 4511 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4512 MCAsmParser &Parser = getParser(); 4513 const AsmToken &Tok = Parser.getTok(); 4514 SMLoc S = Tok.getLoc(); 4515 if (Tok.isNot(AsmToken::Identifier)) { 4516 Error(S, "'be' or 'le' operand expected"); 4517 return MatchOperand_ParseFail; 4518 } 4519 int Val = StringSwitch<int>(Tok.getString().lower()) 4520 .Case("be", 1) 4521 .Case("le", 0) 4522 .Default(-1); 4523 Parser.Lex(); // Eat the token. 4524 4525 if (Val == -1) { 4526 Error(S, "'be' or 'le' operand expected"); 4527 return MatchOperand_ParseFail; 4528 } 4529 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4530 getContext()), 4531 S, Tok.getEndLoc())); 4532 return MatchOperand_Success; 4533 } 4534 4535 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4536 /// instructions. Legal values are: 4537 /// lsl #n 'n' in [0,31] 4538 /// asr #n 'n' in [1,32] 4539 /// n == 32 encoded as n == 0. 4540 OperandMatchResultTy 4541 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4542 MCAsmParser &Parser = getParser(); 4543 const AsmToken &Tok = Parser.getTok(); 4544 SMLoc S = Tok.getLoc(); 4545 if (Tok.isNot(AsmToken::Identifier)) { 4546 Error(S, "shift operator 'asr' or 'lsl' expected"); 4547 return MatchOperand_ParseFail; 4548 } 4549 StringRef ShiftName = Tok.getString(); 4550 bool isASR; 4551 if (ShiftName == "lsl" || ShiftName == "LSL") 4552 isASR = false; 4553 else if (ShiftName == "asr" || ShiftName == "ASR") 4554 isASR = true; 4555 else { 4556 Error(S, "shift operator 'asr' or 'lsl' expected"); 4557 return MatchOperand_ParseFail; 4558 } 4559 Parser.Lex(); // Eat the operator. 4560 4561 // A '#' and a shift amount. 4562 if (Parser.getTok().isNot(AsmToken::Hash) && 4563 Parser.getTok().isNot(AsmToken::Dollar)) { 4564 Error(Parser.getTok().getLoc(), "'#' expected"); 4565 return MatchOperand_ParseFail; 4566 } 4567 Parser.Lex(); // Eat hash token. 4568 SMLoc ExLoc = Parser.getTok().getLoc(); 4569 4570 const MCExpr *ShiftAmount; 4571 SMLoc EndLoc; 4572 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4573 Error(ExLoc, "malformed shift expression"); 4574 return MatchOperand_ParseFail; 4575 } 4576 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4577 if (!CE) { 4578 Error(ExLoc, "shift amount must be an immediate"); 4579 return MatchOperand_ParseFail; 4580 } 4581 4582 int64_t Val = CE->getValue(); 4583 if (isASR) { 4584 // Shift amount must be in [1,32] 4585 if (Val < 1 || Val > 32) { 4586 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4587 return MatchOperand_ParseFail; 4588 } 4589 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4590 if (isThumb() && Val == 32) { 4591 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4592 return MatchOperand_ParseFail; 4593 } 4594 if (Val == 32) Val = 0; 4595 } else { 4596 // Shift amount must be in [1,32] 4597 if (Val < 0 || Val > 31) { 4598 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4599 return MatchOperand_ParseFail; 4600 } 4601 } 4602 4603 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4604 4605 return MatchOperand_Success; 4606 } 4607 4608 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4609 /// of instructions. Legal values are: 4610 /// ror #n 'n' in {0, 8, 16, 24} 4611 OperandMatchResultTy 4612 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4613 MCAsmParser &Parser = getParser(); 4614 const AsmToken &Tok = Parser.getTok(); 4615 SMLoc S = Tok.getLoc(); 4616 if (Tok.isNot(AsmToken::Identifier)) 4617 return MatchOperand_NoMatch; 4618 StringRef ShiftName = Tok.getString(); 4619 if (ShiftName != "ror" && ShiftName != "ROR") 4620 return MatchOperand_NoMatch; 4621 Parser.Lex(); // Eat the operator. 4622 4623 // A '#' and a rotate amount. 4624 if (Parser.getTok().isNot(AsmToken::Hash) && 4625 Parser.getTok().isNot(AsmToken::Dollar)) { 4626 Error(Parser.getTok().getLoc(), "'#' expected"); 4627 return MatchOperand_ParseFail; 4628 } 4629 Parser.Lex(); // Eat hash token. 4630 SMLoc ExLoc = Parser.getTok().getLoc(); 4631 4632 const MCExpr *ShiftAmount; 4633 SMLoc EndLoc; 4634 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4635 Error(ExLoc, "malformed rotate expression"); 4636 return MatchOperand_ParseFail; 4637 } 4638 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4639 if (!CE) { 4640 Error(ExLoc, "rotate amount must be an immediate"); 4641 return MatchOperand_ParseFail; 4642 } 4643 4644 int64_t Val = CE->getValue(); 4645 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4646 // normally, zero is represented in asm by omitting the rotate operand 4647 // entirely. 4648 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4649 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4650 return MatchOperand_ParseFail; 4651 } 4652 4653 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4654 4655 return MatchOperand_Success; 4656 } 4657 4658 OperandMatchResultTy 4659 ARMAsmParser::parseModImm(OperandVector &Operands) { 4660 MCAsmParser &Parser = getParser(); 4661 MCAsmLexer &Lexer = getLexer(); 4662 int64_t Imm1, Imm2; 4663 4664 SMLoc S = Parser.getTok().getLoc(); 4665 4666 // 1) A mod_imm operand can appear in the place of a register name: 4667 // add r0, #mod_imm 4668 // add r0, r0, #mod_imm 4669 // to correctly handle the latter, we bail out as soon as we see an 4670 // identifier. 4671 // 4672 // 2) Similarly, we do not want to parse into complex operands: 4673 // mov r0, #mod_imm 4674 // mov r0, :lower16:(_foo) 4675 if (Parser.getTok().is(AsmToken::Identifier) || 4676 Parser.getTok().is(AsmToken::Colon)) 4677 return MatchOperand_NoMatch; 4678 4679 // Hash (dollar) is optional as per the ARMARM 4680 if (Parser.getTok().is(AsmToken::Hash) || 4681 Parser.getTok().is(AsmToken::Dollar)) { 4682 // Avoid parsing into complex operands (#:) 4683 if (Lexer.peekTok().is(AsmToken::Colon)) 4684 return MatchOperand_NoMatch; 4685 4686 // Eat the hash (dollar) 4687 Parser.Lex(); 4688 } 4689 4690 SMLoc Sx1, Ex1; 4691 Sx1 = Parser.getTok().getLoc(); 4692 const MCExpr *Imm1Exp; 4693 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4694 Error(Sx1, "malformed expression"); 4695 return MatchOperand_ParseFail; 4696 } 4697 4698 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4699 4700 if (CE) { 4701 // Immediate must fit within 32-bits 4702 Imm1 = CE->getValue(); 4703 int Enc = ARM_AM::getSOImmVal(Imm1); 4704 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4705 // We have a match! 4706 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4707 (Enc & 0xF00) >> 7, 4708 Sx1, Ex1)); 4709 return MatchOperand_Success; 4710 } 4711 4712 // We have parsed an immediate which is not for us, fallback to a plain 4713 // immediate. This can happen for instruction aliases. For an example, 4714 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4715 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4716 // instruction with a mod_imm operand. The alias is defined such that the 4717 // parser method is shared, that's why we have to do this here. 4718 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4719 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4720 return MatchOperand_Success; 4721 } 4722 } else { 4723 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4724 // MCFixup). Fallback to a plain immediate. 4725 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4726 return MatchOperand_Success; 4727 } 4728 4729 // From this point onward, we expect the input to be a (#bits, #rot) pair 4730 if (Parser.getTok().isNot(AsmToken::Comma)) { 4731 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4732 return MatchOperand_ParseFail; 4733 } 4734 4735 if (Imm1 & ~0xFF) { 4736 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4737 return MatchOperand_ParseFail; 4738 } 4739 4740 // Eat the comma 4741 Parser.Lex(); 4742 4743 // Repeat for #rot 4744 SMLoc Sx2, Ex2; 4745 Sx2 = Parser.getTok().getLoc(); 4746 4747 // Eat the optional hash (dollar) 4748 if (Parser.getTok().is(AsmToken::Hash) || 4749 Parser.getTok().is(AsmToken::Dollar)) 4750 Parser.Lex(); 4751 4752 const MCExpr *Imm2Exp; 4753 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4754 Error(Sx2, "malformed expression"); 4755 return MatchOperand_ParseFail; 4756 } 4757 4758 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4759 4760 if (CE) { 4761 Imm2 = CE->getValue(); 4762 if (!(Imm2 & ~0x1E)) { 4763 // We have a match! 4764 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4765 return MatchOperand_Success; 4766 } 4767 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4768 return MatchOperand_ParseFail; 4769 } else { 4770 Error(Sx2, "constant expression expected"); 4771 return MatchOperand_ParseFail; 4772 } 4773 } 4774 4775 OperandMatchResultTy 4776 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4777 MCAsmParser &Parser = getParser(); 4778 SMLoc S = Parser.getTok().getLoc(); 4779 // The bitfield descriptor is really two operands, the LSB and the width. 4780 if (Parser.getTok().isNot(AsmToken::Hash) && 4781 Parser.getTok().isNot(AsmToken::Dollar)) { 4782 Error(Parser.getTok().getLoc(), "'#' expected"); 4783 return MatchOperand_ParseFail; 4784 } 4785 Parser.Lex(); // Eat hash token. 4786 4787 const MCExpr *LSBExpr; 4788 SMLoc E = Parser.getTok().getLoc(); 4789 if (getParser().parseExpression(LSBExpr)) { 4790 Error(E, "malformed immediate expression"); 4791 return MatchOperand_ParseFail; 4792 } 4793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4794 if (!CE) { 4795 Error(E, "'lsb' operand must be an immediate"); 4796 return MatchOperand_ParseFail; 4797 } 4798 4799 int64_t LSB = CE->getValue(); 4800 // The LSB must be in the range [0,31] 4801 if (LSB < 0 || LSB > 31) { 4802 Error(E, "'lsb' operand must be in the range [0,31]"); 4803 return MatchOperand_ParseFail; 4804 } 4805 E = Parser.getTok().getLoc(); 4806 4807 // Expect another immediate operand. 4808 if (Parser.getTok().isNot(AsmToken::Comma)) { 4809 Error(Parser.getTok().getLoc(), "too few operands"); 4810 return MatchOperand_ParseFail; 4811 } 4812 Parser.Lex(); // Eat hash token. 4813 if (Parser.getTok().isNot(AsmToken::Hash) && 4814 Parser.getTok().isNot(AsmToken::Dollar)) { 4815 Error(Parser.getTok().getLoc(), "'#' expected"); 4816 return MatchOperand_ParseFail; 4817 } 4818 Parser.Lex(); // Eat hash token. 4819 4820 const MCExpr *WidthExpr; 4821 SMLoc EndLoc; 4822 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4823 Error(E, "malformed immediate expression"); 4824 return MatchOperand_ParseFail; 4825 } 4826 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4827 if (!CE) { 4828 Error(E, "'width' operand must be an immediate"); 4829 return MatchOperand_ParseFail; 4830 } 4831 4832 int64_t Width = CE->getValue(); 4833 // The LSB must be in the range [1,32-lsb] 4834 if (Width < 1 || Width > 32 - LSB) { 4835 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4836 return MatchOperand_ParseFail; 4837 } 4838 4839 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4840 4841 return MatchOperand_Success; 4842 } 4843 4844 OperandMatchResultTy 4845 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4846 // Check for a post-index addressing register operand. Specifically: 4847 // postidx_reg := '+' register {, shift} 4848 // | '-' register {, shift} 4849 // | register {, shift} 4850 4851 // This method must return MatchOperand_NoMatch without consuming any tokens 4852 // in the case where there is no match, as other alternatives take other 4853 // parse methods. 4854 MCAsmParser &Parser = getParser(); 4855 AsmToken Tok = Parser.getTok(); 4856 SMLoc S = Tok.getLoc(); 4857 bool haveEaten = false; 4858 bool isAdd = true; 4859 if (Tok.is(AsmToken::Plus)) { 4860 Parser.Lex(); // Eat the '+' token. 4861 haveEaten = true; 4862 } else if (Tok.is(AsmToken::Minus)) { 4863 Parser.Lex(); // Eat the '-' token. 4864 isAdd = false; 4865 haveEaten = true; 4866 } 4867 4868 SMLoc E = Parser.getTok().getEndLoc(); 4869 int Reg = tryParseRegister(); 4870 if (Reg == -1) { 4871 if (!haveEaten) 4872 return MatchOperand_NoMatch; 4873 Error(Parser.getTok().getLoc(), "register expected"); 4874 return MatchOperand_ParseFail; 4875 } 4876 4877 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4878 unsigned ShiftImm = 0; 4879 if (Parser.getTok().is(AsmToken::Comma)) { 4880 Parser.Lex(); // Eat the ','. 4881 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4882 return MatchOperand_ParseFail; 4883 4884 // FIXME: Only approximates end...may include intervening whitespace. 4885 E = Parser.getTok().getLoc(); 4886 } 4887 4888 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4889 ShiftImm, S, E)); 4890 4891 return MatchOperand_Success; 4892 } 4893 4894 OperandMatchResultTy 4895 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4896 // Check for a post-index addressing register operand. Specifically: 4897 // am3offset := '+' register 4898 // | '-' register 4899 // | register 4900 // | # imm 4901 // | # + imm 4902 // | # - imm 4903 4904 // This method must return MatchOperand_NoMatch without consuming any tokens 4905 // in the case where there is no match, as other alternatives take other 4906 // parse methods. 4907 MCAsmParser &Parser = getParser(); 4908 AsmToken Tok = Parser.getTok(); 4909 SMLoc S = Tok.getLoc(); 4910 4911 // Do immediates first, as we always parse those if we have a '#'. 4912 if (Parser.getTok().is(AsmToken::Hash) || 4913 Parser.getTok().is(AsmToken::Dollar)) { 4914 Parser.Lex(); // Eat '#' or '$'. 4915 // Explicitly look for a '-', as we need to encode negative zero 4916 // differently. 4917 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4918 const MCExpr *Offset; 4919 SMLoc E; 4920 if (getParser().parseExpression(Offset, E)) 4921 return MatchOperand_ParseFail; 4922 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4923 if (!CE) { 4924 Error(S, "constant expression expected"); 4925 return MatchOperand_ParseFail; 4926 } 4927 // Negative zero is encoded as the flag value 4928 // std::numeric_limits<int32_t>::min(). 4929 int32_t Val = CE->getValue(); 4930 if (isNegative && Val == 0) 4931 Val = std::numeric_limits<int32_t>::min(); 4932 4933 Operands.push_back( 4934 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4935 4936 return MatchOperand_Success; 4937 } 4938 4939 bool haveEaten = false; 4940 bool isAdd = true; 4941 if (Tok.is(AsmToken::Plus)) { 4942 Parser.Lex(); // Eat the '+' token. 4943 haveEaten = true; 4944 } else if (Tok.is(AsmToken::Minus)) { 4945 Parser.Lex(); // Eat the '-' token. 4946 isAdd = false; 4947 haveEaten = true; 4948 } 4949 4950 Tok = Parser.getTok(); 4951 int Reg = tryParseRegister(); 4952 if (Reg == -1) { 4953 if (!haveEaten) 4954 return MatchOperand_NoMatch; 4955 Error(Tok.getLoc(), "register expected"); 4956 return MatchOperand_ParseFail; 4957 } 4958 4959 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4960 0, S, Tok.getEndLoc())); 4961 4962 return MatchOperand_Success; 4963 } 4964 4965 /// Convert parsed operands to MCInst. Needed here because this instruction 4966 /// only has two register operands, but multiplication is commutative so 4967 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4968 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4969 const OperandVector &Operands) { 4970 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4971 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4972 // If we have a three-operand form, make sure to set Rn to be the operand 4973 // that isn't the same as Rd. 4974 unsigned RegOp = 4; 4975 if (Operands.size() == 6 && 4976 ((ARMOperand &)*Operands[4]).getReg() == 4977 ((ARMOperand &)*Operands[3]).getReg()) 4978 RegOp = 5; 4979 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4980 Inst.addOperand(Inst.getOperand(0)); 4981 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4982 } 4983 4984 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4985 const OperandVector &Operands) { 4986 int CondOp = -1, ImmOp = -1; 4987 switch(Inst.getOpcode()) { 4988 case ARM::tB: 4989 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4990 4991 case ARM::t2B: 4992 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4993 4994 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4995 } 4996 // first decide whether or not the branch should be conditional 4997 // by looking at it's location relative to an IT block 4998 if(inITBlock()) { 4999 // inside an IT block we cannot have any conditional branches. any 5000 // such instructions needs to be converted to unconditional form 5001 switch(Inst.getOpcode()) { 5002 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5003 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5004 } 5005 } else { 5006 // outside IT blocks we can only have unconditional branches with AL 5007 // condition code or conditional branches with non-AL condition code 5008 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5009 switch(Inst.getOpcode()) { 5010 case ARM::tB: 5011 case ARM::tBcc: 5012 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5013 break; 5014 case ARM::t2B: 5015 case ARM::t2Bcc: 5016 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5017 break; 5018 } 5019 } 5020 5021 // now decide on encoding size based on branch target range 5022 switch(Inst.getOpcode()) { 5023 // classify tB as either t2B or t1B based on range of immediate operand 5024 case ARM::tB: { 5025 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5026 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5027 Inst.setOpcode(ARM::t2B); 5028 break; 5029 } 5030 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5031 case ARM::tBcc: { 5032 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5033 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5034 Inst.setOpcode(ARM::t2Bcc); 5035 break; 5036 } 5037 } 5038 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5039 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5040 } 5041 5042 /// Parse an ARM memory expression, return false if successful else return true 5043 /// or an error. The first token must be a '[' when called. 5044 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5045 MCAsmParser &Parser = getParser(); 5046 SMLoc S, E; 5047 if (Parser.getTok().isNot(AsmToken::LBrac)) 5048 return TokError("Token is not a Left Bracket"); 5049 S = Parser.getTok().getLoc(); 5050 Parser.Lex(); // Eat left bracket token. 5051 5052 const AsmToken &BaseRegTok = Parser.getTok(); 5053 int BaseRegNum = tryParseRegister(); 5054 if (BaseRegNum == -1) 5055 return Error(BaseRegTok.getLoc(), "register expected"); 5056 5057 // The next token must either be a comma, a colon or a closing bracket. 5058 const AsmToken &Tok = Parser.getTok(); 5059 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5060 !Tok.is(AsmToken::RBrac)) 5061 return Error(Tok.getLoc(), "malformed memory operand"); 5062 5063 if (Tok.is(AsmToken::RBrac)) { 5064 E = Tok.getEndLoc(); 5065 Parser.Lex(); // Eat right bracket token. 5066 5067 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5068 ARM_AM::no_shift, 0, 0, false, 5069 S, E)); 5070 5071 // If there's a pre-indexing writeback marker, '!', just add it as a token 5072 // operand. It's rather odd, but syntactically valid. 5073 if (Parser.getTok().is(AsmToken::Exclaim)) { 5074 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5075 Parser.Lex(); // Eat the '!'. 5076 } 5077 5078 return false; 5079 } 5080 5081 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5082 "Lost colon or comma in memory operand?!"); 5083 if (Tok.is(AsmToken::Comma)) { 5084 Parser.Lex(); // Eat the comma. 5085 } 5086 5087 // If we have a ':', it's an alignment specifier. 5088 if (Parser.getTok().is(AsmToken::Colon)) { 5089 Parser.Lex(); // Eat the ':'. 5090 E = Parser.getTok().getLoc(); 5091 SMLoc AlignmentLoc = Tok.getLoc(); 5092 5093 const MCExpr *Expr; 5094 if (getParser().parseExpression(Expr)) 5095 return true; 5096 5097 // The expression has to be a constant. Memory references with relocations 5098 // don't come through here, as they use the <label> forms of the relevant 5099 // instructions. 5100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5101 if (!CE) 5102 return Error (E, "constant expression expected"); 5103 5104 unsigned Align = 0; 5105 switch (CE->getValue()) { 5106 default: 5107 return Error(E, 5108 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5109 case 16: Align = 2; break; 5110 case 32: Align = 4; break; 5111 case 64: Align = 8; break; 5112 case 128: Align = 16; break; 5113 case 256: Align = 32; break; 5114 } 5115 5116 // Now we should have the closing ']' 5117 if (Parser.getTok().isNot(AsmToken::RBrac)) 5118 return Error(Parser.getTok().getLoc(), "']' expected"); 5119 E = Parser.getTok().getEndLoc(); 5120 Parser.Lex(); // Eat right bracket token. 5121 5122 // Don't worry about range checking the value here. That's handled by 5123 // the is*() predicates. 5124 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5125 ARM_AM::no_shift, 0, Align, 5126 false, S, E, AlignmentLoc)); 5127 5128 // If there's a pre-indexing writeback marker, '!', just add it as a token 5129 // operand. 5130 if (Parser.getTok().is(AsmToken::Exclaim)) { 5131 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5132 Parser.Lex(); // Eat the '!'. 5133 } 5134 5135 return false; 5136 } 5137 5138 // If we have a '#', it's an immediate offset, else assume it's a register 5139 // offset. Be friendly and also accept a plain integer (without a leading 5140 // hash) for gas compatibility. 5141 if (Parser.getTok().is(AsmToken::Hash) || 5142 Parser.getTok().is(AsmToken::Dollar) || 5143 Parser.getTok().is(AsmToken::Integer)) { 5144 if (Parser.getTok().isNot(AsmToken::Integer)) 5145 Parser.Lex(); // Eat '#' or '$'. 5146 E = Parser.getTok().getLoc(); 5147 5148 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5149 const MCExpr *Offset; 5150 if (getParser().parseExpression(Offset)) 5151 return true; 5152 5153 // The expression has to be a constant. Memory references with relocations 5154 // don't come through here, as they use the <label> forms of the relevant 5155 // instructions. 5156 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5157 if (!CE) 5158 return Error (E, "constant expression expected"); 5159 5160 // If the constant was #-0, represent it as 5161 // std::numeric_limits<int32_t>::min(). 5162 int32_t Val = CE->getValue(); 5163 if (isNegative && Val == 0) 5164 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5165 getContext()); 5166 5167 // Now we should have the closing ']' 5168 if (Parser.getTok().isNot(AsmToken::RBrac)) 5169 return Error(Parser.getTok().getLoc(), "']' expected"); 5170 E = Parser.getTok().getEndLoc(); 5171 Parser.Lex(); // Eat right bracket token. 5172 5173 // Don't worry about range checking the value here. That's handled by 5174 // the is*() predicates. 5175 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5176 ARM_AM::no_shift, 0, 0, 5177 false, S, E)); 5178 5179 // If there's a pre-indexing writeback marker, '!', just add it as a token 5180 // operand. 5181 if (Parser.getTok().is(AsmToken::Exclaim)) { 5182 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5183 Parser.Lex(); // Eat the '!'. 5184 } 5185 5186 return false; 5187 } 5188 5189 // The register offset is optionally preceded by a '+' or '-' 5190 bool isNegative = false; 5191 if (Parser.getTok().is(AsmToken::Minus)) { 5192 isNegative = true; 5193 Parser.Lex(); // Eat the '-'. 5194 } else if (Parser.getTok().is(AsmToken::Plus)) { 5195 // Nothing to do. 5196 Parser.Lex(); // Eat the '+'. 5197 } 5198 5199 E = Parser.getTok().getLoc(); 5200 int OffsetRegNum = tryParseRegister(); 5201 if (OffsetRegNum == -1) 5202 return Error(E, "register expected"); 5203 5204 // If there's a shift operator, handle it. 5205 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5206 unsigned ShiftImm = 0; 5207 if (Parser.getTok().is(AsmToken::Comma)) { 5208 Parser.Lex(); // Eat the ','. 5209 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5210 return true; 5211 } 5212 5213 // Now we should have the closing ']' 5214 if (Parser.getTok().isNot(AsmToken::RBrac)) 5215 return Error(Parser.getTok().getLoc(), "']' expected"); 5216 E = Parser.getTok().getEndLoc(); 5217 Parser.Lex(); // Eat right bracket token. 5218 5219 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5220 ShiftType, ShiftImm, 0, isNegative, 5221 S, E)); 5222 5223 // If there's a pre-indexing writeback marker, '!', just add it as a token 5224 // operand. 5225 if (Parser.getTok().is(AsmToken::Exclaim)) { 5226 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5227 Parser.Lex(); // Eat the '!'. 5228 } 5229 5230 return false; 5231 } 5232 5233 /// parseMemRegOffsetShift - one of these two: 5234 /// ( lsl | lsr | asr | ror ) , # shift_amount 5235 /// rrx 5236 /// return true if it parses a shift otherwise it returns false. 5237 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5238 unsigned &Amount) { 5239 MCAsmParser &Parser = getParser(); 5240 SMLoc Loc = Parser.getTok().getLoc(); 5241 const AsmToken &Tok = Parser.getTok(); 5242 if (Tok.isNot(AsmToken::Identifier)) 5243 return Error(Loc, "illegal shift operator"); 5244 StringRef ShiftName = Tok.getString(); 5245 if (ShiftName == "lsl" || ShiftName == "LSL" || 5246 ShiftName == "asl" || ShiftName == "ASL") 5247 St = ARM_AM::lsl; 5248 else if (ShiftName == "lsr" || ShiftName == "LSR") 5249 St = ARM_AM::lsr; 5250 else if (ShiftName == "asr" || ShiftName == "ASR") 5251 St = ARM_AM::asr; 5252 else if (ShiftName == "ror" || ShiftName == "ROR") 5253 St = ARM_AM::ror; 5254 else if (ShiftName == "rrx" || ShiftName == "RRX") 5255 St = ARM_AM::rrx; 5256 else 5257 return Error(Loc, "illegal shift operator"); 5258 Parser.Lex(); // Eat shift type token. 5259 5260 // rrx stands alone. 5261 Amount = 0; 5262 if (St != ARM_AM::rrx) { 5263 Loc = Parser.getTok().getLoc(); 5264 // A '#' and a shift amount. 5265 const AsmToken &HashTok = Parser.getTok(); 5266 if (HashTok.isNot(AsmToken::Hash) && 5267 HashTok.isNot(AsmToken::Dollar)) 5268 return Error(HashTok.getLoc(), "'#' expected"); 5269 Parser.Lex(); // Eat hash token. 5270 5271 const MCExpr *Expr; 5272 if (getParser().parseExpression(Expr)) 5273 return true; 5274 // Range check the immediate. 5275 // lsl, ror: 0 <= imm <= 31 5276 // lsr, asr: 0 <= imm <= 32 5277 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5278 if (!CE) 5279 return Error(Loc, "shift amount must be an immediate"); 5280 int64_t Imm = CE->getValue(); 5281 if (Imm < 0 || 5282 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5283 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5284 return Error(Loc, "immediate shift value out of range"); 5285 // If <ShiftTy> #0, turn it into a no_shift. 5286 if (Imm == 0) 5287 St = ARM_AM::lsl; 5288 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5289 if (Imm == 32) 5290 Imm = 0; 5291 Amount = Imm; 5292 } 5293 5294 return false; 5295 } 5296 5297 /// parseFPImm - A floating point immediate expression operand. 5298 OperandMatchResultTy 5299 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5300 MCAsmParser &Parser = getParser(); 5301 // Anything that can accept a floating point constant as an operand 5302 // needs to go through here, as the regular parseExpression is 5303 // integer only. 5304 // 5305 // This routine still creates a generic Immediate operand, containing 5306 // a bitcast of the 64-bit floating point value. The various operands 5307 // that accept floats can check whether the value is valid for them 5308 // via the standard is*() predicates. 5309 5310 SMLoc S = Parser.getTok().getLoc(); 5311 5312 if (Parser.getTok().isNot(AsmToken::Hash) && 5313 Parser.getTok().isNot(AsmToken::Dollar)) 5314 return MatchOperand_NoMatch; 5315 5316 // Disambiguate the VMOV forms that can accept an FP immediate. 5317 // vmov.f32 <sreg>, #imm 5318 // vmov.f64 <dreg>, #imm 5319 // vmov.f32 <dreg>, #imm @ vector f32x2 5320 // vmov.f32 <qreg>, #imm @ vector f32x4 5321 // 5322 // There are also the NEON VMOV instructions which expect an 5323 // integer constant. Make sure we don't try to parse an FPImm 5324 // for these: 5325 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5326 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5327 bool isVmovf = TyOp.isToken() && 5328 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5329 TyOp.getToken() == ".f16"); 5330 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5331 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5332 Mnemonic.getToken() == "fconsts"); 5333 if (!(isVmovf || isFconst)) 5334 return MatchOperand_NoMatch; 5335 5336 Parser.Lex(); // Eat '#' or '$'. 5337 5338 // Handle negation, as that still comes through as a separate token. 5339 bool isNegative = false; 5340 if (Parser.getTok().is(AsmToken::Minus)) { 5341 isNegative = true; 5342 Parser.Lex(); 5343 } 5344 const AsmToken &Tok = Parser.getTok(); 5345 SMLoc Loc = Tok.getLoc(); 5346 if (Tok.is(AsmToken::Real) && isVmovf) { 5347 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5348 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5349 // If we had a '-' in front, toggle the sign bit. 5350 IntVal ^= (uint64_t)isNegative << 31; 5351 Parser.Lex(); // Eat the token. 5352 Operands.push_back(ARMOperand::CreateImm( 5353 MCConstantExpr::create(IntVal, getContext()), 5354 S, Parser.getTok().getLoc())); 5355 return MatchOperand_Success; 5356 } 5357 // Also handle plain integers. Instructions which allow floating point 5358 // immediates also allow a raw encoded 8-bit value. 5359 if (Tok.is(AsmToken::Integer) && isFconst) { 5360 int64_t Val = Tok.getIntVal(); 5361 Parser.Lex(); // Eat the token. 5362 if (Val > 255 || Val < 0) { 5363 Error(Loc, "encoded floating point value out of range"); 5364 return MatchOperand_ParseFail; 5365 } 5366 float RealVal = ARM_AM::getFPImmFloat(Val); 5367 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5368 5369 Operands.push_back(ARMOperand::CreateImm( 5370 MCConstantExpr::create(Val, getContext()), S, 5371 Parser.getTok().getLoc())); 5372 return MatchOperand_Success; 5373 } 5374 5375 Error(Loc, "invalid floating point immediate"); 5376 return MatchOperand_ParseFail; 5377 } 5378 5379 /// Parse a arm instruction operand. For now this parses the operand regardless 5380 /// of the mnemonic. 5381 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5382 MCAsmParser &Parser = getParser(); 5383 SMLoc S, E; 5384 5385 // Check if the current operand has a custom associated parser, if so, try to 5386 // custom parse the operand, or fallback to the general approach. 5387 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5388 if (ResTy == MatchOperand_Success) 5389 return false; 5390 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5391 // there was a match, but an error occurred, in which case, just return that 5392 // the operand parsing failed. 5393 if (ResTy == MatchOperand_ParseFail) 5394 return true; 5395 5396 switch (getLexer().getKind()) { 5397 default: 5398 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5399 return true; 5400 case AsmToken::Identifier: { 5401 // If we've seen a branch mnemonic, the next operand must be a label. This 5402 // is true even if the label is a register name. So "br r1" means branch to 5403 // label "r1". 5404 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5405 if (!ExpectLabel) { 5406 if (!tryParseRegisterWithWriteBack(Operands)) 5407 return false; 5408 int Res = tryParseShiftRegister(Operands); 5409 if (Res == 0) // success 5410 return false; 5411 else if (Res == -1) // irrecoverable error 5412 return true; 5413 // If this is VMRS, check for the apsr_nzcv operand. 5414 if (Mnemonic == "vmrs" && 5415 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5416 S = Parser.getTok().getLoc(); 5417 Parser.Lex(); 5418 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5419 return false; 5420 } 5421 } 5422 5423 // Fall though for the Identifier case that is not a register or a 5424 // special name. 5425 LLVM_FALLTHROUGH; 5426 } 5427 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5428 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5429 case AsmToken::String: // quoted label names. 5430 case AsmToken::Dot: { // . as a branch target 5431 // This was not a register so parse other operands that start with an 5432 // identifier (like labels) as expressions and create them as immediates. 5433 const MCExpr *IdVal; 5434 S = Parser.getTok().getLoc(); 5435 if (getParser().parseExpression(IdVal)) 5436 return true; 5437 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5438 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5439 return false; 5440 } 5441 case AsmToken::LBrac: 5442 return parseMemory(Operands); 5443 case AsmToken::LCurly: 5444 return parseRegisterList(Operands); 5445 case AsmToken::Dollar: 5446 case AsmToken::Hash: 5447 // #42 -> immediate. 5448 S = Parser.getTok().getLoc(); 5449 Parser.Lex(); 5450 5451 if (Parser.getTok().isNot(AsmToken::Colon)) { 5452 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5453 const MCExpr *ImmVal; 5454 if (getParser().parseExpression(ImmVal)) 5455 return true; 5456 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5457 if (CE) { 5458 int32_t Val = CE->getValue(); 5459 if (isNegative && Val == 0) 5460 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5461 getContext()); 5462 } 5463 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5464 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5465 5466 // There can be a trailing '!' on operands that we want as a separate 5467 // '!' Token operand. Handle that here. For example, the compatibility 5468 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5469 if (Parser.getTok().is(AsmToken::Exclaim)) { 5470 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5471 Parser.getTok().getLoc())); 5472 Parser.Lex(); // Eat exclaim token 5473 } 5474 return false; 5475 } 5476 // w/ a ':' after the '#', it's just like a plain ':'. 5477 LLVM_FALLTHROUGH; 5478 5479 case AsmToken::Colon: { 5480 S = Parser.getTok().getLoc(); 5481 // ":lower16:" and ":upper16:" expression prefixes 5482 // FIXME: Check it's an expression prefix, 5483 // e.g. (FOO - :lower16:BAR) isn't legal. 5484 ARMMCExpr::VariantKind RefKind; 5485 if (parsePrefix(RefKind)) 5486 return true; 5487 5488 const MCExpr *SubExprVal; 5489 if (getParser().parseExpression(SubExprVal)) 5490 return true; 5491 5492 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5493 getContext()); 5494 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5495 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5496 return false; 5497 } 5498 case AsmToken::Equal: { 5499 S = Parser.getTok().getLoc(); 5500 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5501 return Error(S, "unexpected token in operand"); 5502 Parser.Lex(); // Eat '=' 5503 const MCExpr *SubExprVal; 5504 if (getParser().parseExpression(SubExprVal)) 5505 return true; 5506 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5507 5508 // execute-only: we assume that assembly programmers know what they are 5509 // doing and allow literal pool creation here 5510 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5511 return false; 5512 } 5513 } 5514 } 5515 5516 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5517 // :lower16: and :upper16:. 5518 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5519 MCAsmParser &Parser = getParser(); 5520 RefKind = ARMMCExpr::VK_ARM_None; 5521 5522 // consume an optional '#' (GNU compatibility) 5523 if (getLexer().is(AsmToken::Hash)) 5524 Parser.Lex(); 5525 5526 // :lower16: and :upper16: modifiers 5527 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5528 Parser.Lex(); // Eat ':' 5529 5530 if (getLexer().isNot(AsmToken::Identifier)) { 5531 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5532 return true; 5533 } 5534 5535 enum { 5536 COFF = (1 << MCObjectFileInfo::IsCOFF), 5537 ELF = (1 << MCObjectFileInfo::IsELF), 5538 MACHO = (1 << MCObjectFileInfo::IsMachO), 5539 WASM = (1 << MCObjectFileInfo::IsWasm), 5540 }; 5541 static const struct PrefixEntry { 5542 const char *Spelling; 5543 ARMMCExpr::VariantKind VariantKind; 5544 uint8_t SupportedFormats; 5545 } PrefixEntries[] = { 5546 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5547 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5548 }; 5549 5550 StringRef IDVal = Parser.getTok().getIdentifier(); 5551 5552 const auto &Prefix = 5553 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5554 [&IDVal](const PrefixEntry &PE) { 5555 return PE.Spelling == IDVal; 5556 }); 5557 if (Prefix == std::end(PrefixEntries)) { 5558 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5559 return true; 5560 } 5561 5562 uint8_t CurrentFormat; 5563 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5564 case MCObjectFileInfo::IsMachO: 5565 CurrentFormat = MACHO; 5566 break; 5567 case MCObjectFileInfo::IsELF: 5568 CurrentFormat = ELF; 5569 break; 5570 case MCObjectFileInfo::IsCOFF: 5571 CurrentFormat = COFF; 5572 break; 5573 case MCObjectFileInfo::IsWasm: 5574 CurrentFormat = WASM; 5575 break; 5576 } 5577 5578 if (~Prefix->SupportedFormats & CurrentFormat) { 5579 Error(Parser.getTok().getLoc(), 5580 "cannot represent relocation in the current file format"); 5581 return true; 5582 } 5583 5584 RefKind = Prefix->VariantKind; 5585 Parser.Lex(); 5586 5587 if (getLexer().isNot(AsmToken::Colon)) { 5588 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5589 return true; 5590 } 5591 Parser.Lex(); // Eat the last ':' 5592 5593 return false; 5594 } 5595 5596 /// Given a mnemonic, split out possible predication code and carry 5597 /// setting letters to form a canonical mnemonic and flags. 5598 // 5599 // FIXME: Would be nice to autogen this. 5600 // FIXME: This is a bit of a maze of special cases. 5601 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5602 unsigned &PredicationCode, 5603 bool &CarrySetting, 5604 unsigned &ProcessorIMod, 5605 StringRef &ITMask) { 5606 PredicationCode = ARMCC::AL; 5607 CarrySetting = false; 5608 ProcessorIMod = 0; 5609 5610 // Ignore some mnemonics we know aren't predicated forms. 5611 // 5612 // FIXME: Would be nice to autogen this. 5613 if ((Mnemonic == "movs" && isThumb()) || 5614 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5615 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5616 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5617 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5618 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5619 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5620 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5621 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5622 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5623 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5624 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5625 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5626 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5627 Mnemonic == "bxns" || Mnemonic == "blxns" || 5628 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5629 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5630 Mnemonic == "vfmal" || Mnemonic == "vfmsl") 5631 return Mnemonic; 5632 5633 // First, split out any predication code. Ignore mnemonics we know aren't 5634 // predicated but do have a carry-set and so weren't caught above. 5635 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5636 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5637 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5638 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5639 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5640 if (CC != ~0U) { 5641 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5642 PredicationCode = CC; 5643 } 5644 } 5645 5646 // Next, determine if we have a carry setting bit. We explicitly ignore all 5647 // the instructions we know end in 's'. 5648 if (Mnemonic.endswith("s") && 5649 !(Mnemonic == "cps" || Mnemonic == "mls" || 5650 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5651 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5652 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5653 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5654 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5655 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5656 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5657 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5658 Mnemonic == "bxns" || Mnemonic == "blxns" || 5659 (Mnemonic == "movs" && isThumb()))) { 5660 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5661 CarrySetting = true; 5662 } 5663 5664 // The "cps" instruction can have a interrupt mode operand which is glued into 5665 // the mnemonic. Check if this is the case, split it and parse the imod op 5666 if (Mnemonic.startswith("cps")) { 5667 // Split out any imod code. 5668 unsigned IMod = 5669 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5670 .Case("ie", ARM_PROC::IE) 5671 .Case("id", ARM_PROC::ID) 5672 .Default(~0U); 5673 if (IMod != ~0U) { 5674 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5675 ProcessorIMod = IMod; 5676 } 5677 } 5678 5679 // The "it" instruction has the condition mask on the end of the mnemonic. 5680 if (Mnemonic.startswith("it")) { 5681 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5682 Mnemonic = Mnemonic.slice(0, 2); 5683 } 5684 5685 return Mnemonic; 5686 } 5687 5688 /// Given a canonical mnemonic, determine if the instruction ever allows 5689 /// inclusion of carry set or predication code operands. 5690 // 5691 // FIXME: It would be nice to autogen this. 5692 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5693 bool &CanAcceptCarrySet, 5694 bool &CanAcceptPredicationCode) { 5695 CanAcceptCarrySet = 5696 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5697 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5698 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5699 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5700 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5701 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5702 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5703 (!isThumb() && 5704 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5705 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5706 5707 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5708 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5709 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5710 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5711 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5712 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5713 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5714 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5715 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5716 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5717 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5718 Mnemonic == "vmovx" || Mnemonic == "vins" || 5719 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5720 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5721 Mnemonic == "vfmal" || Mnemonic == "vfmsl") { 5722 // These mnemonics are never predicable 5723 CanAcceptPredicationCode = false; 5724 } else if (!isThumb()) { 5725 // Some instructions are only predicable in Thumb mode 5726 CanAcceptPredicationCode = 5727 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5728 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5729 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 5730 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 5731 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5732 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5733 Mnemonic != "tsb" && 5734 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5735 } else if (isThumbOne()) { 5736 if (hasV6MOps()) 5737 CanAcceptPredicationCode = Mnemonic != "movs"; 5738 else 5739 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5740 } else 5741 CanAcceptPredicationCode = true; 5742 } 5743 5744 // Some Thumb instructions have two operand forms that are not 5745 // available as three operand, convert to two operand form if possible. 5746 // 5747 // FIXME: We would really like to be able to tablegen'erate this. 5748 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5749 bool CarrySetting, 5750 OperandVector &Operands) { 5751 if (Operands.size() != 6) 5752 return; 5753 5754 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5755 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5756 if (!Op3.isReg() || !Op4.isReg()) 5757 return; 5758 5759 auto Op3Reg = Op3.getReg(); 5760 auto Op4Reg = Op4.getReg(); 5761 5762 // For most Thumb2 cases we just generate the 3 operand form and reduce 5763 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5764 // won't accept SP or PC so we do the transformation here taking care 5765 // with immediate range in the 'add sp, sp #imm' case. 5766 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5767 if (isThumbTwo()) { 5768 if (Mnemonic != "add") 5769 return; 5770 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5771 (Op5.isReg() && Op5.getReg() == ARM::PC); 5772 if (!TryTransform) { 5773 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5774 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5775 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5776 Op5.isImm() && !Op5.isImm0_508s4()); 5777 } 5778 if (!TryTransform) 5779 return; 5780 } else if (!isThumbOne()) 5781 return; 5782 5783 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5784 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5785 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5786 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5787 return; 5788 5789 // If first 2 operands of a 3 operand instruction are the same 5790 // then transform to 2 operand version of the same instruction 5791 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5792 bool Transform = Op3Reg == Op4Reg; 5793 5794 // For communtative operations, we might be able to transform if we swap 5795 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5796 // as tADDrsp. 5797 const ARMOperand *LastOp = &Op5; 5798 bool Swap = false; 5799 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5800 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5801 Mnemonic == "and" || Mnemonic == "eor" || 5802 Mnemonic == "adc" || Mnemonic == "orr")) { 5803 Swap = true; 5804 LastOp = &Op4; 5805 Transform = true; 5806 } 5807 5808 // If both registers are the same then remove one of them from 5809 // the operand list, with certain exceptions. 5810 if (Transform) { 5811 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5812 // 2 operand forms don't exist. 5813 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5814 LastOp->isReg()) 5815 Transform = false; 5816 5817 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5818 // 3-bits because the ARMARM says not to. 5819 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5820 Transform = false; 5821 } 5822 5823 if (Transform) { 5824 if (Swap) 5825 std::swap(Op4, Op5); 5826 Operands.erase(Operands.begin() + 3); 5827 } 5828 } 5829 5830 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5831 OperandVector &Operands) { 5832 // FIXME: This is all horribly hacky. We really need a better way to deal 5833 // with optional operands like this in the matcher table. 5834 5835 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5836 // another does not. Specifically, the MOVW instruction does not. So we 5837 // special case it here and remove the defaulted (non-setting) cc_out 5838 // operand if that's the instruction we're trying to match. 5839 // 5840 // We do this as post-processing of the explicit operands rather than just 5841 // conditionally adding the cc_out in the first place because we need 5842 // to check the type of the parsed immediate operand. 5843 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5844 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5845 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5846 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5847 return true; 5848 5849 // Register-register 'add' for thumb does not have a cc_out operand 5850 // when there are only two register operands. 5851 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5852 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5853 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5854 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5855 return true; 5856 // Register-register 'add' for thumb does not have a cc_out operand 5857 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5858 // have to check the immediate range here since Thumb2 has a variant 5859 // that can handle a different range and has a cc_out operand. 5860 if (((isThumb() && Mnemonic == "add") || 5861 (isThumbTwo() && Mnemonic == "sub")) && 5862 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5863 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5864 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5865 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5866 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5867 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5868 return true; 5869 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5870 // imm0_4095 variant. That's the least-preferred variant when 5871 // selecting via the generic "add" mnemonic, so to know that we 5872 // should remove the cc_out operand, we have to explicitly check that 5873 // it's not one of the other variants. Ugh. 5874 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5875 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5876 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5877 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5878 // Nest conditions rather than one big 'if' statement for readability. 5879 // 5880 // If both registers are low, we're in an IT block, and the immediate is 5881 // in range, we should use encoding T1 instead, which has a cc_out. 5882 if (inITBlock() && 5883 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5884 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5885 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5886 return false; 5887 // Check against T3. If the second register is the PC, this is an 5888 // alternate form of ADR, which uses encoding T4, so check for that too. 5889 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5890 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5891 return false; 5892 5893 // Otherwise, we use encoding T4, which does not have a cc_out 5894 // operand. 5895 return true; 5896 } 5897 5898 // The thumb2 multiply instruction doesn't have a CCOut register, so 5899 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5900 // use the 16-bit encoding or not. 5901 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5902 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5903 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5904 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5905 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5906 // If the registers aren't low regs, the destination reg isn't the 5907 // same as one of the source regs, or the cc_out operand is zero 5908 // outside of an IT block, we have to use the 32-bit encoding, so 5909 // remove the cc_out operand. 5910 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5911 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5912 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5913 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5914 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5915 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5916 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5917 return true; 5918 5919 // Also check the 'mul' syntax variant that doesn't specify an explicit 5920 // destination register. 5921 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5922 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5923 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5924 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5925 // If the registers aren't low regs or the cc_out operand is zero 5926 // outside of an IT block, we have to use the 32-bit encoding, so 5927 // remove the cc_out operand. 5928 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5929 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5930 !inITBlock())) 5931 return true; 5932 5933 // Register-register 'add/sub' for thumb does not have a cc_out operand 5934 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5935 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5936 // right, this will result in better diagnostics (which operand is off) 5937 // anyway. 5938 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5939 (Operands.size() == 5 || Operands.size() == 6) && 5940 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5941 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5942 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5943 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5944 (Operands.size() == 6 && 5945 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5946 return true; 5947 5948 return false; 5949 } 5950 5951 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5952 OperandVector &Operands) { 5953 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 5954 unsigned RegIdx = 3; 5955 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && 5956 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5957 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5958 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5959 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5960 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5961 RegIdx = 4; 5962 5963 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5964 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5965 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5966 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5967 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5968 return true; 5969 } 5970 return false; 5971 } 5972 5973 static bool isDataTypeToken(StringRef Tok) { 5974 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5975 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5976 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5977 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5978 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5979 Tok == ".f" || Tok == ".d"; 5980 } 5981 5982 // FIXME: This bit should probably be handled via an explicit match class 5983 // in the .td files that matches the suffix instead of having it be 5984 // a literal string token the way it is now. 5985 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5986 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5987 } 5988 5989 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5990 unsigned VariantID); 5991 5992 // The GNU assembler has aliases of ldrd and strd with the second register 5993 // omitted. We don't have a way to do that in tablegen, so fix it up here. 5994 // 5995 // We have to be careful to not emit an invalid Rt2 here, because the rest of 5996 // the assmebly parser could then generate confusing diagnostics refering to 5997 // it. If we do find anything that prevents us from doing the transformation we 5998 // bail out, and let the assembly parser report an error on the instruction as 5999 // it is written. 6000 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6001 OperandVector &Operands) { 6002 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6003 return; 6004 if (Operands.size() < 4) 6005 return; 6006 6007 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6008 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6009 6010 if (!Op2.isReg()) 6011 return; 6012 if (!Op3.isMem()) 6013 return; 6014 6015 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6016 if (!GPR.contains(Op2.getReg())) 6017 return; 6018 6019 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6020 if (!isThumb() && (RtEncoding & 1)) { 6021 // In ARM mode, the registers must be from an aligned pair, this 6022 // restriction does not apply in Thumb mode. 6023 return; 6024 } 6025 if (Op2.getReg() == ARM::PC) 6026 return; 6027 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6028 if (!PairedReg || PairedReg == ARM::PC || 6029 (PairedReg == ARM::SP && !hasV8Ops())) 6030 return; 6031 6032 Operands.insert( 6033 Operands.begin() + 3, 6034 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6035 } 6036 6037 /// Parse an arm instruction mnemonic followed by its operands. 6038 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6039 SMLoc NameLoc, OperandVector &Operands) { 6040 MCAsmParser &Parser = getParser(); 6041 6042 // Apply mnemonic aliases before doing anything else, as the destination 6043 // mnemonic may include suffices and we want to handle them normally. 6044 // The generic tblgen'erated code does this later, at the start of 6045 // MatchInstructionImpl(), but that's too late for aliases that include 6046 // any sort of suffix. 6047 uint64_t AvailableFeatures = getAvailableFeatures(); 6048 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6049 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6050 6051 // First check for the ARM-specific .req directive. 6052 if (Parser.getTok().is(AsmToken::Identifier) && 6053 Parser.getTok().getIdentifier() == ".req") { 6054 parseDirectiveReq(Name, NameLoc); 6055 // We always return 'error' for this, as we're done with this 6056 // statement and don't need to match the 'instruction." 6057 return true; 6058 } 6059 6060 // Create the leading tokens for the mnemonic, split by '.' characters. 6061 size_t Start = 0, Next = Name.find('.'); 6062 StringRef Mnemonic = Name.slice(Start, Next); 6063 6064 // Split out the predication code and carry setting flag from the mnemonic. 6065 unsigned PredicationCode; 6066 unsigned ProcessorIMod; 6067 bool CarrySetting; 6068 StringRef ITMask; 6069 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6070 ProcessorIMod, ITMask); 6071 6072 // In Thumb1, only the branch (B) instruction can be predicated. 6073 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6074 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6075 } 6076 6077 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6078 6079 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6080 // is the mask as it will be for the IT encoding if the conditional 6081 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6082 // where the conditional bit0 is zero, the instruction post-processing 6083 // will adjust the mask accordingly. 6084 if (Mnemonic == "it") { 6085 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6086 if (ITMask.size() > 3) { 6087 return Error(Loc, "too many conditions on IT instruction"); 6088 } 6089 unsigned Mask = 8; 6090 for (unsigned i = ITMask.size(); i != 0; --i) { 6091 char pos = ITMask[i - 1]; 6092 if (pos != 't' && pos != 'e') { 6093 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6094 } 6095 Mask >>= 1; 6096 if (ITMask[i - 1] == 't') 6097 Mask |= 8; 6098 } 6099 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6100 } 6101 6102 // FIXME: This is all a pretty gross hack. We should automatically handle 6103 // optional operands like this via tblgen. 6104 6105 // Next, add the CCOut and ConditionCode operands, if needed. 6106 // 6107 // For mnemonics which can ever incorporate a carry setting bit or predication 6108 // code, our matching model involves us always generating CCOut and 6109 // ConditionCode operands to match the mnemonic "as written" and then we let 6110 // the matcher deal with finding the right instruction or generating an 6111 // appropriate error. 6112 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6113 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6114 6115 // If we had a carry-set on an instruction that can't do that, issue an 6116 // error. 6117 if (!CanAcceptCarrySet && CarrySetting) { 6118 return Error(NameLoc, "instruction '" + Mnemonic + 6119 "' can not set flags, but 's' suffix specified"); 6120 } 6121 // If we had a predication code on an instruction that can't do that, issue an 6122 // error. 6123 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6124 return Error(NameLoc, "instruction '" + Mnemonic + 6125 "' is not predicable, but condition code specified"); 6126 } 6127 6128 // Add the carry setting operand, if necessary. 6129 if (CanAcceptCarrySet) { 6130 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6131 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6132 Loc)); 6133 } 6134 6135 // Add the predication code operand, if necessary. 6136 if (CanAcceptPredicationCode) { 6137 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6138 CarrySetting); 6139 Operands.push_back(ARMOperand::CreateCondCode( 6140 ARMCC::CondCodes(PredicationCode), Loc)); 6141 } 6142 6143 // Add the processor imod operand, if necessary. 6144 if (ProcessorIMod) { 6145 Operands.push_back(ARMOperand::CreateImm( 6146 MCConstantExpr::create(ProcessorIMod, getContext()), 6147 NameLoc, NameLoc)); 6148 } else if (Mnemonic == "cps" && isMClass()) { 6149 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6150 } 6151 6152 // Add the remaining tokens in the mnemonic. 6153 while (Next != StringRef::npos) { 6154 Start = Next; 6155 Next = Name.find('.', Start + 1); 6156 StringRef ExtraToken = Name.slice(Start, Next); 6157 6158 // Some NEON instructions have an optional datatype suffix that is 6159 // completely ignored. Check for that. 6160 if (isDataTypeToken(ExtraToken) && 6161 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6162 continue; 6163 6164 // For for ARM mode generate an error if the .n qualifier is used. 6165 if (ExtraToken == ".n" && !isThumb()) { 6166 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6167 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6168 "arm mode"); 6169 } 6170 6171 // The .n qualifier is always discarded as that is what the tables 6172 // and matcher expect. In ARM mode the .w qualifier has no effect, 6173 // so discard it to avoid errors that can be caused by the matcher. 6174 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6175 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6176 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6177 } 6178 } 6179 6180 // Read the remaining operands. 6181 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6182 // Read the first operand. 6183 if (parseOperand(Operands, Mnemonic)) { 6184 return true; 6185 } 6186 6187 while (parseOptionalToken(AsmToken::Comma)) { 6188 // Parse and remember the operand. 6189 if (parseOperand(Operands, Mnemonic)) { 6190 return true; 6191 } 6192 } 6193 } 6194 6195 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6196 return true; 6197 6198 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6199 6200 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6201 // do and don't have a cc_out optional-def operand. With some spot-checks 6202 // of the operand list, we can figure out which variant we're trying to 6203 // parse and adjust accordingly before actually matching. We shouldn't ever 6204 // try to remove a cc_out operand that was explicitly set on the 6205 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6206 // table driven matcher doesn't fit well with the ARM instruction set. 6207 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6208 Operands.erase(Operands.begin() + 1); 6209 6210 // Some instructions have the same mnemonic, but don't always 6211 // have a predicate. Distinguish them here and delete the 6212 // predicate if needed. 6213 if (PredicationCode == ARMCC::AL && 6214 shouldOmitPredicateOperand(Mnemonic, Operands)) 6215 Operands.erase(Operands.begin() + 1); 6216 6217 // ARM mode 'blx' need special handling, as the register operand version 6218 // is predicable, but the label operand version is not. So, we can't rely 6219 // on the Mnemonic based checking to correctly figure out when to put 6220 // a k_CondCode operand in the list. If we're trying to match the label 6221 // version, remove the k_CondCode operand here. 6222 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6223 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6224 Operands.erase(Operands.begin() + 1); 6225 6226 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6227 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6228 // a single GPRPair reg operand is used in the .td file to replace the two 6229 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6230 // expressed as a GPRPair, so we have to manually merge them. 6231 // FIXME: We would really like to be able to tablegen'erate this. 6232 if (!isThumb() && Operands.size() > 4 && 6233 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6234 Mnemonic == "stlexd")) { 6235 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6236 unsigned Idx = isLoad ? 2 : 3; 6237 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6238 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6239 6240 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6241 // Adjust only if Op1 and Op2 are GPRs. 6242 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6243 MRC.contains(Op2.getReg())) { 6244 unsigned Reg1 = Op1.getReg(); 6245 unsigned Reg2 = Op2.getReg(); 6246 unsigned Rt = MRI->getEncodingValue(Reg1); 6247 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6248 6249 // Rt2 must be Rt + 1 and Rt must be even. 6250 if (Rt + 1 != Rt2 || (Rt & 1)) { 6251 return Error(Op2.getStartLoc(), 6252 isLoad ? "destination operands must be sequential" 6253 : "source operands must be sequential"); 6254 } 6255 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6256 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6257 Operands[Idx] = 6258 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6259 Operands.erase(Operands.begin() + Idx + 1); 6260 } 6261 } 6262 6263 // GNU Assembler extension (compatibility). 6264 fixupGNULDRDAlias(Mnemonic, Operands); 6265 6266 // FIXME: As said above, this is all a pretty gross hack. This instruction 6267 // does not fit with other "subs" and tblgen. 6268 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6269 // so the Mnemonic is the original name "subs" and delete the predicate 6270 // operand so it will match the table entry. 6271 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6272 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6273 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6274 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6275 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6276 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6277 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6278 Operands.erase(Operands.begin() + 1); 6279 } 6280 return false; 6281 } 6282 6283 // Validate context-sensitive operand constraints. 6284 6285 // return 'true' if register list contains non-low GPR registers, 6286 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6287 // 'containsReg' to true. 6288 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6289 unsigned Reg, unsigned HiReg, 6290 bool &containsReg) { 6291 containsReg = false; 6292 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6293 unsigned OpReg = Inst.getOperand(i).getReg(); 6294 if (OpReg == Reg) 6295 containsReg = true; 6296 // Anything other than a low register isn't legal here. 6297 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6298 return true; 6299 } 6300 return false; 6301 } 6302 6303 // Check if the specified regisgter is in the register list of the inst, 6304 // starting at the indicated operand number. 6305 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6306 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6307 unsigned OpReg = Inst.getOperand(i).getReg(); 6308 if (OpReg == Reg) 6309 return true; 6310 } 6311 return false; 6312 } 6313 6314 // Return true if instruction has the interesting property of being 6315 // allowed in IT blocks, but not being predicable. 6316 static bool instIsBreakpoint(const MCInst &Inst) { 6317 return Inst.getOpcode() == ARM::tBKPT || 6318 Inst.getOpcode() == ARM::BKPT || 6319 Inst.getOpcode() == ARM::tHLT || 6320 Inst.getOpcode() == ARM::HLT; 6321 } 6322 6323 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6324 const OperandVector &Operands, 6325 unsigned ListNo, bool IsARPop) { 6326 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6327 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6328 6329 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6330 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6331 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6332 6333 if (!IsARPop && ListContainsSP) 6334 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6335 "SP may not be in the register list"); 6336 else if (ListContainsPC && ListContainsLR) 6337 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6338 "PC and LR may not be in the register list simultaneously"); 6339 return false; 6340 } 6341 6342 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6343 const OperandVector &Operands, 6344 unsigned ListNo) { 6345 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6346 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6347 6348 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6349 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6350 6351 if (ListContainsSP && ListContainsPC) 6352 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6353 "SP and PC may not be in the register list"); 6354 else if (ListContainsSP) 6355 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6356 "SP may not be in the register list"); 6357 else if (ListContainsPC) 6358 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6359 "PC may not be in the register list"); 6360 return false; 6361 } 6362 6363 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 6364 const OperandVector &Operands, 6365 bool Load, bool ARMMode, bool Writeback) { 6366 unsigned RtIndex = Load || !Writeback ? 0 : 1; 6367 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 6368 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 6369 6370 if (ARMMode) { 6371 // Rt can't be R14. 6372 if (Rt == 14) 6373 return Error(Operands[3]->getStartLoc(), 6374 "Rt can't be R14"); 6375 6376 // Rt must be even-numbered. 6377 if ((Rt & 1) == 1) 6378 return Error(Operands[3]->getStartLoc(), 6379 "Rt must be even-numbered"); 6380 6381 // Rt2 must be Rt + 1. 6382 if (Rt2 != Rt + 1) { 6383 if (Load) 6384 return Error(Operands[3]->getStartLoc(), 6385 "destination operands must be sequential"); 6386 else 6387 return Error(Operands[3]->getStartLoc(), 6388 "source operands must be sequential"); 6389 } 6390 6391 // FIXME: Diagnose m == 15 6392 // FIXME: Diagnose ldrd with m == t || m == t2. 6393 } 6394 6395 if (!ARMMode && Load) { 6396 if (Rt2 == Rt) 6397 return Error(Operands[3]->getStartLoc(), 6398 "destination operands can't be identical"); 6399 } 6400 6401 if (Writeback) { 6402 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6403 6404 if (Rn == Rt || Rn == Rt2) { 6405 if (Load) 6406 return Error(Operands[3]->getStartLoc(), 6407 "base register needs to be different from destination " 6408 "registers"); 6409 else 6410 return Error(Operands[3]->getStartLoc(), 6411 "source register and base register can't be identical"); 6412 } 6413 6414 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 6415 // (Except the immediate form of ldrd?) 6416 } 6417 6418 return false; 6419 } 6420 6421 6422 // FIXME: We would really like to be able to tablegen'erate this. 6423 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6424 const OperandVector &Operands) { 6425 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6426 SMLoc Loc = Operands[0]->getStartLoc(); 6427 6428 // Check the IT block state first. 6429 // NOTE: BKPT and HLT instructions have the interesting property of being 6430 // allowed in IT blocks, but not being predicable. They just always execute. 6431 if (inITBlock() && !instIsBreakpoint(Inst)) { 6432 // The instruction must be predicable. 6433 if (!MCID.isPredicable()) 6434 return Error(Loc, "instructions in IT block must be predicable"); 6435 ARMCC::CondCodes Cond = ARMCC::CondCodes( 6436 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 6437 if (Cond != currentITCond()) { 6438 // Find the condition code Operand to get its SMLoc information. 6439 SMLoc CondLoc; 6440 for (unsigned I = 1; I < Operands.size(); ++I) 6441 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6442 CondLoc = Operands[I]->getStartLoc(); 6443 return Error(CondLoc, "incorrect condition in IT block; got '" + 6444 StringRef(ARMCondCodeToString(Cond)) + 6445 "', but expected '" + 6446 ARMCondCodeToString(currentITCond()) + "'"); 6447 } 6448 // Check for non-'al' condition codes outside of the IT block. 6449 } else if (isThumbTwo() && MCID.isPredicable() && 6450 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6451 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6452 Inst.getOpcode() != ARM::t2Bcc) { 6453 return Error(Loc, "predicated instructions must be in IT block"); 6454 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6455 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6456 ARMCC::AL) { 6457 return Warning(Loc, "predicated instructions should be in IT block"); 6458 } 6459 6460 // PC-setting instructions in an IT block, but not the last instruction of 6461 // the block, are UNPREDICTABLE. 6462 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6463 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6464 } 6465 6466 const unsigned Opcode = Inst.getOpcode(); 6467 switch (Opcode) { 6468 case ARM::t2IT: { 6469 // Encoding is unpredictable if it ever results in a notional 'NV' 6470 // predicate. Since we don't parse 'NV' directly this means an 'AL' 6471 // predicate with an "else" mask bit. 6472 unsigned Cond = Inst.getOperand(0).getImm(); 6473 unsigned Mask = Inst.getOperand(1).getImm(); 6474 6475 // Mask hasn't been modified to the IT instruction encoding yet so 6476 // conditions only allowing a 't' are a block of 1s starting at bit 3 6477 // followed by all 0s. Easiest way is to just list the 4 possibilities. 6478 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 && 6479 Mask != 15) 6480 return Error(Loc, "unpredictable IT predicate sequence"); 6481 break; 6482 } 6483 case ARM::LDRD: 6484 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6485 /*Writeback*/false)) 6486 return true; 6487 break; 6488 case ARM::LDRD_PRE: 6489 case ARM::LDRD_POST: 6490 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6491 /*Writeback*/true)) 6492 return true; 6493 break; 6494 case ARM::t2LDRDi8: 6495 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6496 /*Writeback*/false)) 6497 return true; 6498 break; 6499 case ARM::t2LDRD_PRE: 6500 case ARM::t2LDRD_POST: 6501 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6502 /*Writeback*/true)) 6503 return true; 6504 break; 6505 case ARM::t2BXJ: { 6506 const unsigned RmReg = Inst.getOperand(0).getReg(); 6507 // Rm = SP is no longer unpredictable in v8-A 6508 if (RmReg == ARM::SP && !hasV8Ops()) 6509 return Error(Operands[2]->getStartLoc(), 6510 "r13 (SP) is an unpredictable operand to BXJ"); 6511 return false; 6512 } 6513 case ARM::STRD: 6514 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6515 /*Writeback*/false)) 6516 return true; 6517 break; 6518 case ARM::STRD_PRE: 6519 case ARM::STRD_POST: 6520 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6521 /*Writeback*/true)) 6522 return true; 6523 break; 6524 case ARM::t2STRD_PRE: 6525 case ARM::t2STRD_POST: 6526 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 6527 /*Writeback*/true)) 6528 return true; 6529 break; 6530 case ARM::STR_PRE_IMM: 6531 case ARM::STR_PRE_REG: 6532 case ARM::t2STR_PRE: 6533 case ARM::STR_POST_IMM: 6534 case ARM::STR_POST_REG: 6535 case ARM::t2STR_POST: 6536 case ARM::STRH_PRE: 6537 case ARM::t2STRH_PRE: 6538 case ARM::STRH_POST: 6539 case ARM::t2STRH_POST: 6540 case ARM::STRB_PRE_IMM: 6541 case ARM::STRB_PRE_REG: 6542 case ARM::t2STRB_PRE: 6543 case ARM::STRB_POST_IMM: 6544 case ARM::STRB_POST_REG: 6545 case ARM::t2STRB_POST: { 6546 // Rt must be different from Rn. 6547 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6548 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6549 6550 if (Rt == Rn) 6551 return Error(Operands[3]->getStartLoc(), 6552 "source register and base register can't be identical"); 6553 return false; 6554 } 6555 case ARM::LDR_PRE_IMM: 6556 case ARM::LDR_PRE_REG: 6557 case ARM::t2LDR_PRE: 6558 case ARM::LDR_POST_IMM: 6559 case ARM::LDR_POST_REG: 6560 case ARM::t2LDR_POST: 6561 case ARM::LDRH_PRE: 6562 case ARM::t2LDRH_PRE: 6563 case ARM::LDRH_POST: 6564 case ARM::t2LDRH_POST: 6565 case ARM::LDRSH_PRE: 6566 case ARM::t2LDRSH_PRE: 6567 case ARM::LDRSH_POST: 6568 case ARM::t2LDRSH_POST: 6569 case ARM::LDRB_PRE_IMM: 6570 case ARM::LDRB_PRE_REG: 6571 case ARM::t2LDRB_PRE: 6572 case ARM::LDRB_POST_IMM: 6573 case ARM::LDRB_POST_REG: 6574 case ARM::t2LDRB_POST: 6575 case ARM::LDRSB_PRE: 6576 case ARM::t2LDRSB_PRE: 6577 case ARM::LDRSB_POST: 6578 case ARM::t2LDRSB_POST: { 6579 // Rt must be different from Rn. 6580 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6581 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6582 6583 if (Rt == Rn) 6584 return Error(Operands[3]->getStartLoc(), 6585 "destination register and base register can't be identical"); 6586 return false; 6587 } 6588 case ARM::SBFX: 6589 case ARM::t2SBFX: 6590 case ARM::UBFX: 6591 case ARM::t2UBFX: { 6592 // Width must be in range [1, 32-lsb]. 6593 unsigned LSB = Inst.getOperand(2).getImm(); 6594 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6595 if (Widthm1 >= 32 - LSB) 6596 return Error(Operands[5]->getStartLoc(), 6597 "bitfield width must be in range [1,32-lsb]"); 6598 return false; 6599 } 6600 // Notionally handles ARM::tLDMIA_UPD too. 6601 case ARM::tLDMIA: { 6602 // If we're parsing Thumb2, the .w variant is available and handles 6603 // most cases that are normally illegal for a Thumb1 LDM instruction. 6604 // We'll make the transformation in processInstruction() if necessary. 6605 // 6606 // Thumb LDM instructions are writeback iff the base register is not 6607 // in the register list. 6608 unsigned Rn = Inst.getOperand(0).getReg(); 6609 bool HasWritebackToken = 6610 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6611 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6612 bool ListContainsBase; 6613 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6614 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6615 "registers must be in range r0-r7"); 6616 // If we should have writeback, then there should be a '!' token. 6617 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6618 return Error(Operands[2]->getStartLoc(), 6619 "writeback operator '!' expected"); 6620 // If we should not have writeback, there must not be a '!'. This is 6621 // true even for the 32-bit wide encodings. 6622 if (ListContainsBase && HasWritebackToken) 6623 return Error(Operands[3]->getStartLoc(), 6624 "writeback operator '!' not allowed when base register " 6625 "in register list"); 6626 6627 if (validatetLDMRegList(Inst, Operands, 3)) 6628 return true; 6629 break; 6630 } 6631 case ARM::LDMIA_UPD: 6632 case ARM::LDMDB_UPD: 6633 case ARM::LDMIB_UPD: 6634 case ARM::LDMDA_UPD: 6635 // ARM variants loading and updating the same register are only officially 6636 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6637 if (!hasV7Ops()) 6638 break; 6639 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6640 return Error(Operands.back()->getStartLoc(), 6641 "writeback register not allowed in register list"); 6642 break; 6643 case ARM::t2LDMIA: 6644 case ARM::t2LDMDB: 6645 if (validatetLDMRegList(Inst, Operands, 3)) 6646 return true; 6647 break; 6648 case ARM::t2STMIA: 6649 case ARM::t2STMDB: 6650 if (validatetSTMRegList(Inst, Operands, 3)) 6651 return true; 6652 break; 6653 case ARM::t2LDMIA_UPD: 6654 case ARM::t2LDMDB_UPD: 6655 case ARM::t2STMIA_UPD: 6656 case ARM::t2STMDB_UPD: 6657 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6658 return Error(Operands.back()->getStartLoc(), 6659 "writeback register not allowed in register list"); 6660 6661 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6662 if (validatetLDMRegList(Inst, Operands, 3)) 6663 return true; 6664 } else { 6665 if (validatetSTMRegList(Inst, Operands, 3)) 6666 return true; 6667 } 6668 break; 6669 6670 case ARM::sysLDMIA_UPD: 6671 case ARM::sysLDMDA_UPD: 6672 case ARM::sysLDMDB_UPD: 6673 case ARM::sysLDMIB_UPD: 6674 if (!listContainsReg(Inst, 3, ARM::PC)) 6675 return Error(Operands[4]->getStartLoc(), 6676 "writeback register only allowed on system LDM " 6677 "if PC in register-list"); 6678 break; 6679 case ARM::sysSTMIA_UPD: 6680 case ARM::sysSTMDA_UPD: 6681 case ARM::sysSTMDB_UPD: 6682 case ARM::sysSTMIB_UPD: 6683 return Error(Operands[2]->getStartLoc(), 6684 "system STM cannot have writeback register"); 6685 case ARM::tMUL: 6686 // The second source operand must be the same register as the destination 6687 // operand. 6688 // 6689 // In this case, we must directly check the parsed operands because the 6690 // cvtThumbMultiply() function is written in such a way that it guarantees 6691 // this first statement is always true for the new Inst. Essentially, the 6692 // destination is unconditionally copied into the second source operand 6693 // without checking to see if it matches what we actually parsed. 6694 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6695 ((ARMOperand &)*Operands[5]).getReg()) && 6696 (((ARMOperand &)*Operands[3]).getReg() != 6697 ((ARMOperand &)*Operands[4]).getReg())) { 6698 return Error(Operands[3]->getStartLoc(), 6699 "destination register must match source register"); 6700 } 6701 break; 6702 6703 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6704 // so only issue a diagnostic for thumb1. The instructions will be 6705 // switched to the t2 encodings in processInstruction() if necessary. 6706 case ARM::tPOP: { 6707 bool ListContainsBase; 6708 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6709 !isThumbTwo()) 6710 return Error(Operands[2]->getStartLoc(), 6711 "registers must be in range r0-r7 or pc"); 6712 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6713 return true; 6714 break; 6715 } 6716 case ARM::tPUSH: { 6717 bool ListContainsBase; 6718 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6719 !isThumbTwo()) 6720 return Error(Operands[2]->getStartLoc(), 6721 "registers must be in range r0-r7 or lr"); 6722 if (validatetSTMRegList(Inst, Operands, 2)) 6723 return true; 6724 break; 6725 } 6726 case ARM::tSTMIA_UPD: { 6727 bool ListContainsBase, InvalidLowList; 6728 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6729 0, ListContainsBase); 6730 if (InvalidLowList && !isThumbTwo()) 6731 return Error(Operands[4]->getStartLoc(), 6732 "registers must be in range r0-r7"); 6733 6734 // This would be converted to a 32-bit stm, but that's not valid if the 6735 // writeback register is in the list. 6736 if (InvalidLowList && ListContainsBase) 6737 return Error(Operands[4]->getStartLoc(), 6738 "writeback operator '!' not allowed when base register " 6739 "in register list"); 6740 6741 if (validatetSTMRegList(Inst, Operands, 4)) 6742 return true; 6743 break; 6744 } 6745 case ARM::tADDrSP: 6746 // If the non-SP source operand and the destination operand are not the 6747 // same, we need thumb2 (for the wide encoding), or we have an error. 6748 if (!isThumbTwo() && 6749 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6750 return Error(Operands[4]->getStartLoc(), 6751 "source register must be the same as destination"); 6752 } 6753 break; 6754 6755 // Final range checking for Thumb unconditional branch instructions. 6756 case ARM::tB: 6757 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6758 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6759 break; 6760 case ARM::t2B: { 6761 int op = (Operands[2]->isImm()) ? 2 : 3; 6762 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6763 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6764 break; 6765 } 6766 // Final range checking for Thumb conditional branch instructions. 6767 case ARM::tBcc: 6768 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6769 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6770 break; 6771 case ARM::t2Bcc: { 6772 int Op = (Operands[2]->isImm()) ? 2 : 3; 6773 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6774 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6775 break; 6776 } 6777 case ARM::tCBZ: 6778 case ARM::tCBNZ: { 6779 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6780 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6781 break; 6782 } 6783 case ARM::MOVi16: 6784 case ARM::MOVTi16: 6785 case ARM::t2MOVi16: 6786 case ARM::t2MOVTi16: 6787 { 6788 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6789 // especially when we turn it into a movw and the expression <symbol> does 6790 // not have a :lower16: or :upper16 as part of the expression. We don't 6791 // want the behavior of silently truncating, which can be unexpected and 6792 // lead to bugs that are difficult to find since this is an easy mistake 6793 // to make. 6794 int i = (Operands[3]->isImm()) ? 3 : 4; 6795 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6796 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6797 if (CE) break; 6798 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6799 if (!E) break; 6800 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6801 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6802 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6803 return Error( 6804 Op.getStartLoc(), 6805 "immediate expression for mov requires :lower16: or :upper16"); 6806 break; 6807 } 6808 case ARM::HINT: 6809 case ARM::t2HINT: { 6810 unsigned Imm8 = Inst.getOperand(0).getImm(); 6811 unsigned Pred = Inst.getOperand(1).getImm(); 6812 // ESB is not predicable (pred must be AL). Without the RAS extension, this 6813 // behaves as any other unallocated hint. 6814 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 6815 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6816 "predicable, but condition " 6817 "code specified"); 6818 if (Imm8 == 0x14 && Pred != ARMCC::AL) 6819 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 6820 "predicable, but condition " 6821 "code specified"); 6822 break; 6823 } 6824 case ARM::VMOVRRS: { 6825 // Source registers must be sequential. 6826 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6827 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6828 if (Sm1 != Sm + 1) 6829 return Error(Operands[5]->getStartLoc(), 6830 "source operands must be sequential"); 6831 break; 6832 } 6833 case ARM::VMOVSRR: { 6834 // Destination registers must be sequential. 6835 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6836 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6837 if (Sm1 != Sm + 1) 6838 return Error(Operands[3]->getStartLoc(), 6839 "destination operands must be sequential"); 6840 break; 6841 } 6842 } 6843 6844 return false; 6845 } 6846 6847 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6848 switch(Opc) { 6849 default: llvm_unreachable("unexpected opcode!"); 6850 // VST1LN 6851 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6852 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6853 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6854 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6855 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6856 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6857 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6858 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6859 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6860 6861 // VST2LN 6862 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6863 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6864 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6865 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6866 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6867 6868 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6869 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6870 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6871 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6872 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6873 6874 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6875 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6876 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6877 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6878 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6879 6880 // VST3LN 6881 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6882 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6883 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6884 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6885 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6886 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6887 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6888 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6889 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6890 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6891 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6892 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6893 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6894 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6895 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6896 6897 // VST3 6898 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6899 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6900 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6901 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6902 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6903 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6904 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6905 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6906 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6907 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6908 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6909 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6910 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6911 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6912 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6913 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6914 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6915 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6916 6917 // VST4LN 6918 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6919 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6920 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6921 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6922 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6923 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6924 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6925 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6926 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6927 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6928 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6929 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6930 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6931 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6932 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6933 6934 // VST4 6935 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6936 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6937 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6938 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6939 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6940 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6941 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6942 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6943 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6944 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6945 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6946 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6947 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6948 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6949 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6950 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6951 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6952 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6953 } 6954 } 6955 6956 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6957 switch(Opc) { 6958 default: llvm_unreachable("unexpected opcode!"); 6959 // VLD1LN 6960 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6961 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6962 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6963 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6964 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6965 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6966 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6967 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6968 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6969 6970 // VLD2LN 6971 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6972 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6973 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6974 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6975 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6976 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6977 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6978 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6979 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6980 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6981 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6982 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6983 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6984 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6985 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6986 6987 // VLD3DUP 6988 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6989 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6990 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6991 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6992 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6993 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6994 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6995 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6996 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6997 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6998 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6999 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7000 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 7001 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 7002 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 7003 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 7004 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 7005 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 7006 7007 // VLD3LN 7008 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7009 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7010 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7011 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 7012 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7013 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7014 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7015 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7016 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 7017 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7018 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 7019 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 7020 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 7021 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 7022 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 7023 7024 // VLD3 7025 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7026 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7027 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7028 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7029 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7030 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7031 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7032 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7033 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7034 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7035 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7036 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7037 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 7038 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 7039 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 7040 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 7041 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 7042 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 7043 7044 // VLD4LN 7045 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7046 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7047 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7048 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7049 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7050 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7051 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7052 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7053 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7054 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7055 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 7056 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 7057 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 7058 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 7059 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 7060 7061 // VLD4DUP 7062 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7063 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7064 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7065 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 7066 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 7067 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7068 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7069 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7070 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7071 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 7072 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 7073 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7074 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 7075 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 7076 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 7077 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 7078 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 7079 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 7080 7081 // VLD4 7082 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7083 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7084 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7085 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7086 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7087 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7088 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7089 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7090 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7091 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7092 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7093 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7094 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 7095 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 7096 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 7097 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 7098 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 7099 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 7100 } 7101 } 7102 7103 bool ARMAsmParser::processInstruction(MCInst &Inst, 7104 const OperandVector &Operands, 7105 MCStreamer &Out) { 7106 // Check if we have the wide qualifier, because if it's present we 7107 // must avoid selecting a 16-bit thumb instruction. 7108 bool HasWideQualifier = false; 7109 for (auto &Op : Operands) { 7110 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 7111 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 7112 HasWideQualifier = true; 7113 break; 7114 } 7115 } 7116 7117 switch (Inst.getOpcode()) { 7118 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 7119 case ARM::LDRT_POST: 7120 case ARM::LDRBT_POST: { 7121 const unsigned Opcode = 7122 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 7123 : ARM::LDRBT_POST_IMM; 7124 MCInst TmpInst; 7125 TmpInst.setOpcode(Opcode); 7126 TmpInst.addOperand(Inst.getOperand(0)); 7127 TmpInst.addOperand(Inst.getOperand(1)); 7128 TmpInst.addOperand(Inst.getOperand(1)); 7129 TmpInst.addOperand(MCOperand::createReg(0)); 7130 TmpInst.addOperand(MCOperand::createImm(0)); 7131 TmpInst.addOperand(Inst.getOperand(2)); 7132 TmpInst.addOperand(Inst.getOperand(3)); 7133 Inst = TmpInst; 7134 return true; 7135 } 7136 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7137 case ARM::STRT_POST: 7138 case ARM::STRBT_POST: { 7139 const unsigned Opcode = 7140 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7141 : ARM::STRBT_POST_IMM; 7142 MCInst TmpInst; 7143 TmpInst.setOpcode(Opcode); 7144 TmpInst.addOperand(Inst.getOperand(1)); 7145 TmpInst.addOperand(Inst.getOperand(0)); 7146 TmpInst.addOperand(Inst.getOperand(1)); 7147 TmpInst.addOperand(MCOperand::createReg(0)); 7148 TmpInst.addOperand(MCOperand::createImm(0)); 7149 TmpInst.addOperand(Inst.getOperand(2)); 7150 TmpInst.addOperand(Inst.getOperand(3)); 7151 Inst = TmpInst; 7152 return true; 7153 } 7154 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7155 case ARM::ADDri: { 7156 if (Inst.getOperand(1).getReg() != ARM::PC || 7157 Inst.getOperand(5).getReg() != 0 || 7158 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7159 return false; 7160 MCInst TmpInst; 7161 TmpInst.setOpcode(ARM::ADR); 7162 TmpInst.addOperand(Inst.getOperand(0)); 7163 if (Inst.getOperand(2).isImm()) { 7164 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7165 // before passing it to the ADR instruction. 7166 unsigned Enc = Inst.getOperand(2).getImm(); 7167 TmpInst.addOperand(MCOperand::createImm( 7168 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7169 } else { 7170 // Turn PC-relative expression into absolute expression. 7171 // Reading PC provides the start of the current instruction + 8 and 7172 // the transform to adr is biased by that. 7173 MCSymbol *Dot = getContext().createTempSymbol(); 7174 Out.EmitLabel(Dot); 7175 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7176 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7177 MCSymbolRefExpr::VK_None, 7178 getContext()); 7179 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7180 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7181 getContext()); 7182 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7183 getContext()); 7184 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7185 } 7186 TmpInst.addOperand(Inst.getOperand(3)); 7187 TmpInst.addOperand(Inst.getOperand(4)); 7188 Inst = TmpInst; 7189 return true; 7190 } 7191 // Aliases for alternate PC+imm syntax of LDR instructions. 7192 case ARM::t2LDRpcrel: 7193 // Select the narrow version if the immediate will fit. 7194 if (Inst.getOperand(1).getImm() > 0 && 7195 Inst.getOperand(1).getImm() <= 0xff && 7196 !HasWideQualifier) 7197 Inst.setOpcode(ARM::tLDRpci); 7198 else 7199 Inst.setOpcode(ARM::t2LDRpci); 7200 return true; 7201 case ARM::t2LDRBpcrel: 7202 Inst.setOpcode(ARM::t2LDRBpci); 7203 return true; 7204 case ARM::t2LDRHpcrel: 7205 Inst.setOpcode(ARM::t2LDRHpci); 7206 return true; 7207 case ARM::t2LDRSBpcrel: 7208 Inst.setOpcode(ARM::t2LDRSBpci); 7209 return true; 7210 case ARM::t2LDRSHpcrel: 7211 Inst.setOpcode(ARM::t2LDRSHpci); 7212 return true; 7213 case ARM::LDRConstPool: 7214 case ARM::tLDRConstPool: 7215 case ARM::t2LDRConstPool: { 7216 // Pseudo instruction ldr rt, =immediate is converted to a 7217 // MOV rt, immediate if immediate is known and representable 7218 // otherwise we create a constant pool entry that we load from. 7219 MCInst TmpInst; 7220 if (Inst.getOpcode() == ARM::LDRConstPool) 7221 TmpInst.setOpcode(ARM::LDRi12); 7222 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7223 TmpInst.setOpcode(ARM::tLDRpci); 7224 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7225 TmpInst.setOpcode(ARM::t2LDRpci); 7226 const ARMOperand &PoolOperand = 7227 (HasWideQualifier ? 7228 static_cast<ARMOperand &>(*Operands[4]) : 7229 static_cast<ARMOperand &>(*Operands[3])); 7230 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7231 // If SubExprVal is a constant we may be able to use a MOV 7232 if (isa<MCConstantExpr>(SubExprVal) && 7233 Inst.getOperand(0).getReg() != ARM::PC && 7234 Inst.getOperand(0).getReg() != ARM::SP) { 7235 int64_t Value = 7236 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7237 bool UseMov = true; 7238 bool MovHasS = true; 7239 if (Inst.getOpcode() == ARM::LDRConstPool) { 7240 // ARM Constant 7241 if (ARM_AM::getSOImmVal(Value) != -1) { 7242 Value = ARM_AM::getSOImmVal(Value); 7243 TmpInst.setOpcode(ARM::MOVi); 7244 } 7245 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7246 Value = ARM_AM::getSOImmVal(~Value); 7247 TmpInst.setOpcode(ARM::MVNi); 7248 } 7249 else if (hasV6T2Ops() && 7250 Value >=0 && Value < 65536) { 7251 TmpInst.setOpcode(ARM::MOVi16); 7252 MovHasS = false; 7253 } 7254 else 7255 UseMov = false; 7256 } 7257 else { 7258 // Thumb/Thumb2 Constant 7259 if (hasThumb2() && 7260 ARM_AM::getT2SOImmVal(Value) != -1) 7261 TmpInst.setOpcode(ARM::t2MOVi); 7262 else if (hasThumb2() && 7263 ARM_AM::getT2SOImmVal(~Value) != -1) { 7264 TmpInst.setOpcode(ARM::t2MVNi); 7265 Value = ~Value; 7266 } 7267 else if (hasV8MBaseline() && 7268 Value >=0 && Value < 65536) { 7269 TmpInst.setOpcode(ARM::t2MOVi16); 7270 MovHasS = false; 7271 } 7272 else 7273 UseMov = false; 7274 } 7275 if (UseMov) { 7276 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7277 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7278 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7279 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7280 if (MovHasS) 7281 TmpInst.addOperand(MCOperand::createReg(0)); // S 7282 Inst = TmpInst; 7283 return true; 7284 } 7285 } 7286 // No opportunity to use MOV/MVN create constant pool 7287 const MCExpr *CPLoc = 7288 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7289 PoolOperand.getStartLoc()); 7290 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7291 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7292 if (TmpInst.getOpcode() == ARM::LDRi12) 7293 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7294 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7295 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7296 Inst = TmpInst; 7297 return true; 7298 } 7299 // Handle NEON VST complex aliases. 7300 case ARM::VST1LNdWB_register_Asm_8: 7301 case ARM::VST1LNdWB_register_Asm_16: 7302 case ARM::VST1LNdWB_register_Asm_32: { 7303 MCInst TmpInst; 7304 // Shuffle the operands around so the lane index operand is in the 7305 // right place. 7306 unsigned Spacing; 7307 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7308 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7309 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7310 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7311 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7312 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7313 TmpInst.addOperand(Inst.getOperand(1)); // lane 7314 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7315 TmpInst.addOperand(Inst.getOperand(6)); 7316 Inst = TmpInst; 7317 return true; 7318 } 7319 7320 case ARM::VST2LNdWB_register_Asm_8: 7321 case ARM::VST2LNdWB_register_Asm_16: 7322 case ARM::VST2LNdWB_register_Asm_32: 7323 case ARM::VST2LNqWB_register_Asm_16: 7324 case ARM::VST2LNqWB_register_Asm_32: { 7325 MCInst TmpInst; 7326 // Shuffle the operands around so the lane index operand is in the 7327 // right place. 7328 unsigned Spacing; 7329 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7330 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7331 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7332 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7333 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7334 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7335 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7336 Spacing)); 7337 TmpInst.addOperand(Inst.getOperand(1)); // lane 7338 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7339 TmpInst.addOperand(Inst.getOperand(6)); 7340 Inst = TmpInst; 7341 return true; 7342 } 7343 7344 case ARM::VST3LNdWB_register_Asm_8: 7345 case ARM::VST3LNdWB_register_Asm_16: 7346 case ARM::VST3LNdWB_register_Asm_32: 7347 case ARM::VST3LNqWB_register_Asm_16: 7348 case ARM::VST3LNqWB_register_Asm_32: { 7349 MCInst TmpInst; 7350 // Shuffle the operands around so the lane index operand is in the 7351 // right place. 7352 unsigned Spacing; 7353 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7354 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7355 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7356 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7357 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7358 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7359 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7360 Spacing)); 7361 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7362 Spacing * 2)); 7363 TmpInst.addOperand(Inst.getOperand(1)); // lane 7364 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7365 TmpInst.addOperand(Inst.getOperand(6)); 7366 Inst = TmpInst; 7367 return true; 7368 } 7369 7370 case ARM::VST4LNdWB_register_Asm_8: 7371 case ARM::VST4LNdWB_register_Asm_16: 7372 case ARM::VST4LNdWB_register_Asm_32: 7373 case ARM::VST4LNqWB_register_Asm_16: 7374 case ARM::VST4LNqWB_register_Asm_32: { 7375 MCInst TmpInst; 7376 // Shuffle the operands around so the lane index operand is in the 7377 // right place. 7378 unsigned Spacing; 7379 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7380 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7381 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7382 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7383 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7384 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7385 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7386 Spacing)); 7387 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7388 Spacing * 2)); 7389 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7390 Spacing * 3)); 7391 TmpInst.addOperand(Inst.getOperand(1)); // lane 7392 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7393 TmpInst.addOperand(Inst.getOperand(6)); 7394 Inst = TmpInst; 7395 return true; 7396 } 7397 7398 case ARM::VST1LNdWB_fixed_Asm_8: 7399 case ARM::VST1LNdWB_fixed_Asm_16: 7400 case ARM::VST1LNdWB_fixed_Asm_32: { 7401 MCInst TmpInst; 7402 // Shuffle the operands around so the lane index operand is in the 7403 // right place. 7404 unsigned Spacing; 7405 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7406 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7407 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7408 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7409 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7410 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7411 TmpInst.addOperand(Inst.getOperand(1)); // lane 7412 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7413 TmpInst.addOperand(Inst.getOperand(5)); 7414 Inst = TmpInst; 7415 return true; 7416 } 7417 7418 case ARM::VST2LNdWB_fixed_Asm_8: 7419 case ARM::VST2LNdWB_fixed_Asm_16: 7420 case ARM::VST2LNdWB_fixed_Asm_32: 7421 case ARM::VST2LNqWB_fixed_Asm_16: 7422 case ARM::VST2LNqWB_fixed_Asm_32: { 7423 MCInst TmpInst; 7424 // Shuffle the operands around so the lane index operand is in the 7425 // right place. 7426 unsigned Spacing; 7427 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7428 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7429 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7430 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7431 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7432 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7433 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7434 Spacing)); 7435 TmpInst.addOperand(Inst.getOperand(1)); // lane 7436 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7437 TmpInst.addOperand(Inst.getOperand(5)); 7438 Inst = TmpInst; 7439 return true; 7440 } 7441 7442 case ARM::VST3LNdWB_fixed_Asm_8: 7443 case ARM::VST3LNdWB_fixed_Asm_16: 7444 case ARM::VST3LNdWB_fixed_Asm_32: 7445 case ARM::VST3LNqWB_fixed_Asm_16: 7446 case ARM::VST3LNqWB_fixed_Asm_32: { 7447 MCInst TmpInst; 7448 // Shuffle the operands around so the lane index operand is in the 7449 // right place. 7450 unsigned Spacing; 7451 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7452 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7453 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7454 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7455 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7456 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7457 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7458 Spacing)); 7459 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7460 Spacing * 2)); 7461 TmpInst.addOperand(Inst.getOperand(1)); // lane 7462 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7463 TmpInst.addOperand(Inst.getOperand(5)); 7464 Inst = TmpInst; 7465 return true; 7466 } 7467 7468 case ARM::VST4LNdWB_fixed_Asm_8: 7469 case ARM::VST4LNdWB_fixed_Asm_16: 7470 case ARM::VST4LNdWB_fixed_Asm_32: 7471 case ARM::VST4LNqWB_fixed_Asm_16: 7472 case ARM::VST4LNqWB_fixed_Asm_32: { 7473 MCInst TmpInst; 7474 // Shuffle the operands around so the lane index operand is in the 7475 // right place. 7476 unsigned Spacing; 7477 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7478 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7479 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7480 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7481 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7482 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7483 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7484 Spacing)); 7485 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7486 Spacing * 2)); 7487 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7488 Spacing * 3)); 7489 TmpInst.addOperand(Inst.getOperand(1)); // lane 7490 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7491 TmpInst.addOperand(Inst.getOperand(5)); 7492 Inst = TmpInst; 7493 return true; 7494 } 7495 7496 case ARM::VST1LNdAsm_8: 7497 case ARM::VST1LNdAsm_16: 7498 case ARM::VST1LNdAsm_32: { 7499 MCInst TmpInst; 7500 // Shuffle the operands around so the lane index operand is in the 7501 // right place. 7502 unsigned Spacing; 7503 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7504 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7505 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7506 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7507 TmpInst.addOperand(Inst.getOperand(1)); // lane 7508 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7509 TmpInst.addOperand(Inst.getOperand(5)); 7510 Inst = TmpInst; 7511 return true; 7512 } 7513 7514 case ARM::VST2LNdAsm_8: 7515 case ARM::VST2LNdAsm_16: 7516 case ARM::VST2LNdAsm_32: 7517 case ARM::VST2LNqAsm_16: 7518 case ARM::VST2LNqAsm_32: { 7519 MCInst TmpInst; 7520 // Shuffle the operands around so the lane index operand is in the 7521 // right place. 7522 unsigned Spacing; 7523 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7524 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7525 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7526 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7527 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7528 Spacing)); 7529 TmpInst.addOperand(Inst.getOperand(1)); // lane 7530 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7531 TmpInst.addOperand(Inst.getOperand(5)); 7532 Inst = TmpInst; 7533 return true; 7534 } 7535 7536 case ARM::VST3LNdAsm_8: 7537 case ARM::VST3LNdAsm_16: 7538 case ARM::VST3LNdAsm_32: 7539 case ARM::VST3LNqAsm_16: 7540 case ARM::VST3LNqAsm_32: { 7541 MCInst TmpInst; 7542 // Shuffle the operands around so the lane index operand is in the 7543 // right place. 7544 unsigned Spacing; 7545 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7546 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7547 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7548 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7549 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7550 Spacing)); 7551 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7552 Spacing * 2)); 7553 TmpInst.addOperand(Inst.getOperand(1)); // lane 7554 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7555 TmpInst.addOperand(Inst.getOperand(5)); 7556 Inst = TmpInst; 7557 return true; 7558 } 7559 7560 case ARM::VST4LNdAsm_8: 7561 case ARM::VST4LNdAsm_16: 7562 case ARM::VST4LNdAsm_32: 7563 case ARM::VST4LNqAsm_16: 7564 case ARM::VST4LNqAsm_32: { 7565 MCInst TmpInst; 7566 // Shuffle the operands around so the lane index operand is in the 7567 // right place. 7568 unsigned Spacing; 7569 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7570 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7571 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7572 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7573 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7574 Spacing)); 7575 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7576 Spacing * 2)); 7577 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7578 Spacing * 3)); 7579 TmpInst.addOperand(Inst.getOperand(1)); // lane 7580 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7581 TmpInst.addOperand(Inst.getOperand(5)); 7582 Inst = TmpInst; 7583 return true; 7584 } 7585 7586 // Handle NEON VLD complex aliases. 7587 case ARM::VLD1LNdWB_register_Asm_8: 7588 case ARM::VLD1LNdWB_register_Asm_16: 7589 case ARM::VLD1LNdWB_register_Asm_32: { 7590 MCInst TmpInst; 7591 // Shuffle the operands around so the lane index operand is in the 7592 // right place. 7593 unsigned Spacing; 7594 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7595 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7596 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7597 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7598 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7599 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7600 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7601 TmpInst.addOperand(Inst.getOperand(1)); // lane 7602 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7603 TmpInst.addOperand(Inst.getOperand(6)); 7604 Inst = TmpInst; 7605 return true; 7606 } 7607 7608 case ARM::VLD2LNdWB_register_Asm_8: 7609 case ARM::VLD2LNdWB_register_Asm_16: 7610 case ARM::VLD2LNdWB_register_Asm_32: 7611 case ARM::VLD2LNqWB_register_Asm_16: 7612 case ARM::VLD2LNqWB_register_Asm_32: { 7613 MCInst TmpInst; 7614 // Shuffle the operands around so the lane index operand is in the 7615 // right place. 7616 unsigned Spacing; 7617 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7618 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7619 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7620 Spacing)); 7621 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7622 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7623 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7624 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7625 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7626 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7627 Spacing)); 7628 TmpInst.addOperand(Inst.getOperand(1)); // lane 7629 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7630 TmpInst.addOperand(Inst.getOperand(6)); 7631 Inst = TmpInst; 7632 return true; 7633 } 7634 7635 case ARM::VLD3LNdWB_register_Asm_8: 7636 case ARM::VLD3LNdWB_register_Asm_16: 7637 case ARM::VLD3LNdWB_register_Asm_32: 7638 case ARM::VLD3LNqWB_register_Asm_16: 7639 case ARM::VLD3LNqWB_register_Asm_32: { 7640 MCInst TmpInst; 7641 // Shuffle the operands around so the lane index operand is in the 7642 // right place. 7643 unsigned Spacing; 7644 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7645 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7646 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7647 Spacing)); 7648 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7649 Spacing * 2)); 7650 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7651 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7652 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7653 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7654 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7655 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7656 Spacing)); 7657 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7658 Spacing * 2)); 7659 TmpInst.addOperand(Inst.getOperand(1)); // lane 7660 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7661 TmpInst.addOperand(Inst.getOperand(6)); 7662 Inst = TmpInst; 7663 return true; 7664 } 7665 7666 case ARM::VLD4LNdWB_register_Asm_8: 7667 case ARM::VLD4LNdWB_register_Asm_16: 7668 case ARM::VLD4LNdWB_register_Asm_32: 7669 case ARM::VLD4LNqWB_register_Asm_16: 7670 case ARM::VLD4LNqWB_register_Asm_32: { 7671 MCInst TmpInst; 7672 // Shuffle the operands around so the lane index operand is in the 7673 // right place. 7674 unsigned Spacing; 7675 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7676 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7677 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7678 Spacing)); 7679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7680 Spacing * 2)); 7681 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7682 Spacing * 3)); 7683 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7684 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7685 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7686 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7687 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7688 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7689 Spacing)); 7690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7691 Spacing * 2)); 7692 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7693 Spacing * 3)); 7694 TmpInst.addOperand(Inst.getOperand(1)); // lane 7695 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7696 TmpInst.addOperand(Inst.getOperand(6)); 7697 Inst = TmpInst; 7698 return true; 7699 } 7700 7701 case ARM::VLD1LNdWB_fixed_Asm_8: 7702 case ARM::VLD1LNdWB_fixed_Asm_16: 7703 case ARM::VLD1LNdWB_fixed_Asm_32: { 7704 MCInst TmpInst; 7705 // Shuffle the operands around so the lane index operand is in the 7706 // right place. 7707 unsigned Spacing; 7708 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7709 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7710 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7711 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7712 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7713 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7714 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7715 TmpInst.addOperand(Inst.getOperand(1)); // lane 7716 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7717 TmpInst.addOperand(Inst.getOperand(5)); 7718 Inst = TmpInst; 7719 return true; 7720 } 7721 7722 case ARM::VLD2LNdWB_fixed_Asm_8: 7723 case ARM::VLD2LNdWB_fixed_Asm_16: 7724 case ARM::VLD2LNdWB_fixed_Asm_32: 7725 case ARM::VLD2LNqWB_fixed_Asm_16: 7726 case ARM::VLD2LNqWB_fixed_Asm_32: { 7727 MCInst TmpInst; 7728 // Shuffle the operands around so the lane index operand is in the 7729 // right place. 7730 unsigned Spacing; 7731 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7732 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7733 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7734 Spacing)); 7735 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7736 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7737 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7738 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7739 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7740 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7741 Spacing)); 7742 TmpInst.addOperand(Inst.getOperand(1)); // lane 7743 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7744 TmpInst.addOperand(Inst.getOperand(5)); 7745 Inst = TmpInst; 7746 return true; 7747 } 7748 7749 case ARM::VLD3LNdWB_fixed_Asm_8: 7750 case ARM::VLD3LNdWB_fixed_Asm_16: 7751 case ARM::VLD3LNdWB_fixed_Asm_32: 7752 case ARM::VLD3LNqWB_fixed_Asm_16: 7753 case ARM::VLD3LNqWB_fixed_Asm_32: { 7754 MCInst TmpInst; 7755 // Shuffle the operands around so the lane index operand is in the 7756 // right place. 7757 unsigned Spacing; 7758 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7759 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7760 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7761 Spacing)); 7762 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7763 Spacing * 2)); 7764 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7765 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7766 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7767 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7768 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7769 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7770 Spacing)); 7771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7772 Spacing * 2)); 7773 TmpInst.addOperand(Inst.getOperand(1)); // lane 7774 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7775 TmpInst.addOperand(Inst.getOperand(5)); 7776 Inst = TmpInst; 7777 return true; 7778 } 7779 7780 case ARM::VLD4LNdWB_fixed_Asm_8: 7781 case ARM::VLD4LNdWB_fixed_Asm_16: 7782 case ARM::VLD4LNdWB_fixed_Asm_32: 7783 case ARM::VLD4LNqWB_fixed_Asm_16: 7784 case ARM::VLD4LNqWB_fixed_Asm_32: { 7785 MCInst TmpInst; 7786 // Shuffle the operands around so the lane index operand is in the 7787 // right place. 7788 unsigned Spacing; 7789 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7790 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7791 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7792 Spacing)); 7793 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7794 Spacing * 2)); 7795 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7796 Spacing * 3)); 7797 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7798 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7799 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7800 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7801 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7802 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7803 Spacing)); 7804 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7805 Spacing * 2)); 7806 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7807 Spacing * 3)); 7808 TmpInst.addOperand(Inst.getOperand(1)); // lane 7809 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7810 TmpInst.addOperand(Inst.getOperand(5)); 7811 Inst = TmpInst; 7812 return true; 7813 } 7814 7815 case ARM::VLD1LNdAsm_8: 7816 case ARM::VLD1LNdAsm_16: 7817 case ARM::VLD1LNdAsm_32: { 7818 MCInst TmpInst; 7819 // Shuffle the operands around so the lane index operand is in the 7820 // right place. 7821 unsigned Spacing; 7822 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7823 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7824 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7825 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7826 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7827 TmpInst.addOperand(Inst.getOperand(1)); // lane 7828 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7829 TmpInst.addOperand(Inst.getOperand(5)); 7830 Inst = TmpInst; 7831 return true; 7832 } 7833 7834 case ARM::VLD2LNdAsm_8: 7835 case ARM::VLD2LNdAsm_16: 7836 case ARM::VLD2LNdAsm_32: 7837 case ARM::VLD2LNqAsm_16: 7838 case ARM::VLD2LNqAsm_32: { 7839 MCInst TmpInst; 7840 // Shuffle the operands around so the lane index operand is in the 7841 // right place. 7842 unsigned Spacing; 7843 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7844 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7845 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7846 Spacing)); 7847 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7848 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7849 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7850 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7851 Spacing)); 7852 TmpInst.addOperand(Inst.getOperand(1)); // lane 7853 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7854 TmpInst.addOperand(Inst.getOperand(5)); 7855 Inst = TmpInst; 7856 return true; 7857 } 7858 7859 case ARM::VLD3LNdAsm_8: 7860 case ARM::VLD3LNdAsm_16: 7861 case ARM::VLD3LNdAsm_32: 7862 case ARM::VLD3LNqAsm_16: 7863 case ARM::VLD3LNqAsm_32: { 7864 MCInst TmpInst; 7865 // Shuffle the operands around so the lane index operand is in the 7866 // right place. 7867 unsigned Spacing; 7868 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7869 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7871 Spacing)); 7872 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7873 Spacing * 2)); 7874 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7875 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7876 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7877 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7878 Spacing)); 7879 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7880 Spacing * 2)); 7881 TmpInst.addOperand(Inst.getOperand(1)); // lane 7882 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7883 TmpInst.addOperand(Inst.getOperand(5)); 7884 Inst = TmpInst; 7885 return true; 7886 } 7887 7888 case ARM::VLD4LNdAsm_8: 7889 case ARM::VLD4LNdAsm_16: 7890 case ARM::VLD4LNdAsm_32: 7891 case ARM::VLD4LNqAsm_16: 7892 case ARM::VLD4LNqAsm_32: { 7893 MCInst TmpInst; 7894 // Shuffle the operands around so the lane index operand is in the 7895 // right place. 7896 unsigned Spacing; 7897 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7898 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7899 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7900 Spacing)); 7901 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7902 Spacing * 2)); 7903 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7904 Spacing * 3)); 7905 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7906 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7907 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7909 Spacing)); 7910 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7911 Spacing * 2)); 7912 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7913 Spacing * 3)); 7914 TmpInst.addOperand(Inst.getOperand(1)); // lane 7915 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7916 TmpInst.addOperand(Inst.getOperand(5)); 7917 Inst = TmpInst; 7918 return true; 7919 } 7920 7921 // VLD3DUP single 3-element structure to all lanes instructions. 7922 case ARM::VLD3DUPdAsm_8: 7923 case ARM::VLD3DUPdAsm_16: 7924 case ARM::VLD3DUPdAsm_32: 7925 case ARM::VLD3DUPqAsm_8: 7926 case ARM::VLD3DUPqAsm_16: 7927 case ARM::VLD3DUPqAsm_32: { 7928 MCInst TmpInst; 7929 unsigned Spacing; 7930 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7931 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7933 Spacing)); 7934 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7935 Spacing * 2)); 7936 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7937 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7938 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7939 TmpInst.addOperand(Inst.getOperand(4)); 7940 Inst = TmpInst; 7941 return true; 7942 } 7943 7944 case ARM::VLD3DUPdWB_fixed_Asm_8: 7945 case ARM::VLD3DUPdWB_fixed_Asm_16: 7946 case ARM::VLD3DUPdWB_fixed_Asm_32: 7947 case ARM::VLD3DUPqWB_fixed_Asm_8: 7948 case ARM::VLD3DUPqWB_fixed_Asm_16: 7949 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7950 MCInst TmpInst; 7951 unsigned Spacing; 7952 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7953 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7954 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7955 Spacing)); 7956 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7957 Spacing * 2)); 7958 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7959 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7960 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7961 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7962 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7963 TmpInst.addOperand(Inst.getOperand(4)); 7964 Inst = TmpInst; 7965 return true; 7966 } 7967 7968 case ARM::VLD3DUPdWB_register_Asm_8: 7969 case ARM::VLD3DUPdWB_register_Asm_16: 7970 case ARM::VLD3DUPdWB_register_Asm_32: 7971 case ARM::VLD3DUPqWB_register_Asm_8: 7972 case ARM::VLD3DUPqWB_register_Asm_16: 7973 case ARM::VLD3DUPqWB_register_Asm_32: { 7974 MCInst TmpInst; 7975 unsigned Spacing; 7976 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7977 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7978 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7979 Spacing)); 7980 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7981 Spacing * 2)); 7982 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7983 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7984 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7985 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7986 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7987 TmpInst.addOperand(Inst.getOperand(5)); 7988 Inst = TmpInst; 7989 return true; 7990 } 7991 7992 // VLD3 multiple 3-element structure instructions. 7993 case ARM::VLD3dAsm_8: 7994 case ARM::VLD3dAsm_16: 7995 case ARM::VLD3dAsm_32: 7996 case ARM::VLD3qAsm_8: 7997 case ARM::VLD3qAsm_16: 7998 case ARM::VLD3qAsm_32: { 7999 MCInst TmpInst; 8000 unsigned Spacing; 8001 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8002 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8003 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8004 Spacing)); 8005 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8006 Spacing * 2)); 8007 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8008 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8009 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8010 TmpInst.addOperand(Inst.getOperand(4)); 8011 Inst = TmpInst; 8012 return true; 8013 } 8014 8015 case ARM::VLD3dWB_fixed_Asm_8: 8016 case ARM::VLD3dWB_fixed_Asm_16: 8017 case ARM::VLD3dWB_fixed_Asm_32: 8018 case ARM::VLD3qWB_fixed_Asm_8: 8019 case ARM::VLD3qWB_fixed_Asm_16: 8020 case ARM::VLD3qWB_fixed_Asm_32: { 8021 MCInst TmpInst; 8022 unsigned Spacing; 8023 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8024 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8025 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8026 Spacing)); 8027 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8028 Spacing * 2)); 8029 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8030 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8031 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8032 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8033 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8034 TmpInst.addOperand(Inst.getOperand(4)); 8035 Inst = TmpInst; 8036 return true; 8037 } 8038 8039 case ARM::VLD3dWB_register_Asm_8: 8040 case ARM::VLD3dWB_register_Asm_16: 8041 case ARM::VLD3dWB_register_Asm_32: 8042 case ARM::VLD3qWB_register_Asm_8: 8043 case ARM::VLD3qWB_register_Asm_16: 8044 case ARM::VLD3qWB_register_Asm_32: { 8045 MCInst TmpInst; 8046 unsigned Spacing; 8047 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8048 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8049 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8050 Spacing)); 8051 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8052 Spacing * 2)); 8053 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8054 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8055 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8056 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8057 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8058 TmpInst.addOperand(Inst.getOperand(5)); 8059 Inst = TmpInst; 8060 return true; 8061 } 8062 8063 // VLD4DUP single 3-element structure to all lanes instructions. 8064 case ARM::VLD4DUPdAsm_8: 8065 case ARM::VLD4DUPdAsm_16: 8066 case ARM::VLD4DUPdAsm_32: 8067 case ARM::VLD4DUPqAsm_8: 8068 case ARM::VLD4DUPqAsm_16: 8069 case ARM::VLD4DUPqAsm_32: { 8070 MCInst TmpInst; 8071 unsigned Spacing; 8072 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8073 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8074 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8075 Spacing)); 8076 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8077 Spacing * 2)); 8078 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8079 Spacing * 3)); 8080 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8081 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8082 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8083 TmpInst.addOperand(Inst.getOperand(4)); 8084 Inst = TmpInst; 8085 return true; 8086 } 8087 8088 case ARM::VLD4DUPdWB_fixed_Asm_8: 8089 case ARM::VLD4DUPdWB_fixed_Asm_16: 8090 case ARM::VLD4DUPdWB_fixed_Asm_32: 8091 case ARM::VLD4DUPqWB_fixed_Asm_8: 8092 case ARM::VLD4DUPqWB_fixed_Asm_16: 8093 case ARM::VLD4DUPqWB_fixed_Asm_32: { 8094 MCInst TmpInst; 8095 unsigned Spacing; 8096 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8097 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8098 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8099 Spacing)); 8100 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8101 Spacing * 2)); 8102 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8103 Spacing * 3)); 8104 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8105 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8106 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8107 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8108 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8109 TmpInst.addOperand(Inst.getOperand(4)); 8110 Inst = TmpInst; 8111 return true; 8112 } 8113 8114 case ARM::VLD4DUPdWB_register_Asm_8: 8115 case ARM::VLD4DUPdWB_register_Asm_16: 8116 case ARM::VLD4DUPdWB_register_Asm_32: 8117 case ARM::VLD4DUPqWB_register_Asm_8: 8118 case ARM::VLD4DUPqWB_register_Asm_16: 8119 case ARM::VLD4DUPqWB_register_Asm_32: { 8120 MCInst TmpInst; 8121 unsigned Spacing; 8122 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8123 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8124 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8125 Spacing)); 8126 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8127 Spacing * 2)); 8128 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8129 Spacing * 3)); 8130 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8131 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8132 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8133 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8134 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8135 TmpInst.addOperand(Inst.getOperand(5)); 8136 Inst = TmpInst; 8137 return true; 8138 } 8139 8140 // VLD4 multiple 4-element structure instructions. 8141 case ARM::VLD4dAsm_8: 8142 case ARM::VLD4dAsm_16: 8143 case ARM::VLD4dAsm_32: 8144 case ARM::VLD4qAsm_8: 8145 case ARM::VLD4qAsm_16: 8146 case ARM::VLD4qAsm_32: { 8147 MCInst TmpInst; 8148 unsigned Spacing; 8149 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8150 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8151 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8152 Spacing)); 8153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8154 Spacing * 2)); 8155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8156 Spacing * 3)); 8157 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8158 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8159 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8160 TmpInst.addOperand(Inst.getOperand(4)); 8161 Inst = TmpInst; 8162 return true; 8163 } 8164 8165 case ARM::VLD4dWB_fixed_Asm_8: 8166 case ARM::VLD4dWB_fixed_Asm_16: 8167 case ARM::VLD4dWB_fixed_Asm_32: 8168 case ARM::VLD4qWB_fixed_Asm_8: 8169 case ARM::VLD4qWB_fixed_Asm_16: 8170 case ARM::VLD4qWB_fixed_Asm_32: { 8171 MCInst TmpInst; 8172 unsigned Spacing; 8173 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8174 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8175 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8176 Spacing)); 8177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8178 Spacing * 2)); 8179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8180 Spacing * 3)); 8181 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8182 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8183 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8184 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8185 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8186 TmpInst.addOperand(Inst.getOperand(4)); 8187 Inst = TmpInst; 8188 return true; 8189 } 8190 8191 case ARM::VLD4dWB_register_Asm_8: 8192 case ARM::VLD4dWB_register_Asm_16: 8193 case ARM::VLD4dWB_register_Asm_32: 8194 case ARM::VLD4qWB_register_Asm_8: 8195 case ARM::VLD4qWB_register_Asm_16: 8196 case ARM::VLD4qWB_register_Asm_32: { 8197 MCInst TmpInst; 8198 unsigned Spacing; 8199 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8200 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8201 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8202 Spacing)); 8203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8204 Spacing * 2)); 8205 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8206 Spacing * 3)); 8207 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8208 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8209 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8210 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8211 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8212 TmpInst.addOperand(Inst.getOperand(5)); 8213 Inst = TmpInst; 8214 return true; 8215 } 8216 8217 // VST3 multiple 3-element structure instructions. 8218 case ARM::VST3dAsm_8: 8219 case ARM::VST3dAsm_16: 8220 case ARM::VST3dAsm_32: 8221 case ARM::VST3qAsm_8: 8222 case ARM::VST3qAsm_16: 8223 case ARM::VST3qAsm_32: { 8224 MCInst TmpInst; 8225 unsigned Spacing; 8226 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8227 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8228 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8229 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8231 Spacing)); 8232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8233 Spacing * 2)); 8234 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8235 TmpInst.addOperand(Inst.getOperand(4)); 8236 Inst = TmpInst; 8237 return true; 8238 } 8239 8240 case ARM::VST3dWB_fixed_Asm_8: 8241 case ARM::VST3dWB_fixed_Asm_16: 8242 case ARM::VST3dWB_fixed_Asm_32: 8243 case ARM::VST3qWB_fixed_Asm_8: 8244 case ARM::VST3qWB_fixed_Asm_16: 8245 case ARM::VST3qWB_fixed_Asm_32: { 8246 MCInst TmpInst; 8247 unsigned Spacing; 8248 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8249 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8250 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8251 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8252 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8253 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8255 Spacing)); 8256 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8257 Spacing * 2)); 8258 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8259 TmpInst.addOperand(Inst.getOperand(4)); 8260 Inst = TmpInst; 8261 return true; 8262 } 8263 8264 case ARM::VST3dWB_register_Asm_8: 8265 case ARM::VST3dWB_register_Asm_16: 8266 case ARM::VST3dWB_register_Asm_32: 8267 case ARM::VST3qWB_register_Asm_8: 8268 case ARM::VST3qWB_register_Asm_16: 8269 case ARM::VST3qWB_register_Asm_32: { 8270 MCInst TmpInst; 8271 unsigned Spacing; 8272 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8273 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8274 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8275 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8276 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8277 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8278 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8279 Spacing)); 8280 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8281 Spacing * 2)); 8282 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8283 TmpInst.addOperand(Inst.getOperand(5)); 8284 Inst = TmpInst; 8285 return true; 8286 } 8287 8288 // VST4 multiple 3-element structure instructions. 8289 case ARM::VST4dAsm_8: 8290 case ARM::VST4dAsm_16: 8291 case ARM::VST4dAsm_32: 8292 case ARM::VST4qAsm_8: 8293 case ARM::VST4qAsm_16: 8294 case ARM::VST4qAsm_32: { 8295 MCInst TmpInst; 8296 unsigned Spacing; 8297 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8298 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8299 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8300 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8301 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8302 Spacing)); 8303 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8304 Spacing * 2)); 8305 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8306 Spacing * 3)); 8307 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8308 TmpInst.addOperand(Inst.getOperand(4)); 8309 Inst = TmpInst; 8310 return true; 8311 } 8312 8313 case ARM::VST4dWB_fixed_Asm_8: 8314 case ARM::VST4dWB_fixed_Asm_16: 8315 case ARM::VST4dWB_fixed_Asm_32: 8316 case ARM::VST4qWB_fixed_Asm_8: 8317 case ARM::VST4qWB_fixed_Asm_16: 8318 case ARM::VST4qWB_fixed_Asm_32: { 8319 MCInst TmpInst; 8320 unsigned Spacing; 8321 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8322 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8323 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8324 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8325 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8326 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8327 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8328 Spacing)); 8329 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8330 Spacing * 2)); 8331 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8332 Spacing * 3)); 8333 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8334 TmpInst.addOperand(Inst.getOperand(4)); 8335 Inst = TmpInst; 8336 return true; 8337 } 8338 8339 case ARM::VST4dWB_register_Asm_8: 8340 case ARM::VST4dWB_register_Asm_16: 8341 case ARM::VST4dWB_register_Asm_32: 8342 case ARM::VST4qWB_register_Asm_8: 8343 case ARM::VST4qWB_register_Asm_16: 8344 case ARM::VST4qWB_register_Asm_32: { 8345 MCInst TmpInst; 8346 unsigned Spacing; 8347 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8348 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8349 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8350 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8351 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8352 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8353 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8354 Spacing)); 8355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8356 Spacing * 2)); 8357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8358 Spacing * 3)); 8359 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8360 TmpInst.addOperand(Inst.getOperand(5)); 8361 Inst = TmpInst; 8362 return true; 8363 } 8364 8365 // Handle encoding choice for the shift-immediate instructions. 8366 case ARM::t2LSLri: 8367 case ARM::t2LSRri: 8368 case ARM::t2ASRri: 8369 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8370 isARMLowRegister(Inst.getOperand(1).getReg()) && 8371 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8372 !HasWideQualifier) { 8373 unsigned NewOpc; 8374 switch (Inst.getOpcode()) { 8375 default: llvm_unreachable("unexpected opcode"); 8376 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8377 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8378 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8379 } 8380 // The Thumb1 operands aren't in the same order. Awesome, eh? 8381 MCInst TmpInst; 8382 TmpInst.setOpcode(NewOpc); 8383 TmpInst.addOperand(Inst.getOperand(0)); 8384 TmpInst.addOperand(Inst.getOperand(5)); 8385 TmpInst.addOperand(Inst.getOperand(1)); 8386 TmpInst.addOperand(Inst.getOperand(2)); 8387 TmpInst.addOperand(Inst.getOperand(3)); 8388 TmpInst.addOperand(Inst.getOperand(4)); 8389 Inst = TmpInst; 8390 return true; 8391 } 8392 return false; 8393 8394 // Handle the Thumb2 mode MOV complex aliases. 8395 case ARM::t2MOVsr: 8396 case ARM::t2MOVSsr: { 8397 // Which instruction to expand to depends on the CCOut operand and 8398 // whether we're in an IT block if the register operands are low 8399 // registers. 8400 bool isNarrow = false; 8401 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8402 isARMLowRegister(Inst.getOperand(1).getReg()) && 8403 isARMLowRegister(Inst.getOperand(2).getReg()) && 8404 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8405 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8406 !HasWideQualifier) 8407 isNarrow = true; 8408 MCInst TmpInst; 8409 unsigned newOpc; 8410 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8411 default: llvm_unreachable("unexpected opcode!"); 8412 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8413 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8414 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8415 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8416 } 8417 TmpInst.setOpcode(newOpc); 8418 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8419 if (isNarrow) 8420 TmpInst.addOperand(MCOperand::createReg( 8421 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8422 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8423 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8424 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8425 TmpInst.addOperand(Inst.getOperand(5)); 8426 if (!isNarrow) 8427 TmpInst.addOperand(MCOperand::createReg( 8428 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8429 Inst = TmpInst; 8430 return true; 8431 } 8432 case ARM::t2MOVsi: 8433 case ARM::t2MOVSsi: { 8434 // Which instruction to expand to depends on the CCOut operand and 8435 // whether we're in an IT block if the register operands are low 8436 // registers. 8437 bool isNarrow = false; 8438 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8439 isARMLowRegister(Inst.getOperand(1).getReg()) && 8440 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8441 !HasWideQualifier) 8442 isNarrow = true; 8443 MCInst TmpInst; 8444 unsigned newOpc; 8445 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8446 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8447 bool isMov = false; 8448 // MOV rd, rm, LSL #0 is actually a MOV instruction 8449 if (Shift == ARM_AM::lsl && Amount == 0) { 8450 isMov = true; 8451 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8452 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8453 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8454 // instead. 8455 if (inITBlock()) { 8456 isNarrow = false; 8457 } 8458 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8459 } else { 8460 switch(Shift) { 8461 default: llvm_unreachable("unexpected opcode!"); 8462 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8463 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8464 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8465 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8466 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8467 } 8468 } 8469 if (Amount == 32) Amount = 0; 8470 TmpInst.setOpcode(newOpc); 8471 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8472 if (isNarrow && !isMov) 8473 TmpInst.addOperand(MCOperand::createReg( 8474 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8475 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8476 if (newOpc != ARM::t2RRX && !isMov) 8477 TmpInst.addOperand(MCOperand::createImm(Amount)); 8478 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8479 TmpInst.addOperand(Inst.getOperand(4)); 8480 if (!isNarrow) 8481 TmpInst.addOperand(MCOperand::createReg( 8482 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8483 Inst = TmpInst; 8484 return true; 8485 } 8486 // Handle the ARM mode MOV complex aliases. 8487 case ARM::ASRr: 8488 case ARM::LSRr: 8489 case ARM::LSLr: 8490 case ARM::RORr: { 8491 ARM_AM::ShiftOpc ShiftTy; 8492 switch(Inst.getOpcode()) { 8493 default: llvm_unreachable("unexpected opcode!"); 8494 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8495 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8496 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8497 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8498 } 8499 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8500 MCInst TmpInst; 8501 TmpInst.setOpcode(ARM::MOVsr); 8502 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8503 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8504 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8505 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8506 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8507 TmpInst.addOperand(Inst.getOperand(4)); 8508 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8509 Inst = TmpInst; 8510 return true; 8511 } 8512 case ARM::ASRi: 8513 case ARM::LSRi: 8514 case ARM::LSLi: 8515 case ARM::RORi: { 8516 ARM_AM::ShiftOpc ShiftTy; 8517 switch(Inst.getOpcode()) { 8518 default: llvm_unreachable("unexpected opcode!"); 8519 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8520 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8521 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8522 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8523 } 8524 // A shift by zero is a plain MOVr, not a MOVsi. 8525 unsigned Amt = Inst.getOperand(2).getImm(); 8526 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8527 // A shift by 32 should be encoded as 0 when permitted 8528 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8529 Amt = 0; 8530 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8531 MCInst TmpInst; 8532 TmpInst.setOpcode(Opc); 8533 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8534 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8535 if (Opc == ARM::MOVsi) 8536 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8537 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8538 TmpInst.addOperand(Inst.getOperand(4)); 8539 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8540 Inst = TmpInst; 8541 return true; 8542 } 8543 case ARM::RRXi: { 8544 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8545 MCInst TmpInst; 8546 TmpInst.setOpcode(ARM::MOVsi); 8547 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8548 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8549 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8550 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8551 TmpInst.addOperand(Inst.getOperand(3)); 8552 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8553 Inst = TmpInst; 8554 return true; 8555 } 8556 case ARM::t2LDMIA_UPD: { 8557 // If this is a load of a single register, then we should use 8558 // a post-indexed LDR instruction instead, per the ARM ARM. 8559 if (Inst.getNumOperands() != 5) 8560 return false; 8561 MCInst TmpInst; 8562 TmpInst.setOpcode(ARM::t2LDR_POST); 8563 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8564 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8565 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8566 TmpInst.addOperand(MCOperand::createImm(4)); 8567 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8568 TmpInst.addOperand(Inst.getOperand(3)); 8569 Inst = TmpInst; 8570 return true; 8571 } 8572 case ARM::t2STMDB_UPD: { 8573 // If this is a store of a single register, then we should use 8574 // a pre-indexed STR instruction instead, per the ARM ARM. 8575 if (Inst.getNumOperands() != 5) 8576 return false; 8577 MCInst TmpInst; 8578 TmpInst.setOpcode(ARM::t2STR_PRE); 8579 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8580 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8581 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8582 TmpInst.addOperand(MCOperand::createImm(-4)); 8583 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8584 TmpInst.addOperand(Inst.getOperand(3)); 8585 Inst = TmpInst; 8586 return true; 8587 } 8588 case ARM::LDMIA_UPD: 8589 // If this is a load of a single register via a 'pop', then we should use 8590 // a post-indexed LDR instruction instead, per the ARM ARM. 8591 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8592 Inst.getNumOperands() == 5) { 8593 MCInst TmpInst; 8594 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8595 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8596 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8597 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8598 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8599 TmpInst.addOperand(MCOperand::createImm(4)); 8600 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8601 TmpInst.addOperand(Inst.getOperand(3)); 8602 Inst = TmpInst; 8603 return true; 8604 } 8605 break; 8606 case ARM::STMDB_UPD: 8607 // If this is a store of a single register via a 'push', then we should use 8608 // a pre-indexed STR instruction instead, per the ARM ARM. 8609 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8610 Inst.getNumOperands() == 5) { 8611 MCInst TmpInst; 8612 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8613 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8614 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8615 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8616 TmpInst.addOperand(MCOperand::createImm(-4)); 8617 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8618 TmpInst.addOperand(Inst.getOperand(3)); 8619 Inst = TmpInst; 8620 } 8621 break; 8622 case ARM::t2ADDri12: 8623 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8624 // mnemonic was used (not "addw"), encoding T3 is preferred. 8625 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8626 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8627 break; 8628 Inst.setOpcode(ARM::t2ADDri); 8629 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8630 break; 8631 case ARM::t2SUBri12: 8632 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8633 // mnemonic was used (not "subw"), encoding T3 is preferred. 8634 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8635 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8636 break; 8637 Inst.setOpcode(ARM::t2SUBri); 8638 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8639 break; 8640 case ARM::tADDi8: 8641 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8642 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8643 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8644 // to encoding T1 if <Rd> is omitted." 8645 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8646 Inst.setOpcode(ARM::tADDi3); 8647 return true; 8648 } 8649 break; 8650 case ARM::tSUBi8: 8651 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8652 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8653 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8654 // to encoding T1 if <Rd> is omitted." 8655 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8656 Inst.setOpcode(ARM::tSUBi3); 8657 return true; 8658 } 8659 break; 8660 case ARM::t2ADDri: 8661 case ARM::t2SUBri: { 8662 // If the destination and first source operand are the same, and 8663 // the flags are compatible with the current IT status, use encoding T2 8664 // instead of T3. For compatibility with the system 'as'. Make sure the 8665 // wide encoding wasn't explicit. 8666 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8667 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8668 (Inst.getOperand(2).isImm() && 8669 (unsigned)Inst.getOperand(2).getImm() > 255) || 8670 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8671 HasWideQualifier) 8672 break; 8673 MCInst TmpInst; 8674 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8675 ARM::tADDi8 : ARM::tSUBi8); 8676 TmpInst.addOperand(Inst.getOperand(0)); 8677 TmpInst.addOperand(Inst.getOperand(5)); 8678 TmpInst.addOperand(Inst.getOperand(0)); 8679 TmpInst.addOperand(Inst.getOperand(2)); 8680 TmpInst.addOperand(Inst.getOperand(3)); 8681 TmpInst.addOperand(Inst.getOperand(4)); 8682 Inst = TmpInst; 8683 return true; 8684 } 8685 case ARM::t2ADDrr: { 8686 // If the destination and first source operand are the same, and 8687 // there's no setting of the flags, use encoding T2 instead of T3. 8688 // Note that this is only for ADD, not SUB. This mirrors the system 8689 // 'as' behaviour. Also take advantage of ADD being commutative. 8690 // Make sure the wide encoding wasn't explicit. 8691 bool Swap = false; 8692 auto DestReg = Inst.getOperand(0).getReg(); 8693 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8694 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8695 Transform = true; 8696 Swap = true; 8697 } 8698 if (!Transform || 8699 Inst.getOperand(5).getReg() != 0 || 8700 HasWideQualifier) 8701 break; 8702 MCInst TmpInst; 8703 TmpInst.setOpcode(ARM::tADDhirr); 8704 TmpInst.addOperand(Inst.getOperand(0)); 8705 TmpInst.addOperand(Inst.getOperand(0)); 8706 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8707 TmpInst.addOperand(Inst.getOperand(3)); 8708 TmpInst.addOperand(Inst.getOperand(4)); 8709 Inst = TmpInst; 8710 return true; 8711 } 8712 case ARM::tADDrSP: 8713 // If the non-SP source operand and the destination operand are not the 8714 // same, we need to use the 32-bit encoding if it's available. 8715 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8716 Inst.setOpcode(ARM::t2ADDrr); 8717 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8718 return true; 8719 } 8720 break; 8721 case ARM::tB: 8722 // A Thumb conditional branch outside of an IT block is a tBcc. 8723 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8724 Inst.setOpcode(ARM::tBcc); 8725 return true; 8726 } 8727 break; 8728 case ARM::t2B: 8729 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8730 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8731 Inst.setOpcode(ARM::t2Bcc); 8732 return true; 8733 } 8734 break; 8735 case ARM::t2Bcc: 8736 // If the conditional is AL or we're in an IT block, we really want t2B. 8737 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8738 Inst.setOpcode(ARM::t2B); 8739 return true; 8740 } 8741 break; 8742 case ARM::tBcc: 8743 // If the conditional is AL, we really want tB. 8744 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8745 Inst.setOpcode(ARM::tB); 8746 return true; 8747 } 8748 break; 8749 case ARM::tLDMIA: { 8750 // If the register list contains any high registers, or if the writeback 8751 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8752 // instead if we're in Thumb2. Otherwise, this should have generated 8753 // an error in validateInstruction(). 8754 unsigned Rn = Inst.getOperand(0).getReg(); 8755 bool hasWritebackToken = 8756 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8757 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8758 bool listContainsBase; 8759 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8760 (!listContainsBase && !hasWritebackToken) || 8761 (listContainsBase && hasWritebackToken)) { 8762 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8763 assert(isThumbTwo()); 8764 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8765 // If we're switching to the updating version, we need to insert 8766 // the writeback tied operand. 8767 if (hasWritebackToken) 8768 Inst.insert(Inst.begin(), 8769 MCOperand::createReg(Inst.getOperand(0).getReg())); 8770 return true; 8771 } 8772 break; 8773 } 8774 case ARM::tSTMIA_UPD: { 8775 // If the register list contains any high registers, we need to use 8776 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8777 // should have generated an error in validateInstruction(). 8778 unsigned Rn = Inst.getOperand(0).getReg(); 8779 bool listContainsBase; 8780 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8781 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8782 assert(isThumbTwo()); 8783 Inst.setOpcode(ARM::t2STMIA_UPD); 8784 return true; 8785 } 8786 break; 8787 } 8788 case ARM::tPOP: { 8789 bool listContainsBase; 8790 // If the register list contains any high registers, we need to use 8791 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8792 // should have generated an error in validateInstruction(). 8793 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8794 return false; 8795 assert(isThumbTwo()); 8796 Inst.setOpcode(ARM::t2LDMIA_UPD); 8797 // Add the base register and writeback operands. 8798 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8799 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8800 return true; 8801 } 8802 case ARM::tPUSH: { 8803 bool listContainsBase; 8804 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8805 return false; 8806 assert(isThumbTwo()); 8807 Inst.setOpcode(ARM::t2STMDB_UPD); 8808 // Add the base register and writeback operands. 8809 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8810 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8811 return true; 8812 } 8813 case ARM::t2MOVi: 8814 // If we can use the 16-bit encoding and the user didn't explicitly 8815 // request the 32-bit variant, transform it here. 8816 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8817 (Inst.getOperand(1).isImm() && 8818 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8819 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8820 !HasWideQualifier) { 8821 // The operands aren't in the same order for tMOVi8... 8822 MCInst TmpInst; 8823 TmpInst.setOpcode(ARM::tMOVi8); 8824 TmpInst.addOperand(Inst.getOperand(0)); 8825 TmpInst.addOperand(Inst.getOperand(4)); 8826 TmpInst.addOperand(Inst.getOperand(1)); 8827 TmpInst.addOperand(Inst.getOperand(2)); 8828 TmpInst.addOperand(Inst.getOperand(3)); 8829 Inst = TmpInst; 8830 return true; 8831 } 8832 break; 8833 8834 case ARM::t2MOVr: 8835 // If we can use the 16-bit encoding and the user didn't explicitly 8836 // request the 32-bit variant, transform it here. 8837 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8838 isARMLowRegister(Inst.getOperand(1).getReg()) && 8839 Inst.getOperand(2).getImm() == ARMCC::AL && 8840 Inst.getOperand(4).getReg() == ARM::CPSR && 8841 !HasWideQualifier) { 8842 // The operands aren't the same for tMOV[S]r... (no cc_out) 8843 MCInst TmpInst; 8844 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8845 TmpInst.addOperand(Inst.getOperand(0)); 8846 TmpInst.addOperand(Inst.getOperand(1)); 8847 TmpInst.addOperand(Inst.getOperand(2)); 8848 TmpInst.addOperand(Inst.getOperand(3)); 8849 Inst = TmpInst; 8850 return true; 8851 } 8852 break; 8853 8854 case ARM::t2SXTH: 8855 case ARM::t2SXTB: 8856 case ARM::t2UXTH: 8857 case ARM::t2UXTB: 8858 // If we can use the 16-bit encoding and the user didn't explicitly 8859 // request the 32-bit variant, transform it here. 8860 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8861 isARMLowRegister(Inst.getOperand(1).getReg()) && 8862 Inst.getOperand(2).getImm() == 0 && 8863 !HasWideQualifier) { 8864 unsigned NewOpc; 8865 switch (Inst.getOpcode()) { 8866 default: llvm_unreachable("Illegal opcode!"); 8867 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8868 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8869 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8870 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8871 } 8872 // The operands aren't the same for thumb1 (no rotate operand). 8873 MCInst TmpInst; 8874 TmpInst.setOpcode(NewOpc); 8875 TmpInst.addOperand(Inst.getOperand(0)); 8876 TmpInst.addOperand(Inst.getOperand(1)); 8877 TmpInst.addOperand(Inst.getOperand(3)); 8878 TmpInst.addOperand(Inst.getOperand(4)); 8879 Inst = TmpInst; 8880 return true; 8881 } 8882 break; 8883 8884 case ARM::MOVsi: { 8885 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8886 // rrx shifts and asr/lsr of #32 is encoded as 0 8887 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8888 return false; 8889 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8890 // Shifting by zero is accepted as a vanilla 'MOVr' 8891 MCInst TmpInst; 8892 TmpInst.setOpcode(ARM::MOVr); 8893 TmpInst.addOperand(Inst.getOperand(0)); 8894 TmpInst.addOperand(Inst.getOperand(1)); 8895 TmpInst.addOperand(Inst.getOperand(3)); 8896 TmpInst.addOperand(Inst.getOperand(4)); 8897 TmpInst.addOperand(Inst.getOperand(5)); 8898 Inst = TmpInst; 8899 return true; 8900 } 8901 return false; 8902 } 8903 case ARM::ANDrsi: 8904 case ARM::ORRrsi: 8905 case ARM::EORrsi: 8906 case ARM::BICrsi: 8907 case ARM::SUBrsi: 8908 case ARM::ADDrsi: { 8909 unsigned newOpc; 8910 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8911 if (SOpc == ARM_AM::rrx) return false; 8912 switch (Inst.getOpcode()) { 8913 default: llvm_unreachable("unexpected opcode!"); 8914 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8915 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8916 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8917 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8918 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8919 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8920 } 8921 // If the shift is by zero, use the non-shifted instruction definition. 8922 // The exception is for right shifts, where 0 == 32 8923 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8924 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8925 MCInst TmpInst; 8926 TmpInst.setOpcode(newOpc); 8927 TmpInst.addOperand(Inst.getOperand(0)); 8928 TmpInst.addOperand(Inst.getOperand(1)); 8929 TmpInst.addOperand(Inst.getOperand(2)); 8930 TmpInst.addOperand(Inst.getOperand(4)); 8931 TmpInst.addOperand(Inst.getOperand(5)); 8932 TmpInst.addOperand(Inst.getOperand(6)); 8933 Inst = TmpInst; 8934 return true; 8935 } 8936 return false; 8937 } 8938 case ARM::ITasm: 8939 case ARM::t2IT: { 8940 MCOperand &MO = Inst.getOperand(1); 8941 unsigned Mask = MO.getImm(); 8942 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8943 8944 // Set up the IT block state according to the IT instruction we just 8945 // matched. 8946 assert(!inITBlock() && "nested IT blocks?!"); 8947 startExplicitITBlock(Cond, Mask); 8948 MO.setImm(getITMaskEncoding()); 8949 break; 8950 } 8951 case ARM::t2LSLrr: 8952 case ARM::t2LSRrr: 8953 case ARM::t2ASRrr: 8954 case ARM::t2SBCrr: 8955 case ARM::t2RORrr: 8956 case ARM::t2BICrr: 8957 // Assemblers should use the narrow encodings of these instructions when permissible. 8958 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8959 isARMLowRegister(Inst.getOperand(2).getReg())) && 8960 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8961 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8962 !HasWideQualifier) { 8963 unsigned NewOpc; 8964 switch (Inst.getOpcode()) { 8965 default: llvm_unreachable("unexpected opcode"); 8966 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8967 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8968 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8969 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8970 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8971 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8972 } 8973 MCInst TmpInst; 8974 TmpInst.setOpcode(NewOpc); 8975 TmpInst.addOperand(Inst.getOperand(0)); 8976 TmpInst.addOperand(Inst.getOperand(5)); 8977 TmpInst.addOperand(Inst.getOperand(1)); 8978 TmpInst.addOperand(Inst.getOperand(2)); 8979 TmpInst.addOperand(Inst.getOperand(3)); 8980 TmpInst.addOperand(Inst.getOperand(4)); 8981 Inst = TmpInst; 8982 return true; 8983 } 8984 return false; 8985 8986 case ARM::t2ANDrr: 8987 case ARM::t2EORrr: 8988 case ARM::t2ADCrr: 8989 case ARM::t2ORRrr: 8990 // Assemblers should use the narrow encodings of these instructions when permissible. 8991 // These instructions are special in that they are commutable, so shorter encodings 8992 // are available more often. 8993 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8994 isARMLowRegister(Inst.getOperand(2).getReg())) && 8995 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8996 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8997 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8998 !HasWideQualifier) { 8999 unsigned NewOpc; 9000 switch (Inst.getOpcode()) { 9001 default: llvm_unreachable("unexpected opcode"); 9002 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 9003 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 9004 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 9005 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 9006 } 9007 MCInst TmpInst; 9008 TmpInst.setOpcode(NewOpc); 9009 TmpInst.addOperand(Inst.getOperand(0)); 9010 TmpInst.addOperand(Inst.getOperand(5)); 9011 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 9012 TmpInst.addOperand(Inst.getOperand(1)); 9013 TmpInst.addOperand(Inst.getOperand(2)); 9014 } else { 9015 TmpInst.addOperand(Inst.getOperand(2)); 9016 TmpInst.addOperand(Inst.getOperand(1)); 9017 } 9018 TmpInst.addOperand(Inst.getOperand(3)); 9019 TmpInst.addOperand(Inst.getOperand(4)); 9020 Inst = TmpInst; 9021 return true; 9022 } 9023 return false; 9024 } 9025 return false; 9026 } 9027 9028 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 9029 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 9030 // suffix depending on whether they're in an IT block or not. 9031 unsigned Opc = Inst.getOpcode(); 9032 const MCInstrDesc &MCID = MII.get(Opc); 9033 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 9034 assert(MCID.hasOptionalDef() && 9035 "optionally flag setting instruction missing optional def operand"); 9036 assert(MCID.NumOperands == Inst.getNumOperands() && 9037 "operand count mismatch!"); 9038 // Find the optional-def operand (cc_out). 9039 unsigned OpNo; 9040 for (OpNo = 0; 9041 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 9042 ++OpNo) 9043 ; 9044 // If we're parsing Thumb1, reject it completely. 9045 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 9046 return Match_RequiresFlagSetting; 9047 // If we're parsing Thumb2, which form is legal depends on whether we're 9048 // in an IT block. 9049 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 9050 !inITBlock()) 9051 return Match_RequiresITBlock; 9052 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 9053 inITBlock()) 9054 return Match_RequiresNotITBlock; 9055 // LSL with zero immediate is not allowed in an IT block 9056 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 9057 return Match_RequiresNotITBlock; 9058 } else if (isThumbOne()) { 9059 // Some high-register supporting Thumb1 encodings only allow both registers 9060 // to be from r0-r7 when in Thumb2. 9061 if (Opc == ARM::tADDhirr && !hasV6MOps() && 9062 isARMLowRegister(Inst.getOperand(1).getReg()) && 9063 isARMLowRegister(Inst.getOperand(2).getReg())) 9064 return Match_RequiresThumb2; 9065 // Others only require ARMv6 or later. 9066 else if (Opc == ARM::tMOVr && !hasV6Ops() && 9067 isARMLowRegister(Inst.getOperand(0).getReg()) && 9068 isARMLowRegister(Inst.getOperand(1).getReg())) 9069 return Match_RequiresV6; 9070 } 9071 9072 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 9073 // than the loop below can handle, so it uses the GPRnopc register class and 9074 // we do SP handling here. 9075 if (Opc == ARM::t2MOVr && !hasV8Ops()) 9076 { 9077 // SP as both source and destination is not allowed 9078 if (Inst.getOperand(0).getReg() == ARM::SP && 9079 Inst.getOperand(1).getReg() == ARM::SP) 9080 return Match_RequiresV8; 9081 // When flags-setting SP as either source or destination is not allowed 9082 if (Inst.getOperand(4).getReg() == ARM::CPSR && 9083 (Inst.getOperand(0).getReg() == ARM::SP || 9084 Inst.getOperand(1).getReg() == ARM::SP)) 9085 return Match_RequiresV8; 9086 } 9087 9088 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 9089 // ARMv8-A. 9090 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 9091 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 9092 return Match_InvalidOperand; 9093 9094 for (unsigned I = 0; I < MCID.NumOperands; ++I) 9095 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 9096 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 9097 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 9098 return Match_RequiresV8; 9099 else if (Inst.getOperand(I).getReg() == ARM::PC) 9100 return Match_InvalidOperand; 9101 } 9102 9103 return Match_Success; 9104 } 9105 9106 namespace llvm { 9107 9108 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 9109 return true; // In an assembly source, no need to second-guess 9110 } 9111 9112 } // end namespace llvm 9113 9114 // Returns true if Inst is unpredictable if it is in and IT block, but is not 9115 // the last instruction in the block. 9116 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 9117 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9118 9119 // All branch & call instructions terminate IT blocks with the exception of 9120 // SVC. 9121 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 9122 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 9123 return true; 9124 9125 // Any arithmetic instruction which writes to the PC also terminates the IT 9126 // block. 9127 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 9128 MCOperand &Op = Inst.getOperand(OpIdx); 9129 if (Op.isReg() && Op.getReg() == ARM::PC) 9130 return true; 9131 } 9132 9133 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 9134 return true; 9135 9136 // Instructions with variable operand lists, which write to the variable 9137 // operands. We only care about Thumb instructions here, as ARM instructions 9138 // obviously can't be in an IT block. 9139 switch (Inst.getOpcode()) { 9140 case ARM::tLDMIA: 9141 case ARM::t2LDMIA: 9142 case ARM::t2LDMIA_UPD: 9143 case ARM::t2LDMDB: 9144 case ARM::t2LDMDB_UPD: 9145 if (listContainsReg(Inst, 3, ARM::PC)) 9146 return true; 9147 break; 9148 case ARM::tPOP: 9149 if (listContainsReg(Inst, 2, ARM::PC)) 9150 return true; 9151 break; 9152 } 9153 9154 return false; 9155 } 9156 9157 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9158 SmallVectorImpl<NearMissInfo> &NearMisses, 9159 bool MatchingInlineAsm, 9160 bool &EmitInITBlock, 9161 MCStreamer &Out) { 9162 // If we can't use an implicit IT block here, just match as normal. 9163 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9164 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9165 9166 // Try to match the instruction in an extension of the current IT block (if 9167 // there is one). 9168 if (inImplicitITBlock()) { 9169 extendImplicitITBlock(ITState.Cond); 9170 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9171 Match_Success) { 9172 // The match succeded, but we still have to check that the instruction is 9173 // valid in this implicit IT block. 9174 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9175 if (MCID.isPredicable()) { 9176 ARMCC::CondCodes InstCond = 9177 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9178 .getImm(); 9179 ARMCC::CondCodes ITCond = currentITCond(); 9180 if (InstCond == ITCond) { 9181 EmitInITBlock = true; 9182 return Match_Success; 9183 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9184 invertCurrentITCondition(); 9185 EmitInITBlock = true; 9186 return Match_Success; 9187 } 9188 } 9189 } 9190 rewindImplicitITPosition(); 9191 } 9192 9193 // Finish the current IT block, and try to match outside any IT block. 9194 flushPendingInstructions(Out); 9195 unsigned PlainMatchResult = 9196 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9197 if (PlainMatchResult == Match_Success) { 9198 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9199 if (MCID.isPredicable()) { 9200 ARMCC::CondCodes InstCond = 9201 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9202 .getImm(); 9203 // Some forms of the branch instruction have their own condition code 9204 // fields, so can be conditionally executed without an IT block. 9205 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9206 EmitInITBlock = false; 9207 return Match_Success; 9208 } 9209 if (InstCond == ARMCC::AL) { 9210 EmitInITBlock = false; 9211 return Match_Success; 9212 } 9213 } else { 9214 EmitInITBlock = false; 9215 return Match_Success; 9216 } 9217 } 9218 9219 // Try to match in a new IT block. The matcher doesn't check the actual 9220 // condition, so we create an IT block with a dummy condition, and fix it up 9221 // once we know the actual condition. 9222 startImplicitITBlock(); 9223 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9224 Match_Success) { 9225 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9226 if (MCID.isPredicable()) { 9227 ITState.Cond = 9228 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9229 .getImm(); 9230 EmitInITBlock = true; 9231 return Match_Success; 9232 } 9233 } 9234 discardImplicitITBlock(); 9235 9236 // If none of these succeed, return the error we got when trying to match 9237 // outside any IT blocks. 9238 EmitInITBlock = false; 9239 return PlainMatchResult; 9240 } 9241 9242 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS, 9243 unsigned VariantID = 0); 9244 9245 static const char *getSubtargetFeatureName(uint64_t Val); 9246 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9247 OperandVector &Operands, 9248 MCStreamer &Out, uint64_t &ErrorInfo, 9249 bool MatchingInlineAsm) { 9250 MCInst Inst; 9251 unsigned MatchResult; 9252 bool PendConditionalInstruction = false; 9253 9254 SmallVector<NearMissInfo, 4> NearMisses; 9255 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9256 PendConditionalInstruction, Out); 9257 9258 switch (MatchResult) { 9259 case Match_Success: 9260 // Context sensitive operand constraints aren't handled by the matcher, 9261 // so check them here. 9262 if (validateInstruction(Inst, Operands)) { 9263 // Still progress the IT block, otherwise one wrong condition causes 9264 // nasty cascading errors. 9265 forwardITPosition(); 9266 return true; 9267 } 9268 9269 { // processInstruction() updates inITBlock state, we need to save it away 9270 bool wasInITBlock = inITBlock(); 9271 9272 // Some instructions need post-processing to, for example, tweak which 9273 // encoding is selected. Loop on it while changes happen so the 9274 // individual transformations can chain off each other. E.g., 9275 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9276 while (processInstruction(Inst, Operands, Out)) 9277 ; 9278 9279 // Only after the instruction is fully processed, we can validate it 9280 if (wasInITBlock && hasV8Ops() && isThumb() && 9281 !isV8EligibleForIT(&Inst)) { 9282 Warning(IDLoc, "deprecated instruction in IT block"); 9283 } 9284 } 9285 9286 // Only move forward at the very end so that everything in validate 9287 // and process gets a consistent answer about whether we're in an IT 9288 // block. 9289 forwardITPosition(); 9290 9291 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9292 // doesn't actually encode. 9293 if (Inst.getOpcode() == ARM::ITasm) 9294 return false; 9295 9296 Inst.setLoc(IDLoc); 9297 if (PendConditionalInstruction) { 9298 PendingConditionalInsts.push_back(Inst); 9299 if (isITBlockFull() || isITBlockTerminator(Inst)) 9300 flushPendingInstructions(Out); 9301 } else { 9302 Out.EmitInstruction(Inst, getSTI()); 9303 } 9304 return false; 9305 case Match_NearMisses: 9306 ReportNearMisses(NearMisses, IDLoc, Operands); 9307 return true; 9308 case Match_MnemonicFail: { 9309 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9310 std::string Suggestion = ARMMnemonicSpellCheck( 9311 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9312 return Error(IDLoc, "invalid instruction" + Suggestion, 9313 ((ARMOperand &)*Operands[0]).getLocRange()); 9314 } 9315 } 9316 9317 llvm_unreachable("Implement any new match types added!"); 9318 } 9319 9320 /// parseDirective parses the arm specific directives 9321 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9322 const MCObjectFileInfo::Environment Format = 9323 getContext().getObjectFileInfo()->getObjectFileType(); 9324 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9325 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9326 9327 StringRef IDVal = DirectiveID.getIdentifier(); 9328 if (IDVal == ".word") 9329 parseLiteralValues(4, DirectiveID.getLoc()); 9330 else if (IDVal == ".short" || IDVal == ".hword") 9331 parseLiteralValues(2, DirectiveID.getLoc()); 9332 else if (IDVal == ".thumb") 9333 parseDirectiveThumb(DirectiveID.getLoc()); 9334 else if (IDVal == ".arm") 9335 parseDirectiveARM(DirectiveID.getLoc()); 9336 else if (IDVal == ".thumb_func") 9337 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9338 else if (IDVal == ".code") 9339 parseDirectiveCode(DirectiveID.getLoc()); 9340 else if (IDVal == ".syntax") 9341 parseDirectiveSyntax(DirectiveID.getLoc()); 9342 else if (IDVal == ".unreq") 9343 parseDirectiveUnreq(DirectiveID.getLoc()); 9344 else if (IDVal == ".fnend") 9345 parseDirectiveFnEnd(DirectiveID.getLoc()); 9346 else if (IDVal == ".cantunwind") 9347 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9348 else if (IDVal == ".personality") 9349 parseDirectivePersonality(DirectiveID.getLoc()); 9350 else if (IDVal == ".handlerdata") 9351 parseDirectiveHandlerData(DirectiveID.getLoc()); 9352 else if (IDVal == ".setfp") 9353 parseDirectiveSetFP(DirectiveID.getLoc()); 9354 else if (IDVal == ".pad") 9355 parseDirectivePad(DirectiveID.getLoc()); 9356 else if (IDVal == ".save") 9357 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9358 else if (IDVal == ".vsave") 9359 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9360 else if (IDVal == ".ltorg" || IDVal == ".pool") 9361 parseDirectiveLtorg(DirectiveID.getLoc()); 9362 else if (IDVal == ".even") 9363 parseDirectiveEven(DirectiveID.getLoc()); 9364 else if (IDVal == ".personalityindex") 9365 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9366 else if (IDVal == ".unwind_raw") 9367 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9368 else if (IDVal == ".movsp") 9369 parseDirectiveMovSP(DirectiveID.getLoc()); 9370 else if (IDVal == ".arch_extension") 9371 parseDirectiveArchExtension(DirectiveID.getLoc()); 9372 else if (IDVal == ".align") 9373 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9374 else if (IDVal == ".thumb_set") 9375 parseDirectiveThumbSet(DirectiveID.getLoc()); 9376 else if (IDVal == ".inst") 9377 parseDirectiveInst(DirectiveID.getLoc()); 9378 else if (IDVal == ".inst.n") 9379 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9380 else if (IDVal == ".inst.w") 9381 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9382 else if (!IsMachO && !IsCOFF) { 9383 if (IDVal == ".arch") 9384 parseDirectiveArch(DirectiveID.getLoc()); 9385 else if (IDVal == ".cpu") 9386 parseDirectiveCPU(DirectiveID.getLoc()); 9387 else if (IDVal == ".eabi_attribute") 9388 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9389 else if (IDVal == ".fpu") 9390 parseDirectiveFPU(DirectiveID.getLoc()); 9391 else if (IDVal == ".fnstart") 9392 parseDirectiveFnStart(DirectiveID.getLoc()); 9393 else if (IDVal == ".object_arch") 9394 parseDirectiveObjectArch(DirectiveID.getLoc()); 9395 else if (IDVal == ".tlsdescseq") 9396 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9397 else 9398 return true; 9399 } else 9400 return true; 9401 return false; 9402 } 9403 9404 /// parseLiteralValues 9405 /// ::= .hword expression [, expression]* 9406 /// ::= .short expression [, expression]* 9407 /// ::= .word expression [, expression]* 9408 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9409 auto parseOne = [&]() -> bool { 9410 const MCExpr *Value; 9411 if (getParser().parseExpression(Value)) 9412 return true; 9413 getParser().getStreamer().EmitValue(Value, Size, L); 9414 return false; 9415 }; 9416 return (parseMany(parseOne)); 9417 } 9418 9419 /// parseDirectiveThumb 9420 /// ::= .thumb 9421 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9422 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9423 check(!hasThumb(), L, "target does not support Thumb mode")) 9424 return true; 9425 9426 if (!isThumb()) 9427 SwitchMode(); 9428 9429 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9430 return false; 9431 } 9432 9433 /// parseDirectiveARM 9434 /// ::= .arm 9435 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9436 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9437 check(!hasARM(), L, "target does not support ARM mode")) 9438 return true; 9439 9440 if (isThumb()) 9441 SwitchMode(); 9442 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9443 return false; 9444 } 9445 9446 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9447 // We need to flush the current implicit IT block on a label, because it is 9448 // not legal to branch into an IT block. 9449 flushPendingInstructions(getStreamer()); 9450 if (NextSymbolIsThumb) { 9451 getParser().getStreamer().EmitThumbFunc(Symbol); 9452 NextSymbolIsThumb = false; 9453 } 9454 } 9455 9456 /// parseDirectiveThumbFunc 9457 /// ::= .thumbfunc symbol_name 9458 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9459 MCAsmParser &Parser = getParser(); 9460 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9461 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9462 9463 // Darwin asm has (optionally) function name after .thumb_func direction 9464 // ELF doesn't 9465 9466 if (IsMachO) { 9467 if (Parser.getTok().is(AsmToken::Identifier) || 9468 Parser.getTok().is(AsmToken::String)) { 9469 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9470 Parser.getTok().getIdentifier()); 9471 getParser().getStreamer().EmitThumbFunc(Func); 9472 Parser.Lex(); 9473 if (parseToken(AsmToken::EndOfStatement, 9474 "unexpected token in '.thumb_func' directive")) 9475 return true; 9476 return false; 9477 } 9478 } 9479 9480 if (parseToken(AsmToken::EndOfStatement, 9481 "unexpected token in '.thumb_func' directive")) 9482 return true; 9483 9484 NextSymbolIsThumb = true; 9485 return false; 9486 } 9487 9488 /// parseDirectiveSyntax 9489 /// ::= .syntax unified | divided 9490 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9491 MCAsmParser &Parser = getParser(); 9492 const AsmToken &Tok = Parser.getTok(); 9493 if (Tok.isNot(AsmToken::Identifier)) { 9494 Error(L, "unexpected token in .syntax directive"); 9495 return false; 9496 } 9497 9498 StringRef Mode = Tok.getString(); 9499 Parser.Lex(); 9500 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9501 "'.syntax divided' arm assembly not supported") || 9502 check(Mode != "unified" && Mode != "UNIFIED", L, 9503 "unrecognized syntax mode in .syntax directive") || 9504 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9505 return true; 9506 9507 // TODO tell the MC streamer the mode 9508 // getParser().getStreamer().Emit???(); 9509 return false; 9510 } 9511 9512 /// parseDirectiveCode 9513 /// ::= .code 16 | 32 9514 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9515 MCAsmParser &Parser = getParser(); 9516 const AsmToken &Tok = Parser.getTok(); 9517 if (Tok.isNot(AsmToken::Integer)) 9518 return Error(L, "unexpected token in .code directive"); 9519 int64_t Val = Parser.getTok().getIntVal(); 9520 if (Val != 16 && Val != 32) { 9521 Error(L, "invalid operand to .code directive"); 9522 return false; 9523 } 9524 Parser.Lex(); 9525 9526 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9527 return true; 9528 9529 if (Val == 16) { 9530 if (!hasThumb()) 9531 return Error(L, "target does not support Thumb mode"); 9532 9533 if (!isThumb()) 9534 SwitchMode(); 9535 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9536 } else { 9537 if (!hasARM()) 9538 return Error(L, "target does not support ARM mode"); 9539 9540 if (isThumb()) 9541 SwitchMode(); 9542 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9543 } 9544 9545 return false; 9546 } 9547 9548 /// parseDirectiveReq 9549 /// ::= name .req registername 9550 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9551 MCAsmParser &Parser = getParser(); 9552 Parser.Lex(); // Eat the '.req' token. 9553 unsigned Reg; 9554 SMLoc SRegLoc, ERegLoc; 9555 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9556 "register name expected") || 9557 parseToken(AsmToken::EndOfStatement, 9558 "unexpected input in .req directive.")) 9559 return true; 9560 9561 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9562 return Error(SRegLoc, 9563 "redefinition of '" + Name + "' does not match original."); 9564 9565 return false; 9566 } 9567 9568 /// parseDirectiveUneq 9569 /// ::= .unreq registername 9570 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9571 MCAsmParser &Parser = getParser(); 9572 if (Parser.getTok().isNot(AsmToken::Identifier)) 9573 return Error(L, "unexpected input in .unreq directive."); 9574 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9575 Parser.Lex(); // Eat the identifier. 9576 if (parseToken(AsmToken::EndOfStatement, 9577 "unexpected input in '.unreq' directive")) 9578 return true; 9579 return false; 9580 } 9581 9582 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9583 // before, if supported by the new target, or emit mapping symbols for the mode 9584 // switch. 9585 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9586 if (WasThumb != isThumb()) { 9587 if (WasThumb && hasThumb()) { 9588 // Stay in Thumb mode 9589 SwitchMode(); 9590 } else if (!WasThumb && hasARM()) { 9591 // Stay in ARM mode 9592 SwitchMode(); 9593 } else { 9594 // Mode switch forced, because the new arch doesn't support the old mode. 9595 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9596 : MCAF_Code32); 9597 // Warn about the implcit mode switch. GAS does not switch modes here, 9598 // but instead stays in the old mode, reporting an error on any following 9599 // instructions as the mode does not exist on the target. 9600 Warning(Loc, Twine("new target does not support ") + 9601 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9602 (!WasThumb ? "thumb" : "arm") + " mode"); 9603 } 9604 } 9605 } 9606 9607 /// parseDirectiveArch 9608 /// ::= .arch token 9609 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9610 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9611 ARM::ArchKind ID = ARM::parseArch(Arch); 9612 9613 if (ID == ARM::ArchKind::INVALID) 9614 return Error(L, "Unknown arch name"); 9615 9616 bool WasThumb = isThumb(); 9617 Triple T; 9618 MCSubtargetInfo &STI = copySTI(); 9619 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9620 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9621 FixModeAfterArchChange(WasThumb, L); 9622 9623 getTargetStreamer().emitArch(ID); 9624 return false; 9625 } 9626 9627 /// parseDirectiveEabiAttr 9628 /// ::= .eabi_attribute int, int [, "str"] 9629 /// ::= .eabi_attribute Tag_name, int [, "str"] 9630 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9631 MCAsmParser &Parser = getParser(); 9632 int64_t Tag; 9633 SMLoc TagLoc; 9634 TagLoc = Parser.getTok().getLoc(); 9635 if (Parser.getTok().is(AsmToken::Identifier)) { 9636 StringRef Name = Parser.getTok().getIdentifier(); 9637 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9638 if (Tag == -1) { 9639 Error(TagLoc, "attribute name not recognised: " + Name); 9640 return false; 9641 } 9642 Parser.Lex(); 9643 } else { 9644 const MCExpr *AttrExpr; 9645 9646 TagLoc = Parser.getTok().getLoc(); 9647 if (Parser.parseExpression(AttrExpr)) 9648 return true; 9649 9650 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9651 if (check(!CE, TagLoc, "expected numeric constant")) 9652 return true; 9653 9654 Tag = CE->getValue(); 9655 } 9656 9657 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9658 return true; 9659 9660 StringRef StringValue = ""; 9661 bool IsStringValue = false; 9662 9663 int64_t IntegerValue = 0; 9664 bool IsIntegerValue = false; 9665 9666 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9667 IsStringValue = true; 9668 else if (Tag == ARMBuildAttrs::compatibility) { 9669 IsStringValue = true; 9670 IsIntegerValue = true; 9671 } else if (Tag < 32 || Tag % 2 == 0) 9672 IsIntegerValue = true; 9673 else if (Tag % 2 == 1) 9674 IsStringValue = true; 9675 else 9676 llvm_unreachable("invalid tag type"); 9677 9678 if (IsIntegerValue) { 9679 const MCExpr *ValueExpr; 9680 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9681 if (Parser.parseExpression(ValueExpr)) 9682 return true; 9683 9684 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9685 if (!CE) 9686 return Error(ValueExprLoc, "expected numeric constant"); 9687 IntegerValue = CE->getValue(); 9688 } 9689 9690 if (Tag == ARMBuildAttrs::compatibility) { 9691 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9692 return true; 9693 } 9694 9695 if (IsStringValue) { 9696 if (Parser.getTok().isNot(AsmToken::String)) 9697 return Error(Parser.getTok().getLoc(), "bad string constant"); 9698 9699 StringValue = Parser.getTok().getStringContents(); 9700 Parser.Lex(); 9701 } 9702 9703 if (Parser.parseToken(AsmToken::EndOfStatement, 9704 "unexpected token in '.eabi_attribute' directive")) 9705 return true; 9706 9707 if (IsIntegerValue && IsStringValue) { 9708 assert(Tag == ARMBuildAttrs::compatibility); 9709 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9710 } else if (IsIntegerValue) 9711 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9712 else if (IsStringValue) 9713 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9714 return false; 9715 } 9716 9717 /// parseDirectiveCPU 9718 /// ::= .cpu str 9719 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9720 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9721 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9722 9723 // FIXME: This is using table-gen data, but should be moved to 9724 // ARMTargetParser once that is table-gen'd. 9725 if (!getSTI().isCPUStringValid(CPU)) 9726 return Error(L, "Unknown CPU name"); 9727 9728 bool WasThumb = isThumb(); 9729 MCSubtargetInfo &STI = copySTI(); 9730 STI.setDefaultFeatures(CPU, ""); 9731 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9732 FixModeAfterArchChange(WasThumb, L); 9733 9734 return false; 9735 } 9736 9737 /// parseDirectiveFPU 9738 /// ::= .fpu str 9739 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9740 SMLoc FPUNameLoc = getTok().getLoc(); 9741 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9742 9743 unsigned ID = ARM::parseFPU(FPU); 9744 std::vector<StringRef> Features; 9745 if (!ARM::getFPUFeatures(ID, Features)) 9746 return Error(FPUNameLoc, "Unknown FPU name"); 9747 9748 MCSubtargetInfo &STI = copySTI(); 9749 for (auto Feature : Features) 9750 STI.ApplyFeatureFlag(Feature); 9751 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9752 9753 getTargetStreamer().emitFPU(ID); 9754 return false; 9755 } 9756 9757 /// parseDirectiveFnStart 9758 /// ::= .fnstart 9759 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9760 if (parseToken(AsmToken::EndOfStatement, 9761 "unexpected token in '.fnstart' directive")) 9762 return true; 9763 9764 if (UC.hasFnStart()) { 9765 Error(L, ".fnstart starts before the end of previous one"); 9766 UC.emitFnStartLocNotes(); 9767 return true; 9768 } 9769 9770 // Reset the unwind directives parser state 9771 UC.reset(); 9772 9773 getTargetStreamer().emitFnStart(); 9774 9775 UC.recordFnStart(L); 9776 return false; 9777 } 9778 9779 /// parseDirectiveFnEnd 9780 /// ::= .fnend 9781 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9782 if (parseToken(AsmToken::EndOfStatement, 9783 "unexpected token in '.fnend' directive")) 9784 return true; 9785 // Check the ordering of unwind directives 9786 if (!UC.hasFnStart()) 9787 return Error(L, ".fnstart must precede .fnend directive"); 9788 9789 // Reset the unwind directives parser state 9790 getTargetStreamer().emitFnEnd(); 9791 9792 UC.reset(); 9793 return false; 9794 } 9795 9796 /// parseDirectiveCantUnwind 9797 /// ::= .cantunwind 9798 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9799 if (parseToken(AsmToken::EndOfStatement, 9800 "unexpected token in '.cantunwind' directive")) 9801 return true; 9802 9803 UC.recordCantUnwind(L); 9804 // Check the ordering of unwind directives 9805 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9806 return true; 9807 9808 if (UC.hasHandlerData()) { 9809 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9810 UC.emitHandlerDataLocNotes(); 9811 return true; 9812 } 9813 if (UC.hasPersonality()) { 9814 Error(L, ".cantunwind can't be used with .personality directive"); 9815 UC.emitPersonalityLocNotes(); 9816 return true; 9817 } 9818 9819 getTargetStreamer().emitCantUnwind(); 9820 return false; 9821 } 9822 9823 /// parseDirectivePersonality 9824 /// ::= .personality name 9825 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9826 MCAsmParser &Parser = getParser(); 9827 bool HasExistingPersonality = UC.hasPersonality(); 9828 9829 // Parse the name of the personality routine 9830 if (Parser.getTok().isNot(AsmToken::Identifier)) 9831 return Error(L, "unexpected input in .personality directive."); 9832 StringRef Name(Parser.getTok().getIdentifier()); 9833 Parser.Lex(); 9834 9835 if (parseToken(AsmToken::EndOfStatement, 9836 "unexpected token in '.personality' directive")) 9837 return true; 9838 9839 UC.recordPersonality(L); 9840 9841 // Check the ordering of unwind directives 9842 if (!UC.hasFnStart()) 9843 return Error(L, ".fnstart must precede .personality directive"); 9844 if (UC.cantUnwind()) { 9845 Error(L, ".personality can't be used with .cantunwind directive"); 9846 UC.emitCantUnwindLocNotes(); 9847 return true; 9848 } 9849 if (UC.hasHandlerData()) { 9850 Error(L, ".personality must precede .handlerdata directive"); 9851 UC.emitHandlerDataLocNotes(); 9852 return true; 9853 } 9854 if (HasExistingPersonality) { 9855 Error(L, "multiple personality directives"); 9856 UC.emitPersonalityLocNotes(); 9857 return true; 9858 } 9859 9860 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9861 getTargetStreamer().emitPersonality(PR); 9862 return false; 9863 } 9864 9865 /// parseDirectiveHandlerData 9866 /// ::= .handlerdata 9867 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9868 if (parseToken(AsmToken::EndOfStatement, 9869 "unexpected token in '.handlerdata' directive")) 9870 return true; 9871 9872 UC.recordHandlerData(L); 9873 // Check the ordering of unwind directives 9874 if (!UC.hasFnStart()) 9875 return Error(L, ".fnstart must precede .personality directive"); 9876 if (UC.cantUnwind()) { 9877 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9878 UC.emitCantUnwindLocNotes(); 9879 return true; 9880 } 9881 9882 getTargetStreamer().emitHandlerData(); 9883 return false; 9884 } 9885 9886 /// parseDirectiveSetFP 9887 /// ::= .setfp fpreg, spreg [, offset] 9888 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9889 MCAsmParser &Parser = getParser(); 9890 // Check the ordering of unwind directives 9891 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9892 check(UC.hasHandlerData(), L, 9893 ".setfp must precede .handlerdata directive")) 9894 return true; 9895 9896 // Parse fpreg 9897 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9898 int FPReg = tryParseRegister(); 9899 9900 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9901 Parser.parseToken(AsmToken::Comma, "comma expected")) 9902 return true; 9903 9904 // Parse spreg 9905 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9906 int SPReg = tryParseRegister(); 9907 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9908 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9909 "register should be either $sp or the latest fp register")) 9910 return true; 9911 9912 // Update the frame pointer register 9913 UC.saveFPReg(FPReg); 9914 9915 // Parse offset 9916 int64_t Offset = 0; 9917 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9918 if (Parser.getTok().isNot(AsmToken::Hash) && 9919 Parser.getTok().isNot(AsmToken::Dollar)) 9920 return Error(Parser.getTok().getLoc(), "'#' expected"); 9921 Parser.Lex(); // skip hash token. 9922 9923 const MCExpr *OffsetExpr; 9924 SMLoc ExLoc = Parser.getTok().getLoc(); 9925 SMLoc EndLoc; 9926 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9927 return Error(ExLoc, "malformed setfp offset"); 9928 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9929 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9930 return true; 9931 Offset = CE->getValue(); 9932 } 9933 9934 if (Parser.parseToken(AsmToken::EndOfStatement)) 9935 return true; 9936 9937 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9938 static_cast<unsigned>(SPReg), Offset); 9939 return false; 9940 } 9941 9942 /// parseDirective 9943 /// ::= .pad offset 9944 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9945 MCAsmParser &Parser = getParser(); 9946 // Check the ordering of unwind directives 9947 if (!UC.hasFnStart()) 9948 return Error(L, ".fnstart must precede .pad directive"); 9949 if (UC.hasHandlerData()) 9950 return Error(L, ".pad must precede .handlerdata directive"); 9951 9952 // Parse the offset 9953 if (Parser.getTok().isNot(AsmToken::Hash) && 9954 Parser.getTok().isNot(AsmToken::Dollar)) 9955 return Error(Parser.getTok().getLoc(), "'#' expected"); 9956 Parser.Lex(); // skip hash token. 9957 9958 const MCExpr *OffsetExpr; 9959 SMLoc ExLoc = Parser.getTok().getLoc(); 9960 SMLoc EndLoc; 9961 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9962 return Error(ExLoc, "malformed pad offset"); 9963 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9964 if (!CE) 9965 return Error(ExLoc, "pad offset must be an immediate"); 9966 9967 if (parseToken(AsmToken::EndOfStatement, 9968 "unexpected token in '.pad' directive")) 9969 return true; 9970 9971 getTargetStreamer().emitPad(CE->getValue()); 9972 return false; 9973 } 9974 9975 /// parseDirectiveRegSave 9976 /// ::= .save { registers } 9977 /// ::= .vsave { registers } 9978 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9979 // Check the ordering of unwind directives 9980 if (!UC.hasFnStart()) 9981 return Error(L, ".fnstart must precede .save or .vsave directives"); 9982 if (UC.hasHandlerData()) 9983 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9984 9985 // RAII object to make sure parsed operands are deleted. 9986 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9987 9988 // Parse the register list 9989 if (parseRegisterList(Operands) || 9990 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9991 return true; 9992 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9993 if (!IsVector && !Op.isRegList()) 9994 return Error(L, ".save expects GPR registers"); 9995 if (IsVector && !Op.isDPRRegList()) 9996 return Error(L, ".vsave expects DPR registers"); 9997 9998 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9999 return false; 10000 } 10001 10002 /// parseDirectiveInst 10003 /// ::= .inst opcode [, ...] 10004 /// ::= .inst.n opcode [, ...] 10005 /// ::= .inst.w opcode [, ...] 10006 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 10007 int Width = 4; 10008 10009 if (isThumb()) { 10010 switch (Suffix) { 10011 case 'n': 10012 Width = 2; 10013 break; 10014 case 'w': 10015 break; 10016 default: 10017 Width = 0; 10018 break; 10019 } 10020 } else { 10021 if (Suffix) 10022 return Error(Loc, "width suffixes are invalid in ARM mode"); 10023 } 10024 10025 auto parseOne = [&]() -> bool { 10026 const MCExpr *Expr; 10027 if (getParser().parseExpression(Expr)) 10028 return true; 10029 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10030 if (!Value) { 10031 return Error(Loc, "expected constant expression"); 10032 } 10033 10034 char CurSuffix = Suffix; 10035 switch (Width) { 10036 case 2: 10037 if (Value->getValue() > 0xffff) 10038 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 10039 break; 10040 case 4: 10041 if (Value->getValue() > 0xffffffff) 10042 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 10043 " operand is too big"); 10044 break; 10045 case 0: 10046 // Thumb mode, no width indicated. Guess from the opcode, if possible. 10047 if (Value->getValue() < 0xe800) 10048 CurSuffix = 'n'; 10049 else if (Value->getValue() >= 0xe8000000) 10050 CurSuffix = 'w'; 10051 else 10052 return Error(Loc, "cannot determine Thumb instruction size, " 10053 "use inst.n/inst.w instead"); 10054 break; 10055 default: 10056 llvm_unreachable("only supported widths are 2 and 4"); 10057 } 10058 10059 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 10060 return false; 10061 }; 10062 10063 if (parseOptionalToken(AsmToken::EndOfStatement)) 10064 return Error(Loc, "expected expression following directive"); 10065 if (parseMany(parseOne)) 10066 return true; 10067 return false; 10068 } 10069 10070 /// parseDirectiveLtorg 10071 /// ::= .ltorg | .pool 10072 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10073 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10074 return true; 10075 getTargetStreamer().emitCurrentConstantPool(); 10076 return false; 10077 } 10078 10079 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10080 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10081 10082 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10083 return true; 10084 10085 if (!Section) { 10086 getStreamer().InitSections(false); 10087 Section = getStreamer().getCurrentSectionOnly(); 10088 } 10089 10090 assert(Section && "must have section to emit alignment"); 10091 if (Section->UseCodeAlign()) 10092 getStreamer().EmitCodeAlignment(2); 10093 else 10094 getStreamer().EmitValueToAlignment(2); 10095 10096 return false; 10097 } 10098 10099 /// parseDirectivePersonalityIndex 10100 /// ::= .personalityindex index 10101 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10102 MCAsmParser &Parser = getParser(); 10103 bool HasExistingPersonality = UC.hasPersonality(); 10104 10105 const MCExpr *IndexExpression; 10106 SMLoc IndexLoc = Parser.getTok().getLoc(); 10107 if (Parser.parseExpression(IndexExpression) || 10108 parseToken(AsmToken::EndOfStatement, 10109 "unexpected token in '.personalityindex' directive")) { 10110 return true; 10111 } 10112 10113 UC.recordPersonalityIndex(L); 10114 10115 if (!UC.hasFnStart()) { 10116 return Error(L, ".fnstart must precede .personalityindex directive"); 10117 } 10118 if (UC.cantUnwind()) { 10119 Error(L, ".personalityindex cannot be used with .cantunwind"); 10120 UC.emitCantUnwindLocNotes(); 10121 return true; 10122 } 10123 if (UC.hasHandlerData()) { 10124 Error(L, ".personalityindex must precede .handlerdata directive"); 10125 UC.emitHandlerDataLocNotes(); 10126 return true; 10127 } 10128 if (HasExistingPersonality) { 10129 Error(L, "multiple personality directives"); 10130 UC.emitPersonalityLocNotes(); 10131 return true; 10132 } 10133 10134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10135 if (!CE) 10136 return Error(IndexLoc, "index must be a constant number"); 10137 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10138 return Error(IndexLoc, 10139 "personality routine index should be in range [0-3]"); 10140 10141 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10142 return false; 10143 } 10144 10145 /// parseDirectiveUnwindRaw 10146 /// ::= .unwind_raw offset, opcode [, opcode...] 10147 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10148 MCAsmParser &Parser = getParser(); 10149 int64_t StackOffset; 10150 const MCExpr *OffsetExpr; 10151 SMLoc OffsetLoc = getLexer().getLoc(); 10152 10153 if (!UC.hasFnStart()) 10154 return Error(L, ".fnstart must precede .unwind_raw directives"); 10155 if (getParser().parseExpression(OffsetExpr)) 10156 return Error(OffsetLoc, "expected expression"); 10157 10158 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10159 if (!CE) 10160 return Error(OffsetLoc, "offset must be a constant"); 10161 10162 StackOffset = CE->getValue(); 10163 10164 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10165 return true; 10166 10167 SmallVector<uint8_t, 16> Opcodes; 10168 10169 auto parseOne = [&]() -> bool { 10170 const MCExpr *OE; 10171 SMLoc OpcodeLoc = getLexer().getLoc(); 10172 if (check(getLexer().is(AsmToken::EndOfStatement) || 10173 Parser.parseExpression(OE), 10174 OpcodeLoc, "expected opcode expression")) 10175 return true; 10176 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10177 if (!OC) 10178 return Error(OpcodeLoc, "opcode value must be a constant"); 10179 const int64_t Opcode = OC->getValue(); 10180 if (Opcode & ~0xff) 10181 return Error(OpcodeLoc, "invalid opcode"); 10182 Opcodes.push_back(uint8_t(Opcode)); 10183 return false; 10184 }; 10185 10186 // Must have at least 1 element 10187 SMLoc OpcodeLoc = getLexer().getLoc(); 10188 if (parseOptionalToken(AsmToken::EndOfStatement)) 10189 return Error(OpcodeLoc, "expected opcode expression"); 10190 if (parseMany(parseOne)) 10191 return true; 10192 10193 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10194 return false; 10195 } 10196 10197 /// parseDirectiveTLSDescSeq 10198 /// ::= .tlsdescseq tls-variable 10199 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10200 MCAsmParser &Parser = getParser(); 10201 10202 if (getLexer().isNot(AsmToken::Identifier)) 10203 return TokError("expected variable after '.tlsdescseq' directive"); 10204 10205 const MCSymbolRefExpr *SRE = 10206 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10207 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10208 Lex(); 10209 10210 if (parseToken(AsmToken::EndOfStatement, 10211 "unexpected token in '.tlsdescseq' directive")) 10212 return true; 10213 10214 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10215 return false; 10216 } 10217 10218 /// parseDirectiveMovSP 10219 /// ::= .movsp reg [, #offset] 10220 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10221 MCAsmParser &Parser = getParser(); 10222 if (!UC.hasFnStart()) 10223 return Error(L, ".fnstart must precede .movsp directives"); 10224 if (UC.getFPReg() != ARM::SP) 10225 return Error(L, "unexpected .movsp directive"); 10226 10227 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10228 int SPReg = tryParseRegister(); 10229 if (SPReg == -1) 10230 return Error(SPRegLoc, "register expected"); 10231 if (SPReg == ARM::SP || SPReg == ARM::PC) 10232 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10233 10234 int64_t Offset = 0; 10235 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10236 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10237 return true; 10238 10239 const MCExpr *OffsetExpr; 10240 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10241 10242 if (Parser.parseExpression(OffsetExpr)) 10243 return Error(OffsetLoc, "malformed offset expression"); 10244 10245 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10246 if (!CE) 10247 return Error(OffsetLoc, "offset must be an immediate constant"); 10248 10249 Offset = CE->getValue(); 10250 } 10251 10252 if (parseToken(AsmToken::EndOfStatement, 10253 "unexpected token in '.movsp' directive")) 10254 return true; 10255 10256 getTargetStreamer().emitMovSP(SPReg, Offset); 10257 UC.saveFPReg(SPReg); 10258 10259 return false; 10260 } 10261 10262 /// parseDirectiveObjectArch 10263 /// ::= .object_arch name 10264 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10265 MCAsmParser &Parser = getParser(); 10266 if (getLexer().isNot(AsmToken::Identifier)) 10267 return Error(getLexer().getLoc(), "unexpected token"); 10268 10269 StringRef Arch = Parser.getTok().getString(); 10270 SMLoc ArchLoc = Parser.getTok().getLoc(); 10271 Lex(); 10272 10273 ARM::ArchKind ID = ARM::parseArch(Arch); 10274 10275 if (ID == ARM::ArchKind::INVALID) 10276 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10277 if (parseToken(AsmToken::EndOfStatement)) 10278 return true; 10279 10280 getTargetStreamer().emitObjectArch(ID); 10281 return false; 10282 } 10283 10284 /// parseDirectiveAlign 10285 /// ::= .align 10286 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10287 // NOTE: if this is not the end of the statement, fall back to the target 10288 // agnostic handling for this directive which will correctly handle this. 10289 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10290 // '.align' is target specifically handled to mean 2**2 byte alignment. 10291 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10292 assert(Section && "must have section to emit alignment"); 10293 if (Section->UseCodeAlign()) 10294 getStreamer().EmitCodeAlignment(4, 0); 10295 else 10296 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10297 return false; 10298 } 10299 return true; 10300 } 10301 10302 /// parseDirectiveThumbSet 10303 /// ::= .thumb_set name, value 10304 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10305 MCAsmParser &Parser = getParser(); 10306 10307 StringRef Name; 10308 if (check(Parser.parseIdentifier(Name), 10309 "expected identifier after '.thumb_set'") || 10310 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10311 return true; 10312 10313 MCSymbol *Sym; 10314 const MCExpr *Value; 10315 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10316 Parser, Sym, Value)) 10317 return true; 10318 10319 getTargetStreamer().emitThumbSet(Sym, Value); 10320 return false; 10321 } 10322 10323 /// Force static initialization. 10324 extern "C" void LLVMInitializeARMAsmParser() { 10325 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10326 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10327 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10328 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10329 } 10330 10331 #define GET_REGISTER_MATCHER 10332 #define GET_SUBTARGET_FEATURE_NAME 10333 #define GET_MATCHER_IMPLEMENTATION 10334 #define GET_MNEMONIC_SPELL_CHECKER 10335 #include "ARMGenAsmMatcher.inc" 10336 10337 // Some diagnostics need to vary with subtarget features, so they are handled 10338 // here. For example, the DPR class has either 16 or 32 registers, depending 10339 // on the FPU available. 10340 const char * 10341 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10342 switch (MatchError) { 10343 // rGPR contains sp starting with ARMv8. 10344 case Match_rGPR: 10345 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10346 : "operand must be a register in range [r0, r12] or r14"; 10347 // DPR contains 16 registers for some FPUs, and 32 for others. 10348 case Match_DPR: 10349 return hasD16() ? "operand must be a register in range [d0, d15]" 10350 : "operand must be a register in range [d0, d31]"; 10351 case Match_DPR_RegList: 10352 return hasD16() ? "operand must be a list of registers in range [d0, d15]" 10353 : "operand must be a list of registers in range [d0, d31]"; 10354 10355 // For all other diags, use the static string from tablegen. 10356 default: 10357 return getMatchKindDiag(MatchError); 10358 } 10359 } 10360 10361 // Process the list of near-misses, throwing away ones we don't want to report 10362 // to the user, and converting the rest to a source location and string that 10363 // should be reported. 10364 void 10365 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10366 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10367 SMLoc IDLoc, OperandVector &Operands) { 10368 // TODO: If operand didn't match, sub in a dummy one and run target 10369 // predicate, so that we can avoid reporting near-misses that are invalid? 10370 // TODO: Many operand types dont have SuperClasses set, so we report 10371 // redundant ones. 10372 // TODO: Some operands are superclasses of registers (e.g. 10373 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10374 // TODO: This is not all ARM-specific, can some of it be factored out? 10375 10376 // Record some information about near-misses that we have already seen, so 10377 // that we can avoid reporting redundant ones. For example, if there are 10378 // variants of an instruction that take 8- and 16-bit immediates, we want 10379 // to only report the widest one. 10380 std::multimap<unsigned, unsigned> OperandMissesSeen; 10381 SmallSet<uint64_t, 4> FeatureMissesSeen; 10382 bool ReportedTooFewOperands = false; 10383 10384 // Process the near-misses in reverse order, so that we see more general ones 10385 // first, and so can avoid emitting more specific ones. 10386 for (NearMissInfo &I : reverse(NearMissesIn)) { 10387 switch (I.getKind()) { 10388 case NearMissInfo::NearMissOperand: { 10389 SMLoc OperandLoc = 10390 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10391 const char *OperandDiag = 10392 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10393 10394 // If we have already emitted a message for a superclass, don't also report 10395 // the sub-class. We consider all operand classes that we don't have a 10396 // specialised diagnostic for to be equal for the propose of this check, 10397 // so that we don't report the generic error multiple times on the same 10398 // operand. 10399 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10400 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10401 if (std::any_of(PrevReports.first, PrevReports.second, 10402 [DupCheckMatchClass]( 10403 const std::pair<unsigned, unsigned> Pair) { 10404 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10405 return Pair.second == DupCheckMatchClass; 10406 else 10407 return isSubclass((MatchClassKind)DupCheckMatchClass, 10408 (MatchClassKind)Pair.second); 10409 })) 10410 break; 10411 OperandMissesSeen.insert( 10412 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10413 10414 NearMissMessage Message; 10415 Message.Loc = OperandLoc; 10416 if (OperandDiag) { 10417 Message.Message = OperandDiag; 10418 } else if (I.getOperandClass() == InvalidMatchClass) { 10419 Message.Message = "too many operands for instruction"; 10420 } else { 10421 Message.Message = "invalid operand for instruction"; 10422 LLVM_DEBUG( 10423 dbgs() << "Missing diagnostic string for operand class " 10424 << getMatchClassName((MatchClassKind)I.getOperandClass()) 10425 << I.getOperandClass() << ", error " << I.getOperandError() 10426 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10427 } 10428 NearMissesOut.emplace_back(Message); 10429 break; 10430 } 10431 case NearMissInfo::NearMissFeature: { 10432 uint64_t MissingFeatures = I.getFeatures(); 10433 // Don't report the same set of features twice. 10434 if (FeatureMissesSeen.count(MissingFeatures)) 10435 break; 10436 FeatureMissesSeen.insert(MissingFeatures); 10437 10438 // Special case: don't report a feature set which includes arm-mode for 10439 // targets that don't have ARM mode. 10440 if ((MissingFeatures & Feature_IsARM) && !hasARM()) 10441 break; 10442 // Don't report any near-misses that both require switching instruction 10443 // set, and adding other subtarget features. 10444 if (isThumb() && (MissingFeatures & Feature_IsARM) && 10445 (MissingFeatures & ~Feature_IsARM)) 10446 break; 10447 if (!isThumb() && (MissingFeatures & Feature_IsThumb) && 10448 (MissingFeatures & ~Feature_IsThumb)) 10449 break; 10450 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) && 10451 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb))) 10452 break; 10453 if (isMClass() && (MissingFeatures & Feature_HasNEON)) 10454 break; 10455 10456 NearMissMessage Message; 10457 Message.Loc = IDLoc; 10458 raw_svector_ostream OS(Message.Message); 10459 10460 OS << "instruction requires:"; 10461 uint64_t Mask = 1; 10462 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1); 10463 ++MaskPos) { 10464 if (MissingFeatures & Mask) { 10465 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask); 10466 } 10467 Mask <<= 1; 10468 } 10469 NearMissesOut.emplace_back(Message); 10470 10471 break; 10472 } 10473 case NearMissInfo::NearMissPredicate: { 10474 NearMissMessage Message; 10475 Message.Loc = IDLoc; 10476 switch (I.getPredicateError()) { 10477 case Match_RequiresNotITBlock: 10478 Message.Message = "flag setting instruction only valid outside IT block"; 10479 break; 10480 case Match_RequiresITBlock: 10481 Message.Message = "instruction only valid inside IT block"; 10482 break; 10483 case Match_RequiresV6: 10484 Message.Message = "instruction variant requires ARMv6 or later"; 10485 break; 10486 case Match_RequiresThumb2: 10487 Message.Message = "instruction variant requires Thumb2"; 10488 break; 10489 case Match_RequiresV8: 10490 Message.Message = "instruction variant requires ARMv8 or later"; 10491 break; 10492 case Match_RequiresFlagSetting: 10493 Message.Message = "no flag-preserving variant of this instruction available"; 10494 break; 10495 case Match_InvalidOperand: 10496 Message.Message = "invalid operand for instruction"; 10497 break; 10498 default: 10499 llvm_unreachable("Unhandled target predicate error"); 10500 break; 10501 } 10502 NearMissesOut.emplace_back(Message); 10503 break; 10504 } 10505 case NearMissInfo::NearMissTooFewOperands: { 10506 if (!ReportedTooFewOperands) { 10507 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10508 NearMissesOut.emplace_back(NearMissMessage{ 10509 EndLoc, StringRef("too few operands for instruction")}); 10510 ReportedTooFewOperands = true; 10511 } 10512 break; 10513 } 10514 case NearMissInfo::NoNearMiss: 10515 // This should never leave the matcher. 10516 llvm_unreachable("not a near-miss"); 10517 break; 10518 } 10519 } 10520 } 10521 10522 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10523 SMLoc IDLoc, OperandVector &Operands) { 10524 SmallVector<NearMissMessage, 4> Messages; 10525 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10526 10527 if (Messages.size() == 0) { 10528 // No near-misses were found, so the best we can do is "invalid 10529 // instruction". 10530 Error(IDLoc, "invalid instruction"); 10531 } else if (Messages.size() == 1) { 10532 // One near miss was found, report it as the sole error. 10533 Error(Messages[0].Loc, Messages[0].Message); 10534 } else { 10535 // More than one near miss, so report a generic "invalid instruction" 10536 // error, followed by notes for each of the near-misses. 10537 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10538 for (auto &M : Messages) { 10539 Note(M.Loc, M.Message); 10540 } 10541 } 10542 } 10543 10544 // FIXME: This structure should be moved inside ARMTargetParser 10545 // when we start to table-generate them, and we can use the ARM 10546 // flags below, that were generated by table-gen. 10547 static const struct { 10548 const unsigned Kind; 10549 const uint64_t ArchCheck; 10550 const FeatureBitset Features; 10551 } Extensions[] = { 10552 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10553 { ARM::AEK_CRYPTO, Feature_HasV8, 10554 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10555 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10556 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10557 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10558 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10559 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10560 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10561 // FIXME: Only available in A-class, isel not predicated 10562 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10563 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10564 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10565 // FIXME: Unsupported extensions. 10566 { ARM::AEK_OS, Feature_None, {} }, 10567 { ARM::AEK_IWMMXT, Feature_None, {} }, 10568 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10569 { ARM::AEK_MAVERICK, Feature_None, {} }, 10570 { ARM::AEK_XSCALE, Feature_None, {} }, 10571 }; 10572 10573 /// parseDirectiveArchExtension 10574 /// ::= .arch_extension [no]feature 10575 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10576 MCAsmParser &Parser = getParser(); 10577 10578 if (getLexer().isNot(AsmToken::Identifier)) 10579 return Error(getLexer().getLoc(), "expected architecture extension name"); 10580 10581 StringRef Name = Parser.getTok().getString(); 10582 SMLoc ExtLoc = Parser.getTok().getLoc(); 10583 Lex(); 10584 10585 if (parseToken(AsmToken::EndOfStatement, 10586 "unexpected token in '.arch_extension' directive")) 10587 return true; 10588 10589 bool EnableFeature = true; 10590 if (Name.startswith_lower("no")) { 10591 EnableFeature = false; 10592 Name = Name.substr(2); 10593 } 10594 unsigned FeatureKind = ARM::parseArchExt(Name); 10595 if (FeatureKind == ARM::AEK_INVALID) 10596 return Error(ExtLoc, "unknown architectural extension: " + Name); 10597 10598 for (const auto &Extension : Extensions) { 10599 if (Extension.Kind != FeatureKind) 10600 continue; 10601 10602 if (Extension.Features.none()) 10603 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10604 10605 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10606 return Error(ExtLoc, "architectural extension '" + Name + 10607 "' is not " 10608 "allowed for the current base architecture"); 10609 10610 MCSubtargetInfo &STI = copySTI(); 10611 FeatureBitset ToggleFeatures = EnableFeature 10612 ? (~STI.getFeatureBits() & Extension.Features) 10613 : ( STI.getFeatureBits() & Extension.Features); 10614 10615 uint64_t Features = 10616 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10617 setAvailableFeatures(Features); 10618 return false; 10619 } 10620 10621 return Error(ExtLoc, "unknown architectural extension: " + Name); 10622 } 10623 10624 // Define this matcher function after the auto-generated include so we 10625 // have the match class enum definitions. 10626 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10627 unsigned Kind) { 10628 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10629 // If the kind is a token for a literal immediate, check if our asm 10630 // operand matches. This is for InstAliases which have a fixed-value 10631 // immediate in the syntax. 10632 switch (Kind) { 10633 default: break; 10634 case MCK__35_0: 10635 if (Op.isImm()) 10636 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10637 if (CE->getValue() == 0) 10638 return Match_Success; 10639 break; 10640 case MCK_ModImm: 10641 if (Op.isImm()) { 10642 const MCExpr *SOExpr = Op.getImm(); 10643 int64_t Value; 10644 if (!SOExpr->evaluateAsAbsolute(Value)) 10645 return Match_Success; 10646 assert((Value >= std::numeric_limits<int32_t>::min() && 10647 Value <= std::numeric_limits<uint32_t>::max()) && 10648 "expression value must be representable in 32 bits"); 10649 } 10650 break; 10651 case MCK_rGPR: 10652 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10653 return Match_Success; 10654 return Match_rGPR; 10655 case MCK_GPRPair: 10656 if (Op.isReg() && 10657 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10658 return Match_Success; 10659 break; 10660 } 10661 return Match_InvalidOperand; 10662 } 10663