1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetParser.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Support/raw_ostream.h" 51 52 using namespace llvm; 53 54 namespace { 55 56 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 57 58 static cl::opt<ImplicitItModeTy> ImplicitItMode( 59 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 60 cl::desc("Allow conditional instructions outdside of an IT block"), 61 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 62 "Accept in both ISAs, emit implicit ITs in Thumb"), 63 clEnumValN(ImplicitItModeTy::Never, "never", 64 "Warn in ARM, reject in Thumb"), 65 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 66 "Accept in ARM, reject in Thumb"), 67 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 68 "Warn in ARM, emit implicit ITs in Thumb"))); 69 70 class ARMOperand; 71 72 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 73 74 class UnwindContext { 75 MCAsmParser &Parser; 76 77 typedef SmallVector<SMLoc, 4> Locs; 78 79 Locs FnStartLocs; 80 Locs CantUnwindLocs; 81 Locs PersonalityLocs; 82 Locs PersonalityIndexLocs; 83 Locs HandlerDataLocs; 84 int FPReg; 85 86 public: 87 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 88 89 bool hasFnStart() const { return !FnStartLocs.empty(); } 90 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 91 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 92 bool hasPersonality() const { 93 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 94 } 95 96 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 97 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 98 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 99 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 100 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 101 102 void saveFPReg(int Reg) { FPReg = Reg; } 103 int getFPReg() const { return FPReg; } 104 105 void emitFnStartLocNotes() const { 106 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 107 FI != FE; ++FI) 108 Parser.Note(*FI, ".fnstart was specified here"); 109 } 110 void emitCantUnwindLocNotes() const { 111 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 112 UE = CantUnwindLocs.end(); UI != UE; ++UI) 113 Parser.Note(*UI, ".cantunwind was specified here"); 114 } 115 void emitHandlerDataLocNotes() const { 116 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 117 HE = HandlerDataLocs.end(); HI != HE; ++HI) 118 Parser.Note(*HI, ".handlerdata was specified here"); 119 } 120 void emitPersonalityLocNotes() const { 121 for (Locs::const_iterator PI = PersonalityLocs.begin(), 122 PE = PersonalityLocs.end(), 123 PII = PersonalityIndexLocs.begin(), 124 PIE = PersonalityIndexLocs.end(); 125 PI != PE || PII != PIE;) { 126 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 127 Parser.Note(*PI++, ".personality was specified here"); 128 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 129 Parser.Note(*PII++, ".personalityindex was specified here"); 130 else 131 llvm_unreachable(".personality and .personalityindex cannot be " 132 "at the same location"); 133 } 134 } 135 136 void reset() { 137 FnStartLocs = Locs(); 138 CantUnwindLocs = Locs(); 139 PersonalityLocs = Locs(); 140 HandlerDataLocs = Locs(); 141 PersonalityIndexLocs = Locs(); 142 FPReg = ARM::SP; 143 } 144 }; 145 146 class ARMAsmParser : public MCTargetAsmParser { 147 const MCInstrInfo &MII; 148 const MCRegisterInfo *MRI; 149 UnwindContext UC; 150 151 ARMTargetStreamer &getTargetStreamer() { 152 assert(getParser().getStreamer().getTargetStreamer() && 153 "do not have a target streamer"); 154 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 155 return static_cast<ARMTargetStreamer &>(TS); 156 } 157 158 // Map of register aliases registers via the .req directive. 159 StringMap<unsigned> RegisterReqs; 160 161 bool NextSymbolIsThumb; 162 163 bool useImplicitITThumb() const { 164 return ImplicitItMode == ImplicitItModeTy::Always || 165 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 166 } 167 168 bool useImplicitITARM() const { 169 return ImplicitItMode == ImplicitItModeTy::Always || 170 ImplicitItMode == ImplicitItModeTy::ARMOnly; 171 } 172 173 struct { 174 ARMCC::CondCodes Cond; // Condition for IT block. 175 unsigned Mask:4; // Condition mask for instructions. 176 // Starting at first 1 (from lsb). 177 // '1' condition as indicated in IT. 178 // '0' inverse of condition (else). 179 // Count of instructions in IT block is 180 // 4 - trailingzeroes(mask) 181 // Note that this does not have the same encoding 182 // as in the IT instruction, which also depends 183 // on the low bit of the condition code. 184 185 unsigned CurPosition; // Current position in parsing of IT 186 // block. In range [0,4], with 0 being the IT 187 // instruction itself. Initialized according to 188 // count of instructions in block. ~0U if no 189 // active IT block. 190 191 bool IsExplicit; // true - The IT instruction was present in the 192 // input, we should not modify it. 193 // false - The IT instruction was added 194 // implicitly, we can extend it if that 195 // would be legal. 196 } ITState; 197 198 llvm::SmallVector<MCInst, 4> PendingConditionalInsts; 199 200 void flushPendingInstructions(MCStreamer &Out) override { 201 if (!inImplicitITBlock()) { 202 assert(PendingConditionalInsts.size() == 0); 203 return; 204 } 205 206 // Emit the IT instruction 207 unsigned Mask = getITMaskEncoding(); 208 MCInst ITInst; 209 ITInst.setOpcode(ARM::t2IT); 210 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 211 ITInst.addOperand(MCOperand::createImm(Mask)); 212 Out.EmitInstruction(ITInst, getSTI()); 213 214 // Emit the conditonal instructions 215 assert(PendingConditionalInsts.size() <= 4); 216 for (const MCInst &Inst : PendingConditionalInsts) { 217 Out.EmitInstruction(Inst, getSTI()); 218 } 219 PendingConditionalInsts.clear(); 220 221 // Clear the IT state 222 ITState.Mask = 0; 223 ITState.CurPosition = ~0U; 224 } 225 226 bool inITBlock() { return ITState.CurPosition != ~0U; } 227 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 228 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 229 bool lastInITBlock() { 230 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 231 } 232 void forwardITPosition() { 233 if (!inITBlock()) return; 234 // Move to the next instruction in the IT block, if there is one. If not, 235 // mark the block as done, except for implicit IT blocks, which we leave 236 // open until we find an instruction that can't be added to it. 237 unsigned TZ = countTrailingZeros(ITState.Mask); 238 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 239 ITState.CurPosition = ~0U; // Done with the IT block after this. 240 } 241 242 // Rewind the state of the current IT block, removing the last slot from it. 243 void rewindImplicitITPosition() { 244 assert(inImplicitITBlock()); 245 assert(ITState.CurPosition > 1); 246 ITState.CurPosition--; 247 unsigned TZ = countTrailingZeros(ITState.Mask); 248 unsigned NewMask = 0; 249 NewMask |= ITState.Mask & (0xC << TZ); 250 NewMask |= 0x2 << TZ; 251 ITState.Mask = NewMask; 252 } 253 254 // Rewind the state of the current IT block, removing the last slot from it. 255 // If we were at the first slot, this closes the IT block. 256 void discardImplicitITBlock() { 257 assert(inImplicitITBlock()); 258 assert(ITState.CurPosition == 1); 259 ITState.CurPosition = ~0U; 260 return; 261 } 262 263 // Get the encoding of the IT mask, as it will appear in an IT instruction. 264 unsigned getITMaskEncoding() { 265 assert(inITBlock()); 266 unsigned Mask = ITState.Mask; 267 unsigned TZ = countTrailingZeros(Mask); 268 if ((ITState.Cond & 1) == 0) { 269 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 270 Mask ^= (0xE << TZ) & 0xF; 271 } 272 return Mask; 273 } 274 275 // Get the condition code corresponding to the current IT block slot. 276 ARMCC::CondCodes currentITCond() { 277 unsigned MaskBit; 278 if (ITState.CurPosition == 1) 279 MaskBit = 1; 280 else 281 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 282 283 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 284 } 285 286 // Invert the condition of the current IT block slot without changing any 287 // other slots in the same block. 288 void invertCurrentITCondition() { 289 if (ITState.CurPosition == 1) { 290 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 291 } else { 292 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 293 } 294 } 295 296 // Returns true if the current IT block is full (all 4 slots used). 297 bool isITBlockFull() { 298 return inITBlock() && (ITState.Mask & 1); 299 } 300 301 // Extend the current implicit IT block to have one more slot with the given 302 // condition code. 303 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 304 assert(inImplicitITBlock()); 305 assert(!isITBlockFull()); 306 assert(Cond == ITState.Cond || 307 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 308 unsigned TZ = countTrailingZeros(ITState.Mask); 309 unsigned NewMask = 0; 310 // Keep any existing condition bits. 311 NewMask |= ITState.Mask & (0xE << TZ); 312 // Insert the new condition bit. 313 NewMask |= (Cond == ITState.Cond) << TZ; 314 // Move the trailing 1 down one bit. 315 NewMask |= 1 << (TZ - 1); 316 ITState.Mask = NewMask; 317 } 318 319 // Create a new implicit IT block with a dummy condition code. 320 void startImplicitITBlock() { 321 assert(!inITBlock()); 322 ITState.Cond = ARMCC::AL; 323 ITState.Mask = 8; 324 ITState.CurPosition = 1; 325 ITState.IsExplicit = false; 326 return; 327 } 328 329 // Create a new explicit IT block with the given condition and mask. The mask 330 // should be in the parsed format, with a 1 implying 't', regardless of the 331 // low bit of the condition. 332 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 333 assert(!inITBlock()); 334 ITState.Cond = Cond; 335 ITState.Mask = Mask; 336 ITState.CurPosition = 0; 337 ITState.IsExplicit = true; 338 return; 339 } 340 341 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 342 return getParser().Note(L, Msg, Range); 343 } 344 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 345 return getParser().Warning(L, Msg, Range); 346 } 347 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 348 return getParser().Error(L, Msg, Range); 349 } 350 351 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 352 unsigned ListNo, bool IsARPop = false); 353 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 354 unsigned ListNo); 355 356 int tryParseRegister(); 357 bool tryParseRegisterWithWriteBack(OperandVector &); 358 int tryParseShiftRegister(OperandVector &); 359 bool parseRegisterList(OperandVector &); 360 bool parseMemory(OperandVector &); 361 bool parseOperand(OperandVector &, StringRef Mnemonic); 362 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 363 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 364 unsigned &ShiftAmount); 365 bool parseLiteralValues(unsigned Size, SMLoc L); 366 bool parseDirectiveThumb(SMLoc L); 367 bool parseDirectiveARM(SMLoc L); 368 bool parseDirectiveThumbFunc(SMLoc L); 369 bool parseDirectiveCode(SMLoc L); 370 bool parseDirectiveSyntax(SMLoc L); 371 bool parseDirectiveReq(StringRef Name, SMLoc L); 372 bool parseDirectiveUnreq(SMLoc L); 373 bool parseDirectiveArch(SMLoc L); 374 bool parseDirectiveEabiAttr(SMLoc L); 375 bool parseDirectiveCPU(SMLoc L); 376 bool parseDirectiveFPU(SMLoc L); 377 bool parseDirectiveFnStart(SMLoc L); 378 bool parseDirectiveFnEnd(SMLoc L); 379 bool parseDirectiveCantUnwind(SMLoc L); 380 bool parseDirectivePersonality(SMLoc L); 381 bool parseDirectiveHandlerData(SMLoc L); 382 bool parseDirectiveSetFP(SMLoc L); 383 bool parseDirectivePad(SMLoc L); 384 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 385 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 386 bool parseDirectiveLtorg(SMLoc L); 387 bool parseDirectiveEven(SMLoc L); 388 bool parseDirectivePersonalityIndex(SMLoc L); 389 bool parseDirectiveUnwindRaw(SMLoc L); 390 bool parseDirectiveTLSDescSeq(SMLoc L); 391 bool parseDirectiveMovSP(SMLoc L); 392 bool parseDirectiveObjectArch(SMLoc L); 393 bool parseDirectiveArchExtension(SMLoc L); 394 bool parseDirectiveAlign(SMLoc L); 395 bool parseDirectiveThumbSet(SMLoc L); 396 397 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 398 bool &CarrySetting, unsigned &ProcessorIMod, 399 StringRef &ITMask); 400 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 401 bool &CanAcceptCarrySet, 402 bool &CanAcceptPredicationCode); 403 404 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 405 OperandVector &Operands); 406 bool isThumb() const { 407 // FIXME: Can tablegen auto-generate this? 408 return getSTI().getFeatureBits()[ARM::ModeThumb]; 409 } 410 bool isThumbOne() const { 411 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 412 } 413 bool isThumbTwo() const { 414 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 415 } 416 bool hasThumb() const { 417 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 418 } 419 bool hasThumb2() const { 420 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 421 } 422 bool hasV6Ops() const { 423 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 424 } 425 bool hasV6T2Ops() const { 426 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 427 } 428 bool hasV6MOps() const { 429 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 430 } 431 bool hasV7Ops() const { 432 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 433 } 434 bool hasV8Ops() const { 435 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 436 } 437 bool hasV8MBaseline() const { 438 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 439 } 440 bool hasV8MMainline() const { 441 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 442 } 443 bool has8MSecExt() const { 444 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 445 } 446 bool hasARM() const { 447 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 448 } 449 bool hasDSP() const { 450 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 451 } 452 bool hasD16() const { 453 return getSTI().getFeatureBits()[ARM::FeatureD16]; 454 } 455 bool hasV8_1aOps() const { 456 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 457 } 458 bool hasRAS() const { 459 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 460 } 461 462 void SwitchMode() { 463 MCSubtargetInfo &STI = copySTI(); 464 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 465 setAvailableFeatures(FB); 466 } 467 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 468 bool isMClass() const { 469 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 470 } 471 472 /// @name Auto-generated Match Functions 473 /// { 474 475 #define GET_ASSEMBLER_HEADER 476 #include "ARMGenAsmMatcher.inc" 477 478 /// } 479 480 OperandMatchResultTy parseITCondCode(OperandVector &); 481 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 482 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 483 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 484 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 485 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 486 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 487 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 488 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 489 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 490 int High); 491 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 492 return parsePKHImm(O, "lsl", 0, 31); 493 } 494 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 495 return parsePKHImm(O, "asr", 1, 32); 496 } 497 OperandMatchResultTy parseSetEndImm(OperandVector &); 498 OperandMatchResultTy parseShifterImm(OperandVector &); 499 OperandMatchResultTy parseRotImm(OperandVector &); 500 OperandMatchResultTy parseModImm(OperandVector &); 501 OperandMatchResultTy parseBitfield(OperandVector &); 502 OperandMatchResultTy parsePostIdxReg(OperandVector &); 503 OperandMatchResultTy parseAM3Offset(OperandVector &); 504 OperandMatchResultTy parseFPImm(OperandVector &); 505 OperandMatchResultTy parseVectorList(OperandVector &); 506 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 507 SMLoc &EndLoc); 508 509 // Asm Match Converter Methods 510 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 511 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 512 513 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 514 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 515 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 516 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 517 bool isITBlockTerminator(MCInst &Inst) const; 518 519 public: 520 enum ARMMatchResultTy { 521 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 522 Match_RequiresNotITBlock, 523 Match_RequiresV6, 524 Match_RequiresThumb2, 525 Match_RequiresV8, 526 Match_RequiresFlagSetting, 527 #define GET_OPERAND_DIAGNOSTIC_TYPES 528 #include "ARMGenAsmMatcher.inc" 529 530 }; 531 532 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 533 const MCInstrInfo &MII, const MCTargetOptions &Options) 534 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 535 MCAsmParserExtension::Initialize(Parser); 536 537 // Cache the MCRegisterInfo. 538 MRI = getContext().getRegisterInfo(); 539 540 // Initialize the set of available features. 541 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 542 543 // Not in an ITBlock to start with. 544 ITState.CurPosition = ~0U; 545 546 NextSymbolIsThumb = false; 547 } 548 549 // Implementation of the MCTargetAsmParser interface: 550 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 551 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 552 SMLoc NameLoc, OperandVector &Operands) override; 553 bool ParseDirective(AsmToken DirectiveID) override; 554 555 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 556 unsigned Kind) override; 557 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 558 559 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 560 OperandVector &Operands, MCStreamer &Out, 561 uint64_t &ErrorInfo, 562 bool MatchingInlineAsm) override; 563 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 564 uint64_t &ErrorInfo, bool MatchingInlineAsm, 565 bool &EmitInITBlock, MCStreamer &Out); 566 void onLabelParsed(MCSymbol *Symbol) override; 567 }; 568 } // end anonymous namespace 569 570 namespace { 571 572 /// ARMOperand - Instances of this class represent a parsed ARM machine 573 /// operand. 574 class ARMOperand : public MCParsedAsmOperand { 575 enum KindTy { 576 k_CondCode, 577 k_CCOut, 578 k_ITCondMask, 579 k_CoprocNum, 580 k_CoprocReg, 581 k_CoprocOption, 582 k_Immediate, 583 k_MemBarrierOpt, 584 k_InstSyncBarrierOpt, 585 k_Memory, 586 k_PostIndexRegister, 587 k_MSRMask, 588 k_BankedReg, 589 k_ProcIFlags, 590 k_VectorIndex, 591 k_Register, 592 k_RegisterList, 593 k_DPRRegisterList, 594 k_SPRRegisterList, 595 k_VectorList, 596 k_VectorListAllLanes, 597 k_VectorListIndexed, 598 k_ShiftedRegister, 599 k_ShiftedImmediate, 600 k_ShifterImmediate, 601 k_RotateImmediate, 602 k_ModifiedImmediate, 603 k_ConstantPoolImmediate, 604 k_BitfieldDescriptor, 605 k_Token, 606 } Kind; 607 608 SMLoc StartLoc, EndLoc, AlignmentLoc; 609 SmallVector<unsigned, 8> Registers; 610 611 struct CCOp { 612 ARMCC::CondCodes Val; 613 }; 614 615 struct CopOp { 616 unsigned Val; 617 }; 618 619 struct CoprocOptionOp { 620 unsigned Val; 621 }; 622 623 struct ITMaskOp { 624 unsigned Mask:4; 625 }; 626 627 struct MBOptOp { 628 ARM_MB::MemBOpt Val; 629 }; 630 631 struct ISBOptOp { 632 ARM_ISB::InstSyncBOpt Val; 633 }; 634 635 struct IFlagsOp { 636 ARM_PROC::IFlags Val; 637 }; 638 639 struct MMaskOp { 640 unsigned Val; 641 }; 642 643 struct BankedRegOp { 644 unsigned Val; 645 }; 646 647 struct TokOp { 648 const char *Data; 649 unsigned Length; 650 }; 651 652 struct RegOp { 653 unsigned RegNum; 654 }; 655 656 // A vector register list is a sequential list of 1 to 4 registers. 657 struct VectorListOp { 658 unsigned RegNum; 659 unsigned Count; 660 unsigned LaneIndex; 661 bool isDoubleSpaced; 662 }; 663 664 struct VectorIndexOp { 665 unsigned Val; 666 }; 667 668 struct ImmOp { 669 const MCExpr *Val; 670 }; 671 672 /// Combined record for all forms of ARM address expressions. 673 struct MemoryOp { 674 unsigned BaseRegNum; 675 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 676 // was specified. 677 const MCConstantExpr *OffsetImm; // Offset immediate value 678 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 679 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 680 unsigned ShiftImm; // shift for OffsetReg. 681 unsigned Alignment; // 0 = no alignment specified 682 // n = alignment in bytes (2, 4, 8, 16, or 32) 683 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 684 }; 685 686 struct PostIdxRegOp { 687 unsigned RegNum; 688 bool isAdd; 689 ARM_AM::ShiftOpc ShiftTy; 690 unsigned ShiftImm; 691 }; 692 693 struct ShifterImmOp { 694 bool isASR; 695 unsigned Imm; 696 }; 697 698 struct RegShiftedRegOp { 699 ARM_AM::ShiftOpc ShiftTy; 700 unsigned SrcReg; 701 unsigned ShiftReg; 702 unsigned ShiftImm; 703 }; 704 705 struct RegShiftedImmOp { 706 ARM_AM::ShiftOpc ShiftTy; 707 unsigned SrcReg; 708 unsigned ShiftImm; 709 }; 710 711 struct RotImmOp { 712 unsigned Imm; 713 }; 714 715 struct ModImmOp { 716 unsigned Bits; 717 unsigned Rot; 718 }; 719 720 struct BitfieldOp { 721 unsigned LSB; 722 unsigned Width; 723 }; 724 725 union { 726 struct CCOp CC; 727 struct CopOp Cop; 728 struct CoprocOptionOp CoprocOption; 729 struct MBOptOp MBOpt; 730 struct ISBOptOp ISBOpt; 731 struct ITMaskOp ITMask; 732 struct IFlagsOp IFlags; 733 struct MMaskOp MMask; 734 struct BankedRegOp BankedReg; 735 struct TokOp Tok; 736 struct RegOp Reg; 737 struct VectorListOp VectorList; 738 struct VectorIndexOp VectorIndex; 739 struct ImmOp Imm; 740 struct MemoryOp Memory; 741 struct PostIdxRegOp PostIdxReg; 742 struct ShifterImmOp ShifterImm; 743 struct RegShiftedRegOp RegShiftedReg; 744 struct RegShiftedImmOp RegShiftedImm; 745 struct RotImmOp RotImm; 746 struct ModImmOp ModImm; 747 struct BitfieldOp Bitfield; 748 }; 749 750 public: 751 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 752 753 /// getStartLoc - Get the location of the first token of this operand. 754 SMLoc getStartLoc() const override { return StartLoc; } 755 /// getEndLoc - Get the location of the last token of this operand. 756 SMLoc getEndLoc() const override { return EndLoc; } 757 /// getLocRange - Get the range between the first and last token of this 758 /// operand. 759 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 760 761 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 762 SMLoc getAlignmentLoc() const { 763 assert(Kind == k_Memory && "Invalid access!"); 764 return AlignmentLoc; 765 } 766 767 ARMCC::CondCodes getCondCode() const { 768 assert(Kind == k_CondCode && "Invalid access!"); 769 return CC.Val; 770 } 771 772 unsigned getCoproc() const { 773 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 774 return Cop.Val; 775 } 776 777 StringRef getToken() const { 778 assert(Kind == k_Token && "Invalid access!"); 779 return StringRef(Tok.Data, Tok.Length); 780 } 781 782 unsigned getReg() const override { 783 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 784 return Reg.RegNum; 785 } 786 787 const SmallVectorImpl<unsigned> &getRegList() const { 788 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 789 Kind == k_SPRRegisterList) && "Invalid access!"); 790 return Registers; 791 } 792 793 const MCExpr *getImm() const { 794 assert(isImm() && "Invalid access!"); 795 return Imm.Val; 796 } 797 798 const MCExpr *getConstantPoolImm() const { 799 assert(isConstantPoolImm() && "Invalid access!"); 800 return Imm.Val; 801 } 802 803 unsigned getVectorIndex() const { 804 assert(Kind == k_VectorIndex && "Invalid access!"); 805 return VectorIndex.Val; 806 } 807 808 ARM_MB::MemBOpt getMemBarrierOpt() const { 809 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 810 return MBOpt.Val; 811 } 812 813 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 814 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 815 return ISBOpt.Val; 816 } 817 818 ARM_PROC::IFlags getProcIFlags() const { 819 assert(Kind == k_ProcIFlags && "Invalid access!"); 820 return IFlags.Val; 821 } 822 823 unsigned getMSRMask() const { 824 assert(Kind == k_MSRMask && "Invalid access!"); 825 return MMask.Val; 826 } 827 828 unsigned getBankedReg() const { 829 assert(Kind == k_BankedReg && "Invalid access!"); 830 return BankedReg.Val; 831 } 832 833 bool isCoprocNum() const { return Kind == k_CoprocNum; } 834 bool isCoprocReg() const { return Kind == k_CoprocReg; } 835 bool isCoprocOption() const { return Kind == k_CoprocOption; } 836 bool isCondCode() const { return Kind == k_CondCode; } 837 bool isCCOut() const { return Kind == k_CCOut; } 838 bool isITMask() const { return Kind == k_ITCondMask; } 839 bool isITCondCode() const { return Kind == k_CondCode; } 840 bool isImm() const override { 841 return Kind == k_Immediate; 842 } 843 844 bool isARMBranchTarget() const { 845 if (!isImm()) return false; 846 847 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 848 return CE->getValue() % 4 == 0; 849 return true; 850 } 851 852 853 bool isThumbBranchTarget() const { 854 if (!isImm()) return false; 855 856 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 857 return CE->getValue() % 2 == 0; 858 return true; 859 } 860 861 // checks whether this operand is an unsigned offset which fits is a field 862 // of specified width and scaled by a specific number of bits 863 template<unsigned width, unsigned scale> 864 bool isUnsignedOffset() const { 865 if (!isImm()) return false; 866 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 867 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 868 int64_t Val = CE->getValue(); 869 int64_t Align = 1LL << scale; 870 int64_t Max = Align * ((1LL << width) - 1); 871 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 872 } 873 return false; 874 } 875 // checks whether this operand is an signed offset which fits is a field 876 // of specified width and scaled by a specific number of bits 877 template<unsigned width, unsigned scale> 878 bool isSignedOffset() const { 879 if (!isImm()) return false; 880 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 881 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 882 int64_t Val = CE->getValue(); 883 int64_t Align = 1LL << scale; 884 int64_t Max = Align * ((1LL << (width-1)) - 1); 885 int64_t Min = -Align * (1LL << (width-1)); 886 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 887 } 888 return false; 889 } 890 891 // checks whether this operand is a memory operand computed as an offset 892 // applied to PC. the offset may have 8 bits of magnitude and is represented 893 // with two bits of shift. textually it may be either [pc, #imm], #imm or 894 // relocable expression... 895 bool isThumbMemPC() const { 896 int64_t Val = 0; 897 if (isImm()) { 898 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 899 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 900 if (!CE) return false; 901 Val = CE->getValue(); 902 } 903 else if (isMem()) { 904 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 905 if(Memory.BaseRegNum != ARM::PC) return false; 906 Val = Memory.OffsetImm->getValue(); 907 } 908 else return false; 909 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 910 } 911 bool isFPImm() const { 912 if (!isImm()) return false; 913 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 914 if (!CE) return false; 915 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 916 return Val != -1; 917 } 918 bool isFBits16() const { 919 if (!isImm()) return false; 920 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 921 if (!CE) return false; 922 int64_t Value = CE->getValue(); 923 return Value >= 0 && Value <= 16; 924 } 925 bool isFBits32() const { 926 if (!isImm()) return false; 927 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 928 if (!CE) return false; 929 int64_t Value = CE->getValue(); 930 return Value >= 1 && Value <= 32; 931 } 932 bool isImm8s4() const { 933 if (!isImm()) return false; 934 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 935 if (!CE) return false; 936 int64_t Value = CE->getValue(); 937 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 938 } 939 bool isImm0_1020s4() const { 940 if (!isImm()) return false; 941 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 942 if (!CE) return false; 943 int64_t Value = CE->getValue(); 944 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 945 } 946 bool isImm0_508s4() const { 947 if (!isImm()) return false; 948 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 949 if (!CE) return false; 950 int64_t Value = CE->getValue(); 951 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 952 } 953 bool isImm0_508s4Neg() const { 954 if (!isImm()) return false; 955 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 956 if (!CE) return false; 957 int64_t Value = -CE->getValue(); 958 // explicitly exclude zero. we want that to use the normal 0_508 version. 959 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 960 } 961 bool isImm0_239() const { 962 if (!isImm()) return false; 963 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 964 if (!CE) return false; 965 int64_t Value = CE->getValue(); 966 return Value >= 0 && Value < 240; 967 } 968 bool isImm0_255() const { 969 if (!isImm()) return false; 970 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 971 if (!CE) return false; 972 int64_t Value = CE->getValue(); 973 return Value >= 0 && Value < 256; 974 } 975 bool isImm0_4095() const { 976 if (!isImm()) return false; 977 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 978 if (!CE) return false; 979 int64_t Value = CE->getValue(); 980 return Value >= 0 && Value < 4096; 981 } 982 bool isImm0_4095Neg() const { 983 if (!isImm()) return false; 984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 985 if (!CE) return false; 986 int64_t Value = -CE->getValue(); 987 return Value > 0 && Value < 4096; 988 } 989 bool isImm0_1() const { 990 if (!isImm()) return false; 991 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 992 if (!CE) return false; 993 int64_t Value = CE->getValue(); 994 return Value >= 0 && Value < 2; 995 } 996 bool isImm0_3() const { 997 if (!isImm()) return false; 998 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 999 if (!CE) return false; 1000 int64_t Value = CE->getValue(); 1001 return Value >= 0 && Value < 4; 1002 } 1003 bool isImm0_7() const { 1004 if (!isImm()) return false; 1005 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1006 if (!CE) return false; 1007 int64_t Value = CE->getValue(); 1008 return Value >= 0 && Value < 8; 1009 } 1010 bool isImm0_15() const { 1011 if (!isImm()) return false; 1012 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1013 if (!CE) return false; 1014 int64_t Value = CE->getValue(); 1015 return Value >= 0 && Value < 16; 1016 } 1017 bool isImm0_31() const { 1018 if (!isImm()) return false; 1019 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1020 if (!CE) return false; 1021 int64_t Value = CE->getValue(); 1022 return Value >= 0 && Value < 32; 1023 } 1024 bool isImm0_63() const { 1025 if (!isImm()) return false; 1026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1027 if (!CE) return false; 1028 int64_t Value = CE->getValue(); 1029 return Value >= 0 && Value < 64; 1030 } 1031 bool isImm8() const { 1032 if (!isImm()) return false; 1033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1034 if (!CE) return false; 1035 int64_t Value = CE->getValue(); 1036 return Value == 8; 1037 } 1038 bool isImm16() const { 1039 if (!isImm()) return false; 1040 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1041 if (!CE) return false; 1042 int64_t Value = CE->getValue(); 1043 return Value == 16; 1044 } 1045 bool isImm32() const { 1046 if (!isImm()) return false; 1047 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1048 if (!CE) return false; 1049 int64_t Value = CE->getValue(); 1050 return Value == 32; 1051 } 1052 bool isShrImm8() const { 1053 if (!isImm()) return false; 1054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1055 if (!CE) return false; 1056 int64_t Value = CE->getValue(); 1057 return Value > 0 && Value <= 8; 1058 } 1059 bool isShrImm16() const { 1060 if (!isImm()) return false; 1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1062 if (!CE) return false; 1063 int64_t Value = CE->getValue(); 1064 return Value > 0 && Value <= 16; 1065 } 1066 bool isShrImm32() const { 1067 if (!isImm()) return false; 1068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1069 if (!CE) return false; 1070 int64_t Value = CE->getValue(); 1071 return Value > 0 && Value <= 32; 1072 } 1073 bool isShrImm64() const { 1074 if (!isImm()) return false; 1075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1076 if (!CE) return false; 1077 int64_t Value = CE->getValue(); 1078 return Value > 0 && Value <= 64; 1079 } 1080 bool isImm1_7() const { 1081 if (!isImm()) return false; 1082 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1083 if (!CE) return false; 1084 int64_t Value = CE->getValue(); 1085 return Value > 0 && Value < 8; 1086 } 1087 bool isImm1_15() const { 1088 if (!isImm()) return false; 1089 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1090 if (!CE) return false; 1091 int64_t Value = CE->getValue(); 1092 return Value > 0 && Value < 16; 1093 } 1094 bool isImm1_31() const { 1095 if (!isImm()) return false; 1096 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1097 if (!CE) return false; 1098 int64_t Value = CE->getValue(); 1099 return Value > 0 && Value < 32; 1100 } 1101 bool isImm1_16() const { 1102 if (!isImm()) return false; 1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1104 if (!CE) return false; 1105 int64_t Value = CE->getValue(); 1106 return Value > 0 && Value < 17; 1107 } 1108 bool isImm1_32() const { 1109 if (!isImm()) return false; 1110 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1111 if (!CE) return false; 1112 int64_t Value = CE->getValue(); 1113 return Value > 0 && Value < 33; 1114 } 1115 bool isImm0_32() const { 1116 if (!isImm()) return false; 1117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1118 if (!CE) return false; 1119 int64_t Value = CE->getValue(); 1120 return Value >= 0 && Value < 33; 1121 } 1122 bool isImm0_65535() const { 1123 if (!isImm()) return false; 1124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1125 if (!CE) return false; 1126 int64_t Value = CE->getValue(); 1127 return Value >= 0 && Value < 65536; 1128 } 1129 bool isImm256_65535Expr() const { 1130 if (!isImm()) return false; 1131 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1132 // If it's not a constant expression, it'll generate a fixup and be 1133 // handled later. 1134 if (!CE) return true; 1135 int64_t Value = CE->getValue(); 1136 return Value >= 256 && Value < 65536; 1137 } 1138 bool isImm0_65535Expr() const { 1139 if (!isImm()) return false; 1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1141 // If it's not a constant expression, it'll generate a fixup and be 1142 // handled later. 1143 if (!CE) return true; 1144 int64_t Value = CE->getValue(); 1145 return Value >= 0 && Value < 65536; 1146 } 1147 bool isImm24bit() const { 1148 if (!isImm()) return false; 1149 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1150 if (!CE) return false; 1151 int64_t Value = CE->getValue(); 1152 return Value >= 0 && Value <= 0xffffff; 1153 } 1154 bool isImmThumbSR() const { 1155 if (!isImm()) return false; 1156 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1157 if (!CE) return false; 1158 int64_t Value = CE->getValue(); 1159 return Value > 0 && Value < 33; 1160 } 1161 bool isPKHLSLImm() const { 1162 if (!isImm()) return false; 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 if (!CE) return false; 1165 int64_t Value = CE->getValue(); 1166 return Value >= 0 && Value < 32; 1167 } 1168 bool isPKHASRImm() const { 1169 if (!isImm()) return false; 1170 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1171 if (!CE) return false; 1172 int64_t Value = CE->getValue(); 1173 return Value > 0 && Value <= 32; 1174 } 1175 bool isAdrLabel() const { 1176 // If we have an immediate that's not a constant, treat it as a label 1177 // reference needing a fixup. 1178 if (isImm() && !isa<MCConstantExpr>(getImm())) 1179 return true; 1180 1181 // If it is a constant, it must fit into a modified immediate encoding. 1182 if (!isImm()) return false; 1183 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1184 if (!CE) return false; 1185 int64_t Value = CE->getValue(); 1186 return (ARM_AM::getSOImmVal(Value) != -1 || 1187 ARM_AM::getSOImmVal(-Value) != -1); 1188 } 1189 bool isT2SOImm() const { 1190 if (!isImm()) return false; 1191 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1192 if (!CE) return false; 1193 int64_t Value = CE->getValue(); 1194 return ARM_AM::getT2SOImmVal(Value) != -1; 1195 } 1196 bool isT2SOImmNot() const { 1197 if (!isImm()) return false; 1198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1199 if (!CE) return false; 1200 int64_t Value = CE->getValue(); 1201 return ARM_AM::getT2SOImmVal(Value) == -1 && 1202 ARM_AM::getT2SOImmVal(~Value) != -1; 1203 } 1204 bool isT2SOImmNeg() const { 1205 if (!isImm()) return false; 1206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1207 if (!CE) return false; 1208 int64_t Value = CE->getValue(); 1209 // Only use this when not representable as a plain so_imm. 1210 return ARM_AM::getT2SOImmVal(Value) == -1 && 1211 ARM_AM::getT2SOImmVal(-Value) != -1; 1212 } 1213 bool isSetEndImm() const { 1214 if (!isImm()) return false; 1215 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1216 if (!CE) return false; 1217 int64_t Value = CE->getValue(); 1218 return Value == 1 || Value == 0; 1219 } 1220 bool isReg() const override { return Kind == k_Register; } 1221 bool isRegList() const { return Kind == k_RegisterList; } 1222 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1223 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1224 bool isToken() const override { return Kind == k_Token; } 1225 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1226 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1227 bool isMem() const override { return Kind == k_Memory; } 1228 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1229 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1230 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1231 bool isRotImm() const { return Kind == k_RotateImmediate; } 1232 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1233 bool isModImmNot() const { 1234 if (!isImm()) return false; 1235 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1236 if (!CE) return false; 1237 int64_t Value = CE->getValue(); 1238 return ARM_AM::getSOImmVal(~Value) != -1; 1239 } 1240 bool isModImmNeg() const { 1241 if (!isImm()) return false; 1242 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1243 if (!CE) return false; 1244 int64_t Value = CE->getValue(); 1245 return ARM_AM::getSOImmVal(Value) == -1 && 1246 ARM_AM::getSOImmVal(-Value) != -1; 1247 } 1248 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1249 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1250 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1251 bool isPostIdxReg() const { 1252 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1253 } 1254 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1255 if (!isMem()) 1256 return false; 1257 // No offset of any kind. 1258 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1259 (alignOK || Memory.Alignment == Alignment); 1260 } 1261 bool isMemPCRelImm12() const { 1262 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1263 return false; 1264 // Base register must be PC. 1265 if (Memory.BaseRegNum != ARM::PC) 1266 return false; 1267 // Immediate offset in range [-4095, 4095]. 1268 if (!Memory.OffsetImm) return true; 1269 int64_t Val = Memory.OffsetImm->getValue(); 1270 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1271 } 1272 bool isAlignedMemory() const { 1273 return isMemNoOffset(true); 1274 } 1275 bool isAlignedMemoryNone() const { 1276 return isMemNoOffset(false, 0); 1277 } 1278 bool isDupAlignedMemoryNone() const { 1279 return isMemNoOffset(false, 0); 1280 } 1281 bool isAlignedMemory16() const { 1282 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1283 return true; 1284 return isMemNoOffset(false, 0); 1285 } 1286 bool isDupAlignedMemory16() const { 1287 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1288 return true; 1289 return isMemNoOffset(false, 0); 1290 } 1291 bool isAlignedMemory32() const { 1292 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1293 return true; 1294 return isMemNoOffset(false, 0); 1295 } 1296 bool isDupAlignedMemory32() const { 1297 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1298 return true; 1299 return isMemNoOffset(false, 0); 1300 } 1301 bool isAlignedMemory64() const { 1302 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1303 return true; 1304 return isMemNoOffset(false, 0); 1305 } 1306 bool isDupAlignedMemory64() const { 1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1308 return true; 1309 return isMemNoOffset(false, 0); 1310 } 1311 bool isAlignedMemory64or128() const { 1312 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1313 return true; 1314 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1315 return true; 1316 return isMemNoOffset(false, 0); 1317 } 1318 bool isDupAlignedMemory64or128() const { 1319 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1320 return true; 1321 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1322 return true; 1323 return isMemNoOffset(false, 0); 1324 } 1325 bool isAlignedMemory64or128or256() const { 1326 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1327 return true; 1328 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1329 return true; 1330 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1331 return true; 1332 return isMemNoOffset(false, 0); 1333 } 1334 bool isAddrMode2() const { 1335 if (!isMem() || Memory.Alignment != 0) return false; 1336 // Check for register offset. 1337 if (Memory.OffsetRegNum) return true; 1338 // Immediate offset in range [-4095, 4095]. 1339 if (!Memory.OffsetImm) return true; 1340 int64_t Val = Memory.OffsetImm->getValue(); 1341 return Val > -4096 && Val < 4096; 1342 } 1343 bool isAM2OffsetImm() const { 1344 if (!isImm()) return false; 1345 // Immediate offset in range [-4095, 4095]. 1346 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1347 if (!CE) return false; 1348 int64_t Val = CE->getValue(); 1349 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1350 } 1351 bool isAddrMode3() const { 1352 // If we have an immediate that's not a constant, treat it as a label 1353 // reference needing a fixup. If it is a constant, it's something else 1354 // and we reject it. 1355 if (isImm() && !isa<MCConstantExpr>(getImm())) 1356 return true; 1357 if (!isMem() || Memory.Alignment != 0) return false; 1358 // No shifts are legal for AM3. 1359 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1360 // Check for register offset. 1361 if (Memory.OffsetRegNum) return true; 1362 // Immediate offset in range [-255, 255]. 1363 if (!Memory.OffsetImm) return true; 1364 int64_t Val = Memory.OffsetImm->getValue(); 1365 // The #-0 offset is encoded as INT32_MIN, and we have to check 1366 // for this too. 1367 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1368 } 1369 bool isAM3Offset() const { 1370 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1371 return false; 1372 if (Kind == k_PostIndexRegister) 1373 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1374 // Immediate offset in range [-255, 255]. 1375 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1376 if (!CE) return false; 1377 int64_t Val = CE->getValue(); 1378 // Special case, #-0 is INT32_MIN. 1379 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1380 } 1381 bool isAddrMode5() const { 1382 // If we have an immediate that's not a constant, treat it as a label 1383 // reference needing a fixup. If it is a constant, it's something else 1384 // and we reject it. 1385 if (isImm() && !isa<MCConstantExpr>(getImm())) 1386 return true; 1387 if (!isMem() || Memory.Alignment != 0) return false; 1388 // Check for register offset. 1389 if (Memory.OffsetRegNum) return false; 1390 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1391 if (!Memory.OffsetImm) return true; 1392 int64_t Val = Memory.OffsetImm->getValue(); 1393 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1394 Val == INT32_MIN; 1395 } 1396 bool isAddrMode5FP16() const { 1397 // If we have an immediate that's not a constant, treat it as a label 1398 // reference needing a fixup. If it is a constant, it's something else 1399 // and we reject it. 1400 if (isImm() && !isa<MCConstantExpr>(getImm())) 1401 return true; 1402 if (!isMem() || Memory.Alignment != 0) return false; 1403 // Check for register offset. 1404 if (Memory.OffsetRegNum) return false; 1405 // Immediate offset in range [-510, 510] and a multiple of 2. 1406 if (!Memory.OffsetImm) return true; 1407 int64_t Val = Memory.OffsetImm->getValue(); 1408 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1409 } 1410 bool isMemTBB() const { 1411 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1412 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1413 return false; 1414 return true; 1415 } 1416 bool isMemTBH() const { 1417 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1418 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1419 Memory.Alignment != 0 ) 1420 return false; 1421 return true; 1422 } 1423 bool isMemRegOffset() const { 1424 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1425 return false; 1426 return true; 1427 } 1428 bool isT2MemRegOffset() const { 1429 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1430 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1431 return false; 1432 // Only lsl #{0, 1, 2, 3} allowed. 1433 if (Memory.ShiftType == ARM_AM::no_shift) 1434 return true; 1435 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1436 return false; 1437 return true; 1438 } 1439 bool isMemThumbRR() const { 1440 // Thumb reg+reg addressing is simple. Just two registers, a base and 1441 // an offset. No shifts, negations or any other complicating factors. 1442 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1443 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1444 return false; 1445 return isARMLowRegister(Memory.BaseRegNum) && 1446 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1447 } 1448 bool isMemThumbRIs4() const { 1449 if (!isMem() || Memory.OffsetRegNum != 0 || 1450 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1451 return false; 1452 // Immediate offset, multiple of 4 in range [0, 124]. 1453 if (!Memory.OffsetImm) return true; 1454 int64_t Val = Memory.OffsetImm->getValue(); 1455 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1456 } 1457 bool isMemThumbRIs2() const { 1458 if (!isMem() || Memory.OffsetRegNum != 0 || 1459 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1460 return false; 1461 // Immediate offset, multiple of 4 in range [0, 62]. 1462 if (!Memory.OffsetImm) return true; 1463 int64_t Val = Memory.OffsetImm->getValue(); 1464 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1465 } 1466 bool isMemThumbRIs1() const { 1467 if (!isMem() || Memory.OffsetRegNum != 0 || 1468 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1469 return false; 1470 // Immediate offset in range [0, 31]. 1471 if (!Memory.OffsetImm) return true; 1472 int64_t Val = Memory.OffsetImm->getValue(); 1473 return Val >= 0 && Val <= 31; 1474 } 1475 bool isMemThumbSPI() const { 1476 if (!isMem() || Memory.OffsetRegNum != 0 || 1477 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1478 return false; 1479 // Immediate offset, multiple of 4 in range [0, 1020]. 1480 if (!Memory.OffsetImm) return true; 1481 int64_t Val = Memory.OffsetImm->getValue(); 1482 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1483 } 1484 bool isMemImm8s4Offset() const { 1485 // If we have an immediate that's not a constant, treat it as a label 1486 // reference needing a fixup. If it is a constant, it's something else 1487 // and we reject it. 1488 if (isImm() && !isa<MCConstantExpr>(getImm())) 1489 return true; 1490 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1491 return false; 1492 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1493 if (!Memory.OffsetImm) return true; 1494 int64_t Val = Memory.OffsetImm->getValue(); 1495 // Special case, #-0 is INT32_MIN. 1496 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1497 } 1498 bool isMemImm0_1020s4Offset() const { 1499 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1500 return false; 1501 // Immediate offset a multiple of 4 in range [0, 1020]. 1502 if (!Memory.OffsetImm) return true; 1503 int64_t Val = Memory.OffsetImm->getValue(); 1504 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1505 } 1506 bool isMemImm8Offset() const { 1507 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1508 return false; 1509 // Base reg of PC isn't allowed for these encodings. 1510 if (Memory.BaseRegNum == ARM::PC) return false; 1511 // Immediate offset in range [-255, 255]. 1512 if (!Memory.OffsetImm) return true; 1513 int64_t Val = Memory.OffsetImm->getValue(); 1514 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1515 } 1516 bool isMemPosImm8Offset() const { 1517 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1518 return false; 1519 // Immediate offset in range [0, 255]. 1520 if (!Memory.OffsetImm) return true; 1521 int64_t Val = Memory.OffsetImm->getValue(); 1522 return Val >= 0 && Val < 256; 1523 } 1524 bool isMemNegImm8Offset() const { 1525 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1526 return false; 1527 // Base reg of PC isn't allowed for these encodings. 1528 if (Memory.BaseRegNum == ARM::PC) return false; 1529 // Immediate offset in range [-255, -1]. 1530 if (!Memory.OffsetImm) return false; 1531 int64_t Val = Memory.OffsetImm->getValue(); 1532 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1533 } 1534 bool isMemUImm12Offset() const { 1535 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1536 return false; 1537 // Immediate offset in range [0, 4095]. 1538 if (!Memory.OffsetImm) return true; 1539 int64_t Val = Memory.OffsetImm->getValue(); 1540 return (Val >= 0 && Val < 4096); 1541 } 1542 bool isMemImm12Offset() const { 1543 // If we have an immediate that's not a constant, treat it as a label 1544 // reference needing a fixup. If it is a constant, it's something else 1545 // and we reject it. 1546 1547 if (isImm() && !isa<MCConstantExpr>(getImm())) 1548 return true; 1549 1550 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1551 return false; 1552 // Immediate offset in range [-4095, 4095]. 1553 if (!Memory.OffsetImm) return true; 1554 int64_t Val = Memory.OffsetImm->getValue(); 1555 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1556 } 1557 bool isConstPoolAsmImm() const { 1558 // Delay processing of Constant Pool Immediate, this will turn into 1559 // a constant. Match no other operand 1560 return (isConstantPoolImm()); 1561 } 1562 bool isPostIdxImm8() const { 1563 if (!isImm()) return false; 1564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1565 if (!CE) return false; 1566 int64_t Val = CE->getValue(); 1567 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1568 } 1569 bool isPostIdxImm8s4() const { 1570 if (!isImm()) return false; 1571 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1572 if (!CE) return false; 1573 int64_t Val = CE->getValue(); 1574 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1575 (Val == INT32_MIN); 1576 } 1577 1578 bool isMSRMask() const { return Kind == k_MSRMask; } 1579 bool isBankedReg() const { return Kind == k_BankedReg; } 1580 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1581 1582 // NEON operands. 1583 bool isSingleSpacedVectorList() const { 1584 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1585 } 1586 bool isDoubleSpacedVectorList() const { 1587 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1588 } 1589 bool isVecListOneD() const { 1590 if (!isSingleSpacedVectorList()) return false; 1591 return VectorList.Count == 1; 1592 } 1593 1594 bool isVecListDPair() const { 1595 if (!isSingleSpacedVectorList()) return false; 1596 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1597 .contains(VectorList.RegNum)); 1598 } 1599 1600 bool isVecListThreeD() const { 1601 if (!isSingleSpacedVectorList()) return false; 1602 return VectorList.Count == 3; 1603 } 1604 1605 bool isVecListFourD() const { 1606 if (!isSingleSpacedVectorList()) return false; 1607 return VectorList.Count == 4; 1608 } 1609 1610 bool isVecListDPairSpaced() const { 1611 if (Kind != k_VectorList) return false; 1612 if (isSingleSpacedVectorList()) return false; 1613 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1614 .contains(VectorList.RegNum)); 1615 } 1616 1617 bool isVecListThreeQ() const { 1618 if (!isDoubleSpacedVectorList()) return false; 1619 return VectorList.Count == 3; 1620 } 1621 1622 bool isVecListFourQ() const { 1623 if (!isDoubleSpacedVectorList()) return false; 1624 return VectorList.Count == 4; 1625 } 1626 1627 bool isSingleSpacedVectorAllLanes() const { 1628 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1629 } 1630 bool isDoubleSpacedVectorAllLanes() const { 1631 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1632 } 1633 bool isVecListOneDAllLanes() const { 1634 if (!isSingleSpacedVectorAllLanes()) return false; 1635 return VectorList.Count == 1; 1636 } 1637 1638 bool isVecListDPairAllLanes() const { 1639 if (!isSingleSpacedVectorAllLanes()) return false; 1640 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1641 .contains(VectorList.RegNum)); 1642 } 1643 1644 bool isVecListDPairSpacedAllLanes() const { 1645 if (!isDoubleSpacedVectorAllLanes()) return false; 1646 return VectorList.Count == 2; 1647 } 1648 1649 bool isVecListThreeDAllLanes() const { 1650 if (!isSingleSpacedVectorAllLanes()) return false; 1651 return VectorList.Count == 3; 1652 } 1653 1654 bool isVecListThreeQAllLanes() const { 1655 if (!isDoubleSpacedVectorAllLanes()) return false; 1656 return VectorList.Count == 3; 1657 } 1658 1659 bool isVecListFourDAllLanes() const { 1660 if (!isSingleSpacedVectorAllLanes()) return false; 1661 return VectorList.Count == 4; 1662 } 1663 1664 bool isVecListFourQAllLanes() const { 1665 if (!isDoubleSpacedVectorAllLanes()) return false; 1666 return VectorList.Count == 4; 1667 } 1668 1669 bool isSingleSpacedVectorIndexed() const { 1670 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1671 } 1672 bool isDoubleSpacedVectorIndexed() const { 1673 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1674 } 1675 bool isVecListOneDByteIndexed() const { 1676 if (!isSingleSpacedVectorIndexed()) return false; 1677 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1678 } 1679 1680 bool isVecListOneDHWordIndexed() const { 1681 if (!isSingleSpacedVectorIndexed()) return false; 1682 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1683 } 1684 1685 bool isVecListOneDWordIndexed() const { 1686 if (!isSingleSpacedVectorIndexed()) return false; 1687 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1688 } 1689 1690 bool isVecListTwoDByteIndexed() const { 1691 if (!isSingleSpacedVectorIndexed()) return false; 1692 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1693 } 1694 1695 bool isVecListTwoDHWordIndexed() const { 1696 if (!isSingleSpacedVectorIndexed()) return false; 1697 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1698 } 1699 1700 bool isVecListTwoQWordIndexed() const { 1701 if (!isDoubleSpacedVectorIndexed()) return false; 1702 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1703 } 1704 1705 bool isVecListTwoQHWordIndexed() const { 1706 if (!isDoubleSpacedVectorIndexed()) return false; 1707 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1708 } 1709 1710 bool isVecListTwoDWordIndexed() const { 1711 if (!isSingleSpacedVectorIndexed()) return false; 1712 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1713 } 1714 1715 bool isVecListThreeDByteIndexed() const { 1716 if (!isSingleSpacedVectorIndexed()) return false; 1717 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1718 } 1719 1720 bool isVecListThreeDHWordIndexed() const { 1721 if (!isSingleSpacedVectorIndexed()) return false; 1722 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1723 } 1724 1725 bool isVecListThreeQWordIndexed() const { 1726 if (!isDoubleSpacedVectorIndexed()) return false; 1727 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1728 } 1729 1730 bool isVecListThreeQHWordIndexed() const { 1731 if (!isDoubleSpacedVectorIndexed()) return false; 1732 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1733 } 1734 1735 bool isVecListThreeDWordIndexed() const { 1736 if (!isSingleSpacedVectorIndexed()) return false; 1737 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1738 } 1739 1740 bool isVecListFourDByteIndexed() const { 1741 if (!isSingleSpacedVectorIndexed()) return false; 1742 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1743 } 1744 1745 bool isVecListFourDHWordIndexed() const { 1746 if (!isSingleSpacedVectorIndexed()) return false; 1747 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1748 } 1749 1750 bool isVecListFourQWordIndexed() const { 1751 if (!isDoubleSpacedVectorIndexed()) return false; 1752 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1753 } 1754 1755 bool isVecListFourQHWordIndexed() const { 1756 if (!isDoubleSpacedVectorIndexed()) return false; 1757 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1758 } 1759 1760 bool isVecListFourDWordIndexed() const { 1761 if (!isSingleSpacedVectorIndexed()) return false; 1762 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1763 } 1764 1765 bool isVectorIndex8() const { 1766 if (Kind != k_VectorIndex) return false; 1767 return VectorIndex.Val < 8; 1768 } 1769 bool isVectorIndex16() const { 1770 if (Kind != k_VectorIndex) return false; 1771 return VectorIndex.Val < 4; 1772 } 1773 bool isVectorIndex32() const { 1774 if (Kind != k_VectorIndex) return false; 1775 return VectorIndex.Val < 2; 1776 } 1777 1778 bool isNEONi8splat() const { 1779 if (!isImm()) return false; 1780 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1781 // Must be a constant. 1782 if (!CE) return false; 1783 int64_t Value = CE->getValue(); 1784 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1785 // value. 1786 return Value >= 0 && Value < 256; 1787 } 1788 1789 bool isNEONi16splat() const { 1790 if (isNEONByteReplicate(2)) 1791 return false; // Leave that for bytes replication and forbid by default. 1792 if (!isImm()) 1793 return false; 1794 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1795 // Must be a constant. 1796 if (!CE) return false; 1797 unsigned Value = CE->getValue(); 1798 return ARM_AM::isNEONi16splat(Value); 1799 } 1800 1801 bool isNEONi16splatNot() const { 1802 if (!isImm()) 1803 return false; 1804 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1805 // Must be a constant. 1806 if (!CE) return false; 1807 unsigned Value = CE->getValue(); 1808 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1809 } 1810 1811 bool isNEONi32splat() const { 1812 if (isNEONByteReplicate(4)) 1813 return false; // Leave that for bytes replication and forbid by default. 1814 if (!isImm()) 1815 return false; 1816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1817 // Must be a constant. 1818 if (!CE) return false; 1819 unsigned Value = CE->getValue(); 1820 return ARM_AM::isNEONi32splat(Value); 1821 } 1822 1823 bool isNEONi32splatNot() const { 1824 if (!isImm()) 1825 return false; 1826 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1827 // Must be a constant. 1828 if (!CE) return false; 1829 unsigned Value = CE->getValue(); 1830 return ARM_AM::isNEONi32splat(~Value); 1831 } 1832 1833 bool isNEONByteReplicate(unsigned NumBytes) const { 1834 if (!isImm()) 1835 return false; 1836 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1837 // Must be a constant. 1838 if (!CE) 1839 return false; 1840 int64_t Value = CE->getValue(); 1841 if (!Value) 1842 return false; // Don't bother with zero. 1843 1844 unsigned char B = Value & 0xff; 1845 for (unsigned i = 1; i < NumBytes; ++i) { 1846 Value >>= 8; 1847 if ((Value & 0xff) != B) 1848 return false; 1849 } 1850 return true; 1851 } 1852 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1853 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1854 bool isNEONi32vmov() const { 1855 if (isNEONByteReplicate(4)) 1856 return false; // Let it to be classified as byte-replicate case. 1857 if (!isImm()) 1858 return false; 1859 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1860 // Must be a constant. 1861 if (!CE) 1862 return false; 1863 int64_t Value = CE->getValue(); 1864 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1865 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1866 // FIXME: This is probably wrong and a copy and paste from previous example 1867 return (Value >= 0 && Value < 256) || 1868 (Value >= 0x0100 && Value <= 0xff00) || 1869 (Value >= 0x010000 && Value <= 0xff0000) || 1870 (Value >= 0x01000000 && Value <= 0xff000000) || 1871 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1872 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1873 } 1874 bool isNEONi32vmovNeg() const { 1875 if (!isImm()) return false; 1876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1877 // Must be a constant. 1878 if (!CE) return false; 1879 int64_t Value = ~CE->getValue(); 1880 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1881 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1882 // FIXME: This is probably wrong and a copy and paste from previous example 1883 return (Value >= 0 && Value < 256) || 1884 (Value >= 0x0100 && Value <= 0xff00) || 1885 (Value >= 0x010000 && Value <= 0xff0000) || 1886 (Value >= 0x01000000 && Value <= 0xff000000) || 1887 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1888 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1889 } 1890 1891 bool isNEONi64splat() const { 1892 if (!isImm()) return false; 1893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1894 // Must be a constant. 1895 if (!CE) return false; 1896 uint64_t Value = CE->getValue(); 1897 // i64 value with each byte being either 0 or 0xff. 1898 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1899 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1900 return true; 1901 } 1902 1903 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1904 // Add as immediates when possible. Null MCExpr = 0. 1905 if (!Expr) 1906 Inst.addOperand(MCOperand::createImm(0)); 1907 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1908 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1909 else 1910 Inst.addOperand(MCOperand::createExpr(Expr)); 1911 } 1912 1913 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1914 assert(N == 1 && "Invalid number of operands!"); 1915 addExpr(Inst, getImm()); 1916 } 1917 1918 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1919 assert(N == 1 && "Invalid number of operands!"); 1920 addExpr(Inst, getImm()); 1921 } 1922 1923 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1924 assert(N == 2 && "Invalid number of operands!"); 1925 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1926 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1927 Inst.addOperand(MCOperand::createReg(RegNum)); 1928 } 1929 1930 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1931 assert(N == 1 && "Invalid number of operands!"); 1932 Inst.addOperand(MCOperand::createImm(getCoproc())); 1933 } 1934 1935 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1936 assert(N == 1 && "Invalid number of operands!"); 1937 Inst.addOperand(MCOperand::createImm(getCoproc())); 1938 } 1939 1940 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1941 assert(N == 1 && "Invalid number of operands!"); 1942 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1943 } 1944 1945 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1946 assert(N == 1 && "Invalid number of operands!"); 1947 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1948 } 1949 1950 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1951 assert(N == 1 && "Invalid number of operands!"); 1952 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1953 } 1954 1955 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1956 assert(N == 1 && "Invalid number of operands!"); 1957 Inst.addOperand(MCOperand::createReg(getReg())); 1958 } 1959 1960 void addRegOperands(MCInst &Inst, unsigned N) const { 1961 assert(N == 1 && "Invalid number of operands!"); 1962 Inst.addOperand(MCOperand::createReg(getReg())); 1963 } 1964 1965 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1966 assert(N == 3 && "Invalid number of operands!"); 1967 assert(isRegShiftedReg() && 1968 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1969 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1970 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1971 Inst.addOperand(MCOperand::createImm( 1972 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1973 } 1974 1975 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1976 assert(N == 2 && "Invalid number of operands!"); 1977 assert(isRegShiftedImm() && 1978 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1979 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1980 // Shift of #32 is encoded as 0 where permitted 1981 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1982 Inst.addOperand(MCOperand::createImm( 1983 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1984 } 1985 1986 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1987 assert(N == 1 && "Invalid number of operands!"); 1988 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1989 ShifterImm.Imm)); 1990 } 1991 1992 void addRegListOperands(MCInst &Inst, unsigned N) const { 1993 assert(N == 1 && "Invalid number of operands!"); 1994 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1995 for (SmallVectorImpl<unsigned>::const_iterator 1996 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1997 Inst.addOperand(MCOperand::createReg(*I)); 1998 } 1999 2000 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2001 addRegListOperands(Inst, N); 2002 } 2003 2004 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2005 addRegListOperands(Inst, N); 2006 } 2007 2008 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2009 assert(N == 1 && "Invalid number of operands!"); 2010 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2011 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2012 } 2013 2014 void addModImmOperands(MCInst &Inst, unsigned N) const { 2015 assert(N == 1 && "Invalid number of operands!"); 2016 2017 // Support for fixups (MCFixup) 2018 if (isImm()) 2019 return addImmOperands(Inst, N); 2020 2021 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2022 } 2023 2024 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2025 assert(N == 1 && "Invalid number of operands!"); 2026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2027 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2028 Inst.addOperand(MCOperand::createImm(Enc)); 2029 } 2030 2031 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2032 assert(N == 1 && "Invalid number of operands!"); 2033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2034 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2035 Inst.addOperand(MCOperand::createImm(Enc)); 2036 } 2037 2038 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2039 assert(N == 1 && "Invalid number of operands!"); 2040 // Munge the lsb/width into a bitfield mask. 2041 unsigned lsb = Bitfield.LSB; 2042 unsigned width = Bitfield.Width; 2043 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2044 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2045 (32 - (lsb + width))); 2046 Inst.addOperand(MCOperand::createImm(Mask)); 2047 } 2048 2049 void addImmOperands(MCInst &Inst, unsigned N) const { 2050 assert(N == 1 && "Invalid number of operands!"); 2051 addExpr(Inst, getImm()); 2052 } 2053 2054 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2055 assert(N == 1 && "Invalid number of operands!"); 2056 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2057 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2058 } 2059 2060 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2061 assert(N == 1 && "Invalid number of operands!"); 2062 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2063 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2064 } 2065 2066 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2067 assert(N == 1 && "Invalid number of operands!"); 2068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2069 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2070 Inst.addOperand(MCOperand::createImm(Val)); 2071 } 2072 2073 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2074 assert(N == 1 && "Invalid number of operands!"); 2075 // FIXME: We really want to scale the value here, but the LDRD/STRD 2076 // instruction don't encode operands that way yet. 2077 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2078 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2079 } 2080 2081 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2082 assert(N == 1 && "Invalid number of operands!"); 2083 // The immediate is scaled by four in the encoding and is stored 2084 // in the MCInst as such. Lop off the low two bits here. 2085 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2086 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2087 } 2088 2089 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2090 assert(N == 1 && "Invalid number of operands!"); 2091 // The immediate is scaled by four in the encoding and is stored 2092 // in the MCInst as such. Lop off the low two bits here. 2093 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2094 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2095 } 2096 2097 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2098 assert(N == 1 && "Invalid number of operands!"); 2099 // The immediate is scaled by four in the encoding and is stored 2100 // in the MCInst as such. Lop off the low two bits here. 2101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2102 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2103 } 2104 2105 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2106 assert(N == 1 && "Invalid number of operands!"); 2107 // The constant encodes as the immediate-1, and we store in the instruction 2108 // the bits as encoded, so subtract off one here. 2109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2110 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2111 } 2112 2113 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2114 assert(N == 1 && "Invalid number of operands!"); 2115 // The constant encodes as the immediate-1, and we store in the instruction 2116 // the bits as encoded, so subtract off one here. 2117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2118 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2119 } 2120 2121 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2122 assert(N == 1 && "Invalid number of operands!"); 2123 // The constant encodes as the immediate, except for 32, which encodes as 2124 // zero. 2125 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2126 unsigned Imm = CE->getValue(); 2127 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2128 } 2129 2130 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2131 assert(N == 1 && "Invalid number of operands!"); 2132 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2133 // the instruction as well. 2134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2135 int Val = CE->getValue(); 2136 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2137 } 2138 2139 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2140 assert(N == 1 && "Invalid number of operands!"); 2141 // The operand is actually a t2_so_imm, but we have its bitwise 2142 // negation in the assembly source, so twiddle it here. 2143 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2144 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 2145 } 2146 2147 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2148 assert(N == 1 && "Invalid number of operands!"); 2149 // The operand is actually a t2_so_imm, but we have its 2150 // negation in the assembly source, so twiddle it here. 2151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2152 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2153 } 2154 2155 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2156 assert(N == 1 && "Invalid number of operands!"); 2157 // The operand is actually an imm0_4095, but we have its 2158 // negation in the assembly source, so twiddle it here. 2159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2160 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2161 } 2162 2163 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2164 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2165 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2166 return; 2167 } 2168 2169 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2170 assert(SR && "Unknown value type!"); 2171 Inst.addOperand(MCOperand::createExpr(SR)); 2172 } 2173 2174 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2175 assert(N == 1 && "Invalid number of operands!"); 2176 if (isImm()) { 2177 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2178 if (CE) { 2179 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2180 return; 2181 } 2182 2183 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2184 2185 assert(SR && "Unknown value type!"); 2186 Inst.addOperand(MCOperand::createExpr(SR)); 2187 return; 2188 } 2189 2190 assert(isMem() && "Unknown value type!"); 2191 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2192 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2193 } 2194 2195 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2196 assert(N == 1 && "Invalid number of operands!"); 2197 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2198 } 2199 2200 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2201 assert(N == 1 && "Invalid number of operands!"); 2202 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2203 } 2204 2205 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2206 assert(N == 1 && "Invalid number of operands!"); 2207 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2208 } 2209 2210 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2211 assert(N == 1 && "Invalid number of operands!"); 2212 int32_t Imm = Memory.OffsetImm->getValue(); 2213 Inst.addOperand(MCOperand::createImm(Imm)); 2214 } 2215 2216 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2217 assert(N == 1 && "Invalid number of operands!"); 2218 assert(isImm() && "Not an immediate!"); 2219 2220 // If we have an immediate that's not a constant, treat it as a label 2221 // reference needing a fixup. 2222 if (!isa<MCConstantExpr>(getImm())) { 2223 Inst.addOperand(MCOperand::createExpr(getImm())); 2224 return; 2225 } 2226 2227 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2228 int Val = CE->getValue(); 2229 Inst.addOperand(MCOperand::createImm(Val)); 2230 } 2231 2232 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2233 assert(N == 2 && "Invalid number of operands!"); 2234 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2235 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2236 } 2237 2238 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2239 addAlignedMemoryOperands(Inst, N); 2240 } 2241 2242 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2243 addAlignedMemoryOperands(Inst, N); 2244 } 2245 2246 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2247 addAlignedMemoryOperands(Inst, N); 2248 } 2249 2250 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2251 addAlignedMemoryOperands(Inst, N); 2252 } 2253 2254 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2255 addAlignedMemoryOperands(Inst, N); 2256 } 2257 2258 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2259 addAlignedMemoryOperands(Inst, N); 2260 } 2261 2262 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2263 addAlignedMemoryOperands(Inst, N); 2264 } 2265 2266 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2267 addAlignedMemoryOperands(Inst, N); 2268 } 2269 2270 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2271 addAlignedMemoryOperands(Inst, N); 2272 } 2273 2274 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2275 addAlignedMemoryOperands(Inst, N); 2276 } 2277 2278 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2279 addAlignedMemoryOperands(Inst, N); 2280 } 2281 2282 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2283 assert(N == 3 && "Invalid number of operands!"); 2284 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2285 if (!Memory.OffsetRegNum) { 2286 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2287 // Special case for #-0 2288 if (Val == INT32_MIN) Val = 0; 2289 if (Val < 0) Val = -Val; 2290 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2291 } else { 2292 // For register offset, we encode the shift type and negation flag 2293 // here. 2294 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2295 Memory.ShiftImm, Memory.ShiftType); 2296 } 2297 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2298 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2299 Inst.addOperand(MCOperand::createImm(Val)); 2300 } 2301 2302 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2303 assert(N == 2 && "Invalid number of operands!"); 2304 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2305 assert(CE && "non-constant AM2OffsetImm operand!"); 2306 int32_t Val = CE->getValue(); 2307 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2308 // Special case for #-0 2309 if (Val == INT32_MIN) Val = 0; 2310 if (Val < 0) Val = -Val; 2311 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2312 Inst.addOperand(MCOperand::createReg(0)); 2313 Inst.addOperand(MCOperand::createImm(Val)); 2314 } 2315 2316 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2317 assert(N == 3 && "Invalid number of operands!"); 2318 // If we have an immediate that's not a constant, treat it as a label 2319 // reference needing a fixup. If it is a constant, it's something else 2320 // and we reject it. 2321 if (isImm()) { 2322 Inst.addOperand(MCOperand::createExpr(getImm())); 2323 Inst.addOperand(MCOperand::createReg(0)); 2324 Inst.addOperand(MCOperand::createImm(0)); 2325 return; 2326 } 2327 2328 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2329 if (!Memory.OffsetRegNum) { 2330 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2331 // Special case for #-0 2332 if (Val == INT32_MIN) Val = 0; 2333 if (Val < 0) Val = -Val; 2334 Val = ARM_AM::getAM3Opc(AddSub, Val); 2335 } else { 2336 // For register offset, we encode the shift type and negation flag 2337 // here. 2338 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2339 } 2340 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2341 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2342 Inst.addOperand(MCOperand::createImm(Val)); 2343 } 2344 2345 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2346 assert(N == 2 && "Invalid number of operands!"); 2347 if (Kind == k_PostIndexRegister) { 2348 int32_t Val = 2349 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2350 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2351 Inst.addOperand(MCOperand::createImm(Val)); 2352 return; 2353 } 2354 2355 // Constant offset. 2356 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2357 int32_t Val = CE->getValue(); 2358 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2359 // Special case for #-0 2360 if (Val == INT32_MIN) Val = 0; 2361 if (Val < 0) Val = -Val; 2362 Val = ARM_AM::getAM3Opc(AddSub, Val); 2363 Inst.addOperand(MCOperand::createReg(0)); 2364 Inst.addOperand(MCOperand::createImm(Val)); 2365 } 2366 2367 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2368 assert(N == 2 && "Invalid number of operands!"); 2369 // If we have an immediate that's not a constant, treat it as a label 2370 // reference needing a fixup. If it is a constant, it's something else 2371 // and we reject it. 2372 if (isImm()) { 2373 Inst.addOperand(MCOperand::createExpr(getImm())); 2374 Inst.addOperand(MCOperand::createImm(0)); 2375 return; 2376 } 2377 2378 // The lower two bits are always zero and as such are not encoded. 2379 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2380 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2381 // Special case for #-0 2382 if (Val == INT32_MIN) Val = 0; 2383 if (Val < 0) Val = -Val; 2384 Val = ARM_AM::getAM5Opc(AddSub, Val); 2385 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2386 Inst.addOperand(MCOperand::createImm(Val)); 2387 } 2388 2389 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2390 assert(N == 2 && "Invalid number of operands!"); 2391 // If we have an immediate that's not a constant, treat it as a label 2392 // reference needing a fixup. If it is a constant, it's something else 2393 // and we reject it. 2394 if (isImm()) { 2395 Inst.addOperand(MCOperand::createExpr(getImm())); 2396 Inst.addOperand(MCOperand::createImm(0)); 2397 return; 2398 } 2399 2400 // The lower bit is always zero and as such is not encoded. 2401 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2402 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2403 // Special case for #-0 2404 if (Val == INT32_MIN) Val = 0; 2405 if (Val < 0) Val = -Val; 2406 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2407 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2408 Inst.addOperand(MCOperand::createImm(Val)); 2409 } 2410 2411 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2412 assert(N == 2 && "Invalid number of operands!"); 2413 // If we have an immediate that's not a constant, treat it as a label 2414 // reference needing a fixup. If it is a constant, it's something else 2415 // and we reject it. 2416 if (isImm()) { 2417 Inst.addOperand(MCOperand::createExpr(getImm())); 2418 Inst.addOperand(MCOperand::createImm(0)); 2419 return; 2420 } 2421 2422 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2423 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2424 Inst.addOperand(MCOperand::createImm(Val)); 2425 } 2426 2427 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2428 assert(N == 2 && "Invalid number of operands!"); 2429 // The lower two bits are always zero and as such are not encoded. 2430 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2431 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2432 Inst.addOperand(MCOperand::createImm(Val)); 2433 } 2434 2435 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2436 assert(N == 2 && "Invalid number of operands!"); 2437 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2438 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2439 Inst.addOperand(MCOperand::createImm(Val)); 2440 } 2441 2442 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2443 addMemImm8OffsetOperands(Inst, N); 2444 } 2445 2446 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2447 addMemImm8OffsetOperands(Inst, N); 2448 } 2449 2450 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2451 assert(N == 2 && "Invalid number of operands!"); 2452 // If this is an immediate, it's a label reference. 2453 if (isImm()) { 2454 addExpr(Inst, getImm()); 2455 Inst.addOperand(MCOperand::createImm(0)); 2456 return; 2457 } 2458 2459 // Otherwise, it's a normal memory reg+offset. 2460 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2461 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2462 Inst.addOperand(MCOperand::createImm(Val)); 2463 } 2464 2465 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2466 assert(N == 2 && "Invalid number of operands!"); 2467 // If this is an immediate, it's a label reference. 2468 if (isImm()) { 2469 addExpr(Inst, getImm()); 2470 Inst.addOperand(MCOperand::createImm(0)); 2471 return; 2472 } 2473 2474 // Otherwise, it's a normal memory reg+offset. 2475 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2476 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2477 Inst.addOperand(MCOperand::createImm(Val)); 2478 } 2479 2480 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2481 assert(N == 1 && "Invalid number of operands!"); 2482 // This is container for the immediate that we will create the constant 2483 // pool from 2484 addExpr(Inst, getConstantPoolImm()); 2485 return; 2486 } 2487 2488 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 2 && "Invalid number of operands!"); 2490 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2491 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2492 } 2493 2494 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2495 assert(N == 2 && "Invalid number of operands!"); 2496 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2497 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2498 } 2499 2500 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2501 assert(N == 3 && "Invalid number of operands!"); 2502 unsigned Val = 2503 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2504 Memory.ShiftImm, Memory.ShiftType); 2505 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2506 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2507 Inst.addOperand(MCOperand::createImm(Val)); 2508 } 2509 2510 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2511 assert(N == 3 && "Invalid number of operands!"); 2512 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2513 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2514 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2515 } 2516 2517 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2518 assert(N == 2 && "Invalid number of operands!"); 2519 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2520 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2521 } 2522 2523 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2524 assert(N == 2 && "Invalid number of operands!"); 2525 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2526 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2527 Inst.addOperand(MCOperand::createImm(Val)); 2528 } 2529 2530 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2531 assert(N == 2 && "Invalid number of operands!"); 2532 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2533 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2534 Inst.addOperand(MCOperand::createImm(Val)); 2535 } 2536 2537 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2538 assert(N == 2 && "Invalid number of operands!"); 2539 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2540 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2541 Inst.addOperand(MCOperand::createImm(Val)); 2542 } 2543 2544 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 2 && "Invalid number of operands!"); 2546 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2547 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2548 Inst.addOperand(MCOperand::createImm(Val)); 2549 } 2550 2551 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2552 assert(N == 1 && "Invalid number of operands!"); 2553 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2554 assert(CE && "non-constant post-idx-imm8 operand!"); 2555 int Imm = CE->getValue(); 2556 bool isAdd = Imm >= 0; 2557 if (Imm == INT32_MIN) Imm = 0; 2558 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2559 Inst.addOperand(MCOperand::createImm(Imm)); 2560 } 2561 2562 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2563 assert(N == 1 && "Invalid number of operands!"); 2564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2565 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2566 int Imm = CE->getValue(); 2567 bool isAdd = Imm >= 0; 2568 if (Imm == INT32_MIN) Imm = 0; 2569 // Immediate is scaled by 4. 2570 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2571 Inst.addOperand(MCOperand::createImm(Imm)); 2572 } 2573 2574 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2575 assert(N == 2 && "Invalid number of operands!"); 2576 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2577 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2578 } 2579 2580 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2581 assert(N == 2 && "Invalid number of operands!"); 2582 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2583 // The sign, shift type, and shift amount are encoded in a single operand 2584 // using the AM2 encoding helpers. 2585 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2586 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2587 PostIdxReg.ShiftTy); 2588 Inst.addOperand(MCOperand::createImm(Imm)); 2589 } 2590 2591 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2592 assert(N == 1 && "Invalid number of operands!"); 2593 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2594 } 2595 2596 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2597 assert(N == 1 && "Invalid number of operands!"); 2598 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2599 } 2600 2601 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2602 assert(N == 1 && "Invalid number of operands!"); 2603 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2604 } 2605 2606 void addVecListOperands(MCInst &Inst, unsigned N) const { 2607 assert(N == 1 && "Invalid number of operands!"); 2608 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2609 } 2610 2611 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2612 assert(N == 2 && "Invalid number of operands!"); 2613 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2614 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2615 } 2616 2617 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2618 assert(N == 1 && "Invalid number of operands!"); 2619 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2620 } 2621 2622 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2623 assert(N == 1 && "Invalid number of operands!"); 2624 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2625 } 2626 2627 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2628 assert(N == 1 && "Invalid number of operands!"); 2629 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2630 } 2631 2632 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2633 assert(N == 1 && "Invalid number of operands!"); 2634 // The immediate encodes the type of constant as well as the value. 2635 // Mask in that this is an i8 splat. 2636 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2637 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2638 } 2639 2640 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2641 assert(N == 1 && "Invalid number of operands!"); 2642 // The immediate encodes the type of constant as well as the value. 2643 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2644 unsigned Value = CE->getValue(); 2645 Value = ARM_AM::encodeNEONi16splat(Value); 2646 Inst.addOperand(MCOperand::createImm(Value)); 2647 } 2648 2649 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2650 assert(N == 1 && "Invalid number of operands!"); 2651 // The immediate encodes the type of constant as well as the value. 2652 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2653 unsigned Value = CE->getValue(); 2654 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2655 Inst.addOperand(MCOperand::createImm(Value)); 2656 } 2657 2658 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2659 assert(N == 1 && "Invalid number of operands!"); 2660 // The immediate encodes the type of constant as well as the value. 2661 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2662 unsigned Value = CE->getValue(); 2663 Value = ARM_AM::encodeNEONi32splat(Value); 2664 Inst.addOperand(MCOperand::createImm(Value)); 2665 } 2666 2667 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2668 assert(N == 1 && "Invalid number of operands!"); 2669 // The immediate encodes the type of constant as well as the value. 2670 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2671 unsigned Value = CE->getValue(); 2672 Value = ARM_AM::encodeNEONi32splat(~Value); 2673 Inst.addOperand(MCOperand::createImm(Value)); 2674 } 2675 2676 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2677 assert(N == 1 && "Invalid number of operands!"); 2678 // The immediate encodes the type of constant as well as the value. 2679 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2680 unsigned Value = CE->getValue(); 2681 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2682 Inst.getOpcode() == ARM::VMOVv16i8) && 2683 "All vmvn instructions that wants to replicate non-zero byte " 2684 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2685 unsigned B = ((~Value) & 0xff); 2686 B |= 0xe00; // cmode = 0b1110 2687 Inst.addOperand(MCOperand::createImm(B)); 2688 } 2689 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2690 assert(N == 1 && "Invalid number of operands!"); 2691 // The immediate encodes the type of constant as well as the value. 2692 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2693 unsigned Value = CE->getValue(); 2694 if (Value >= 256 && Value <= 0xffff) 2695 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2696 else if (Value > 0xffff && Value <= 0xffffff) 2697 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2698 else if (Value > 0xffffff) 2699 Value = (Value >> 24) | 0x600; 2700 Inst.addOperand(MCOperand::createImm(Value)); 2701 } 2702 2703 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2704 assert(N == 1 && "Invalid number of operands!"); 2705 // The immediate encodes the type of constant as well as the value. 2706 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2707 unsigned Value = CE->getValue(); 2708 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2709 Inst.getOpcode() == ARM::VMOVv16i8) && 2710 "All instructions that wants to replicate non-zero byte " 2711 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2712 unsigned B = Value & 0xff; 2713 B |= 0xe00; // cmode = 0b1110 2714 Inst.addOperand(MCOperand::createImm(B)); 2715 } 2716 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2717 assert(N == 1 && "Invalid number of operands!"); 2718 // The immediate encodes the type of constant as well as the value. 2719 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2720 unsigned Value = ~CE->getValue(); 2721 if (Value >= 256 && Value <= 0xffff) 2722 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2723 else if (Value > 0xffff && Value <= 0xffffff) 2724 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2725 else if (Value > 0xffffff) 2726 Value = (Value >> 24) | 0x600; 2727 Inst.addOperand(MCOperand::createImm(Value)); 2728 } 2729 2730 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2731 assert(N == 1 && "Invalid number of operands!"); 2732 // The immediate encodes the type of constant as well as the value. 2733 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2734 uint64_t Value = CE->getValue(); 2735 unsigned Imm = 0; 2736 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2737 Imm |= (Value & 1) << i; 2738 } 2739 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2740 } 2741 2742 void print(raw_ostream &OS) const override; 2743 2744 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2745 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2746 Op->ITMask.Mask = Mask; 2747 Op->StartLoc = S; 2748 Op->EndLoc = S; 2749 return Op; 2750 } 2751 2752 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2753 SMLoc S) { 2754 auto Op = make_unique<ARMOperand>(k_CondCode); 2755 Op->CC.Val = CC; 2756 Op->StartLoc = S; 2757 Op->EndLoc = S; 2758 return Op; 2759 } 2760 2761 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2762 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2763 Op->Cop.Val = CopVal; 2764 Op->StartLoc = S; 2765 Op->EndLoc = S; 2766 return Op; 2767 } 2768 2769 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2770 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2771 Op->Cop.Val = CopVal; 2772 Op->StartLoc = S; 2773 Op->EndLoc = S; 2774 return Op; 2775 } 2776 2777 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2778 SMLoc E) { 2779 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2780 Op->Cop.Val = Val; 2781 Op->StartLoc = S; 2782 Op->EndLoc = E; 2783 return Op; 2784 } 2785 2786 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2787 auto Op = make_unique<ARMOperand>(k_CCOut); 2788 Op->Reg.RegNum = RegNum; 2789 Op->StartLoc = S; 2790 Op->EndLoc = S; 2791 return Op; 2792 } 2793 2794 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2795 auto Op = make_unique<ARMOperand>(k_Token); 2796 Op->Tok.Data = Str.data(); 2797 Op->Tok.Length = Str.size(); 2798 Op->StartLoc = S; 2799 Op->EndLoc = S; 2800 return Op; 2801 } 2802 2803 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2804 SMLoc E) { 2805 auto Op = make_unique<ARMOperand>(k_Register); 2806 Op->Reg.RegNum = RegNum; 2807 Op->StartLoc = S; 2808 Op->EndLoc = E; 2809 return Op; 2810 } 2811 2812 static std::unique_ptr<ARMOperand> 2813 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2814 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2815 SMLoc E) { 2816 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2817 Op->RegShiftedReg.ShiftTy = ShTy; 2818 Op->RegShiftedReg.SrcReg = SrcReg; 2819 Op->RegShiftedReg.ShiftReg = ShiftReg; 2820 Op->RegShiftedReg.ShiftImm = ShiftImm; 2821 Op->StartLoc = S; 2822 Op->EndLoc = E; 2823 return Op; 2824 } 2825 2826 static std::unique_ptr<ARMOperand> 2827 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2828 unsigned ShiftImm, SMLoc S, SMLoc E) { 2829 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2830 Op->RegShiftedImm.ShiftTy = ShTy; 2831 Op->RegShiftedImm.SrcReg = SrcReg; 2832 Op->RegShiftedImm.ShiftImm = ShiftImm; 2833 Op->StartLoc = S; 2834 Op->EndLoc = E; 2835 return Op; 2836 } 2837 2838 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2839 SMLoc S, SMLoc E) { 2840 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2841 Op->ShifterImm.isASR = isASR; 2842 Op->ShifterImm.Imm = Imm; 2843 Op->StartLoc = S; 2844 Op->EndLoc = E; 2845 return Op; 2846 } 2847 2848 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2849 SMLoc E) { 2850 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2851 Op->RotImm.Imm = Imm; 2852 Op->StartLoc = S; 2853 Op->EndLoc = E; 2854 return Op; 2855 } 2856 2857 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2858 SMLoc S, SMLoc E) { 2859 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2860 Op->ModImm.Bits = Bits; 2861 Op->ModImm.Rot = Rot; 2862 Op->StartLoc = S; 2863 Op->EndLoc = E; 2864 return Op; 2865 } 2866 2867 static std::unique_ptr<ARMOperand> 2868 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2869 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2870 Op->Imm.Val = Val; 2871 Op->StartLoc = S; 2872 Op->EndLoc = E; 2873 return Op; 2874 } 2875 2876 static std::unique_ptr<ARMOperand> 2877 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2878 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2879 Op->Bitfield.LSB = LSB; 2880 Op->Bitfield.Width = Width; 2881 Op->StartLoc = S; 2882 Op->EndLoc = E; 2883 return Op; 2884 } 2885 2886 static std::unique_ptr<ARMOperand> 2887 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2888 SMLoc StartLoc, SMLoc EndLoc) { 2889 assert (Regs.size() > 0 && "RegList contains no registers?"); 2890 KindTy Kind = k_RegisterList; 2891 2892 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2893 Kind = k_DPRRegisterList; 2894 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2895 contains(Regs.front().second)) 2896 Kind = k_SPRRegisterList; 2897 2898 // Sort based on the register encoding values. 2899 array_pod_sort(Regs.begin(), Regs.end()); 2900 2901 auto Op = make_unique<ARMOperand>(Kind); 2902 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2903 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2904 Op->Registers.push_back(I->second); 2905 Op->StartLoc = StartLoc; 2906 Op->EndLoc = EndLoc; 2907 return Op; 2908 } 2909 2910 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2911 unsigned Count, 2912 bool isDoubleSpaced, 2913 SMLoc S, SMLoc E) { 2914 auto Op = make_unique<ARMOperand>(k_VectorList); 2915 Op->VectorList.RegNum = RegNum; 2916 Op->VectorList.Count = Count; 2917 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2918 Op->StartLoc = S; 2919 Op->EndLoc = E; 2920 return Op; 2921 } 2922 2923 static std::unique_ptr<ARMOperand> 2924 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2925 SMLoc S, SMLoc E) { 2926 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2927 Op->VectorList.RegNum = RegNum; 2928 Op->VectorList.Count = Count; 2929 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2930 Op->StartLoc = S; 2931 Op->EndLoc = E; 2932 return Op; 2933 } 2934 2935 static std::unique_ptr<ARMOperand> 2936 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2937 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2938 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2939 Op->VectorList.RegNum = RegNum; 2940 Op->VectorList.Count = Count; 2941 Op->VectorList.LaneIndex = Index; 2942 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2943 Op->StartLoc = S; 2944 Op->EndLoc = E; 2945 return Op; 2946 } 2947 2948 static std::unique_ptr<ARMOperand> 2949 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2950 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2951 Op->VectorIndex.Val = Idx; 2952 Op->StartLoc = S; 2953 Op->EndLoc = E; 2954 return Op; 2955 } 2956 2957 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2958 SMLoc E) { 2959 auto Op = make_unique<ARMOperand>(k_Immediate); 2960 Op->Imm.Val = Val; 2961 Op->StartLoc = S; 2962 Op->EndLoc = E; 2963 return Op; 2964 } 2965 2966 static std::unique_ptr<ARMOperand> 2967 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2968 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2969 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2970 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2971 auto Op = make_unique<ARMOperand>(k_Memory); 2972 Op->Memory.BaseRegNum = BaseRegNum; 2973 Op->Memory.OffsetImm = OffsetImm; 2974 Op->Memory.OffsetRegNum = OffsetRegNum; 2975 Op->Memory.ShiftType = ShiftType; 2976 Op->Memory.ShiftImm = ShiftImm; 2977 Op->Memory.Alignment = Alignment; 2978 Op->Memory.isNegative = isNegative; 2979 Op->StartLoc = S; 2980 Op->EndLoc = E; 2981 Op->AlignmentLoc = AlignmentLoc; 2982 return Op; 2983 } 2984 2985 static std::unique_ptr<ARMOperand> 2986 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2987 unsigned ShiftImm, SMLoc S, SMLoc E) { 2988 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2989 Op->PostIdxReg.RegNum = RegNum; 2990 Op->PostIdxReg.isAdd = isAdd; 2991 Op->PostIdxReg.ShiftTy = ShiftTy; 2992 Op->PostIdxReg.ShiftImm = ShiftImm; 2993 Op->StartLoc = S; 2994 Op->EndLoc = E; 2995 return Op; 2996 } 2997 2998 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2999 SMLoc S) { 3000 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3001 Op->MBOpt.Val = Opt; 3002 Op->StartLoc = S; 3003 Op->EndLoc = S; 3004 return Op; 3005 } 3006 3007 static std::unique_ptr<ARMOperand> 3008 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3009 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3010 Op->ISBOpt.Val = Opt; 3011 Op->StartLoc = S; 3012 Op->EndLoc = S; 3013 return Op; 3014 } 3015 3016 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3017 SMLoc S) { 3018 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3019 Op->IFlags.Val = IFlags; 3020 Op->StartLoc = S; 3021 Op->EndLoc = S; 3022 return Op; 3023 } 3024 3025 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3026 auto Op = make_unique<ARMOperand>(k_MSRMask); 3027 Op->MMask.Val = MMask; 3028 Op->StartLoc = S; 3029 Op->EndLoc = S; 3030 return Op; 3031 } 3032 3033 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3034 auto Op = make_unique<ARMOperand>(k_BankedReg); 3035 Op->BankedReg.Val = Reg; 3036 Op->StartLoc = S; 3037 Op->EndLoc = S; 3038 return Op; 3039 } 3040 }; 3041 3042 } // end anonymous namespace. 3043 3044 void ARMOperand::print(raw_ostream &OS) const { 3045 switch (Kind) { 3046 case k_CondCode: 3047 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3048 break; 3049 case k_CCOut: 3050 OS << "<ccout " << getReg() << ">"; 3051 break; 3052 case k_ITCondMask: { 3053 static const char *const MaskStr[] = { 3054 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3055 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3056 }; 3057 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3058 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3059 break; 3060 } 3061 case k_CoprocNum: 3062 OS << "<coprocessor number: " << getCoproc() << ">"; 3063 break; 3064 case k_CoprocReg: 3065 OS << "<coprocessor register: " << getCoproc() << ">"; 3066 break; 3067 case k_CoprocOption: 3068 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3069 break; 3070 case k_MSRMask: 3071 OS << "<mask: " << getMSRMask() << ">"; 3072 break; 3073 case k_BankedReg: 3074 OS << "<banked reg: " << getBankedReg() << ">"; 3075 break; 3076 case k_Immediate: 3077 OS << *getImm(); 3078 break; 3079 case k_MemBarrierOpt: 3080 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3081 break; 3082 case k_InstSyncBarrierOpt: 3083 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3084 break; 3085 case k_Memory: 3086 OS << "<memory " 3087 << " base:" << Memory.BaseRegNum; 3088 OS << ">"; 3089 break; 3090 case k_PostIndexRegister: 3091 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3092 << PostIdxReg.RegNum; 3093 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3094 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3095 << PostIdxReg.ShiftImm; 3096 OS << ">"; 3097 break; 3098 case k_ProcIFlags: { 3099 OS << "<ARM_PROC::"; 3100 unsigned IFlags = getProcIFlags(); 3101 for (int i=2; i >= 0; --i) 3102 if (IFlags & (1 << i)) 3103 OS << ARM_PROC::IFlagsToString(1 << i); 3104 OS << ">"; 3105 break; 3106 } 3107 case k_Register: 3108 OS << "<register " << getReg() << ">"; 3109 break; 3110 case k_ShifterImmediate: 3111 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3112 << " #" << ShifterImm.Imm << ">"; 3113 break; 3114 case k_ShiftedRegister: 3115 OS << "<so_reg_reg " 3116 << RegShiftedReg.SrcReg << " " 3117 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3118 << " " << RegShiftedReg.ShiftReg << ">"; 3119 break; 3120 case k_ShiftedImmediate: 3121 OS << "<so_reg_imm " 3122 << RegShiftedImm.SrcReg << " " 3123 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3124 << " #" << RegShiftedImm.ShiftImm << ">"; 3125 break; 3126 case k_RotateImmediate: 3127 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3128 break; 3129 case k_ModifiedImmediate: 3130 OS << "<mod_imm #" << ModImm.Bits << ", #" 3131 << ModImm.Rot << ")>"; 3132 break; 3133 case k_ConstantPoolImmediate: 3134 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3135 break; 3136 case k_BitfieldDescriptor: 3137 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3138 << ", width: " << Bitfield.Width << ">"; 3139 break; 3140 case k_RegisterList: 3141 case k_DPRRegisterList: 3142 case k_SPRRegisterList: { 3143 OS << "<register_list "; 3144 3145 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3146 for (SmallVectorImpl<unsigned>::const_iterator 3147 I = RegList.begin(), E = RegList.end(); I != E; ) { 3148 OS << *I; 3149 if (++I < E) OS << ", "; 3150 } 3151 3152 OS << ">"; 3153 break; 3154 } 3155 case k_VectorList: 3156 OS << "<vector_list " << VectorList.Count << " * " 3157 << VectorList.RegNum << ">"; 3158 break; 3159 case k_VectorListAllLanes: 3160 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3161 << VectorList.RegNum << ">"; 3162 break; 3163 case k_VectorListIndexed: 3164 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3165 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3166 break; 3167 case k_Token: 3168 OS << "'" << getToken() << "'"; 3169 break; 3170 case k_VectorIndex: 3171 OS << "<vectorindex " << getVectorIndex() << ">"; 3172 break; 3173 } 3174 } 3175 3176 /// @name Auto-generated Match Functions 3177 /// { 3178 3179 static unsigned MatchRegisterName(StringRef Name); 3180 3181 /// } 3182 3183 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3184 SMLoc &StartLoc, SMLoc &EndLoc) { 3185 const AsmToken &Tok = getParser().getTok(); 3186 StartLoc = Tok.getLoc(); 3187 EndLoc = Tok.getEndLoc(); 3188 RegNo = tryParseRegister(); 3189 3190 return (RegNo == (unsigned)-1); 3191 } 3192 3193 /// Try to parse a register name. The token must be an Identifier when called, 3194 /// and if it is a register name the token is eaten and the register number is 3195 /// returned. Otherwise return -1. 3196 /// 3197 int ARMAsmParser::tryParseRegister() { 3198 MCAsmParser &Parser = getParser(); 3199 const AsmToken &Tok = Parser.getTok(); 3200 if (Tok.isNot(AsmToken::Identifier)) return -1; 3201 3202 std::string lowerCase = Tok.getString().lower(); 3203 unsigned RegNum = MatchRegisterName(lowerCase); 3204 if (!RegNum) { 3205 RegNum = StringSwitch<unsigned>(lowerCase) 3206 .Case("r13", ARM::SP) 3207 .Case("r14", ARM::LR) 3208 .Case("r15", ARM::PC) 3209 .Case("ip", ARM::R12) 3210 // Additional register name aliases for 'gas' compatibility. 3211 .Case("a1", ARM::R0) 3212 .Case("a2", ARM::R1) 3213 .Case("a3", ARM::R2) 3214 .Case("a4", ARM::R3) 3215 .Case("v1", ARM::R4) 3216 .Case("v2", ARM::R5) 3217 .Case("v3", ARM::R6) 3218 .Case("v4", ARM::R7) 3219 .Case("v5", ARM::R8) 3220 .Case("v6", ARM::R9) 3221 .Case("v7", ARM::R10) 3222 .Case("v8", ARM::R11) 3223 .Case("sb", ARM::R9) 3224 .Case("sl", ARM::R10) 3225 .Case("fp", ARM::R11) 3226 .Default(0); 3227 } 3228 if (!RegNum) { 3229 // Check for aliases registered via .req. Canonicalize to lower case. 3230 // That's more consistent since register names are case insensitive, and 3231 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3232 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3233 // If no match, return failure. 3234 if (Entry == RegisterReqs.end()) 3235 return -1; 3236 Parser.Lex(); // Eat identifier token. 3237 return Entry->getValue(); 3238 } 3239 3240 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3241 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3242 return -1; 3243 3244 Parser.Lex(); // Eat identifier token. 3245 3246 return RegNum; 3247 } 3248 3249 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3250 // If a recoverable error occurs, return 1. If an irrecoverable error 3251 // occurs, return -1. An irrecoverable error is one where tokens have been 3252 // consumed in the process of trying to parse the shifter (i.e., when it is 3253 // indeed a shifter operand, but malformed). 3254 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3255 MCAsmParser &Parser = getParser(); 3256 SMLoc S = Parser.getTok().getLoc(); 3257 const AsmToken &Tok = Parser.getTok(); 3258 if (Tok.isNot(AsmToken::Identifier)) 3259 return -1; 3260 3261 std::string lowerCase = Tok.getString().lower(); 3262 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3263 .Case("asl", ARM_AM::lsl) 3264 .Case("lsl", ARM_AM::lsl) 3265 .Case("lsr", ARM_AM::lsr) 3266 .Case("asr", ARM_AM::asr) 3267 .Case("ror", ARM_AM::ror) 3268 .Case("rrx", ARM_AM::rrx) 3269 .Default(ARM_AM::no_shift); 3270 3271 if (ShiftTy == ARM_AM::no_shift) 3272 return 1; 3273 3274 Parser.Lex(); // Eat the operator. 3275 3276 // The source register for the shift has already been added to the 3277 // operand list, so we need to pop it off and combine it into the shifted 3278 // register operand instead. 3279 std::unique_ptr<ARMOperand> PrevOp( 3280 (ARMOperand *)Operands.pop_back_val().release()); 3281 if (!PrevOp->isReg()) 3282 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3283 int SrcReg = PrevOp->getReg(); 3284 3285 SMLoc EndLoc; 3286 int64_t Imm = 0; 3287 int ShiftReg = 0; 3288 if (ShiftTy == ARM_AM::rrx) { 3289 // RRX Doesn't have an explicit shift amount. The encoder expects 3290 // the shift register to be the same as the source register. Seems odd, 3291 // but OK. 3292 ShiftReg = SrcReg; 3293 } else { 3294 // Figure out if this is shifted by a constant or a register (for non-RRX). 3295 if (Parser.getTok().is(AsmToken::Hash) || 3296 Parser.getTok().is(AsmToken::Dollar)) { 3297 Parser.Lex(); // Eat hash. 3298 SMLoc ImmLoc = Parser.getTok().getLoc(); 3299 const MCExpr *ShiftExpr = nullptr; 3300 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3301 Error(ImmLoc, "invalid immediate shift value"); 3302 return -1; 3303 } 3304 // The expression must be evaluatable as an immediate. 3305 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3306 if (!CE) { 3307 Error(ImmLoc, "invalid immediate shift value"); 3308 return -1; 3309 } 3310 // Range check the immediate. 3311 // lsl, ror: 0 <= imm <= 31 3312 // lsr, asr: 0 <= imm <= 32 3313 Imm = CE->getValue(); 3314 if (Imm < 0 || 3315 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3316 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3317 Error(ImmLoc, "immediate shift value out of range"); 3318 return -1; 3319 } 3320 // shift by zero is a nop. Always send it through as lsl. 3321 // ('as' compatibility) 3322 if (Imm == 0) 3323 ShiftTy = ARM_AM::lsl; 3324 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3325 SMLoc L = Parser.getTok().getLoc(); 3326 EndLoc = Parser.getTok().getEndLoc(); 3327 ShiftReg = tryParseRegister(); 3328 if (ShiftReg == -1) { 3329 Error(L, "expected immediate or register in shift operand"); 3330 return -1; 3331 } 3332 } else { 3333 Error(Parser.getTok().getLoc(), 3334 "expected immediate or register in shift operand"); 3335 return -1; 3336 } 3337 } 3338 3339 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3340 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3341 ShiftReg, Imm, 3342 S, EndLoc)); 3343 else 3344 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3345 S, EndLoc)); 3346 3347 return 0; 3348 } 3349 3350 3351 /// Try to parse a register name. The token must be an Identifier when called. 3352 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3353 /// if there is a "writeback". 'true' if it's not a register. 3354 /// 3355 /// TODO this is likely to change to allow different register types and or to 3356 /// parse for a specific register type. 3357 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3358 MCAsmParser &Parser = getParser(); 3359 const AsmToken &RegTok = Parser.getTok(); 3360 int RegNo = tryParseRegister(); 3361 if (RegNo == -1) 3362 return true; 3363 3364 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3365 RegTok.getEndLoc())); 3366 3367 const AsmToken &ExclaimTok = Parser.getTok(); 3368 if (ExclaimTok.is(AsmToken::Exclaim)) { 3369 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3370 ExclaimTok.getLoc())); 3371 Parser.Lex(); // Eat exclaim token 3372 return false; 3373 } 3374 3375 // Also check for an index operand. This is only legal for vector registers, 3376 // but that'll get caught OK in operand matching, so we don't need to 3377 // explicitly filter everything else out here. 3378 if (Parser.getTok().is(AsmToken::LBrac)) { 3379 SMLoc SIdx = Parser.getTok().getLoc(); 3380 Parser.Lex(); // Eat left bracket token. 3381 3382 const MCExpr *ImmVal; 3383 if (getParser().parseExpression(ImmVal)) 3384 return true; 3385 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3386 if (!MCE) 3387 return TokError("immediate value expected for vector index"); 3388 3389 if (Parser.getTok().isNot(AsmToken::RBrac)) 3390 return Error(Parser.getTok().getLoc(), "']' expected"); 3391 3392 SMLoc E = Parser.getTok().getEndLoc(); 3393 Parser.Lex(); // Eat right bracket token. 3394 3395 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3396 SIdx, E, 3397 getContext())); 3398 } 3399 3400 return false; 3401 } 3402 3403 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3404 /// instruction with a symbolic operand name. 3405 /// We accept "crN" syntax for GAS compatibility. 3406 /// <operand-name> ::= <prefix><number> 3407 /// If CoprocOp is 'c', then: 3408 /// <prefix> ::= c | cr 3409 /// If CoprocOp is 'p', then : 3410 /// <prefix> ::= p 3411 /// <number> ::= integer in range [0, 15] 3412 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3413 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3414 // but efficient. 3415 if (Name.size() < 2 || Name[0] != CoprocOp) 3416 return -1; 3417 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3418 3419 switch (Name.size()) { 3420 default: return -1; 3421 case 1: 3422 switch (Name[0]) { 3423 default: return -1; 3424 case '0': return 0; 3425 case '1': return 1; 3426 case '2': return 2; 3427 case '3': return 3; 3428 case '4': return 4; 3429 case '5': return 5; 3430 case '6': return 6; 3431 case '7': return 7; 3432 case '8': return 8; 3433 case '9': return 9; 3434 } 3435 case 2: 3436 if (Name[0] != '1') 3437 return -1; 3438 switch (Name[1]) { 3439 default: return -1; 3440 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3441 // However, old cores (v5/v6) did use them in that way. 3442 case '0': return 10; 3443 case '1': return 11; 3444 case '2': return 12; 3445 case '3': return 13; 3446 case '4': return 14; 3447 case '5': return 15; 3448 } 3449 } 3450 } 3451 3452 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3453 OperandMatchResultTy 3454 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3455 MCAsmParser &Parser = getParser(); 3456 SMLoc S = Parser.getTok().getLoc(); 3457 const AsmToken &Tok = Parser.getTok(); 3458 if (!Tok.is(AsmToken::Identifier)) 3459 return MatchOperand_NoMatch; 3460 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3461 .Case("eq", ARMCC::EQ) 3462 .Case("ne", ARMCC::NE) 3463 .Case("hs", ARMCC::HS) 3464 .Case("cs", ARMCC::HS) 3465 .Case("lo", ARMCC::LO) 3466 .Case("cc", ARMCC::LO) 3467 .Case("mi", ARMCC::MI) 3468 .Case("pl", ARMCC::PL) 3469 .Case("vs", ARMCC::VS) 3470 .Case("vc", ARMCC::VC) 3471 .Case("hi", ARMCC::HI) 3472 .Case("ls", ARMCC::LS) 3473 .Case("ge", ARMCC::GE) 3474 .Case("lt", ARMCC::LT) 3475 .Case("gt", ARMCC::GT) 3476 .Case("le", ARMCC::LE) 3477 .Case("al", ARMCC::AL) 3478 .Default(~0U); 3479 if (CC == ~0U) 3480 return MatchOperand_NoMatch; 3481 Parser.Lex(); // Eat the token. 3482 3483 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3484 3485 return MatchOperand_Success; 3486 } 3487 3488 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3489 /// token must be an Identifier when called, and if it is a coprocessor 3490 /// number, the token is eaten and the operand is added to the operand list. 3491 OperandMatchResultTy 3492 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3493 MCAsmParser &Parser = getParser(); 3494 SMLoc S = Parser.getTok().getLoc(); 3495 const AsmToken &Tok = Parser.getTok(); 3496 if (Tok.isNot(AsmToken::Identifier)) 3497 return MatchOperand_NoMatch; 3498 3499 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3500 if (Num == -1) 3501 return MatchOperand_NoMatch; 3502 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3503 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3504 return MatchOperand_NoMatch; 3505 3506 Parser.Lex(); // Eat identifier token. 3507 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3508 return MatchOperand_Success; 3509 } 3510 3511 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3512 /// token must be an Identifier when called, and if it is a coprocessor 3513 /// number, the token is eaten and the operand is added to the operand list. 3514 OperandMatchResultTy 3515 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3516 MCAsmParser &Parser = getParser(); 3517 SMLoc S = Parser.getTok().getLoc(); 3518 const AsmToken &Tok = Parser.getTok(); 3519 if (Tok.isNot(AsmToken::Identifier)) 3520 return MatchOperand_NoMatch; 3521 3522 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3523 if (Reg == -1) 3524 return MatchOperand_NoMatch; 3525 3526 Parser.Lex(); // Eat identifier token. 3527 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3528 return MatchOperand_Success; 3529 } 3530 3531 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3532 /// coproc_option : '{' imm0_255 '}' 3533 OperandMatchResultTy 3534 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3535 MCAsmParser &Parser = getParser(); 3536 SMLoc S = Parser.getTok().getLoc(); 3537 3538 // If this isn't a '{', this isn't a coprocessor immediate operand. 3539 if (Parser.getTok().isNot(AsmToken::LCurly)) 3540 return MatchOperand_NoMatch; 3541 Parser.Lex(); // Eat the '{' 3542 3543 const MCExpr *Expr; 3544 SMLoc Loc = Parser.getTok().getLoc(); 3545 if (getParser().parseExpression(Expr)) { 3546 Error(Loc, "illegal expression"); 3547 return MatchOperand_ParseFail; 3548 } 3549 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3550 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3551 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3552 return MatchOperand_ParseFail; 3553 } 3554 int Val = CE->getValue(); 3555 3556 // Check for and consume the closing '}' 3557 if (Parser.getTok().isNot(AsmToken::RCurly)) 3558 return MatchOperand_ParseFail; 3559 SMLoc E = Parser.getTok().getEndLoc(); 3560 Parser.Lex(); // Eat the '}' 3561 3562 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3563 return MatchOperand_Success; 3564 } 3565 3566 // For register list parsing, we need to map from raw GPR register numbering 3567 // to the enumeration values. The enumeration values aren't sorted by 3568 // register number due to our using "sp", "lr" and "pc" as canonical names. 3569 static unsigned getNextRegister(unsigned Reg) { 3570 // If this is a GPR, we need to do it manually, otherwise we can rely 3571 // on the sort ordering of the enumeration since the other reg-classes 3572 // are sane. 3573 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3574 return Reg + 1; 3575 switch(Reg) { 3576 default: llvm_unreachable("Invalid GPR number!"); 3577 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3578 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3579 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3580 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3581 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3582 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3583 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3584 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3585 } 3586 } 3587 3588 // Return the low-subreg of a given Q register. 3589 static unsigned getDRegFromQReg(unsigned QReg) { 3590 switch (QReg) { 3591 default: llvm_unreachable("expected a Q register!"); 3592 case ARM::Q0: return ARM::D0; 3593 case ARM::Q1: return ARM::D2; 3594 case ARM::Q2: return ARM::D4; 3595 case ARM::Q3: return ARM::D6; 3596 case ARM::Q4: return ARM::D8; 3597 case ARM::Q5: return ARM::D10; 3598 case ARM::Q6: return ARM::D12; 3599 case ARM::Q7: return ARM::D14; 3600 case ARM::Q8: return ARM::D16; 3601 case ARM::Q9: return ARM::D18; 3602 case ARM::Q10: return ARM::D20; 3603 case ARM::Q11: return ARM::D22; 3604 case ARM::Q12: return ARM::D24; 3605 case ARM::Q13: return ARM::D26; 3606 case ARM::Q14: return ARM::D28; 3607 case ARM::Q15: return ARM::D30; 3608 } 3609 } 3610 3611 /// Parse a register list. 3612 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3613 MCAsmParser &Parser = getParser(); 3614 if (Parser.getTok().isNot(AsmToken::LCurly)) 3615 return TokError("Token is not a Left Curly Brace"); 3616 SMLoc S = Parser.getTok().getLoc(); 3617 Parser.Lex(); // Eat '{' token. 3618 SMLoc RegLoc = Parser.getTok().getLoc(); 3619 3620 // Check the first register in the list to see what register class 3621 // this is a list of. 3622 int Reg = tryParseRegister(); 3623 if (Reg == -1) 3624 return Error(RegLoc, "register expected"); 3625 3626 // The reglist instructions have at most 16 registers, so reserve 3627 // space for that many. 3628 int EReg = 0; 3629 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3630 3631 // Allow Q regs and just interpret them as the two D sub-registers. 3632 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3633 Reg = getDRegFromQReg(Reg); 3634 EReg = MRI->getEncodingValue(Reg); 3635 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3636 ++Reg; 3637 } 3638 const MCRegisterClass *RC; 3639 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3640 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3641 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3642 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3643 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3644 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3645 else 3646 return Error(RegLoc, "invalid register in register list"); 3647 3648 // Store the register. 3649 EReg = MRI->getEncodingValue(Reg); 3650 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3651 3652 // This starts immediately after the first register token in the list, 3653 // so we can see either a comma or a minus (range separator) as a legal 3654 // next token. 3655 while (Parser.getTok().is(AsmToken::Comma) || 3656 Parser.getTok().is(AsmToken::Minus)) { 3657 if (Parser.getTok().is(AsmToken::Minus)) { 3658 Parser.Lex(); // Eat the minus. 3659 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3660 int EndReg = tryParseRegister(); 3661 if (EndReg == -1) 3662 return Error(AfterMinusLoc, "register expected"); 3663 // Allow Q regs and just interpret them as the two D sub-registers. 3664 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3665 EndReg = getDRegFromQReg(EndReg) + 1; 3666 // If the register is the same as the start reg, there's nothing 3667 // more to do. 3668 if (Reg == EndReg) 3669 continue; 3670 // The register must be in the same register class as the first. 3671 if (!RC->contains(EndReg)) 3672 return Error(AfterMinusLoc, "invalid register in register list"); 3673 // Ranges must go from low to high. 3674 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3675 return Error(AfterMinusLoc, "bad range in register list"); 3676 3677 // Add all the registers in the range to the register list. 3678 while (Reg != EndReg) { 3679 Reg = getNextRegister(Reg); 3680 EReg = MRI->getEncodingValue(Reg); 3681 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3682 } 3683 continue; 3684 } 3685 Parser.Lex(); // Eat the comma. 3686 RegLoc = Parser.getTok().getLoc(); 3687 int OldReg = Reg; 3688 const AsmToken RegTok = Parser.getTok(); 3689 Reg = tryParseRegister(); 3690 if (Reg == -1) 3691 return Error(RegLoc, "register expected"); 3692 // Allow Q regs and just interpret them as the two D sub-registers. 3693 bool isQReg = false; 3694 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3695 Reg = getDRegFromQReg(Reg); 3696 isQReg = true; 3697 } 3698 // The register must be in the same register class as the first. 3699 if (!RC->contains(Reg)) 3700 return Error(RegLoc, "invalid register in register list"); 3701 // List must be monotonically increasing. 3702 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3703 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3704 Warning(RegLoc, "register list not in ascending order"); 3705 else 3706 return Error(RegLoc, "register list not in ascending order"); 3707 } 3708 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3709 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3710 ") in register list"); 3711 continue; 3712 } 3713 // VFP register lists must also be contiguous. 3714 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3715 Reg != OldReg + 1) 3716 return Error(RegLoc, "non-contiguous register range"); 3717 EReg = MRI->getEncodingValue(Reg); 3718 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3719 if (isQReg) { 3720 EReg = MRI->getEncodingValue(++Reg); 3721 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3722 } 3723 } 3724 3725 if (Parser.getTok().isNot(AsmToken::RCurly)) 3726 return Error(Parser.getTok().getLoc(), "'}' expected"); 3727 SMLoc E = Parser.getTok().getEndLoc(); 3728 Parser.Lex(); // Eat '}' token. 3729 3730 // Push the register list operand. 3731 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3732 3733 // The ARM system instruction variants for LDM/STM have a '^' token here. 3734 if (Parser.getTok().is(AsmToken::Caret)) { 3735 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3736 Parser.Lex(); // Eat '^' token. 3737 } 3738 3739 return false; 3740 } 3741 3742 // Helper function to parse the lane index for vector lists. 3743 OperandMatchResultTy ARMAsmParser:: 3744 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3745 MCAsmParser &Parser = getParser(); 3746 Index = 0; // Always return a defined index value. 3747 if (Parser.getTok().is(AsmToken::LBrac)) { 3748 Parser.Lex(); // Eat the '['. 3749 if (Parser.getTok().is(AsmToken::RBrac)) { 3750 // "Dn[]" is the 'all lanes' syntax. 3751 LaneKind = AllLanes; 3752 EndLoc = Parser.getTok().getEndLoc(); 3753 Parser.Lex(); // Eat the ']'. 3754 return MatchOperand_Success; 3755 } 3756 3757 // There's an optional '#' token here. Normally there wouldn't be, but 3758 // inline assemble puts one in, and it's friendly to accept that. 3759 if (Parser.getTok().is(AsmToken::Hash)) 3760 Parser.Lex(); // Eat '#' or '$'. 3761 3762 const MCExpr *LaneIndex; 3763 SMLoc Loc = Parser.getTok().getLoc(); 3764 if (getParser().parseExpression(LaneIndex)) { 3765 Error(Loc, "illegal expression"); 3766 return MatchOperand_ParseFail; 3767 } 3768 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3769 if (!CE) { 3770 Error(Loc, "lane index must be empty or an integer"); 3771 return MatchOperand_ParseFail; 3772 } 3773 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3774 Error(Parser.getTok().getLoc(), "']' expected"); 3775 return MatchOperand_ParseFail; 3776 } 3777 EndLoc = Parser.getTok().getEndLoc(); 3778 Parser.Lex(); // Eat the ']'. 3779 int64_t Val = CE->getValue(); 3780 3781 // FIXME: Make this range check context sensitive for .8, .16, .32. 3782 if (Val < 0 || Val > 7) { 3783 Error(Parser.getTok().getLoc(), "lane index out of range"); 3784 return MatchOperand_ParseFail; 3785 } 3786 Index = Val; 3787 LaneKind = IndexedLane; 3788 return MatchOperand_Success; 3789 } 3790 LaneKind = NoLanes; 3791 return MatchOperand_Success; 3792 } 3793 3794 // parse a vector register list 3795 OperandMatchResultTy 3796 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3797 MCAsmParser &Parser = getParser(); 3798 VectorLaneTy LaneKind; 3799 unsigned LaneIndex; 3800 SMLoc S = Parser.getTok().getLoc(); 3801 // As an extension (to match gas), support a plain D register or Q register 3802 // (without encosing curly braces) as a single or double entry list, 3803 // respectively. 3804 if (Parser.getTok().is(AsmToken::Identifier)) { 3805 SMLoc E = Parser.getTok().getEndLoc(); 3806 int Reg = tryParseRegister(); 3807 if (Reg == -1) 3808 return MatchOperand_NoMatch; 3809 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3810 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3811 if (Res != MatchOperand_Success) 3812 return Res; 3813 switch (LaneKind) { 3814 case NoLanes: 3815 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3816 break; 3817 case AllLanes: 3818 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3819 S, E)); 3820 break; 3821 case IndexedLane: 3822 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3823 LaneIndex, 3824 false, S, E)); 3825 break; 3826 } 3827 return MatchOperand_Success; 3828 } 3829 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3830 Reg = getDRegFromQReg(Reg); 3831 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3832 if (Res != MatchOperand_Success) 3833 return Res; 3834 switch (LaneKind) { 3835 case NoLanes: 3836 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3837 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3838 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3839 break; 3840 case AllLanes: 3841 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3842 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3843 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3844 S, E)); 3845 break; 3846 case IndexedLane: 3847 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3848 LaneIndex, 3849 false, S, E)); 3850 break; 3851 } 3852 return MatchOperand_Success; 3853 } 3854 Error(S, "vector register expected"); 3855 return MatchOperand_ParseFail; 3856 } 3857 3858 if (Parser.getTok().isNot(AsmToken::LCurly)) 3859 return MatchOperand_NoMatch; 3860 3861 Parser.Lex(); // Eat '{' token. 3862 SMLoc RegLoc = Parser.getTok().getLoc(); 3863 3864 int Reg = tryParseRegister(); 3865 if (Reg == -1) { 3866 Error(RegLoc, "register expected"); 3867 return MatchOperand_ParseFail; 3868 } 3869 unsigned Count = 1; 3870 int Spacing = 0; 3871 unsigned FirstReg = Reg; 3872 // The list is of D registers, but we also allow Q regs and just interpret 3873 // them as the two D sub-registers. 3874 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3875 FirstReg = Reg = getDRegFromQReg(Reg); 3876 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3877 // it's ambiguous with four-register single spaced. 3878 ++Reg; 3879 ++Count; 3880 } 3881 3882 SMLoc E; 3883 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3884 return MatchOperand_ParseFail; 3885 3886 while (Parser.getTok().is(AsmToken::Comma) || 3887 Parser.getTok().is(AsmToken::Minus)) { 3888 if (Parser.getTok().is(AsmToken::Minus)) { 3889 if (!Spacing) 3890 Spacing = 1; // Register range implies a single spaced list. 3891 else if (Spacing == 2) { 3892 Error(Parser.getTok().getLoc(), 3893 "sequential registers in double spaced list"); 3894 return MatchOperand_ParseFail; 3895 } 3896 Parser.Lex(); // Eat the minus. 3897 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3898 int EndReg = tryParseRegister(); 3899 if (EndReg == -1) { 3900 Error(AfterMinusLoc, "register expected"); 3901 return MatchOperand_ParseFail; 3902 } 3903 // Allow Q regs and just interpret them as the two D sub-registers. 3904 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3905 EndReg = getDRegFromQReg(EndReg) + 1; 3906 // If the register is the same as the start reg, there's nothing 3907 // more to do. 3908 if (Reg == EndReg) 3909 continue; 3910 // The register must be in the same register class as the first. 3911 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3912 Error(AfterMinusLoc, "invalid register in register list"); 3913 return MatchOperand_ParseFail; 3914 } 3915 // Ranges must go from low to high. 3916 if (Reg > EndReg) { 3917 Error(AfterMinusLoc, "bad range in register list"); 3918 return MatchOperand_ParseFail; 3919 } 3920 // Parse the lane specifier if present. 3921 VectorLaneTy NextLaneKind; 3922 unsigned NextLaneIndex; 3923 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3924 MatchOperand_Success) 3925 return MatchOperand_ParseFail; 3926 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3927 Error(AfterMinusLoc, "mismatched lane index in register list"); 3928 return MatchOperand_ParseFail; 3929 } 3930 3931 // Add all the registers in the range to the register list. 3932 Count += EndReg - Reg; 3933 Reg = EndReg; 3934 continue; 3935 } 3936 Parser.Lex(); // Eat the comma. 3937 RegLoc = Parser.getTok().getLoc(); 3938 int OldReg = Reg; 3939 Reg = tryParseRegister(); 3940 if (Reg == -1) { 3941 Error(RegLoc, "register expected"); 3942 return MatchOperand_ParseFail; 3943 } 3944 // vector register lists must be contiguous. 3945 // It's OK to use the enumeration values directly here rather, as the 3946 // VFP register classes have the enum sorted properly. 3947 // 3948 // The list is of D registers, but we also allow Q regs and just interpret 3949 // them as the two D sub-registers. 3950 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3951 if (!Spacing) 3952 Spacing = 1; // Register range implies a single spaced list. 3953 else if (Spacing == 2) { 3954 Error(RegLoc, 3955 "invalid register in double-spaced list (must be 'D' register')"); 3956 return MatchOperand_ParseFail; 3957 } 3958 Reg = getDRegFromQReg(Reg); 3959 if (Reg != OldReg + 1) { 3960 Error(RegLoc, "non-contiguous register range"); 3961 return MatchOperand_ParseFail; 3962 } 3963 ++Reg; 3964 Count += 2; 3965 // Parse the lane specifier if present. 3966 VectorLaneTy NextLaneKind; 3967 unsigned NextLaneIndex; 3968 SMLoc LaneLoc = Parser.getTok().getLoc(); 3969 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3970 MatchOperand_Success) 3971 return MatchOperand_ParseFail; 3972 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3973 Error(LaneLoc, "mismatched lane index in register list"); 3974 return MatchOperand_ParseFail; 3975 } 3976 continue; 3977 } 3978 // Normal D register. 3979 // Figure out the register spacing (single or double) of the list if 3980 // we don't know it already. 3981 if (!Spacing) 3982 Spacing = 1 + (Reg == OldReg + 2); 3983 3984 // Just check that it's contiguous and keep going. 3985 if (Reg != OldReg + Spacing) { 3986 Error(RegLoc, "non-contiguous register range"); 3987 return MatchOperand_ParseFail; 3988 } 3989 ++Count; 3990 // Parse the lane specifier if present. 3991 VectorLaneTy NextLaneKind; 3992 unsigned NextLaneIndex; 3993 SMLoc EndLoc = Parser.getTok().getLoc(); 3994 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3995 return MatchOperand_ParseFail; 3996 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3997 Error(EndLoc, "mismatched lane index in register list"); 3998 return MatchOperand_ParseFail; 3999 } 4000 } 4001 4002 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4003 Error(Parser.getTok().getLoc(), "'}' expected"); 4004 return MatchOperand_ParseFail; 4005 } 4006 E = Parser.getTok().getEndLoc(); 4007 Parser.Lex(); // Eat '}' token. 4008 4009 switch (LaneKind) { 4010 case NoLanes: 4011 // Two-register operands have been converted to the 4012 // composite register classes. 4013 if (Count == 2) { 4014 const MCRegisterClass *RC = (Spacing == 1) ? 4015 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4016 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4017 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4018 } 4019 4020 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4021 (Spacing == 2), S, E)); 4022 break; 4023 case AllLanes: 4024 // Two-register operands have been converted to the 4025 // composite register classes. 4026 if (Count == 2) { 4027 const MCRegisterClass *RC = (Spacing == 1) ? 4028 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4029 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4030 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4031 } 4032 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4033 (Spacing == 2), 4034 S, E)); 4035 break; 4036 case IndexedLane: 4037 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4038 LaneIndex, 4039 (Spacing == 2), 4040 S, E)); 4041 break; 4042 } 4043 return MatchOperand_Success; 4044 } 4045 4046 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4047 OperandMatchResultTy 4048 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4049 MCAsmParser &Parser = getParser(); 4050 SMLoc S = Parser.getTok().getLoc(); 4051 const AsmToken &Tok = Parser.getTok(); 4052 unsigned Opt; 4053 4054 if (Tok.is(AsmToken::Identifier)) { 4055 StringRef OptStr = Tok.getString(); 4056 4057 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4058 .Case("sy", ARM_MB::SY) 4059 .Case("st", ARM_MB::ST) 4060 .Case("ld", ARM_MB::LD) 4061 .Case("sh", ARM_MB::ISH) 4062 .Case("ish", ARM_MB::ISH) 4063 .Case("shst", ARM_MB::ISHST) 4064 .Case("ishst", ARM_MB::ISHST) 4065 .Case("ishld", ARM_MB::ISHLD) 4066 .Case("nsh", ARM_MB::NSH) 4067 .Case("un", ARM_MB::NSH) 4068 .Case("nshst", ARM_MB::NSHST) 4069 .Case("nshld", ARM_MB::NSHLD) 4070 .Case("unst", ARM_MB::NSHST) 4071 .Case("osh", ARM_MB::OSH) 4072 .Case("oshst", ARM_MB::OSHST) 4073 .Case("oshld", ARM_MB::OSHLD) 4074 .Default(~0U); 4075 4076 // ishld, oshld, nshld and ld are only available from ARMv8. 4077 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4078 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4079 Opt = ~0U; 4080 4081 if (Opt == ~0U) 4082 return MatchOperand_NoMatch; 4083 4084 Parser.Lex(); // Eat identifier token. 4085 } else if (Tok.is(AsmToken::Hash) || 4086 Tok.is(AsmToken::Dollar) || 4087 Tok.is(AsmToken::Integer)) { 4088 if (Parser.getTok().isNot(AsmToken::Integer)) 4089 Parser.Lex(); // Eat '#' or '$'. 4090 SMLoc Loc = Parser.getTok().getLoc(); 4091 4092 const MCExpr *MemBarrierID; 4093 if (getParser().parseExpression(MemBarrierID)) { 4094 Error(Loc, "illegal expression"); 4095 return MatchOperand_ParseFail; 4096 } 4097 4098 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4099 if (!CE) { 4100 Error(Loc, "constant expression expected"); 4101 return MatchOperand_ParseFail; 4102 } 4103 4104 int Val = CE->getValue(); 4105 if (Val & ~0xf) { 4106 Error(Loc, "immediate value out of range"); 4107 return MatchOperand_ParseFail; 4108 } 4109 4110 Opt = ARM_MB::RESERVED_0 + Val; 4111 } else 4112 return MatchOperand_ParseFail; 4113 4114 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4115 return MatchOperand_Success; 4116 } 4117 4118 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4119 OperandMatchResultTy 4120 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4121 MCAsmParser &Parser = getParser(); 4122 SMLoc S = Parser.getTok().getLoc(); 4123 const AsmToken &Tok = Parser.getTok(); 4124 unsigned Opt; 4125 4126 if (Tok.is(AsmToken::Identifier)) { 4127 StringRef OptStr = Tok.getString(); 4128 4129 if (OptStr.equals_lower("sy")) 4130 Opt = ARM_ISB::SY; 4131 else 4132 return MatchOperand_NoMatch; 4133 4134 Parser.Lex(); // Eat identifier token. 4135 } else if (Tok.is(AsmToken::Hash) || 4136 Tok.is(AsmToken::Dollar) || 4137 Tok.is(AsmToken::Integer)) { 4138 if (Parser.getTok().isNot(AsmToken::Integer)) 4139 Parser.Lex(); // Eat '#' or '$'. 4140 SMLoc Loc = Parser.getTok().getLoc(); 4141 4142 const MCExpr *ISBarrierID; 4143 if (getParser().parseExpression(ISBarrierID)) { 4144 Error(Loc, "illegal expression"); 4145 return MatchOperand_ParseFail; 4146 } 4147 4148 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4149 if (!CE) { 4150 Error(Loc, "constant expression expected"); 4151 return MatchOperand_ParseFail; 4152 } 4153 4154 int Val = CE->getValue(); 4155 if (Val & ~0xf) { 4156 Error(Loc, "immediate value out of range"); 4157 return MatchOperand_ParseFail; 4158 } 4159 4160 Opt = ARM_ISB::RESERVED_0 + Val; 4161 } else 4162 return MatchOperand_ParseFail; 4163 4164 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4165 (ARM_ISB::InstSyncBOpt)Opt, S)); 4166 return MatchOperand_Success; 4167 } 4168 4169 4170 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4171 OperandMatchResultTy 4172 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4173 MCAsmParser &Parser = getParser(); 4174 SMLoc S = Parser.getTok().getLoc(); 4175 const AsmToken &Tok = Parser.getTok(); 4176 if (!Tok.is(AsmToken::Identifier)) 4177 return MatchOperand_NoMatch; 4178 StringRef IFlagsStr = Tok.getString(); 4179 4180 // An iflags string of "none" is interpreted to mean that none of the AIF 4181 // bits are set. Not a terribly useful instruction, but a valid encoding. 4182 unsigned IFlags = 0; 4183 if (IFlagsStr != "none") { 4184 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4185 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4186 .Case("a", ARM_PROC::A) 4187 .Case("i", ARM_PROC::I) 4188 .Case("f", ARM_PROC::F) 4189 .Default(~0U); 4190 4191 // If some specific iflag is already set, it means that some letter is 4192 // present more than once, this is not acceptable. 4193 if (Flag == ~0U || (IFlags & Flag)) 4194 return MatchOperand_NoMatch; 4195 4196 IFlags |= Flag; 4197 } 4198 } 4199 4200 Parser.Lex(); // Eat identifier token. 4201 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4202 return MatchOperand_Success; 4203 } 4204 4205 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4206 OperandMatchResultTy 4207 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4208 MCAsmParser &Parser = getParser(); 4209 SMLoc S = Parser.getTok().getLoc(); 4210 const AsmToken &Tok = Parser.getTok(); 4211 if (!Tok.is(AsmToken::Identifier)) 4212 return MatchOperand_NoMatch; 4213 StringRef Mask = Tok.getString(); 4214 4215 if (isMClass()) { 4216 // See ARMv6-M 10.1.1 4217 std::string Name = Mask.lower(); 4218 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4219 // Note: in the documentation: 4220 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4221 // for MSR APSR_nzcvq. 4222 // but we do make it an alias here. This is so to get the "mask encoding" 4223 // bits correct on MSR APSR writes. 4224 // 4225 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4226 // should really only be allowed when writing a special register. Note 4227 // they get dropped in the MRS instruction reading a special register as 4228 // the SYSm field is only 8 bits. 4229 .Case("apsr", 0x800) 4230 .Case("apsr_nzcvq", 0x800) 4231 .Case("apsr_g", 0x400) 4232 .Case("apsr_nzcvqg", 0xc00) 4233 .Case("iapsr", 0x801) 4234 .Case("iapsr_nzcvq", 0x801) 4235 .Case("iapsr_g", 0x401) 4236 .Case("iapsr_nzcvqg", 0xc01) 4237 .Case("eapsr", 0x802) 4238 .Case("eapsr_nzcvq", 0x802) 4239 .Case("eapsr_g", 0x402) 4240 .Case("eapsr_nzcvqg", 0xc02) 4241 .Case("xpsr", 0x803) 4242 .Case("xpsr_nzcvq", 0x803) 4243 .Case("xpsr_g", 0x403) 4244 .Case("xpsr_nzcvqg", 0xc03) 4245 .Case("ipsr", 0x805) 4246 .Case("epsr", 0x806) 4247 .Case("iepsr", 0x807) 4248 .Case("msp", 0x808) 4249 .Case("psp", 0x809) 4250 .Case("primask", 0x810) 4251 .Case("basepri", 0x811) 4252 .Case("basepri_max", 0x812) 4253 .Case("faultmask", 0x813) 4254 .Case("control", 0x814) 4255 .Case("msplim", 0x80a) 4256 .Case("psplim", 0x80b) 4257 .Case("msp_ns", 0x888) 4258 .Case("psp_ns", 0x889) 4259 .Case("msplim_ns", 0x88a) 4260 .Case("psplim_ns", 0x88b) 4261 .Case("primask_ns", 0x890) 4262 .Case("basepri_ns", 0x891) 4263 .Case("basepri_max_ns", 0x892) 4264 .Case("faultmask_ns", 0x893) 4265 .Case("control_ns", 0x894) 4266 .Case("sp_ns", 0x898) 4267 .Default(~0U); 4268 4269 if (FlagsVal == ~0U) 4270 return MatchOperand_NoMatch; 4271 4272 if (!hasDSP() && (FlagsVal & 0x400)) 4273 // The _g and _nzcvqg versions are only valid if the DSP extension is 4274 // available. 4275 return MatchOperand_NoMatch; 4276 4277 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4278 // basepri, basepri_max and faultmask only valid for V7m. 4279 return MatchOperand_NoMatch; 4280 4281 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4282 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4283 return MatchOperand_NoMatch; 4284 4285 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4286 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4287 return MatchOperand_NoMatch; 4288 4289 Parser.Lex(); // Eat identifier token. 4290 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4291 return MatchOperand_Success; 4292 } 4293 4294 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4295 size_t Start = 0, Next = Mask.find('_'); 4296 StringRef Flags = ""; 4297 std::string SpecReg = Mask.slice(Start, Next).lower(); 4298 if (Next != StringRef::npos) 4299 Flags = Mask.slice(Next+1, Mask.size()); 4300 4301 // FlagsVal contains the complete mask: 4302 // 3-0: Mask 4303 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4304 unsigned FlagsVal = 0; 4305 4306 if (SpecReg == "apsr") { 4307 FlagsVal = StringSwitch<unsigned>(Flags) 4308 .Case("nzcvq", 0x8) // same as CPSR_f 4309 .Case("g", 0x4) // same as CPSR_s 4310 .Case("nzcvqg", 0xc) // same as CPSR_fs 4311 .Default(~0U); 4312 4313 if (FlagsVal == ~0U) { 4314 if (!Flags.empty()) 4315 return MatchOperand_NoMatch; 4316 else 4317 FlagsVal = 8; // No flag 4318 } 4319 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4320 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4321 if (Flags == "all" || Flags == "") 4322 Flags = "fc"; 4323 for (int i = 0, e = Flags.size(); i != e; ++i) { 4324 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4325 .Case("c", 1) 4326 .Case("x", 2) 4327 .Case("s", 4) 4328 .Case("f", 8) 4329 .Default(~0U); 4330 4331 // If some specific flag is already set, it means that some letter is 4332 // present more than once, this is not acceptable. 4333 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4334 return MatchOperand_NoMatch; 4335 FlagsVal |= Flag; 4336 } 4337 } else // No match for special register. 4338 return MatchOperand_NoMatch; 4339 4340 // Special register without flags is NOT equivalent to "fc" flags. 4341 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4342 // two lines would enable gas compatibility at the expense of breaking 4343 // round-tripping. 4344 // 4345 // if (!FlagsVal) 4346 // FlagsVal = 0x9; 4347 4348 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4349 if (SpecReg == "spsr") 4350 FlagsVal |= 16; 4351 4352 Parser.Lex(); // Eat identifier token. 4353 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4354 return MatchOperand_Success; 4355 } 4356 4357 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4358 /// use in the MRS/MSR instructions added to support virtualization. 4359 OperandMatchResultTy 4360 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4361 MCAsmParser &Parser = getParser(); 4362 SMLoc S = Parser.getTok().getLoc(); 4363 const AsmToken &Tok = Parser.getTok(); 4364 if (!Tok.is(AsmToken::Identifier)) 4365 return MatchOperand_NoMatch; 4366 StringRef RegName = Tok.getString(); 4367 4368 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4369 // and bit 5 is R. 4370 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4371 .Case("r8_usr", 0x00) 4372 .Case("r9_usr", 0x01) 4373 .Case("r10_usr", 0x02) 4374 .Case("r11_usr", 0x03) 4375 .Case("r12_usr", 0x04) 4376 .Case("sp_usr", 0x05) 4377 .Case("lr_usr", 0x06) 4378 .Case("r8_fiq", 0x08) 4379 .Case("r9_fiq", 0x09) 4380 .Case("r10_fiq", 0x0a) 4381 .Case("r11_fiq", 0x0b) 4382 .Case("r12_fiq", 0x0c) 4383 .Case("sp_fiq", 0x0d) 4384 .Case("lr_fiq", 0x0e) 4385 .Case("lr_irq", 0x10) 4386 .Case("sp_irq", 0x11) 4387 .Case("lr_svc", 0x12) 4388 .Case("sp_svc", 0x13) 4389 .Case("lr_abt", 0x14) 4390 .Case("sp_abt", 0x15) 4391 .Case("lr_und", 0x16) 4392 .Case("sp_und", 0x17) 4393 .Case("lr_mon", 0x1c) 4394 .Case("sp_mon", 0x1d) 4395 .Case("elr_hyp", 0x1e) 4396 .Case("sp_hyp", 0x1f) 4397 .Case("spsr_fiq", 0x2e) 4398 .Case("spsr_irq", 0x30) 4399 .Case("spsr_svc", 0x32) 4400 .Case("spsr_abt", 0x34) 4401 .Case("spsr_und", 0x36) 4402 .Case("spsr_mon", 0x3c) 4403 .Case("spsr_hyp", 0x3e) 4404 .Default(~0U); 4405 4406 if (Encoding == ~0U) 4407 return MatchOperand_NoMatch; 4408 4409 Parser.Lex(); // Eat identifier token. 4410 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4411 return MatchOperand_Success; 4412 } 4413 4414 OperandMatchResultTy 4415 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4416 int High) { 4417 MCAsmParser &Parser = getParser(); 4418 const AsmToken &Tok = Parser.getTok(); 4419 if (Tok.isNot(AsmToken::Identifier)) { 4420 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4421 return MatchOperand_ParseFail; 4422 } 4423 StringRef ShiftName = Tok.getString(); 4424 std::string LowerOp = Op.lower(); 4425 std::string UpperOp = Op.upper(); 4426 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4427 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4428 return MatchOperand_ParseFail; 4429 } 4430 Parser.Lex(); // Eat shift type token. 4431 4432 // There must be a '#' and a shift amount. 4433 if (Parser.getTok().isNot(AsmToken::Hash) && 4434 Parser.getTok().isNot(AsmToken::Dollar)) { 4435 Error(Parser.getTok().getLoc(), "'#' expected"); 4436 return MatchOperand_ParseFail; 4437 } 4438 Parser.Lex(); // Eat hash token. 4439 4440 const MCExpr *ShiftAmount; 4441 SMLoc Loc = Parser.getTok().getLoc(); 4442 SMLoc EndLoc; 4443 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4444 Error(Loc, "illegal expression"); 4445 return MatchOperand_ParseFail; 4446 } 4447 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4448 if (!CE) { 4449 Error(Loc, "constant expression expected"); 4450 return MatchOperand_ParseFail; 4451 } 4452 int Val = CE->getValue(); 4453 if (Val < Low || Val > High) { 4454 Error(Loc, "immediate value out of range"); 4455 return MatchOperand_ParseFail; 4456 } 4457 4458 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4459 4460 return MatchOperand_Success; 4461 } 4462 4463 OperandMatchResultTy 4464 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4465 MCAsmParser &Parser = getParser(); 4466 const AsmToken &Tok = Parser.getTok(); 4467 SMLoc S = Tok.getLoc(); 4468 if (Tok.isNot(AsmToken::Identifier)) { 4469 Error(S, "'be' or 'le' operand expected"); 4470 return MatchOperand_ParseFail; 4471 } 4472 int Val = StringSwitch<int>(Tok.getString().lower()) 4473 .Case("be", 1) 4474 .Case("le", 0) 4475 .Default(-1); 4476 Parser.Lex(); // Eat the token. 4477 4478 if (Val == -1) { 4479 Error(S, "'be' or 'le' operand expected"); 4480 return MatchOperand_ParseFail; 4481 } 4482 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4483 getContext()), 4484 S, Tok.getEndLoc())); 4485 return MatchOperand_Success; 4486 } 4487 4488 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4489 /// instructions. Legal values are: 4490 /// lsl #n 'n' in [0,31] 4491 /// asr #n 'n' in [1,32] 4492 /// n == 32 encoded as n == 0. 4493 OperandMatchResultTy 4494 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4495 MCAsmParser &Parser = getParser(); 4496 const AsmToken &Tok = Parser.getTok(); 4497 SMLoc S = Tok.getLoc(); 4498 if (Tok.isNot(AsmToken::Identifier)) { 4499 Error(S, "shift operator 'asr' or 'lsl' expected"); 4500 return MatchOperand_ParseFail; 4501 } 4502 StringRef ShiftName = Tok.getString(); 4503 bool isASR; 4504 if (ShiftName == "lsl" || ShiftName == "LSL") 4505 isASR = false; 4506 else if (ShiftName == "asr" || ShiftName == "ASR") 4507 isASR = true; 4508 else { 4509 Error(S, "shift operator 'asr' or 'lsl' expected"); 4510 return MatchOperand_ParseFail; 4511 } 4512 Parser.Lex(); // Eat the operator. 4513 4514 // A '#' and a shift amount. 4515 if (Parser.getTok().isNot(AsmToken::Hash) && 4516 Parser.getTok().isNot(AsmToken::Dollar)) { 4517 Error(Parser.getTok().getLoc(), "'#' expected"); 4518 return MatchOperand_ParseFail; 4519 } 4520 Parser.Lex(); // Eat hash token. 4521 SMLoc ExLoc = Parser.getTok().getLoc(); 4522 4523 const MCExpr *ShiftAmount; 4524 SMLoc EndLoc; 4525 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4526 Error(ExLoc, "malformed shift expression"); 4527 return MatchOperand_ParseFail; 4528 } 4529 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4530 if (!CE) { 4531 Error(ExLoc, "shift amount must be an immediate"); 4532 return MatchOperand_ParseFail; 4533 } 4534 4535 int64_t Val = CE->getValue(); 4536 if (isASR) { 4537 // Shift amount must be in [1,32] 4538 if (Val < 1 || Val > 32) { 4539 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4540 return MatchOperand_ParseFail; 4541 } 4542 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4543 if (isThumb() && Val == 32) { 4544 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4545 return MatchOperand_ParseFail; 4546 } 4547 if (Val == 32) Val = 0; 4548 } else { 4549 // Shift amount must be in [1,32] 4550 if (Val < 0 || Val > 31) { 4551 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4552 return MatchOperand_ParseFail; 4553 } 4554 } 4555 4556 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4557 4558 return MatchOperand_Success; 4559 } 4560 4561 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4562 /// of instructions. Legal values are: 4563 /// ror #n 'n' in {0, 8, 16, 24} 4564 OperandMatchResultTy 4565 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4566 MCAsmParser &Parser = getParser(); 4567 const AsmToken &Tok = Parser.getTok(); 4568 SMLoc S = Tok.getLoc(); 4569 if (Tok.isNot(AsmToken::Identifier)) 4570 return MatchOperand_NoMatch; 4571 StringRef ShiftName = Tok.getString(); 4572 if (ShiftName != "ror" && ShiftName != "ROR") 4573 return MatchOperand_NoMatch; 4574 Parser.Lex(); // Eat the operator. 4575 4576 // A '#' and a rotate amount. 4577 if (Parser.getTok().isNot(AsmToken::Hash) && 4578 Parser.getTok().isNot(AsmToken::Dollar)) { 4579 Error(Parser.getTok().getLoc(), "'#' expected"); 4580 return MatchOperand_ParseFail; 4581 } 4582 Parser.Lex(); // Eat hash token. 4583 SMLoc ExLoc = Parser.getTok().getLoc(); 4584 4585 const MCExpr *ShiftAmount; 4586 SMLoc EndLoc; 4587 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4588 Error(ExLoc, "malformed rotate expression"); 4589 return MatchOperand_ParseFail; 4590 } 4591 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4592 if (!CE) { 4593 Error(ExLoc, "rotate amount must be an immediate"); 4594 return MatchOperand_ParseFail; 4595 } 4596 4597 int64_t Val = CE->getValue(); 4598 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4599 // normally, zero is represented in asm by omitting the rotate operand 4600 // entirely. 4601 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4602 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4603 return MatchOperand_ParseFail; 4604 } 4605 4606 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4607 4608 return MatchOperand_Success; 4609 } 4610 4611 OperandMatchResultTy 4612 ARMAsmParser::parseModImm(OperandVector &Operands) { 4613 MCAsmParser &Parser = getParser(); 4614 MCAsmLexer &Lexer = getLexer(); 4615 int64_t Imm1, Imm2; 4616 4617 SMLoc S = Parser.getTok().getLoc(); 4618 4619 // 1) A mod_imm operand can appear in the place of a register name: 4620 // add r0, #mod_imm 4621 // add r0, r0, #mod_imm 4622 // to correctly handle the latter, we bail out as soon as we see an 4623 // identifier. 4624 // 4625 // 2) Similarly, we do not want to parse into complex operands: 4626 // mov r0, #mod_imm 4627 // mov r0, :lower16:(_foo) 4628 if (Parser.getTok().is(AsmToken::Identifier) || 4629 Parser.getTok().is(AsmToken::Colon)) 4630 return MatchOperand_NoMatch; 4631 4632 // Hash (dollar) is optional as per the ARMARM 4633 if (Parser.getTok().is(AsmToken::Hash) || 4634 Parser.getTok().is(AsmToken::Dollar)) { 4635 // Avoid parsing into complex operands (#:) 4636 if (Lexer.peekTok().is(AsmToken::Colon)) 4637 return MatchOperand_NoMatch; 4638 4639 // Eat the hash (dollar) 4640 Parser.Lex(); 4641 } 4642 4643 SMLoc Sx1, Ex1; 4644 Sx1 = Parser.getTok().getLoc(); 4645 const MCExpr *Imm1Exp; 4646 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4647 Error(Sx1, "malformed expression"); 4648 return MatchOperand_ParseFail; 4649 } 4650 4651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4652 4653 if (CE) { 4654 // Immediate must fit within 32-bits 4655 Imm1 = CE->getValue(); 4656 int Enc = ARM_AM::getSOImmVal(Imm1); 4657 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4658 // We have a match! 4659 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4660 (Enc & 0xF00) >> 7, 4661 Sx1, Ex1)); 4662 return MatchOperand_Success; 4663 } 4664 4665 // We have parsed an immediate which is not for us, fallback to a plain 4666 // immediate. This can happen for instruction aliases. For an example, 4667 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4668 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4669 // instruction with a mod_imm operand. The alias is defined such that the 4670 // parser method is shared, that's why we have to do this here. 4671 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4672 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4673 return MatchOperand_Success; 4674 } 4675 } else { 4676 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4677 // MCFixup). Fallback to a plain immediate. 4678 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4679 return MatchOperand_Success; 4680 } 4681 4682 // From this point onward, we expect the input to be a (#bits, #rot) pair 4683 if (Parser.getTok().isNot(AsmToken::Comma)) { 4684 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4685 return MatchOperand_ParseFail; 4686 } 4687 4688 if (Imm1 & ~0xFF) { 4689 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4690 return MatchOperand_ParseFail; 4691 } 4692 4693 // Eat the comma 4694 Parser.Lex(); 4695 4696 // Repeat for #rot 4697 SMLoc Sx2, Ex2; 4698 Sx2 = Parser.getTok().getLoc(); 4699 4700 // Eat the optional hash (dollar) 4701 if (Parser.getTok().is(AsmToken::Hash) || 4702 Parser.getTok().is(AsmToken::Dollar)) 4703 Parser.Lex(); 4704 4705 const MCExpr *Imm2Exp; 4706 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4707 Error(Sx2, "malformed expression"); 4708 return MatchOperand_ParseFail; 4709 } 4710 4711 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4712 4713 if (CE) { 4714 Imm2 = CE->getValue(); 4715 if (!(Imm2 & ~0x1E)) { 4716 // We have a match! 4717 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4718 return MatchOperand_Success; 4719 } 4720 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4721 return MatchOperand_ParseFail; 4722 } else { 4723 Error(Sx2, "constant expression expected"); 4724 return MatchOperand_ParseFail; 4725 } 4726 } 4727 4728 OperandMatchResultTy 4729 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4730 MCAsmParser &Parser = getParser(); 4731 SMLoc S = Parser.getTok().getLoc(); 4732 // The bitfield descriptor is really two operands, the LSB and the width. 4733 if (Parser.getTok().isNot(AsmToken::Hash) && 4734 Parser.getTok().isNot(AsmToken::Dollar)) { 4735 Error(Parser.getTok().getLoc(), "'#' expected"); 4736 return MatchOperand_ParseFail; 4737 } 4738 Parser.Lex(); // Eat hash token. 4739 4740 const MCExpr *LSBExpr; 4741 SMLoc E = Parser.getTok().getLoc(); 4742 if (getParser().parseExpression(LSBExpr)) { 4743 Error(E, "malformed immediate expression"); 4744 return MatchOperand_ParseFail; 4745 } 4746 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4747 if (!CE) { 4748 Error(E, "'lsb' operand must be an immediate"); 4749 return MatchOperand_ParseFail; 4750 } 4751 4752 int64_t LSB = CE->getValue(); 4753 // The LSB must be in the range [0,31] 4754 if (LSB < 0 || LSB > 31) { 4755 Error(E, "'lsb' operand must be in the range [0,31]"); 4756 return MatchOperand_ParseFail; 4757 } 4758 E = Parser.getTok().getLoc(); 4759 4760 // Expect another immediate operand. 4761 if (Parser.getTok().isNot(AsmToken::Comma)) { 4762 Error(Parser.getTok().getLoc(), "too few operands"); 4763 return MatchOperand_ParseFail; 4764 } 4765 Parser.Lex(); // Eat hash token. 4766 if (Parser.getTok().isNot(AsmToken::Hash) && 4767 Parser.getTok().isNot(AsmToken::Dollar)) { 4768 Error(Parser.getTok().getLoc(), "'#' expected"); 4769 return MatchOperand_ParseFail; 4770 } 4771 Parser.Lex(); // Eat hash token. 4772 4773 const MCExpr *WidthExpr; 4774 SMLoc EndLoc; 4775 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4776 Error(E, "malformed immediate expression"); 4777 return MatchOperand_ParseFail; 4778 } 4779 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4780 if (!CE) { 4781 Error(E, "'width' operand must be an immediate"); 4782 return MatchOperand_ParseFail; 4783 } 4784 4785 int64_t Width = CE->getValue(); 4786 // The LSB must be in the range [1,32-lsb] 4787 if (Width < 1 || Width > 32 - LSB) { 4788 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4789 return MatchOperand_ParseFail; 4790 } 4791 4792 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4793 4794 return MatchOperand_Success; 4795 } 4796 4797 OperandMatchResultTy 4798 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4799 // Check for a post-index addressing register operand. Specifically: 4800 // postidx_reg := '+' register {, shift} 4801 // | '-' register {, shift} 4802 // | register {, shift} 4803 4804 // This method must return MatchOperand_NoMatch without consuming any tokens 4805 // in the case where there is no match, as other alternatives take other 4806 // parse methods. 4807 MCAsmParser &Parser = getParser(); 4808 AsmToken Tok = Parser.getTok(); 4809 SMLoc S = Tok.getLoc(); 4810 bool haveEaten = false; 4811 bool isAdd = true; 4812 if (Tok.is(AsmToken::Plus)) { 4813 Parser.Lex(); // Eat the '+' token. 4814 haveEaten = true; 4815 } else if (Tok.is(AsmToken::Minus)) { 4816 Parser.Lex(); // Eat the '-' token. 4817 isAdd = false; 4818 haveEaten = true; 4819 } 4820 4821 SMLoc E = Parser.getTok().getEndLoc(); 4822 int Reg = tryParseRegister(); 4823 if (Reg == -1) { 4824 if (!haveEaten) 4825 return MatchOperand_NoMatch; 4826 Error(Parser.getTok().getLoc(), "register expected"); 4827 return MatchOperand_ParseFail; 4828 } 4829 4830 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4831 unsigned ShiftImm = 0; 4832 if (Parser.getTok().is(AsmToken::Comma)) { 4833 Parser.Lex(); // Eat the ','. 4834 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4835 return MatchOperand_ParseFail; 4836 4837 // FIXME: Only approximates end...may include intervening whitespace. 4838 E = Parser.getTok().getLoc(); 4839 } 4840 4841 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4842 ShiftImm, S, E)); 4843 4844 return MatchOperand_Success; 4845 } 4846 4847 OperandMatchResultTy 4848 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4849 // Check for a post-index addressing register operand. Specifically: 4850 // am3offset := '+' register 4851 // | '-' register 4852 // | register 4853 // | # imm 4854 // | # + imm 4855 // | # - imm 4856 4857 // This method must return MatchOperand_NoMatch without consuming any tokens 4858 // in the case where there is no match, as other alternatives take other 4859 // parse methods. 4860 MCAsmParser &Parser = getParser(); 4861 AsmToken Tok = Parser.getTok(); 4862 SMLoc S = Tok.getLoc(); 4863 4864 // Do immediates first, as we always parse those if we have a '#'. 4865 if (Parser.getTok().is(AsmToken::Hash) || 4866 Parser.getTok().is(AsmToken::Dollar)) { 4867 Parser.Lex(); // Eat '#' or '$'. 4868 // Explicitly look for a '-', as we need to encode negative zero 4869 // differently. 4870 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4871 const MCExpr *Offset; 4872 SMLoc E; 4873 if (getParser().parseExpression(Offset, E)) 4874 return MatchOperand_ParseFail; 4875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4876 if (!CE) { 4877 Error(S, "constant expression expected"); 4878 return MatchOperand_ParseFail; 4879 } 4880 // Negative zero is encoded as the flag value INT32_MIN. 4881 int32_t Val = CE->getValue(); 4882 if (isNegative && Val == 0) 4883 Val = INT32_MIN; 4884 4885 Operands.push_back( 4886 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4887 4888 return MatchOperand_Success; 4889 } 4890 4891 4892 bool haveEaten = false; 4893 bool isAdd = true; 4894 if (Tok.is(AsmToken::Plus)) { 4895 Parser.Lex(); // Eat the '+' token. 4896 haveEaten = true; 4897 } else if (Tok.is(AsmToken::Minus)) { 4898 Parser.Lex(); // Eat the '-' token. 4899 isAdd = false; 4900 haveEaten = true; 4901 } 4902 4903 Tok = Parser.getTok(); 4904 int Reg = tryParseRegister(); 4905 if (Reg == -1) { 4906 if (!haveEaten) 4907 return MatchOperand_NoMatch; 4908 Error(Tok.getLoc(), "register expected"); 4909 return MatchOperand_ParseFail; 4910 } 4911 4912 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4913 0, S, Tok.getEndLoc())); 4914 4915 return MatchOperand_Success; 4916 } 4917 4918 /// Convert parsed operands to MCInst. Needed here because this instruction 4919 /// only has two register operands, but multiplication is commutative so 4920 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4921 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4922 const OperandVector &Operands) { 4923 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4924 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4925 // If we have a three-operand form, make sure to set Rn to be the operand 4926 // that isn't the same as Rd. 4927 unsigned RegOp = 4; 4928 if (Operands.size() == 6 && 4929 ((ARMOperand &)*Operands[4]).getReg() == 4930 ((ARMOperand &)*Operands[3]).getReg()) 4931 RegOp = 5; 4932 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4933 Inst.addOperand(Inst.getOperand(0)); 4934 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4935 } 4936 4937 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4938 const OperandVector &Operands) { 4939 int CondOp = -1, ImmOp = -1; 4940 switch(Inst.getOpcode()) { 4941 case ARM::tB: 4942 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4943 4944 case ARM::t2B: 4945 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4946 4947 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4948 } 4949 // first decide whether or not the branch should be conditional 4950 // by looking at it's location relative to an IT block 4951 if(inITBlock()) { 4952 // inside an IT block we cannot have any conditional branches. any 4953 // such instructions needs to be converted to unconditional form 4954 switch(Inst.getOpcode()) { 4955 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4956 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4957 } 4958 } else { 4959 // outside IT blocks we can only have unconditional branches with AL 4960 // condition code or conditional branches with non-AL condition code 4961 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4962 switch(Inst.getOpcode()) { 4963 case ARM::tB: 4964 case ARM::tBcc: 4965 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4966 break; 4967 case ARM::t2B: 4968 case ARM::t2Bcc: 4969 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4970 break; 4971 } 4972 } 4973 4974 // now decide on encoding size based on branch target range 4975 switch(Inst.getOpcode()) { 4976 // classify tB as either t2B or t1B based on range of immediate operand 4977 case ARM::tB: { 4978 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4979 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4980 Inst.setOpcode(ARM::t2B); 4981 break; 4982 } 4983 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4984 case ARM::tBcc: { 4985 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4986 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4987 Inst.setOpcode(ARM::t2Bcc); 4988 break; 4989 } 4990 } 4991 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4992 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4993 } 4994 4995 /// Parse an ARM memory expression, return false if successful else return true 4996 /// or an error. The first token must be a '[' when called. 4997 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4998 MCAsmParser &Parser = getParser(); 4999 SMLoc S, E; 5000 if (Parser.getTok().isNot(AsmToken::LBrac)) 5001 return TokError("Token is not a Left Bracket"); 5002 S = Parser.getTok().getLoc(); 5003 Parser.Lex(); // Eat left bracket token. 5004 5005 const AsmToken &BaseRegTok = Parser.getTok(); 5006 int BaseRegNum = tryParseRegister(); 5007 if (BaseRegNum == -1) 5008 return Error(BaseRegTok.getLoc(), "register expected"); 5009 5010 // The next token must either be a comma, a colon or a closing bracket. 5011 const AsmToken &Tok = Parser.getTok(); 5012 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5013 !Tok.is(AsmToken::RBrac)) 5014 return Error(Tok.getLoc(), "malformed memory operand"); 5015 5016 if (Tok.is(AsmToken::RBrac)) { 5017 E = Tok.getEndLoc(); 5018 Parser.Lex(); // Eat right bracket token. 5019 5020 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5021 ARM_AM::no_shift, 0, 0, false, 5022 S, E)); 5023 5024 // If there's a pre-indexing writeback marker, '!', just add it as a token 5025 // operand. It's rather odd, but syntactically valid. 5026 if (Parser.getTok().is(AsmToken::Exclaim)) { 5027 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5028 Parser.Lex(); // Eat the '!'. 5029 } 5030 5031 return false; 5032 } 5033 5034 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5035 "Lost colon or comma in memory operand?!"); 5036 if (Tok.is(AsmToken::Comma)) { 5037 Parser.Lex(); // Eat the comma. 5038 } 5039 5040 // If we have a ':', it's an alignment specifier. 5041 if (Parser.getTok().is(AsmToken::Colon)) { 5042 Parser.Lex(); // Eat the ':'. 5043 E = Parser.getTok().getLoc(); 5044 SMLoc AlignmentLoc = Tok.getLoc(); 5045 5046 const MCExpr *Expr; 5047 if (getParser().parseExpression(Expr)) 5048 return true; 5049 5050 // The expression has to be a constant. Memory references with relocations 5051 // don't come through here, as they use the <label> forms of the relevant 5052 // instructions. 5053 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5054 if (!CE) 5055 return Error (E, "constant expression expected"); 5056 5057 unsigned Align = 0; 5058 switch (CE->getValue()) { 5059 default: 5060 return Error(E, 5061 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5062 case 16: Align = 2; break; 5063 case 32: Align = 4; break; 5064 case 64: Align = 8; break; 5065 case 128: Align = 16; break; 5066 case 256: Align = 32; break; 5067 } 5068 5069 // Now we should have the closing ']' 5070 if (Parser.getTok().isNot(AsmToken::RBrac)) 5071 return Error(Parser.getTok().getLoc(), "']' expected"); 5072 E = Parser.getTok().getEndLoc(); 5073 Parser.Lex(); // Eat right bracket token. 5074 5075 // Don't worry about range checking the value here. That's handled by 5076 // the is*() predicates. 5077 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5078 ARM_AM::no_shift, 0, Align, 5079 false, S, E, AlignmentLoc)); 5080 5081 // If there's a pre-indexing writeback marker, '!', just add it as a token 5082 // operand. 5083 if (Parser.getTok().is(AsmToken::Exclaim)) { 5084 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5085 Parser.Lex(); // Eat the '!'. 5086 } 5087 5088 return false; 5089 } 5090 5091 // If we have a '#', it's an immediate offset, else assume it's a register 5092 // offset. Be friendly and also accept a plain integer (without a leading 5093 // hash) for gas compatibility. 5094 if (Parser.getTok().is(AsmToken::Hash) || 5095 Parser.getTok().is(AsmToken::Dollar) || 5096 Parser.getTok().is(AsmToken::Integer)) { 5097 if (Parser.getTok().isNot(AsmToken::Integer)) 5098 Parser.Lex(); // Eat '#' or '$'. 5099 E = Parser.getTok().getLoc(); 5100 5101 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5102 const MCExpr *Offset; 5103 if (getParser().parseExpression(Offset)) 5104 return true; 5105 5106 // The expression has to be a constant. Memory references with relocations 5107 // don't come through here, as they use the <label> forms of the relevant 5108 // instructions. 5109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5110 if (!CE) 5111 return Error (E, "constant expression expected"); 5112 5113 // If the constant was #-0, represent it as INT32_MIN. 5114 int32_t Val = CE->getValue(); 5115 if (isNegative && Val == 0) 5116 CE = MCConstantExpr::create(INT32_MIN, getContext()); 5117 5118 // Now we should have the closing ']' 5119 if (Parser.getTok().isNot(AsmToken::RBrac)) 5120 return Error(Parser.getTok().getLoc(), "']' expected"); 5121 E = Parser.getTok().getEndLoc(); 5122 Parser.Lex(); // Eat right bracket token. 5123 5124 // Don't worry about range checking the value here. That's handled by 5125 // the is*() predicates. 5126 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5127 ARM_AM::no_shift, 0, 0, 5128 false, S, E)); 5129 5130 // If there's a pre-indexing writeback marker, '!', just add it as a token 5131 // operand. 5132 if (Parser.getTok().is(AsmToken::Exclaim)) { 5133 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5134 Parser.Lex(); // Eat the '!'. 5135 } 5136 5137 return false; 5138 } 5139 5140 // The register offset is optionally preceded by a '+' or '-' 5141 bool isNegative = false; 5142 if (Parser.getTok().is(AsmToken::Minus)) { 5143 isNegative = true; 5144 Parser.Lex(); // Eat the '-'. 5145 } else if (Parser.getTok().is(AsmToken::Plus)) { 5146 // Nothing to do. 5147 Parser.Lex(); // Eat the '+'. 5148 } 5149 5150 E = Parser.getTok().getLoc(); 5151 int OffsetRegNum = tryParseRegister(); 5152 if (OffsetRegNum == -1) 5153 return Error(E, "register expected"); 5154 5155 // If there's a shift operator, handle it. 5156 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5157 unsigned ShiftImm = 0; 5158 if (Parser.getTok().is(AsmToken::Comma)) { 5159 Parser.Lex(); // Eat the ','. 5160 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5161 return true; 5162 } 5163 5164 // Now we should have the closing ']' 5165 if (Parser.getTok().isNot(AsmToken::RBrac)) 5166 return Error(Parser.getTok().getLoc(), "']' expected"); 5167 E = Parser.getTok().getEndLoc(); 5168 Parser.Lex(); // Eat right bracket token. 5169 5170 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5171 ShiftType, ShiftImm, 0, isNegative, 5172 S, E)); 5173 5174 // If there's a pre-indexing writeback marker, '!', just add it as a token 5175 // operand. 5176 if (Parser.getTok().is(AsmToken::Exclaim)) { 5177 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5178 Parser.Lex(); // Eat the '!'. 5179 } 5180 5181 return false; 5182 } 5183 5184 /// parseMemRegOffsetShift - one of these two: 5185 /// ( lsl | lsr | asr | ror ) , # shift_amount 5186 /// rrx 5187 /// return true if it parses a shift otherwise it returns false. 5188 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5189 unsigned &Amount) { 5190 MCAsmParser &Parser = getParser(); 5191 SMLoc Loc = Parser.getTok().getLoc(); 5192 const AsmToken &Tok = Parser.getTok(); 5193 if (Tok.isNot(AsmToken::Identifier)) 5194 return true; 5195 StringRef ShiftName = Tok.getString(); 5196 if (ShiftName == "lsl" || ShiftName == "LSL" || 5197 ShiftName == "asl" || ShiftName == "ASL") 5198 St = ARM_AM::lsl; 5199 else if (ShiftName == "lsr" || ShiftName == "LSR") 5200 St = ARM_AM::lsr; 5201 else if (ShiftName == "asr" || ShiftName == "ASR") 5202 St = ARM_AM::asr; 5203 else if (ShiftName == "ror" || ShiftName == "ROR") 5204 St = ARM_AM::ror; 5205 else if (ShiftName == "rrx" || ShiftName == "RRX") 5206 St = ARM_AM::rrx; 5207 else 5208 return Error(Loc, "illegal shift operator"); 5209 Parser.Lex(); // Eat shift type token. 5210 5211 // rrx stands alone. 5212 Amount = 0; 5213 if (St != ARM_AM::rrx) { 5214 Loc = Parser.getTok().getLoc(); 5215 // A '#' and a shift amount. 5216 const AsmToken &HashTok = Parser.getTok(); 5217 if (HashTok.isNot(AsmToken::Hash) && 5218 HashTok.isNot(AsmToken::Dollar)) 5219 return Error(HashTok.getLoc(), "'#' expected"); 5220 Parser.Lex(); // Eat hash token. 5221 5222 const MCExpr *Expr; 5223 if (getParser().parseExpression(Expr)) 5224 return true; 5225 // Range check the immediate. 5226 // lsl, ror: 0 <= imm <= 31 5227 // lsr, asr: 0 <= imm <= 32 5228 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5229 if (!CE) 5230 return Error(Loc, "shift amount must be an immediate"); 5231 int64_t Imm = CE->getValue(); 5232 if (Imm < 0 || 5233 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5234 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5235 return Error(Loc, "immediate shift value out of range"); 5236 // If <ShiftTy> #0, turn it into a no_shift. 5237 if (Imm == 0) 5238 St = ARM_AM::lsl; 5239 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5240 if (Imm == 32) 5241 Imm = 0; 5242 Amount = Imm; 5243 } 5244 5245 return false; 5246 } 5247 5248 /// parseFPImm - A floating point immediate expression operand. 5249 OperandMatchResultTy 5250 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5251 MCAsmParser &Parser = getParser(); 5252 // Anything that can accept a floating point constant as an operand 5253 // needs to go through here, as the regular parseExpression is 5254 // integer only. 5255 // 5256 // This routine still creates a generic Immediate operand, containing 5257 // a bitcast of the 64-bit floating point value. The various operands 5258 // that accept floats can check whether the value is valid for them 5259 // via the standard is*() predicates. 5260 5261 SMLoc S = Parser.getTok().getLoc(); 5262 5263 if (Parser.getTok().isNot(AsmToken::Hash) && 5264 Parser.getTok().isNot(AsmToken::Dollar)) 5265 return MatchOperand_NoMatch; 5266 5267 // Disambiguate the VMOV forms that can accept an FP immediate. 5268 // vmov.f32 <sreg>, #imm 5269 // vmov.f64 <dreg>, #imm 5270 // vmov.f32 <dreg>, #imm @ vector f32x2 5271 // vmov.f32 <qreg>, #imm @ vector f32x4 5272 // 5273 // There are also the NEON VMOV instructions which expect an 5274 // integer constant. Make sure we don't try to parse an FPImm 5275 // for these: 5276 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5277 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5278 bool isVmovf = TyOp.isToken() && 5279 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5280 TyOp.getToken() == ".f16"); 5281 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5282 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5283 Mnemonic.getToken() == "fconsts"); 5284 if (!(isVmovf || isFconst)) 5285 return MatchOperand_NoMatch; 5286 5287 Parser.Lex(); // Eat '#' or '$'. 5288 5289 // Handle negation, as that still comes through as a separate token. 5290 bool isNegative = false; 5291 if (Parser.getTok().is(AsmToken::Minus)) { 5292 isNegative = true; 5293 Parser.Lex(); 5294 } 5295 const AsmToken &Tok = Parser.getTok(); 5296 SMLoc Loc = Tok.getLoc(); 5297 if (Tok.is(AsmToken::Real) && isVmovf) { 5298 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5299 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5300 // If we had a '-' in front, toggle the sign bit. 5301 IntVal ^= (uint64_t)isNegative << 31; 5302 Parser.Lex(); // Eat the token. 5303 Operands.push_back(ARMOperand::CreateImm( 5304 MCConstantExpr::create(IntVal, getContext()), 5305 S, Parser.getTok().getLoc())); 5306 return MatchOperand_Success; 5307 } 5308 // Also handle plain integers. Instructions which allow floating point 5309 // immediates also allow a raw encoded 8-bit value. 5310 if (Tok.is(AsmToken::Integer) && isFconst) { 5311 int64_t Val = Tok.getIntVal(); 5312 Parser.Lex(); // Eat the token. 5313 if (Val > 255 || Val < 0) { 5314 Error(Loc, "encoded floating point value out of range"); 5315 return MatchOperand_ParseFail; 5316 } 5317 float RealVal = ARM_AM::getFPImmFloat(Val); 5318 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5319 5320 Operands.push_back(ARMOperand::CreateImm( 5321 MCConstantExpr::create(Val, getContext()), S, 5322 Parser.getTok().getLoc())); 5323 return MatchOperand_Success; 5324 } 5325 5326 Error(Loc, "invalid floating point immediate"); 5327 return MatchOperand_ParseFail; 5328 } 5329 5330 /// Parse a arm instruction operand. For now this parses the operand regardless 5331 /// of the mnemonic. 5332 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5333 MCAsmParser &Parser = getParser(); 5334 SMLoc S, E; 5335 5336 // Check if the current operand has a custom associated parser, if so, try to 5337 // custom parse the operand, or fallback to the general approach. 5338 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5339 if (ResTy == MatchOperand_Success) 5340 return false; 5341 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5342 // there was a match, but an error occurred, in which case, just return that 5343 // the operand parsing failed. 5344 if (ResTy == MatchOperand_ParseFail) 5345 return true; 5346 5347 switch (getLexer().getKind()) { 5348 default: 5349 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5350 return true; 5351 case AsmToken::Identifier: { 5352 // If we've seen a branch mnemonic, the next operand must be a label. This 5353 // is true even if the label is a register name. So "br r1" means branch to 5354 // label "r1". 5355 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5356 if (!ExpectLabel) { 5357 if (!tryParseRegisterWithWriteBack(Operands)) 5358 return false; 5359 int Res = tryParseShiftRegister(Operands); 5360 if (Res == 0) // success 5361 return false; 5362 else if (Res == -1) // irrecoverable error 5363 return true; 5364 // If this is VMRS, check for the apsr_nzcv operand. 5365 if (Mnemonic == "vmrs" && 5366 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5367 S = Parser.getTok().getLoc(); 5368 Parser.Lex(); 5369 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5370 return false; 5371 } 5372 } 5373 5374 // Fall though for the Identifier case that is not a register or a 5375 // special name. 5376 } 5377 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5378 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5379 case AsmToken::String: // quoted label names. 5380 case AsmToken::Dot: { // . as a branch target 5381 // This was not a register so parse other operands that start with an 5382 // identifier (like labels) as expressions and create them as immediates. 5383 const MCExpr *IdVal; 5384 S = Parser.getTok().getLoc(); 5385 if (getParser().parseExpression(IdVal)) 5386 return true; 5387 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5388 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5389 return false; 5390 } 5391 case AsmToken::LBrac: 5392 return parseMemory(Operands); 5393 case AsmToken::LCurly: 5394 return parseRegisterList(Operands); 5395 case AsmToken::Dollar: 5396 case AsmToken::Hash: { 5397 // #42 -> immediate. 5398 S = Parser.getTok().getLoc(); 5399 Parser.Lex(); 5400 5401 if (Parser.getTok().isNot(AsmToken::Colon)) { 5402 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5403 const MCExpr *ImmVal; 5404 if (getParser().parseExpression(ImmVal)) 5405 return true; 5406 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5407 if (CE) { 5408 int32_t Val = CE->getValue(); 5409 if (isNegative && Val == 0) 5410 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5411 } 5412 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5413 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5414 5415 // There can be a trailing '!' on operands that we want as a separate 5416 // '!' Token operand. Handle that here. For example, the compatibility 5417 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5418 if (Parser.getTok().is(AsmToken::Exclaim)) { 5419 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5420 Parser.getTok().getLoc())); 5421 Parser.Lex(); // Eat exclaim token 5422 } 5423 return false; 5424 } 5425 // w/ a ':' after the '#', it's just like a plain ':'. 5426 LLVM_FALLTHROUGH; 5427 } 5428 case AsmToken::Colon: { 5429 S = Parser.getTok().getLoc(); 5430 // ":lower16:" and ":upper16:" expression prefixes 5431 // FIXME: Check it's an expression prefix, 5432 // e.g. (FOO - :lower16:BAR) isn't legal. 5433 ARMMCExpr::VariantKind RefKind; 5434 if (parsePrefix(RefKind)) 5435 return true; 5436 5437 const MCExpr *SubExprVal; 5438 if (getParser().parseExpression(SubExprVal)) 5439 return true; 5440 5441 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5442 getContext()); 5443 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5444 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5445 return false; 5446 } 5447 case AsmToken::Equal: { 5448 S = Parser.getTok().getLoc(); 5449 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5450 return Error(S, "unexpected token in operand"); 5451 Parser.Lex(); // Eat '=' 5452 const MCExpr *SubExprVal; 5453 if (getParser().parseExpression(SubExprVal)) 5454 return true; 5455 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5456 5457 // execute-only: we assume that assembly programmers know what they are 5458 // doing and allow literal pool creation here 5459 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5460 return false; 5461 } 5462 } 5463 } 5464 5465 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5466 // :lower16: and :upper16:. 5467 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5468 MCAsmParser &Parser = getParser(); 5469 RefKind = ARMMCExpr::VK_ARM_None; 5470 5471 // consume an optional '#' (GNU compatibility) 5472 if (getLexer().is(AsmToken::Hash)) 5473 Parser.Lex(); 5474 5475 // :lower16: and :upper16: modifiers 5476 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5477 Parser.Lex(); // Eat ':' 5478 5479 if (getLexer().isNot(AsmToken::Identifier)) { 5480 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5481 return true; 5482 } 5483 5484 enum { 5485 COFF = (1 << MCObjectFileInfo::IsCOFF), 5486 ELF = (1 << MCObjectFileInfo::IsELF), 5487 MACHO = (1 << MCObjectFileInfo::IsMachO) 5488 }; 5489 static const struct PrefixEntry { 5490 const char *Spelling; 5491 ARMMCExpr::VariantKind VariantKind; 5492 uint8_t SupportedFormats; 5493 } PrefixEntries[] = { 5494 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5495 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5496 }; 5497 5498 StringRef IDVal = Parser.getTok().getIdentifier(); 5499 5500 const auto &Prefix = 5501 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5502 [&IDVal](const PrefixEntry &PE) { 5503 return PE.Spelling == IDVal; 5504 }); 5505 if (Prefix == std::end(PrefixEntries)) { 5506 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5507 return true; 5508 } 5509 5510 uint8_t CurrentFormat; 5511 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5512 case MCObjectFileInfo::IsMachO: 5513 CurrentFormat = MACHO; 5514 break; 5515 case MCObjectFileInfo::IsELF: 5516 CurrentFormat = ELF; 5517 break; 5518 case MCObjectFileInfo::IsCOFF: 5519 CurrentFormat = COFF; 5520 break; 5521 } 5522 5523 if (~Prefix->SupportedFormats & CurrentFormat) { 5524 Error(Parser.getTok().getLoc(), 5525 "cannot represent relocation in the current file format"); 5526 return true; 5527 } 5528 5529 RefKind = Prefix->VariantKind; 5530 Parser.Lex(); 5531 5532 if (getLexer().isNot(AsmToken::Colon)) { 5533 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5534 return true; 5535 } 5536 Parser.Lex(); // Eat the last ':' 5537 5538 return false; 5539 } 5540 5541 /// \brief Given a mnemonic, split out possible predication code and carry 5542 /// setting letters to form a canonical mnemonic and flags. 5543 // 5544 // FIXME: Would be nice to autogen this. 5545 // FIXME: This is a bit of a maze of special cases. 5546 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5547 unsigned &PredicationCode, 5548 bool &CarrySetting, 5549 unsigned &ProcessorIMod, 5550 StringRef &ITMask) { 5551 PredicationCode = ARMCC::AL; 5552 CarrySetting = false; 5553 ProcessorIMod = 0; 5554 5555 // Ignore some mnemonics we know aren't predicated forms. 5556 // 5557 // FIXME: Would be nice to autogen this. 5558 if ((Mnemonic == "movs" && isThumb()) || 5559 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5560 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5561 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5562 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5563 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5564 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5565 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5566 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5567 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5568 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5569 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5570 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5571 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5572 Mnemonic == "bxns" || Mnemonic == "blxns") 5573 return Mnemonic; 5574 5575 // First, split out any predication code. Ignore mnemonics we know aren't 5576 // predicated but do have a carry-set and so weren't caught above. 5577 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5578 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5579 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5580 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5581 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5582 .Case("eq", ARMCC::EQ) 5583 .Case("ne", ARMCC::NE) 5584 .Case("hs", ARMCC::HS) 5585 .Case("cs", ARMCC::HS) 5586 .Case("lo", ARMCC::LO) 5587 .Case("cc", ARMCC::LO) 5588 .Case("mi", ARMCC::MI) 5589 .Case("pl", ARMCC::PL) 5590 .Case("vs", ARMCC::VS) 5591 .Case("vc", ARMCC::VC) 5592 .Case("hi", ARMCC::HI) 5593 .Case("ls", ARMCC::LS) 5594 .Case("ge", ARMCC::GE) 5595 .Case("lt", ARMCC::LT) 5596 .Case("gt", ARMCC::GT) 5597 .Case("le", ARMCC::LE) 5598 .Case("al", ARMCC::AL) 5599 .Default(~0U); 5600 if (CC != ~0U) { 5601 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5602 PredicationCode = CC; 5603 } 5604 } 5605 5606 // Next, determine if we have a carry setting bit. We explicitly ignore all 5607 // the instructions we know end in 's'. 5608 if (Mnemonic.endswith("s") && 5609 !(Mnemonic == "cps" || Mnemonic == "mls" || 5610 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5611 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5612 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5613 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5614 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5615 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5616 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5617 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5618 Mnemonic == "bxns" || Mnemonic == "blxns" || 5619 (Mnemonic == "movs" && isThumb()))) { 5620 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5621 CarrySetting = true; 5622 } 5623 5624 // The "cps" instruction can have a interrupt mode operand which is glued into 5625 // the mnemonic. Check if this is the case, split it and parse the imod op 5626 if (Mnemonic.startswith("cps")) { 5627 // Split out any imod code. 5628 unsigned IMod = 5629 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5630 .Case("ie", ARM_PROC::IE) 5631 .Case("id", ARM_PROC::ID) 5632 .Default(~0U); 5633 if (IMod != ~0U) { 5634 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5635 ProcessorIMod = IMod; 5636 } 5637 } 5638 5639 // The "it" instruction has the condition mask on the end of the mnemonic. 5640 if (Mnemonic.startswith("it")) { 5641 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5642 Mnemonic = Mnemonic.slice(0, 2); 5643 } 5644 5645 return Mnemonic; 5646 } 5647 5648 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5649 /// inclusion of carry set or predication code operands. 5650 // 5651 // FIXME: It would be nice to autogen this. 5652 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5653 bool &CanAcceptCarrySet, 5654 bool &CanAcceptPredicationCode) { 5655 CanAcceptCarrySet = 5656 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5657 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5658 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5659 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5660 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5661 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5662 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5663 (!isThumb() && 5664 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5665 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5666 5667 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5668 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5669 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5670 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5671 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5672 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5673 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5674 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5675 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5676 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5677 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5678 Mnemonic == "vmovx" || Mnemonic == "vins") { 5679 // These mnemonics are never predicable 5680 CanAcceptPredicationCode = false; 5681 } else if (!isThumb()) { 5682 // Some instructions are only predicable in Thumb mode 5683 CanAcceptPredicationCode = 5684 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5685 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5686 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5687 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5688 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5689 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5690 !Mnemonic.startswith("srs"); 5691 } else if (isThumbOne()) { 5692 if (hasV6MOps()) 5693 CanAcceptPredicationCode = Mnemonic != "movs"; 5694 else 5695 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5696 } else 5697 CanAcceptPredicationCode = true; 5698 } 5699 5700 // \brief Some Thumb instructions have two operand forms that are not 5701 // available as three operand, convert to two operand form if possible. 5702 // 5703 // FIXME: We would really like to be able to tablegen'erate this. 5704 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5705 bool CarrySetting, 5706 OperandVector &Operands) { 5707 if (Operands.size() != 6) 5708 return; 5709 5710 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5711 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5712 if (!Op3.isReg() || !Op4.isReg()) 5713 return; 5714 5715 auto Op3Reg = Op3.getReg(); 5716 auto Op4Reg = Op4.getReg(); 5717 5718 // For most Thumb2 cases we just generate the 3 operand form and reduce 5719 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5720 // won't accept SP or PC so we do the transformation here taking care 5721 // with immediate range in the 'add sp, sp #imm' case. 5722 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5723 if (isThumbTwo()) { 5724 if (Mnemonic != "add") 5725 return; 5726 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5727 (Op5.isReg() && Op5.getReg() == ARM::PC); 5728 if (!TryTransform) { 5729 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5730 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5731 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5732 Op5.isImm() && !Op5.isImm0_508s4()); 5733 } 5734 if (!TryTransform) 5735 return; 5736 } else if (!isThumbOne()) 5737 return; 5738 5739 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5740 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5741 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5742 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5743 return; 5744 5745 // If first 2 operands of a 3 operand instruction are the same 5746 // then transform to 2 operand version of the same instruction 5747 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5748 bool Transform = Op3Reg == Op4Reg; 5749 5750 // For communtative operations, we might be able to transform if we swap 5751 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5752 // as tADDrsp. 5753 const ARMOperand *LastOp = &Op5; 5754 bool Swap = false; 5755 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5756 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5757 Mnemonic == "and" || Mnemonic == "eor" || 5758 Mnemonic == "adc" || Mnemonic == "orr")) { 5759 Swap = true; 5760 LastOp = &Op4; 5761 Transform = true; 5762 } 5763 5764 // If both registers are the same then remove one of them from 5765 // the operand list, with certain exceptions. 5766 if (Transform) { 5767 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5768 // 2 operand forms don't exist. 5769 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5770 LastOp->isReg()) 5771 Transform = false; 5772 5773 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5774 // 3-bits because the ARMARM says not to. 5775 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5776 Transform = false; 5777 } 5778 5779 if (Transform) { 5780 if (Swap) 5781 std::swap(Op4, Op5); 5782 Operands.erase(Operands.begin() + 3); 5783 } 5784 } 5785 5786 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5787 OperandVector &Operands) { 5788 // FIXME: This is all horribly hacky. We really need a better way to deal 5789 // with optional operands like this in the matcher table. 5790 5791 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5792 // another does not. Specifically, the MOVW instruction does not. So we 5793 // special case it here and remove the defaulted (non-setting) cc_out 5794 // operand if that's the instruction we're trying to match. 5795 // 5796 // We do this as post-processing of the explicit operands rather than just 5797 // conditionally adding the cc_out in the first place because we need 5798 // to check the type of the parsed immediate operand. 5799 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5800 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5801 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5802 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5803 return true; 5804 5805 // Register-register 'add' for thumb does not have a cc_out operand 5806 // when there are only two register operands. 5807 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5808 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5809 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5810 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5811 return true; 5812 // Register-register 'add' for thumb does not have a cc_out operand 5813 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5814 // have to check the immediate range here since Thumb2 has a variant 5815 // that can handle a different range and has a cc_out operand. 5816 if (((isThumb() && Mnemonic == "add") || 5817 (isThumbTwo() && Mnemonic == "sub")) && 5818 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5819 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5820 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5821 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5822 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5823 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5824 return true; 5825 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5826 // imm0_4095 variant. That's the least-preferred variant when 5827 // selecting via the generic "add" mnemonic, so to know that we 5828 // should remove the cc_out operand, we have to explicitly check that 5829 // it's not one of the other variants. Ugh. 5830 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5831 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5832 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5833 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5834 // Nest conditions rather than one big 'if' statement for readability. 5835 // 5836 // If both registers are low, we're in an IT block, and the immediate is 5837 // in range, we should use encoding T1 instead, which has a cc_out. 5838 if (inITBlock() && 5839 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5840 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5841 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5842 return false; 5843 // Check against T3. If the second register is the PC, this is an 5844 // alternate form of ADR, which uses encoding T4, so check for that too. 5845 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5846 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5847 return false; 5848 5849 // Otherwise, we use encoding T4, which does not have a cc_out 5850 // operand. 5851 return true; 5852 } 5853 5854 // The thumb2 multiply instruction doesn't have a CCOut register, so 5855 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5856 // use the 16-bit encoding or not. 5857 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5858 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5859 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5860 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5861 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5862 // If the registers aren't low regs, the destination reg isn't the 5863 // same as one of the source regs, or the cc_out operand is zero 5864 // outside of an IT block, we have to use the 32-bit encoding, so 5865 // remove the cc_out operand. 5866 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5867 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5868 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5869 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5870 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5871 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5872 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5873 return true; 5874 5875 // Also check the 'mul' syntax variant that doesn't specify an explicit 5876 // destination register. 5877 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5878 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5879 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5880 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5881 // If the registers aren't low regs or the cc_out operand is zero 5882 // outside of an IT block, we have to use the 32-bit encoding, so 5883 // remove the cc_out operand. 5884 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5885 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5886 !inITBlock())) 5887 return true; 5888 5889 5890 5891 // Register-register 'add/sub' for thumb does not have a cc_out operand 5892 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5893 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5894 // right, this will result in better diagnostics (which operand is off) 5895 // anyway. 5896 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5897 (Operands.size() == 5 || Operands.size() == 6) && 5898 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5899 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5900 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5901 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5902 (Operands.size() == 6 && 5903 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5904 return true; 5905 5906 return false; 5907 } 5908 5909 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5910 OperandVector &Operands) { 5911 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5912 unsigned RegIdx = 3; 5913 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5914 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5915 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5916 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5917 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5918 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5919 RegIdx = 4; 5920 5921 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5922 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5923 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5924 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5925 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5926 return true; 5927 } 5928 return false; 5929 } 5930 5931 static bool isDataTypeToken(StringRef Tok) { 5932 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5933 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5934 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5935 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5936 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5937 Tok == ".f" || Tok == ".d"; 5938 } 5939 5940 // FIXME: This bit should probably be handled via an explicit match class 5941 // in the .td files that matches the suffix instead of having it be 5942 // a literal string token the way it is now. 5943 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5944 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5945 } 5946 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5947 unsigned VariantID); 5948 5949 static bool RequiresVFPRegListValidation(StringRef Inst, 5950 bool &AcceptSinglePrecisionOnly, 5951 bool &AcceptDoublePrecisionOnly) { 5952 if (Inst.size() < 7) 5953 return false; 5954 5955 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5956 StringRef AddressingMode = Inst.substr(4, 2); 5957 if (AddressingMode == "ia" || AddressingMode == "db" || 5958 AddressingMode == "ea" || AddressingMode == "fd") { 5959 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5960 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5961 return true; 5962 } 5963 } 5964 5965 return false; 5966 } 5967 5968 /// Parse an arm instruction mnemonic followed by its operands. 5969 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5970 SMLoc NameLoc, OperandVector &Operands) { 5971 MCAsmParser &Parser = getParser(); 5972 // FIXME: Can this be done via tablegen in some fashion? 5973 bool RequireVFPRegisterListCheck; 5974 bool AcceptSinglePrecisionOnly; 5975 bool AcceptDoublePrecisionOnly; 5976 RequireVFPRegisterListCheck = 5977 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5978 AcceptDoublePrecisionOnly); 5979 5980 // Apply mnemonic aliases before doing anything else, as the destination 5981 // mnemonic may include suffices and we want to handle them normally. 5982 // The generic tblgen'erated code does this later, at the start of 5983 // MatchInstructionImpl(), but that's too late for aliases that include 5984 // any sort of suffix. 5985 uint64_t AvailableFeatures = getAvailableFeatures(); 5986 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5987 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5988 5989 // First check for the ARM-specific .req directive. 5990 if (Parser.getTok().is(AsmToken::Identifier) && 5991 Parser.getTok().getIdentifier() == ".req") { 5992 parseDirectiveReq(Name, NameLoc); 5993 // We always return 'error' for this, as we're done with this 5994 // statement and don't need to match the 'instruction." 5995 return true; 5996 } 5997 5998 // Create the leading tokens for the mnemonic, split by '.' characters. 5999 size_t Start = 0, Next = Name.find('.'); 6000 StringRef Mnemonic = Name.slice(Start, Next); 6001 6002 // Split out the predication code and carry setting flag from the mnemonic. 6003 unsigned PredicationCode; 6004 unsigned ProcessorIMod; 6005 bool CarrySetting; 6006 StringRef ITMask; 6007 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6008 ProcessorIMod, ITMask); 6009 6010 // In Thumb1, only the branch (B) instruction can be predicated. 6011 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6012 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6013 } 6014 6015 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6016 6017 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6018 // is the mask as it will be for the IT encoding if the conditional 6019 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6020 // where the conditional bit0 is zero, the instruction post-processing 6021 // will adjust the mask accordingly. 6022 if (Mnemonic == "it") { 6023 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6024 if (ITMask.size() > 3) { 6025 return Error(Loc, "too many conditions on IT instruction"); 6026 } 6027 unsigned Mask = 8; 6028 for (unsigned i = ITMask.size(); i != 0; --i) { 6029 char pos = ITMask[i - 1]; 6030 if (pos != 't' && pos != 'e') { 6031 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6032 } 6033 Mask >>= 1; 6034 if (ITMask[i - 1] == 't') 6035 Mask |= 8; 6036 } 6037 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6038 } 6039 6040 // FIXME: This is all a pretty gross hack. We should automatically handle 6041 // optional operands like this via tblgen. 6042 6043 // Next, add the CCOut and ConditionCode operands, if needed. 6044 // 6045 // For mnemonics which can ever incorporate a carry setting bit or predication 6046 // code, our matching model involves us always generating CCOut and 6047 // ConditionCode operands to match the mnemonic "as written" and then we let 6048 // the matcher deal with finding the right instruction or generating an 6049 // appropriate error. 6050 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6051 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6052 6053 // If we had a carry-set on an instruction that can't do that, issue an 6054 // error. 6055 if (!CanAcceptCarrySet && CarrySetting) { 6056 return Error(NameLoc, "instruction '" + Mnemonic + 6057 "' can not set flags, but 's' suffix specified"); 6058 } 6059 // If we had a predication code on an instruction that can't do that, issue an 6060 // error. 6061 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6062 return Error(NameLoc, "instruction '" + Mnemonic + 6063 "' is not predicable, but condition code specified"); 6064 } 6065 6066 // Add the carry setting operand, if necessary. 6067 if (CanAcceptCarrySet) { 6068 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6069 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6070 Loc)); 6071 } 6072 6073 // Add the predication code operand, if necessary. 6074 if (CanAcceptPredicationCode) { 6075 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6076 CarrySetting); 6077 Operands.push_back(ARMOperand::CreateCondCode( 6078 ARMCC::CondCodes(PredicationCode), Loc)); 6079 } 6080 6081 // Add the processor imod operand, if necessary. 6082 if (ProcessorIMod) { 6083 Operands.push_back(ARMOperand::CreateImm( 6084 MCConstantExpr::create(ProcessorIMod, getContext()), 6085 NameLoc, NameLoc)); 6086 } else if (Mnemonic == "cps" && isMClass()) { 6087 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6088 } 6089 6090 // Add the remaining tokens in the mnemonic. 6091 while (Next != StringRef::npos) { 6092 Start = Next; 6093 Next = Name.find('.', Start + 1); 6094 StringRef ExtraToken = Name.slice(Start, Next); 6095 6096 // Some NEON instructions have an optional datatype suffix that is 6097 // completely ignored. Check for that. 6098 if (isDataTypeToken(ExtraToken) && 6099 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6100 continue; 6101 6102 // For for ARM mode generate an error if the .n qualifier is used. 6103 if (ExtraToken == ".n" && !isThumb()) { 6104 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6105 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6106 "arm mode"); 6107 } 6108 6109 // The .n qualifier is always discarded as that is what the tables 6110 // and matcher expect. In ARM mode the .w qualifier has no effect, 6111 // so discard it to avoid errors that can be caused by the matcher. 6112 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6113 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6114 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6115 } 6116 } 6117 6118 // Read the remaining operands. 6119 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6120 // Read the first operand. 6121 if (parseOperand(Operands, Mnemonic)) { 6122 return true; 6123 } 6124 6125 while (parseOptionalToken(AsmToken::Comma)) { 6126 // Parse and remember the operand. 6127 if (parseOperand(Operands, Mnemonic)) { 6128 return true; 6129 } 6130 } 6131 } 6132 6133 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6134 return true; 6135 6136 if (RequireVFPRegisterListCheck) { 6137 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 6138 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 6139 return Error(Op.getStartLoc(), 6140 "VFP/Neon single precision register expected"); 6141 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 6142 return Error(Op.getStartLoc(), 6143 "VFP/Neon double precision register expected"); 6144 } 6145 6146 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6147 6148 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6149 // do and don't have a cc_out optional-def operand. With some spot-checks 6150 // of the operand list, we can figure out which variant we're trying to 6151 // parse and adjust accordingly before actually matching. We shouldn't ever 6152 // try to remove a cc_out operand that was explicitly set on the 6153 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6154 // table driven matcher doesn't fit well with the ARM instruction set. 6155 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6156 Operands.erase(Operands.begin() + 1); 6157 6158 // Some instructions have the same mnemonic, but don't always 6159 // have a predicate. Distinguish them here and delete the 6160 // predicate if needed. 6161 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 6162 Operands.erase(Operands.begin() + 1); 6163 6164 // ARM mode 'blx' need special handling, as the register operand version 6165 // is predicable, but the label operand version is not. So, we can't rely 6166 // on the Mnemonic based checking to correctly figure out when to put 6167 // a k_CondCode operand in the list. If we're trying to match the label 6168 // version, remove the k_CondCode operand here. 6169 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6170 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6171 Operands.erase(Operands.begin() + 1); 6172 6173 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6174 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6175 // a single GPRPair reg operand is used in the .td file to replace the two 6176 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6177 // expressed as a GPRPair, so we have to manually merge them. 6178 // FIXME: We would really like to be able to tablegen'erate this. 6179 if (!isThumb() && Operands.size() > 4 && 6180 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6181 Mnemonic == "stlexd")) { 6182 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6183 unsigned Idx = isLoad ? 2 : 3; 6184 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6185 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6186 6187 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6188 // Adjust only if Op1 and Op2 are GPRs. 6189 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6190 MRC.contains(Op2.getReg())) { 6191 unsigned Reg1 = Op1.getReg(); 6192 unsigned Reg2 = Op2.getReg(); 6193 unsigned Rt = MRI->getEncodingValue(Reg1); 6194 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6195 6196 // Rt2 must be Rt + 1 and Rt must be even. 6197 if (Rt + 1 != Rt2 || (Rt & 1)) { 6198 return Error(Op2.getStartLoc(), 6199 isLoad ? "destination operands must be sequential" 6200 : "source operands must be sequential"); 6201 } 6202 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6203 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6204 Operands[Idx] = 6205 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6206 Operands.erase(Operands.begin() + Idx + 1); 6207 } 6208 } 6209 6210 // GNU Assembler extension (compatibility) 6211 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6212 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6213 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6214 if (Op3.isMem()) { 6215 assert(Op2.isReg() && "expected register argument"); 6216 6217 unsigned SuperReg = MRI->getMatchingSuperReg( 6218 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6219 6220 assert(SuperReg && "expected register pair"); 6221 6222 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6223 6224 Operands.insert( 6225 Operands.begin() + 3, 6226 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6227 } 6228 } 6229 6230 // FIXME: As said above, this is all a pretty gross hack. This instruction 6231 // does not fit with other "subs" and tblgen. 6232 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6233 // so the Mnemonic is the original name "subs" and delete the predicate 6234 // operand so it will match the table entry. 6235 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6236 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6237 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6238 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6239 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6240 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6241 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6242 Operands.erase(Operands.begin() + 1); 6243 } 6244 return false; 6245 } 6246 6247 // Validate context-sensitive operand constraints. 6248 6249 // return 'true' if register list contains non-low GPR registers, 6250 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6251 // 'containsReg' to true. 6252 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6253 unsigned Reg, unsigned HiReg, 6254 bool &containsReg) { 6255 containsReg = false; 6256 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6257 unsigned OpReg = Inst.getOperand(i).getReg(); 6258 if (OpReg == Reg) 6259 containsReg = true; 6260 // Anything other than a low register isn't legal here. 6261 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6262 return true; 6263 } 6264 return false; 6265 } 6266 6267 // Check if the specified regisgter is in the register list of the inst, 6268 // starting at the indicated operand number. 6269 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6270 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6271 unsigned OpReg = Inst.getOperand(i).getReg(); 6272 if (OpReg == Reg) 6273 return true; 6274 } 6275 return false; 6276 } 6277 6278 // Return true if instruction has the interesting property of being 6279 // allowed in IT blocks, but not being predicable. 6280 static bool instIsBreakpoint(const MCInst &Inst) { 6281 return Inst.getOpcode() == ARM::tBKPT || 6282 Inst.getOpcode() == ARM::BKPT || 6283 Inst.getOpcode() == ARM::tHLT || 6284 Inst.getOpcode() == ARM::HLT; 6285 6286 } 6287 6288 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6289 const OperandVector &Operands, 6290 unsigned ListNo, bool IsARPop) { 6291 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6292 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6293 6294 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6295 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6296 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6297 6298 if (!IsARPop && ListContainsSP) 6299 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6300 "SP may not be in the register list"); 6301 else if (ListContainsPC && ListContainsLR) 6302 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6303 "PC and LR may not be in the register list simultaneously"); 6304 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6305 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6306 "instruction must be outside of IT block or the last " 6307 "instruction in an IT block"); 6308 return false; 6309 } 6310 6311 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6312 const OperandVector &Operands, 6313 unsigned ListNo) { 6314 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6315 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6316 6317 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6318 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6319 6320 if (ListContainsSP && ListContainsPC) 6321 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6322 "SP and PC may not be in the register list"); 6323 else if (ListContainsSP) 6324 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6325 "SP may not be in the register list"); 6326 else if (ListContainsPC) 6327 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6328 "PC may not be in the register list"); 6329 return false; 6330 } 6331 6332 // FIXME: We would really like to be able to tablegen'erate this. 6333 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6334 const OperandVector &Operands) { 6335 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6336 SMLoc Loc = Operands[0]->getStartLoc(); 6337 6338 // Check the IT block state first. 6339 // NOTE: BKPT and HLT instructions have the interesting property of being 6340 // allowed in IT blocks, but not being predicable. They just always execute. 6341 if (inITBlock() && !instIsBreakpoint(Inst)) { 6342 // The instruction must be predicable. 6343 if (!MCID.isPredicable()) 6344 return Error(Loc, "instructions in IT block must be predicable"); 6345 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6346 if (Cond != currentITCond()) { 6347 // Find the condition code Operand to get its SMLoc information. 6348 SMLoc CondLoc; 6349 for (unsigned I = 1; I < Operands.size(); ++I) 6350 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6351 CondLoc = Operands[I]->getStartLoc(); 6352 return Error(CondLoc, "incorrect condition in IT block; got '" + 6353 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6354 "', but expected '" + 6355 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6356 } 6357 // Check for non-'al' condition codes outside of the IT block. 6358 } else if (isThumbTwo() && MCID.isPredicable() && 6359 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6360 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6361 Inst.getOpcode() != ARM::t2Bcc) { 6362 return Error(Loc, "predicated instructions must be in IT block"); 6363 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6364 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6365 ARMCC::AL) { 6366 return Warning(Loc, "predicated instructions should be in IT block"); 6367 } 6368 6369 const unsigned Opcode = Inst.getOpcode(); 6370 switch (Opcode) { 6371 case ARM::LDRD: 6372 case ARM::LDRD_PRE: 6373 case ARM::LDRD_POST: { 6374 const unsigned RtReg = Inst.getOperand(0).getReg(); 6375 6376 // Rt can't be R14. 6377 if (RtReg == ARM::LR) 6378 return Error(Operands[3]->getStartLoc(), 6379 "Rt can't be R14"); 6380 6381 const unsigned Rt = MRI->getEncodingValue(RtReg); 6382 // Rt must be even-numbered. 6383 if ((Rt & 1) == 1) 6384 return Error(Operands[3]->getStartLoc(), 6385 "Rt must be even-numbered"); 6386 6387 // Rt2 must be Rt + 1. 6388 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6389 if (Rt2 != Rt + 1) 6390 return Error(Operands[3]->getStartLoc(), 6391 "destination operands must be sequential"); 6392 6393 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6394 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6395 // For addressing modes with writeback, the base register needs to be 6396 // different from the destination registers. 6397 if (Rn == Rt || Rn == Rt2) 6398 return Error(Operands[3]->getStartLoc(), 6399 "base register needs to be different from destination " 6400 "registers"); 6401 } 6402 6403 return false; 6404 } 6405 case ARM::t2LDRDi8: 6406 case ARM::t2LDRD_PRE: 6407 case ARM::t2LDRD_POST: { 6408 // Rt2 must be different from Rt. 6409 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6410 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6411 if (Rt2 == Rt) 6412 return Error(Operands[3]->getStartLoc(), 6413 "destination operands can't be identical"); 6414 return false; 6415 } 6416 case ARM::t2BXJ: { 6417 const unsigned RmReg = Inst.getOperand(0).getReg(); 6418 // Rm = SP is no longer unpredictable in v8-A 6419 if (RmReg == ARM::SP && !hasV8Ops()) 6420 return Error(Operands[2]->getStartLoc(), 6421 "r13 (SP) is an unpredictable operand to BXJ"); 6422 return false; 6423 } 6424 case ARM::STRD: { 6425 // Rt2 must be Rt + 1. 6426 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6427 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6428 if (Rt2 != Rt + 1) 6429 return Error(Operands[3]->getStartLoc(), 6430 "source operands must be sequential"); 6431 return false; 6432 } 6433 case ARM::STRD_PRE: 6434 case ARM::STRD_POST: { 6435 // Rt2 must be Rt + 1. 6436 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6437 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6438 if (Rt2 != Rt + 1) 6439 return Error(Operands[3]->getStartLoc(), 6440 "source operands must be sequential"); 6441 return false; 6442 } 6443 case ARM::STR_PRE_IMM: 6444 case ARM::STR_PRE_REG: 6445 case ARM::STR_POST_IMM: 6446 case ARM::STR_POST_REG: 6447 case ARM::STRH_PRE: 6448 case ARM::STRH_POST: 6449 case ARM::STRB_PRE_IMM: 6450 case ARM::STRB_PRE_REG: 6451 case ARM::STRB_POST_IMM: 6452 case ARM::STRB_POST_REG: { 6453 // Rt must be different from Rn. 6454 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6455 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6456 6457 if (Rt == Rn) 6458 return Error(Operands[3]->getStartLoc(), 6459 "source register and base register can't be identical"); 6460 return false; 6461 } 6462 case ARM::LDR_PRE_IMM: 6463 case ARM::LDR_PRE_REG: 6464 case ARM::LDR_POST_IMM: 6465 case ARM::LDR_POST_REG: 6466 case ARM::LDRH_PRE: 6467 case ARM::LDRH_POST: 6468 case ARM::LDRSH_PRE: 6469 case ARM::LDRSH_POST: 6470 case ARM::LDRB_PRE_IMM: 6471 case ARM::LDRB_PRE_REG: 6472 case ARM::LDRB_POST_IMM: 6473 case ARM::LDRB_POST_REG: 6474 case ARM::LDRSB_PRE: 6475 case ARM::LDRSB_POST: { 6476 // Rt must be different from Rn. 6477 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6478 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6479 6480 if (Rt == Rn) 6481 return Error(Operands[3]->getStartLoc(), 6482 "destination register and base register can't be identical"); 6483 return false; 6484 } 6485 case ARM::SBFX: 6486 case ARM::UBFX: { 6487 // Width must be in range [1, 32-lsb]. 6488 unsigned LSB = Inst.getOperand(2).getImm(); 6489 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6490 if (Widthm1 >= 32 - LSB) 6491 return Error(Operands[5]->getStartLoc(), 6492 "bitfield width must be in range [1,32-lsb]"); 6493 return false; 6494 } 6495 // Notionally handles ARM::tLDMIA_UPD too. 6496 case ARM::tLDMIA: { 6497 // If we're parsing Thumb2, the .w variant is available and handles 6498 // most cases that are normally illegal for a Thumb1 LDM instruction. 6499 // We'll make the transformation in processInstruction() if necessary. 6500 // 6501 // Thumb LDM instructions are writeback iff the base register is not 6502 // in the register list. 6503 unsigned Rn = Inst.getOperand(0).getReg(); 6504 bool HasWritebackToken = 6505 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6506 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6507 bool ListContainsBase; 6508 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6509 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6510 "registers must be in range r0-r7"); 6511 // If we should have writeback, then there should be a '!' token. 6512 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6513 return Error(Operands[2]->getStartLoc(), 6514 "writeback operator '!' expected"); 6515 // If we should not have writeback, there must not be a '!'. This is 6516 // true even for the 32-bit wide encodings. 6517 if (ListContainsBase && HasWritebackToken) 6518 return Error(Operands[3]->getStartLoc(), 6519 "writeback operator '!' not allowed when base register " 6520 "in register list"); 6521 6522 if (validatetLDMRegList(Inst, Operands, 3)) 6523 return true; 6524 break; 6525 } 6526 case ARM::LDMIA_UPD: 6527 case ARM::LDMDB_UPD: 6528 case ARM::LDMIB_UPD: 6529 case ARM::LDMDA_UPD: 6530 // ARM variants loading and updating the same register are only officially 6531 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6532 if (!hasV7Ops()) 6533 break; 6534 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6535 return Error(Operands.back()->getStartLoc(), 6536 "writeback register not allowed in register list"); 6537 break; 6538 case ARM::t2LDMIA: 6539 case ARM::t2LDMDB: 6540 if (validatetLDMRegList(Inst, Operands, 3)) 6541 return true; 6542 break; 6543 case ARM::t2STMIA: 6544 case ARM::t2STMDB: 6545 if (validatetSTMRegList(Inst, Operands, 3)) 6546 return true; 6547 break; 6548 case ARM::t2LDMIA_UPD: 6549 case ARM::t2LDMDB_UPD: 6550 case ARM::t2STMIA_UPD: 6551 case ARM::t2STMDB_UPD: { 6552 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6553 return Error(Operands.back()->getStartLoc(), 6554 "writeback register not allowed in register list"); 6555 6556 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6557 if (validatetLDMRegList(Inst, Operands, 3)) 6558 return true; 6559 } else { 6560 if (validatetSTMRegList(Inst, Operands, 3)) 6561 return true; 6562 } 6563 break; 6564 } 6565 case ARM::sysLDMIA_UPD: 6566 case ARM::sysLDMDA_UPD: 6567 case ARM::sysLDMDB_UPD: 6568 case ARM::sysLDMIB_UPD: 6569 if (!listContainsReg(Inst, 3, ARM::PC)) 6570 return Error(Operands[4]->getStartLoc(), 6571 "writeback register only allowed on system LDM " 6572 "if PC in register-list"); 6573 break; 6574 case ARM::sysSTMIA_UPD: 6575 case ARM::sysSTMDA_UPD: 6576 case ARM::sysSTMDB_UPD: 6577 case ARM::sysSTMIB_UPD: 6578 return Error(Operands[2]->getStartLoc(), 6579 "system STM cannot have writeback register"); 6580 case ARM::tMUL: { 6581 // The second source operand must be the same register as the destination 6582 // operand. 6583 // 6584 // In this case, we must directly check the parsed operands because the 6585 // cvtThumbMultiply() function is written in such a way that it guarantees 6586 // this first statement is always true for the new Inst. Essentially, the 6587 // destination is unconditionally copied into the second source operand 6588 // without checking to see if it matches what we actually parsed. 6589 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6590 ((ARMOperand &)*Operands[5]).getReg()) && 6591 (((ARMOperand &)*Operands[3]).getReg() != 6592 ((ARMOperand &)*Operands[4]).getReg())) { 6593 return Error(Operands[3]->getStartLoc(), 6594 "destination register must match source register"); 6595 } 6596 break; 6597 } 6598 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6599 // so only issue a diagnostic for thumb1. The instructions will be 6600 // switched to the t2 encodings in processInstruction() if necessary. 6601 case ARM::tPOP: { 6602 bool ListContainsBase; 6603 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6604 !isThumbTwo()) 6605 return Error(Operands[2]->getStartLoc(), 6606 "registers must be in range r0-r7 or pc"); 6607 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6608 return true; 6609 break; 6610 } 6611 case ARM::tPUSH: { 6612 bool ListContainsBase; 6613 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6614 !isThumbTwo()) 6615 return Error(Operands[2]->getStartLoc(), 6616 "registers must be in range r0-r7 or lr"); 6617 if (validatetSTMRegList(Inst, Operands, 2)) 6618 return true; 6619 break; 6620 } 6621 case ARM::tSTMIA_UPD: { 6622 bool ListContainsBase, InvalidLowList; 6623 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6624 0, ListContainsBase); 6625 if (InvalidLowList && !isThumbTwo()) 6626 return Error(Operands[4]->getStartLoc(), 6627 "registers must be in range r0-r7"); 6628 6629 // This would be converted to a 32-bit stm, but that's not valid if the 6630 // writeback register is in the list. 6631 if (InvalidLowList && ListContainsBase) 6632 return Error(Operands[4]->getStartLoc(), 6633 "writeback operator '!' not allowed when base register " 6634 "in register list"); 6635 6636 if (validatetSTMRegList(Inst, Operands, 4)) 6637 return true; 6638 break; 6639 } 6640 case ARM::tADDrSP: { 6641 // If the non-SP source operand and the destination operand are not the 6642 // same, we need thumb2 (for the wide encoding), or we have an error. 6643 if (!isThumbTwo() && 6644 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6645 return Error(Operands[4]->getStartLoc(), 6646 "source register must be the same as destination"); 6647 } 6648 break; 6649 } 6650 // Final range checking for Thumb unconditional branch instructions. 6651 case ARM::tB: 6652 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6653 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6654 break; 6655 case ARM::t2B: { 6656 int op = (Operands[2]->isImm()) ? 2 : 3; 6657 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6658 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6659 break; 6660 } 6661 // Final range checking for Thumb conditional branch instructions. 6662 case ARM::tBcc: 6663 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6664 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6665 break; 6666 case ARM::t2Bcc: { 6667 int Op = (Operands[2]->isImm()) ? 2 : 3; 6668 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6669 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6670 break; 6671 } 6672 case ARM::tCBZ: 6673 case ARM::tCBNZ: { 6674 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6675 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6676 break; 6677 } 6678 case ARM::MOVi16: 6679 case ARM::t2MOVi16: 6680 case ARM::t2MOVTi16: 6681 { 6682 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6683 // especially when we turn it into a movw and the expression <symbol> does 6684 // not have a :lower16: or :upper16 as part of the expression. We don't 6685 // want the behavior of silently truncating, which can be unexpected and 6686 // lead to bugs that are difficult to find since this is an easy mistake 6687 // to make. 6688 int i = (Operands[3]->isImm()) ? 3 : 4; 6689 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6690 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6691 if (CE) break; 6692 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6693 if (!E) break; 6694 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6695 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6696 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6697 return Error( 6698 Op.getStartLoc(), 6699 "immediate expression for mov requires :lower16: or :upper16"); 6700 break; 6701 } 6702 case ARM::HINT: 6703 case ARM::t2HINT: { 6704 if (hasRAS()) { 6705 // ESB is not predicable (pred must be AL) 6706 unsigned Imm8 = Inst.getOperand(0).getImm(); 6707 unsigned Pred = Inst.getOperand(1).getImm(); 6708 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6709 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6710 "predicable, but condition " 6711 "code specified"); 6712 } 6713 // Without the RAS extension, this behaves as any other unallocated hint. 6714 break; 6715 } 6716 } 6717 6718 return false; 6719 } 6720 6721 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6722 switch(Opc) { 6723 default: llvm_unreachable("unexpected opcode!"); 6724 // VST1LN 6725 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6726 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6727 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6728 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6729 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6730 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6731 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6732 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6733 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6734 6735 // VST2LN 6736 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6737 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6738 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6739 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6740 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6741 6742 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6743 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6744 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6745 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6746 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6747 6748 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6749 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6750 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6751 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6752 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6753 6754 // VST3LN 6755 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6756 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6757 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6758 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6759 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6760 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6761 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6762 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6763 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6764 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6765 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6766 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6767 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6768 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6769 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6770 6771 // VST3 6772 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6773 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6774 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6775 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6776 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6777 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6778 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6779 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6780 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6781 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6782 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6783 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6784 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6785 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6786 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6787 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6788 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6789 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6790 6791 // VST4LN 6792 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6793 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6794 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6795 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6796 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6797 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6798 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6799 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6800 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6801 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6802 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6803 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6804 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6805 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6806 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6807 6808 // VST4 6809 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6810 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6811 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6812 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6813 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6814 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6815 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6816 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6817 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6818 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6819 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6820 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6821 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6822 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6823 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6824 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6825 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6826 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6827 } 6828 } 6829 6830 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6831 switch(Opc) { 6832 default: llvm_unreachable("unexpected opcode!"); 6833 // VLD1LN 6834 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6835 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6836 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6837 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6838 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6839 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6840 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6841 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6842 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6843 6844 // VLD2LN 6845 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6846 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6847 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6848 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6849 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6850 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6851 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6852 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6853 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6854 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6855 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6856 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6857 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6858 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6859 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6860 6861 // VLD3DUP 6862 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6863 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6864 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6865 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6866 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6867 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6868 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6869 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6870 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6871 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6872 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6873 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6874 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6875 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6876 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6877 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6878 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6879 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6880 6881 // VLD3LN 6882 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6883 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6884 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6885 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6886 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6887 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6888 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6889 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6890 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6891 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6892 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6893 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6894 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6895 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6896 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6897 6898 // VLD3 6899 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6900 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6901 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6902 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6903 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6904 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6905 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6906 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6907 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6908 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6909 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6910 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6911 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6912 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6913 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6914 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6915 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6916 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6917 6918 // VLD4LN 6919 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6920 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6921 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6922 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6923 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6924 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6925 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6926 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6927 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6928 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6929 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6930 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6931 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6932 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6933 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6934 6935 // VLD4DUP 6936 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6937 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6938 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6939 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6940 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6941 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6942 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6943 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6944 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6945 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6946 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6947 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6948 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6949 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6950 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6951 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6952 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6953 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6954 6955 // VLD4 6956 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6957 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6958 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6959 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6960 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6961 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6962 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6963 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6964 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6965 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6966 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6967 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6968 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6969 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6970 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6971 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6972 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6973 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6974 } 6975 } 6976 6977 bool ARMAsmParser::processInstruction(MCInst &Inst, 6978 const OperandVector &Operands, 6979 MCStreamer &Out) { 6980 switch (Inst.getOpcode()) { 6981 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6982 case ARM::LDRT_POST: 6983 case ARM::LDRBT_POST: { 6984 const unsigned Opcode = 6985 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6986 : ARM::LDRBT_POST_IMM; 6987 MCInst TmpInst; 6988 TmpInst.setOpcode(Opcode); 6989 TmpInst.addOperand(Inst.getOperand(0)); 6990 TmpInst.addOperand(Inst.getOperand(1)); 6991 TmpInst.addOperand(Inst.getOperand(1)); 6992 TmpInst.addOperand(MCOperand::createReg(0)); 6993 TmpInst.addOperand(MCOperand::createImm(0)); 6994 TmpInst.addOperand(Inst.getOperand(2)); 6995 TmpInst.addOperand(Inst.getOperand(3)); 6996 Inst = TmpInst; 6997 return true; 6998 } 6999 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7000 case ARM::STRT_POST: 7001 case ARM::STRBT_POST: { 7002 const unsigned Opcode = 7003 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7004 : ARM::STRBT_POST_IMM; 7005 MCInst TmpInst; 7006 TmpInst.setOpcode(Opcode); 7007 TmpInst.addOperand(Inst.getOperand(1)); 7008 TmpInst.addOperand(Inst.getOperand(0)); 7009 TmpInst.addOperand(Inst.getOperand(1)); 7010 TmpInst.addOperand(MCOperand::createReg(0)); 7011 TmpInst.addOperand(MCOperand::createImm(0)); 7012 TmpInst.addOperand(Inst.getOperand(2)); 7013 TmpInst.addOperand(Inst.getOperand(3)); 7014 Inst = TmpInst; 7015 return true; 7016 } 7017 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7018 case ARM::ADDri: { 7019 if (Inst.getOperand(1).getReg() != ARM::PC || 7020 Inst.getOperand(5).getReg() != 0 || 7021 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7022 return false; 7023 MCInst TmpInst; 7024 TmpInst.setOpcode(ARM::ADR); 7025 TmpInst.addOperand(Inst.getOperand(0)); 7026 if (Inst.getOperand(2).isImm()) { 7027 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7028 // before passing it to the ADR instruction. 7029 unsigned Enc = Inst.getOperand(2).getImm(); 7030 TmpInst.addOperand(MCOperand::createImm( 7031 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7032 } else { 7033 // Turn PC-relative expression into absolute expression. 7034 // Reading PC provides the start of the current instruction + 8 and 7035 // the transform to adr is biased by that. 7036 MCSymbol *Dot = getContext().createTempSymbol(); 7037 Out.EmitLabel(Dot); 7038 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7039 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7040 MCSymbolRefExpr::VK_None, 7041 getContext()); 7042 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7043 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7044 getContext()); 7045 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7046 getContext()); 7047 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7048 } 7049 TmpInst.addOperand(Inst.getOperand(3)); 7050 TmpInst.addOperand(Inst.getOperand(4)); 7051 Inst = TmpInst; 7052 return true; 7053 } 7054 // Aliases for alternate PC+imm syntax of LDR instructions. 7055 case ARM::t2LDRpcrel: 7056 // Select the narrow version if the immediate will fit. 7057 if (Inst.getOperand(1).getImm() > 0 && 7058 Inst.getOperand(1).getImm() <= 0xff && 7059 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 7060 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 7061 Inst.setOpcode(ARM::tLDRpci); 7062 else 7063 Inst.setOpcode(ARM::t2LDRpci); 7064 return true; 7065 case ARM::t2LDRBpcrel: 7066 Inst.setOpcode(ARM::t2LDRBpci); 7067 return true; 7068 case ARM::t2LDRHpcrel: 7069 Inst.setOpcode(ARM::t2LDRHpci); 7070 return true; 7071 case ARM::t2LDRSBpcrel: 7072 Inst.setOpcode(ARM::t2LDRSBpci); 7073 return true; 7074 case ARM::t2LDRSHpcrel: 7075 Inst.setOpcode(ARM::t2LDRSHpci); 7076 return true; 7077 case ARM::LDRConstPool: 7078 case ARM::tLDRConstPool: 7079 case ARM::t2LDRConstPool: { 7080 // Pseudo instruction ldr rt, =immediate is converted to a 7081 // MOV rt, immediate if immediate is known and representable 7082 // otherwise we create a constant pool entry that we load from. 7083 MCInst TmpInst; 7084 if (Inst.getOpcode() == ARM::LDRConstPool) 7085 TmpInst.setOpcode(ARM::LDRi12); 7086 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7087 TmpInst.setOpcode(ARM::tLDRpci); 7088 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7089 TmpInst.setOpcode(ARM::t2LDRpci); 7090 const ARMOperand &PoolOperand = 7091 (static_cast<ARMOperand &>(*Operands[2]).isToken() && 7092 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w") ? 7093 static_cast<ARMOperand &>(*Operands[4]) : 7094 static_cast<ARMOperand &>(*Operands[3]); 7095 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7096 // If SubExprVal is a constant we may be able to use a MOV 7097 if (isa<MCConstantExpr>(SubExprVal) && 7098 Inst.getOperand(0).getReg() != ARM::PC && 7099 Inst.getOperand(0).getReg() != ARM::SP) { 7100 int64_t Value = 7101 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7102 bool UseMov = true; 7103 bool MovHasS = true; 7104 if (Inst.getOpcode() == ARM::LDRConstPool) { 7105 // ARM Constant 7106 if (ARM_AM::getSOImmVal(Value) != -1) { 7107 Value = ARM_AM::getSOImmVal(Value); 7108 TmpInst.setOpcode(ARM::MOVi); 7109 } 7110 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7111 Value = ARM_AM::getSOImmVal(~Value); 7112 TmpInst.setOpcode(ARM::MVNi); 7113 } 7114 else if (hasV6T2Ops() && 7115 Value >=0 && Value < 65536) { 7116 TmpInst.setOpcode(ARM::MOVi16); 7117 MovHasS = false; 7118 } 7119 else 7120 UseMov = false; 7121 } 7122 else { 7123 // Thumb/Thumb2 Constant 7124 if (hasThumb2() && 7125 ARM_AM::getT2SOImmVal(Value) != -1) 7126 TmpInst.setOpcode(ARM::t2MOVi); 7127 else if (hasThumb2() && 7128 ARM_AM::getT2SOImmVal(~Value) != -1) { 7129 TmpInst.setOpcode(ARM::t2MVNi); 7130 Value = ~Value; 7131 } 7132 else if (hasV8MBaseline() && 7133 Value >=0 && Value < 65536) { 7134 TmpInst.setOpcode(ARM::t2MOVi16); 7135 MovHasS = false; 7136 } 7137 else 7138 UseMov = false; 7139 } 7140 if (UseMov) { 7141 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7142 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7143 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7144 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7145 if (MovHasS) 7146 TmpInst.addOperand(MCOperand::createReg(0)); // S 7147 Inst = TmpInst; 7148 return true; 7149 } 7150 } 7151 // No opportunity to use MOV/MVN create constant pool 7152 const MCExpr *CPLoc = 7153 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7154 PoolOperand.getStartLoc()); 7155 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7156 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7157 if (TmpInst.getOpcode() == ARM::LDRi12) 7158 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7159 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7160 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7161 Inst = TmpInst; 7162 return true; 7163 } 7164 // Handle NEON VST complex aliases. 7165 case ARM::VST1LNdWB_register_Asm_8: 7166 case ARM::VST1LNdWB_register_Asm_16: 7167 case ARM::VST1LNdWB_register_Asm_32: { 7168 MCInst TmpInst; 7169 // Shuffle the operands around so the lane index operand is in the 7170 // right place. 7171 unsigned Spacing; 7172 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7173 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7174 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7175 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7176 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7177 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7178 TmpInst.addOperand(Inst.getOperand(1)); // lane 7179 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7180 TmpInst.addOperand(Inst.getOperand(6)); 7181 Inst = TmpInst; 7182 return true; 7183 } 7184 7185 case ARM::VST2LNdWB_register_Asm_8: 7186 case ARM::VST2LNdWB_register_Asm_16: 7187 case ARM::VST2LNdWB_register_Asm_32: 7188 case ARM::VST2LNqWB_register_Asm_16: 7189 case ARM::VST2LNqWB_register_Asm_32: { 7190 MCInst TmpInst; 7191 // Shuffle the operands around so the lane index operand is in the 7192 // right place. 7193 unsigned Spacing; 7194 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7195 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7196 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7197 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7198 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7199 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7200 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7201 Spacing)); 7202 TmpInst.addOperand(Inst.getOperand(1)); // lane 7203 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7204 TmpInst.addOperand(Inst.getOperand(6)); 7205 Inst = TmpInst; 7206 return true; 7207 } 7208 7209 case ARM::VST3LNdWB_register_Asm_8: 7210 case ARM::VST3LNdWB_register_Asm_16: 7211 case ARM::VST3LNdWB_register_Asm_32: 7212 case ARM::VST3LNqWB_register_Asm_16: 7213 case ARM::VST3LNqWB_register_Asm_32: { 7214 MCInst TmpInst; 7215 // Shuffle the operands around so the lane index operand is in the 7216 // right place. 7217 unsigned Spacing; 7218 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7219 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7220 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7221 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7222 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7223 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7224 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7225 Spacing)); 7226 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7227 Spacing * 2)); 7228 TmpInst.addOperand(Inst.getOperand(1)); // lane 7229 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7230 TmpInst.addOperand(Inst.getOperand(6)); 7231 Inst = TmpInst; 7232 return true; 7233 } 7234 7235 case ARM::VST4LNdWB_register_Asm_8: 7236 case ARM::VST4LNdWB_register_Asm_16: 7237 case ARM::VST4LNdWB_register_Asm_32: 7238 case ARM::VST4LNqWB_register_Asm_16: 7239 case ARM::VST4LNqWB_register_Asm_32: { 7240 MCInst TmpInst; 7241 // Shuffle the operands around so the lane index operand is in the 7242 // right place. 7243 unsigned Spacing; 7244 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7245 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7246 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7247 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7248 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7249 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7250 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7251 Spacing)); 7252 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7253 Spacing * 2)); 7254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7255 Spacing * 3)); 7256 TmpInst.addOperand(Inst.getOperand(1)); // lane 7257 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7258 TmpInst.addOperand(Inst.getOperand(6)); 7259 Inst = TmpInst; 7260 return true; 7261 } 7262 7263 case ARM::VST1LNdWB_fixed_Asm_8: 7264 case ARM::VST1LNdWB_fixed_Asm_16: 7265 case ARM::VST1LNdWB_fixed_Asm_32: { 7266 MCInst TmpInst; 7267 // Shuffle the operands around so the lane index operand is in the 7268 // right place. 7269 unsigned Spacing; 7270 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7271 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7272 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7273 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7274 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7275 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7276 TmpInst.addOperand(Inst.getOperand(1)); // lane 7277 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7278 TmpInst.addOperand(Inst.getOperand(5)); 7279 Inst = TmpInst; 7280 return true; 7281 } 7282 7283 case ARM::VST2LNdWB_fixed_Asm_8: 7284 case ARM::VST2LNdWB_fixed_Asm_16: 7285 case ARM::VST2LNdWB_fixed_Asm_32: 7286 case ARM::VST2LNqWB_fixed_Asm_16: 7287 case ARM::VST2LNqWB_fixed_Asm_32: { 7288 MCInst TmpInst; 7289 // Shuffle the operands around so the lane index operand is in the 7290 // right place. 7291 unsigned Spacing; 7292 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7293 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7294 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7295 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7296 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7297 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7298 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7299 Spacing)); 7300 TmpInst.addOperand(Inst.getOperand(1)); // lane 7301 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7302 TmpInst.addOperand(Inst.getOperand(5)); 7303 Inst = TmpInst; 7304 return true; 7305 } 7306 7307 case ARM::VST3LNdWB_fixed_Asm_8: 7308 case ARM::VST3LNdWB_fixed_Asm_16: 7309 case ARM::VST3LNdWB_fixed_Asm_32: 7310 case ARM::VST3LNqWB_fixed_Asm_16: 7311 case ARM::VST3LNqWB_fixed_Asm_32: { 7312 MCInst TmpInst; 7313 // Shuffle the operands around so the lane index operand is in the 7314 // right place. 7315 unsigned Spacing; 7316 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7317 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7318 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7319 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7320 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7321 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7322 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7323 Spacing)); 7324 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7325 Spacing * 2)); 7326 TmpInst.addOperand(Inst.getOperand(1)); // lane 7327 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7328 TmpInst.addOperand(Inst.getOperand(5)); 7329 Inst = TmpInst; 7330 return true; 7331 } 7332 7333 case ARM::VST4LNdWB_fixed_Asm_8: 7334 case ARM::VST4LNdWB_fixed_Asm_16: 7335 case ARM::VST4LNdWB_fixed_Asm_32: 7336 case ARM::VST4LNqWB_fixed_Asm_16: 7337 case ARM::VST4LNqWB_fixed_Asm_32: { 7338 MCInst TmpInst; 7339 // Shuffle the operands around so the lane index operand is in the 7340 // right place. 7341 unsigned Spacing; 7342 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7343 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7344 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7345 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7346 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7347 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7348 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7349 Spacing)); 7350 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7351 Spacing * 2)); 7352 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7353 Spacing * 3)); 7354 TmpInst.addOperand(Inst.getOperand(1)); // lane 7355 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7356 TmpInst.addOperand(Inst.getOperand(5)); 7357 Inst = TmpInst; 7358 return true; 7359 } 7360 7361 case ARM::VST1LNdAsm_8: 7362 case ARM::VST1LNdAsm_16: 7363 case ARM::VST1LNdAsm_32: { 7364 MCInst TmpInst; 7365 // Shuffle the operands around so the lane index operand is in the 7366 // right place. 7367 unsigned Spacing; 7368 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7369 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7370 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7371 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7372 TmpInst.addOperand(Inst.getOperand(1)); // lane 7373 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7374 TmpInst.addOperand(Inst.getOperand(5)); 7375 Inst = TmpInst; 7376 return true; 7377 } 7378 7379 case ARM::VST2LNdAsm_8: 7380 case ARM::VST2LNdAsm_16: 7381 case ARM::VST2LNdAsm_32: 7382 case ARM::VST2LNqAsm_16: 7383 case ARM::VST2LNqAsm_32: { 7384 MCInst TmpInst; 7385 // Shuffle the operands around so the lane index operand is in the 7386 // right place. 7387 unsigned Spacing; 7388 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7389 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7390 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7391 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7392 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7393 Spacing)); 7394 TmpInst.addOperand(Inst.getOperand(1)); // lane 7395 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7396 TmpInst.addOperand(Inst.getOperand(5)); 7397 Inst = TmpInst; 7398 return true; 7399 } 7400 7401 case ARM::VST3LNdAsm_8: 7402 case ARM::VST3LNdAsm_16: 7403 case ARM::VST3LNdAsm_32: 7404 case ARM::VST3LNqAsm_16: 7405 case ARM::VST3LNqAsm_32: { 7406 MCInst TmpInst; 7407 // Shuffle the operands around so the lane index operand is in the 7408 // right place. 7409 unsigned Spacing; 7410 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7411 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7412 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7413 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7414 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7415 Spacing)); 7416 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7417 Spacing * 2)); 7418 TmpInst.addOperand(Inst.getOperand(1)); // lane 7419 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7420 TmpInst.addOperand(Inst.getOperand(5)); 7421 Inst = TmpInst; 7422 return true; 7423 } 7424 7425 case ARM::VST4LNdAsm_8: 7426 case ARM::VST4LNdAsm_16: 7427 case ARM::VST4LNdAsm_32: 7428 case ARM::VST4LNqAsm_16: 7429 case ARM::VST4LNqAsm_32: { 7430 MCInst TmpInst; 7431 // Shuffle the operands around so the lane index operand is in the 7432 // right place. 7433 unsigned Spacing; 7434 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7435 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7436 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7437 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7438 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7439 Spacing)); 7440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7441 Spacing * 2)); 7442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7443 Spacing * 3)); 7444 TmpInst.addOperand(Inst.getOperand(1)); // lane 7445 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7446 TmpInst.addOperand(Inst.getOperand(5)); 7447 Inst = TmpInst; 7448 return true; 7449 } 7450 7451 // Handle NEON VLD complex aliases. 7452 case ARM::VLD1LNdWB_register_Asm_8: 7453 case ARM::VLD1LNdWB_register_Asm_16: 7454 case ARM::VLD1LNdWB_register_Asm_32: { 7455 MCInst TmpInst; 7456 // Shuffle the operands around so the lane index operand is in the 7457 // right place. 7458 unsigned Spacing; 7459 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7460 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7461 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7462 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7463 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7464 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7465 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7466 TmpInst.addOperand(Inst.getOperand(1)); // lane 7467 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7468 TmpInst.addOperand(Inst.getOperand(6)); 7469 Inst = TmpInst; 7470 return true; 7471 } 7472 7473 case ARM::VLD2LNdWB_register_Asm_8: 7474 case ARM::VLD2LNdWB_register_Asm_16: 7475 case ARM::VLD2LNdWB_register_Asm_32: 7476 case ARM::VLD2LNqWB_register_Asm_16: 7477 case ARM::VLD2LNqWB_register_Asm_32: { 7478 MCInst TmpInst; 7479 // Shuffle the operands around so the lane index operand is in the 7480 // right place. 7481 unsigned Spacing; 7482 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7483 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7484 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7485 Spacing)); 7486 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7487 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7488 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7489 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7490 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7491 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7492 Spacing)); 7493 TmpInst.addOperand(Inst.getOperand(1)); // lane 7494 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7495 TmpInst.addOperand(Inst.getOperand(6)); 7496 Inst = TmpInst; 7497 return true; 7498 } 7499 7500 case ARM::VLD3LNdWB_register_Asm_8: 7501 case ARM::VLD3LNdWB_register_Asm_16: 7502 case ARM::VLD3LNdWB_register_Asm_32: 7503 case ARM::VLD3LNqWB_register_Asm_16: 7504 case ARM::VLD3LNqWB_register_Asm_32: { 7505 MCInst TmpInst; 7506 // Shuffle the operands around so the lane index operand is in the 7507 // right place. 7508 unsigned Spacing; 7509 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7510 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7512 Spacing)); 7513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7514 Spacing * 2)); 7515 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7516 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7517 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7518 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7519 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7520 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7521 Spacing)); 7522 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7523 Spacing * 2)); 7524 TmpInst.addOperand(Inst.getOperand(1)); // lane 7525 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7526 TmpInst.addOperand(Inst.getOperand(6)); 7527 Inst = TmpInst; 7528 return true; 7529 } 7530 7531 case ARM::VLD4LNdWB_register_Asm_8: 7532 case ARM::VLD4LNdWB_register_Asm_16: 7533 case ARM::VLD4LNdWB_register_Asm_32: 7534 case ARM::VLD4LNqWB_register_Asm_16: 7535 case ARM::VLD4LNqWB_register_Asm_32: { 7536 MCInst TmpInst; 7537 // Shuffle the operands around so the lane index operand is in the 7538 // right place. 7539 unsigned Spacing; 7540 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7541 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7542 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7543 Spacing)); 7544 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7545 Spacing * 2)); 7546 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7547 Spacing * 3)); 7548 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7549 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7550 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7551 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7552 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7553 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7554 Spacing)); 7555 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7556 Spacing * 2)); 7557 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7558 Spacing * 3)); 7559 TmpInst.addOperand(Inst.getOperand(1)); // lane 7560 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7561 TmpInst.addOperand(Inst.getOperand(6)); 7562 Inst = TmpInst; 7563 return true; 7564 } 7565 7566 case ARM::VLD1LNdWB_fixed_Asm_8: 7567 case ARM::VLD1LNdWB_fixed_Asm_16: 7568 case ARM::VLD1LNdWB_fixed_Asm_32: { 7569 MCInst TmpInst; 7570 // Shuffle the operands around so the lane index operand is in the 7571 // right place. 7572 unsigned Spacing; 7573 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7574 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7575 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7576 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7577 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7578 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7579 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7580 TmpInst.addOperand(Inst.getOperand(1)); // lane 7581 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7582 TmpInst.addOperand(Inst.getOperand(5)); 7583 Inst = TmpInst; 7584 return true; 7585 } 7586 7587 case ARM::VLD2LNdWB_fixed_Asm_8: 7588 case ARM::VLD2LNdWB_fixed_Asm_16: 7589 case ARM::VLD2LNdWB_fixed_Asm_32: 7590 case ARM::VLD2LNqWB_fixed_Asm_16: 7591 case ARM::VLD2LNqWB_fixed_Asm_32: { 7592 MCInst TmpInst; 7593 // Shuffle the operands around so the lane index operand is in the 7594 // right place. 7595 unsigned Spacing; 7596 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7597 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7598 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7599 Spacing)); 7600 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7601 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7602 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7603 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7604 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7605 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7606 Spacing)); 7607 TmpInst.addOperand(Inst.getOperand(1)); // lane 7608 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7609 TmpInst.addOperand(Inst.getOperand(5)); 7610 Inst = TmpInst; 7611 return true; 7612 } 7613 7614 case ARM::VLD3LNdWB_fixed_Asm_8: 7615 case ARM::VLD3LNdWB_fixed_Asm_16: 7616 case ARM::VLD3LNdWB_fixed_Asm_32: 7617 case ARM::VLD3LNqWB_fixed_Asm_16: 7618 case ARM::VLD3LNqWB_fixed_Asm_32: { 7619 MCInst TmpInst; 7620 // Shuffle the operands around so the lane index operand is in the 7621 // right place. 7622 unsigned Spacing; 7623 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7624 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7625 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7626 Spacing)); 7627 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7628 Spacing * 2)); 7629 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7630 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7631 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7632 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7633 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7634 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7635 Spacing)); 7636 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7637 Spacing * 2)); 7638 TmpInst.addOperand(Inst.getOperand(1)); // lane 7639 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7640 TmpInst.addOperand(Inst.getOperand(5)); 7641 Inst = TmpInst; 7642 return true; 7643 } 7644 7645 case ARM::VLD4LNdWB_fixed_Asm_8: 7646 case ARM::VLD4LNdWB_fixed_Asm_16: 7647 case ARM::VLD4LNdWB_fixed_Asm_32: 7648 case ARM::VLD4LNqWB_fixed_Asm_16: 7649 case ARM::VLD4LNqWB_fixed_Asm_32: { 7650 MCInst TmpInst; 7651 // Shuffle the operands around so the lane index operand is in the 7652 // right place. 7653 unsigned Spacing; 7654 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7655 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7656 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7657 Spacing)); 7658 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7659 Spacing * 2)); 7660 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7661 Spacing * 3)); 7662 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7663 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7664 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7665 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7666 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7667 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7668 Spacing)); 7669 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7670 Spacing * 2)); 7671 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7672 Spacing * 3)); 7673 TmpInst.addOperand(Inst.getOperand(1)); // lane 7674 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7675 TmpInst.addOperand(Inst.getOperand(5)); 7676 Inst = TmpInst; 7677 return true; 7678 } 7679 7680 case ARM::VLD1LNdAsm_8: 7681 case ARM::VLD1LNdAsm_16: 7682 case ARM::VLD1LNdAsm_32: { 7683 MCInst TmpInst; 7684 // Shuffle the operands around so the lane index operand is in the 7685 // right place. 7686 unsigned Spacing; 7687 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7688 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7689 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7690 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7691 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7692 TmpInst.addOperand(Inst.getOperand(1)); // lane 7693 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7694 TmpInst.addOperand(Inst.getOperand(5)); 7695 Inst = TmpInst; 7696 return true; 7697 } 7698 7699 case ARM::VLD2LNdAsm_8: 7700 case ARM::VLD2LNdAsm_16: 7701 case ARM::VLD2LNdAsm_32: 7702 case ARM::VLD2LNqAsm_16: 7703 case ARM::VLD2LNqAsm_32: { 7704 MCInst TmpInst; 7705 // Shuffle the operands around so the lane index operand is in the 7706 // right place. 7707 unsigned Spacing; 7708 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7709 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7711 Spacing)); 7712 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7713 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7714 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7715 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7716 Spacing)); 7717 TmpInst.addOperand(Inst.getOperand(1)); // lane 7718 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7719 TmpInst.addOperand(Inst.getOperand(5)); 7720 Inst = TmpInst; 7721 return true; 7722 } 7723 7724 case ARM::VLD3LNdAsm_8: 7725 case ARM::VLD3LNdAsm_16: 7726 case ARM::VLD3LNdAsm_32: 7727 case ARM::VLD3LNqAsm_16: 7728 case ARM::VLD3LNqAsm_32: { 7729 MCInst TmpInst; 7730 // Shuffle the operands around so the lane index operand is in the 7731 // right place. 7732 unsigned Spacing; 7733 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7734 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7735 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7736 Spacing)); 7737 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7738 Spacing * 2)); 7739 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7740 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7741 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7743 Spacing)); 7744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7745 Spacing * 2)); 7746 TmpInst.addOperand(Inst.getOperand(1)); // lane 7747 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7748 TmpInst.addOperand(Inst.getOperand(5)); 7749 Inst = TmpInst; 7750 return true; 7751 } 7752 7753 case ARM::VLD4LNdAsm_8: 7754 case ARM::VLD4LNdAsm_16: 7755 case ARM::VLD4LNdAsm_32: 7756 case ARM::VLD4LNqAsm_16: 7757 case ARM::VLD4LNqAsm_32: { 7758 MCInst TmpInst; 7759 // Shuffle the operands around so the lane index operand is in the 7760 // right place. 7761 unsigned Spacing; 7762 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7763 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7764 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7765 Spacing)); 7766 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7767 Spacing * 2)); 7768 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7769 Spacing * 3)); 7770 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7771 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7772 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7773 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7774 Spacing)); 7775 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7776 Spacing * 2)); 7777 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7778 Spacing * 3)); 7779 TmpInst.addOperand(Inst.getOperand(1)); // lane 7780 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7781 TmpInst.addOperand(Inst.getOperand(5)); 7782 Inst = TmpInst; 7783 return true; 7784 } 7785 7786 // VLD3DUP single 3-element structure to all lanes instructions. 7787 case ARM::VLD3DUPdAsm_8: 7788 case ARM::VLD3DUPdAsm_16: 7789 case ARM::VLD3DUPdAsm_32: 7790 case ARM::VLD3DUPqAsm_8: 7791 case ARM::VLD3DUPqAsm_16: 7792 case ARM::VLD3DUPqAsm_32: { 7793 MCInst TmpInst; 7794 unsigned Spacing; 7795 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7796 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7797 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7798 Spacing)); 7799 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7800 Spacing * 2)); 7801 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7802 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7803 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7804 TmpInst.addOperand(Inst.getOperand(4)); 7805 Inst = TmpInst; 7806 return true; 7807 } 7808 7809 case ARM::VLD3DUPdWB_fixed_Asm_8: 7810 case ARM::VLD3DUPdWB_fixed_Asm_16: 7811 case ARM::VLD3DUPdWB_fixed_Asm_32: 7812 case ARM::VLD3DUPqWB_fixed_Asm_8: 7813 case ARM::VLD3DUPqWB_fixed_Asm_16: 7814 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7815 MCInst TmpInst; 7816 unsigned Spacing; 7817 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7818 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7819 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7820 Spacing)); 7821 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7822 Spacing * 2)); 7823 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7824 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7825 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7826 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7827 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7828 TmpInst.addOperand(Inst.getOperand(4)); 7829 Inst = TmpInst; 7830 return true; 7831 } 7832 7833 case ARM::VLD3DUPdWB_register_Asm_8: 7834 case ARM::VLD3DUPdWB_register_Asm_16: 7835 case ARM::VLD3DUPdWB_register_Asm_32: 7836 case ARM::VLD3DUPqWB_register_Asm_8: 7837 case ARM::VLD3DUPqWB_register_Asm_16: 7838 case ARM::VLD3DUPqWB_register_Asm_32: { 7839 MCInst TmpInst; 7840 unsigned Spacing; 7841 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7842 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7843 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7844 Spacing)); 7845 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7846 Spacing * 2)); 7847 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7848 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7849 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7850 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7851 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7852 TmpInst.addOperand(Inst.getOperand(5)); 7853 Inst = TmpInst; 7854 return true; 7855 } 7856 7857 // VLD3 multiple 3-element structure instructions. 7858 case ARM::VLD3dAsm_8: 7859 case ARM::VLD3dAsm_16: 7860 case ARM::VLD3dAsm_32: 7861 case ARM::VLD3qAsm_8: 7862 case ARM::VLD3qAsm_16: 7863 case ARM::VLD3qAsm_32: { 7864 MCInst TmpInst; 7865 unsigned Spacing; 7866 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7867 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7868 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7869 Spacing)); 7870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7871 Spacing * 2)); 7872 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7873 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7874 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7875 TmpInst.addOperand(Inst.getOperand(4)); 7876 Inst = TmpInst; 7877 return true; 7878 } 7879 7880 case ARM::VLD3dWB_fixed_Asm_8: 7881 case ARM::VLD3dWB_fixed_Asm_16: 7882 case ARM::VLD3dWB_fixed_Asm_32: 7883 case ARM::VLD3qWB_fixed_Asm_8: 7884 case ARM::VLD3qWB_fixed_Asm_16: 7885 case ARM::VLD3qWB_fixed_Asm_32: { 7886 MCInst TmpInst; 7887 unsigned Spacing; 7888 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7889 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7890 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7891 Spacing)); 7892 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7893 Spacing * 2)); 7894 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7895 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7896 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7897 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7898 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7899 TmpInst.addOperand(Inst.getOperand(4)); 7900 Inst = TmpInst; 7901 return true; 7902 } 7903 7904 case ARM::VLD3dWB_register_Asm_8: 7905 case ARM::VLD3dWB_register_Asm_16: 7906 case ARM::VLD3dWB_register_Asm_32: 7907 case ARM::VLD3qWB_register_Asm_8: 7908 case ARM::VLD3qWB_register_Asm_16: 7909 case ARM::VLD3qWB_register_Asm_32: { 7910 MCInst TmpInst; 7911 unsigned Spacing; 7912 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7913 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7914 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7915 Spacing)); 7916 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7917 Spacing * 2)); 7918 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7919 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7920 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7921 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7922 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7923 TmpInst.addOperand(Inst.getOperand(5)); 7924 Inst = TmpInst; 7925 return true; 7926 } 7927 7928 // VLD4DUP single 3-element structure to all lanes instructions. 7929 case ARM::VLD4DUPdAsm_8: 7930 case ARM::VLD4DUPdAsm_16: 7931 case ARM::VLD4DUPdAsm_32: 7932 case ARM::VLD4DUPqAsm_8: 7933 case ARM::VLD4DUPqAsm_16: 7934 case ARM::VLD4DUPqAsm_32: { 7935 MCInst TmpInst; 7936 unsigned Spacing; 7937 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7938 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7939 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7940 Spacing)); 7941 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7942 Spacing * 2)); 7943 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7944 Spacing * 3)); 7945 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7946 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7947 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7948 TmpInst.addOperand(Inst.getOperand(4)); 7949 Inst = TmpInst; 7950 return true; 7951 } 7952 7953 case ARM::VLD4DUPdWB_fixed_Asm_8: 7954 case ARM::VLD4DUPdWB_fixed_Asm_16: 7955 case ARM::VLD4DUPdWB_fixed_Asm_32: 7956 case ARM::VLD4DUPqWB_fixed_Asm_8: 7957 case ARM::VLD4DUPqWB_fixed_Asm_16: 7958 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7959 MCInst TmpInst; 7960 unsigned Spacing; 7961 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7962 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7964 Spacing)); 7965 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7966 Spacing * 2)); 7967 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7968 Spacing * 3)); 7969 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7970 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7971 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7972 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7973 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7974 TmpInst.addOperand(Inst.getOperand(4)); 7975 Inst = TmpInst; 7976 return true; 7977 } 7978 7979 case ARM::VLD4DUPdWB_register_Asm_8: 7980 case ARM::VLD4DUPdWB_register_Asm_16: 7981 case ARM::VLD4DUPdWB_register_Asm_32: 7982 case ARM::VLD4DUPqWB_register_Asm_8: 7983 case ARM::VLD4DUPqWB_register_Asm_16: 7984 case ARM::VLD4DUPqWB_register_Asm_32: { 7985 MCInst TmpInst; 7986 unsigned Spacing; 7987 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7988 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7989 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7990 Spacing)); 7991 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7992 Spacing * 2)); 7993 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7994 Spacing * 3)); 7995 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7996 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7997 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7998 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7999 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8000 TmpInst.addOperand(Inst.getOperand(5)); 8001 Inst = TmpInst; 8002 return true; 8003 } 8004 8005 // VLD4 multiple 4-element structure instructions. 8006 case ARM::VLD4dAsm_8: 8007 case ARM::VLD4dAsm_16: 8008 case ARM::VLD4dAsm_32: 8009 case ARM::VLD4qAsm_8: 8010 case ARM::VLD4qAsm_16: 8011 case ARM::VLD4qAsm_32: { 8012 MCInst TmpInst; 8013 unsigned Spacing; 8014 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8015 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8017 Spacing)); 8018 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8019 Spacing * 2)); 8020 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8021 Spacing * 3)); 8022 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8023 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8024 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8025 TmpInst.addOperand(Inst.getOperand(4)); 8026 Inst = TmpInst; 8027 return true; 8028 } 8029 8030 case ARM::VLD4dWB_fixed_Asm_8: 8031 case ARM::VLD4dWB_fixed_Asm_16: 8032 case ARM::VLD4dWB_fixed_Asm_32: 8033 case ARM::VLD4qWB_fixed_Asm_8: 8034 case ARM::VLD4qWB_fixed_Asm_16: 8035 case ARM::VLD4qWB_fixed_Asm_32: { 8036 MCInst TmpInst; 8037 unsigned Spacing; 8038 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8039 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8040 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8041 Spacing)); 8042 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8043 Spacing * 2)); 8044 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8045 Spacing * 3)); 8046 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8047 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8048 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8049 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8050 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8051 TmpInst.addOperand(Inst.getOperand(4)); 8052 Inst = TmpInst; 8053 return true; 8054 } 8055 8056 case ARM::VLD4dWB_register_Asm_8: 8057 case ARM::VLD4dWB_register_Asm_16: 8058 case ARM::VLD4dWB_register_Asm_32: 8059 case ARM::VLD4qWB_register_Asm_8: 8060 case ARM::VLD4qWB_register_Asm_16: 8061 case ARM::VLD4qWB_register_Asm_32: { 8062 MCInst TmpInst; 8063 unsigned Spacing; 8064 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8065 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8066 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8067 Spacing)); 8068 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8069 Spacing * 2)); 8070 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8071 Spacing * 3)); 8072 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8073 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8074 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8075 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8076 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8077 TmpInst.addOperand(Inst.getOperand(5)); 8078 Inst = TmpInst; 8079 return true; 8080 } 8081 8082 // VST3 multiple 3-element structure instructions. 8083 case ARM::VST3dAsm_8: 8084 case ARM::VST3dAsm_16: 8085 case ARM::VST3dAsm_32: 8086 case ARM::VST3qAsm_8: 8087 case ARM::VST3qAsm_16: 8088 case ARM::VST3qAsm_32: { 8089 MCInst TmpInst; 8090 unsigned Spacing; 8091 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8092 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8093 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8094 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8095 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8096 Spacing)); 8097 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8098 Spacing * 2)); 8099 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8100 TmpInst.addOperand(Inst.getOperand(4)); 8101 Inst = TmpInst; 8102 return true; 8103 } 8104 8105 case ARM::VST3dWB_fixed_Asm_8: 8106 case ARM::VST3dWB_fixed_Asm_16: 8107 case ARM::VST3dWB_fixed_Asm_32: 8108 case ARM::VST3qWB_fixed_Asm_8: 8109 case ARM::VST3qWB_fixed_Asm_16: 8110 case ARM::VST3qWB_fixed_Asm_32: { 8111 MCInst TmpInst; 8112 unsigned Spacing; 8113 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8114 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8115 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8116 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8117 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8118 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8119 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8120 Spacing)); 8121 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8122 Spacing * 2)); 8123 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8124 TmpInst.addOperand(Inst.getOperand(4)); 8125 Inst = TmpInst; 8126 return true; 8127 } 8128 8129 case ARM::VST3dWB_register_Asm_8: 8130 case ARM::VST3dWB_register_Asm_16: 8131 case ARM::VST3dWB_register_Asm_32: 8132 case ARM::VST3qWB_register_Asm_8: 8133 case ARM::VST3qWB_register_Asm_16: 8134 case ARM::VST3qWB_register_Asm_32: { 8135 MCInst TmpInst; 8136 unsigned Spacing; 8137 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8138 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8139 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8140 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8141 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8142 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8143 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8144 Spacing)); 8145 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8146 Spacing * 2)); 8147 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8148 TmpInst.addOperand(Inst.getOperand(5)); 8149 Inst = TmpInst; 8150 return true; 8151 } 8152 8153 // VST4 multiple 3-element structure instructions. 8154 case ARM::VST4dAsm_8: 8155 case ARM::VST4dAsm_16: 8156 case ARM::VST4dAsm_32: 8157 case ARM::VST4qAsm_8: 8158 case ARM::VST4qAsm_16: 8159 case ARM::VST4qAsm_32: { 8160 MCInst TmpInst; 8161 unsigned Spacing; 8162 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8163 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8164 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8165 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8166 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8167 Spacing)); 8168 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8169 Spacing * 2)); 8170 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8171 Spacing * 3)); 8172 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8173 TmpInst.addOperand(Inst.getOperand(4)); 8174 Inst = TmpInst; 8175 return true; 8176 } 8177 8178 case ARM::VST4dWB_fixed_Asm_8: 8179 case ARM::VST4dWB_fixed_Asm_16: 8180 case ARM::VST4dWB_fixed_Asm_32: 8181 case ARM::VST4qWB_fixed_Asm_8: 8182 case ARM::VST4qWB_fixed_Asm_16: 8183 case ARM::VST4qWB_fixed_Asm_32: { 8184 MCInst TmpInst; 8185 unsigned Spacing; 8186 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8187 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8188 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8189 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8190 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8191 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8192 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8193 Spacing)); 8194 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8195 Spacing * 2)); 8196 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8197 Spacing * 3)); 8198 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8199 TmpInst.addOperand(Inst.getOperand(4)); 8200 Inst = TmpInst; 8201 return true; 8202 } 8203 8204 case ARM::VST4dWB_register_Asm_8: 8205 case ARM::VST4dWB_register_Asm_16: 8206 case ARM::VST4dWB_register_Asm_32: 8207 case ARM::VST4qWB_register_Asm_8: 8208 case ARM::VST4qWB_register_Asm_16: 8209 case ARM::VST4qWB_register_Asm_32: { 8210 MCInst TmpInst; 8211 unsigned Spacing; 8212 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8213 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8214 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8215 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8216 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8217 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8218 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8219 Spacing)); 8220 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8221 Spacing * 2)); 8222 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8223 Spacing * 3)); 8224 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8225 TmpInst.addOperand(Inst.getOperand(5)); 8226 Inst = TmpInst; 8227 return true; 8228 } 8229 8230 // Handle encoding choice for the shift-immediate instructions. 8231 case ARM::t2LSLri: 8232 case ARM::t2LSRri: 8233 case ARM::t2ASRri: { 8234 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8235 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8236 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8237 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8238 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8239 unsigned NewOpc; 8240 switch (Inst.getOpcode()) { 8241 default: llvm_unreachable("unexpected opcode"); 8242 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8243 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8244 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8245 } 8246 // The Thumb1 operands aren't in the same order. Awesome, eh? 8247 MCInst TmpInst; 8248 TmpInst.setOpcode(NewOpc); 8249 TmpInst.addOperand(Inst.getOperand(0)); 8250 TmpInst.addOperand(Inst.getOperand(5)); 8251 TmpInst.addOperand(Inst.getOperand(1)); 8252 TmpInst.addOperand(Inst.getOperand(2)); 8253 TmpInst.addOperand(Inst.getOperand(3)); 8254 TmpInst.addOperand(Inst.getOperand(4)); 8255 Inst = TmpInst; 8256 return true; 8257 } 8258 return false; 8259 } 8260 8261 // Handle the Thumb2 mode MOV complex aliases. 8262 case ARM::t2MOVsr: 8263 case ARM::t2MOVSsr: { 8264 // Which instruction to expand to depends on the CCOut operand and 8265 // whether we're in an IT block if the register operands are low 8266 // registers. 8267 bool isNarrow = false; 8268 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8269 isARMLowRegister(Inst.getOperand(1).getReg()) && 8270 isARMLowRegister(Inst.getOperand(2).getReg()) && 8271 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8272 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8273 isNarrow = true; 8274 MCInst TmpInst; 8275 unsigned newOpc; 8276 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8277 default: llvm_unreachable("unexpected opcode!"); 8278 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8279 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8280 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8281 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8282 } 8283 TmpInst.setOpcode(newOpc); 8284 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8285 if (isNarrow) 8286 TmpInst.addOperand(MCOperand::createReg( 8287 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8288 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8289 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8290 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8291 TmpInst.addOperand(Inst.getOperand(5)); 8292 if (!isNarrow) 8293 TmpInst.addOperand(MCOperand::createReg( 8294 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8295 Inst = TmpInst; 8296 return true; 8297 } 8298 case ARM::t2MOVsi: 8299 case ARM::t2MOVSsi: { 8300 // Which instruction to expand to depends on the CCOut operand and 8301 // whether we're in an IT block if the register operands are low 8302 // registers. 8303 bool isNarrow = false; 8304 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8305 isARMLowRegister(Inst.getOperand(1).getReg()) && 8306 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8307 isNarrow = true; 8308 MCInst TmpInst; 8309 unsigned newOpc; 8310 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 8311 default: llvm_unreachable("unexpected opcode!"); 8312 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8313 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8314 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8315 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8316 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8317 } 8318 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8319 if (Amount == 32) Amount = 0; 8320 TmpInst.setOpcode(newOpc); 8321 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8322 if (isNarrow) 8323 TmpInst.addOperand(MCOperand::createReg( 8324 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8325 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8326 if (newOpc != ARM::t2RRX) 8327 TmpInst.addOperand(MCOperand::createImm(Amount)); 8328 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8329 TmpInst.addOperand(Inst.getOperand(4)); 8330 if (!isNarrow) 8331 TmpInst.addOperand(MCOperand::createReg( 8332 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8333 Inst = TmpInst; 8334 return true; 8335 } 8336 // Handle the ARM mode MOV complex aliases. 8337 case ARM::ASRr: 8338 case ARM::LSRr: 8339 case ARM::LSLr: 8340 case ARM::RORr: { 8341 ARM_AM::ShiftOpc ShiftTy; 8342 switch(Inst.getOpcode()) { 8343 default: llvm_unreachable("unexpected opcode!"); 8344 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8345 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8346 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8347 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8348 } 8349 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8350 MCInst TmpInst; 8351 TmpInst.setOpcode(ARM::MOVsr); 8352 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8353 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8354 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8355 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8356 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8357 TmpInst.addOperand(Inst.getOperand(4)); 8358 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8359 Inst = TmpInst; 8360 return true; 8361 } 8362 case ARM::ASRi: 8363 case ARM::LSRi: 8364 case ARM::LSLi: 8365 case ARM::RORi: { 8366 ARM_AM::ShiftOpc ShiftTy; 8367 switch(Inst.getOpcode()) { 8368 default: llvm_unreachable("unexpected opcode!"); 8369 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8370 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8371 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8372 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8373 } 8374 // A shift by zero is a plain MOVr, not a MOVsi. 8375 unsigned Amt = Inst.getOperand(2).getImm(); 8376 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8377 // A shift by 32 should be encoded as 0 when permitted 8378 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8379 Amt = 0; 8380 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8381 MCInst TmpInst; 8382 TmpInst.setOpcode(Opc); 8383 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8384 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8385 if (Opc == ARM::MOVsi) 8386 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8387 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8388 TmpInst.addOperand(Inst.getOperand(4)); 8389 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8390 Inst = TmpInst; 8391 return true; 8392 } 8393 case ARM::RRXi: { 8394 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8395 MCInst TmpInst; 8396 TmpInst.setOpcode(ARM::MOVsi); 8397 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8398 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8399 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8400 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8401 TmpInst.addOperand(Inst.getOperand(3)); 8402 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8403 Inst = TmpInst; 8404 return true; 8405 } 8406 case ARM::t2LDMIA_UPD: { 8407 // If this is a load of a single register, then we should use 8408 // a post-indexed LDR instruction instead, per the ARM ARM. 8409 if (Inst.getNumOperands() != 5) 8410 return false; 8411 MCInst TmpInst; 8412 TmpInst.setOpcode(ARM::t2LDR_POST); 8413 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8414 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8415 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8416 TmpInst.addOperand(MCOperand::createImm(4)); 8417 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8418 TmpInst.addOperand(Inst.getOperand(3)); 8419 Inst = TmpInst; 8420 return true; 8421 } 8422 case ARM::t2STMDB_UPD: { 8423 // If this is a store of a single register, then we should use 8424 // a pre-indexed STR instruction instead, per the ARM ARM. 8425 if (Inst.getNumOperands() != 5) 8426 return false; 8427 MCInst TmpInst; 8428 TmpInst.setOpcode(ARM::t2STR_PRE); 8429 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8430 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8431 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8432 TmpInst.addOperand(MCOperand::createImm(-4)); 8433 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8434 TmpInst.addOperand(Inst.getOperand(3)); 8435 Inst = TmpInst; 8436 return true; 8437 } 8438 case ARM::LDMIA_UPD: 8439 // If this is a load of a single register via a 'pop', then we should use 8440 // a post-indexed LDR instruction instead, per the ARM ARM. 8441 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8442 Inst.getNumOperands() == 5) { 8443 MCInst TmpInst; 8444 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8445 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8446 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8447 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8448 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8449 TmpInst.addOperand(MCOperand::createImm(4)); 8450 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8451 TmpInst.addOperand(Inst.getOperand(3)); 8452 Inst = TmpInst; 8453 return true; 8454 } 8455 break; 8456 case ARM::STMDB_UPD: 8457 // If this is a store of a single register via a 'push', then we should use 8458 // a pre-indexed STR instruction instead, per the ARM ARM. 8459 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8460 Inst.getNumOperands() == 5) { 8461 MCInst TmpInst; 8462 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8463 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8464 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8465 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8466 TmpInst.addOperand(MCOperand::createImm(-4)); 8467 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8468 TmpInst.addOperand(Inst.getOperand(3)); 8469 Inst = TmpInst; 8470 } 8471 break; 8472 case ARM::t2ADDri12: 8473 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8474 // mnemonic was used (not "addw"), encoding T3 is preferred. 8475 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8476 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8477 break; 8478 Inst.setOpcode(ARM::t2ADDri); 8479 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8480 break; 8481 case ARM::t2SUBri12: 8482 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8483 // mnemonic was used (not "subw"), encoding T3 is preferred. 8484 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8485 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8486 break; 8487 Inst.setOpcode(ARM::t2SUBri); 8488 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8489 break; 8490 case ARM::tADDi8: 8491 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8492 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8493 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8494 // to encoding T1 if <Rd> is omitted." 8495 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8496 Inst.setOpcode(ARM::tADDi3); 8497 return true; 8498 } 8499 break; 8500 case ARM::tSUBi8: 8501 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8502 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8503 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8504 // to encoding T1 if <Rd> is omitted." 8505 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8506 Inst.setOpcode(ARM::tSUBi3); 8507 return true; 8508 } 8509 break; 8510 case ARM::t2ADDri: 8511 case ARM::t2SUBri: { 8512 // If the destination and first source operand are the same, and 8513 // the flags are compatible with the current IT status, use encoding T2 8514 // instead of T3. For compatibility with the system 'as'. Make sure the 8515 // wide encoding wasn't explicit. 8516 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8517 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8518 (unsigned)Inst.getOperand(2).getImm() > 255 || 8519 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8520 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8521 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8522 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8523 break; 8524 MCInst TmpInst; 8525 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8526 ARM::tADDi8 : ARM::tSUBi8); 8527 TmpInst.addOperand(Inst.getOperand(0)); 8528 TmpInst.addOperand(Inst.getOperand(5)); 8529 TmpInst.addOperand(Inst.getOperand(0)); 8530 TmpInst.addOperand(Inst.getOperand(2)); 8531 TmpInst.addOperand(Inst.getOperand(3)); 8532 TmpInst.addOperand(Inst.getOperand(4)); 8533 Inst = TmpInst; 8534 return true; 8535 } 8536 case ARM::t2ADDrr: { 8537 // If the destination and first source operand are the same, and 8538 // there's no setting of the flags, use encoding T2 instead of T3. 8539 // Note that this is only for ADD, not SUB. This mirrors the system 8540 // 'as' behaviour. Also take advantage of ADD being commutative. 8541 // Make sure the wide encoding wasn't explicit. 8542 bool Swap = false; 8543 auto DestReg = Inst.getOperand(0).getReg(); 8544 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8545 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8546 Transform = true; 8547 Swap = true; 8548 } 8549 if (!Transform || 8550 Inst.getOperand(5).getReg() != 0 || 8551 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8552 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8553 break; 8554 MCInst TmpInst; 8555 TmpInst.setOpcode(ARM::tADDhirr); 8556 TmpInst.addOperand(Inst.getOperand(0)); 8557 TmpInst.addOperand(Inst.getOperand(0)); 8558 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8559 TmpInst.addOperand(Inst.getOperand(3)); 8560 TmpInst.addOperand(Inst.getOperand(4)); 8561 Inst = TmpInst; 8562 return true; 8563 } 8564 case ARM::tADDrSP: { 8565 // If the non-SP source operand and the destination operand are not the 8566 // same, we need to use the 32-bit encoding if it's available. 8567 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8568 Inst.setOpcode(ARM::t2ADDrr); 8569 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8570 return true; 8571 } 8572 break; 8573 } 8574 case ARM::tB: 8575 // A Thumb conditional branch outside of an IT block is a tBcc. 8576 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8577 Inst.setOpcode(ARM::tBcc); 8578 return true; 8579 } 8580 break; 8581 case ARM::t2B: 8582 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8583 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8584 Inst.setOpcode(ARM::t2Bcc); 8585 return true; 8586 } 8587 break; 8588 case ARM::t2Bcc: 8589 // If the conditional is AL or we're in an IT block, we really want t2B. 8590 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8591 Inst.setOpcode(ARM::t2B); 8592 return true; 8593 } 8594 break; 8595 case ARM::tBcc: 8596 // If the conditional is AL, we really want tB. 8597 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8598 Inst.setOpcode(ARM::tB); 8599 return true; 8600 } 8601 break; 8602 case ARM::tLDMIA: { 8603 // If the register list contains any high registers, or if the writeback 8604 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8605 // instead if we're in Thumb2. Otherwise, this should have generated 8606 // an error in validateInstruction(). 8607 unsigned Rn = Inst.getOperand(0).getReg(); 8608 bool hasWritebackToken = 8609 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8610 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8611 bool listContainsBase; 8612 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8613 (!listContainsBase && !hasWritebackToken) || 8614 (listContainsBase && hasWritebackToken)) { 8615 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8616 assert (isThumbTwo()); 8617 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8618 // If we're switching to the updating version, we need to insert 8619 // the writeback tied operand. 8620 if (hasWritebackToken) 8621 Inst.insert(Inst.begin(), 8622 MCOperand::createReg(Inst.getOperand(0).getReg())); 8623 return true; 8624 } 8625 break; 8626 } 8627 case ARM::tSTMIA_UPD: { 8628 // If the register list contains any high registers, we need to use 8629 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8630 // should have generated an error in validateInstruction(). 8631 unsigned Rn = Inst.getOperand(0).getReg(); 8632 bool listContainsBase; 8633 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8634 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8635 assert (isThumbTwo()); 8636 Inst.setOpcode(ARM::t2STMIA_UPD); 8637 return true; 8638 } 8639 break; 8640 } 8641 case ARM::tPOP: { 8642 bool listContainsBase; 8643 // If the register list contains any high registers, we need to use 8644 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8645 // should have generated an error in validateInstruction(). 8646 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8647 return false; 8648 assert (isThumbTwo()); 8649 Inst.setOpcode(ARM::t2LDMIA_UPD); 8650 // Add the base register and writeback operands. 8651 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8652 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8653 return true; 8654 } 8655 case ARM::tPUSH: { 8656 bool listContainsBase; 8657 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8658 return false; 8659 assert (isThumbTwo()); 8660 Inst.setOpcode(ARM::t2STMDB_UPD); 8661 // Add the base register and writeback operands. 8662 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8663 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8664 return true; 8665 } 8666 case ARM::t2MOVi: { 8667 // If we can use the 16-bit encoding and the user didn't explicitly 8668 // request the 32-bit variant, transform it here. 8669 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8670 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8671 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8672 Inst.getOperand(4).getReg() == ARM::CPSR) || 8673 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8674 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8675 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8676 // The operands aren't in the same order for tMOVi8... 8677 MCInst TmpInst; 8678 TmpInst.setOpcode(ARM::tMOVi8); 8679 TmpInst.addOperand(Inst.getOperand(0)); 8680 TmpInst.addOperand(Inst.getOperand(4)); 8681 TmpInst.addOperand(Inst.getOperand(1)); 8682 TmpInst.addOperand(Inst.getOperand(2)); 8683 TmpInst.addOperand(Inst.getOperand(3)); 8684 Inst = TmpInst; 8685 return true; 8686 } 8687 break; 8688 } 8689 case ARM::t2MOVr: { 8690 // If we can use the 16-bit encoding and the user didn't explicitly 8691 // request the 32-bit variant, transform it here. 8692 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8693 isARMLowRegister(Inst.getOperand(1).getReg()) && 8694 Inst.getOperand(2).getImm() == ARMCC::AL && 8695 Inst.getOperand(4).getReg() == ARM::CPSR && 8696 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8697 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8698 // The operands aren't the same for tMOV[S]r... (no cc_out) 8699 MCInst TmpInst; 8700 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8701 TmpInst.addOperand(Inst.getOperand(0)); 8702 TmpInst.addOperand(Inst.getOperand(1)); 8703 TmpInst.addOperand(Inst.getOperand(2)); 8704 TmpInst.addOperand(Inst.getOperand(3)); 8705 Inst = TmpInst; 8706 return true; 8707 } 8708 break; 8709 } 8710 case ARM::t2SXTH: 8711 case ARM::t2SXTB: 8712 case ARM::t2UXTH: 8713 case ARM::t2UXTB: { 8714 // If we can use the 16-bit encoding and the user didn't explicitly 8715 // request the 32-bit variant, transform it here. 8716 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8717 isARMLowRegister(Inst.getOperand(1).getReg()) && 8718 Inst.getOperand(2).getImm() == 0 && 8719 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8720 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8721 unsigned NewOpc; 8722 switch (Inst.getOpcode()) { 8723 default: llvm_unreachable("Illegal opcode!"); 8724 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8725 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8726 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8727 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8728 } 8729 // The operands aren't the same for thumb1 (no rotate operand). 8730 MCInst TmpInst; 8731 TmpInst.setOpcode(NewOpc); 8732 TmpInst.addOperand(Inst.getOperand(0)); 8733 TmpInst.addOperand(Inst.getOperand(1)); 8734 TmpInst.addOperand(Inst.getOperand(3)); 8735 TmpInst.addOperand(Inst.getOperand(4)); 8736 Inst = TmpInst; 8737 return true; 8738 } 8739 break; 8740 } 8741 case ARM::MOVsi: { 8742 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8743 // rrx shifts and asr/lsr of #32 is encoded as 0 8744 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8745 return false; 8746 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8747 // Shifting by zero is accepted as a vanilla 'MOVr' 8748 MCInst TmpInst; 8749 TmpInst.setOpcode(ARM::MOVr); 8750 TmpInst.addOperand(Inst.getOperand(0)); 8751 TmpInst.addOperand(Inst.getOperand(1)); 8752 TmpInst.addOperand(Inst.getOperand(3)); 8753 TmpInst.addOperand(Inst.getOperand(4)); 8754 TmpInst.addOperand(Inst.getOperand(5)); 8755 Inst = TmpInst; 8756 return true; 8757 } 8758 return false; 8759 } 8760 case ARM::ANDrsi: 8761 case ARM::ORRrsi: 8762 case ARM::EORrsi: 8763 case ARM::BICrsi: 8764 case ARM::SUBrsi: 8765 case ARM::ADDrsi: { 8766 unsigned newOpc; 8767 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8768 if (SOpc == ARM_AM::rrx) return false; 8769 switch (Inst.getOpcode()) { 8770 default: llvm_unreachable("unexpected opcode!"); 8771 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8772 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8773 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8774 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8775 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8776 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8777 } 8778 // If the shift is by zero, use the non-shifted instruction definition. 8779 // The exception is for right shifts, where 0 == 32 8780 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8781 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8782 MCInst TmpInst; 8783 TmpInst.setOpcode(newOpc); 8784 TmpInst.addOperand(Inst.getOperand(0)); 8785 TmpInst.addOperand(Inst.getOperand(1)); 8786 TmpInst.addOperand(Inst.getOperand(2)); 8787 TmpInst.addOperand(Inst.getOperand(4)); 8788 TmpInst.addOperand(Inst.getOperand(5)); 8789 TmpInst.addOperand(Inst.getOperand(6)); 8790 Inst = TmpInst; 8791 return true; 8792 } 8793 return false; 8794 } 8795 case ARM::ITasm: 8796 case ARM::t2IT: { 8797 MCOperand &MO = Inst.getOperand(1); 8798 unsigned Mask = MO.getImm(); 8799 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8800 8801 // Set up the IT block state according to the IT instruction we just 8802 // matched. 8803 assert(!inITBlock() && "nested IT blocks?!"); 8804 startExplicitITBlock(Cond, Mask); 8805 MO.setImm(getITMaskEncoding()); 8806 break; 8807 } 8808 case ARM::t2LSLrr: 8809 case ARM::t2LSRrr: 8810 case ARM::t2ASRrr: 8811 case ARM::t2SBCrr: 8812 case ARM::t2RORrr: 8813 case ARM::t2BICrr: 8814 { 8815 // Assemblers should use the narrow encodings of these instructions when permissible. 8816 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8817 isARMLowRegister(Inst.getOperand(2).getReg())) && 8818 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8819 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8820 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8821 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8822 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8823 ".w"))) { 8824 unsigned NewOpc; 8825 switch (Inst.getOpcode()) { 8826 default: llvm_unreachable("unexpected opcode"); 8827 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8828 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8829 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8830 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8831 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8832 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8833 } 8834 MCInst TmpInst; 8835 TmpInst.setOpcode(NewOpc); 8836 TmpInst.addOperand(Inst.getOperand(0)); 8837 TmpInst.addOperand(Inst.getOperand(5)); 8838 TmpInst.addOperand(Inst.getOperand(1)); 8839 TmpInst.addOperand(Inst.getOperand(2)); 8840 TmpInst.addOperand(Inst.getOperand(3)); 8841 TmpInst.addOperand(Inst.getOperand(4)); 8842 Inst = TmpInst; 8843 return true; 8844 } 8845 return false; 8846 } 8847 case ARM::t2ANDrr: 8848 case ARM::t2EORrr: 8849 case ARM::t2ADCrr: 8850 case ARM::t2ORRrr: 8851 { 8852 // Assemblers should use the narrow encodings of these instructions when permissible. 8853 // These instructions are special in that they are commutable, so shorter encodings 8854 // are available more often. 8855 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8856 isARMLowRegister(Inst.getOperand(2).getReg())) && 8857 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8858 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8859 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8860 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8861 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8862 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8863 ".w"))) { 8864 unsigned NewOpc; 8865 switch (Inst.getOpcode()) { 8866 default: llvm_unreachable("unexpected opcode"); 8867 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8868 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8869 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8870 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8871 } 8872 MCInst TmpInst; 8873 TmpInst.setOpcode(NewOpc); 8874 TmpInst.addOperand(Inst.getOperand(0)); 8875 TmpInst.addOperand(Inst.getOperand(5)); 8876 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8877 TmpInst.addOperand(Inst.getOperand(1)); 8878 TmpInst.addOperand(Inst.getOperand(2)); 8879 } else { 8880 TmpInst.addOperand(Inst.getOperand(2)); 8881 TmpInst.addOperand(Inst.getOperand(1)); 8882 } 8883 TmpInst.addOperand(Inst.getOperand(3)); 8884 TmpInst.addOperand(Inst.getOperand(4)); 8885 Inst = TmpInst; 8886 return true; 8887 } 8888 return false; 8889 } 8890 } 8891 return false; 8892 } 8893 8894 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8895 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8896 // suffix depending on whether they're in an IT block or not. 8897 unsigned Opc = Inst.getOpcode(); 8898 const MCInstrDesc &MCID = MII.get(Opc); 8899 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8900 assert(MCID.hasOptionalDef() && 8901 "optionally flag setting instruction missing optional def operand"); 8902 assert(MCID.NumOperands == Inst.getNumOperands() && 8903 "operand count mismatch!"); 8904 // Find the optional-def operand (cc_out). 8905 unsigned OpNo; 8906 for (OpNo = 0; 8907 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8908 ++OpNo) 8909 ; 8910 // If we're parsing Thumb1, reject it completely. 8911 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8912 return Match_RequiresFlagSetting; 8913 // If we're parsing Thumb2, which form is legal depends on whether we're 8914 // in an IT block. 8915 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8916 !inITBlock()) 8917 return Match_RequiresITBlock; 8918 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8919 inITBlock()) 8920 return Match_RequiresNotITBlock; 8921 } else if (isThumbOne()) { 8922 // Some high-register supporting Thumb1 encodings only allow both registers 8923 // to be from r0-r7 when in Thumb2. 8924 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8925 isARMLowRegister(Inst.getOperand(1).getReg()) && 8926 isARMLowRegister(Inst.getOperand(2).getReg())) 8927 return Match_RequiresThumb2; 8928 // Others only require ARMv6 or later. 8929 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8930 isARMLowRegister(Inst.getOperand(0).getReg()) && 8931 isARMLowRegister(Inst.getOperand(1).getReg())) 8932 return Match_RequiresV6; 8933 } 8934 8935 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8936 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8937 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8938 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8939 return Match_RequiresV8; 8940 else if (Inst.getOperand(I).getReg() == ARM::PC) 8941 return Match_InvalidOperand; 8942 } 8943 8944 return Match_Success; 8945 } 8946 8947 namespace llvm { 8948 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8949 return true; // In an assembly source, no need to second-guess 8950 } 8951 } 8952 8953 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8954 // the last instruction in the block. 8955 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8956 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8957 8958 // All branch & call instructions terminate IT blocks. 8959 if (MCID.isTerminator() || MCID.isCall() || MCID.isReturn() || 8960 MCID.isBranch() || MCID.isIndirectBranch()) 8961 return true; 8962 8963 // Any arithmetic instruction which writes to the PC also terminates the IT 8964 // block. 8965 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 8966 MCOperand &Op = Inst.getOperand(OpIdx); 8967 if (Op.isReg() && Op.getReg() == ARM::PC) 8968 return true; 8969 } 8970 8971 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 8972 return true; 8973 8974 // Instructions with variable operand lists, which write to the variable 8975 // operands. We only care about Thumb instructions here, as ARM instructions 8976 // obviously can't be in an IT block. 8977 switch (Inst.getOpcode()) { 8978 case ARM::t2LDMIA: 8979 case ARM::t2LDMIA_UPD: 8980 case ARM::t2LDMDB: 8981 case ARM::t2LDMDB_UPD: 8982 if (listContainsReg(Inst, 3, ARM::PC)) 8983 return true; 8984 break; 8985 case ARM::tPOP: 8986 if (listContainsReg(Inst, 2, ARM::PC)) 8987 return true; 8988 break; 8989 } 8990 8991 return false; 8992 } 8993 8994 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 8995 uint64_t &ErrorInfo, 8996 bool MatchingInlineAsm, 8997 bool &EmitInITBlock, 8998 MCStreamer &Out) { 8999 // If we can't use an implicit IT block here, just match as normal. 9000 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9001 return MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9002 9003 // Try to match the instruction in an extension of the current IT block (if 9004 // there is one). 9005 if (inImplicitITBlock()) { 9006 extendImplicitITBlock(ITState.Cond); 9007 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9008 Match_Success) { 9009 // The match succeded, but we still have to check that the instruction is 9010 // valid in this implicit IT block. 9011 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9012 if (MCID.isPredicable()) { 9013 ARMCC::CondCodes InstCond = 9014 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9015 .getImm(); 9016 ARMCC::CondCodes ITCond = currentITCond(); 9017 if (InstCond == ITCond) { 9018 EmitInITBlock = true; 9019 return Match_Success; 9020 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9021 invertCurrentITCondition(); 9022 EmitInITBlock = true; 9023 return Match_Success; 9024 } 9025 } 9026 } 9027 rewindImplicitITPosition(); 9028 } 9029 9030 // Finish the current IT block, and try to match outside any IT block. 9031 flushPendingInstructions(Out); 9032 unsigned PlainMatchResult = 9033 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9034 if (PlainMatchResult == Match_Success) { 9035 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9036 if (MCID.isPredicable()) { 9037 ARMCC::CondCodes InstCond = 9038 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9039 .getImm(); 9040 // Some forms of the branch instruction have their own condition code 9041 // fields, so can be conditionally executed without an IT block. 9042 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9043 EmitInITBlock = false; 9044 return Match_Success; 9045 } 9046 if (InstCond == ARMCC::AL) { 9047 EmitInITBlock = false; 9048 return Match_Success; 9049 } 9050 } else { 9051 EmitInITBlock = false; 9052 return Match_Success; 9053 } 9054 } 9055 9056 // Try to match in a new IT block. The matcher doesn't check the actual 9057 // condition, so we create an IT block with a dummy condition, and fix it up 9058 // once we know the actual condition. 9059 startImplicitITBlock(); 9060 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9061 Match_Success) { 9062 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9063 if (MCID.isPredicable()) { 9064 ITState.Cond = 9065 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9066 .getImm(); 9067 EmitInITBlock = true; 9068 return Match_Success; 9069 } 9070 } 9071 discardImplicitITBlock(); 9072 9073 // If none of these succeed, return the error we got when trying to match 9074 // outside any IT blocks. 9075 EmitInITBlock = false; 9076 return PlainMatchResult; 9077 } 9078 9079 static const char *getSubtargetFeatureName(uint64_t Val); 9080 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9081 OperandVector &Operands, 9082 MCStreamer &Out, uint64_t &ErrorInfo, 9083 bool MatchingInlineAsm) { 9084 MCInst Inst; 9085 unsigned MatchResult; 9086 bool PendConditionalInstruction = false; 9087 9088 MatchResult = MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm, 9089 PendConditionalInstruction, Out); 9090 9091 switch (MatchResult) { 9092 case Match_Success: 9093 // Context sensitive operand constraints aren't handled by the matcher, 9094 // so check them here. 9095 if (validateInstruction(Inst, Operands)) { 9096 // Still progress the IT block, otherwise one wrong condition causes 9097 // nasty cascading errors. 9098 forwardITPosition(); 9099 return true; 9100 } 9101 9102 { // processInstruction() updates inITBlock state, we need to save it away 9103 bool wasInITBlock = inITBlock(); 9104 9105 // Some instructions need post-processing to, for example, tweak which 9106 // encoding is selected. Loop on it while changes happen so the 9107 // individual transformations can chain off each other. E.g., 9108 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9109 while (processInstruction(Inst, Operands, Out)) 9110 ; 9111 9112 // Only after the instruction is fully processed, we can validate it 9113 if (wasInITBlock && hasV8Ops() && isThumb() && 9114 !isV8EligibleForIT(&Inst)) { 9115 Warning(IDLoc, "deprecated instruction in IT block"); 9116 } 9117 } 9118 9119 // Only move forward at the very end so that everything in validate 9120 // and process gets a consistent answer about whether we're in an IT 9121 // block. 9122 forwardITPosition(); 9123 9124 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9125 // doesn't actually encode. 9126 if (Inst.getOpcode() == ARM::ITasm) 9127 return false; 9128 9129 Inst.setLoc(IDLoc); 9130 if (PendConditionalInstruction) { 9131 PendingConditionalInsts.push_back(Inst); 9132 if (isITBlockFull() || isITBlockTerminator(Inst)) 9133 flushPendingInstructions(Out); 9134 } else { 9135 Out.EmitInstruction(Inst, getSTI()); 9136 } 9137 return false; 9138 case Match_MissingFeature: { 9139 assert(ErrorInfo && "Unknown missing feature!"); 9140 // Special case the error message for the very common case where only 9141 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 9142 std::string Msg = "instruction requires:"; 9143 uint64_t Mask = 1; 9144 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 9145 if (ErrorInfo & Mask) { 9146 Msg += " "; 9147 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 9148 } 9149 Mask <<= 1; 9150 } 9151 return Error(IDLoc, Msg); 9152 } 9153 case Match_InvalidOperand: { 9154 SMLoc ErrorLoc = IDLoc; 9155 if (ErrorInfo != ~0ULL) { 9156 if (ErrorInfo >= Operands.size()) 9157 return Error(IDLoc, "too few operands for instruction"); 9158 9159 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9160 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9161 } 9162 9163 return Error(ErrorLoc, "invalid operand for instruction"); 9164 } 9165 case Match_MnemonicFail: 9166 return Error(IDLoc, "invalid instruction", 9167 ((ARMOperand &)*Operands[0]).getLocRange()); 9168 case Match_RequiresNotITBlock: 9169 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 9170 case Match_RequiresITBlock: 9171 return Error(IDLoc, "instruction only valid inside IT block"); 9172 case Match_RequiresV6: 9173 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 9174 case Match_RequiresThumb2: 9175 return Error(IDLoc, "instruction variant requires Thumb2"); 9176 case Match_RequiresV8: 9177 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 9178 case Match_RequiresFlagSetting: 9179 return Error(IDLoc, "no flag-preserving variant of this instruction available"); 9180 case Match_ImmRange0_15: { 9181 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9182 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9183 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 9184 } 9185 case Match_ImmRange0_239: { 9186 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9187 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9188 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 9189 } 9190 case Match_AlignedMemoryRequiresNone: 9191 case Match_DupAlignedMemoryRequiresNone: 9192 case Match_AlignedMemoryRequires16: 9193 case Match_DupAlignedMemoryRequires16: 9194 case Match_AlignedMemoryRequires32: 9195 case Match_DupAlignedMemoryRequires32: 9196 case Match_AlignedMemoryRequires64: 9197 case Match_DupAlignedMemoryRequires64: 9198 case Match_AlignedMemoryRequires64or128: 9199 case Match_DupAlignedMemoryRequires64or128: 9200 case Match_AlignedMemoryRequires64or128or256: 9201 { 9202 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 9203 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9204 switch (MatchResult) { 9205 default: 9206 llvm_unreachable("Missing Match_Aligned type"); 9207 case Match_AlignedMemoryRequiresNone: 9208 case Match_DupAlignedMemoryRequiresNone: 9209 return Error(ErrorLoc, "alignment must be omitted"); 9210 case Match_AlignedMemoryRequires16: 9211 case Match_DupAlignedMemoryRequires16: 9212 return Error(ErrorLoc, "alignment must be 16 or omitted"); 9213 case Match_AlignedMemoryRequires32: 9214 case Match_DupAlignedMemoryRequires32: 9215 return Error(ErrorLoc, "alignment must be 32 or omitted"); 9216 case Match_AlignedMemoryRequires64: 9217 case Match_DupAlignedMemoryRequires64: 9218 return Error(ErrorLoc, "alignment must be 64 or omitted"); 9219 case Match_AlignedMemoryRequires64or128: 9220 case Match_DupAlignedMemoryRequires64or128: 9221 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 9222 case Match_AlignedMemoryRequires64or128or256: 9223 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 9224 } 9225 } 9226 } 9227 9228 llvm_unreachable("Implement any new match types added!"); 9229 } 9230 9231 /// parseDirective parses the arm specific directives 9232 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9233 const MCObjectFileInfo::Environment Format = 9234 getContext().getObjectFileInfo()->getObjectFileType(); 9235 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9236 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9237 9238 StringRef IDVal = DirectiveID.getIdentifier(); 9239 if (IDVal == ".word") 9240 parseLiteralValues(4, DirectiveID.getLoc()); 9241 else if (IDVal == ".short" || IDVal == ".hword") 9242 parseLiteralValues(2, DirectiveID.getLoc()); 9243 else if (IDVal == ".thumb") 9244 parseDirectiveThumb(DirectiveID.getLoc()); 9245 else if (IDVal == ".arm") 9246 parseDirectiveARM(DirectiveID.getLoc()); 9247 else if (IDVal == ".thumb_func") 9248 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9249 else if (IDVal == ".code") 9250 parseDirectiveCode(DirectiveID.getLoc()); 9251 else if (IDVal == ".syntax") 9252 parseDirectiveSyntax(DirectiveID.getLoc()); 9253 else if (IDVal == ".unreq") 9254 parseDirectiveUnreq(DirectiveID.getLoc()); 9255 else if (IDVal == ".fnend") 9256 parseDirectiveFnEnd(DirectiveID.getLoc()); 9257 else if (IDVal == ".cantunwind") 9258 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9259 else if (IDVal == ".personality") 9260 parseDirectivePersonality(DirectiveID.getLoc()); 9261 else if (IDVal == ".handlerdata") 9262 parseDirectiveHandlerData(DirectiveID.getLoc()); 9263 else if (IDVal == ".setfp") 9264 parseDirectiveSetFP(DirectiveID.getLoc()); 9265 else if (IDVal == ".pad") 9266 parseDirectivePad(DirectiveID.getLoc()); 9267 else if (IDVal == ".save") 9268 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9269 else if (IDVal == ".vsave") 9270 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9271 else if (IDVal == ".ltorg" || IDVal == ".pool") 9272 parseDirectiveLtorg(DirectiveID.getLoc()); 9273 else if (IDVal == ".even") 9274 parseDirectiveEven(DirectiveID.getLoc()); 9275 else if (IDVal == ".personalityindex") 9276 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9277 else if (IDVal == ".unwind_raw") 9278 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9279 else if (IDVal == ".movsp") 9280 parseDirectiveMovSP(DirectiveID.getLoc()); 9281 else if (IDVal == ".arch_extension") 9282 parseDirectiveArchExtension(DirectiveID.getLoc()); 9283 else if (IDVal == ".align") 9284 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9285 else if (IDVal == ".thumb_set") 9286 parseDirectiveThumbSet(DirectiveID.getLoc()); 9287 else if (!IsMachO && !IsCOFF) { 9288 if (IDVal == ".arch") 9289 parseDirectiveArch(DirectiveID.getLoc()); 9290 else if (IDVal == ".cpu") 9291 parseDirectiveCPU(DirectiveID.getLoc()); 9292 else if (IDVal == ".eabi_attribute") 9293 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9294 else if (IDVal == ".fpu") 9295 parseDirectiveFPU(DirectiveID.getLoc()); 9296 else if (IDVal == ".fnstart") 9297 parseDirectiveFnStart(DirectiveID.getLoc()); 9298 else if (IDVal == ".inst") 9299 parseDirectiveInst(DirectiveID.getLoc()); 9300 else if (IDVal == ".inst.n") 9301 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9302 else if (IDVal == ".inst.w") 9303 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9304 else if (IDVal == ".object_arch") 9305 parseDirectiveObjectArch(DirectiveID.getLoc()); 9306 else if (IDVal == ".tlsdescseq") 9307 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9308 else 9309 return true; 9310 } else 9311 return true; 9312 return false; 9313 } 9314 9315 /// parseLiteralValues 9316 /// ::= .hword expression [, expression]* 9317 /// ::= .short expression [, expression]* 9318 /// ::= .word expression [, expression]* 9319 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9320 auto parseOne = [&]() -> bool { 9321 const MCExpr *Value; 9322 if (getParser().parseExpression(Value)) 9323 return true; 9324 getParser().getStreamer().EmitValue(Value, Size, L); 9325 return false; 9326 }; 9327 return (parseMany(parseOne)); 9328 } 9329 9330 /// parseDirectiveThumb 9331 /// ::= .thumb 9332 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9333 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9334 check(!hasThumb(), L, "target does not support Thumb mode")) 9335 return true; 9336 9337 if (!isThumb()) 9338 SwitchMode(); 9339 9340 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9341 return false; 9342 } 9343 9344 /// parseDirectiveARM 9345 /// ::= .arm 9346 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9347 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9348 check(!hasARM(), L, "target does not support ARM mode")) 9349 return true; 9350 9351 if (isThumb()) 9352 SwitchMode(); 9353 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9354 return false; 9355 } 9356 9357 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9358 // We need to flush the current implicit IT block on a label, because it is 9359 // not legal to branch into an IT block. 9360 flushPendingInstructions(getStreamer()); 9361 if (NextSymbolIsThumb) { 9362 getParser().getStreamer().EmitThumbFunc(Symbol); 9363 NextSymbolIsThumb = false; 9364 } 9365 } 9366 9367 /// parseDirectiveThumbFunc 9368 /// ::= .thumbfunc symbol_name 9369 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9370 MCAsmParser &Parser = getParser(); 9371 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9372 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9373 9374 // Darwin asm has (optionally) function name after .thumb_func direction 9375 // ELF doesn't 9376 9377 if (IsMachO) { 9378 if (Parser.getTok().is(AsmToken::Identifier) || 9379 Parser.getTok().is(AsmToken::String)) { 9380 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9381 Parser.getTok().getIdentifier()); 9382 getParser().getStreamer().EmitThumbFunc(Func); 9383 Parser.Lex(); 9384 if (parseToken(AsmToken::EndOfStatement, 9385 "unexpected token in '.thumb_func' directive")) 9386 return true; 9387 return false; 9388 } 9389 } 9390 9391 if (parseToken(AsmToken::EndOfStatement, 9392 "unexpected token in '.thumb_func' directive")) 9393 return true; 9394 9395 NextSymbolIsThumb = true; 9396 return false; 9397 } 9398 9399 /// parseDirectiveSyntax 9400 /// ::= .syntax unified | divided 9401 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9402 MCAsmParser &Parser = getParser(); 9403 const AsmToken &Tok = Parser.getTok(); 9404 if (Tok.isNot(AsmToken::Identifier)) { 9405 Error(L, "unexpected token in .syntax directive"); 9406 return false; 9407 } 9408 9409 StringRef Mode = Tok.getString(); 9410 Parser.Lex(); 9411 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9412 "'.syntax divided' arm assembly not supported") || 9413 check(Mode != "unified" && Mode != "UNIFIED", L, 9414 "unrecognized syntax mode in .syntax directive") || 9415 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9416 return true; 9417 9418 // TODO tell the MC streamer the mode 9419 // getParser().getStreamer().Emit???(); 9420 return false; 9421 } 9422 9423 /// parseDirectiveCode 9424 /// ::= .code 16 | 32 9425 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9426 MCAsmParser &Parser = getParser(); 9427 const AsmToken &Tok = Parser.getTok(); 9428 if (Tok.isNot(AsmToken::Integer)) 9429 return Error(L, "unexpected token in .code directive"); 9430 int64_t Val = Parser.getTok().getIntVal(); 9431 if (Val != 16 && Val != 32) { 9432 Error(L, "invalid operand to .code directive"); 9433 return false; 9434 } 9435 Parser.Lex(); 9436 9437 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9438 return true; 9439 9440 if (Val == 16) { 9441 if (!hasThumb()) 9442 return Error(L, "target does not support Thumb mode"); 9443 9444 if (!isThumb()) 9445 SwitchMode(); 9446 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9447 } else { 9448 if (!hasARM()) 9449 return Error(L, "target does not support ARM mode"); 9450 9451 if (isThumb()) 9452 SwitchMode(); 9453 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9454 } 9455 9456 return false; 9457 } 9458 9459 /// parseDirectiveReq 9460 /// ::= name .req registername 9461 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9462 MCAsmParser &Parser = getParser(); 9463 Parser.Lex(); // Eat the '.req' token. 9464 unsigned Reg; 9465 SMLoc SRegLoc, ERegLoc; 9466 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9467 "register name expected") || 9468 parseToken(AsmToken::EndOfStatement, 9469 "unexpected input in .req directive.")) 9470 return true; 9471 9472 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9473 return Error(SRegLoc, 9474 "redefinition of '" + Name + "' does not match original."); 9475 9476 return false; 9477 } 9478 9479 /// parseDirectiveUneq 9480 /// ::= .unreq registername 9481 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9482 MCAsmParser &Parser = getParser(); 9483 if (Parser.getTok().isNot(AsmToken::Identifier)) 9484 return Error(L, "unexpected input in .unreq directive."); 9485 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9486 Parser.Lex(); // Eat the identifier. 9487 if (parseToken(AsmToken::EndOfStatement, 9488 "unexpected input in '.unreq' directive")) 9489 return true; 9490 return false; 9491 } 9492 9493 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9494 // before, if supported by the new target, or emit mapping symbols for the mode 9495 // switch. 9496 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9497 if (WasThumb != isThumb()) { 9498 if (WasThumb && hasThumb()) { 9499 // Stay in Thumb mode 9500 SwitchMode(); 9501 } else if (!WasThumb && hasARM()) { 9502 // Stay in ARM mode 9503 SwitchMode(); 9504 } else { 9505 // Mode switch forced, because the new arch doesn't support the old mode. 9506 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9507 : MCAF_Code32); 9508 // Warn about the implcit mode switch. GAS does not switch modes here, 9509 // but instead stays in the old mode, reporting an error on any following 9510 // instructions as the mode does not exist on the target. 9511 Warning(Loc, Twine("new target does not support ") + 9512 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9513 (!WasThumb ? "thumb" : "arm") + " mode"); 9514 } 9515 } 9516 } 9517 9518 /// parseDirectiveArch 9519 /// ::= .arch token 9520 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9521 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9522 unsigned ID = ARM::parseArch(Arch); 9523 9524 if (ID == ARM::AK_INVALID) 9525 return Error(L, "Unknown arch name"); 9526 9527 bool WasThumb = isThumb(); 9528 Triple T; 9529 MCSubtargetInfo &STI = copySTI(); 9530 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9531 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9532 FixModeAfterArchChange(WasThumb, L); 9533 9534 getTargetStreamer().emitArch(ID); 9535 return false; 9536 } 9537 9538 /// parseDirectiveEabiAttr 9539 /// ::= .eabi_attribute int, int [, "str"] 9540 /// ::= .eabi_attribute Tag_name, int [, "str"] 9541 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9542 MCAsmParser &Parser = getParser(); 9543 int64_t Tag; 9544 SMLoc TagLoc; 9545 TagLoc = Parser.getTok().getLoc(); 9546 if (Parser.getTok().is(AsmToken::Identifier)) { 9547 StringRef Name = Parser.getTok().getIdentifier(); 9548 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9549 if (Tag == -1) { 9550 Error(TagLoc, "attribute name not recognised: " + Name); 9551 return false; 9552 } 9553 Parser.Lex(); 9554 } else { 9555 const MCExpr *AttrExpr; 9556 9557 TagLoc = Parser.getTok().getLoc(); 9558 if (Parser.parseExpression(AttrExpr)) 9559 return true; 9560 9561 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9562 if (check(!CE, TagLoc, "expected numeric constant")) 9563 return true; 9564 9565 Tag = CE->getValue(); 9566 } 9567 9568 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9569 return true; 9570 9571 StringRef StringValue = ""; 9572 bool IsStringValue = false; 9573 9574 int64_t IntegerValue = 0; 9575 bool IsIntegerValue = false; 9576 9577 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9578 IsStringValue = true; 9579 else if (Tag == ARMBuildAttrs::compatibility) { 9580 IsStringValue = true; 9581 IsIntegerValue = true; 9582 } else if (Tag < 32 || Tag % 2 == 0) 9583 IsIntegerValue = true; 9584 else if (Tag % 2 == 1) 9585 IsStringValue = true; 9586 else 9587 llvm_unreachable("invalid tag type"); 9588 9589 if (IsIntegerValue) { 9590 const MCExpr *ValueExpr; 9591 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9592 if (Parser.parseExpression(ValueExpr)) 9593 return true; 9594 9595 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9596 if (!CE) 9597 return Error(ValueExprLoc, "expected numeric constant"); 9598 IntegerValue = CE->getValue(); 9599 } 9600 9601 if (Tag == ARMBuildAttrs::compatibility) { 9602 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9603 return true; 9604 } 9605 9606 if (IsStringValue) { 9607 if (Parser.getTok().isNot(AsmToken::String)) 9608 return Error(Parser.getTok().getLoc(), "bad string constant"); 9609 9610 StringValue = Parser.getTok().getStringContents(); 9611 Parser.Lex(); 9612 } 9613 9614 if (Parser.parseToken(AsmToken::EndOfStatement, 9615 "unexpected token in '.eabi_attribute' directive")) 9616 return true; 9617 9618 if (IsIntegerValue && IsStringValue) { 9619 assert(Tag == ARMBuildAttrs::compatibility); 9620 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9621 } else if (IsIntegerValue) 9622 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9623 else if (IsStringValue) 9624 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9625 return false; 9626 } 9627 9628 /// parseDirectiveCPU 9629 /// ::= .cpu str 9630 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9631 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9632 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9633 9634 // FIXME: This is using table-gen data, but should be moved to 9635 // ARMTargetParser once that is table-gen'd. 9636 if (!getSTI().isCPUStringValid(CPU)) 9637 return Error(L, "Unknown CPU name"); 9638 9639 bool WasThumb = isThumb(); 9640 MCSubtargetInfo &STI = copySTI(); 9641 STI.setDefaultFeatures(CPU, ""); 9642 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9643 FixModeAfterArchChange(WasThumb, L); 9644 9645 return false; 9646 } 9647 /// parseDirectiveFPU 9648 /// ::= .fpu str 9649 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9650 SMLoc FPUNameLoc = getTok().getLoc(); 9651 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9652 9653 unsigned ID = ARM::parseFPU(FPU); 9654 std::vector<StringRef> Features; 9655 if (!ARM::getFPUFeatures(ID, Features)) 9656 return Error(FPUNameLoc, "Unknown FPU name"); 9657 9658 MCSubtargetInfo &STI = copySTI(); 9659 for (auto Feature : Features) 9660 STI.ApplyFeatureFlag(Feature); 9661 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9662 9663 getTargetStreamer().emitFPU(ID); 9664 return false; 9665 } 9666 9667 /// parseDirectiveFnStart 9668 /// ::= .fnstart 9669 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9670 if (parseToken(AsmToken::EndOfStatement, 9671 "unexpected token in '.fnstart' directive")) 9672 return true; 9673 9674 if (UC.hasFnStart()) { 9675 Error(L, ".fnstart starts before the end of previous one"); 9676 UC.emitFnStartLocNotes(); 9677 return true; 9678 } 9679 9680 // Reset the unwind directives parser state 9681 UC.reset(); 9682 9683 getTargetStreamer().emitFnStart(); 9684 9685 UC.recordFnStart(L); 9686 return false; 9687 } 9688 9689 /// parseDirectiveFnEnd 9690 /// ::= .fnend 9691 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9692 if (parseToken(AsmToken::EndOfStatement, 9693 "unexpected token in '.fnend' directive")) 9694 return true; 9695 // Check the ordering of unwind directives 9696 if (!UC.hasFnStart()) 9697 return Error(L, ".fnstart must precede .fnend directive"); 9698 9699 // Reset the unwind directives parser state 9700 getTargetStreamer().emitFnEnd(); 9701 9702 UC.reset(); 9703 return false; 9704 } 9705 9706 /// parseDirectiveCantUnwind 9707 /// ::= .cantunwind 9708 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9709 if (parseToken(AsmToken::EndOfStatement, 9710 "unexpected token in '.cantunwind' directive")) 9711 return true; 9712 9713 UC.recordCantUnwind(L); 9714 // Check the ordering of unwind directives 9715 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9716 return true; 9717 9718 if (UC.hasHandlerData()) { 9719 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9720 UC.emitHandlerDataLocNotes(); 9721 return true; 9722 } 9723 if (UC.hasPersonality()) { 9724 Error(L, ".cantunwind can't be used with .personality directive"); 9725 UC.emitPersonalityLocNotes(); 9726 return true; 9727 } 9728 9729 getTargetStreamer().emitCantUnwind(); 9730 return false; 9731 } 9732 9733 /// parseDirectivePersonality 9734 /// ::= .personality name 9735 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9736 MCAsmParser &Parser = getParser(); 9737 bool HasExistingPersonality = UC.hasPersonality(); 9738 9739 // Parse the name of the personality routine 9740 if (Parser.getTok().isNot(AsmToken::Identifier)) 9741 return Error(L, "unexpected input in .personality directive."); 9742 StringRef Name(Parser.getTok().getIdentifier()); 9743 Parser.Lex(); 9744 9745 if (parseToken(AsmToken::EndOfStatement, 9746 "unexpected token in '.personality' directive")) 9747 return true; 9748 9749 UC.recordPersonality(L); 9750 9751 // Check the ordering of unwind directives 9752 if (!UC.hasFnStart()) 9753 return Error(L, ".fnstart must precede .personality directive"); 9754 if (UC.cantUnwind()) { 9755 Error(L, ".personality can't be used with .cantunwind directive"); 9756 UC.emitCantUnwindLocNotes(); 9757 return true; 9758 } 9759 if (UC.hasHandlerData()) { 9760 Error(L, ".personality must precede .handlerdata directive"); 9761 UC.emitHandlerDataLocNotes(); 9762 return true; 9763 } 9764 if (HasExistingPersonality) { 9765 Error(L, "multiple personality directives"); 9766 UC.emitPersonalityLocNotes(); 9767 return true; 9768 } 9769 9770 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9771 getTargetStreamer().emitPersonality(PR); 9772 return false; 9773 } 9774 9775 /// parseDirectiveHandlerData 9776 /// ::= .handlerdata 9777 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9778 if (parseToken(AsmToken::EndOfStatement, 9779 "unexpected token in '.handlerdata' directive")) 9780 return true; 9781 9782 UC.recordHandlerData(L); 9783 // Check the ordering of unwind directives 9784 if (!UC.hasFnStart()) 9785 return Error(L, ".fnstart must precede .personality directive"); 9786 if (UC.cantUnwind()) { 9787 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9788 UC.emitCantUnwindLocNotes(); 9789 return true; 9790 } 9791 9792 getTargetStreamer().emitHandlerData(); 9793 return false; 9794 } 9795 9796 /// parseDirectiveSetFP 9797 /// ::= .setfp fpreg, spreg [, offset] 9798 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9799 MCAsmParser &Parser = getParser(); 9800 // Check the ordering of unwind directives 9801 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9802 check(UC.hasHandlerData(), L, 9803 ".setfp must precede .handlerdata directive")) 9804 return true; 9805 9806 // Parse fpreg 9807 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9808 int FPReg = tryParseRegister(); 9809 9810 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9811 Parser.parseToken(AsmToken::Comma, "comma expected")) 9812 return true; 9813 9814 // Parse spreg 9815 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9816 int SPReg = tryParseRegister(); 9817 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9818 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9819 "register should be either $sp or the latest fp register")) 9820 return true; 9821 9822 // Update the frame pointer register 9823 UC.saveFPReg(FPReg); 9824 9825 // Parse offset 9826 int64_t Offset = 0; 9827 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9828 if (Parser.getTok().isNot(AsmToken::Hash) && 9829 Parser.getTok().isNot(AsmToken::Dollar)) 9830 return Error(Parser.getTok().getLoc(), "'#' expected"); 9831 Parser.Lex(); // skip hash token. 9832 9833 const MCExpr *OffsetExpr; 9834 SMLoc ExLoc = Parser.getTok().getLoc(); 9835 SMLoc EndLoc; 9836 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9837 return Error(ExLoc, "malformed setfp offset"); 9838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9839 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9840 return true; 9841 Offset = CE->getValue(); 9842 } 9843 9844 if (Parser.parseToken(AsmToken::EndOfStatement)) 9845 return true; 9846 9847 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9848 static_cast<unsigned>(SPReg), Offset); 9849 return false; 9850 } 9851 9852 /// parseDirective 9853 /// ::= .pad offset 9854 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9855 MCAsmParser &Parser = getParser(); 9856 // Check the ordering of unwind directives 9857 if (!UC.hasFnStart()) 9858 return Error(L, ".fnstart must precede .pad directive"); 9859 if (UC.hasHandlerData()) 9860 return Error(L, ".pad must precede .handlerdata directive"); 9861 9862 // Parse the offset 9863 if (Parser.getTok().isNot(AsmToken::Hash) && 9864 Parser.getTok().isNot(AsmToken::Dollar)) 9865 return Error(Parser.getTok().getLoc(), "'#' expected"); 9866 Parser.Lex(); // skip hash token. 9867 9868 const MCExpr *OffsetExpr; 9869 SMLoc ExLoc = Parser.getTok().getLoc(); 9870 SMLoc EndLoc; 9871 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9872 return Error(ExLoc, "malformed pad offset"); 9873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9874 if (!CE) 9875 return Error(ExLoc, "pad offset must be an immediate"); 9876 9877 if (parseToken(AsmToken::EndOfStatement, 9878 "unexpected token in '.pad' directive")) 9879 return true; 9880 9881 getTargetStreamer().emitPad(CE->getValue()); 9882 return false; 9883 } 9884 9885 /// parseDirectiveRegSave 9886 /// ::= .save { registers } 9887 /// ::= .vsave { registers } 9888 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9889 // Check the ordering of unwind directives 9890 if (!UC.hasFnStart()) 9891 return Error(L, ".fnstart must precede .save or .vsave directives"); 9892 if (UC.hasHandlerData()) 9893 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9894 9895 // RAII object to make sure parsed operands are deleted. 9896 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9897 9898 // Parse the register list 9899 if (parseRegisterList(Operands) || 9900 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9901 return true; 9902 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9903 if (!IsVector && !Op.isRegList()) 9904 return Error(L, ".save expects GPR registers"); 9905 if (IsVector && !Op.isDPRRegList()) 9906 return Error(L, ".vsave expects DPR registers"); 9907 9908 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9909 return false; 9910 } 9911 9912 /// parseDirectiveInst 9913 /// ::= .inst opcode [, ...] 9914 /// ::= .inst.n opcode [, ...] 9915 /// ::= .inst.w opcode [, ...] 9916 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9917 int Width = 4; 9918 9919 if (isThumb()) { 9920 switch (Suffix) { 9921 case 'n': 9922 Width = 2; 9923 break; 9924 case 'w': 9925 break; 9926 default: 9927 return Error(Loc, "cannot determine Thumb instruction size, " 9928 "use inst.n/inst.w instead"); 9929 } 9930 } else { 9931 if (Suffix) 9932 return Error(Loc, "width suffixes are invalid in ARM mode"); 9933 } 9934 9935 auto parseOne = [&]() -> bool { 9936 const MCExpr *Expr; 9937 if (getParser().parseExpression(Expr)) 9938 return true; 9939 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9940 if (!Value) { 9941 return Error(Loc, "expected constant expression"); 9942 } 9943 9944 switch (Width) { 9945 case 2: 9946 if (Value->getValue() > 0xffff) 9947 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 9948 break; 9949 case 4: 9950 if (Value->getValue() > 0xffffffff) 9951 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 9952 " operand is too big"); 9953 break; 9954 default: 9955 llvm_unreachable("only supported widths are 2 and 4"); 9956 } 9957 9958 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9959 return false; 9960 }; 9961 9962 if (parseOptionalToken(AsmToken::EndOfStatement)) 9963 return Error(Loc, "expected expression following directive"); 9964 if (parseMany(parseOne)) 9965 return true; 9966 return false; 9967 } 9968 9969 /// parseDirectiveLtorg 9970 /// ::= .ltorg | .pool 9971 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9972 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9973 return true; 9974 getTargetStreamer().emitCurrentConstantPool(); 9975 return false; 9976 } 9977 9978 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9979 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 9980 9981 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9982 return true; 9983 9984 if (!Section) { 9985 getStreamer().InitSections(false); 9986 Section = getStreamer().getCurrentSectionOnly(); 9987 } 9988 9989 assert(Section && "must have section to emit alignment"); 9990 if (Section->UseCodeAlign()) 9991 getStreamer().EmitCodeAlignment(2); 9992 else 9993 getStreamer().EmitValueToAlignment(2); 9994 9995 return false; 9996 } 9997 9998 /// parseDirectivePersonalityIndex 9999 /// ::= .personalityindex index 10000 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10001 MCAsmParser &Parser = getParser(); 10002 bool HasExistingPersonality = UC.hasPersonality(); 10003 10004 const MCExpr *IndexExpression; 10005 SMLoc IndexLoc = Parser.getTok().getLoc(); 10006 if (Parser.parseExpression(IndexExpression) || 10007 parseToken(AsmToken::EndOfStatement, 10008 "unexpected token in '.personalityindex' directive")) { 10009 return true; 10010 } 10011 10012 UC.recordPersonalityIndex(L); 10013 10014 if (!UC.hasFnStart()) { 10015 return Error(L, ".fnstart must precede .personalityindex directive"); 10016 } 10017 if (UC.cantUnwind()) { 10018 Error(L, ".personalityindex cannot be used with .cantunwind"); 10019 UC.emitCantUnwindLocNotes(); 10020 return true; 10021 } 10022 if (UC.hasHandlerData()) { 10023 Error(L, ".personalityindex must precede .handlerdata directive"); 10024 UC.emitHandlerDataLocNotes(); 10025 return true; 10026 } 10027 if (HasExistingPersonality) { 10028 Error(L, "multiple personality directives"); 10029 UC.emitPersonalityLocNotes(); 10030 return true; 10031 } 10032 10033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10034 if (!CE) 10035 return Error(IndexLoc, "index must be a constant number"); 10036 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10037 return Error(IndexLoc, 10038 "personality routine index should be in range [0-3]"); 10039 10040 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10041 return false; 10042 } 10043 10044 /// parseDirectiveUnwindRaw 10045 /// ::= .unwind_raw offset, opcode [, opcode...] 10046 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10047 MCAsmParser &Parser = getParser(); 10048 int64_t StackOffset; 10049 const MCExpr *OffsetExpr; 10050 SMLoc OffsetLoc = getLexer().getLoc(); 10051 10052 if (!UC.hasFnStart()) 10053 return Error(L, ".fnstart must precede .unwind_raw directives"); 10054 if (getParser().parseExpression(OffsetExpr)) 10055 return Error(OffsetLoc, "expected expression"); 10056 10057 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10058 if (!CE) 10059 return Error(OffsetLoc, "offset must be a constant"); 10060 10061 StackOffset = CE->getValue(); 10062 10063 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10064 return true; 10065 10066 SmallVector<uint8_t, 16> Opcodes; 10067 10068 auto parseOne = [&]() -> bool { 10069 const MCExpr *OE; 10070 SMLoc OpcodeLoc = getLexer().getLoc(); 10071 if (check(getLexer().is(AsmToken::EndOfStatement) || 10072 Parser.parseExpression(OE), 10073 OpcodeLoc, "expected opcode expression")) 10074 return true; 10075 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10076 if (!OC) 10077 return Error(OpcodeLoc, "opcode value must be a constant"); 10078 const int64_t Opcode = OC->getValue(); 10079 if (Opcode & ~0xff) 10080 return Error(OpcodeLoc, "invalid opcode"); 10081 Opcodes.push_back(uint8_t(Opcode)); 10082 return false; 10083 }; 10084 10085 // Must have at least 1 element 10086 SMLoc OpcodeLoc = getLexer().getLoc(); 10087 if (parseOptionalToken(AsmToken::EndOfStatement)) 10088 return Error(OpcodeLoc, "expected opcode expression"); 10089 if (parseMany(parseOne)) 10090 return true; 10091 10092 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10093 return false; 10094 } 10095 10096 /// parseDirectiveTLSDescSeq 10097 /// ::= .tlsdescseq tls-variable 10098 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10099 MCAsmParser &Parser = getParser(); 10100 10101 if (getLexer().isNot(AsmToken::Identifier)) 10102 return TokError("expected variable after '.tlsdescseq' directive"); 10103 10104 const MCSymbolRefExpr *SRE = 10105 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10106 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10107 Lex(); 10108 10109 if (parseToken(AsmToken::EndOfStatement, 10110 "unexpected token in '.tlsdescseq' directive")) 10111 return true; 10112 10113 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10114 return false; 10115 } 10116 10117 /// parseDirectiveMovSP 10118 /// ::= .movsp reg [, #offset] 10119 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10120 MCAsmParser &Parser = getParser(); 10121 if (!UC.hasFnStart()) 10122 return Error(L, ".fnstart must precede .movsp directives"); 10123 if (UC.getFPReg() != ARM::SP) 10124 return Error(L, "unexpected .movsp directive"); 10125 10126 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10127 int SPReg = tryParseRegister(); 10128 if (SPReg == -1) 10129 return Error(SPRegLoc, "register expected"); 10130 if (SPReg == ARM::SP || SPReg == ARM::PC) 10131 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10132 10133 int64_t Offset = 0; 10134 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10135 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10136 return true; 10137 10138 const MCExpr *OffsetExpr; 10139 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10140 10141 if (Parser.parseExpression(OffsetExpr)) 10142 return Error(OffsetLoc, "malformed offset expression"); 10143 10144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10145 if (!CE) 10146 return Error(OffsetLoc, "offset must be an immediate constant"); 10147 10148 Offset = CE->getValue(); 10149 } 10150 10151 if (parseToken(AsmToken::EndOfStatement, 10152 "unexpected token in '.movsp' directive")) 10153 return true; 10154 10155 getTargetStreamer().emitMovSP(SPReg, Offset); 10156 UC.saveFPReg(SPReg); 10157 10158 return false; 10159 } 10160 10161 /// parseDirectiveObjectArch 10162 /// ::= .object_arch name 10163 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10164 MCAsmParser &Parser = getParser(); 10165 if (getLexer().isNot(AsmToken::Identifier)) 10166 return Error(getLexer().getLoc(), "unexpected token"); 10167 10168 StringRef Arch = Parser.getTok().getString(); 10169 SMLoc ArchLoc = Parser.getTok().getLoc(); 10170 Lex(); 10171 10172 unsigned ID = ARM::parseArch(Arch); 10173 10174 if (ID == ARM::AK_INVALID) 10175 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10176 if (parseToken(AsmToken::EndOfStatement)) 10177 return true; 10178 10179 getTargetStreamer().emitObjectArch(ID); 10180 return false; 10181 } 10182 10183 /// parseDirectiveAlign 10184 /// ::= .align 10185 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10186 // NOTE: if this is not the end of the statement, fall back to the target 10187 // agnostic handling for this directive which will correctly handle this. 10188 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10189 // '.align' is target specifically handled to mean 2**2 byte alignment. 10190 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10191 assert(Section && "must have section to emit alignment"); 10192 if (Section->UseCodeAlign()) 10193 getStreamer().EmitCodeAlignment(4, 0); 10194 else 10195 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10196 return false; 10197 } 10198 return true; 10199 } 10200 10201 /// parseDirectiveThumbSet 10202 /// ::= .thumb_set name, value 10203 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10204 MCAsmParser &Parser = getParser(); 10205 10206 StringRef Name; 10207 if (check(Parser.parseIdentifier(Name), 10208 "expected identifier after '.thumb_set'") || 10209 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10210 return true; 10211 10212 MCSymbol *Sym; 10213 const MCExpr *Value; 10214 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10215 Parser, Sym, Value)) 10216 return true; 10217 10218 getTargetStreamer().emitThumbSet(Sym, Value); 10219 return false; 10220 } 10221 10222 /// Force static initialization. 10223 extern "C" void LLVMInitializeARMAsmParser() { 10224 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10225 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10226 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10227 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10228 } 10229 10230 #define GET_REGISTER_MATCHER 10231 #define GET_SUBTARGET_FEATURE_NAME 10232 #define GET_MATCHER_IMPLEMENTATION 10233 #include "ARMGenAsmMatcher.inc" 10234 10235 // FIXME: This structure should be moved inside ARMTargetParser 10236 // when we start to table-generate them, and we can use the ARM 10237 // flags below, that were generated by table-gen. 10238 static const struct { 10239 const unsigned Kind; 10240 const uint64_t ArchCheck; 10241 const FeatureBitset Features; 10242 } Extensions[] = { 10243 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10244 { ARM::AEK_CRYPTO, Feature_HasV8, 10245 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10246 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10247 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10248 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10249 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10250 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10251 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10252 // FIXME: Only available in A-class, isel not predicated 10253 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10254 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10255 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10256 // FIXME: Unsupported extensions. 10257 { ARM::AEK_OS, Feature_None, {} }, 10258 { ARM::AEK_IWMMXT, Feature_None, {} }, 10259 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10260 { ARM::AEK_MAVERICK, Feature_None, {} }, 10261 { ARM::AEK_XSCALE, Feature_None, {} }, 10262 }; 10263 10264 /// parseDirectiveArchExtension 10265 /// ::= .arch_extension [no]feature 10266 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10267 MCAsmParser &Parser = getParser(); 10268 10269 if (getLexer().isNot(AsmToken::Identifier)) 10270 return Error(getLexer().getLoc(), "expected architecture extension name"); 10271 10272 StringRef Name = Parser.getTok().getString(); 10273 SMLoc ExtLoc = Parser.getTok().getLoc(); 10274 Lex(); 10275 10276 if (parseToken(AsmToken::EndOfStatement, 10277 "unexpected token in '.arch_extension' directive")) 10278 return true; 10279 10280 bool EnableFeature = true; 10281 if (Name.startswith_lower("no")) { 10282 EnableFeature = false; 10283 Name = Name.substr(2); 10284 } 10285 unsigned FeatureKind = ARM::parseArchExt(Name); 10286 if (FeatureKind == ARM::AEK_INVALID) 10287 return Error(ExtLoc, "unknown architectural extension: " + Name); 10288 10289 for (const auto &Extension : Extensions) { 10290 if (Extension.Kind != FeatureKind) 10291 continue; 10292 10293 if (Extension.Features.none()) 10294 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10295 10296 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10297 return Error(ExtLoc, "architectural extension '" + Name + 10298 "' is not " 10299 "allowed for the current base architecture"); 10300 10301 MCSubtargetInfo &STI = copySTI(); 10302 FeatureBitset ToggleFeatures = EnableFeature 10303 ? (~STI.getFeatureBits() & Extension.Features) 10304 : ( STI.getFeatureBits() & Extension.Features); 10305 10306 uint64_t Features = 10307 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10308 setAvailableFeatures(Features); 10309 return false; 10310 } 10311 10312 return Error(ExtLoc, "unknown architectural extension: " + Name); 10313 } 10314 10315 // Define this matcher function after the auto-generated include so we 10316 // have the match class enum definitions. 10317 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10318 unsigned Kind) { 10319 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10320 // If the kind is a token for a literal immediate, check if our asm 10321 // operand matches. This is for InstAliases which have a fixed-value 10322 // immediate in the syntax. 10323 switch (Kind) { 10324 default: break; 10325 case MCK__35_0: 10326 if (Op.isImm()) 10327 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10328 if (CE->getValue() == 0) 10329 return Match_Success; 10330 break; 10331 case MCK_ModImm: 10332 if (Op.isImm()) { 10333 const MCExpr *SOExpr = Op.getImm(); 10334 int64_t Value; 10335 if (!SOExpr->evaluateAsAbsolute(Value)) 10336 return Match_Success; 10337 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10338 "expression value must be representable in 32 bits"); 10339 } 10340 break; 10341 case MCK_rGPR: 10342 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10343 return Match_Success; 10344 break; 10345 case MCK_GPRPair: 10346 if (Op.isReg() && 10347 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10348 return Match_Success; 10349 break; 10350 } 10351 return Match_InvalidOperand; 10352 } 10353