1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/MC/MCSection.h" 36 #include "llvm/MC/MCStreamer.h" 37 #include "llvm/MC/MCSubtargetInfo.h" 38 #include "llvm/MC/MCSymbol.h" 39 #include "llvm/MC/MCTargetAsmParser.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/TargetParser.h" 43 #include "llvm/Support/COFF.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 51 using namespace llvm; 52 53 namespace { 54 55 class ARMOperand; 56 57 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 58 59 class UnwindContext { 60 MCAsmParser &Parser; 61 62 typedef SmallVector<SMLoc, 4> Locs; 63 64 Locs FnStartLocs; 65 Locs CantUnwindLocs; 66 Locs PersonalityLocs; 67 Locs PersonalityIndexLocs; 68 Locs HandlerDataLocs; 69 int FPReg; 70 71 public: 72 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 73 74 bool hasFnStart() const { return !FnStartLocs.empty(); } 75 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 76 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 77 bool hasPersonality() const { 78 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 79 } 80 81 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 82 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 83 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 84 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 85 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 86 87 void saveFPReg(int Reg) { FPReg = Reg; } 88 int getFPReg() const { return FPReg; } 89 90 void emitFnStartLocNotes() const { 91 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 92 FI != FE; ++FI) 93 Parser.Note(*FI, ".fnstart was specified here"); 94 } 95 void emitCantUnwindLocNotes() const { 96 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 97 UE = CantUnwindLocs.end(); UI != UE; ++UI) 98 Parser.Note(*UI, ".cantunwind was specified here"); 99 } 100 void emitHandlerDataLocNotes() const { 101 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 102 HE = HandlerDataLocs.end(); HI != HE; ++HI) 103 Parser.Note(*HI, ".handlerdata was specified here"); 104 } 105 void emitPersonalityLocNotes() const { 106 for (Locs::const_iterator PI = PersonalityLocs.begin(), 107 PE = PersonalityLocs.end(), 108 PII = PersonalityIndexLocs.begin(), 109 PIE = PersonalityIndexLocs.end(); 110 PI != PE || PII != PIE;) { 111 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 112 Parser.Note(*PI++, ".personality was specified here"); 113 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 114 Parser.Note(*PII++, ".personalityindex was specified here"); 115 else 116 llvm_unreachable(".personality and .personalityindex cannot be " 117 "at the same location"); 118 } 119 } 120 121 void reset() { 122 FnStartLocs = Locs(); 123 CantUnwindLocs = Locs(); 124 PersonalityLocs = Locs(); 125 HandlerDataLocs = Locs(); 126 PersonalityIndexLocs = Locs(); 127 FPReg = ARM::SP; 128 } 129 }; 130 131 class ARMAsmParser : public MCTargetAsmParser { 132 MCSubtargetInfo &STI; 133 const MCInstrInfo &MII; 134 const MCRegisterInfo *MRI; 135 UnwindContext UC; 136 137 ARMTargetStreamer &getTargetStreamer() { 138 assert(getParser().getStreamer().getTargetStreamer() && 139 "do not have a target streamer"); 140 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 141 return static_cast<ARMTargetStreamer &>(TS); 142 } 143 144 // Map of register aliases registers via the .req directive. 145 StringMap<unsigned> RegisterReqs; 146 147 bool NextSymbolIsThumb; 148 149 struct { 150 ARMCC::CondCodes Cond; // Condition for IT block. 151 unsigned Mask:4; // Condition mask for instructions. 152 // Starting at first 1 (from lsb). 153 // '1' condition as indicated in IT. 154 // '0' inverse of condition (else). 155 // Count of instructions in IT block is 156 // 4 - trailingzeroes(mask) 157 158 bool FirstCond; // Explicit flag for when we're parsing the 159 // First instruction in the IT block. It's 160 // implied in the mask, so needs special 161 // handling. 162 163 unsigned CurPosition; // Current position in parsing of IT 164 // block. In range [0,3]. Initialized 165 // according to count of instructions in block. 166 // ~0U if no active IT block. 167 } ITState; 168 bool inITBlock() { return ITState.CurPosition != ~0U; } 169 bool lastInITBlock() { 170 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 171 } 172 void forwardITPosition() { 173 if (!inITBlock()) return; 174 // Move to the next instruction in the IT block, if there is one. If not, 175 // mark the block as done. 176 unsigned TZ = countTrailingZeros(ITState.Mask); 177 if (++ITState.CurPosition == 5 - TZ) 178 ITState.CurPosition = ~0U; // Done with the IT block after this. 179 } 180 181 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 182 return getParser().Note(L, Msg, Ranges); 183 } 184 bool Warning(SMLoc L, const Twine &Msg, 185 ArrayRef<SMRange> Ranges = None) { 186 return getParser().Warning(L, Msg, Ranges); 187 } 188 bool Error(SMLoc L, const Twine &Msg, 189 ArrayRef<SMRange> Ranges = None) { 190 return getParser().Error(L, Msg, Ranges); 191 } 192 193 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 194 unsigned ListNo, bool IsARPop = false); 195 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 196 unsigned ListNo); 197 198 int tryParseRegister(); 199 bool tryParseRegisterWithWriteBack(OperandVector &); 200 int tryParseShiftRegister(OperandVector &); 201 bool parseRegisterList(OperandVector &); 202 bool parseMemory(OperandVector &); 203 bool parseOperand(OperandVector &, StringRef Mnemonic); 204 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 205 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 206 unsigned &ShiftAmount); 207 bool parseLiteralValues(unsigned Size, SMLoc L); 208 bool parseDirectiveThumb(SMLoc L); 209 bool parseDirectiveARM(SMLoc L); 210 bool parseDirectiveThumbFunc(SMLoc L); 211 bool parseDirectiveCode(SMLoc L); 212 bool parseDirectiveSyntax(SMLoc L); 213 bool parseDirectiveReq(StringRef Name, SMLoc L); 214 bool parseDirectiveUnreq(SMLoc L); 215 bool parseDirectiveArch(SMLoc L); 216 bool parseDirectiveEabiAttr(SMLoc L); 217 bool parseDirectiveCPU(SMLoc L); 218 bool parseDirectiveFPU(SMLoc L); 219 bool parseDirectiveFnStart(SMLoc L); 220 bool parseDirectiveFnEnd(SMLoc L); 221 bool parseDirectiveCantUnwind(SMLoc L); 222 bool parseDirectivePersonality(SMLoc L); 223 bool parseDirectiveHandlerData(SMLoc L); 224 bool parseDirectiveSetFP(SMLoc L); 225 bool parseDirectivePad(SMLoc L); 226 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 227 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 228 bool parseDirectiveLtorg(SMLoc L); 229 bool parseDirectiveEven(SMLoc L); 230 bool parseDirectivePersonalityIndex(SMLoc L); 231 bool parseDirectiveUnwindRaw(SMLoc L); 232 bool parseDirectiveTLSDescSeq(SMLoc L); 233 bool parseDirectiveMovSP(SMLoc L); 234 bool parseDirectiveObjectArch(SMLoc L); 235 bool parseDirectiveArchExtension(SMLoc L); 236 bool parseDirectiveAlign(SMLoc L); 237 bool parseDirectiveThumbSet(SMLoc L); 238 239 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 240 bool &CarrySetting, unsigned &ProcessorIMod, 241 StringRef &ITMask); 242 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 243 bool &CanAcceptCarrySet, 244 bool &CanAcceptPredicationCode); 245 246 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 247 OperandVector &Operands); 248 bool isThumb() const { 249 // FIXME: Can tablegen auto-generate this? 250 return STI.getFeatureBits()[ARM::ModeThumb]; 251 } 252 bool isThumbOne() const { 253 return isThumb() && !STI.getFeatureBits()[ARM::FeatureThumb2]; 254 } 255 bool isThumbTwo() const { 256 return isThumb() && STI.getFeatureBits()[ARM::FeatureThumb2]; 257 } 258 bool hasThumb() const { 259 return STI.getFeatureBits()[ARM::HasV4TOps]; 260 } 261 bool hasV6Ops() const { 262 return STI.getFeatureBits()[ARM::HasV6Ops]; 263 } 264 bool hasV6MOps() const { 265 return STI.getFeatureBits()[ARM::HasV6MOps]; 266 } 267 bool hasV7Ops() const { 268 return STI.getFeatureBits()[ARM::HasV7Ops]; 269 } 270 bool hasV8Ops() const { 271 return STI.getFeatureBits()[ARM::HasV8Ops]; 272 } 273 bool hasARM() const { 274 return !STI.getFeatureBits()[ARM::FeatureNoARM]; 275 } 276 bool hasDSP() const { 277 return STI.getFeatureBits()[ARM::FeatureDSP]; 278 } 279 bool hasD16() const { 280 return STI.getFeatureBits()[ARM::FeatureD16]; 281 } 282 bool hasV8_1aOps() const { 283 return STI.getFeatureBits()[ARM::HasV8_1aOps]; 284 } 285 286 void SwitchMode() { 287 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 288 setAvailableFeatures(FB); 289 } 290 bool isMClass() const { 291 return STI.getFeatureBits()[ARM::FeatureMClass]; 292 } 293 294 /// @name Auto-generated Match Functions 295 /// { 296 297 #define GET_ASSEMBLER_HEADER 298 #include "ARMGenAsmMatcher.inc" 299 300 /// } 301 302 OperandMatchResultTy parseITCondCode(OperandVector &); 303 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 304 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 305 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 306 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 307 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 308 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 309 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 310 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 311 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 312 int High); 313 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 314 return parsePKHImm(O, "lsl", 0, 31); 315 } 316 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 317 return parsePKHImm(O, "asr", 1, 32); 318 } 319 OperandMatchResultTy parseSetEndImm(OperandVector &); 320 OperandMatchResultTy parseShifterImm(OperandVector &); 321 OperandMatchResultTy parseRotImm(OperandVector &); 322 OperandMatchResultTy parseModImm(OperandVector &); 323 OperandMatchResultTy parseBitfield(OperandVector &); 324 OperandMatchResultTy parsePostIdxReg(OperandVector &); 325 OperandMatchResultTy parseAM3Offset(OperandVector &); 326 OperandMatchResultTy parseFPImm(OperandVector &); 327 OperandMatchResultTy parseVectorList(OperandVector &); 328 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 329 SMLoc &EndLoc); 330 331 // Asm Match Converter Methods 332 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 333 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 334 335 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 336 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 337 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 338 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 339 340 public: 341 enum ARMMatchResultTy { 342 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 343 Match_RequiresNotITBlock, 344 Match_RequiresV6, 345 Match_RequiresThumb2, 346 #define GET_OPERAND_DIAGNOSTIC_TYPES 347 #include "ARMGenAsmMatcher.inc" 348 349 }; 350 351 ARMAsmParser(MCSubtargetInfo &STI, MCAsmParser &Parser, 352 const MCInstrInfo &MII, const MCTargetOptions &Options) 353 : MCTargetAsmParser(Options), STI(STI), MII(MII), UC(Parser) { 354 MCAsmParserExtension::Initialize(Parser); 355 356 // Cache the MCRegisterInfo. 357 MRI = getContext().getRegisterInfo(); 358 359 // Initialize the set of available features. 360 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 361 362 // Not in an ITBlock to start with. 363 ITState.CurPosition = ~0U; 364 365 NextSymbolIsThumb = false; 366 } 367 368 // Implementation of the MCTargetAsmParser interface: 369 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 370 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 371 SMLoc NameLoc, OperandVector &Operands) override; 372 bool ParseDirective(AsmToken DirectiveID) override; 373 374 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 375 unsigned Kind) override; 376 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 377 378 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 379 OperandVector &Operands, MCStreamer &Out, 380 uint64_t &ErrorInfo, 381 bool MatchingInlineAsm) override; 382 void onLabelParsed(MCSymbol *Symbol) override; 383 }; 384 } // end anonymous namespace 385 386 namespace { 387 388 /// ARMOperand - Instances of this class represent a parsed ARM machine 389 /// operand. 390 class ARMOperand : public MCParsedAsmOperand { 391 enum KindTy { 392 k_CondCode, 393 k_CCOut, 394 k_ITCondMask, 395 k_CoprocNum, 396 k_CoprocReg, 397 k_CoprocOption, 398 k_Immediate, 399 k_MemBarrierOpt, 400 k_InstSyncBarrierOpt, 401 k_Memory, 402 k_PostIndexRegister, 403 k_MSRMask, 404 k_BankedReg, 405 k_ProcIFlags, 406 k_VectorIndex, 407 k_Register, 408 k_RegisterList, 409 k_DPRRegisterList, 410 k_SPRRegisterList, 411 k_VectorList, 412 k_VectorListAllLanes, 413 k_VectorListIndexed, 414 k_ShiftedRegister, 415 k_ShiftedImmediate, 416 k_ShifterImmediate, 417 k_RotateImmediate, 418 k_ModifiedImmediate, 419 k_BitfieldDescriptor, 420 k_Token 421 } Kind; 422 423 SMLoc StartLoc, EndLoc, AlignmentLoc; 424 SmallVector<unsigned, 8> Registers; 425 426 struct CCOp { 427 ARMCC::CondCodes Val; 428 }; 429 430 struct CopOp { 431 unsigned Val; 432 }; 433 434 struct CoprocOptionOp { 435 unsigned Val; 436 }; 437 438 struct ITMaskOp { 439 unsigned Mask:4; 440 }; 441 442 struct MBOptOp { 443 ARM_MB::MemBOpt Val; 444 }; 445 446 struct ISBOptOp { 447 ARM_ISB::InstSyncBOpt Val; 448 }; 449 450 struct IFlagsOp { 451 ARM_PROC::IFlags Val; 452 }; 453 454 struct MMaskOp { 455 unsigned Val; 456 }; 457 458 struct BankedRegOp { 459 unsigned Val; 460 }; 461 462 struct TokOp { 463 const char *Data; 464 unsigned Length; 465 }; 466 467 struct RegOp { 468 unsigned RegNum; 469 }; 470 471 // A vector register list is a sequential list of 1 to 4 registers. 472 struct VectorListOp { 473 unsigned RegNum; 474 unsigned Count; 475 unsigned LaneIndex; 476 bool isDoubleSpaced; 477 }; 478 479 struct VectorIndexOp { 480 unsigned Val; 481 }; 482 483 struct ImmOp { 484 const MCExpr *Val; 485 }; 486 487 /// Combined record for all forms of ARM address expressions. 488 struct MemoryOp { 489 unsigned BaseRegNum; 490 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 491 // was specified. 492 const MCConstantExpr *OffsetImm; // Offset immediate value 493 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 494 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 495 unsigned ShiftImm; // shift for OffsetReg. 496 unsigned Alignment; // 0 = no alignment specified 497 // n = alignment in bytes (2, 4, 8, 16, or 32) 498 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 499 }; 500 501 struct PostIdxRegOp { 502 unsigned RegNum; 503 bool isAdd; 504 ARM_AM::ShiftOpc ShiftTy; 505 unsigned ShiftImm; 506 }; 507 508 struct ShifterImmOp { 509 bool isASR; 510 unsigned Imm; 511 }; 512 513 struct RegShiftedRegOp { 514 ARM_AM::ShiftOpc ShiftTy; 515 unsigned SrcReg; 516 unsigned ShiftReg; 517 unsigned ShiftImm; 518 }; 519 520 struct RegShiftedImmOp { 521 ARM_AM::ShiftOpc ShiftTy; 522 unsigned SrcReg; 523 unsigned ShiftImm; 524 }; 525 526 struct RotImmOp { 527 unsigned Imm; 528 }; 529 530 struct ModImmOp { 531 unsigned Bits; 532 unsigned Rot; 533 }; 534 535 struct BitfieldOp { 536 unsigned LSB; 537 unsigned Width; 538 }; 539 540 union { 541 struct CCOp CC; 542 struct CopOp Cop; 543 struct CoprocOptionOp CoprocOption; 544 struct MBOptOp MBOpt; 545 struct ISBOptOp ISBOpt; 546 struct ITMaskOp ITMask; 547 struct IFlagsOp IFlags; 548 struct MMaskOp MMask; 549 struct BankedRegOp BankedReg; 550 struct TokOp Tok; 551 struct RegOp Reg; 552 struct VectorListOp VectorList; 553 struct VectorIndexOp VectorIndex; 554 struct ImmOp Imm; 555 struct MemoryOp Memory; 556 struct PostIdxRegOp PostIdxReg; 557 struct ShifterImmOp ShifterImm; 558 struct RegShiftedRegOp RegShiftedReg; 559 struct RegShiftedImmOp RegShiftedImm; 560 struct RotImmOp RotImm; 561 struct ModImmOp ModImm; 562 struct BitfieldOp Bitfield; 563 }; 564 565 public: 566 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 567 568 /// getStartLoc - Get the location of the first token of this operand. 569 SMLoc getStartLoc() const override { return StartLoc; } 570 /// getEndLoc - Get the location of the last token of this operand. 571 SMLoc getEndLoc() const override { return EndLoc; } 572 /// getLocRange - Get the range between the first and last token of this 573 /// operand. 574 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 575 576 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 577 SMLoc getAlignmentLoc() const { 578 assert(Kind == k_Memory && "Invalid access!"); 579 return AlignmentLoc; 580 } 581 582 ARMCC::CondCodes getCondCode() const { 583 assert(Kind == k_CondCode && "Invalid access!"); 584 return CC.Val; 585 } 586 587 unsigned getCoproc() const { 588 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 589 return Cop.Val; 590 } 591 592 StringRef getToken() const { 593 assert(Kind == k_Token && "Invalid access!"); 594 return StringRef(Tok.Data, Tok.Length); 595 } 596 597 unsigned getReg() const override { 598 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 599 return Reg.RegNum; 600 } 601 602 const SmallVectorImpl<unsigned> &getRegList() const { 603 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 604 Kind == k_SPRRegisterList) && "Invalid access!"); 605 return Registers; 606 } 607 608 const MCExpr *getImm() const { 609 assert(isImm() && "Invalid access!"); 610 return Imm.Val; 611 } 612 613 unsigned getVectorIndex() const { 614 assert(Kind == k_VectorIndex && "Invalid access!"); 615 return VectorIndex.Val; 616 } 617 618 ARM_MB::MemBOpt getMemBarrierOpt() const { 619 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 620 return MBOpt.Val; 621 } 622 623 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 624 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 625 return ISBOpt.Val; 626 } 627 628 ARM_PROC::IFlags getProcIFlags() const { 629 assert(Kind == k_ProcIFlags && "Invalid access!"); 630 return IFlags.Val; 631 } 632 633 unsigned getMSRMask() const { 634 assert(Kind == k_MSRMask && "Invalid access!"); 635 return MMask.Val; 636 } 637 638 unsigned getBankedReg() const { 639 assert(Kind == k_BankedReg && "Invalid access!"); 640 return BankedReg.Val; 641 } 642 643 bool isCoprocNum() const { return Kind == k_CoprocNum; } 644 bool isCoprocReg() const { return Kind == k_CoprocReg; } 645 bool isCoprocOption() const { return Kind == k_CoprocOption; } 646 bool isCondCode() const { return Kind == k_CondCode; } 647 bool isCCOut() const { return Kind == k_CCOut; } 648 bool isITMask() const { return Kind == k_ITCondMask; } 649 bool isITCondCode() const { return Kind == k_CondCode; } 650 bool isImm() const override { return Kind == k_Immediate; } 651 // checks whether this operand is an unsigned offset which fits is a field 652 // of specified width and scaled by a specific number of bits 653 template<unsigned width, unsigned scale> 654 bool isUnsignedOffset() const { 655 if (!isImm()) return false; 656 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 657 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 658 int64_t Val = CE->getValue(); 659 int64_t Align = 1LL << scale; 660 int64_t Max = Align * ((1LL << width) - 1); 661 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 662 } 663 return false; 664 } 665 // checks whether this operand is an signed offset which fits is a field 666 // of specified width and scaled by a specific number of bits 667 template<unsigned width, unsigned scale> 668 bool isSignedOffset() const { 669 if (!isImm()) return false; 670 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 671 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 672 int64_t Val = CE->getValue(); 673 int64_t Align = 1LL << scale; 674 int64_t Max = Align * ((1LL << (width-1)) - 1); 675 int64_t Min = -Align * (1LL << (width-1)); 676 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 677 } 678 return false; 679 } 680 681 // checks whether this operand is a memory operand computed as an offset 682 // applied to PC. the offset may have 8 bits of magnitude and is represented 683 // with two bits of shift. textually it may be either [pc, #imm], #imm or 684 // relocable expression... 685 bool isThumbMemPC() const { 686 int64_t Val = 0; 687 if (isImm()) { 688 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 689 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 690 if (!CE) return false; 691 Val = CE->getValue(); 692 } 693 else if (isMem()) { 694 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 695 if(Memory.BaseRegNum != ARM::PC) return false; 696 Val = Memory.OffsetImm->getValue(); 697 } 698 else return false; 699 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 700 } 701 bool isFPImm() const { 702 if (!isImm()) return false; 703 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 704 if (!CE) return false; 705 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 706 return Val != -1; 707 } 708 bool isFBits16() const { 709 if (!isImm()) return false; 710 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 711 if (!CE) return false; 712 int64_t Value = CE->getValue(); 713 return Value >= 0 && Value <= 16; 714 } 715 bool isFBits32() const { 716 if (!isImm()) return false; 717 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 718 if (!CE) return false; 719 int64_t Value = CE->getValue(); 720 return Value >= 1 && Value <= 32; 721 } 722 bool isImm8s4() const { 723 if (!isImm()) return false; 724 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 725 if (!CE) return false; 726 int64_t Value = CE->getValue(); 727 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 728 } 729 bool isImm0_1020s4() const { 730 if (!isImm()) return false; 731 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 732 if (!CE) return false; 733 int64_t Value = CE->getValue(); 734 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 735 } 736 bool isImm0_508s4() const { 737 if (!isImm()) return false; 738 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 739 if (!CE) return false; 740 int64_t Value = CE->getValue(); 741 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 742 } 743 bool isImm0_508s4Neg() const { 744 if (!isImm()) return false; 745 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 746 if (!CE) return false; 747 int64_t Value = -CE->getValue(); 748 // explicitly exclude zero. we want that to use the normal 0_508 version. 749 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 750 } 751 bool isImm0_239() const { 752 if (!isImm()) return false; 753 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 754 if (!CE) return false; 755 int64_t Value = CE->getValue(); 756 return Value >= 0 && Value < 240; 757 } 758 bool isImm0_255() const { 759 if (!isImm()) return false; 760 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 761 if (!CE) return false; 762 int64_t Value = CE->getValue(); 763 return Value >= 0 && Value < 256; 764 } 765 bool isImm0_4095() const { 766 if (!isImm()) return false; 767 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 768 if (!CE) return false; 769 int64_t Value = CE->getValue(); 770 return Value >= 0 && Value < 4096; 771 } 772 bool isImm0_4095Neg() const { 773 if (!isImm()) return false; 774 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 775 if (!CE) return false; 776 int64_t Value = -CE->getValue(); 777 return Value > 0 && Value < 4096; 778 } 779 bool isImm0_1() const { 780 if (!isImm()) return false; 781 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 782 if (!CE) return false; 783 int64_t Value = CE->getValue(); 784 return Value >= 0 && Value < 2; 785 } 786 bool isImm0_3() const { 787 if (!isImm()) return false; 788 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 789 if (!CE) return false; 790 int64_t Value = CE->getValue(); 791 return Value >= 0 && Value < 4; 792 } 793 bool isImm0_7() const { 794 if (!isImm()) return false; 795 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 796 if (!CE) return false; 797 int64_t Value = CE->getValue(); 798 return Value >= 0 && Value < 8; 799 } 800 bool isImm0_15() const { 801 if (!isImm()) return false; 802 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 803 if (!CE) return false; 804 int64_t Value = CE->getValue(); 805 return Value >= 0 && Value < 16; 806 } 807 bool isImm0_31() const { 808 if (!isImm()) return false; 809 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 810 if (!CE) return false; 811 int64_t Value = CE->getValue(); 812 return Value >= 0 && Value < 32; 813 } 814 bool isImm0_63() const { 815 if (!isImm()) return false; 816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 817 if (!CE) return false; 818 int64_t Value = CE->getValue(); 819 return Value >= 0 && Value < 64; 820 } 821 bool isImm8() const { 822 if (!isImm()) return false; 823 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 824 if (!CE) return false; 825 int64_t Value = CE->getValue(); 826 return Value == 8; 827 } 828 bool isImm16() const { 829 if (!isImm()) return false; 830 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 831 if (!CE) return false; 832 int64_t Value = CE->getValue(); 833 return Value == 16; 834 } 835 bool isImm32() const { 836 if (!isImm()) return false; 837 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 838 if (!CE) return false; 839 int64_t Value = CE->getValue(); 840 return Value == 32; 841 } 842 bool isShrImm8() const { 843 if (!isImm()) return false; 844 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 845 if (!CE) return false; 846 int64_t Value = CE->getValue(); 847 return Value > 0 && Value <= 8; 848 } 849 bool isShrImm16() const { 850 if (!isImm()) return false; 851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 852 if (!CE) return false; 853 int64_t Value = CE->getValue(); 854 return Value > 0 && Value <= 16; 855 } 856 bool isShrImm32() const { 857 if (!isImm()) return false; 858 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 859 if (!CE) return false; 860 int64_t Value = CE->getValue(); 861 return Value > 0 && Value <= 32; 862 } 863 bool isShrImm64() const { 864 if (!isImm()) return false; 865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 866 if (!CE) return false; 867 int64_t Value = CE->getValue(); 868 return Value > 0 && Value <= 64; 869 } 870 bool isImm1_7() const { 871 if (!isImm()) return false; 872 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 873 if (!CE) return false; 874 int64_t Value = CE->getValue(); 875 return Value > 0 && Value < 8; 876 } 877 bool isImm1_15() const { 878 if (!isImm()) return false; 879 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 880 if (!CE) return false; 881 int64_t Value = CE->getValue(); 882 return Value > 0 && Value < 16; 883 } 884 bool isImm1_31() const { 885 if (!isImm()) return false; 886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 887 if (!CE) return false; 888 int64_t Value = CE->getValue(); 889 return Value > 0 && Value < 32; 890 } 891 bool isImm1_16() const { 892 if (!isImm()) return false; 893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 894 if (!CE) return false; 895 int64_t Value = CE->getValue(); 896 return Value > 0 && Value < 17; 897 } 898 bool isImm1_32() const { 899 if (!isImm()) return false; 900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 901 if (!CE) return false; 902 int64_t Value = CE->getValue(); 903 return Value > 0 && Value < 33; 904 } 905 bool isImm0_32() const { 906 if (!isImm()) return false; 907 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 908 if (!CE) return false; 909 int64_t Value = CE->getValue(); 910 return Value >= 0 && Value < 33; 911 } 912 bool isImm0_65535() const { 913 if (!isImm()) return false; 914 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 915 if (!CE) return false; 916 int64_t Value = CE->getValue(); 917 return Value >= 0 && Value < 65536; 918 } 919 bool isImm256_65535Expr() const { 920 if (!isImm()) return false; 921 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 922 // If it's not a constant expression, it'll generate a fixup and be 923 // handled later. 924 if (!CE) return true; 925 int64_t Value = CE->getValue(); 926 return Value >= 256 && Value < 65536; 927 } 928 bool isImm0_65535Expr() const { 929 if (!isImm()) return false; 930 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 931 // If it's not a constant expression, it'll generate a fixup and be 932 // handled later. 933 if (!CE) return true; 934 int64_t Value = CE->getValue(); 935 return Value >= 0 && Value < 65536; 936 } 937 bool isImm24bit() const { 938 if (!isImm()) return false; 939 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 940 if (!CE) return false; 941 int64_t Value = CE->getValue(); 942 return Value >= 0 && Value <= 0xffffff; 943 } 944 bool isImmThumbSR() const { 945 if (!isImm()) return false; 946 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 947 if (!CE) return false; 948 int64_t Value = CE->getValue(); 949 return Value > 0 && Value < 33; 950 } 951 bool isPKHLSLImm() const { 952 if (!isImm()) return false; 953 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 954 if (!CE) return false; 955 int64_t Value = CE->getValue(); 956 return Value >= 0 && Value < 32; 957 } 958 bool isPKHASRImm() const { 959 if (!isImm()) return false; 960 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 961 if (!CE) return false; 962 int64_t Value = CE->getValue(); 963 return Value > 0 && Value <= 32; 964 } 965 bool isAdrLabel() const { 966 // If we have an immediate that's not a constant, treat it as a label 967 // reference needing a fixup. 968 if (isImm() && !isa<MCConstantExpr>(getImm())) 969 return true; 970 971 // If it is a constant, it must fit into a modified immediate encoding. 972 if (!isImm()) return false; 973 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 974 if (!CE) return false; 975 int64_t Value = CE->getValue(); 976 return (ARM_AM::getSOImmVal(Value) != -1 || 977 ARM_AM::getSOImmVal(-Value) != -1); 978 } 979 bool isT2SOImm() const { 980 if (!isImm()) return false; 981 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 982 if (!CE) return false; 983 int64_t Value = CE->getValue(); 984 return ARM_AM::getT2SOImmVal(Value) != -1; 985 } 986 bool isT2SOImmNot() const { 987 if (!isImm()) return false; 988 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 989 if (!CE) return false; 990 int64_t Value = CE->getValue(); 991 return ARM_AM::getT2SOImmVal(Value) == -1 && 992 ARM_AM::getT2SOImmVal(~Value) != -1; 993 } 994 bool isT2SOImmNeg() const { 995 if (!isImm()) return false; 996 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 997 if (!CE) return false; 998 int64_t Value = CE->getValue(); 999 // Only use this when not representable as a plain so_imm. 1000 return ARM_AM::getT2SOImmVal(Value) == -1 && 1001 ARM_AM::getT2SOImmVal(-Value) != -1; 1002 } 1003 bool isSetEndImm() const { 1004 if (!isImm()) return false; 1005 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1006 if (!CE) return false; 1007 int64_t Value = CE->getValue(); 1008 return Value == 1 || Value == 0; 1009 } 1010 bool isReg() const override { return Kind == k_Register; } 1011 bool isRegList() const { return Kind == k_RegisterList; } 1012 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1013 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1014 bool isToken() const override { return Kind == k_Token; } 1015 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1016 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1017 bool isMem() const override { return Kind == k_Memory; } 1018 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1019 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1020 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1021 bool isRotImm() const { return Kind == k_RotateImmediate; } 1022 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1023 bool isModImmNot() const { 1024 if (!isImm()) return false; 1025 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1026 if (!CE) return false; 1027 int64_t Value = CE->getValue(); 1028 return ARM_AM::getSOImmVal(~Value) != -1; 1029 } 1030 bool isModImmNeg() const { 1031 if (!isImm()) return false; 1032 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1033 if (!CE) return false; 1034 int64_t Value = CE->getValue(); 1035 return ARM_AM::getSOImmVal(Value) == -1 && 1036 ARM_AM::getSOImmVal(-Value) != -1; 1037 } 1038 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1039 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1040 bool isPostIdxReg() const { 1041 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1042 } 1043 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1044 if (!isMem()) 1045 return false; 1046 // No offset of any kind. 1047 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1048 (alignOK || Memory.Alignment == Alignment); 1049 } 1050 bool isMemPCRelImm12() const { 1051 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1052 return false; 1053 // Base register must be PC. 1054 if (Memory.BaseRegNum != ARM::PC) 1055 return false; 1056 // Immediate offset in range [-4095, 4095]. 1057 if (!Memory.OffsetImm) return true; 1058 int64_t Val = Memory.OffsetImm->getValue(); 1059 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1060 } 1061 bool isAlignedMemory() const { 1062 return isMemNoOffset(true); 1063 } 1064 bool isAlignedMemoryNone() const { 1065 return isMemNoOffset(false, 0); 1066 } 1067 bool isDupAlignedMemoryNone() const { 1068 return isMemNoOffset(false, 0); 1069 } 1070 bool isAlignedMemory16() const { 1071 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1072 return true; 1073 return isMemNoOffset(false, 0); 1074 } 1075 bool isDupAlignedMemory16() const { 1076 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1077 return true; 1078 return isMemNoOffset(false, 0); 1079 } 1080 bool isAlignedMemory32() const { 1081 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1082 return true; 1083 return isMemNoOffset(false, 0); 1084 } 1085 bool isDupAlignedMemory32() const { 1086 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1087 return true; 1088 return isMemNoOffset(false, 0); 1089 } 1090 bool isAlignedMemory64() const { 1091 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1092 return true; 1093 return isMemNoOffset(false, 0); 1094 } 1095 bool isDupAlignedMemory64() const { 1096 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1097 return true; 1098 return isMemNoOffset(false, 0); 1099 } 1100 bool isAlignedMemory64or128() const { 1101 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1102 return true; 1103 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1104 return true; 1105 return isMemNoOffset(false, 0); 1106 } 1107 bool isDupAlignedMemory64or128() const { 1108 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1109 return true; 1110 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1111 return true; 1112 return isMemNoOffset(false, 0); 1113 } 1114 bool isAlignedMemory64or128or256() const { 1115 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1116 return true; 1117 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1118 return true; 1119 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1120 return true; 1121 return isMemNoOffset(false, 0); 1122 } 1123 bool isAddrMode2() const { 1124 if (!isMem() || Memory.Alignment != 0) return false; 1125 // Check for register offset. 1126 if (Memory.OffsetRegNum) return true; 1127 // Immediate offset in range [-4095, 4095]. 1128 if (!Memory.OffsetImm) return true; 1129 int64_t Val = Memory.OffsetImm->getValue(); 1130 return Val > -4096 && Val < 4096; 1131 } 1132 bool isAM2OffsetImm() const { 1133 if (!isImm()) return false; 1134 // Immediate offset in range [-4095, 4095]. 1135 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1136 if (!CE) return false; 1137 int64_t Val = CE->getValue(); 1138 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1139 } 1140 bool isAddrMode3() const { 1141 // If we have an immediate that's not a constant, treat it as a label 1142 // reference needing a fixup. If it is a constant, it's something else 1143 // and we reject it. 1144 if (isImm() && !isa<MCConstantExpr>(getImm())) 1145 return true; 1146 if (!isMem() || Memory.Alignment != 0) return false; 1147 // No shifts are legal for AM3. 1148 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1149 // Check for register offset. 1150 if (Memory.OffsetRegNum) return true; 1151 // Immediate offset in range [-255, 255]. 1152 if (!Memory.OffsetImm) return true; 1153 int64_t Val = Memory.OffsetImm->getValue(); 1154 // The #-0 offset is encoded as INT32_MIN, and we have to check 1155 // for this too. 1156 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1157 } 1158 bool isAM3Offset() const { 1159 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1160 return false; 1161 if (Kind == k_PostIndexRegister) 1162 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1163 // Immediate offset in range [-255, 255]. 1164 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1165 if (!CE) return false; 1166 int64_t Val = CE->getValue(); 1167 // Special case, #-0 is INT32_MIN. 1168 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1169 } 1170 bool isAddrMode5() const { 1171 // If we have an immediate that's not a constant, treat it as a label 1172 // reference needing a fixup. If it is a constant, it's something else 1173 // and we reject it. 1174 if (isImm() && !isa<MCConstantExpr>(getImm())) 1175 return true; 1176 if (!isMem() || Memory.Alignment != 0) return false; 1177 // Check for register offset. 1178 if (Memory.OffsetRegNum) return false; 1179 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1180 if (!Memory.OffsetImm) return true; 1181 int64_t Val = Memory.OffsetImm->getValue(); 1182 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1183 Val == INT32_MIN; 1184 } 1185 bool isMemTBB() const { 1186 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1187 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1188 return false; 1189 return true; 1190 } 1191 bool isMemTBH() const { 1192 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1193 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1194 Memory.Alignment != 0 ) 1195 return false; 1196 return true; 1197 } 1198 bool isMemRegOffset() const { 1199 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1200 return false; 1201 return true; 1202 } 1203 bool isT2MemRegOffset() const { 1204 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1205 Memory.Alignment != 0) 1206 return false; 1207 // Only lsl #{0, 1, 2, 3} allowed. 1208 if (Memory.ShiftType == ARM_AM::no_shift) 1209 return true; 1210 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1211 return false; 1212 return true; 1213 } 1214 bool isMemThumbRR() const { 1215 // Thumb reg+reg addressing is simple. Just two registers, a base and 1216 // an offset. No shifts, negations or any other complicating factors. 1217 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1218 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1219 return false; 1220 return isARMLowRegister(Memory.BaseRegNum) && 1221 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1222 } 1223 bool isMemThumbRIs4() const { 1224 if (!isMem() || Memory.OffsetRegNum != 0 || 1225 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1226 return false; 1227 // Immediate offset, multiple of 4 in range [0, 124]. 1228 if (!Memory.OffsetImm) return true; 1229 int64_t Val = Memory.OffsetImm->getValue(); 1230 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1231 } 1232 bool isMemThumbRIs2() const { 1233 if (!isMem() || Memory.OffsetRegNum != 0 || 1234 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1235 return false; 1236 // Immediate offset, multiple of 4 in range [0, 62]. 1237 if (!Memory.OffsetImm) return true; 1238 int64_t Val = Memory.OffsetImm->getValue(); 1239 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1240 } 1241 bool isMemThumbRIs1() const { 1242 if (!isMem() || Memory.OffsetRegNum != 0 || 1243 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1244 return false; 1245 // Immediate offset in range [0, 31]. 1246 if (!Memory.OffsetImm) return true; 1247 int64_t Val = Memory.OffsetImm->getValue(); 1248 return Val >= 0 && Val <= 31; 1249 } 1250 bool isMemThumbSPI() const { 1251 if (!isMem() || Memory.OffsetRegNum != 0 || 1252 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1253 return false; 1254 // Immediate offset, multiple of 4 in range [0, 1020]. 1255 if (!Memory.OffsetImm) return true; 1256 int64_t Val = Memory.OffsetImm->getValue(); 1257 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1258 } 1259 bool isMemImm8s4Offset() const { 1260 // If we have an immediate that's not a constant, treat it as a label 1261 // reference needing a fixup. If it is a constant, it's something else 1262 // and we reject it. 1263 if (isImm() && !isa<MCConstantExpr>(getImm())) 1264 return true; 1265 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1266 return false; 1267 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1268 if (!Memory.OffsetImm) return true; 1269 int64_t Val = Memory.OffsetImm->getValue(); 1270 // Special case, #-0 is INT32_MIN. 1271 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1272 } 1273 bool isMemImm0_1020s4Offset() const { 1274 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1275 return false; 1276 // Immediate offset a multiple of 4 in range [0, 1020]. 1277 if (!Memory.OffsetImm) return true; 1278 int64_t Val = Memory.OffsetImm->getValue(); 1279 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1280 } 1281 bool isMemImm8Offset() const { 1282 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1283 return false; 1284 // Base reg of PC isn't allowed for these encodings. 1285 if (Memory.BaseRegNum == ARM::PC) return false; 1286 // Immediate offset in range [-255, 255]. 1287 if (!Memory.OffsetImm) return true; 1288 int64_t Val = Memory.OffsetImm->getValue(); 1289 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1290 } 1291 bool isMemPosImm8Offset() const { 1292 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1293 return false; 1294 // Immediate offset in range [0, 255]. 1295 if (!Memory.OffsetImm) return true; 1296 int64_t Val = Memory.OffsetImm->getValue(); 1297 return Val >= 0 && Val < 256; 1298 } 1299 bool isMemNegImm8Offset() const { 1300 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1301 return false; 1302 // Base reg of PC isn't allowed for these encodings. 1303 if (Memory.BaseRegNum == ARM::PC) return false; 1304 // Immediate offset in range [-255, -1]. 1305 if (!Memory.OffsetImm) return false; 1306 int64_t Val = Memory.OffsetImm->getValue(); 1307 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1308 } 1309 bool isMemUImm12Offset() const { 1310 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1311 return false; 1312 // Immediate offset in range [0, 4095]. 1313 if (!Memory.OffsetImm) return true; 1314 int64_t Val = Memory.OffsetImm->getValue(); 1315 return (Val >= 0 && Val < 4096); 1316 } 1317 bool isMemImm12Offset() const { 1318 // If we have an immediate that's not a constant, treat it as a label 1319 // reference needing a fixup. If it is a constant, it's something else 1320 // and we reject it. 1321 if (isImm() && !isa<MCConstantExpr>(getImm())) 1322 return true; 1323 1324 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1325 return false; 1326 // Immediate offset in range [-4095, 4095]. 1327 if (!Memory.OffsetImm) return true; 1328 int64_t Val = Memory.OffsetImm->getValue(); 1329 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1330 } 1331 bool isPostIdxImm8() const { 1332 if (!isImm()) return false; 1333 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1334 if (!CE) return false; 1335 int64_t Val = CE->getValue(); 1336 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1337 } 1338 bool isPostIdxImm8s4() const { 1339 if (!isImm()) return false; 1340 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1341 if (!CE) return false; 1342 int64_t Val = CE->getValue(); 1343 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1344 (Val == INT32_MIN); 1345 } 1346 1347 bool isMSRMask() const { return Kind == k_MSRMask; } 1348 bool isBankedReg() const { return Kind == k_BankedReg; } 1349 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1350 1351 // NEON operands. 1352 bool isSingleSpacedVectorList() const { 1353 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1354 } 1355 bool isDoubleSpacedVectorList() const { 1356 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1357 } 1358 bool isVecListOneD() const { 1359 if (!isSingleSpacedVectorList()) return false; 1360 return VectorList.Count == 1; 1361 } 1362 1363 bool isVecListDPair() const { 1364 if (!isSingleSpacedVectorList()) return false; 1365 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1366 .contains(VectorList.RegNum)); 1367 } 1368 1369 bool isVecListThreeD() const { 1370 if (!isSingleSpacedVectorList()) return false; 1371 return VectorList.Count == 3; 1372 } 1373 1374 bool isVecListFourD() const { 1375 if (!isSingleSpacedVectorList()) return false; 1376 return VectorList.Count == 4; 1377 } 1378 1379 bool isVecListDPairSpaced() const { 1380 if (Kind != k_VectorList) return false; 1381 if (isSingleSpacedVectorList()) return false; 1382 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1383 .contains(VectorList.RegNum)); 1384 } 1385 1386 bool isVecListThreeQ() const { 1387 if (!isDoubleSpacedVectorList()) return false; 1388 return VectorList.Count == 3; 1389 } 1390 1391 bool isVecListFourQ() const { 1392 if (!isDoubleSpacedVectorList()) return false; 1393 return VectorList.Count == 4; 1394 } 1395 1396 bool isSingleSpacedVectorAllLanes() const { 1397 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1398 } 1399 bool isDoubleSpacedVectorAllLanes() const { 1400 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1401 } 1402 bool isVecListOneDAllLanes() const { 1403 if (!isSingleSpacedVectorAllLanes()) return false; 1404 return VectorList.Count == 1; 1405 } 1406 1407 bool isVecListDPairAllLanes() const { 1408 if (!isSingleSpacedVectorAllLanes()) return false; 1409 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1410 .contains(VectorList.RegNum)); 1411 } 1412 1413 bool isVecListDPairSpacedAllLanes() const { 1414 if (!isDoubleSpacedVectorAllLanes()) return false; 1415 return VectorList.Count == 2; 1416 } 1417 1418 bool isVecListThreeDAllLanes() const { 1419 if (!isSingleSpacedVectorAllLanes()) return false; 1420 return VectorList.Count == 3; 1421 } 1422 1423 bool isVecListThreeQAllLanes() const { 1424 if (!isDoubleSpacedVectorAllLanes()) return false; 1425 return VectorList.Count == 3; 1426 } 1427 1428 bool isVecListFourDAllLanes() const { 1429 if (!isSingleSpacedVectorAllLanes()) return false; 1430 return VectorList.Count == 4; 1431 } 1432 1433 bool isVecListFourQAllLanes() const { 1434 if (!isDoubleSpacedVectorAllLanes()) return false; 1435 return VectorList.Count == 4; 1436 } 1437 1438 bool isSingleSpacedVectorIndexed() const { 1439 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1440 } 1441 bool isDoubleSpacedVectorIndexed() const { 1442 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1443 } 1444 bool isVecListOneDByteIndexed() const { 1445 if (!isSingleSpacedVectorIndexed()) return false; 1446 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1447 } 1448 1449 bool isVecListOneDHWordIndexed() const { 1450 if (!isSingleSpacedVectorIndexed()) return false; 1451 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1452 } 1453 1454 bool isVecListOneDWordIndexed() const { 1455 if (!isSingleSpacedVectorIndexed()) return false; 1456 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1457 } 1458 1459 bool isVecListTwoDByteIndexed() const { 1460 if (!isSingleSpacedVectorIndexed()) return false; 1461 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1462 } 1463 1464 bool isVecListTwoDHWordIndexed() const { 1465 if (!isSingleSpacedVectorIndexed()) return false; 1466 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1467 } 1468 1469 bool isVecListTwoQWordIndexed() const { 1470 if (!isDoubleSpacedVectorIndexed()) return false; 1471 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1472 } 1473 1474 bool isVecListTwoQHWordIndexed() const { 1475 if (!isDoubleSpacedVectorIndexed()) return false; 1476 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1477 } 1478 1479 bool isVecListTwoDWordIndexed() const { 1480 if (!isSingleSpacedVectorIndexed()) return false; 1481 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1482 } 1483 1484 bool isVecListThreeDByteIndexed() const { 1485 if (!isSingleSpacedVectorIndexed()) return false; 1486 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1487 } 1488 1489 bool isVecListThreeDHWordIndexed() const { 1490 if (!isSingleSpacedVectorIndexed()) return false; 1491 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1492 } 1493 1494 bool isVecListThreeQWordIndexed() const { 1495 if (!isDoubleSpacedVectorIndexed()) return false; 1496 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1497 } 1498 1499 bool isVecListThreeQHWordIndexed() const { 1500 if (!isDoubleSpacedVectorIndexed()) return false; 1501 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1502 } 1503 1504 bool isVecListThreeDWordIndexed() const { 1505 if (!isSingleSpacedVectorIndexed()) return false; 1506 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1507 } 1508 1509 bool isVecListFourDByteIndexed() const { 1510 if (!isSingleSpacedVectorIndexed()) return false; 1511 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1512 } 1513 1514 bool isVecListFourDHWordIndexed() const { 1515 if (!isSingleSpacedVectorIndexed()) return false; 1516 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1517 } 1518 1519 bool isVecListFourQWordIndexed() const { 1520 if (!isDoubleSpacedVectorIndexed()) return false; 1521 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1522 } 1523 1524 bool isVecListFourQHWordIndexed() const { 1525 if (!isDoubleSpacedVectorIndexed()) return false; 1526 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1527 } 1528 1529 bool isVecListFourDWordIndexed() const { 1530 if (!isSingleSpacedVectorIndexed()) return false; 1531 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1532 } 1533 1534 bool isVectorIndex8() const { 1535 if (Kind != k_VectorIndex) return false; 1536 return VectorIndex.Val < 8; 1537 } 1538 bool isVectorIndex16() const { 1539 if (Kind != k_VectorIndex) return false; 1540 return VectorIndex.Val < 4; 1541 } 1542 bool isVectorIndex32() const { 1543 if (Kind != k_VectorIndex) return false; 1544 return VectorIndex.Val < 2; 1545 } 1546 1547 bool isNEONi8splat() const { 1548 if (!isImm()) return false; 1549 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1550 // Must be a constant. 1551 if (!CE) return false; 1552 int64_t Value = CE->getValue(); 1553 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1554 // value. 1555 return Value >= 0 && Value < 256; 1556 } 1557 1558 bool isNEONi16splat() const { 1559 if (isNEONByteReplicate(2)) 1560 return false; // Leave that for bytes replication and forbid by default. 1561 if (!isImm()) 1562 return false; 1563 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1564 // Must be a constant. 1565 if (!CE) return false; 1566 unsigned Value = CE->getValue(); 1567 return ARM_AM::isNEONi16splat(Value); 1568 } 1569 1570 bool isNEONi16splatNot() const { 1571 if (!isImm()) 1572 return false; 1573 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1574 // Must be a constant. 1575 if (!CE) return false; 1576 unsigned Value = CE->getValue(); 1577 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1578 } 1579 1580 bool isNEONi32splat() const { 1581 if (isNEONByteReplicate(4)) 1582 return false; // Leave that for bytes replication and forbid by default. 1583 if (!isImm()) 1584 return false; 1585 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1586 // Must be a constant. 1587 if (!CE) return false; 1588 unsigned Value = CE->getValue(); 1589 return ARM_AM::isNEONi32splat(Value); 1590 } 1591 1592 bool isNEONi32splatNot() const { 1593 if (!isImm()) 1594 return false; 1595 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1596 // Must be a constant. 1597 if (!CE) return false; 1598 unsigned Value = CE->getValue(); 1599 return ARM_AM::isNEONi32splat(~Value); 1600 } 1601 1602 bool isNEONByteReplicate(unsigned NumBytes) const { 1603 if (!isImm()) 1604 return false; 1605 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1606 // Must be a constant. 1607 if (!CE) 1608 return false; 1609 int64_t Value = CE->getValue(); 1610 if (!Value) 1611 return false; // Don't bother with zero. 1612 1613 unsigned char B = Value & 0xff; 1614 for (unsigned i = 1; i < NumBytes; ++i) { 1615 Value >>= 8; 1616 if ((Value & 0xff) != B) 1617 return false; 1618 } 1619 return true; 1620 } 1621 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1622 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1623 bool isNEONi32vmov() const { 1624 if (isNEONByteReplicate(4)) 1625 return false; // Let it to be classified as byte-replicate case. 1626 if (!isImm()) 1627 return false; 1628 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1629 // Must be a constant. 1630 if (!CE) 1631 return false; 1632 int64_t Value = CE->getValue(); 1633 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1634 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1635 // FIXME: This is probably wrong and a copy and paste from previous example 1636 return (Value >= 0 && Value < 256) || 1637 (Value >= 0x0100 && Value <= 0xff00) || 1638 (Value >= 0x010000 && Value <= 0xff0000) || 1639 (Value >= 0x01000000 && Value <= 0xff000000) || 1640 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1641 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1642 } 1643 bool isNEONi32vmovNeg() const { 1644 if (!isImm()) return false; 1645 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1646 // Must be a constant. 1647 if (!CE) return false; 1648 int64_t Value = ~CE->getValue(); 1649 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1650 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1651 // FIXME: This is probably wrong and a copy and paste from previous example 1652 return (Value >= 0 && Value < 256) || 1653 (Value >= 0x0100 && Value <= 0xff00) || 1654 (Value >= 0x010000 && Value <= 0xff0000) || 1655 (Value >= 0x01000000 && Value <= 0xff000000) || 1656 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1657 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1658 } 1659 1660 bool isNEONi64splat() const { 1661 if (!isImm()) return false; 1662 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1663 // Must be a constant. 1664 if (!CE) return false; 1665 uint64_t Value = CE->getValue(); 1666 // i64 value with each byte being either 0 or 0xff. 1667 for (unsigned i = 0; i < 8; ++i) 1668 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1669 return true; 1670 } 1671 1672 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1673 // Add as immediates when possible. Null MCExpr = 0. 1674 if (!Expr) 1675 Inst.addOperand(MCOperand::createImm(0)); 1676 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1677 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1678 else 1679 Inst.addOperand(MCOperand::createExpr(Expr)); 1680 } 1681 1682 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1683 assert(N == 2 && "Invalid number of operands!"); 1684 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1685 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1686 Inst.addOperand(MCOperand::createReg(RegNum)); 1687 } 1688 1689 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1690 assert(N == 1 && "Invalid number of operands!"); 1691 Inst.addOperand(MCOperand::createImm(getCoproc())); 1692 } 1693 1694 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1695 assert(N == 1 && "Invalid number of operands!"); 1696 Inst.addOperand(MCOperand::createImm(getCoproc())); 1697 } 1698 1699 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1700 assert(N == 1 && "Invalid number of operands!"); 1701 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1702 } 1703 1704 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1705 assert(N == 1 && "Invalid number of operands!"); 1706 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1707 } 1708 1709 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1710 assert(N == 1 && "Invalid number of operands!"); 1711 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1712 } 1713 1714 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1715 assert(N == 1 && "Invalid number of operands!"); 1716 Inst.addOperand(MCOperand::createReg(getReg())); 1717 } 1718 1719 void addRegOperands(MCInst &Inst, unsigned N) const { 1720 assert(N == 1 && "Invalid number of operands!"); 1721 Inst.addOperand(MCOperand::createReg(getReg())); 1722 } 1723 1724 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1725 assert(N == 3 && "Invalid number of operands!"); 1726 assert(isRegShiftedReg() && 1727 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1728 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1729 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1730 Inst.addOperand(MCOperand::createImm( 1731 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1732 } 1733 1734 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1735 assert(N == 2 && "Invalid number of operands!"); 1736 assert(isRegShiftedImm() && 1737 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1738 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1739 // Shift of #32 is encoded as 0 where permitted 1740 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1741 Inst.addOperand(MCOperand::createImm( 1742 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1743 } 1744 1745 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1746 assert(N == 1 && "Invalid number of operands!"); 1747 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1748 ShifterImm.Imm)); 1749 } 1750 1751 void addRegListOperands(MCInst &Inst, unsigned N) const { 1752 assert(N == 1 && "Invalid number of operands!"); 1753 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1754 for (SmallVectorImpl<unsigned>::const_iterator 1755 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1756 Inst.addOperand(MCOperand::createReg(*I)); 1757 } 1758 1759 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1760 addRegListOperands(Inst, N); 1761 } 1762 1763 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1764 addRegListOperands(Inst, N); 1765 } 1766 1767 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1768 assert(N == 1 && "Invalid number of operands!"); 1769 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1770 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1771 } 1772 1773 void addModImmOperands(MCInst &Inst, unsigned N) const { 1774 assert(N == 1 && "Invalid number of operands!"); 1775 1776 // Support for fixups (MCFixup) 1777 if (isImm()) 1778 return addImmOperands(Inst, N); 1779 1780 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1781 } 1782 1783 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1784 assert(N == 1 && "Invalid number of operands!"); 1785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1786 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1787 Inst.addOperand(MCOperand::createImm(Enc)); 1788 } 1789 1790 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1791 assert(N == 1 && "Invalid number of operands!"); 1792 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1793 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1794 Inst.addOperand(MCOperand::createImm(Enc)); 1795 } 1796 1797 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1798 assert(N == 1 && "Invalid number of operands!"); 1799 // Munge the lsb/width into a bitfield mask. 1800 unsigned lsb = Bitfield.LSB; 1801 unsigned width = Bitfield.Width; 1802 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1803 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1804 (32 - (lsb + width))); 1805 Inst.addOperand(MCOperand::createImm(Mask)); 1806 } 1807 1808 void addImmOperands(MCInst &Inst, unsigned N) const { 1809 assert(N == 1 && "Invalid number of operands!"); 1810 addExpr(Inst, getImm()); 1811 } 1812 1813 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1814 assert(N == 1 && "Invalid number of operands!"); 1815 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1816 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1817 } 1818 1819 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1820 assert(N == 1 && "Invalid number of operands!"); 1821 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1822 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1823 } 1824 1825 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1826 assert(N == 1 && "Invalid number of operands!"); 1827 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1828 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1829 Inst.addOperand(MCOperand::createImm(Val)); 1830 } 1831 1832 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1833 assert(N == 1 && "Invalid number of operands!"); 1834 // FIXME: We really want to scale the value here, but the LDRD/STRD 1835 // instruction don't encode operands that way yet. 1836 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1837 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1838 } 1839 1840 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1841 assert(N == 1 && "Invalid number of operands!"); 1842 // The immediate is scaled by four in the encoding and is stored 1843 // in the MCInst as such. Lop off the low two bits here. 1844 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1845 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1846 } 1847 1848 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1849 assert(N == 1 && "Invalid number of operands!"); 1850 // The immediate is scaled by four in the encoding and is stored 1851 // in the MCInst as such. Lop off the low two bits here. 1852 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1853 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1854 } 1855 1856 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1857 assert(N == 1 && "Invalid number of operands!"); 1858 // The immediate is scaled by four in the encoding and is stored 1859 // in the MCInst as such. Lop off the low two bits here. 1860 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1861 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1862 } 1863 1864 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1865 assert(N == 1 && "Invalid number of operands!"); 1866 // The constant encodes as the immediate-1, and we store in the instruction 1867 // the bits as encoded, so subtract off one here. 1868 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1869 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1870 } 1871 1872 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1873 assert(N == 1 && "Invalid number of operands!"); 1874 // The constant encodes as the immediate-1, and we store in the instruction 1875 // the bits as encoded, so subtract off one here. 1876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1877 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1878 } 1879 1880 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1881 assert(N == 1 && "Invalid number of operands!"); 1882 // The constant encodes as the immediate, except for 32, which encodes as 1883 // zero. 1884 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1885 unsigned Imm = CE->getValue(); 1886 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1887 } 1888 1889 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1890 assert(N == 1 && "Invalid number of operands!"); 1891 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1892 // the instruction as well. 1893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1894 int Val = CE->getValue(); 1895 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1896 } 1897 1898 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1899 assert(N == 1 && "Invalid number of operands!"); 1900 // The operand is actually a t2_so_imm, but we have its bitwise 1901 // negation in the assembly source, so twiddle it here. 1902 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1903 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1904 } 1905 1906 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1907 assert(N == 1 && "Invalid number of operands!"); 1908 // The operand is actually a t2_so_imm, but we have its 1909 // negation in the assembly source, so twiddle it here. 1910 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1911 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1912 } 1913 1914 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1915 assert(N == 1 && "Invalid number of operands!"); 1916 // The operand is actually an imm0_4095, but we have its 1917 // negation in the assembly source, so twiddle it here. 1918 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1919 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1920 } 1921 1922 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1923 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1924 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 1925 return; 1926 } 1927 1928 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1929 assert(SR && "Unknown value type!"); 1930 Inst.addOperand(MCOperand::createExpr(SR)); 1931 } 1932 1933 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 1934 assert(N == 1 && "Invalid number of operands!"); 1935 if (isImm()) { 1936 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1937 if (CE) { 1938 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1939 return; 1940 } 1941 1942 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1943 assert(SR && "Unknown value type!"); 1944 Inst.addOperand(MCOperand::createExpr(SR)); 1945 return; 1946 } 1947 1948 assert(isMem() && "Unknown value type!"); 1949 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 1950 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 1951 } 1952 1953 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 1954 assert(N == 1 && "Invalid number of operands!"); 1955 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 1956 } 1957 1958 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 1959 assert(N == 1 && "Invalid number of operands!"); 1960 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 1961 } 1962 1963 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 1964 assert(N == 1 && "Invalid number of operands!"); 1965 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1966 } 1967 1968 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 1969 assert(N == 1 && "Invalid number of operands!"); 1970 int32_t Imm = Memory.OffsetImm->getValue(); 1971 Inst.addOperand(MCOperand::createImm(Imm)); 1972 } 1973 1974 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 1975 assert(N == 1 && "Invalid number of operands!"); 1976 assert(isImm() && "Not an immediate!"); 1977 1978 // If we have an immediate that's not a constant, treat it as a label 1979 // reference needing a fixup. 1980 if (!isa<MCConstantExpr>(getImm())) { 1981 Inst.addOperand(MCOperand::createExpr(getImm())); 1982 return; 1983 } 1984 1985 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1986 int Val = CE->getValue(); 1987 Inst.addOperand(MCOperand::createImm(Val)); 1988 } 1989 1990 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 1991 assert(N == 2 && "Invalid number of operands!"); 1992 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1993 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 1994 } 1995 1996 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 1997 addAlignedMemoryOperands(Inst, N); 1998 } 1999 2000 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2001 addAlignedMemoryOperands(Inst, N); 2002 } 2003 2004 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2005 addAlignedMemoryOperands(Inst, N); 2006 } 2007 2008 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2009 addAlignedMemoryOperands(Inst, N); 2010 } 2011 2012 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2013 addAlignedMemoryOperands(Inst, N); 2014 } 2015 2016 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2017 addAlignedMemoryOperands(Inst, N); 2018 } 2019 2020 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2021 addAlignedMemoryOperands(Inst, N); 2022 } 2023 2024 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2025 addAlignedMemoryOperands(Inst, N); 2026 } 2027 2028 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2029 addAlignedMemoryOperands(Inst, N); 2030 } 2031 2032 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2033 addAlignedMemoryOperands(Inst, N); 2034 } 2035 2036 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2037 addAlignedMemoryOperands(Inst, N); 2038 } 2039 2040 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2041 assert(N == 3 && "Invalid number of operands!"); 2042 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2043 if (!Memory.OffsetRegNum) { 2044 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2045 // Special case for #-0 2046 if (Val == INT32_MIN) Val = 0; 2047 if (Val < 0) Val = -Val; 2048 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2049 } else { 2050 // For register offset, we encode the shift type and negation flag 2051 // here. 2052 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2053 Memory.ShiftImm, Memory.ShiftType); 2054 } 2055 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2056 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2057 Inst.addOperand(MCOperand::createImm(Val)); 2058 } 2059 2060 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2061 assert(N == 2 && "Invalid number of operands!"); 2062 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2063 assert(CE && "non-constant AM2OffsetImm operand!"); 2064 int32_t Val = CE->getValue(); 2065 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2066 // Special case for #-0 2067 if (Val == INT32_MIN) Val = 0; 2068 if (Val < 0) Val = -Val; 2069 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2070 Inst.addOperand(MCOperand::createReg(0)); 2071 Inst.addOperand(MCOperand::createImm(Val)); 2072 } 2073 2074 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2075 assert(N == 3 && "Invalid number of operands!"); 2076 // If we have an immediate that's not a constant, treat it as a label 2077 // reference needing a fixup. If it is a constant, it's something else 2078 // and we reject it. 2079 if (isImm()) { 2080 Inst.addOperand(MCOperand::createExpr(getImm())); 2081 Inst.addOperand(MCOperand::createReg(0)); 2082 Inst.addOperand(MCOperand::createImm(0)); 2083 return; 2084 } 2085 2086 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2087 if (!Memory.OffsetRegNum) { 2088 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2089 // Special case for #-0 2090 if (Val == INT32_MIN) Val = 0; 2091 if (Val < 0) Val = -Val; 2092 Val = ARM_AM::getAM3Opc(AddSub, Val); 2093 } else { 2094 // For register offset, we encode the shift type and negation flag 2095 // here. 2096 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2097 } 2098 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2099 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2100 Inst.addOperand(MCOperand::createImm(Val)); 2101 } 2102 2103 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2104 assert(N == 2 && "Invalid number of operands!"); 2105 if (Kind == k_PostIndexRegister) { 2106 int32_t Val = 2107 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2108 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2109 Inst.addOperand(MCOperand::createImm(Val)); 2110 return; 2111 } 2112 2113 // Constant offset. 2114 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2115 int32_t Val = CE->getValue(); 2116 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2117 // Special case for #-0 2118 if (Val == INT32_MIN) Val = 0; 2119 if (Val < 0) Val = -Val; 2120 Val = ARM_AM::getAM3Opc(AddSub, Val); 2121 Inst.addOperand(MCOperand::createReg(0)); 2122 Inst.addOperand(MCOperand::createImm(Val)); 2123 } 2124 2125 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2126 assert(N == 2 && "Invalid number of operands!"); 2127 // If we have an immediate that's not a constant, treat it as a label 2128 // reference needing a fixup. If it is a constant, it's something else 2129 // and we reject it. 2130 if (isImm()) { 2131 Inst.addOperand(MCOperand::createExpr(getImm())); 2132 Inst.addOperand(MCOperand::createImm(0)); 2133 return; 2134 } 2135 2136 // The lower two bits are always zero and as such are not encoded. 2137 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2138 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2139 // Special case for #-0 2140 if (Val == INT32_MIN) Val = 0; 2141 if (Val < 0) Val = -Val; 2142 Val = ARM_AM::getAM5Opc(AddSub, Val); 2143 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2144 Inst.addOperand(MCOperand::createImm(Val)); 2145 } 2146 2147 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2148 assert(N == 2 && "Invalid number of operands!"); 2149 // If we have an immediate that's not a constant, treat it as a label 2150 // reference needing a fixup. If it is a constant, it's something else 2151 // and we reject it. 2152 if (isImm()) { 2153 Inst.addOperand(MCOperand::createExpr(getImm())); 2154 Inst.addOperand(MCOperand::createImm(0)); 2155 return; 2156 } 2157 2158 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2159 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2160 Inst.addOperand(MCOperand::createImm(Val)); 2161 } 2162 2163 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2164 assert(N == 2 && "Invalid number of operands!"); 2165 // The lower two bits are always zero and as such are not encoded. 2166 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2167 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2168 Inst.addOperand(MCOperand::createImm(Val)); 2169 } 2170 2171 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2172 assert(N == 2 && "Invalid number of operands!"); 2173 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2174 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2175 Inst.addOperand(MCOperand::createImm(Val)); 2176 } 2177 2178 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2179 addMemImm8OffsetOperands(Inst, N); 2180 } 2181 2182 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2183 addMemImm8OffsetOperands(Inst, N); 2184 } 2185 2186 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2187 assert(N == 2 && "Invalid number of operands!"); 2188 // If this is an immediate, it's a label reference. 2189 if (isImm()) { 2190 addExpr(Inst, getImm()); 2191 Inst.addOperand(MCOperand::createImm(0)); 2192 return; 2193 } 2194 2195 // Otherwise, it's a normal memory reg+offset. 2196 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2197 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2198 Inst.addOperand(MCOperand::createImm(Val)); 2199 } 2200 2201 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2202 assert(N == 2 && "Invalid number of operands!"); 2203 // If this is an immediate, it's a label reference. 2204 if (isImm()) { 2205 addExpr(Inst, getImm()); 2206 Inst.addOperand(MCOperand::createImm(0)); 2207 return; 2208 } 2209 2210 // Otherwise, it's a normal memory reg+offset. 2211 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2212 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2213 Inst.addOperand(MCOperand::createImm(Val)); 2214 } 2215 2216 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2217 assert(N == 2 && "Invalid number of operands!"); 2218 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2219 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2220 } 2221 2222 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2223 assert(N == 2 && "Invalid number of operands!"); 2224 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2225 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2226 } 2227 2228 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2229 assert(N == 3 && "Invalid number of operands!"); 2230 unsigned Val = 2231 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2232 Memory.ShiftImm, Memory.ShiftType); 2233 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2234 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2235 Inst.addOperand(MCOperand::createImm(Val)); 2236 } 2237 2238 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2239 assert(N == 3 && "Invalid number of operands!"); 2240 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2241 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2242 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2243 } 2244 2245 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2246 assert(N == 2 && "Invalid number of operands!"); 2247 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2248 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2249 } 2250 2251 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2252 assert(N == 2 && "Invalid number of operands!"); 2253 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2254 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2255 Inst.addOperand(MCOperand::createImm(Val)); 2256 } 2257 2258 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2259 assert(N == 2 && "Invalid number of operands!"); 2260 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2261 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2262 Inst.addOperand(MCOperand::createImm(Val)); 2263 } 2264 2265 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2266 assert(N == 2 && "Invalid number of operands!"); 2267 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2268 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2269 Inst.addOperand(MCOperand::createImm(Val)); 2270 } 2271 2272 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2273 assert(N == 2 && "Invalid number of operands!"); 2274 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2275 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2276 Inst.addOperand(MCOperand::createImm(Val)); 2277 } 2278 2279 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2280 assert(N == 1 && "Invalid number of operands!"); 2281 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2282 assert(CE && "non-constant post-idx-imm8 operand!"); 2283 int Imm = CE->getValue(); 2284 bool isAdd = Imm >= 0; 2285 if (Imm == INT32_MIN) Imm = 0; 2286 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2287 Inst.addOperand(MCOperand::createImm(Imm)); 2288 } 2289 2290 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2291 assert(N == 1 && "Invalid number of operands!"); 2292 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2293 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2294 int Imm = CE->getValue(); 2295 bool isAdd = Imm >= 0; 2296 if (Imm == INT32_MIN) Imm = 0; 2297 // Immediate is scaled by 4. 2298 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2299 Inst.addOperand(MCOperand::createImm(Imm)); 2300 } 2301 2302 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2303 assert(N == 2 && "Invalid number of operands!"); 2304 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2305 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2306 } 2307 2308 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2309 assert(N == 2 && "Invalid number of operands!"); 2310 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2311 // The sign, shift type, and shift amount are encoded in a single operand 2312 // using the AM2 encoding helpers. 2313 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2314 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2315 PostIdxReg.ShiftTy); 2316 Inst.addOperand(MCOperand::createImm(Imm)); 2317 } 2318 2319 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2320 assert(N == 1 && "Invalid number of operands!"); 2321 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2322 } 2323 2324 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2325 assert(N == 1 && "Invalid number of operands!"); 2326 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2327 } 2328 2329 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2330 assert(N == 1 && "Invalid number of operands!"); 2331 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2332 } 2333 2334 void addVecListOperands(MCInst &Inst, unsigned N) const { 2335 assert(N == 1 && "Invalid number of operands!"); 2336 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2337 } 2338 2339 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2340 assert(N == 2 && "Invalid number of operands!"); 2341 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2342 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2343 } 2344 2345 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2346 assert(N == 1 && "Invalid number of operands!"); 2347 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2348 } 2349 2350 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2351 assert(N == 1 && "Invalid number of operands!"); 2352 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2353 } 2354 2355 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2356 assert(N == 1 && "Invalid number of operands!"); 2357 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2358 } 2359 2360 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2361 assert(N == 1 && "Invalid number of operands!"); 2362 // The immediate encodes the type of constant as well as the value. 2363 // Mask in that this is an i8 splat. 2364 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2365 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2366 } 2367 2368 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2369 assert(N == 1 && "Invalid number of operands!"); 2370 // The immediate encodes the type of constant as well as the value. 2371 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2372 unsigned Value = CE->getValue(); 2373 Value = ARM_AM::encodeNEONi16splat(Value); 2374 Inst.addOperand(MCOperand::createImm(Value)); 2375 } 2376 2377 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2378 assert(N == 1 && "Invalid number of operands!"); 2379 // The immediate encodes the type of constant as well as the value. 2380 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2381 unsigned Value = CE->getValue(); 2382 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2383 Inst.addOperand(MCOperand::createImm(Value)); 2384 } 2385 2386 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2387 assert(N == 1 && "Invalid number of operands!"); 2388 // The immediate encodes the type of constant as well as the value. 2389 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2390 unsigned Value = CE->getValue(); 2391 Value = ARM_AM::encodeNEONi32splat(Value); 2392 Inst.addOperand(MCOperand::createImm(Value)); 2393 } 2394 2395 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2396 assert(N == 1 && "Invalid number of operands!"); 2397 // The immediate encodes the type of constant as well as the value. 2398 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2399 unsigned Value = CE->getValue(); 2400 Value = ARM_AM::encodeNEONi32splat(~Value); 2401 Inst.addOperand(MCOperand::createImm(Value)); 2402 } 2403 2404 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2405 assert(N == 1 && "Invalid number of operands!"); 2406 // The immediate encodes the type of constant as well as the value. 2407 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2408 unsigned Value = CE->getValue(); 2409 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2410 Inst.getOpcode() == ARM::VMOVv16i8) && 2411 "All vmvn instructions that wants to replicate non-zero byte " 2412 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2413 unsigned B = ((~Value) & 0xff); 2414 B |= 0xe00; // cmode = 0b1110 2415 Inst.addOperand(MCOperand::createImm(B)); 2416 } 2417 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2418 assert(N == 1 && "Invalid number of operands!"); 2419 // The immediate encodes the type of constant as well as the value. 2420 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2421 unsigned Value = CE->getValue(); 2422 if (Value >= 256 && Value <= 0xffff) 2423 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2424 else if (Value > 0xffff && Value <= 0xffffff) 2425 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2426 else if (Value > 0xffffff) 2427 Value = (Value >> 24) | 0x600; 2428 Inst.addOperand(MCOperand::createImm(Value)); 2429 } 2430 2431 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2432 assert(N == 1 && "Invalid number of operands!"); 2433 // The immediate encodes the type of constant as well as the value. 2434 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2435 unsigned Value = CE->getValue(); 2436 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2437 Inst.getOpcode() == ARM::VMOVv16i8) && 2438 "All instructions that wants to replicate non-zero byte " 2439 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2440 unsigned B = Value & 0xff; 2441 B |= 0xe00; // cmode = 0b1110 2442 Inst.addOperand(MCOperand::createImm(B)); 2443 } 2444 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2445 assert(N == 1 && "Invalid number of operands!"); 2446 // The immediate encodes the type of constant as well as the value. 2447 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2448 unsigned Value = ~CE->getValue(); 2449 if (Value >= 256 && Value <= 0xffff) 2450 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2451 else if (Value > 0xffff && Value <= 0xffffff) 2452 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2453 else if (Value > 0xffffff) 2454 Value = (Value >> 24) | 0x600; 2455 Inst.addOperand(MCOperand::createImm(Value)); 2456 } 2457 2458 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2459 assert(N == 1 && "Invalid number of operands!"); 2460 // The immediate encodes the type of constant as well as the value. 2461 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2462 uint64_t Value = CE->getValue(); 2463 unsigned Imm = 0; 2464 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2465 Imm |= (Value & 1) << i; 2466 } 2467 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2468 } 2469 2470 void print(raw_ostream &OS) const override; 2471 2472 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2473 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2474 Op->ITMask.Mask = Mask; 2475 Op->StartLoc = S; 2476 Op->EndLoc = S; 2477 return Op; 2478 } 2479 2480 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2481 SMLoc S) { 2482 auto Op = make_unique<ARMOperand>(k_CondCode); 2483 Op->CC.Val = CC; 2484 Op->StartLoc = S; 2485 Op->EndLoc = S; 2486 return Op; 2487 } 2488 2489 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2490 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2491 Op->Cop.Val = CopVal; 2492 Op->StartLoc = S; 2493 Op->EndLoc = S; 2494 return Op; 2495 } 2496 2497 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2498 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2499 Op->Cop.Val = CopVal; 2500 Op->StartLoc = S; 2501 Op->EndLoc = S; 2502 return Op; 2503 } 2504 2505 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2506 SMLoc E) { 2507 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2508 Op->Cop.Val = Val; 2509 Op->StartLoc = S; 2510 Op->EndLoc = E; 2511 return Op; 2512 } 2513 2514 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2515 auto Op = make_unique<ARMOperand>(k_CCOut); 2516 Op->Reg.RegNum = RegNum; 2517 Op->StartLoc = S; 2518 Op->EndLoc = S; 2519 return Op; 2520 } 2521 2522 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2523 auto Op = make_unique<ARMOperand>(k_Token); 2524 Op->Tok.Data = Str.data(); 2525 Op->Tok.Length = Str.size(); 2526 Op->StartLoc = S; 2527 Op->EndLoc = S; 2528 return Op; 2529 } 2530 2531 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2532 SMLoc E) { 2533 auto Op = make_unique<ARMOperand>(k_Register); 2534 Op->Reg.RegNum = RegNum; 2535 Op->StartLoc = S; 2536 Op->EndLoc = E; 2537 return Op; 2538 } 2539 2540 static std::unique_ptr<ARMOperand> 2541 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2542 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2543 SMLoc E) { 2544 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2545 Op->RegShiftedReg.ShiftTy = ShTy; 2546 Op->RegShiftedReg.SrcReg = SrcReg; 2547 Op->RegShiftedReg.ShiftReg = ShiftReg; 2548 Op->RegShiftedReg.ShiftImm = ShiftImm; 2549 Op->StartLoc = S; 2550 Op->EndLoc = E; 2551 return Op; 2552 } 2553 2554 static std::unique_ptr<ARMOperand> 2555 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2556 unsigned ShiftImm, SMLoc S, SMLoc E) { 2557 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2558 Op->RegShiftedImm.ShiftTy = ShTy; 2559 Op->RegShiftedImm.SrcReg = SrcReg; 2560 Op->RegShiftedImm.ShiftImm = ShiftImm; 2561 Op->StartLoc = S; 2562 Op->EndLoc = E; 2563 return Op; 2564 } 2565 2566 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2567 SMLoc S, SMLoc E) { 2568 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2569 Op->ShifterImm.isASR = isASR; 2570 Op->ShifterImm.Imm = Imm; 2571 Op->StartLoc = S; 2572 Op->EndLoc = E; 2573 return Op; 2574 } 2575 2576 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2577 SMLoc E) { 2578 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2579 Op->RotImm.Imm = Imm; 2580 Op->StartLoc = S; 2581 Op->EndLoc = E; 2582 return Op; 2583 } 2584 2585 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2586 SMLoc S, SMLoc E) { 2587 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2588 Op->ModImm.Bits = Bits; 2589 Op->ModImm.Rot = Rot; 2590 Op->StartLoc = S; 2591 Op->EndLoc = E; 2592 return Op; 2593 } 2594 2595 static std::unique_ptr<ARMOperand> 2596 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2597 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2598 Op->Bitfield.LSB = LSB; 2599 Op->Bitfield.Width = Width; 2600 Op->StartLoc = S; 2601 Op->EndLoc = E; 2602 return Op; 2603 } 2604 2605 static std::unique_ptr<ARMOperand> 2606 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2607 SMLoc StartLoc, SMLoc EndLoc) { 2608 assert (Regs.size() > 0 && "RegList contains no registers?"); 2609 KindTy Kind = k_RegisterList; 2610 2611 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2612 Kind = k_DPRRegisterList; 2613 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2614 contains(Regs.front().second)) 2615 Kind = k_SPRRegisterList; 2616 2617 // Sort based on the register encoding values. 2618 array_pod_sort(Regs.begin(), Regs.end()); 2619 2620 auto Op = make_unique<ARMOperand>(Kind); 2621 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2622 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2623 Op->Registers.push_back(I->second); 2624 Op->StartLoc = StartLoc; 2625 Op->EndLoc = EndLoc; 2626 return Op; 2627 } 2628 2629 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2630 unsigned Count, 2631 bool isDoubleSpaced, 2632 SMLoc S, SMLoc E) { 2633 auto Op = make_unique<ARMOperand>(k_VectorList); 2634 Op->VectorList.RegNum = RegNum; 2635 Op->VectorList.Count = Count; 2636 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2637 Op->StartLoc = S; 2638 Op->EndLoc = E; 2639 return Op; 2640 } 2641 2642 static std::unique_ptr<ARMOperand> 2643 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2644 SMLoc S, SMLoc E) { 2645 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2646 Op->VectorList.RegNum = RegNum; 2647 Op->VectorList.Count = Count; 2648 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2649 Op->StartLoc = S; 2650 Op->EndLoc = E; 2651 return Op; 2652 } 2653 2654 static std::unique_ptr<ARMOperand> 2655 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2656 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2657 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2658 Op->VectorList.RegNum = RegNum; 2659 Op->VectorList.Count = Count; 2660 Op->VectorList.LaneIndex = Index; 2661 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2662 Op->StartLoc = S; 2663 Op->EndLoc = E; 2664 return Op; 2665 } 2666 2667 static std::unique_ptr<ARMOperand> 2668 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2669 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2670 Op->VectorIndex.Val = Idx; 2671 Op->StartLoc = S; 2672 Op->EndLoc = E; 2673 return Op; 2674 } 2675 2676 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2677 SMLoc E) { 2678 auto Op = make_unique<ARMOperand>(k_Immediate); 2679 Op->Imm.Val = Val; 2680 Op->StartLoc = S; 2681 Op->EndLoc = E; 2682 return Op; 2683 } 2684 2685 static std::unique_ptr<ARMOperand> 2686 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2687 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2688 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2689 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2690 auto Op = make_unique<ARMOperand>(k_Memory); 2691 Op->Memory.BaseRegNum = BaseRegNum; 2692 Op->Memory.OffsetImm = OffsetImm; 2693 Op->Memory.OffsetRegNum = OffsetRegNum; 2694 Op->Memory.ShiftType = ShiftType; 2695 Op->Memory.ShiftImm = ShiftImm; 2696 Op->Memory.Alignment = Alignment; 2697 Op->Memory.isNegative = isNegative; 2698 Op->StartLoc = S; 2699 Op->EndLoc = E; 2700 Op->AlignmentLoc = AlignmentLoc; 2701 return Op; 2702 } 2703 2704 static std::unique_ptr<ARMOperand> 2705 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2706 unsigned ShiftImm, SMLoc S, SMLoc E) { 2707 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2708 Op->PostIdxReg.RegNum = RegNum; 2709 Op->PostIdxReg.isAdd = isAdd; 2710 Op->PostIdxReg.ShiftTy = ShiftTy; 2711 Op->PostIdxReg.ShiftImm = ShiftImm; 2712 Op->StartLoc = S; 2713 Op->EndLoc = E; 2714 return Op; 2715 } 2716 2717 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2718 SMLoc S) { 2719 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2720 Op->MBOpt.Val = Opt; 2721 Op->StartLoc = S; 2722 Op->EndLoc = S; 2723 return Op; 2724 } 2725 2726 static std::unique_ptr<ARMOperand> 2727 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2728 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2729 Op->ISBOpt.Val = Opt; 2730 Op->StartLoc = S; 2731 Op->EndLoc = S; 2732 return Op; 2733 } 2734 2735 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2736 SMLoc S) { 2737 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2738 Op->IFlags.Val = IFlags; 2739 Op->StartLoc = S; 2740 Op->EndLoc = S; 2741 return Op; 2742 } 2743 2744 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2745 auto Op = make_unique<ARMOperand>(k_MSRMask); 2746 Op->MMask.Val = MMask; 2747 Op->StartLoc = S; 2748 Op->EndLoc = S; 2749 return Op; 2750 } 2751 2752 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2753 auto Op = make_unique<ARMOperand>(k_BankedReg); 2754 Op->BankedReg.Val = Reg; 2755 Op->StartLoc = S; 2756 Op->EndLoc = S; 2757 return Op; 2758 } 2759 }; 2760 2761 } // end anonymous namespace. 2762 2763 void ARMOperand::print(raw_ostream &OS) const { 2764 switch (Kind) { 2765 case k_CondCode: 2766 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2767 break; 2768 case k_CCOut: 2769 OS << "<ccout " << getReg() << ">"; 2770 break; 2771 case k_ITCondMask: { 2772 static const char *const MaskStr[] = { 2773 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2774 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2775 }; 2776 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2777 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2778 break; 2779 } 2780 case k_CoprocNum: 2781 OS << "<coprocessor number: " << getCoproc() << ">"; 2782 break; 2783 case k_CoprocReg: 2784 OS << "<coprocessor register: " << getCoproc() << ">"; 2785 break; 2786 case k_CoprocOption: 2787 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2788 break; 2789 case k_MSRMask: 2790 OS << "<mask: " << getMSRMask() << ">"; 2791 break; 2792 case k_BankedReg: 2793 OS << "<banked reg: " << getBankedReg() << ">"; 2794 break; 2795 case k_Immediate: 2796 OS << *getImm(); 2797 break; 2798 case k_MemBarrierOpt: 2799 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2800 break; 2801 case k_InstSyncBarrierOpt: 2802 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2803 break; 2804 case k_Memory: 2805 OS << "<memory " 2806 << " base:" << Memory.BaseRegNum; 2807 OS << ">"; 2808 break; 2809 case k_PostIndexRegister: 2810 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2811 << PostIdxReg.RegNum; 2812 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2813 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2814 << PostIdxReg.ShiftImm; 2815 OS << ">"; 2816 break; 2817 case k_ProcIFlags: { 2818 OS << "<ARM_PROC::"; 2819 unsigned IFlags = getProcIFlags(); 2820 for (int i=2; i >= 0; --i) 2821 if (IFlags & (1 << i)) 2822 OS << ARM_PROC::IFlagsToString(1 << i); 2823 OS << ">"; 2824 break; 2825 } 2826 case k_Register: 2827 OS << "<register " << getReg() << ">"; 2828 break; 2829 case k_ShifterImmediate: 2830 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2831 << " #" << ShifterImm.Imm << ">"; 2832 break; 2833 case k_ShiftedRegister: 2834 OS << "<so_reg_reg " 2835 << RegShiftedReg.SrcReg << " " 2836 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2837 << " " << RegShiftedReg.ShiftReg << ">"; 2838 break; 2839 case k_ShiftedImmediate: 2840 OS << "<so_reg_imm " 2841 << RegShiftedImm.SrcReg << " " 2842 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2843 << " #" << RegShiftedImm.ShiftImm << ">"; 2844 break; 2845 case k_RotateImmediate: 2846 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2847 break; 2848 case k_ModifiedImmediate: 2849 OS << "<mod_imm #" << ModImm.Bits << ", #" 2850 << ModImm.Rot << ")>"; 2851 break; 2852 case k_BitfieldDescriptor: 2853 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2854 << ", width: " << Bitfield.Width << ">"; 2855 break; 2856 case k_RegisterList: 2857 case k_DPRRegisterList: 2858 case k_SPRRegisterList: { 2859 OS << "<register_list "; 2860 2861 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2862 for (SmallVectorImpl<unsigned>::const_iterator 2863 I = RegList.begin(), E = RegList.end(); I != E; ) { 2864 OS << *I; 2865 if (++I < E) OS << ", "; 2866 } 2867 2868 OS << ">"; 2869 break; 2870 } 2871 case k_VectorList: 2872 OS << "<vector_list " << VectorList.Count << " * " 2873 << VectorList.RegNum << ">"; 2874 break; 2875 case k_VectorListAllLanes: 2876 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2877 << VectorList.RegNum << ">"; 2878 break; 2879 case k_VectorListIndexed: 2880 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2881 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2882 break; 2883 case k_Token: 2884 OS << "'" << getToken() << "'"; 2885 break; 2886 case k_VectorIndex: 2887 OS << "<vectorindex " << getVectorIndex() << ">"; 2888 break; 2889 } 2890 } 2891 2892 /// @name Auto-generated Match Functions 2893 /// { 2894 2895 static unsigned MatchRegisterName(StringRef Name); 2896 2897 /// } 2898 2899 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2900 SMLoc &StartLoc, SMLoc &EndLoc) { 2901 const AsmToken &Tok = getParser().getTok(); 2902 StartLoc = Tok.getLoc(); 2903 EndLoc = Tok.getEndLoc(); 2904 RegNo = tryParseRegister(); 2905 2906 return (RegNo == (unsigned)-1); 2907 } 2908 2909 /// Try to parse a register name. The token must be an Identifier when called, 2910 /// and if it is a register name the token is eaten and the register number is 2911 /// returned. Otherwise return -1. 2912 /// 2913 int ARMAsmParser::tryParseRegister() { 2914 MCAsmParser &Parser = getParser(); 2915 const AsmToken &Tok = Parser.getTok(); 2916 if (Tok.isNot(AsmToken::Identifier)) return -1; 2917 2918 std::string lowerCase = Tok.getString().lower(); 2919 unsigned RegNum = MatchRegisterName(lowerCase); 2920 if (!RegNum) { 2921 RegNum = StringSwitch<unsigned>(lowerCase) 2922 .Case("r13", ARM::SP) 2923 .Case("r14", ARM::LR) 2924 .Case("r15", ARM::PC) 2925 .Case("ip", ARM::R12) 2926 // Additional register name aliases for 'gas' compatibility. 2927 .Case("a1", ARM::R0) 2928 .Case("a2", ARM::R1) 2929 .Case("a3", ARM::R2) 2930 .Case("a4", ARM::R3) 2931 .Case("v1", ARM::R4) 2932 .Case("v2", ARM::R5) 2933 .Case("v3", ARM::R6) 2934 .Case("v4", ARM::R7) 2935 .Case("v5", ARM::R8) 2936 .Case("v6", ARM::R9) 2937 .Case("v7", ARM::R10) 2938 .Case("v8", ARM::R11) 2939 .Case("sb", ARM::R9) 2940 .Case("sl", ARM::R10) 2941 .Case("fp", ARM::R11) 2942 .Default(0); 2943 } 2944 if (!RegNum) { 2945 // Check for aliases registered via .req. Canonicalize to lower case. 2946 // That's more consistent since register names are case insensitive, and 2947 // it's how the original entry was passed in from MC/MCParser/AsmParser. 2948 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 2949 // If no match, return failure. 2950 if (Entry == RegisterReqs.end()) 2951 return -1; 2952 Parser.Lex(); // Eat identifier token. 2953 return Entry->getValue(); 2954 } 2955 2956 // Some FPUs only have 16 D registers, so D16-D31 are invalid 2957 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 2958 return -1; 2959 2960 Parser.Lex(); // Eat identifier token. 2961 2962 return RegNum; 2963 } 2964 2965 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 2966 // If a recoverable error occurs, return 1. If an irrecoverable error 2967 // occurs, return -1. An irrecoverable error is one where tokens have been 2968 // consumed in the process of trying to parse the shifter (i.e., when it is 2969 // indeed a shifter operand, but malformed). 2970 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 2971 MCAsmParser &Parser = getParser(); 2972 SMLoc S = Parser.getTok().getLoc(); 2973 const AsmToken &Tok = Parser.getTok(); 2974 if (Tok.isNot(AsmToken::Identifier)) 2975 return -1; 2976 2977 std::string lowerCase = Tok.getString().lower(); 2978 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 2979 .Case("asl", ARM_AM::lsl) 2980 .Case("lsl", ARM_AM::lsl) 2981 .Case("lsr", ARM_AM::lsr) 2982 .Case("asr", ARM_AM::asr) 2983 .Case("ror", ARM_AM::ror) 2984 .Case("rrx", ARM_AM::rrx) 2985 .Default(ARM_AM::no_shift); 2986 2987 if (ShiftTy == ARM_AM::no_shift) 2988 return 1; 2989 2990 Parser.Lex(); // Eat the operator. 2991 2992 // The source register for the shift has already been added to the 2993 // operand list, so we need to pop it off and combine it into the shifted 2994 // register operand instead. 2995 std::unique_ptr<ARMOperand> PrevOp( 2996 (ARMOperand *)Operands.pop_back_val().release()); 2997 if (!PrevOp->isReg()) 2998 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 2999 int SrcReg = PrevOp->getReg(); 3000 3001 SMLoc EndLoc; 3002 int64_t Imm = 0; 3003 int ShiftReg = 0; 3004 if (ShiftTy == ARM_AM::rrx) { 3005 // RRX Doesn't have an explicit shift amount. The encoder expects 3006 // the shift register to be the same as the source register. Seems odd, 3007 // but OK. 3008 ShiftReg = SrcReg; 3009 } else { 3010 // Figure out if this is shifted by a constant or a register (for non-RRX). 3011 if (Parser.getTok().is(AsmToken::Hash) || 3012 Parser.getTok().is(AsmToken::Dollar)) { 3013 Parser.Lex(); // Eat hash. 3014 SMLoc ImmLoc = Parser.getTok().getLoc(); 3015 const MCExpr *ShiftExpr = nullptr; 3016 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3017 Error(ImmLoc, "invalid immediate shift value"); 3018 return -1; 3019 } 3020 // The expression must be evaluatable as an immediate. 3021 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3022 if (!CE) { 3023 Error(ImmLoc, "invalid immediate shift value"); 3024 return -1; 3025 } 3026 // Range check the immediate. 3027 // lsl, ror: 0 <= imm <= 31 3028 // lsr, asr: 0 <= imm <= 32 3029 Imm = CE->getValue(); 3030 if (Imm < 0 || 3031 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3032 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3033 Error(ImmLoc, "immediate shift value out of range"); 3034 return -1; 3035 } 3036 // shift by zero is a nop. Always send it through as lsl. 3037 // ('as' compatibility) 3038 if (Imm == 0) 3039 ShiftTy = ARM_AM::lsl; 3040 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3041 SMLoc L = Parser.getTok().getLoc(); 3042 EndLoc = Parser.getTok().getEndLoc(); 3043 ShiftReg = tryParseRegister(); 3044 if (ShiftReg == -1) { 3045 Error(L, "expected immediate or register in shift operand"); 3046 return -1; 3047 } 3048 } else { 3049 Error(Parser.getTok().getLoc(), 3050 "expected immediate or register in shift operand"); 3051 return -1; 3052 } 3053 } 3054 3055 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3056 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3057 ShiftReg, Imm, 3058 S, EndLoc)); 3059 else 3060 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3061 S, EndLoc)); 3062 3063 return 0; 3064 } 3065 3066 3067 /// Try to parse a register name. The token must be an Identifier when called. 3068 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3069 /// if there is a "writeback". 'true' if it's not a register. 3070 /// 3071 /// TODO this is likely to change to allow different register types and or to 3072 /// parse for a specific register type. 3073 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3074 MCAsmParser &Parser = getParser(); 3075 const AsmToken &RegTok = Parser.getTok(); 3076 int RegNo = tryParseRegister(); 3077 if (RegNo == -1) 3078 return true; 3079 3080 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3081 RegTok.getEndLoc())); 3082 3083 const AsmToken &ExclaimTok = Parser.getTok(); 3084 if (ExclaimTok.is(AsmToken::Exclaim)) { 3085 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3086 ExclaimTok.getLoc())); 3087 Parser.Lex(); // Eat exclaim token 3088 return false; 3089 } 3090 3091 // Also check for an index operand. This is only legal for vector registers, 3092 // but that'll get caught OK in operand matching, so we don't need to 3093 // explicitly filter everything else out here. 3094 if (Parser.getTok().is(AsmToken::LBrac)) { 3095 SMLoc SIdx = Parser.getTok().getLoc(); 3096 Parser.Lex(); // Eat left bracket token. 3097 3098 const MCExpr *ImmVal; 3099 if (getParser().parseExpression(ImmVal)) 3100 return true; 3101 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3102 if (!MCE) 3103 return TokError("immediate value expected for vector index"); 3104 3105 if (Parser.getTok().isNot(AsmToken::RBrac)) 3106 return Error(Parser.getTok().getLoc(), "']' expected"); 3107 3108 SMLoc E = Parser.getTok().getEndLoc(); 3109 Parser.Lex(); // Eat right bracket token. 3110 3111 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3112 SIdx, E, 3113 getContext())); 3114 } 3115 3116 return false; 3117 } 3118 3119 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3120 /// instruction with a symbolic operand name. 3121 /// We accept "crN" syntax for GAS compatibility. 3122 /// <operand-name> ::= <prefix><number> 3123 /// If CoprocOp is 'c', then: 3124 /// <prefix> ::= c | cr 3125 /// If CoprocOp is 'p', then : 3126 /// <prefix> ::= p 3127 /// <number> ::= integer in range [0, 15] 3128 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3129 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3130 // but efficient. 3131 if (Name.size() < 2 || Name[0] != CoprocOp) 3132 return -1; 3133 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3134 3135 switch (Name.size()) { 3136 default: return -1; 3137 case 1: 3138 switch (Name[0]) { 3139 default: return -1; 3140 case '0': return 0; 3141 case '1': return 1; 3142 case '2': return 2; 3143 case '3': return 3; 3144 case '4': return 4; 3145 case '5': return 5; 3146 case '6': return 6; 3147 case '7': return 7; 3148 case '8': return 8; 3149 case '9': return 9; 3150 } 3151 case 2: 3152 if (Name[0] != '1') 3153 return -1; 3154 switch (Name[1]) { 3155 default: return -1; 3156 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3157 // However, old cores (v5/v6) did use them in that way. 3158 case '0': return 10; 3159 case '1': return 11; 3160 case '2': return 12; 3161 case '3': return 13; 3162 case '4': return 14; 3163 case '5': return 15; 3164 } 3165 } 3166 } 3167 3168 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3169 ARMAsmParser::OperandMatchResultTy 3170 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3171 MCAsmParser &Parser = getParser(); 3172 SMLoc S = Parser.getTok().getLoc(); 3173 const AsmToken &Tok = Parser.getTok(); 3174 if (!Tok.is(AsmToken::Identifier)) 3175 return MatchOperand_NoMatch; 3176 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3177 .Case("eq", ARMCC::EQ) 3178 .Case("ne", ARMCC::NE) 3179 .Case("hs", ARMCC::HS) 3180 .Case("cs", ARMCC::HS) 3181 .Case("lo", ARMCC::LO) 3182 .Case("cc", ARMCC::LO) 3183 .Case("mi", ARMCC::MI) 3184 .Case("pl", ARMCC::PL) 3185 .Case("vs", ARMCC::VS) 3186 .Case("vc", ARMCC::VC) 3187 .Case("hi", ARMCC::HI) 3188 .Case("ls", ARMCC::LS) 3189 .Case("ge", ARMCC::GE) 3190 .Case("lt", ARMCC::LT) 3191 .Case("gt", ARMCC::GT) 3192 .Case("le", ARMCC::LE) 3193 .Case("al", ARMCC::AL) 3194 .Default(~0U); 3195 if (CC == ~0U) 3196 return MatchOperand_NoMatch; 3197 Parser.Lex(); // Eat the token. 3198 3199 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3200 3201 return MatchOperand_Success; 3202 } 3203 3204 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3205 /// token must be an Identifier when called, and if it is a coprocessor 3206 /// number, the token is eaten and the operand is added to the operand list. 3207 ARMAsmParser::OperandMatchResultTy 3208 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3209 MCAsmParser &Parser = getParser(); 3210 SMLoc S = Parser.getTok().getLoc(); 3211 const AsmToken &Tok = Parser.getTok(); 3212 if (Tok.isNot(AsmToken::Identifier)) 3213 return MatchOperand_NoMatch; 3214 3215 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3216 if (Num == -1) 3217 return MatchOperand_NoMatch; 3218 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3219 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3220 return MatchOperand_NoMatch; 3221 3222 Parser.Lex(); // Eat identifier token. 3223 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3224 return MatchOperand_Success; 3225 } 3226 3227 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3228 /// token must be an Identifier when called, and if it is a coprocessor 3229 /// number, the token is eaten and the operand is added to the operand list. 3230 ARMAsmParser::OperandMatchResultTy 3231 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3232 MCAsmParser &Parser = getParser(); 3233 SMLoc S = Parser.getTok().getLoc(); 3234 const AsmToken &Tok = Parser.getTok(); 3235 if (Tok.isNot(AsmToken::Identifier)) 3236 return MatchOperand_NoMatch; 3237 3238 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3239 if (Reg == -1) 3240 return MatchOperand_NoMatch; 3241 3242 Parser.Lex(); // Eat identifier token. 3243 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3244 return MatchOperand_Success; 3245 } 3246 3247 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3248 /// coproc_option : '{' imm0_255 '}' 3249 ARMAsmParser::OperandMatchResultTy 3250 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3251 MCAsmParser &Parser = getParser(); 3252 SMLoc S = Parser.getTok().getLoc(); 3253 3254 // If this isn't a '{', this isn't a coprocessor immediate operand. 3255 if (Parser.getTok().isNot(AsmToken::LCurly)) 3256 return MatchOperand_NoMatch; 3257 Parser.Lex(); // Eat the '{' 3258 3259 const MCExpr *Expr; 3260 SMLoc Loc = Parser.getTok().getLoc(); 3261 if (getParser().parseExpression(Expr)) { 3262 Error(Loc, "illegal expression"); 3263 return MatchOperand_ParseFail; 3264 } 3265 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3266 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3267 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3268 return MatchOperand_ParseFail; 3269 } 3270 int Val = CE->getValue(); 3271 3272 // Check for and consume the closing '}' 3273 if (Parser.getTok().isNot(AsmToken::RCurly)) 3274 return MatchOperand_ParseFail; 3275 SMLoc E = Parser.getTok().getEndLoc(); 3276 Parser.Lex(); // Eat the '}' 3277 3278 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3279 return MatchOperand_Success; 3280 } 3281 3282 // For register list parsing, we need to map from raw GPR register numbering 3283 // to the enumeration values. The enumeration values aren't sorted by 3284 // register number due to our using "sp", "lr" and "pc" as canonical names. 3285 static unsigned getNextRegister(unsigned Reg) { 3286 // If this is a GPR, we need to do it manually, otherwise we can rely 3287 // on the sort ordering of the enumeration since the other reg-classes 3288 // are sane. 3289 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3290 return Reg + 1; 3291 switch(Reg) { 3292 default: llvm_unreachable("Invalid GPR number!"); 3293 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3294 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3295 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3296 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3297 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3298 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3299 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3300 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3301 } 3302 } 3303 3304 // Return the low-subreg of a given Q register. 3305 static unsigned getDRegFromQReg(unsigned QReg) { 3306 switch (QReg) { 3307 default: llvm_unreachable("expected a Q register!"); 3308 case ARM::Q0: return ARM::D0; 3309 case ARM::Q1: return ARM::D2; 3310 case ARM::Q2: return ARM::D4; 3311 case ARM::Q3: return ARM::D6; 3312 case ARM::Q4: return ARM::D8; 3313 case ARM::Q5: return ARM::D10; 3314 case ARM::Q6: return ARM::D12; 3315 case ARM::Q7: return ARM::D14; 3316 case ARM::Q8: return ARM::D16; 3317 case ARM::Q9: return ARM::D18; 3318 case ARM::Q10: return ARM::D20; 3319 case ARM::Q11: return ARM::D22; 3320 case ARM::Q12: return ARM::D24; 3321 case ARM::Q13: return ARM::D26; 3322 case ARM::Q14: return ARM::D28; 3323 case ARM::Q15: return ARM::D30; 3324 } 3325 } 3326 3327 /// Parse a register list. 3328 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3329 MCAsmParser &Parser = getParser(); 3330 assert(Parser.getTok().is(AsmToken::LCurly) && 3331 "Token is not a Left Curly Brace"); 3332 SMLoc S = Parser.getTok().getLoc(); 3333 Parser.Lex(); // Eat '{' token. 3334 SMLoc RegLoc = Parser.getTok().getLoc(); 3335 3336 // Check the first register in the list to see what register class 3337 // this is a list of. 3338 int Reg = tryParseRegister(); 3339 if (Reg == -1) 3340 return Error(RegLoc, "register expected"); 3341 3342 // The reglist instructions have at most 16 registers, so reserve 3343 // space for that many. 3344 int EReg = 0; 3345 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3346 3347 // Allow Q regs and just interpret them as the two D sub-registers. 3348 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3349 Reg = getDRegFromQReg(Reg); 3350 EReg = MRI->getEncodingValue(Reg); 3351 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3352 ++Reg; 3353 } 3354 const MCRegisterClass *RC; 3355 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3356 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3357 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3358 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3359 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3360 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3361 else 3362 return Error(RegLoc, "invalid register in register list"); 3363 3364 // Store the register. 3365 EReg = MRI->getEncodingValue(Reg); 3366 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3367 3368 // This starts immediately after the first register token in the list, 3369 // so we can see either a comma or a minus (range separator) as a legal 3370 // next token. 3371 while (Parser.getTok().is(AsmToken::Comma) || 3372 Parser.getTok().is(AsmToken::Minus)) { 3373 if (Parser.getTok().is(AsmToken::Minus)) { 3374 Parser.Lex(); // Eat the minus. 3375 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3376 int EndReg = tryParseRegister(); 3377 if (EndReg == -1) 3378 return Error(AfterMinusLoc, "register expected"); 3379 // Allow Q regs and just interpret them as the two D sub-registers. 3380 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3381 EndReg = getDRegFromQReg(EndReg) + 1; 3382 // If the register is the same as the start reg, there's nothing 3383 // more to do. 3384 if (Reg == EndReg) 3385 continue; 3386 // The register must be in the same register class as the first. 3387 if (!RC->contains(EndReg)) 3388 return Error(AfterMinusLoc, "invalid register in register list"); 3389 // Ranges must go from low to high. 3390 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3391 return Error(AfterMinusLoc, "bad range in register list"); 3392 3393 // Add all the registers in the range to the register list. 3394 while (Reg != EndReg) { 3395 Reg = getNextRegister(Reg); 3396 EReg = MRI->getEncodingValue(Reg); 3397 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3398 } 3399 continue; 3400 } 3401 Parser.Lex(); // Eat the comma. 3402 RegLoc = Parser.getTok().getLoc(); 3403 int OldReg = Reg; 3404 const AsmToken RegTok = Parser.getTok(); 3405 Reg = tryParseRegister(); 3406 if (Reg == -1) 3407 return Error(RegLoc, "register expected"); 3408 // Allow Q regs and just interpret them as the two D sub-registers. 3409 bool isQReg = false; 3410 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3411 Reg = getDRegFromQReg(Reg); 3412 isQReg = true; 3413 } 3414 // The register must be in the same register class as the first. 3415 if (!RC->contains(Reg)) 3416 return Error(RegLoc, "invalid register in register list"); 3417 // List must be monotonically increasing. 3418 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3419 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3420 Warning(RegLoc, "register list not in ascending order"); 3421 else 3422 return Error(RegLoc, "register list not in ascending order"); 3423 } 3424 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3425 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3426 ") in register list"); 3427 continue; 3428 } 3429 // VFP register lists must also be contiguous. 3430 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3431 Reg != OldReg + 1) 3432 return Error(RegLoc, "non-contiguous register range"); 3433 EReg = MRI->getEncodingValue(Reg); 3434 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3435 if (isQReg) { 3436 EReg = MRI->getEncodingValue(++Reg); 3437 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3438 } 3439 } 3440 3441 if (Parser.getTok().isNot(AsmToken::RCurly)) 3442 return Error(Parser.getTok().getLoc(), "'}' expected"); 3443 SMLoc E = Parser.getTok().getEndLoc(); 3444 Parser.Lex(); // Eat '}' token. 3445 3446 // Push the register list operand. 3447 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3448 3449 // The ARM system instruction variants for LDM/STM have a '^' token here. 3450 if (Parser.getTok().is(AsmToken::Caret)) { 3451 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3452 Parser.Lex(); // Eat '^' token. 3453 } 3454 3455 return false; 3456 } 3457 3458 // Helper function to parse the lane index for vector lists. 3459 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3460 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3461 MCAsmParser &Parser = getParser(); 3462 Index = 0; // Always return a defined index value. 3463 if (Parser.getTok().is(AsmToken::LBrac)) { 3464 Parser.Lex(); // Eat the '['. 3465 if (Parser.getTok().is(AsmToken::RBrac)) { 3466 // "Dn[]" is the 'all lanes' syntax. 3467 LaneKind = AllLanes; 3468 EndLoc = Parser.getTok().getEndLoc(); 3469 Parser.Lex(); // Eat the ']'. 3470 return MatchOperand_Success; 3471 } 3472 3473 // There's an optional '#' token here. Normally there wouldn't be, but 3474 // inline assemble puts one in, and it's friendly to accept that. 3475 if (Parser.getTok().is(AsmToken::Hash)) 3476 Parser.Lex(); // Eat '#' or '$'. 3477 3478 const MCExpr *LaneIndex; 3479 SMLoc Loc = Parser.getTok().getLoc(); 3480 if (getParser().parseExpression(LaneIndex)) { 3481 Error(Loc, "illegal expression"); 3482 return MatchOperand_ParseFail; 3483 } 3484 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3485 if (!CE) { 3486 Error(Loc, "lane index must be empty or an integer"); 3487 return MatchOperand_ParseFail; 3488 } 3489 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3490 Error(Parser.getTok().getLoc(), "']' expected"); 3491 return MatchOperand_ParseFail; 3492 } 3493 EndLoc = Parser.getTok().getEndLoc(); 3494 Parser.Lex(); // Eat the ']'. 3495 int64_t Val = CE->getValue(); 3496 3497 // FIXME: Make this range check context sensitive for .8, .16, .32. 3498 if (Val < 0 || Val > 7) { 3499 Error(Parser.getTok().getLoc(), "lane index out of range"); 3500 return MatchOperand_ParseFail; 3501 } 3502 Index = Val; 3503 LaneKind = IndexedLane; 3504 return MatchOperand_Success; 3505 } 3506 LaneKind = NoLanes; 3507 return MatchOperand_Success; 3508 } 3509 3510 // parse a vector register list 3511 ARMAsmParser::OperandMatchResultTy 3512 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3513 MCAsmParser &Parser = getParser(); 3514 VectorLaneTy LaneKind; 3515 unsigned LaneIndex; 3516 SMLoc S = Parser.getTok().getLoc(); 3517 // As an extension (to match gas), support a plain D register or Q register 3518 // (without encosing curly braces) as a single or double entry list, 3519 // respectively. 3520 if (Parser.getTok().is(AsmToken::Identifier)) { 3521 SMLoc E = Parser.getTok().getEndLoc(); 3522 int Reg = tryParseRegister(); 3523 if (Reg == -1) 3524 return MatchOperand_NoMatch; 3525 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3526 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3527 if (Res != MatchOperand_Success) 3528 return Res; 3529 switch (LaneKind) { 3530 case NoLanes: 3531 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3532 break; 3533 case AllLanes: 3534 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3535 S, E)); 3536 break; 3537 case IndexedLane: 3538 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3539 LaneIndex, 3540 false, S, E)); 3541 break; 3542 } 3543 return MatchOperand_Success; 3544 } 3545 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3546 Reg = getDRegFromQReg(Reg); 3547 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3548 if (Res != MatchOperand_Success) 3549 return Res; 3550 switch (LaneKind) { 3551 case NoLanes: 3552 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3553 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3554 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3555 break; 3556 case AllLanes: 3557 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3558 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3559 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3560 S, E)); 3561 break; 3562 case IndexedLane: 3563 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3564 LaneIndex, 3565 false, S, E)); 3566 break; 3567 } 3568 return MatchOperand_Success; 3569 } 3570 Error(S, "vector register expected"); 3571 return MatchOperand_ParseFail; 3572 } 3573 3574 if (Parser.getTok().isNot(AsmToken::LCurly)) 3575 return MatchOperand_NoMatch; 3576 3577 Parser.Lex(); // Eat '{' token. 3578 SMLoc RegLoc = Parser.getTok().getLoc(); 3579 3580 int Reg = tryParseRegister(); 3581 if (Reg == -1) { 3582 Error(RegLoc, "register expected"); 3583 return MatchOperand_ParseFail; 3584 } 3585 unsigned Count = 1; 3586 int Spacing = 0; 3587 unsigned FirstReg = Reg; 3588 // The list is of D registers, but we also allow Q regs and just interpret 3589 // them as the two D sub-registers. 3590 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3591 FirstReg = Reg = getDRegFromQReg(Reg); 3592 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3593 // it's ambiguous with four-register single spaced. 3594 ++Reg; 3595 ++Count; 3596 } 3597 3598 SMLoc E; 3599 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3600 return MatchOperand_ParseFail; 3601 3602 while (Parser.getTok().is(AsmToken::Comma) || 3603 Parser.getTok().is(AsmToken::Minus)) { 3604 if (Parser.getTok().is(AsmToken::Minus)) { 3605 if (!Spacing) 3606 Spacing = 1; // Register range implies a single spaced list. 3607 else if (Spacing == 2) { 3608 Error(Parser.getTok().getLoc(), 3609 "sequential registers in double spaced list"); 3610 return MatchOperand_ParseFail; 3611 } 3612 Parser.Lex(); // Eat the minus. 3613 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3614 int EndReg = tryParseRegister(); 3615 if (EndReg == -1) { 3616 Error(AfterMinusLoc, "register expected"); 3617 return MatchOperand_ParseFail; 3618 } 3619 // Allow Q regs and just interpret them as the two D sub-registers. 3620 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3621 EndReg = getDRegFromQReg(EndReg) + 1; 3622 // If the register is the same as the start reg, there's nothing 3623 // more to do. 3624 if (Reg == EndReg) 3625 continue; 3626 // The register must be in the same register class as the first. 3627 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3628 Error(AfterMinusLoc, "invalid register in register list"); 3629 return MatchOperand_ParseFail; 3630 } 3631 // Ranges must go from low to high. 3632 if (Reg > EndReg) { 3633 Error(AfterMinusLoc, "bad range in register list"); 3634 return MatchOperand_ParseFail; 3635 } 3636 // Parse the lane specifier if present. 3637 VectorLaneTy NextLaneKind; 3638 unsigned NextLaneIndex; 3639 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3640 MatchOperand_Success) 3641 return MatchOperand_ParseFail; 3642 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3643 Error(AfterMinusLoc, "mismatched lane index in register list"); 3644 return MatchOperand_ParseFail; 3645 } 3646 3647 // Add all the registers in the range to the register list. 3648 Count += EndReg - Reg; 3649 Reg = EndReg; 3650 continue; 3651 } 3652 Parser.Lex(); // Eat the comma. 3653 RegLoc = Parser.getTok().getLoc(); 3654 int OldReg = Reg; 3655 Reg = tryParseRegister(); 3656 if (Reg == -1) { 3657 Error(RegLoc, "register expected"); 3658 return MatchOperand_ParseFail; 3659 } 3660 // vector register lists must be contiguous. 3661 // It's OK to use the enumeration values directly here rather, as the 3662 // VFP register classes have the enum sorted properly. 3663 // 3664 // The list is of D registers, but we also allow Q regs and just interpret 3665 // them as the two D sub-registers. 3666 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3667 if (!Spacing) 3668 Spacing = 1; // Register range implies a single spaced list. 3669 else if (Spacing == 2) { 3670 Error(RegLoc, 3671 "invalid register in double-spaced list (must be 'D' register')"); 3672 return MatchOperand_ParseFail; 3673 } 3674 Reg = getDRegFromQReg(Reg); 3675 if (Reg != OldReg + 1) { 3676 Error(RegLoc, "non-contiguous register range"); 3677 return MatchOperand_ParseFail; 3678 } 3679 ++Reg; 3680 Count += 2; 3681 // Parse the lane specifier if present. 3682 VectorLaneTy NextLaneKind; 3683 unsigned NextLaneIndex; 3684 SMLoc LaneLoc = Parser.getTok().getLoc(); 3685 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3686 MatchOperand_Success) 3687 return MatchOperand_ParseFail; 3688 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3689 Error(LaneLoc, "mismatched lane index in register list"); 3690 return MatchOperand_ParseFail; 3691 } 3692 continue; 3693 } 3694 // Normal D register. 3695 // Figure out the register spacing (single or double) of the list if 3696 // we don't know it already. 3697 if (!Spacing) 3698 Spacing = 1 + (Reg == OldReg + 2); 3699 3700 // Just check that it's contiguous and keep going. 3701 if (Reg != OldReg + Spacing) { 3702 Error(RegLoc, "non-contiguous register range"); 3703 return MatchOperand_ParseFail; 3704 } 3705 ++Count; 3706 // Parse the lane specifier if present. 3707 VectorLaneTy NextLaneKind; 3708 unsigned NextLaneIndex; 3709 SMLoc EndLoc = Parser.getTok().getLoc(); 3710 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3711 return MatchOperand_ParseFail; 3712 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3713 Error(EndLoc, "mismatched lane index in register list"); 3714 return MatchOperand_ParseFail; 3715 } 3716 } 3717 3718 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3719 Error(Parser.getTok().getLoc(), "'}' expected"); 3720 return MatchOperand_ParseFail; 3721 } 3722 E = Parser.getTok().getEndLoc(); 3723 Parser.Lex(); // Eat '}' token. 3724 3725 switch (LaneKind) { 3726 case NoLanes: 3727 // Two-register operands have been converted to the 3728 // composite register classes. 3729 if (Count == 2) { 3730 const MCRegisterClass *RC = (Spacing == 1) ? 3731 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3732 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3733 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3734 } 3735 3736 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3737 (Spacing == 2), S, E)); 3738 break; 3739 case AllLanes: 3740 // Two-register operands have been converted to the 3741 // composite register classes. 3742 if (Count == 2) { 3743 const MCRegisterClass *RC = (Spacing == 1) ? 3744 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3745 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3746 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3747 } 3748 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3749 (Spacing == 2), 3750 S, E)); 3751 break; 3752 case IndexedLane: 3753 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3754 LaneIndex, 3755 (Spacing == 2), 3756 S, E)); 3757 break; 3758 } 3759 return MatchOperand_Success; 3760 } 3761 3762 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3763 ARMAsmParser::OperandMatchResultTy 3764 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3765 MCAsmParser &Parser = getParser(); 3766 SMLoc S = Parser.getTok().getLoc(); 3767 const AsmToken &Tok = Parser.getTok(); 3768 unsigned Opt; 3769 3770 if (Tok.is(AsmToken::Identifier)) { 3771 StringRef OptStr = Tok.getString(); 3772 3773 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3774 .Case("sy", ARM_MB::SY) 3775 .Case("st", ARM_MB::ST) 3776 .Case("ld", ARM_MB::LD) 3777 .Case("sh", ARM_MB::ISH) 3778 .Case("ish", ARM_MB::ISH) 3779 .Case("shst", ARM_MB::ISHST) 3780 .Case("ishst", ARM_MB::ISHST) 3781 .Case("ishld", ARM_MB::ISHLD) 3782 .Case("nsh", ARM_MB::NSH) 3783 .Case("un", ARM_MB::NSH) 3784 .Case("nshst", ARM_MB::NSHST) 3785 .Case("nshld", ARM_MB::NSHLD) 3786 .Case("unst", ARM_MB::NSHST) 3787 .Case("osh", ARM_MB::OSH) 3788 .Case("oshst", ARM_MB::OSHST) 3789 .Case("oshld", ARM_MB::OSHLD) 3790 .Default(~0U); 3791 3792 // ishld, oshld, nshld and ld are only available from ARMv8. 3793 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3794 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3795 Opt = ~0U; 3796 3797 if (Opt == ~0U) 3798 return MatchOperand_NoMatch; 3799 3800 Parser.Lex(); // Eat identifier token. 3801 } else if (Tok.is(AsmToken::Hash) || 3802 Tok.is(AsmToken::Dollar) || 3803 Tok.is(AsmToken::Integer)) { 3804 if (Parser.getTok().isNot(AsmToken::Integer)) 3805 Parser.Lex(); // Eat '#' or '$'. 3806 SMLoc Loc = Parser.getTok().getLoc(); 3807 3808 const MCExpr *MemBarrierID; 3809 if (getParser().parseExpression(MemBarrierID)) { 3810 Error(Loc, "illegal expression"); 3811 return MatchOperand_ParseFail; 3812 } 3813 3814 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3815 if (!CE) { 3816 Error(Loc, "constant expression expected"); 3817 return MatchOperand_ParseFail; 3818 } 3819 3820 int Val = CE->getValue(); 3821 if (Val & ~0xf) { 3822 Error(Loc, "immediate value out of range"); 3823 return MatchOperand_ParseFail; 3824 } 3825 3826 Opt = ARM_MB::RESERVED_0 + Val; 3827 } else 3828 return MatchOperand_ParseFail; 3829 3830 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3831 return MatchOperand_Success; 3832 } 3833 3834 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3835 ARMAsmParser::OperandMatchResultTy 3836 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3837 MCAsmParser &Parser = getParser(); 3838 SMLoc S = Parser.getTok().getLoc(); 3839 const AsmToken &Tok = Parser.getTok(); 3840 unsigned Opt; 3841 3842 if (Tok.is(AsmToken::Identifier)) { 3843 StringRef OptStr = Tok.getString(); 3844 3845 if (OptStr.equals_lower("sy")) 3846 Opt = ARM_ISB::SY; 3847 else 3848 return MatchOperand_NoMatch; 3849 3850 Parser.Lex(); // Eat identifier token. 3851 } else if (Tok.is(AsmToken::Hash) || 3852 Tok.is(AsmToken::Dollar) || 3853 Tok.is(AsmToken::Integer)) { 3854 if (Parser.getTok().isNot(AsmToken::Integer)) 3855 Parser.Lex(); // Eat '#' or '$'. 3856 SMLoc Loc = Parser.getTok().getLoc(); 3857 3858 const MCExpr *ISBarrierID; 3859 if (getParser().parseExpression(ISBarrierID)) { 3860 Error(Loc, "illegal expression"); 3861 return MatchOperand_ParseFail; 3862 } 3863 3864 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3865 if (!CE) { 3866 Error(Loc, "constant expression expected"); 3867 return MatchOperand_ParseFail; 3868 } 3869 3870 int Val = CE->getValue(); 3871 if (Val & ~0xf) { 3872 Error(Loc, "immediate value out of range"); 3873 return MatchOperand_ParseFail; 3874 } 3875 3876 Opt = ARM_ISB::RESERVED_0 + Val; 3877 } else 3878 return MatchOperand_ParseFail; 3879 3880 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3881 (ARM_ISB::InstSyncBOpt)Opt, S)); 3882 return MatchOperand_Success; 3883 } 3884 3885 3886 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3887 ARMAsmParser::OperandMatchResultTy 3888 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3889 MCAsmParser &Parser = getParser(); 3890 SMLoc S = Parser.getTok().getLoc(); 3891 const AsmToken &Tok = Parser.getTok(); 3892 if (!Tok.is(AsmToken::Identifier)) 3893 return MatchOperand_NoMatch; 3894 StringRef IFlagsStr = Tok.getString(); 3895 3896 // An iflags string of "none" is interpreted to mean that none of the AIF 3897 // bits are set. Not a terribly useful instruction, but a valid encoding. 3898 unsigned IFlags = 0; 3899 if (IFlagsStr != "none") { 3900 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3901 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3902 .Case("a", ARM_PROC::A) 3903 .Case("i", ARM_PROC::I) 3904 .Case("f", ARM_PROC::F) 3905 .Default(~0U); 3906 3907 // If some specific iflag is already set, it means that some letter is 3908 // present more than once, this is not acceptable. 3909 if (Flag == ~0U || (IFlags & Flag)) 3910 return MatchOperand_NoMatch; 3911 3912 IFlags |= Flag; 3913 } 3914 } 3915 3916 Parser.Lex(); // Eat identifier token. 3917 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 3918 return MatchOperand_Success; 3919 } 3920 3921 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 3922 ARMAsmParser::OperandMatchResultTy 3923 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 3924 MCAsmParser &Parser = getParser(); 3925 SMLoc S = Parser.getTok().getLoc(); 3926 const AsmToken &Tok = Parser.getTok(); 3927 if (!Tok.is(AsmToken::Identifier)) 3928 return MatchOperand_NoMatch; 3929 StringRef Mask = Tok.getString(); 3930 3931 if (isMClass()) { 3932 // See ARMv6-M 10.1.1 3933 std::string Name = Mask.lower(); 3934 unsigned FlagsVal = StringSwitch<unsigned>(Name) 3935 // Note: in the documentation: 3936 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 3937 // for MSR APSR_nzcvq. 3938 // but we do make it an alias here. This is so to get the "mask encoding" 3939 // bits correct on MSR APSR writes. 3940 // 3941 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 3942 // should really only be allowed when writing a special register. Note 3943 // they get dropped in the MRS instruction reading a special register as 3944 // the SYSm field is only 8 bits. 3945 .Case("apsr", 0x800) 3946 .Case("apsr_nzcvq", 0x800) 3947 .Case("apsr_g", 0x400) 3948 .Case("apsr_nzcvqg", 0xc00) 3949 .Case("iapsr", 0x801) 3950 .Case("iapsr_nzcvq", 0x801) 3951 .Case("iapsr_g", 0x401) 3952 .Case("iapsr_nzcvqg", 0xc01) 3953 .Case("eapsr", 0x802) 3954 .Case("eapsr_nzcvq", 0x802) 3955 .Case("eapsr_g", 0x402) 3956 .Case("eapsr_nzcvqg", 0xc02) 3957 .Case("xpsr", 0x803) 3958 .Case("xpsr_nzcvq", 0x803) 3959 .Case("xpsr_g", 0x403) 3960 .Case("xpsr_nzcvqg", 0xc03) 3961 .Case("ipsr", 0x805) 3962 .Case("epsr", 0x806) 3963 .Case("iepsr", 0x807) 3964 .Case("msp", 0x808) 3965 .Case("psp", 0x809) 3966 .Case("primask", 0x810) 3967 .Case("basepri", 0x811) 3968 .Case("basepri_max", 0x812) 3969 .Case("faultmask", 0x813) 3970 .Case("control", 0x814) 3971 .Default(~0U); 3972 3973 if (FlagsVal == ~0U) 3974 return MatchOperand_NoMatch; 3975 3976 if (!hasDSP() && (FlagsVal & 0x400)) 3977 // The _g and _nzcvqg versions are only valid if the DSP extension is 3978 // available. 3979 return MatchOperand_NoMatch; 3980 3981 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 3982 // basepri, basepri_max and faultmask only valid for V7m. 3983 return MatchOperand_NoMatch; 3984 3985 Parser.Lex(); // Eat identifier token. 3986 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 3987 return MatchOperand_Success; 3988 } 3989 3990 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 3991 size_t Start = 0, Next = Mask.find('_'); 3992 StringRef Flags = ""; 3993 std::string SpecReg = Mask.slice(Start, Next).lower(); 3994 if (Next != StringRef::npos) 3995 Flags = Mask.slice(Next+1, Mask.size()); 3996 3997 // FlagsVal contains the complete mask: 3998 // 3-0: Mask 3999 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4000 unsigned FlagsVal = 0; 4001 4002 if (SpecReg == "apsr") { 4003 FlagsVal = StringSwitch<unsigned>(Flags) 4004 .Case("nzcvq", 0x8) // same as CPSR_f 4005 .Case("g", 0x4) // same as CPSR_s 4006 .Case("nzcvqg", 0xc) // same as CPSR_fs 4007 .Default(~0U); 4008 4009 if (FlagsVal == ~0U) { 4010 if (!Flags.empty()) 4011 return MatchOperand_NoMatch; 4012 else 4013 FlagsVal = 8; // No flag 4014 } 4015 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4016 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4017 if (Flags == "all" || Flags == "") 4018 Flags = "fc"; 4019 for (int i = 0, e = Flags.size(); i != e; ++i) { 4020 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4021 .Case("c", 1) 4022 .Case("x", 2) 4023 .Case("s", 4) 4024 .Case("f", 8) 4025 .Default(~0U); 4026 4027 // If some specific flag is already set, it means that some letter is 4028 // present more than once, this is not acceptable. 4029 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4030 return MatchOperand_NoMatch; 4031 FlagsVal |= Flag; 4032 } 4033 } else // No match for special register. 4034 return MatchOperand_NoMatch; 4035 4036 // Special register without flags is NOT equivalent to "fc" flags. 4037 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4038 // two lines would enable gas compatibility at the expense of breaking 4039 // round-tripping. 4040 // 4041 // if (!FlagsVal) 4042 // FlagsVal = 0x9; 4043 4044 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4045 if (SpecReg == "spsr") 4046 FlagsVal |= 16; 4047 4048 Parser.Lex(); // Eat identifier token. 4049 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4050 return MatchOperand_Success; 4051 } 4052 4053 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4054 /// use in the MRS/MSR instructions added to support virtualization. 4055 ARMAsmParser::OperandMatchResultTy 4056 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4057 MCAsmParser &Parser = getParser(); 4058 SMLoc S = Parser.getTok().getLoc(); 4059 const AsmToken &Tok = Parser.getTok(); 4060 if (!Tok.is(AsmToken::Identifier)) 4061 return MatchOperand_NoMatch; 4062 StringRef RegName = Tok.getString(); 4063 4064 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4065 // and bit 5 is R. 4066 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4067 .Case("r8_usr", 0x00) 4068 .Case("r9_usr", 0x01) 4069 .Case("r10_usr", 0x02) 4070 .Case("r11_usr", 0x03) 4071 .Case("r12_usr", 0x04) 4072 .Case("sp_usr", 0x05) 4073 .Case("lr_usr", 0x06) 4074 .Case("r8_fiq", 0x08) 4075 .Case("r9_fiq", 0x09) 4076 .Case("r10_fiq", 0x0a) 4077 .Case("r11_fiq", 0x0b) 4078 .Case("r12_fiq", 0x0c) 4079 .Case("sp_fiq", 0x0d) 4080 .Case("lr_fiq", 0x0e) 4081 .Case("lr_irq", 0x10) 4082 .Case("sp_irq", 0x11) 4083 .Case("lr_svc", 0x12) 4084 .Case("sp_svc", 0x13) 4085 .Case("lr_abt", 0x14) 4086 .Case("sp_abt", 0x15) 4087 .Case("lr_und", 0x16) 4088 .Case("sp_und", 0x17) 4089 .Case("lr_mon", 0x1c) 4090 .Case("sp_mon", 0x1d) 4091 .Case("elr_hyp", 0x1e) 4092 .Case("sp_hyp", 0x1f) 4093 .Case("spsr_fiq", 0x2e) 4094 .Case("spsr_irq", 0x30) 4095 .Case("spsr_svc", 0x32) 4096 .Case("spsr_abt", 0x34) 4097 .Case("spsr_und", 0x36) 4098 .Case("spsr_mon", 0x3c) 4099 .Case("spsr_hyp", 0x3e) 4100 .Default(~0U); 4101 4102 if (Encoding == ~0U) 4103 return MatchOperand_NoMatch; 4104 4105 Parser.Lex(); // Eat identifier token. 4106 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4107 return MatchOperand_Success; 4108 } 4109 4110 ARMAsmParser::OperandMatchResultTy 4111 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4112 int High) { 4113 MCAsmParser &Parser = getParser(); 4114 const AsmToken &Tok = Parser.getTok(); 4115 if (Tok.isNot(AsmToken::Identifier)) { 4116 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4117 return MatchOperand_ParseFail; 4118 } 4119 StringRef ShiftName = Tok.getString(); 4120 std::string LowerOp = Op.lower(); 4121 std::string UpperOp = Op.upper(); 4122 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4123 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4124 return MatchOperand_ParseFail; 4125 } 4126 Parser.Lex(); // Eat shift type token. 4127 4128 // There must be a '#' and a shift amount. 4129 if (Parser.getTok().isNot(AsmToken::Hash) && 4130 Parser.getTok().isNot(AsmToken::Dollar)) { 4131 Error(Parser.getTok().getLoc(), "'#' expected"); 4132 return MatchOperand_ParseFail; 4133 } 4134 Parser.Lex(); // Eat hash token. 4135 4136 const MCExpr *ShiftAmount; 4137 SMLoc Loc = Parser.getTok().getLoc(); 4138 SMLoc EndLoc; 4139 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4140 Error(Loc, "illegal expression"); 4141 return MatchOperand_ParseFail; 4142 } 4143 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4144 if (!CE) { 4145 Error(Loc, "constant expression expected"); 4146 return MatchOperand_ParseFail; 4147 } 4148 int Val = CE->getValue(); 4149 if (Val < Low || Val > High) { 4150 Error(Loc, "immediate value out of range"); 4151 return MatchOperand_ParseFail; 4152 } 4153 4154 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4155 4156 return MatchOperand_Success; 4157 } 4158 4159 ARMAsmParser::OperandMatchResultTy 4160 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4161 MCAsmParser &Parser = getParser(); 4162 const AsmToken &Tok = Parser.getTok(); 4163 SMLoc S = Tok.getLoc(); 4164 if (Tok.isNot(AsmToken::Identifier)) { 4165 Error(S, "'be' or 'le' operand expected"); 4166 return MatchOperand_ParseFail; 4167 } 4168 int Val = StringSwitch<int>(Tok.getString().lower()) 4169 .Case("be", 1) 4170 .Case("le", 0) 4171 .Default(-1); 4172 Parser.Lex(); // Eat the token. 4173 4174 if (Val == -1) { 4175 Error(S, "'be' or 'le' operand expected"); 4176 return MatchOperand_ParseFail; 4177 } 4178 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4179 getContext()), 4180 S, Tok.getEndLoc())); 4181 return MatchOperand_Success; 4182 } 4183 4184 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4185 /// instructions. Legal values are: 4186 /// lsl #n 'n' in [0,31] 4187 /// asr #n 'n' in [1,32] 4188 /// n == 32 encoded as n == 0. 4189 ARMAsmParser::OperandMatchResultTy 4190 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4191 MCAsmParser &Parser = getParser(); 4192 const AsmToken &Tok = Parser.getTok(); 4193 SMLoc S = Tok.getLoc(); 4194 if (Tok.isNot(AsmToken::Identifier)) { 4195 Error(S, "shift operator 'asr' or 'lsl' expected"); 4196 return MatchOperand_ParseFail; 4197 } 4198 StringRef ShiftName = Tok.getString(); 4199 bool isASR; 4200 if (ShiftName == "lsl" || ShiftName == "LSL") 4201 isASR = false; 4202 else if (ShiftName == "asr" || ShiftName == "ASR") 4203 isASR = true; 4204 else { 4205 Error(S, "shift operator 'asr' or 'lsl' expected"); 4206 return MatchOperand_ParseFail; 4207 } 4208 Parser.Lex(); // Eat the operator. 4209 4210 // A '#' and a shift amount. 4211 if (Parser.getTok().isNot(AsmToken::Hash) && 4212 Parser.getTok().isNot(AsmToken::Dollar)) { 4213 Error(Parser.getTok().getLoc(), "'#' expected"); 4214 return MatchOperand_ParseFail; 4215 } 4216 Parser.Lex(); // Eat hash token. 4217 SMLoc ExLoc = Parser.getTok().getLoc(); 4218 4219 const MCExpr *ShiftAmount; 4220 SMLoc EndLoc; 4221 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4222 Error(ExLoc, "malformed shift expression"); 4223 return MatchOperand_ParseFail; 4224 } 4225 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4226 if (!CE) { 4227 Error(ExLoc, "shift amount must be an immediate"); 4228 return MatchOperand_ParseFail; 4229 } 4230 4231 int64_t Val = CE->getValue(); 4232 if (isASR) { 4233 // Shift amount must be in [1,32] 4234 if (Val < 1 || Val > 32) { 4235 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4236 return MatchOperand_ParseFail; 4237 } 4238 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4239 if (isThumb() && Val == 32) { 4240 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4241 return MatchOperand_ParseFail; 4242 } 4243 if (Val == 32) Val = 0; 4244 } else { 4245 // Shift amount must be in [1,32] 4246 if (Val < 0 || Val > 31) { 4247 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4248 return MatchOperand_ParseFail; 4249 } 4250 } 4251 4252 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4253 4254 return MatchOperand_Success; 4255 } 4256 4257 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4258 /// of instructions. Legal values are: 4259 /// ror #n 'n' in {0, 8, 16, 24} 4260 ARMAsmParser::OperandMatchResultTy 4261 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4262 MCAsmParser &Parser = getParser(); 4263 const AsmToken &Tok = Parser.getTok(); 4264 SMLoc S = Tok.getLoc(); 4265 if (Tok.isNot(AsmToken::Identifier)) 4266 return MatchOperand_NoMatch; 4267 StringRef ShiftName = Tok.getString(); 4268 if (ShiftName != "ror" && ShiftName != "ROR") 4269 return MatchOperand_NoMatch; 4270 Parser.Lex(); // Eat the operator. 4271 4272 // A '#' and a rotate amount. 4273 if (Parser.getTok().isNot(AsmToken::Hash) && 4274 Parser.getTok().isNot(AsmToken::Dollar)) { 4275 Error(Parser.getTok().getLoc(), "'#' expected"); 4276 return MatchOperand_ParseFail; 4277 } 4278 Parser.Lex(); // Eat hash token. 4279 SMLoc ExLoc = Parser.getTok().getLoc(); 4280 4281 const MCExpr *ShiftAmount; 4282 SMLoc EndLoc; 4283 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4284 Error(ExLoc, "malformed rotate expression"); 4285 return MatchOperand_ParseFail; 4286 } 4287 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4288 if (!CE) { 4289 Error(ExLoc, "rotate amount must be an immediate"); 4290 return MatchOperand_ParseFail; 4291 } 4292 4293 int64_t Val = CE->getValue(); 4294 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4295 // normally, zero is represented in asm by omitting the rotate operand 4296 // entirely. 4297 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4298 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4299 return MatchOperand_ParseFail; 4300 } 4301 4302 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4303 4304 return MatchOperand_Success; 4305 } 4306 4307 ARMAsmParser::OperandMatchResultTy 4308 ARMAsmParser::parseModImm(OperandVector &Operands) { 4309 MCAsmParser &Parser = getParser(); 4310 MCAsmLexer &Lexer = getLexer(); 4311 int64_t Imm1, Imm2; 4312 4313 SMLoc S = Parser.getTok().getLoc(); 4314 4315 // 1) A mod_imm operand can appear in the place of a register name: 4316 // add r0, #mod_imm 4317 // add r0, r0, #mod_imm 4318 // to correctly handle the latter, we bail out as soon as we see an 4319 // identifier. 4320 // 4321 // 2) Similarly, we do not want to parse into complex operands: 4322 // mov r0, #mod_imm 4323 // mov r0, :lower16:(_foo) 4324 if (Parser.getTok().is(AsmToken::Identifier) || 4325 Parser.getTok().is(AsmToken::Colon)) 4326 return MatchOperand_NoMatch; 4327 4328 // Hash (dollar) is optional as per the ARMARM 4329 if (Parser.getTok().is(AsmToken::Hash) || 4330 Parser.getTok().is(AsmToken::Dollar)) { 4331 // Avoid parsing into complex operands (#:) 4332 if (Lexer.peekTok().is(AsmToken::Colon)) 4333 return MatchOperand_NoMatch; 4334 4335 // Eat the hash (dollar) 4336 Parser.Lex(); 4337 } 4338 4339 SMLoc Sx1, Ex1; 4340 Sx1 = Parser.getTok().getLoc(); 4341 const MCExpr *Imm1Exp; 4342 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4343 Error(Sx1, "malformed expression"); 4344 return MatchOperand_ParseFail; 4345 } 4346 4347 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4348 4349 if (CE) { 4350 // Immediate must fit within 32-bits 4351 Imm1 = CE->getValue(); 4352 int Enc = ARM_AM::getSOImmVal(Imm1); 4353 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4354 // We have a match! 4355 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4356 (Enc & 0xF00) >> 7, 4357 Sx1, Ex1)); 4358 return MatchOperand_Success; 4359 } 4360 4361 // We have parsed an immediate which is not for us, fallback to a plain 4362 // immediate. This can happen for instruction aliases. For an example, 4363 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4364 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4365 // instruction with a mod_imm operand. The alias is defined such that the 4366 // parser method is shared, that's why we have to do this here. 4367 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4368 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4369 return MatchOperand_Success; 4370 } 4371 } else { 4372 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4373 // MCFixup). Fallback to a plain immediate. 4374 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4375 return MatchOperand_Success; 4376 } 4377 4378 // From this point onward, we expect the input to be a (#bits, #rot) pair 4379 if (Parser.getTok().isNot(AsmToken::Comma)) { 4380 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4381 return MatchOperand_ParseFail; 4382 } 4383 4384 if (Imm1 & ~0xFF) { 4385 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4386 return MatchOperand_ParseFail; 4387 } 4388 4389 // Eat the comma 4390 Parser.Lex(); 4391 4392 // Repeat for #rot 4393 SMLoc Sx2, Ex2; 4394 Sx2 = Parser.getTok().getLoc(); 4395 4396 // Eat the optional hash (dollar) 4397 if (Parser.getTok().is(AsmToken::Hash) || 4398 Parser.getTok().is(AsmToken::Dollar)) 4399 Parser.Lex(); 4400 4401 const MCExpr *Imm2Exp; 4402 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4403 Error(Sx2, "malformed expression"); 4404 return MatchOperand_ParseFail; 4405 } 4406 4407 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4408 4409 if (CE) { 4410 Imm2 = CE->getValue(); 4411 if (!(Imm2 & ~0x1E)) { 4412 // We have a match! 4413 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4414 return MatchOperand_Success; 4415 } 4416 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4417 return MatchOperand_ParseFail; 4418 } else { 4419 Error(Sx2, "constant expression expected"); 4420 return MatchOperand_ParseFail; 4421 } 4422 } 4423 4424 ARMAsmParser::OperandMatchResultTy 4425 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4426 MCAsmParser &Parser = getParser(); 4427 SMLoc S = Parser.getTok().getLoc(); 4428 // The bitfield descriptor is really two operands, the LSB and the width. 4429 if (Parser.getTok().isNot(AsmToken::Hash) && 4430 Parser.getTok().isNot(AsmToken::Dollar)) { 4431 Error(Parser.getTok().getLoc(), "'#' expected"); 4432 return MatchOperand_ParseFail; 4433 } 4434 Parser.Lex(); // Eat hash token. 4435 4436 const MCExpr *LSBExpr; 4437 SMLoc E = Parser.getTok().getLoc(); 4438 if (getParser().parseExpression(LSBExpr)) { 4439 Error(E, "malformed immediate expression"); 4440 return MatchOperand_ParseFail; 4441 } 4442 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4443 if (!CE) { 4444 Error(E, "'lsb' operand must be an immediate"); 4445 return MatchOperand_ParseFail; 4446 } 4447 4448 int64_t LSB = CE->getValue(); 4449 // The LSB must be in the range [0,31] 4450 if (LSB < 0 || LSB > 31) { 4451 Error(E, "'lsb' operand must be in the range [0,31]"); 4452 return MatchOperand_ParseFail; 4453 } 4454 E = Parser.getTok().getLoc(); 4455 4456 // Expect another immediate operand. 4457 if (Parser.getTok().isNot(AsmToken::Comma)) { 4458 Error(Parser.getTok().getLoc(), "too few operands"); 4459 return MatchOperand_ParseFail; 4460 } 4461 Parser.Lex(); // Eat hash token. 4462 if (Parser.getTok().isNot(AsmToken::Hash) && 4463 Parser.getTok().isNot(AsmToken::Dollar)) { 4464 Error(Parser.getTok().getLoc(), "'#' expected"); 4465 return MatchOperand_ParseFail; 4466 } 4467 Parser.Lex(); // Eat hash token. 4468 4469 const MCExpr *WidthExpr; 4470 SMLoc EndLoc; 4471 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4472 Error(E, "malformed immediate expression"); 4473 return MatchOperand_ParseFail; 4474 } 4475 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4476 if (!CE) { 4477 Error(E, "'width' operand must be an immediate"); 4478 return MatchOperand_ParseFail; 4479 } 4480 4481 int64_t Width = CE->getValue(); 4482 // The LSB must be in the range [1,32-lsb] 4483 if (Width < 1 || Width > 32 - LSB) { 4484 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4485 return MatchOperand_ParseFail; 4486 } 4487 4488 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4489 4490 return MatchOperand_Success; 4491 } 4492 4493 ARMAsmParser::OperandMatchResultTy 4494 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4495 // Check for a post-index addressing register operand. Specifically: 4496 // postidx_reg := '+' register {, shift} 4497 // | '-' register {, shift} 4498 // | register {, shift} 4499 4500 // This method must return MatchOperand_NoMatch without consuming any tokens 4501 // in the case where there is no match, as other alternatives take other 4502 // parse methods. 4503 MCAsmParser &Parser = getParser(); 4504 AsmToken Tok = Parser.getTok(); 4505 SMLoc S = Tok.getLoc(); 4506 bool haveEaten = false; 4507 bool isAdd = true; 4508 if (Tok.is(AsmToken::Plus)) { 4509 Parser.Lex(); // Eat the '+' token. 4510 haveEaten = true; 4511 } else if (Tok.is(AsmToken::Minus)) { 4512 Parser.Lex(); // Eat the '-' token. 4513 isAdd = false; 4514 haveEaten = true; 4515 } 4516 4517 SMLoc E = Parser.getTok().getEndLoc(); 4518 int Reg = tryParseRegister(); 4519 if (Reg == -1) { 4520 if (!haveEaten) 4521 return MatchOperand_NoMatch; 4522 Error(Parser.getTok().getLoc(), "register expected"); 4523 return MatchOperand_ParseFail; 4524 } 4525 4526 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4527 unsigned ShiftImm = 0; 4528 if (Parser.getTok().is(AsmToken::Comma)) { 4529 Parser.Lex(); // Eat the ','. 4530 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4531 return MatchOperand_ParseFail; 4532 4533 // FIXME: Only approximates end...may include intervening whitespace. 4534 E = Parser.getTok().getLoc(); 4535 } 4536 4537 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4538 ShiftImm, S, E)); 4539 4540 return MatchOperand_Success; 4541 } 4542 4543 ARMAsmParser::OperandMatchResultTy 4544 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4545 // Check for a post-index addressing register operand. Specifically: 4546 // am3offset := '+' register 4547 // | '-' register 4548 // | register 4549 // | # imm 4550 // | # + imm 4551 // | # - imm 4552 4553 // This method must return MatchOperand_NoMatch without consuming any tokens 4554 // in the case where there is no match, as other alternatives take other 4555 // parse methods. 4556 MCAsmParser &Parser = getParser(); 4557 AsmToken Tok = Parser.getTok(); 4558 SMLoc S = Tok.getLoc(); 4559 4560 // Do immediates first, as we always parse those if we have a '#'. 4561 if (Parser.getTok().is(AsmToken::Hash) || 4562 Parser.getTok().is(AsmToken::Dollar)) { 4563 Parser.Lex(); // Eat '#' or '$'. 4564 // Explicitly look for a '-', as we need to encode negative zero 4565 // differently. 4566 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4567 const MCExpr *Offset; 4568 SMLoc E; 4569 if (getParser().parseExpression(Offset, E)) 4570 return MatchOperand_ParseFail; 4571 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4572 if (!CE) { 4573 Error(S, "constant expression expected"); 4574 return MatchOperand_ParseFail; 4575 } 4576 // Negative zero is encoded as the flag value INT32_MIN. 4577 int32_t Val = CE->getValue(); 4578 if (isNegative && Val == 0) 4579 Val = INT32_MIN; 4580 4581 Operands.push_back( 4582 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4583 4584 return MatchOperand_Success; 4585 } 4586 4587 4588 bool haveEaten = false; 4589 bool isAdd = true; 4590 if (Tok.is(AsmToken::Plus)) { 4591 Parser.Lex(); // Eat the '+' token. 4592 haveEaten = true; 4593 } else if (Tok.is(AsmToken::Minus)) { 4594 Parser.Lex(); // Eat the '-' token. 4595 isAdd = false; 4596 haveEaten = true; 4597 } 4598 4599 Tok = Parser.getTok(); 4600 int Reg = tryParseRegister(); 4601 if (Reg == -1) { 4602 if (!haveEaten) 4603 return MatchOperand_NoMatch; 4604 Error(Tok.getLoc(), "register expected"); 4605 return MatchOperand_ParseFail; 4606 } 4607 4608 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4609 0, S, Tok.getEndLoc())); 4610 4611 return MatchOperand_Success; 4612 } 4613 4614 /// Convert parsed operands to MCInst. Needed here because this instruction 4615 /// only has two register operands, but multiplication is commutative so 4616 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4617 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4618 const OperandVector &Operands) { 4619 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4620 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4621 // If we have a three-operand form, make sure to set Rn to be the operand 4622 // that isn't the same as Rd. 4623 unsigned RegOp = 4; 4624 if (Operands.size() == 6 && 4625 ((ARMOperand &)*Operands[4]).getReg() == 4626 ((ARMOperand &)*Operands[3]).getReg()) 4627 RegOp = 5; 4628 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4629 Inst.addOperand(Inst.getOperand(0)); 4630 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4631 } 4632 4633 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4634 const OperandVector &Operands) { 4635 int CondOp = -1, ImmOp = -1; 4636 switch(Inst.getOpcode()) { 4637 case ARM::tB: 4638 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4639 4640 case ARM::t2B: 4641 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4642 4643 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4644 } 4645 // first decide whether or not the branch should be conditional 4646 // by looking at it's location relative to an IT block 4647 if(inITBlock()) { 4648 // inside an IT block we cannot have any conditional branches. any 4649 // such instructions needs to be converted to unconditional form 4650 switch(Inst.getOpcode()) { 4651 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4652 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4653 } 4654 } else { 4655 // outside IT blocks we can only have unconditional branches with AL 4656 // condition code or conditional branches with non-AL condition code 4657 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4658 switch(Inst.getOpcode()) { 4659 case ARM::tB: 4660 case ARM::tBcc: 4661 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4662 break; 4663 case ARM::t2B: 4664 case ARM::t2Bcc: 4665 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4666 break; 4667 } 4668 } 4669 4670 // now decide on encoding size based on branch target range 4671 switch(Inst.getOpcode()) { 4672 // classify tB as either t2B or t1B based on range of immediate operand 4673 case ARM::tB: { 4674 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4675 if (!op.isSignedOffset<11, 1>() && isThumbTwo()) 4676 Inst.setOpcode(ARM::t2B); 4677 break; 4678 } 4679 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4680 case ARM::tBcc: { 4681 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4682 if (!op.isSignedOffset<8, 1>() && isThumbTwo()) 4683 Inst.setOpcode(ARM::t2Bcc); 4684 break; 4685 } 4686 } 4687 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4688 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4689 } 4690 4691 /// Parse an ARM memory expression, return false if successful else return true 4692 /// or an error. The first token must be a '[' when called. 4693 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4694 MCAsmParser &Parser = getParser(); 4695 SMLoc S, E; 4696 assert(Parser.getTok().is(AsmToken::LBrac) && 4697 "Token is not a Left Bracket"); 4698 S = Parser.getTok().getLoc(); 4699 Parser.Lex(); // Eat left bracket token. 4700 4701 const AsmToken &BaseRegTok = Parser.getTok(); 4702 int BaseRegNum = tryParseRegister(); 4703 if (BaseRegNum == -1) 4704 return Error(BaseRegTok.getLoc(), "register expected"); 4705 4706 // The next token must either be a comma, a colon or a closing bracket. 4707 const AsmToken &Tok = Parser.getTok(); 4708 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4709 !Tok.is(AsmToken::RBrac)) 4710 return Error(Tok.getLoc(), "malformed memory operand"); 4711 4712 if (Tok.is(AsmToken::RBrac)) { 4713 E = Tok.getEndLoc(); 4714 Parser.Lex(); // Eat right bracket token. 4715 4716 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4717 ARM_AM::no_shift, 0, 0, false, 4718 S, E)); 4719 4720 // If there's a pre-indexing writeback marker, '!', just add it as a token 4721 // operand. It's rather odd, but syntactically valid. 4722 if (Parser.getTok().is(AsmToken::Exclaim)) { 4723 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4724 Parser.Lex(); // Eat the '!'. 4725 } 4726 4727 return false; 4728 } 4729 4730 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4731 "Lost colon or comma in memory operand?!"); 4732 if (Tok.is(AsmToken::Comma)) { 4733 Parser.Lex(); // Eat the comma. 4734 } 4735 4736 // If we have a ':', it's an alignment specifier. 4737 if (Parser.getTok().is(AsmToken::Colon)) { 4738 Parser.Lex(); // Eat the ':'. 4739 E = Parser.getTok().getLoc(); 4740 SMLoc AlignmentLoc = Tok.getLoc(); 4741 4742 const MCExpr *Expr; 4743 if (getParser().parseExpression(Expr)) 4744 return true; 4745 4746 // The expression has to be a constant. Memory references with relocations 4747 // don't come through here, as they use the <label> forms of the relevant 4748 // instructions. 4749 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4750 if (!CE) 4751 return Error (E, "constant expression expected"); 4752 4753 unsigned Align = 0; 4754 switch (CE->getValue()) { 4755 default: 4756 return Error(E, 4757 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4758 case 16: Align = 2; break; 4759 case 32: Align = 4; break; 4760 case 64: Align = 8; break; 4761 case 128: Align = 16; break; 4762 case 256: Align = 32; break; 4763 } 4764 4765 // Now we should have the closing ']' 4766 if (Parser.getTok().isNot(AsmToken::RBrac)) 4767 return Error(Parser.getTok().getLoc(), "']' expected"); 4768 E = Parser.getTok().getEndLoc(); 4769 Parser.Lex(); // Eat right bracket token. 4770 4771 // Don't worry about range checking the value here. That's handled by 4772 // the is*() predicates. 4773 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4774 ARM_AM::no_shift, 0, Align, 4775 false, S, E, AlignmentLoc)); 4776 4777 // If there's a pre-indexing writeback marker, '!', just add it as a token 4778 // operand. 4779 if (Parser.getTok().is(AsmToken::Exclaim)) { 4780 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4781 Parser.Lex(); // Eat the '!'. 4782 } 4783 4784 return false; 4785 } 4786 4787 // If we have a '#', it's an immediate offset, else assume it's a register 4788 // offset. Be friendly and also accept a plain integer (without a leading 4789 // hash) for gas compatibility. 4790 if (Parser.getTok().is(AsmToken::Hash) || 4791 Parser.getTok().is(AsmToken::Dollar) || 4792 Parser.getTok().is(AsmToken::Integer)) { 4793 if (Parser.getTok().isNot(AsmToken::Integer)) 4794 Parser.Lex(); // Eat '#' or '$'. 4795 E = Parser.getTok().getLoc(); 4796 4797 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4798 const MCExpr *Offset; 4799 if (getParser().parseExpression(Offset)) 4800 return true; 4801 4802 // The expression has to be a constant. Memory references with relocations 4803 // don't come through here, as they use the <label> forms of the relevant 4804 // instructions. 4805 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4806 if (!CE) 4807 return Error (E, "constant expression expected"); 4808 4809 // If the constant was #-0, represent it as INT32_MIN. 4810 int32_t Val = CE->getValue(); 4811 if (isNegative && Val == 0) 4812 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4813 4814 // Now we should have the closing ']' 4815 if (Parser.getTok().isNot(AsmToken::RBrac)) 4816 return Error(Parser.getTok().getLoc(), "']' expected"); 4817 E = Parser.getTok().getEndLoc(); 4818 Parser.Lex(); // Eat right bracket token. 4819 4820 // Don't worry about range checking the value here. That's handled by 4821 // the is*() predicates. 4822 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4823 ARM_AM::no_shift, 0, 0, 4824 false, S, E)); 4825 4826 // If there's a pre-indexing writeback marker, '!', just add it as a token 4827 // operand. 4828 if (Parser.getTok().is(AsmToken::Exclaim)) { 4829 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4830 Parser.Lex(); // Eat the '!'. 4831 } 4832 4833 return false; 4834 } 4835 4836 // The register offset is optionally preceded by a '+' or '-' 4837 bool isNegative = false; 4838 if (Parser.getTok().is(AsmToken::Minus)) { 4839 isNegative = true; 4840 Parser.Lex(); // Eat the '-'. 4841 } else if (Parser.getTok().is(AsmToken::Plus)) { 4842 // Nothing to do. 4843 Parser.Lex(); // Eat the '+'. 4844 } 4845 4846 E = Parser.getTok().getLoc(); 4847 int OffsetRegNum = tryParseRegister(); 4848 if (OffsetRegNum == -1) 4849 return Error(E, "register expected"); 4850 4851 // If there's a shift operator, handle it. 4852 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4853 unsigned ShiftImm = 0; 4854 if (Parser.getTok().is(AsmToken::Comma)) { 4855 Parser.Lex(); // Eat the ','. 4856 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4857 return true; 4858 } 4859 4860 // Now we should have the closing ']' 4861 if (Parser.getTok().isNot(AsmToken::RBrac)) 4862 return Error(Parser.getTok().getLoc(), "']' expected"); 4863 E = Parser.getTok().getEndLoc(); 4864 Parser.Lex(); // Eat right bracket token. 4865 4866 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4867 ShiftType, ShiftImm, 0, isNegative, 4868 S, E)); 4869 4870 // If there's a pre-indexing writeback marker, '!', just add it as a token 4871 // operand. 4872 if (Parser.getTok().is(AsmToken::Exclaim)) { 4873 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4874 Parser.Lex(); // Eat the '!'. 4875 } 4876 4877 return false; 4878 } 4879 4880 /// parseMemRegOffsetShift - one of these two: 4881 /// ( lsl | lsr | asr | ror ) , # shift_amount 4882 /// rrx 4883 /// return true if it parses a shift otherwise it returns false. 4884 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4885 unsigned &Amount) { 4886 MCAsmParser &Parser = getParser(); 4887 SMLoc Loc = Parser.getTok().getLoc(); 4888 const AsmToken &Tok = Parser.getTok(); 4889 if (Tok.isNot(AsmToken::Identifier)) 4890 return true; 4891 StringRef ShiftName = Tok.getString(); 4892 if (ShiftName == "lsl" || ShiftName == "LSL" || 4893 ShiftName == "asl" || ShiftName == "ASL") 4894 St = ARM_AM::lsl; 4895 else if (ShiftName == "lsr" || ShiftName == "LSR") 4896 St = ARM_AM::lsr; 4897 else if (ShiftName == "asr" || ShiftName == "ASR") 4898 St = ARM_AM::asr; 4899 else if (ShiftName == "ror" || ShiftName == "ROR") 4900 St = ARM_AM::ror; 4901 else if (ShiftName == "rrx" || ShiftName == "RRX") 4902 St = ARM_AM::rrx; 4903 else 4904 return Error(Loc, "illegal shift operator"); 4905 Parser.Lex(); // Eat shift type token. 4906 4907 // rrx stands alone. 4908 Amount = 0; 4909 if (St != ARM_AM::rrx) { 4910 Loc = Parser.getTok().getLoc(); 4911 // A '#' and a shift amount. 4912 const AsmToken &HashTok = Parser.getTok(); 4913 if (HashTok.isNot(AsmToken::Hash) && 4914 HashTok.isNot(AsmToken::Dollar)) 4915 return Error(HashTok.getLoc(), "'#' expected"); 4916 Parser.Lex(); // Eat hash token. 4917 4918 const MCExpr *Expr; 4919 if (getParser().parseExpression(Expr)) 4920 return true; 4921 // Range check the immediate. 4922 // lsl, ror: 0 <= imm <= 31 4923 // lsr, asr: 0 <= imm <= 32 4924 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4925 if (!CE) 4926 return Error(Loc, "shift amount must be an immediate"); 4927 int64_t Imm = CE->getValue(); 4928 if (Imm < 0 || 4929 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 4930 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 4931 return Error(Loc, "immediate shift value out of range"); 4932 // If <ShiftTy> #0, turn it into a no_shift. 4933 if (Imm == 0) 4934 St = ARM_AM::lsl; 4935 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 4936 if (Imm == 32) 4937 Imm = 0; 4938 Amount = Imm; 4939 } 4940 4941 return false; 4942 } 4943 4944 /// parseFPImm - A floating point immediate expression operand. 4945 ARMAsmParser::OperandMatchResultTy 4946 ARMAsmParser::parseFPImm(OperandVector &Operands) { 4947 MCAsmParser &Parser = getParser(); 4948 // Anything that can accept a floating point constant as an operand 4949 // needs to go through here, as the regular parseExpression is 4950 // integer only. 4951 // 4952 // This routine still creates a generic Immediate operand, containing 4953 // a bitcast of the 64-bit floating point value. The various operands 4954 // that accept floats can check whether the value is valid for them 4955 // via the standard is*() predicates. 4956 4957 SMLoc S = Parser.getTok().getLoc(); 4958 4959 if (Parser.getTok().isNot(AsmToken::Hash) && 4960 Parser.getTok().isNot(AsmToken::Dollar)) 4961 return MatchOperand_NoMatch; 4962 4963 // Disambiguate the VMOV forms that can accept an FP immediate. 4964 // vmov.f32 <sreg>, #imm 4965 // vmov.f64 <dreg>, #imm 4966 // vmov.f32 <dreg>, #imm @ vector f32x2 4967 // vmov.f32 <qreg>, #imm @ vector f32x4 4968 // 4969 // There are also the NEON VMOV instructions which expect an 4970 // integer constant. Make sure we don't try to parse an FPImm 4971 // for these: 4972 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 4973 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 4974 bool isVmovf = TyOp.isToken() && 4975 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64"); 4976 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 4977 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 4978 Mnemonic.getToken() == "fconsts"); 4979 if (!(isVmovf || isFconst)) 4980 return MatchOperand_NoMatch; 4981 4982 Parser.Lex(); // Eat '#' or '$'. 4983 4984 // Handle negation, as that still comes through as a separate token. 4985 bool isNegative = false; 4986 if (Parser.getTok().is(AsmToken::Minus)) { 4987 isNegative = true; 4988 Parser.Lex(); 4989 } 4990 const AsmToken &Tok = Parser.getTok(); 4991 SMLoc Loc = Tok.getLoc(); 4992 if (Tok.is(AsmToken::Real) && isVmovf) { 4993 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 4994 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 4995 // If we had a '-' in front, toggle the sign bit. 4996 IntVal ^= (uint64_t)isNegative << 31; 4997 Parser.Lex(); // Eat the token. 4998 Operands.push_back(ARMOperand::CreateImm( 4999 MCConstantExpr::create(IntVal, getContext()), 5000 S, Parser.getTok().getLoc())); 5001 return MatchOperand_Success; 5002 } 5003 // Also handle plain integers. Instructions which allow floating point 5004 // immediates also allow a raw encoded 8-bit value. 5005 if (Tok.is(AsmToken::Integer) && isFconst) { 5006 int64_t Val = Tok.getIntVal(); 5007 Parser.Lex(); // Eat the token. 5008 if (Val > 255 || Val < 0) { 5009 Error(Loc, "encoded floating point value out of range"); 5010 return MatchOperand_ParseFail; 5011 } 5012 float RealVal = ARM_AM::getFPImmFloat(Val); 5013 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5014 5015 Operands.push_back(ARMOperand::CreateImm( 5016 MCConstantExpr::create(Val, getContext()), S, 5017 Parser.getTok().getLoc())); 5018 return MatchOperand_Success; 5019 } 5020 5021 Error(Loc, "invalid floating point immediate"); 5022 return MatchOperand_ParseFail; 5023 } 5024 5025 /// Parse a arm instruction operand. For now this parses the operand regardless 5026 /// of the mnemonic. 5027 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5028 MCAsmParser &Parser = getParser(); 5029 SMLoc S, E; 5030 5031 // Check if the current operand has a custom associated parser, if so, try to 5032 // custom parse the operand, or fallback to the general approach. 5033 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5034 if (ResTy == MatchOperand_Success) 5035 return false; 5036 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5037 // there was a match, but an error occurred, in which case, just return that 5038 // the operand parsing failed. 5039 if (ResTy == MatchOperand_ParseFail) 5040 return true; 5041 5042 switch (getLexer().getKind()) { 5043 default: 5044 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5045 return true; 5046 case AsmToken::Identifier: { 5047 // If we've seen a branch mnemonic, the next operand must be a label. This 5048 // is true even if the label is a register name. So "br r1" means branch to 5049 // label "r1". 5050 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5051 if (!ExpectLabel) { 5052 if (!tryParseRegisterWithWriteBack(Operands)) 5053 return false; 5054 int Res = tryParseShiftRegister(Operands); 5055 if (Res == 0) // success 5056 return false; 5057 else if (Res == -1) // irrecoverable error 5058 return true; 5059 // If this is VMRS, check for the apsr_nzcv operand. 5060 if (Mnemonic == "vmrs" && 5061 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5062 S = Parser.getTok().getLoc(); 5063 Parser.Lex(); 5064 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5065 return false; 5066 } 5067 } 5068 5069 // Fall though for the Identifier case that is not a register or a 5070 // special name. 5071 } 5072 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5073 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5074 case AsmToken::String: // quoted label names. 5075 case AsmToken::Dot: { // . as a branch target 5076 // This was not a register so parse other operands that start with an 5077 // identifier (like labels) as expressions and create them as immediates. 5078 const MCExpr *IdVal; 5079 S = Parser.getTok().getLoc(); 5080 if (getParser().parseExpression(IdVal)) 5081 return true; 5082 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5083 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5084 return false; 5085 } 5086 case AsmToken::LBrac: 5087 return parseMemory(Operands); 5088 case AsmToken::LCurly: 5089 return parseRegisterList(Operands); 5090 case AsmToken::Dollar: 5091 case AsmToken::Hash: { 5092 // #42 -> immediate. 5093 S = Parser.getTok().getLoc(); 5094 Parser.Lex(); 5095 5096 if (Parser.getTok().isNot(AsmToken::Colon)) { 5097 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5098 const MCExpr *ImmVal; 5099 if (getParser().parseExpression(ImmVal)) 5100 return true; 5101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5102 if (CE) { 5103 int32_t Val = CE->getValue(); 5104 if (isNegative && Val == 0) 5105 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5106 } 5107 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5108 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5109 5110 // There can be a trailing '!' on operands that we want as a separate 5111 // '!' Token operand. Handle that here. For example, the compatibility 5112 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5113 if (Parser.getTok().is(AsmToken::Exclaim)) { 5114 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5115 Parser.getTok().getLoc())); 5116 Parser.Lex(); // Eat exclaim token 5117 } 5118 return false; 5119 } 5120 // w/ a ':' after the '#', it's just like a plain ':'. 5121 // FALLTHROUGH 5122 } 5123 case AsmToken::Colon: { 5124 // ":lower16:" and ":upper16:" expression prefixes 5125 // FIXME: Check it's an expression prefix, 5126 // e.g. (FOO - :lower16:BAR) isn't legal. 5127 ARMMCExpr::VariantKind RefKind; 5128 if (parsePrefix(RefKind)) 5129 return true; 5130 5131 const MCExpr *SubExprVal; 5132 if (getParser().parseExpression(SubExprVal)) 5133 return true; 5134 5135 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5136 getContext()); 5137 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5138 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5139 return false; 5140 } 5141 case AsmToken::Equal: { 5142 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5143 return Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5144 5145 Parser.Lex(); // Eat '=' 5146 const MCExpr *SubExprVal; 5147 if (getParser().parseExpression(SubExprVal)) 5148 return true; 5149 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5150 5151 const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal); 5152 Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); 5153 return false; 5154 } 5155 } 5156 } 5157 5158 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5159 // :lower16: and :upper16:. 5160 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5161 MCAsmParser &Parser = getParser(); 5162 RefKind = ARMMCExpr::VK_ARM_None; 5163 5164 // consume an optional '#' (GNU compatibility) 5165 if (getLexer().is(AsmToken::Hash)) 5166 Parser.Lex(); 5167 5168 // :lower16: and :upper16: modifiers 5169 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5170 Parser.Lex(); // Eat ':' 5171 5172 if (getLexer().isNot(AsmToken::Identifier)) { 5173 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5174 return true; 5175 } 5176 5177 enum { 5178 COFF = (1 << MCObjectFileInfo::IsCOFF), 5179 ELF = (1 << MCObjectFileInfo::IsELF), 5180 MACHO = (1 << MCObjectFileInfo::IsMachO) 5181 }; 5182 static const struct PrefixEntry { 5183 const char *Spelling; 5184 ARMMCExpr::VariantKind VariantKind; 5185 uint8_t SupportedFormats; 5186 } PrefixEntries[] = { 5187 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5188 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5189 }; 5190 5191 StringRef IDVal = Parser.getTok().getIdentifier(); 5192 5193 const auto &Prefix = 5194 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5195 [&IDVal](const PrefixEntry &PE) { 5196 return PE.Spelling == IDVal; 5197 }); 5198 if (Prefix == std::end(PrefixEntries)) { 5199 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5200 return true; 5201 } 5202 5203 uint8_t CurrentFormat; 5204 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5205 case MCObjectFileInfo::IsMachO: 5206 CurrentFormat = MACHO; 5207 break; 5208 case MCObjectFileInfo::IsELF: 5209 CurrentFormat = ELF; 5210 break; 5211 case MCObjectFileInfo::IsCOFF: 5212 CurrentFormat = COFF; 5213 break; 5214 } 5215 5216 if (~Prefix->SupportedFormats & CurrentFormat) { 5217 Error(Parser.getTok().getLoc(), 5218 "cannot represent relocation in the current file format"); 5219 return true; 5220 } 5221 5222 RefKind = Prefix->VariantKind; 5223 Parser.Lex(); 5224 5225 if (getLexer().isNot(AsmToken::Colon)) { 5226 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5227 return true; 5228 } 5229 Parser.Lex(); // Eat the last ':' 5230 5231 return false; 5232 } 5233 5234 /// \brief Given a mnemonic, split out possible predication code and carry 5235 /// setting letters to form a canonical mnemonic and flags. 5236 // 5237 // FIXME: Would be nice to autogen this. 5238 // FIXME: This is a bit of a maze of special cases. 5239 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5240 unsigned &PredicationCode, 5241 bool &CarrySetting, 5242 unsigned &ProcessorIMod, 5243 StringRef &ITMask) { 5244 PredicationCode = ARMCC::AL; 5245 CarrySetting = false; 5246 ProcessorIMod = 0; 5247 5248 // Ignore some mnemonics we know aren't predicated forms. 5249 // 5250 // FIXME: Would be nice to autogen this. 5251 if ((Mnemonic == "movs" && isThumb()) || 5252 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5253 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5254 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5255 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5256 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5257 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5258 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5259 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5260 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5261 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5262 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5263 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5264 Mnemonic.startswith("vsel")) 5265 return Mnemonic; 5266 5267 // First, split out any predication code. Ignore mnemonics we know aren't 5268 // predicated but do have a carry-set and so weren't caught above. 5269 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5270 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5271 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5272 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5273 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5274 .Case("eq", ARMCC::EQ) 5275 .Case("ne", ARMCC::NE) 5276 .Case("hs", ARMCC::HS) 5277 .Case("cs", ARMCC::HS) 5278 .Case("lo", ARMCC::LO) 5279 .Case("cc", ARMCC::LO) 5280 .Case("mi", ARMCC::MI) 5281 .Case("pl", ARMCC::PL) 5282 .Case("vs", ARMCC::VS) 5283 .Case("vc", ARMCC::VC) 5284 .Case("hi", ARMCC::HI) 5285 .Case("ls", ARMCC::LS) 5286 .Case("ge", ARMCC::GE) 5287 .Case("lt", ARMCC::LT) 5288 .Case("gt", ARMCC::GT) 5289 .Case("le", ARMCC::LE) 5290 .Case("al", ARMCC::AL) 5291 .Default(~0U); 5292 if (CC != ~0U) { 5293 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5294 PredicationCode = CC; 5295 } 5296 } 5297 5298 // Next, determine if we have a carry setting bit. We explicitly ignore all 5299 // the instructions we know end in 's'. 5300 if (Mnemonic.endswith("s") && 5301 !(Mnemonic == "cps" || Mnemonic == "mls" || 5302 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5303 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5304 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5305 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5306 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5307 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5308 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5309 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5310 (Mnemonic == "movs" && isThumb()))) { 5311 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5312 CarrySetting = true; 5313 } 5314 5315 // The "cps" instruction can have a interrupt mode operand which is glued into 5316 // the mnemonic. Check if this is the case, split it and parse the imod op 5317 if (Mnemonic.startswith("cps")) { 5318 // Split out any imod code. 5319 unsigned IMod = 5320 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5321 .Case("ie", ARM_PROC::IE) 5322 .Case("id", ARM_PROC::ID) 5323 .Default(~0U); 5324 if (IMod != ~0U) { 5325 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5326 ProcessorIMod = IMod; 5327 } 5328 } 5329 5330 // The "it" instruction has the condition mask on the end of the mnemonic. 5331 if (Mnemonic.startswith("it")) { 5332 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5333 Mnemonic = Mnemonic.slice(0, 2); 5334 } 5335 5336 return Mnemonic; 5337 } 5338 5339 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5340 /// inclusion of carry set or predication code operands. 5341 // 5342 // FIXME: It would be nice to autogen this. 5343 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5344 bool &CanAcceptCarrySet, 5345 bool &CanAcceptPredicationCode) { 5346 CanAcceptCarrySet = 5347 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5348 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5349 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5350 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5351 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5352 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5353 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5354 (!isThumb() && 5355 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5356 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5357 5358 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5359 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5360 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5361 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5362 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5363 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5364 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5365 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5366 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5367 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5368 (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) { 5369 // These mnemonics are never predicable 5370 CanAcceptPredicationCode = false; 5371 } else if (!isThumb()) { 5372 // Some instructions are only predicable in Thumb mode 5373 CanAcceptPredicationCode = 5374 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5375 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5376 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5377 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5378 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5379 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5380 !Mnemonic.startswith("srs"); 5381 } else if (isThumbOne()) { 5382 if (hasV6MOps()) 5383 CanAcceptPredicationCode = Mnemonic != "movs"; 5384 else 5385 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5386 } else 5387 CanAcceptPredicationCode = true; 5388 } 5389 5390 // \brief Some Thumb instructions have two operand forms that are not 5391 // available as three operand, convert to two operand form if possible. 5392 // 5393 // FIXME: We would really like to be able to tablegen'erate this. 5394 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5395 bool CarrySetting, 5396 OperandVector &Operands) { 5397 if (Operands.size() != 6) 5398 return; 5399 5400 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5401 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5402 if (!Op3.isReg() || !Op4.isReg()) 5403 return; 5404 5405 auto Op3Reg = Op3.getReg(); 5406 auto Op4Reg = Op4.getReg(); 5407 5408 // For most Thumb2 cases we just generate the 3 operand form and reduce 5409 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5410 // won't accept SP or PC so we do the transformation here taking care 5411 // with immediate range in the 'add sp, sp #imm' case. 5412 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5413 if (isThumbTwo()) { 5414 if (Mnemonic != "add") 5415 return; 5416 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5417 (Op5.isReg() && Op5.getReg() == ARM::PC); 5418 if (!TryTransform) { 5419 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5420 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5421 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5422 Op5.isImm() && !Op5.isImm0_508s4()); 5423 } 5424 if (!TryTransform) 5425 return; 5426 } else if (!isThumbOne()) 5427 return; 5428 5429 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5430 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5431 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5432 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5433 return; 5434 5435 // If first 2 operands of a 3 operand instruction are the same 5436 // then transform to 2 operand version of the same instruction 5437 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5438 bool Transform = Op3Reg == Op4Reg; 5439 5440 // For communtative operations, we might be able to transform if we swap 5441 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5442 // as tADDrsp. 5443 const ARMOperand *LastOp = &Op5; 5444 bool Swap = false; 5445 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5446 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5447 Mnemonic == "and" || Mnemonic == "eor" || 5448 Mnemonic == "adc" || Mnemonic == "orr")) { 5449 Swap = true; 5450 LastOp = &Op4; 5451 Transform = true; 5452 } 5453 5454 // If both registers are the same then remove one of them from 5455 // the operand list, with certain exceptions. 5456 if (Transform) { 5457 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5458 // 2 operand forms don't exist. 5459 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5460 LastOp->isReg()) 5461 Transform = false; 5462 5463 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5464 // 3-bits because the ARMARM says not to. 5465 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5466 Transform = false; 5467 } 5468 5469 if (Transform) { 5470 if (Swap) 5471 std::swap(Op4, Op5); 5472 Operands.erase(Operands.begin() + 3); 5473 } 5474 } 5475 5476 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5477 OperandVector &Operands) { 5478 // FIXME: This is all horribly hacky. We really need a better way to deal 5479 // with optional operands like this in the matcher table. 5480 5481 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5482 // another does not. Specifically, the MOVW instruction does not. So we 5483 // special case it here and remove the defaulted (non-setting) cc_out 5484 // operand if that's the instruction we're trying to match. 5485 // 5486 // We do this as post-processing of the explicit operands rather than just 5487 // conditionally adding the cc_out in the first place because we need 5488 // to check the type of the parsed immediate operand. 5489 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5490 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5491 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5492 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5493 return true; 5494 5495 // Register-register 'add' for thumb does not have a cc_out operand 5496 // when there are only two register operands. 5497 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5498 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5499 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5500 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5501 return true; 5502 // Register-register 'add' for thumb does not have a cc_out operand 5503 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5504 // have to check the immediate range here since Thumb2 has a variant 5505 // that can handle a different range and has a cc_out operand. 5506 if (((isThumb() && Mnemonic == "add") || 5507 (isThumbTwo() && Mnemonic == "sub")) && 5508 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5509 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5510 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5511 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5512 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5513 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5514 return true; 5515 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5516 // imm0_4095 variant. That's the least-preferred variant when 5517 // selecting via the generic "add" mnemonic, so to know that we 5518 // should remove the cc_out operand, we have to explicitly check that 5519 // it's not one of the other variants. Ugh. 5520 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5521 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5522 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5523 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5524 // Nest conditions rather than one big 'if' statement for readability. 5525 // 5526 // If both registers are low, we're in an IT block, and the immediate is 5527 // in range, we should use encoding T1 instead, which has a cc_out. 5528 if (inITBlock() && 5529 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5530 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5531 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5532 return false; 5533 // Check against T3. If the second register is the PC, this is an 5534 // alternate form of ADR, which uses encoding T4, so check for that too. 5535 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5536 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5537 return false; 5538 5539 // Otherwise, we use encoding T4, which does not have a cc_out 5540 // operand. 5541 return true; 5542 } 5543 5544 // The thumb2 multiply instruction doesn't have a CCOut register, so 5545 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5546 // use the 16-bit encoding or not. 5547 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5548 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5549 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5550 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5551 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5552 // If the registers aren't low regs, the destination reg isn't the 5553 // same as one of the source regs, or the cc_out operand is zero 5554 // outside of an IT block, we have to use the 32-bit encoding, so 5555 // remove the cc_out operand. 5556 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5557 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5558 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5559 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5560 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5561 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5562 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5563 return true; 5564 5565 // Also check the 'mul' syntax variant that doesn't specify an explicit 5566 // destination register. 5567 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5568 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5569 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5570 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5571 // If the registers aren't low regs or the cc_out operand is zero 5572 // outside of an IT block, we have to use the 32-bit encoding, so 5573 // remove the cc_out operand. 5574 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5575 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5576 !inITBlock())) 5577 return true; 5578 5579 5580 5581 // Register-register 'add/sub' for thumb does not have a cc_out operand 5582 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5583 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5584 // right, this will result in better diagnostics (which operand is off) 5585 // anyway. 5586 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5587 (Operands.size() == 5 || Operands.size() == 6) && 5588 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5589 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5590 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5591 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5592 (Operands.size() == 6 && 5593 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5594 return true; 5595 5596 return false; 5597 } 5598 5599 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5600 OperandVector &Operands) { 5601 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5602 unsigned RegIdx = 3; 5603 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5604 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") { 5605 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5606 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32") 5607 RegIdx = 4; 5608 5609 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5610 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5611 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5612 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5613 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5614 return true; 5615 } 5616 return false; 5617 } 5618 5619 static bool isDataTypeToken(StringRef Tok) { 5620 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5621 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5622 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5623 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5624 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5625 Tok == ".f" || Tok == ".d"; 5626 } 5627 5628 // FIXME: This bit should probably be handled via an explicit match class 5629 // in the .td files that matches the suffix instead of having it be 5630 // a literal string token the way it is now. 5631 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5632 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5633 } 5634 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5635 unsigned VariantID); 5636 5637 static bool RequiresVFPRegListValidation(StringRef Inst, 5638 bool &AcceptSinglePrecisionOnly, 5639 bool &AcceptDoublePrecisionOnly) { 5640 if (Inst.size() < 7) 5641 return false; 5642 5643 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5644 StringRef AddressingMode = Inst.substr(4, 2); 5645 if (AddressingMode == "ia" || AddressingMode == "db" || 5646 AddressingMode == "ea" || AddressingMode == "fd") { 5647 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5648 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5649 return true; 5650 } 5651 } 5652 5653 return false; 5654 } 5655 5656 /// Parse an arm instruction mnemonic followed by its operands. 5657 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5658 SMLoc NameLoc, OperandVector &Operands) { 5659 MCAsmParser &Parser = getParser(); 5660 // FIXME: Can this be done via tablegen in some fashion? 5661 bool RequireVFPRegisterListCheck; 5662 bool AcceptSinglePrecisionOnly; 5663 bool AcceptDoublePrecisionOnly; 5664 RequireVFPRegisterListCheck = 5665 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5666 AcceptDoublePrecisionOnly); 5667 5668 // Apply mnemonic aliases before doing anything else, as the destination 5669 // mnemonic may include suffices and we want to handle them normally. 5670 // The generic tblgen'erated code does this later, at the start of 5671 // MatchInstructionImpl(), but that's too late for aliases that include 5672 // any sort of suffix. 5673 uint64_t AvailableFeatures = getAvailableFeatures(); 5674 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5675 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5676 5677 // First check for the ARM-specific .req directive. 5678 if (Parser.getTok().is(AsmToken::Identifier) && 5679 Parser.getTok().getIdentifier() == ".req") { 5680 parseDirectiveReq(Name, NameLoc); 5681 // We always return 'error' for this, as we're done with this 5682 // statement and don't need to match the 'instruction." 5683 return true; 5684 } 5685 5686 // Create the leading tokens for the mnemonic, split by '.' characters. 5687 size_t Start = 0, Next = Name.find('.'); 5688 StringRef Mnemonic = Name.slice(Start, Next); 5689 5690 // Split out the predication code and carry setting flag from the mnemonic. 5691 unsigned PredicationCode; 5692 unsigned ProcessorIMod; 5693 bool CarrySetting; 5694 StringRef ITMask; 5695 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5696 ProcessorIMod, ITMask); 5697 5698 // In Thumb1, only the branch (B) instruction can be predicated. 5699 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5700 Parser.eatToEndOfStatement(); 5701 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5702 } 5703 5704 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5705 5706 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5707 // is the mask as it will be for the IT encoding if the conditional 5708 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5709 // where the conditional bit0 is zero, the instruction post-processing 5710 // will adjust the mask accordingly. 5711 if (Mnemonic == "it") { 5712 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5713 if (ITMask.size() > 3) { 5714 Parser.eatToEndOfStatement(); 5715 return Error(Loc, "too many conditions on IT instruction"); 5716 } 5717 unsigned Mask = 8; 5718 for (unsigned i = ITMask.size(); i != 0; --i) { 5719 char pos = ITMask[i - 1]; 5720 if (pos != 't' && pos != 'e') { 5721 Parser.eatToEndOfStatement(); 5722 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5723 } 5724 Mask >>= 1; 5725 if (ITMask[i - 1] == 't') 5726 Mask |= 8; 5727 } 5728 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5729 } 5730 5731 // FIXME: This is all a pretty gross hack. We should automatically handle 5732 // optional operands like this via tblgen. 5733 5734 // Next, add the CCOut and ConditionCode operands, if needed. 5735 // 5736 // For mnemonics which can ever incorporate a carry setting bit or predication 5737 // code, our matching model involves us always generating CCOut and 5738 // ConditionCode operands to match the mnemonic "as written" and then we let 5739 // the matcher deal with finding the right instruction or generating an 5740 // appropriate error. 5741 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5742 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5743 5744 // If we had a carry-set on an instruction that can't do that, issue an 5745 // error. 5746 if (!CanAcceptCarrySet && CarrySetting) { 5747 Parser.eatToEndOfStatement(); 5748 return Error(NameLoc, "instruction '" + Mnemonic + 5749 "' can not set flags, but 's' suffix specified"); 5750 } 5751 // If we had a predication code on an instruction that can't do that, issue an 5752 // error. 5753 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5754 Parser.eatToEndOfStatement(); 5755 return Error(NameLoc, "instruction '" + Mnemonic + 5756 "' is not predicable, but condition code specified"); 5757 } 5758 5759 // Add the carry setting operand, if necessary. 5760 if (CanAcceptCarrySet) { 5761 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5762 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5763 Loc)); 5764 } 5765 5766 // Add the predication code operand, if necessary. 5767 if (CanAcceptPredicationCode) { 5768 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5769 CarrySetting); 5770 Operands.push_back(ARMOperand::CreateCondCode( 5771 ARMCC::CondCodes(PredicationCode), Loc)); 5772 } 5773 5774 // Add the processor imod operand, if necessary. 5775 if (ProcessorIMod) { 5776 Operands.push_back(ARMOperand::CreateImm( 5777 MCConstantExpr::create(ProcessorIMod, getContext()), 5778 NameLoc, NameLoc)); 5779 } else if (Mnemonic == "cps" && isMClass()) { 5780 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5781 } 5782 5783 // Add the remaining tokens in the mnemonic. 5784 while (Next != StringRef::npos) { 5785 Start = Next; 5786 Next = Name.find('.', Start + 1); 5787 StringRef ExtraToken = Name.slice(Start, Next); 5788 5789 // Some NEON instructions have an optional datatype suffix that is 5790 // completely ignored. Check for that. 5791 if (isDataTypeToken(ExtraToken) && 5792 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5793 continue; 5794 5795 // For for ARM mode generate an error if the .n qualifier is used. 5796 if (ExtraToken == ".n" && !isThumb()) { 5797 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5798 Parser.eatToEndOfStatement(); 5799 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5800 "arm mode"); 5801 } 5802 5803 // The .n qualifier is always discarded as that is what the tables 5804 // and matcher expect. In ARM mode the .w qualifier has no effect, 5805 // so discard it to avoid errors that can be caused by the matcher. 5806 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5807 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5808 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5809 } 5810 } 5811 5812 // Read the remaining operands. 5813 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5814 // Read the first operand. 5815 if (parseOperand(Operands, Mnemonic)) { 5816 Parser.eatToEndOfStatement(); 5817 return true; 5818 } 5819 5820 while (getLexer().is(AsmToken::Comma)) { 5821 Parser.Lex(); // Eat the comma. 5822 5823 // Parse and remember the operand. 5824 if (parseOperand(Operands, Mnemonic)) { 5825 Parser.eatToEndOfStatement(); 5826 return true; 5827 } 5828 } 5829 } 5830 5831 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5832 SMLoc Loc = getLexer().getLoc(); 5833 Parser.eatToEndOfStatement(); 5834 return Error(Loc, "unexpected token in argument list"); 5835 } 5836 5837 Parser.Lex(); // Consume the EndOfStatement 5838 5839 if (RequireVFPRegisterListCheck) { 5840 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5841 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5842 return Error(Op.getStartLoc(), 5843 "VFP/Neon single precision register expected"); 5844 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5845 return Error(Op.getStartLoc(), 5846 "VFP/Neon double precision register expected"); 5847 } 5848 5849 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5850 5851 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5852 // do and don't have a cc_out optional-def operand. With some spot-checks 5853 // of the operand list, we can figure out which variant we're trying to 5854 // parse and adjust accordingly before actually matching. We shouldn't ever 5855 // try to remove a cc_out operand that was explicitly set on the 5856 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5857 // table driven matcher doesn't fit well with the ARM instruction set. 5858 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5859 Operands.erase(Operands.begin() + 1); 5860 5861 // Some instructions have the same mnemonic, but don't always 5862 // have a predicate. Distinguish them here and delete the 5863 // predicate if needed. 5864 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5865 Operands.erase(Operands.begin() + 1); 5866 5867 // ARM mode 'blx' need special handling, as the register operand version 5868 // is predicable, but the label operand version is not. So, we can't rely 5869 // on the Mnemonic based checking to correctly figure out when to put 5870 // a k_CondCode operand in the list. If we're trying to match the label 5871 // version, remove the k_CondCode operand here. 5872 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5873 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5874 Operands.erase(Operands.begin() + 1); 5875 5876 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5877 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5878 // a single GPRPair reg operand is used in the .td file to replace the two 5879 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5880 // expressed as a GPRPair, so we have to manually merge them. 5881 // FIXME: We would really like to be able to tablegen'erate this. 5882 if (!isThumb() && Operands.size() > 4 && 5883 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5884 Mnemonic == "stlexd")) { 5885 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5886 unsigned Idx = isLoad ? 2 : 3; 5887 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5888 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5889 5890 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5891 // Adjust only if Op1 and Op2 are GPRs. 5892 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5893 MRC.contains(Op2.getReg())) { 5894 unsigned Reg1 = Op1.getReg(); 5895 unsigned Reg2 = Op2.getReg(); 5896 unsigned Rt = MRI->getEncodingValue(Reg1); 5897 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5898 5899 // Rt2 must be Rt + 1 and Rt must be even. 5900 if (Rt + 1 != Rt2 || (Rt & 1)) { 5901 Error(Op2.getStartLoc(), isLoad 5902 ? "destination operands must be sequential" 5903 : "source operands must be sequential"); 5904 return true; 5905 } 5906 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5907 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5908 Operands[Idx] = 5909 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5910 Operands.erase(Operands.begin() + Idx + 1); 5911 } 5912 } 5913 5914 // GNU Assembler extension (compatibility) 5915 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5916 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5917 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5918 if (Op3.isMem()) { 5919 assert(Op2.isReg() && "expected register argument"); 5920 5921 unsigned SuperReg = MRI->getMatchingSuperReg( 5922 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5923 5924 assert(SuperReg && "expected register pair"); 5925 5926 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 5927 5928 Operands.insert( 5929 Operands.begin() + 3, 5930 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5931 } 5932 } 5933 5934 // FIXME: As said above, this is all a pretty gross hack. This instruction 5935 // does not fit with other "subs" and tblgen. 5936 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 5937 // so the Mnemonic is the original name "subs" and delete the predicate 5938 // operand so it will match the table entry. 5939 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 5940 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5941 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 5942 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5943 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 5944 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5945 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 5946 Operands.erase(Operands.begin() + 1); 5947 } 5948 return false; 5949 } 5950 5951 // Validate context-sensitive operand constraints. 5952 5953 // return 'true' if register list contains non-low GPR registers, 5954 // 'false' otherwise. If Reg is in the register list or is HiReg, set 5955 // 'containsReg' to true. 5956 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 5957 unsigned Reg, unsigned HiReg, 5958 bool &containsReg) { 5959 containsReg = false; 5960 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 5961 unsigned OpReg = Inst.getOperand(i).getReg(); 5962 if (OpReg == Reg) 5963 containsReg = true; 5964 // Anything other than a low register isn't legal here. 5965 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 5966 return true; 5967 } 5968 return false; 5969 } 5970 5971 // Check if the specified regisgter is in the register list of the inst, 5972 // starting at the indicated operand number. 5973 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 5974 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 5975 unsigned OpReg = Inst.getOperand(i).getReg(); 5976 if (OpReg == Reg) 5977 return true; 5978 } 5979 return false; 5980 } 5981 5982 // Return true if instruction has the interesting property of being 5983 // allowed in IT blocks, but not being predicable. 5984 static bool instIsBreakpoint(const MCInst &Inst) { 5985 return Inst.getOpcode() == ARM::tBKPT || 5986 Inst.getOpcode() == ARM::BKPT || 5987 Inst.getOpcode() == ARM::tHLT || 5988 Inst.getOpcode() == ARM::HLT; 5989 5990 } 5991 5992 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 5993 const OperandVector &Operands, 5994 unsigned ListNo, bool IsARPop) { 5995 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 5996 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 5997 5998 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 5999 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6000 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6001 6002 if (!IsARPop && ListContainsSP) 6003 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6004 "SP may not be in the register list"); 6005 else if (ListContainsPC && ListContainsLR) 6006 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6007 "PC and LR may not be in the register list simultaneously"); 6008 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6009 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6010 "instruction must be outside of IT block or the last " 6011 "instruction in an IT block"); 6012 return false; 6013 } 6014 6015 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6016 const OperandVector &Operands, 6017 unsigned ListNo) { 6018 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6019 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6020 6021 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6022 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6023 6024 if (ListContainsSP && ListContainsPC) 6025 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6026 "SP and PC may not be in the register list"); 6027 else if (ListContainsSP) 6028 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6029 "SP may not be in the register list"); 6030 else if (ListContainsPC) 6031 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6032 "PC may not be in the register list"); 6033 return false; 6034 } 6035 6036 // FIXME: We would really like to be able to tablegen'erate this. 6037 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6038 const OperandVector &Operands) { 6039 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6040 SMLoc Loc = Operands[0]->getStartLoc(); 6041 6042 // Check the IT block state first. 6043 // NOTE: BKPT and HLT instructions have the interesting property of being 6044 // allowed in IT blocks, but not being predicable. They just always execute. 6045 if (inITBlock() && !instIsBreakpoint(Inst)) { 6046 unsigned Bit = 1; 6047 if (ITState.FirstCond) 6048 ITState.FirstCond = false; 6049 else 6050 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6051 // The instruction must be predicable. 6052 if (!MCID.isPredicable()) 6053 return Error(Loc, "instructions in IT block must be predicable"); 6054 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6055 unsigned ITCond = Bit ? ITState.Cond : 6056 ARMCC::getOppositeCondition(ITState.Cond); 6057 if (Cond != ITCond) { 6058 // Find the condition code Operand to get its SMLoc information. 6059 SMLoc CondLoc; 6060 for (unsigned I = 1; I < Operands.size(); ++I) 6061 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6062 CondLoc = Operands[I]->getStartLoc(); 6063 return Error(CondLoc, "incorrect condition in IT block; got '" + 6064 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6065 "', but expected '" + 6066 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6067 } 6068 // Check for non-'al' condition codes outside of the IT block. 6069 } else if (isThumbTwo() && MCID.isPredicable() && 6070 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6071 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6072 Inst.getOpcode() != ARM::t2Bcc) 6073 return Error(Loc, "predicated instructions must be in IT block"); 6074 6075 const unsigned Opcode = Inst.getOpcode(); 6076 switch (Opcode) { 6077 case ARM::LDRD: 6078 case ARM::LDRD_PRE: 6079 case ARM::LDRD_POST: { 6080 const unsigned RtReg = Inst.getOperand(0).getReg(); 6081 6082 // Rt can't be R14. 6083 if (RtReg == ARM::LR) 6084 return Error(Operands[3]->getStartLoc(), 6085 "Rt can't be R14"); 6086 6087 const unsigned Rt = MRI->getEncodingValue(RtReg); 6088 // Rt must be even-numbered. 6089 if ((Rt & 1) == 1) 6090 return Error(Operands[3]->getStartLoc(), 6091 "Rt must be even-numbered"); 6092 6093 // Rt2 must be Rt + 1. 6094 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6095 if (Rt2 != Rt + 1) 6096 return Error(Operands[3]->getStartLoc(), 6097 "destination operands must be sequential"); 6098 6099 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6100 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6101 // For addressing modes with writeback, the base register needs to be 6102 // different from the destination registers. 6103 if (Rn == Rt || Rn == Rt2) 6104 return Error(Operands[3]->getStartLoc(), 6105 "base register needs to be different from destination " 6106 "registers"); 6107 } 6108 6109 return false; 6110 } 6111 case ARM::t2LDRDi8: 6112 case ARM::t2LDRD_PRE: 6113 case ARM::t2LDRD_POST: { 6114 // Rt2 must be different from Rt. 6115 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6116 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6117 if (Rt2 == Rt) 6118 return Error(Operands[3]->getStartLoc(), 6119 "destination operands can't be identical"); 6120 return false; 6121 } 6122 case ARM::t2BXJ: { 6123 const unsigned RmReg = Inst.getOperand(0).getReg(); 6124 // Rm = SP is no longer unpredictable in v8-A 6125 if (RmReg == ARM::SP && !hasV8Ops()) 6126 return Error(Operands[2]->getStartLoc(), 6127 "r13 (SP) is an unpredictable operand to BXJ"); 6128 return false; 6129 } 6130 case ARM::STRD: { 6131 // Rt2 must be Rt + 1. 6132 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6133 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6134 if (Rt2 != Rt + 1) 6135 return Error(Operands[3]->getStartLoc(), 6136 "source operands must be sequential"); 6137 return false; 6138 } 6139 case ARM::STRD_PRE: 6140 case ARM::STRD_POST: { 6141 // Rt2 must be Rt + 1. 6142 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6143 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6144 if (Rt2 != Rt + 1) 6145 return Error(Operands[3]->getStartLoc(), 6146 "source operands must be sequential"); 6147 return false; 6148 } 6149 case ARM::STR_PRE_IMM: 6150 case ARM::STR_PRE_REG: 6151 case ARM::STR_POST_IMM: 6152 case ARM::STR_POST_REG: 6153 case ARM::STRH_PRE: 6154 case ARM::STRH_POST: 6155 case ARM::STRB_PRE_IMM: 6156 case ARM::STRB_PRE_REG: 6157 case ARM::STRB_POST_IMM: 6158 case ARM::STRB_POST_REG: { 6159 // Rt must be different from Rn. 6160 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6161 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6162 6163 if (Rt == Rn) 6164 return Error(Operands[3]->getStartLoc(), 6165 "source register and base register can't be identical"); 6166 return false; 6167 } 6168 case ARM::LDR_PRE_IMM: 6169 case ARM::LDR_PRE_REG: 6170 case ARM::LDR_POST_IMM: 6171 case ARM::LDR_POST_REG: 6172 case ARM::LDRH_PRE: 6173 case ARM::LDRH_POST: 6174 case ARM::LDRSH_PRE: 6175 case ARM::LDRSH_POST: 6176 case ARM::LDRB_PRE_IMM: 6177 case ARM::LDRB_PRE_REG: 6178 case ARM::LDRB_POST_IMM: 6179 case ARM::LDRB_POST_REG: 6180 case ARM::LDRSB_PRE: 6181 case ARM::LDRSB_POST: { 6182 // Rt must be different from Rn. 6183 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6184 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6185 6186 if (Rt == Rn) 6187 return Error(Operands[3]->getStartLoc(), 6188 "destination register and base register can't be identical"); 6189 return false; 6190 } 6191 case ARM::SBFX: 6192 case ARM::UBFX: { 6193 // Width must be in range [1, 32-lsb]. 6194 unsigned LSB = Inst.getOperand(2).getImm(); 6195 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6196 if (Widthm1 >= 32 - LSB) 6197 return Error(Operands[5]->getStartLoc(), 6198 "bitfield width must be in range [1,32-lsb]"); 6199 return false; 6200 } 6201 // Notionally handles ARM::tLDMIA_UPD too. 6202 case ARM::tLDMIA: { 6203 // If we're parsing Thumb2, the .w variant is available and handles 6204 // most cases that are normally illegal for a Thumb1 LDM instruction. 6205 // We'll make the transformation in processInstruction() if necessary. 6206 // 6207 // Thumb LDM instructions are writeback iff the base register is not 6208 // in the register list. 6209 unsigned Rn = Inst.getOperand(0).getReg(); 6210 bool HasWritebackToken = 6211 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6212 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6213 bool ListContainsBase; 6214 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6215 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6216 "registers must be in range r0-r7"); 6217 // If we should have writeback, then there should be a '!' token. 6218 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6219 return Error(Operands[2]->getStartLoc(), 6220 "writeback operator '!' expected"); 6221 // If we should not have writeback, there must not be a '!'. This is 6222 // true even for the 32-bit wide encodings. 6223 if (ListContainsBase && HasWritebackToken) 6224 return Error(Operands[3]->getStartLoc(), 6225 "writeback operator '!' not allowed when base register " 6226 "in register list"); 6227 6228 if (validatetLDMRegList(Inst, Operands, 3)) 6229 return true; 6230 break; 6231 } 6232 case ARM::LDMIA_UPD: 6233 case ARM::LDMDB_UPD: 6234 case ARM::LDMIB_UPD: 6235 case ARM::LDMDA_UPD: 6236 // ARM variants loading and updating the same register are only officially 6237 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6238 if (!hasV7Ops()) 6239 break; 6240 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6241 return Error(Operands.back()->getStartLoc(), 6242 "writeback register not allowed in register list"); 6243 break; 6244 case ARM::t2LDMIA: 6245 case ARM::t2LDMDB: 6246 if (validatetLDMRegList(Inst, Operands, 3)) 6247 return true; 6248 break; 6249 case ARM::t2STMIA: 6250 case ARM::t2STMDB: 6251 if (validatetSTMRegList(Inst, Operands, 3)) 6252 return true; 6253 break; 6254 case ARM::t2LDMIA_UPD: 6255 case ARM::t2LDMDB_UPD: 6256 case ARM::t2STMIA_UPD: 6257 case ARM::t2STMDB_UPD: { 6258 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6259 return Error(Operands.back()->getStartLoc(), 6260 "writeback register not allowed in register list"); 6261 6262 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6263 if (validatetLDMRegList(Inst, Operands, 3)) 6264 return true; 6265 } else { 6266 if (validatetSTMRegList(Inst, Operands, 3)) 6267 return true; 6268 } 6269 break; 6270 } 6271 case ARM::sysLDMIA_UPD: 6272 case ARM::sysLDMDA_UPD: 6273 case ARM::sysLDMDB_UPD: 6274 case ARM::sysLDMIB_UPD: 6275 if (!listContainsReg(Inst, 3, ARM::PC)) 6276 return Error(Operands[4]->getStartLoc(), 6277 "writeback register only allowed on system LDM " 6278 "if PC in register-list"); 6279 break; 6280 case ARM::sysSTMIA_UPD: 6281 case ARM::sysSTMDA_UPD: 6282 case ARM::sysSTMDB_UPD: 6283 case ARM::sysSTMIB_UPD: 6284 return Error(Operands[2]->getStartLoc(), 6285 "system STM cannot have writeback register"); 6286 case ARM::tMUL: { 6287 // The second source operand must be the same register as the destination 6288 // operand. 6289 // 6290 // In this case, we must directly check the parsed operands because the 6291 // cvtThumbMultiply() function is written in such a way that it guarantees 6292 // this first statement is always true for the new Inst. Essentially, the 6293 // destination is unconditionally copied into the second source operand 6294 // without checking to see if it matches what we actually parsed. 6295 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6296 ((ARMOperand &)*Operands[5]).getReg()) && 6297 (((ARMOperand &)*Operands[3]).getReg() != 6298 ((ARMOperand &)*Operands[4]).getReg())) { 6299 return Error(Operands[3]->getStartLoc(), 6300 "destination register must match source register"); 6301 } 6302 break; 6303 } 6304 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6305 // so only issue a diagnostic for thumb1. The instructions will be 6306 // switched to the t2 encodings in processInstruction() if necessary. 6307 case ARM::tPOP: { 6308 bool ListContainsBase; 6309 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6310 !isThumbTwo()) 6311 return Error(Operands[2]->getStartLoc(), 6312 "registers must be in range r0-r7 or pc"); 6313 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6314 return true; 6315 break; 6316 } 6317 case ARM::tPUSH: { 6318 bool ListContainsBase; 6319 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6320 !isThumbTwo()) 6321 return Error(Operands[2]->getStartLoc(), 6322 "registers must be in range r0-r7 or lr"); 6323 if (validatetSTMRegList(Inst, Operands, 2)) 6324 return true; 6325 break; 6326 } 6327 case ARM::tSTMIA_UPD: { 6328 bool ListContainsBase, InvalidLowList; 6329 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6330 0, ListContainsBase); 6331 if (InvalidLowList && !isThumbTwo()) 6332 return Error(Operands[4]->getStartLoc(), 6333 "registers must be in range r0-r7"); 6334 6335 // This would be converted to a 32-bit stm, but that's not valid if the 6336 // writeback register is in the list. 6337 if (InvalidLowList && ListContainsBase) 6338 return Error(Operands[4]->getStartLoc(), 6339 "writeback operator '!' not allowed when base register " 6340 "in register list"); 6341 6342 if (validatetSTMRegList(Inst, Operands, 4)) 6343 return true; 6344 break; 6345 } 6346 case ARM::tADDrSP: { 6347 // If the non-SP source operand and the destination operand are not the 6348 // same, we need thumb2 (for the wide encoding), or we have an error. 6349 if (!isThumbTwo() && 6350 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6351 return Error(Operands[4]->getStartLoc(), 6352 "source register must be the same as destination"); 6353 } 6354 break; 6355 } 6356 // Final range checking for Thumb unconditional branch instructions. 6357 case ARM::tB: 6358 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6359 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6360 break; 6361 case ARM::t2B: { 6362 int op = (Operands[2]->isImm()) ? 2 : 3; 6363 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6364 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6365 break; 6366 } 6367 // Final range checking for Thumb conditional branch instructions. 6368 case ARM::tBcc: 6369 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6370 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6371 break; 6372 case ARM::t2Bcc: { 6373 int Op = (Operands[2]->isImm()) ? 2 : 3; 6374 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6375 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6376 break; 6377 } 6378 case ARM::MOVi16: 6379 case ARM::t2MOVi16: 6380 case ARM::t2MOVTi16: 6381 { 6382 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6383 // especially when we turn it into a movw and the expression <symbol> does 6384 // not have a :lower16: or :upper16 as part of the expression. We don't 6385 // want the behavior of silently truncating, which can be unexpected and 6386 // lead to bugs that are difficult to find since this is an easy mistake 6387 // to make. 6388 int i = (Operands[3]->isImm()) ? 3 : 4; 6389 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6390 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6391 if (CE) break; 6392 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6393 if (!E) break; 6394 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6395 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6396 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6397 return Error( 6398 Op.getStartLoc(), 6399 "immediate expression for mov requires :lower16: or :upper16"); 6400 break; 6401 } 6402 } 6403 6404 return false; 6405 } 6406 6407 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6408 switch(Opc) { 6409 default: llvm_unreachable("unexpected opcode!"); 6410 // VST1LN 6411 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6412 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6413 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6414 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6415 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6416 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6417 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6418 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6419 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6420 6421 // VST2LN 6422 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6423 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6424 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6425 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6426 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6427 6428 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6429 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6430 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6431 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6432 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6433 6434 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6435 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6436 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6437 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6438 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6439 6440 // VST3LN 6441 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6442 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6443 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6444 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6445 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6446 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6447 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6448 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6449 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6450 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6451 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6452 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6453 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6454 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6455 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6456 6457 // VST3 6458 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6459 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6460 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6461 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6462 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6463 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6464 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6465 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6466 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6467 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6468 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6469 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6470 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6471 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6472 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6473 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6474 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6475 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6476 6477 // VST4LN 6478 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6479 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6480 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6481 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6482 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6483 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6484 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6485 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6486 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6487 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6488 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6489 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6490 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6491 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6492 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6493 6494 // VST4 6495 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6496 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6497 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6498 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6499 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6500 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6501 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6502 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6503 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6504 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6505 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6506 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6507 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6508 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6509 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6510 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6511 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6512 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6513 } 6514 } 6515 6516 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6517 switch(Opc) { 6518 default: llvm_unreachable("unexpected opcode!"); 6519 // VLD1LN 6520 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6521 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6522 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6523 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6524 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6525 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6526 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6527 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6528 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6529 6530 // VLD2LN 6531 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6532 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6533 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6534 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6535 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6536 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6537 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6538 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6539 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6540 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6541 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6542 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6543 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6544 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6545 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6546 6547 // VLD3DUP 6548 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6549 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6550 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6551 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6552 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6553 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6554 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6555 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6556 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6557 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6558 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6559 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6560 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6561 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6562 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6563 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6564 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6565 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6566 6567 // VLD3LN 6568 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6569 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6570 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6571 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6572 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6573 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6574 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6575 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6576 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6577 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6578 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6579 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6580 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6581 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6582 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6583 6584 // VLD3 6585 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6586 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6587 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6588 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6589 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6590 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6591 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6592 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6593 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6594 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6595 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6596 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6597 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6598 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6599 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6600 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6601 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6602 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6603 6604 // VLD4LN 6605 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6606 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6607 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6608 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6609 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6610 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6611 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6612 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6613 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6614 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6615 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6616 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6617 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6618 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6619 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6620 6621 // VLD4DUP 6622 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6623 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6624 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6625 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6626 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6627 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6628 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6629 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6630 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6631 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6632 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6633 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6634 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6635 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6636 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6637 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6638 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6639 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6640 6641 // VLD4 6642 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6643 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6644 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6645 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6646 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6647 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6648 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6649 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6650 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6651 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6652 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6653 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6654 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6655 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6656 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6657 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6658 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6659 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6660 } 6661 } 6662 6663 bool ARMAsmParser::processInstruction(MCInst &Inst, 6664 const OperandVector &Operands, 6665 MCStreamer &Out) { 6666 switch (Inst.getOpcode()) { 6667 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6668 case ARM::LDRT_POST: 6669 case ARM::LDRBT_POST: { 6670 const unsigned Opcode = 6671 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6672 : ARM::LDRBT_POST_IMM; 6673 MCInst TmpInst; 6674 TmpInst.setOpcode(Opcode); 6675 TmpInst.addOperand(Inst.getOperand(0)); 6676 TmpInst.addOperand(Inst.getOperand(1)); 6677 TmpInst.addOperand(Inst.getOperand(1)); 6678 TmpInst.addOperand(MCOperand::createReg(0)); 6679 TmpInst.addOperand(MCOperand::createImm(0)); 6680 TmpInst.addOperand(Inst.getOperand(2)); 6681 TmpInst.addOperand(Inst.getOperand(3)); 6682 Inst = TmpInst; 6683 return true; 6684 } 6685 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6686 case ARM::STRT_POST: 6687 case ARM::STRBT_POST: { 6688 const unsigned Opcode = 6689 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6690 : ARM::STRBT_POST_IMM; 6691 MCInst TmpInst; 6692 TmpInst.setOpcode(Opcode); 6693 TmpInst.addOperand(Inst.getOperand(1)); 6694 TmpInst.addOperand(Inst.getOperand(0)); 6695 TmpInst.addOperand(Inst.getOperand(1)); 6696 TmpInst.addOperand(MCOperand::createReg(0)); 6697 TmpInst.addOperand(MCOperand::createImm(0)); 6698 TmpInst.addOperand(Inst.getOperand(2)); 6699 TmpInst.addOperand(Inst.getOperand(3)); 6700 Inst = TmpInst; 6701 return true; 6702 } 6703 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6704 case ARM::ADDri: { 6705 if (Inst.getOperand(1).getReg() != ARM::PC || 6706 Inst.getOperand(5).getReg() != 0 || 6707 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6708 return false; 6709 MCInst TmpInst; 6710 TmpInst.setOpcode(ARM::ADR); 6711 TmpInst.addOperand(Inst.getOperand(0)); 6712 if (Inst.getOperand(2).isImm()) { 6713 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6714 // before passing it to the ADR instruction. 6715 unsigned Enc = Inst.getOperand(2).getImm(); 6716 TmpInst.addOperand(MCOperand::createImm( 6717 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6718 } else { 6719 // Turn PC-relative expression into absolute expression. 6720 // Reading PC provides the start of the current instruction + 8 and 6721 // the transform to adr is biased by that. 6722 MCSymbol *Dot = getContext().createTempSymbol(); 6723 Out.EmitLabel(Dot); 6724 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6725 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6726 MCSymbolRefExpr::VK_None, 6727 getContext()); 6728 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6729 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6730 getContext()); 6731 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6732 getContext()); 6733 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6734 } 6735 TmpInst.addOperand(Inst.getOperand(3)); 6736 TmpInst.addOperand(Inst.getOperand(4)); 6737 Inst = TmpInst; 6738 return true; 6739 } 6740 // Aliases for alternate PC+imm syntax of LDR instructions. 6741 case ARM::t2LDRpcrel: 6742 // Select the narrow version if the immediate will fit. 6743 if (Inst.getOperand(1).getImm() > 0 && 6744 Inst.getOperand(1).getImm() <= 0xff && 6745 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6746 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6747 Inst.setOpcode(ARM::tLDRpci); 6748 else 6749 Inst.setOpcode(ARM::t2LDRpci); 6750 return true; 6751 case ARM::t2LDRBpcrel: 6752 Inst.setOpcode(ARM::t2LDRBpci); 6753 return true; 6754 case ARM::t2LDRHpcrel: 6755 Inst.setOpcode(ARM::t2LDRHpci); 6756 return true; 6757 case ARM::t2LDRSBpcrel: 6758 Inst.setOpcode(ARM::t2LDRSBpci); 6759 return true; 6760 case ARM::t2LDRSHpcrel: 6761 Inst.setOpcode(ARM::t2LDRSHpci); 6762 return true; 6763 // Handle NEON VST complex aliases. 6764 case ARM::VST1LNdWB_register_Asm_8: 6765 case ARM::VST1LNdWB_register_Asm_16: 6766 case ARM::VST1LNdWB_register_Asm_32: { 6767 MCInst TmpInst; 6768 // Shuffle the operands around so the lane index operand is in the 6769 // right place. 6770 unsigned Spacing; 6771 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6772 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6773 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6774 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6775 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6776 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6777 TmpInst.addOperand(Inst.getOperand(1)); // lane 6778 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6779 TmpInst.addOperand(Inst.getOperand(6)); 6780 Inst = TmpInst; 6781 return true; 6782 } 6783 6784 case ARM::VST2LNdWB_register_Asm_8: 6785 case ARM::VST2LNdWB_register_Asm_16: 6786 case ARM::VST2LNdWB_register_Asm_32: 6787 case ARM::VST2LNqWB_register_Asm_16: 6788 case ARM::VST2LNqWB_register_Asm_32: { 6789 MCInst TmpInst; 6790 // Shuffle the operands around so the lane index operand is in the 6791 // right place. 6792 unsigned Spacing; 6793 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6794 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6795 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6796 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6797 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6798 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6799 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6800 Spacing)); 6801 TmpInst.addOperand(Inst.getOperand(1)); // lane 6802 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6803 TmpInst.addOperand(Inst.getOperand(6)); 6804 Inst = TmpInst; 6805 return true; 6806 } 6807 6808 case ARM::VST3LNdWB_register_Asm_8: 6809 case ARM::VST3LNdWB_register_Asm_16: 6810 case ARM::VST3LNdWB_register_Asm_32: 6811 case ARM::VST3LNqWB_register_Asm_16: 6812 case ARM::VST3LNqWB_register_Asm_32: { 6813 MCInst TmpInst; 6814 // Shuffle the operands around so the lane index operand is in the 6815 // right place. 6816 unsigned Spacing; 6817 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6818 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6819 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6820 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6821 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6822 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6823 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6824 Spacing)); 6825 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6826 Spacing * 2)); 6827 TmpInst.addOperand(Inst.getOperand(1)); // lane 6828 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6829 TmpInst.addOperand(Inst.getOperand(6)); 6830 Inst = TmpInst; 6831 return true; 6832 } 6833 6834 case ARM::VST4LNdWB_register_Asm_8: 6835 case ARM::VST4LNdWB_register_Asm_16: 6836 case ARM::VST4LNdWB_register_Asm_32: 6837 case ARM::VST4LNqWB_register_Asm_16: 6838 case ARM::VST4LNqWB_register_Asm_32: { 6839 MCInst TmpInst; 6840 // Shuffle the operands around so the lane index operand is in the 6841 // right place. 6842 unsigned Spacing; 6843 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6844 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6845 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6846 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6847 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6848 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6849 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6850 Spacing)); 6851 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6852 Spacing * 2)); 6853 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6854 Spacing * 3)); 6855 TmpInst.addOperand(Inst.getOperand(1)); // lane 6856 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6857 TmpInst.addOperand(Inst.getOperand(6)); 6858 Inst = TmpInst; 6859 return true; 6860 } 6861 6862 case ARM::VST1LNdWB_fixed_Asm_8: 6863 case ARM::VST1LNdWB_fixed_Asm_16: 6864 case ARM::VST1LNdWB_fixed_Asm_32: { 6865 MCInst TmpInst; 6866 // Shuffle the operands around so the lane index operand is in the 6867 // right place. 6868 unsigned Spacing; 6869 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6870 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6871 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6872 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6873 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6874 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6875 TmpInst.addOperand(Inst.getOperand(1)); // lane 6876 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6877 TmpInst.addOperand(Inst.getOperand(5)); 6878 Inst = TmpInst; 6879 return true; 6880 } 6881 6882 case ARM::VST2LNdWB_fixed_Asm_8: 6883 case ARM::VST2LNdWB_fixed_Asm_16: 6884 case ARM::VST2LNdWB_fixed_Asm_32: 6885 case ARM::VST2LNqWB_fixed_Asm_16: 6886 case ARM::VST2LNqWB_fixed_Asm_32: { 6887 MCInst TmpInst; 6888 // Shuffle the operands around so the lane index operand is in the 6889 // right place. 6890 unsigned Spacing; 6891 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6892 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6893 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6894 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6895 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6896 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6897 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6898 Spacing)); 6899 TmpInst.addOperand(Inst.getOperand(1)); // lane 6900 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6901 TmpInst.addOperand(Inst.getOperand(5)); 6902 Inst = TmpInst; 6903 return true; 6904 } 6905 6906 case ARM::VST3LNdWB_fixed_Asm_8: 6907 case ARM::VST3LNdWB_fixed_Asm_16: 6908 case ARM::VST3LNdWB_fixed_Asm_32: 6909 case ARM::VST3LNqWB_fixed_Asm_16: 6910 case ARM::VST3LNqWB_fixed_Asm_32: { 6911 MCInst TmpInst; 6912 // Shuffle the operands around so the lane index operand is in the 6913 // right place. 6914 unsigned Spacing; 6915 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6916 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6917 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6918 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6919 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6920 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6921 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6922 Spacing)); 6923 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6924 Spacing * 2)); 6925 TmpInst.addOperand(Inst.getOperand(1)); // lane 6926 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6927 TmpInst.addOperand(Inst.getOperand(5)); 6928 Inst = TmpInst; 6929 return true; 6930 } 6931 6932 case ARM::VST4LNdWB_fixed_Asm_8: 6933 case ARM::VST4LNdWB_fixed_Asm_16: 6934 case ARM::VST4LNdWB_fixed_Asm_32: 6935 case ARM::VST4LNqWB_fixed_Asm_16: 6936 case ARM::VST4LNqWB_fixed_Asm_32: { 6937 MCInst TmpInst; 6938 // Shuffle the operands around so the lane index operand is in the 6939 // right place. 6940 unsigned Spacing; 6941 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6942 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6943 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6944 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6945 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6946 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6947 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6948 Spacing)); 6949 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6950 Spacing * 2)); 6951 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6952 Spacing * 3)); 6953 TmpInst.addOperand(Inst.getOperand(1)); // lane 6954 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6955 TmpInst.addOperand(Inst.getOperand(5)); 6956 Inst = TmpInst; 6957 return true; 6958 } 6959 6960 case ARM::VST1LNdAsm_8: 6961 case ARM::VST1LNdAsm_16: 6962 case ARM::VST1LNdAsm_32: { 6963 MCInst TmpInst; 6964 // Shuffle the operands around so the lane index operand is in the 6965 // right place. 6966 unsigned Spacing; 6967 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6968 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6969 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6970 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6971 TmpInst.addOperand(Inst.getOperand(1)); // lane 6972 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6973 TmpInst.addOperand(Inst.getOperand(5)); 6974 Inst = TmpInst; 6975 return true; 6976 } 6977 6978 case ARM::VST2LNdAsm_8: 6979 case ARM::VST2LNdAsm_16: 6980 case ARM::VST2LNdAsm_32: 6981 case ARM::VST2LNqAsm_16: 6982 case ARM::VST2LNqAsm_32: { 6983 MCInst TmpInst; 6984 // Shuffle the operands around so the lane index operand is in the 6985 // right place. 6986 unsigned Spacing; 6987 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6988 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6989 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6990 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6991 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6992 Spacing)); 6993 TmpInst.addOperand(Inst.getOperand(1)); // lane 6994 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6995 TmpInst.addOperand(Inst.getOperand(5)); 6996 Inst = TmpInst; 6997 return true; 6998 } 6999 7000 case ARM::VST3LNdAsm_8: 7001 case ARM::VST3LNdAsm_16: 7002 case ARM::VST3LNdAsm_32: 7003 case ARM::VST3LNqAsm_16: 7004 case ARM::VST3LNqAsm_32: { 7005 MCInst TmpInst; 7006 // Shuffle the operands around so the lane index operand is in the 7007 // right place. 7008 unsigned Spacing; 7009 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7010 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7011 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7012 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7013 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7014 Spacing)); 7015 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7016 Spacing * 2)); 7017 TmpInst.addOperand(Inst.getOperand(1)); // lane 7018 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7019 TmpInst.addOperand(Inst.getOperand(5)); 7020 Inst = TmpInst; 7021 return true; 7022 } 7023 7024 case ARM::VST4LNdAsm_8: 7025 case ARM::VST4LNdAsm_16: 7026 case ARM::VST4LNdAsm_32: 7027 case ARM::VST4LNqAsm_16: 7028 case ARM::VST4LNqAsm_32: { 7029 MCInst TmpInst; 7030 // Shuffle the operands around so the lane index operand is in the 7031 // right place. 7032 unsigned Spacing; 7033 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7034 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7035 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7036 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7037 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7038 Spacing)); 7039 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7040 Spacing * 2)); 7041 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7042 Spacing * 3)); 7043 TmpInst.addOperand(Inst.getOperand(1)); // lane 7044 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7045 TmpInst.addOperand(Inst.getOperand(5)); 7046 Inst = TmpInst; 7047 return true; 7048 } 7049 7050 // Handle NEON VLD complex aliases. 7051 case ARM::VLD1LNdWB_register_Asm_8: 7052 case ARM::VLD1LNdWB_register_Asm_16: 7053 case ARM::VLD1LNdWB_register_Asm_32: { 7054 MCInst TmpInst; 7055 // Shuffle the operands around so the lane index operand is in the 7056 // right place. 7057 unsigned Spacing; 7058 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7059 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7060 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7061 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7062 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7063 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7064 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7065 TmpInst.addOperand(Inst.getOperand(1)); // lane 7066 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7067 TmpInst.addOperand(Inst.getOperand(6)); 7068 Inst = TmpInst; 7069 return true; 7070 } 7071 7072 case ARM::VLD2LNdWB_register_Asm_8: 7073 case ARM::VLD2LNdWB_register_Asm_16: 7074 case ARM::VLD2LNdWB_register_Asm_32: 7075 case ARM::VLD2LNqWB_register_Asm_16: 7076 case ARM::VLD2LNqWB_register_Asm_32: { 7077 MCInst TmpInst; 7078 // Shuffle the operands around so the lane index operand is in the 7079 // right place. 7080 unsigned Spacing; 7081 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7082 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7083 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7084 Spacing)); 7085 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7086 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7087 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7088 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7089 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7090 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7091 Spacing)); 7092 TmpInst.addOperand(Inst.getOperand(1)); // lane 7093 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7094 TmpInst.addOperand(Inst.getOperand(6)); 7095 Inst = TmpInst; 7096 return true; 7097 } 7098 7099 case ARM::VLD3LNdWB_register_Asm_8: 7100 case ARM::VLD3LNdWB_register_Asm_16: 7101 case ARM::VLD3LNdWB_register_Asm_32: 7102 case ARM::VLD3LNqWB_register_Asm_16: 7103 case ARM::VLD3LNqWB_register_Asm_32: { 7104 MCInst TmpInst; 7105 // Shuffle the operands around so the lane index operand is in the 7106 // right place. 7107 unsigned Spacing; 7108 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7109 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7110 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7111 Spacing)); 7112 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7113 Spacing * 2)); 7114 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7115 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7116 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7117 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7118 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7119 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7120 Spacing)); 7121 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7122 Spacing * 2)); 7123 TmpInst.addOperand(Inst.getOperand(1)); // lane 7124 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7125 TmpInst.addOperand(Inst.getOperand(6)); 7126 Inst = TmpInst; 7127 return true; 7128 } 7129 7130 case ARM::VLD4LNdWB_register_Asm_8: 7131 case ARM::VLD4LNdWB_register_Asm_16: 7132 case ARM::VLD4LNdWB_register_Asm_32: 7133 case ARM::VLD4LNqWB_register_Asm_16: 7134 case ARM::VLD4LNqWB_register_Asm_32: { 7135 MCInst TmpInst; 7136 // Shuffle the operands around so the lane index operand is in the 7137 // right place. 7138 unsigned Spacing; 7139 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7140 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7141 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7142 Spacing)); 7143 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7144 Spacing * 2)); 7145 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7146 Spacing * 3)); 7147 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7148 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7149 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7150 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7151 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7152 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7153 Spacing)); 7154 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7155 Spacing * 2)); 7156 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7157 Spacing * 3)); 7158 TmpInst.addOperand(Inst.getOperand(1)); // lane 7159 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7160 TmpInst.addOperand(Inst.getOperand(6)); 7161 Inst = TmpInst; 7162 return true; 7163 } 7164 7165 case ARM::VLD1LNdWB_fixed_Asm_8: 7166 case ARM::VLD1LNdWB_fixed_Asm_16: 7167 case ARM::VLD1LNdWB_fixed_Asm_32: { 7168 MCInst TmpInst; 7169 // Shuffle the operands around so the lane index operand is in the 7170 // right place. 7171 unsigned Spacing; 7172 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7173 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7174 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7175 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7176 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7177 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7178 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7179 TmpInst.addOperand(Inst.getOperand(1)); // lane 7180 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7181 TmpInst.addOperand(Inst.getOperand(5)); 7182 Inst = TmpInst; 7183 return true; 7184 } 7185 7186 case ARM::VLD2LNdWB_fixed_Asm_8: 7187 case ARM::VLD2LNdWB_fixed_Asm_16: 7188 case ARM::VLD2LNdWB_fixed_Asm_32: 7189 case ARM::VLD2LNqWB_fixed_Asm_16: 7190 case ARM::VLD2LNqWB_fixed_Asm_32: { 7191 MCInst TmpInst; 7192 // Shuffle the operands around so the lane index operand is in the 7193 // right place. 7194 unsigned Spacing; 7195 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7196 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7197 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7198 Spacing)); 7199 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7200 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7201 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7202 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7203 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7204 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7205 Spacing)); 7206 TmpInst.addOperand(Inst.getOperand(1)); // lane 7207 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7208 TmpInst.addOperand(Inst.getOperand(5)); 7209 Inst = TmpInst; 7210 return true; 7211 } 7212 7213 case ARM::VLD3LNdWB_fixed_Asm_8: 7214 case ARM::VLD3LNdWB_fixed_Asm_16: 7215 case ARM::VLD3LNdWB_fixed_Asm_32: 7216 case ARM::VLD3LNqWB_fixed_Asm_16: 7217 case ARM::VLD3LNqWB_fixed_Asm_32: { 7218 MCInst TmpInst; 7219 // Shuffle the operands around so the lane index operand is in the 7220 // right place. 7221 unsigned Spacing; 7222 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7223 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7224 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7225 Spacing)); 7226 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7227 Spacing * 2)); 7228 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7229 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7230 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7231 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7232 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7233 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7234 Spacing)); 7235 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7236 Spacing * 2)); 7237 TmpInst.addOperand(Inst.getOperand(1)); // lane 7238 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7239 TmpInst.addOperand(Inst.getOperand(5)); 7240 Inst = TmpInst; 7241 return true; 7242 } 7243 7244 case ARM::VLD4LNdWB_fixed_Asm_8: 7245 case ARM::VLD4LNdWB_fixed_Asm_16: 7246 case ARM::VLD4LNdWB_fixed_Asm_32: 7247 case ARM::VLD4LNqWB_fixed_Asm_16: 7248 case ARM::VLD4LNqWB_fixed_Asm_32: { 7249 MCInst TmpInst; 7250 // Shuffle the operands around so the lane index operand is in the 7251 // right place. 7252 unsigned Spacing; 7253 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7254 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7255 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7256 Spacing)); 7257 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7258 Spacing * 2)); 7259 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7260 Spacing * 3)); 7261 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7262 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7263 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7264 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7265 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7266 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7267 Spacing)); 7268 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7269 Spacing * 2)); 7270 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7271 Spacing * 3)); 7272 TmpInst.addOperand(Inst.getOperand(1)); // lane 7273 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7274 TmpInst.addOperand(Inst.getOperand(5)); 7275 Inst = TmpInst; 7276 return true; 7277 } 7278 7279 case ARM::VLD1LNdAsm_8: 7280 case ARM::VLD1LNdAsm_16: 7281 case ARM::VLD1LNdAsm_32: { 7282 MCInst TmpInst; 7283 // Shuffle the operands around so the lane index operand is in the 7284 // right place. 7285 unsigned Spacing; 7286 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7287 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7288 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7289 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7290 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7291 TmpInst.addOperand(Inst.getOperand(1)); // lane 7292 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7293 TmpInst.addOperand(Inst.getOperand(5)); 7294 Inst = TmpInst; 7295 return true; 7296 } 7297 7298 case ARM::VLD2LNdAsm_8: 7299 case ARM::VLD2LNdAsm_16: 7300 case ARM::VLD2LNdAsm_32: 7301 case ARM::VLD2LNqAsm_16: 7302 case ARM::VLD2LNqAsm_32: { 7303 MCInst TmpInst; 7304 // Shuffle the operands around so the lane index operand is in the 7305 // right place. 7306 unsigned Spacing; 7307 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7308 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7309 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7310 Spacing)); 7311 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7312 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7313 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7314 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7315 Spacing)); 7316 TmpInst.addOperand(Inst.getOperand(1)); // lane 7317 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7318 TmpInst.addOperand(Inst.getOperand(5)); 7319 Inst = TmpInst; 7320 return true; 7321 } 7322 7323 case ARM::VLD3LNdAsm_8: 7324 case ARM::VLD3LNdAsm_16: 7325 case ARM::VLD3LNdAsm_32: 7326 case ARM::VLD3LNqAsm_16: 7327 case ARM::VLD3LNqAsm_32: { 7328 MCInst TmpInst; 7329 // Shuffle the operands around so the lane index operand is in the 7330 // right place. 7331 unsigned Spacing; 7332 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7333 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7334 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7335 Spacing)); 7336 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7337 Spacing * 2)); 7338 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7339 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7340 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7341 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7342 Spacing)); 7343 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7344 Spacing * 2)); 7345 TmpInst.addOperand(Inst.getOperand(1)); // lane 7346 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7347 TmpInst.addOperand(Inst.getOperand(5)); 7348 Inst = TmpInst; 7349 return true; 7350 } 7351 7352 case ARM::VLD4LNdAsm_8: 7353 case ARM::VLD4LNdAsm_16: 7354 case ARM::VLD4LNdAsm_32: 7355 case ARM::VLD4LNqAsm_16: 7356 case ARM::VLD4LNqAsm_32: { 7357 MCInst TmpInst; 7358 // Shuffle the operands around so the lane index operand is in the 7359 // right place. 7360 unsigned Spacing; 7361 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7362 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7363 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7364 Spacing)); 7365 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7366 Spacing * 2)); 7367 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7368 Spacing * 3)); 7369 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7370 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7371 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7372 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7373 Spacing)); 7374 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7375 Spacing * 2)); 7376 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7377 Spacing * 3)); 7378 TmpInst.addOperand(Inst.getOperand(1)); // lane 7379 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7380 TmpInst.addOperand(Inst.getOperand(5)); 7381 Inst = TmpInst; 7382 return true; 7383 } 7384 7385 // VLD3DUP single 3-element structure to all lanes instructions. 7386 case ARM::VLD3DUPdAsm_8: 7387 case ARM::VLD3DUPdAsm_16: 7388 case ARM::VLD3DUPdAsm_32: 7389 case ARM::VLD3DUPqAsm_8: 7390 case ARM::VLD3DUPqAsm_16: 7391 case ARM::VLD3DUPqAsm_32: { 7392 MCInst TmpInst; 7393 unsigned Spacing; 7394 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7395 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7396 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7397 Spacing)); 7398 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7399 Spacing * 2)); 7400 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7401 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7402 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7403 TmpInst.addOperand(Inst.getOperand(4)); 7404 Inst = TmpInst; 7405 return true; 7406 } 7407 7408 case ARM::VLD3DUPdWB_fixed_Asm_8: 7409 case ARM::VLD3DUPdWB_fixed_Asm_16: 7410 case ARM::VLD3DUPdWB_fixed_Asm_32: 7411 case ARM::VLD3DUPqWB_fixed_Asm_8: 7412 case ARM::VLD3DUPqWB_fixed_Asm_16: 7413 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7414 MCInst TmpInst; 7415 unsigned Spacing; 7416 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7417 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7419 Spacing)); 7420 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7421 Spacing * 2)); 7422 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7423 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7424 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7425 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7426 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7427 TmpInst.addOperand(Inst.getOperand(4)); 7428 Inst = TmpInst; 7429 return true; 7430 } 7431 7432 case ARM::VLD3DUPdWB_register_Asm_8: 7433 case ARM::VLD3DUPdWB_register_Asm_16: 7434 case ARM::VLD3DUPdWB_register_Asm_32: 7435 case ARM::VLD3DUPqWB_register_Asm_8: 7436 case ARM::VLD3DUPqWB_register_Asm_16: 7437 case ARM::VLD3DUPqWB_register_Asm_32: { 7438 MCInst TmpInst; 7439 unsigned Spacing; 7440 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7441 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7443 Spacing)); 7444 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7445 Spacing * 2)); 7446 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7447 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7448 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7449 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7450 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7451 TmpInst.addOperand(Inst.getOperand(5)); 7452 Inst = TmpInst; 7453 return true; 7454 } 7455 7456 // VLD3 multiple 3-element structure instructions. 7457 case ARM::VLD3dAsm_8: 7458 case ARM::VLD3dAsm_16: 7459 case ARM::VLD3dAsm_32: 7460 case ARM::VLD3qAsm_8: 7461 case ARM::VLD3qAsm_16: 7462 case ARM::VLD3qAsm_32: { 7463 MCInst TmpInst; 7464 unsigned Spacing; 7465 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7466 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7467 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7468 Spacing)); 7469 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7470 Spacing * 2)); 7471 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7472 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7473 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7474 TmpInst.addOperand(Inst.getOperand(4)); 7475 Inst = TmpInst; 7476 return true; 7477 } 7478 7479 case ARM::VLD3dWB_fixed_Asm_8: 7480 case ARM::VLD3dWB_fixed_Asm_16: 7481 case ARM::VLD3dWB_fixed_Asm_32: 7482 case ARM::VLD3qWB_fixed_Asm_8: 7483 case ARM::VLD3qWB_fixed_Asm_16: 7484 case ARM::VLD3qWB_fixed_Asm_32: { 7485 MCInst TmpInst; 7486 unsigned Spacing; 7487 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7488 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7489 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7490 Spacing)); 7491 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7492 Spacing * 2)); 7493 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7494 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7495 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7496 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7497 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7498 TmpInst.addOperand(Inst.getOperand(4)); 7499 Inst = TmpInst; 7500 return true; 7501 } 7502 7503 case ARM::VLD3dWB_register_Asm_8: 7504 case ARM::VLD3dWB_register_Asm_16: 7505 case ARM::VLD3dWB_register_Asm_32: 7506 case ARM::VLD3qWB_register_Asm_8: 7507 case ARM::VLD3qWB_register_Asm_16: 7508 case ARM::VLD3qWB_register_Asm_32: { 7509 MCInst TmpInst; 7510 unsigned Spacing; 7511 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7512 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7514 Spacing)); 7515 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7516 Spacing * 2)); 7517 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7518 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7519 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7520 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7521 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7522 TmpInst.addOperand(Inst.getOperand(5)); 7523 Inst = TmpInst; 7524 return true; 7525 } 7526 7527 // VLD4DUP single 3-element structure to all lanes instructions. 7528 case ARM::VLD4DUPdAsm_8: 7529 case ARM::VLD4DUPdAsm_16: 7530 case ARM::VLD4DUPdAsm_32: 7531 case ARM::VLD4DUPqAsm_8: 7532 case ARM::VLD4DUPqAsm_16: 7533 case ARM::VLD4DUPqAsm_32: { 7534 MCInst TmpInst; 7535 unsigned Spacing; 7536 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7537 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7538 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7539 Spacing)); 7540 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7541 Spacing * 2)); 7542 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7543 Spacing * 3)); 7544 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7545 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7546 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7547 TmpInst.addOperand(Inst.getOperand(4)); 7548 Inst = TmpInst; 7549 return true; 7550 } 7551 7552 case ARM::VLD4DUPdWB_fixed_Asm_8: 7553 case ARM::VLD4DUPdWB_fixed_Asm_16: 7554 case ARM::VLD4DUPdWB_fixed_Asm_32: 7555 case ARM::VLD4DUPqWB_fixed_Asm_8: 7556 case ARM::VLD4DUPqWB_fixed_Asm_16: 7557 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7558 MCInst TmpInst; 7559 unsigned Spacing; 7560 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7561 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7562 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7563 Spacing)); 7564 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7565 Spacing * 2)); 7566 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7567 Spacing * 3)); 7568 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7569 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7570 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7571 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7572 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7573 TmpInst.addOperand(Inst.getOperand(4)); 7574 Inst = TmpInst; 7575 return true; 7576 } 7577 7578 case ARM::VLD4DUPdWB_register_Asm_8: 7579 case ARM::VLD4DUPdWB_register_Asm_16: 7580 case ARM::VLD4DUPdWB_register_Asm_32: 7581 case ARM::VLD4DUPqWB_register_Asm_8: 7582 case ARM::VLD4DUPqWB_register_Asm_16: 7583 case ARM::VLD4DUPqWB_register_Asm_32: { 7584 MCInst TmpInst; 7585 unsigned Spacing; 7586 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7587 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7588 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7589 Spacing)); 7590 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7591 Spacing * 2)); 7592 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7593 Spacing * 3)); 7594 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7595 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7596 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7597 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7598 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7599 TmpInst.addOperand(Inst.getOperand(5)); 7600 Inst = TmpInst; 7601 return true; 7602 } 7603 7604 // VLD4 multiple 4-element structure instructions. 7605 case ARM::VLD4dAsm_8: 7606 case ARM::VLD4dAsm_16: 7607 case ARM::VLD4dAsm_32: 7608 case ARM::VLD4qAsm_8: 7609 case ARM::VLD4qAsm_16: 7610 case ARM::VLD4qAsm_32: { 7611 MCInst TmpInst; 7612 unsigned Spacing; 7613 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7614 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7616 Spacing)); 7617 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7618 Spacing * 2)); 7619 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7620 Spacing * 3)); 7621 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7622 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7623 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7624 TmpInst.addOperand(Inst.getOperand(4)); 7625 Inst = TmpInst; 7626 return true; 7627 } 7628 7629 case ARM::VLD4dWB_fixed_Asm_8: 7630 case ARM::VLD4dWB_fixed_Asm_16: 7631 case ARM::VLD4dWB_fixed_Asm_32: 7632 case ARM::VLD4qWB_fixed_Asm_8: 7633 case ARM::VLD4qWB_fixed_Asm_16: 7634 case ARM::VLD4qWB_fixed_Asm_32: { 7635 MCInst TmpInst; 7636 unsigned Spacing; 7637 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7638 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7640 Spacing)); 7641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7642 Spacing * 2)); 7643 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7644 Spacing * 3)); 7645 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7646 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7647 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7648 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7649 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7650 TmpInst.addOperand(Inst.getOperand(4)); 7651 Inst = TmpInst; 7652 return true; 7653 } 7654 7655 case ARM::VLD4dWB_register_Asm_8: 7656 case ARM::VLD4dWB_register_Asm_16: 7657 case ARM::VLD4dWB_register_Asm_32: 7658 case ARM::VLD4qWB_register_Asm_8: 7659 case ARM::VLD4qWB_register_Asm_16: 7660 case ARM::VLD4qWB_register_Asm_32: { 7661 MCInst TmpInst; 7662 unsigned Spacing; 7663 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7664 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7665 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7666 Spacing)); 7667 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7668 Spacing * 2)); 7669 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7670 Spacing * 3)); 7671 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7672 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7673 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7674 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7675 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7676 TmpInst.addOperand(Inst.getOperand(5)); 7677 Inst = TmpInst; 7678 return true; 7679 } 7680 7681 // VST3 multiple 3-element structure instructions. 7682 case ARM::VST3dAsm_8: 7683 case ARM::VST3dAsm_16: 7684 case ARM::VST3dAsm_32: 7685 case ARM::VST3qAsm_8: 7686 case ARM::VST3qAsm_16: 7687 case ARM::VST3qAsm_32: { 7688 MCInst TmpInst; 7689 unsigned Spacing; 7690 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7691 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7692 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7693 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7694 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7695 Spacing)); 7696 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7697 Spacing * 2)); 7698 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7699 TmpInst.addOperand(Inst.getOperand(4)); 7700 Inst = TmpInst; 7701 return true; 7702 } 7703 7704 case ARM::VST3dWB_fixed_Asm_8: 7705 case ARM::VST3dWB_fixed_Asm_16: 7706 case ARM::VST3dWB_fixed_Asm_32: 7707 case ARM::VST3qWB_fixed_Asm_8: 7708 case ARM::VST3qWB_fixed_Asm_16: 7709 case ARM::VST3qWB_fixed_Asm_32: { 7710 MCInst TmpInst; 7711 unsigned Spacing; 7712 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7713 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7714 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7715 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7716 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7717 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7718 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7719 Spacing)); 7720 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7721 Spacing * 2)); 7722 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7723 TmpInst.addOperand(Inst.getOperand(4)); 7724 Inst = TmpInst; 7725 return true; 7726 } 7727 7728 case ARM::VST3dWB_register_Asm_8: 7729 case ARM::VST3dWB_register_Asm_16: 7730 case ARM::VST3dWB_register_Asm_32: 7731 case ARM::VST3qWB_register_Asm_8: 7732 case ARM::VST3qWB_register_Asm_16: 7733 case ARM::VST3qWB_register_Asm_32: { 7734 MCInst TmpInst; 7735 unsigned Spacing; 7736 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7737 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7738 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7739 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7740 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7741 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7743 Spacing)); 7744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7745 Spacing * 2)); 7746 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7747 TmpInst.addOperand(Inst.getOperand(5)); 7748 Inst = TmpInst; 7749 return true; 7750 } 7751 7752 // VST4 multiple 3-element structure instructions. 7753 case ARM::VST4dAsm_8: 7754 case ARM::VST4dAsm_16: 7755 case ARM::VST4dAsm_32: 7756 case ARM::VST4qAsm_8: 7757 case ARM::VST4qAsm_16: 7758 case ARM::VST4qAsm_32: { 7759 MCInst TmpInst; 7760 unsigned Spacing; 7761 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7762 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7763 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7764 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7765 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7766 Spacing)); 7767 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7768 Spacing * 2)); 7769 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7770 Spacing * 3)); 7771 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7772 TmpInst.addOperand(Inst.getOperand(4)); 7773 Inst = TmpInst; 7774 return true; 7775 } 7776 7777 case ARM::VST4dWB_fixed_Asm_8: 7778 case ARM::VST4dWB_fixed_Asm_16: 7779 case ARM::VST4dWB_fixed_Asm_32: 7780 case ARM::VST4qWB_fixed_Asm_8: 7781 case ARM::VST4qWB_fixed_Asm_16: 7782 case ARM::VST4qWB_fixed_Asm_32: { 7783 MCInst TmpInst; 7784 unsigned Spacing; 7785 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7786 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7787 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7788 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7789 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7790 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7791 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7792 Spacing)); 7793 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7794 Spacing * 2)); 7795 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7796 Spacing * 3)); 7797 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7798 TmpInst.addOperand(Inst.getOperand(4)); 7799 Inst = TmpInst; 7800 return true; 7801 } 7802 7803 case ARM::VST4dWB_register_Asm_8: 7804 case ARM::VST4dWB_register_Asm_16: 7805 case ARM::VST4dWB_register_Asm_32: 7806 case ARM::VST4qWB_register_Asm_8: 7807 case ARM::VST4qWB_register_Asm_16: 7808 case ARM::VST4qWB_register_Asm_32: { 7809 MCInst TmpInst; 7810 unsigned Spacing; 7811 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7812 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7813 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7814 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7815 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7816 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7817 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7818 Spacing)); 7819 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7820 Spacing * 2)); 7821 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7822 Spacing * 3)); 7823 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7824 TmpInst.addOperand(Inst.getOperand(5)); 7825 Inst = TmpInst; 7826 return true; 7827 } 7828 7829 // Handle encoding choice for the shift-immediate instructions. 7830 case ARM::t2LSLri: 7831 case ARM::t2LSRri: 7832 case ARM::t2ASRri: { 7833 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7834 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7835 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7836 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 7837 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 7838 unsigned NewOpc; 7839 switch (Inst.getOpcode()) { 7840 default: llvm_unreachable("unexpected opcode"); 7841 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7842 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7843 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7844 } 7845 // The Thumb1 operands aren't in the same order. Awesome, eh? 7846 MCInst TmpInst; 7847 TmpInst.setOpcode(NewOpc); 7848 TmpInst.addOperand(Inst.getOperand(0)); 7849 TmpInst.addOperand(Inst.getOperand(5)); 7850 TmpInst.addOperand(Inst.getOperand(1)); 7851 TmpInst.addOperand(Inst.getOperand(2)); 7852 TmpInst.addOperand(Inst.getOperand(3)); 7853 TmpInst.addOperand(Inst.getOperand(4)); 7854 Inst = TmpInst; 7855 return true; 7856 } 7857 return false; 7858 } 7859 7860 // Handle the Thumb2 mode MOV complex aliases. 7861 case ARM::t2MOVsr: 7862 case ARM::t2MOVSsr: { 7863 // Which instruction to expand to depends on the CCOut operand and 7864 // whether we're in an IT block if the register operands are low 7865 // registers. 7866 bool isNarrow = false; 7867 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7868 isARMLowRegister(Inst.getOperand(1).getReg()) && 7869 isARMLowRegister(Inst.getOperand(2).getReg()) && 7870 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7871 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 7872 isNarrow = true; 7873 MCInst TmpInst; 7874 unsigned newOpc; 7875 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 7876 default: llvm_unreachable("unexpected opcode!"); 7877 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 7878 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 7879 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 7880 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 7881 } 7882 TmpInst.setOpcode(newOpc); 7883 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7884 if (isNarrow) 7885 TmpInst.addOperand(MCOperand::createReg( 7886 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7887 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7888 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7889 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7890 TmpInst.addOperand(Inst.getOperand(5)); 7891 if (!isNarrow) 7892 TmpInst.addOperand(MCOperand::createReg( 7893 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7894 Inst = TmpInst; 7895 return true; 7896 } 7897 case ARM::t2MOVsi: 7898 case ARM::t2MOVSsi: { 7899 // Which instruction to expand to depends on the CCOut operand and 7900 // whether we're in an IT block if the register operands are low 7901 // registers. 7902 bool isNarrow = false; 7903 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7904 isARMLowRegister(Inst.getOperand(1).getReg()) && 7905 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 7906 isNarrow = true; 7907 MCInst TmpInst; 7908 unsigned newOpc; 7909 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 7910 default: llvm_unreachable("unexpected opcode!"); 7911 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 7912 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 7913 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 7914 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 7915 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 7916 } 7917 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 7918 if (Amount == 32) Amount = 0; 7919 TmpInst.setOpcode(newOpc); 7920 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7921 if (isNarrow) 7922 TmpInst.addOperand(MCOperand::createReg( 7923 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7924 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7925 if (newOpc != ARM::t2RRX) 7926 TmpInst.addOperand(MCOperand::createImm(Amount)); 7927 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7928 TmpInst.addOperand(Inst.getOperand(4)); 7929 if (!isNarrow) 7930 TmpInst.addOperand(MCOperand::createReg( 7931 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7932 Inst = TmpInst; 7933 return true; 7934 } 7935 // Handle the ARM mode MOV complex aliases. 7936 case ARM::ASRr: 7937 case ARM::LSRr: 7938 case ARM::LSLr: 7939 case ARM::RORr: { 7940 ARM_AM::ShiftOpc ShiftTy; 7941 switch(Inst.getOpcode()) { 7942 default: llvm_unreachable("unexpected opcode!"); 7943 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 7944 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 7945 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 7946 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 7947 } 7948 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 7949 MCInst TmpInst; 7950 TmpInst.setOpcode(ARM::MOVsr); 7951 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7952 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7953 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7954 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7955 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7956 TmpInst.addOperand(Inst.getOperand(4)); 7957 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7958 Inst = TmpInst; 7959 return true; 7960 } 7961 case ARM::ASRi: 7962 case ARM::LSRi: 7963 case ARM::LSLi: 7964 case ARM::RORi: { 7965 ARM_AM::ShiftOpc ShiftTy; 7966 switch(Inst.getOpcode()) { 7967 default: llvm_unreachable("unexpected opcode!"); 7968 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 7969 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 7970 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 7971 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 7972 } 7973 // A shift by zero is a plain MOVr, not a MOVsi. 7974 unsigned Amt = Inst.getOperand(2).getImm(); 7975 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 7976 // A shift by 32 should be encoded as 0 when permitted 7977 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 7978 Amt = 0; 7979 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 7980 MCInst TmpInst; 7981 TmpInst.setOpcode(Opc); 7982 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7983 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7984 if (Opc == ARM::MOVsi) 7985 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7986 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7987 TmpInst.addOperand(Inst.getOperand(4)); 7988 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7989 Inst = TmpInst; 7990 return true; 7991 } 7992 case ARM::RRXi: { 7993 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 7994 MCInst TmpInst; 7995 TmpInst.setOpcode(ARM::MOVsi); 7996 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7997 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7998 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7999 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8000 TmpInst.addOperand(Inst.getOperand(3)); 8001 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8002 Inst = TmpInst; 8003 return true; 8004 } 8005 case ARM::t2LDMIA_UPD: { 8006 // If this is a load of a single register, then we should use 8007 // a post-indexed LDR instruction instead, per the ARM ARM. 8008 if (Inst.getNumOperands() != 5) 8009 return false; 8010 MCInst TmpInst; 8011 TmpInst.setOpcode(ARM::t2LDR_POST); 8012 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8013 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8014 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8015 TmpInst.addOperand(MCOperand::createImm(4)); 8016 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8017 TmpInst.addOperand(Inst.getOperand(3)); 8018 Inst = TmpInst; 8019 return true; 8020 } 8021 case ARM::t2STMDB_UPD: { 8022 // If this is a store of a single register, then we should use 8023 // a pre-indexed STR instruction instead, per the ARM ARM. 8024 if (Inst.getNumOperands() != 5) 8025 return false; 8026 MCInst TmpInst; 8027 TmpInst.setOpcode(ARM::t2STR_PRE); 8028 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8029 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8030 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8031 TmpInst.addOperand(MCOperand::createImm(-4)); 8032 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8033 TmpInst.addOperand(Inst.getOperand(3)); 8034 Inst = TmpInst; 8035 return true; 8036 } 8037 case ARM::LDMIA_UPD: 8038 // If this is a load of a single register via a 'pop', then we should use 8039 // a post-indexed LDR instruction instead, per the ARM ARM. 8040 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8041 Inst.getNumOperands() == 5) { 8042 MCInst TmpInst; 8043 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8044 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8045 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8046 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8047 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8048 TmpInst.addOperand(MCOperand::createImm(4)); 8049 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8050 TmpInst.addOperand(Inst.getOperand(3)); 8051 Inst = TmpInst; 8052 return true; 8053 } 8054 break; 8055 case ARM::STMDB_UPD: 8056 // If this is a store of a single register via a 'push', then we should use 8057 // a pre-indexed STR instruction instead, per the ARM ARM. 8058 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8059 Inst.getNumOperands() == 5) { 8060 MCInst TmpInst; 8061 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8062 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8063 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8064 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8065 TmpInst.addOperand(MCOperand::createImm(-4)); 8066 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8067 TmpInst.addOperand(Inst.getOperand(3)); 8068 Inst = TmpInst; 8069 } 8070 break; 8071 case ARM::t2ADDri12: 8072 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8073 // mnemonic was used (not "addw"), encoding T3 is preferred. 8074 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8075 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8076 break; 8077 Inst.setOpcode(ARM::t2ADDri); 8078 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8079 break; 8080 case ARM::t2SUBri12: 8081 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8082 // mnemonic was used (not "subw"), encoding T3 is preferred. 8083 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8084 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8085 break; 8086 Inst.setOpcode(ARM::t2SUBri); 8087 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8088 break; 8089 case ARM::tADDi8: 8090 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8091 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8092 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8093 // to encoding T1 if <Rd> is omitted." 8094 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8095 Inst.setOpcode(ARM::tADDi3); 8096 return true; 8097 } 8098 break; 8099 case ARM::tSUBi8: 8100 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8101 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8102 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8103 // to encoding T1 if <Rd> is omitted." 8104 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8105 Inst.setOpcode(ARM::tSUBi3); 8106 return true; 8107 } 8108 break; 8109 case ARM::t2ADDri: 8110 case ARM::t2SUBri: { 8111 // If the destination and first source operand are the same, and 8112 // the flags are compatible with the current IT status, use encoding T2 8113 // instead of T3. For compatibility with the system 'as'. Make sure the 8114 // wide encoding wasn't explicit. 8115 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8116 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8117 (unsigned)Inst.getOperand(2).getImm() > 255 || 8118 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8119 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8120 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8121 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8122 break; 8123 MCInst TmpInst; 8124 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8125 ARM::tADDi8 : ARM::tSUBi8); 8126 TmpInst.addOperand(Inst.getOperand(0)); 8127 TmpInst.addOperand(Inst.getOperand(5)); 8128 TmpInst.addOperand(Inst.getOperand(0)); 8129 TmpInst.addOperand(Inst.getOperand(2)); 8130 TmpInst.addOperand(Inst.getOperand(3)); 8131 TmpInst.addOperand(Inst.getOperand(4)); 8132 Inst = TmpInst; 8133 return true; 8134 } 8135 case ARM::t2ADDrr: { 8136 // If the destination and first source operand are the same, and 8137 // there's no setting of the flags, use encoding T2 instead of T3. 8138 // Note that this is only for ADD, not SUB. This mirrors the system 8139 // 'as' behaviour. Also take advantage of ADD being commutative. 8140 // Make sure the wide encoding wasn't explicit. 8141 bool Swap = false; 8142 auto DestReg = Inst.getOperand(0).getReg(); 8143 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8144 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8145 Transform = true; 8146 Swap = true; 8147 } 8148 if (!Transform || 8149 Inst.getOperand(5).getReg() != 0 || 8150 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8151 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8152 break; 8153 MCInst TmpInst; 8154 TmpInst.setOpcode(ARM::tADDhirr); 8155 TmpInst.addOperand(Inst.getOperand(0)); 8156 TmpInst.addOperand(Inst.getOperand(0)); 8157 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8158 TmpInst.addOperand(Inst.getOperand(3)); 8159 TmpInst.addOperand(Inst.getOperand(4)); 8160 Inst = TmpInst; 8161 return true; 8162 } 8163 case ARM::tADDrSP: { 8164 // If the non-SP source operand and the destination operand are not the 8165 // same, we need to use the 32-bit encoding if it's available. 8166 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8167 Inst.setOpcode(ARM::t2ADDrr); 8168 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8169 return true; 8170 } 8171 break; 8172 } 8173 case ARM::tB: 8174 // A Thumb conditional branch outside of an IT block is a tBcc. 8175 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8176 Inst.setOpcode(ARM::tBcc); 8177 return true; 8178 } 8179 break; 8180 case ARM::t2B: 8181 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8182 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8183 Inst.setOpcode(ARM::t2Bcc); 8184 return true; 8185 } 8186 break; 8187 case ARM::t2Bcc: 8188 // If the conditional is AL or we're in an IT block, we really want t2B. 8189 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8190 Inst.setOpcode(ARM::t2B); 8191 return true; 8192 } 8193 break; 8194 case ARM::tBcc: 8195 // If the conditional is AL, we really want tB. 8196 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8197 Inst.setOpcode(ARM::tB); 8198 return true; 8199 } 8200 break; 8201 case ARM::tLDMIA: { 8202 // If the register list contains any high registers, or if the writeback 8203 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8204 // instead if we're in Thumb2. Otherwise, this should have generated 8205 // an error in validateInstruction(). 8206 unsigned Rn = Inst.getOperand(0).getReg(); 8207 bool hasWritebackToken = 8208 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8209 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8210 bool listContainsBase; 8211 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8212 (!listContainsBase && !hasWritebackToken) || 8213 (listContainsBase && hasWritebackToken)) { 8214 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8215 assert (isThumbTwo()); 8216 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8217 // If we're switching to the updating version, we need to insert 8218 // the writeback tied operand. 8219 if (hasWritebackToken) 8220 Inst.insert(Inst.begin(), 8221 MCOperand::createReg(Inst.getOperand(0).getReg())); 8222 return true; 8223 } 8224 break; 8225 } 8226 case ARM::tSTMIA_UPD: { 8227 // If the register list contains any high registers, we need to use 8228 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8229 // should have generated an error in validateInstruction(). 8230 unsigned Rn = Inst.getOperand(0).getReg(); 8231 bool listContainsBase; 8232 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8233 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8234 assert (isThumbTwo()); 8235 Inst.setOpcode(ARM::t2STMIA_UPD); 8236 return true; 8237 } 8238 break; 8239 } 8240 case ARM::tPOP: { 8241 bool listContainsBase; 8242 // If the register list contains any high registers, we need to use 8243 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8244 // should have generated an error in validateInstruction(). 8245 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8246 return false; 8247 assert (isThumbTwo()); 8248 Inst.setOpcode(ARM::t2LDMIA_UPD); 8249 // Add the base register and writeback operands. 8250 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8251 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8252 return true; 8253 } 8254 case ARM::tPUSH: { 8255 bool listContainsBase; 8256 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8257 return false; 8258 assert (isThumbTwo()); 8259 Inst.setOpcode(ARM::t2STMDB_UPD); 8260 // Add the base register and writeback operands. 8261 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8262 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8263 return true; 8264 } 8265 case ARM::t2MOVi: { 8266 // If we can use the 16-bit encoding and the user didn't explicitly 8267 // request the 32-bit variant, transform it here. 8268 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8269 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8270 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8271 Inst.getOperand(4).getReg() == ARM::CPSR) || 8272 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8273 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8274 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8275 // The operands aren't in the same order for tMOVi8... 8276 MCInst TmpInst; 8277 TmpInst.setOpcode(ARM::tMOVi8); 8278 TmpInst.addOperand(Inst.getOperand(0)); 8279 TmpInst.addOperand(Inst.getOperand(4)); 8280 TmpInst.addOperand(Inst.getOperand(1)); 8281 TmpInst.addOperand(Inst.getOperand(2)); 8282 TmpInst.addOperand(Inst.getOperand(3)); 8283 Inst = TmpInst; 8284 return true; 8285 } 8286 break; 8287 } 8288 case ARM::t2MOVr: { 8289 // If we can use the 16-bit encoding and the user didn't explicitly 8290 // request the 32-bit variant, transform it here. 8291 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8292 isARMLowRegister(Inst.getOperand(1).getReg()) && 8293 Inst.getOperand(2).getImm() == ARMCC::AL && 8294 Inst.getOperand(4).getReg() == ARM::CPSR && 8295 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8296 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8297 // The operands aren't the same for tMOV[S]r... (no cc_out) 8298 MCInst TmpInst; 8299 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8300 TmpInst.addOperand(Inst.getOperand(0)); 8301 TmpInst.addOperand(Inst.getOperand(1)); 8302 TmpInst.addOperand(Inst.getOperand(2)); 8303 TmpInst.addOperand(Inst.getOperand(3)); 8304 Inst = TmpInst; 8305 return true; 8306 } 8307 break; 8308 } 8309 case ARM::t2SXTH: 8310 case ARM::t2SXTB: 8311 case ARM::t2UXTH: 8312 case ARM::t2UXTB: { 8313 // If we can use the 16-bit encoding and the user didn't explicitly 8314 // request the 32-bit variant, transform it here. 8315 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8316 isARMLowRegister(Inst.getOperand(1).getReg()) && 8317 Inst.getOperand(2).getImm() == 0 && 8318 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8319 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8320 unsigned NewOpc; 8321 switch (Inst.getOpcode()) { 8322 default: llvm_unreachable("Illegal opcode!"); 8323 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8324 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8325 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8326 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8327 } 8328 // The operands aren't the same for thumb1 (no rotate operand). 8329 MCInst TmpInst; 8330 TmpInst.setOpcode(NewOpc); 8331 TmpInst.addOperand(Inst.getOperand(0)); 8332 TmpInst.addOperand(Inst.getOperand(1)); 8333 TmpInst.addOperand(Inst.getOperand(3)); 8334 TmpInst.addOperand(Inst.getOperand(4)); 8335 Inst = TmpInst; 8336 return true; 8337 } 8338 break; 8339 } 8340 case ARM::MOVsi: { 8341 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8342 // rrx shifts and asr/lsr of #32 is encoded as 0 8343 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8344 return false; 8345 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8346 // Shifting by zero is accepted as a vanilla 'MOVr' 8347 MCInst TmpInst; 8348 TmpInst.setOpcode(ARM::MOVr); 8349 TmpInst.addOperand(Inst.getOperand(0)); 8350 TmpInst.addOperand(Inst.getOperand(1)); 8351 TmpInst.addOperand(Inst.getOperand(3)); 8352 TmpInst.addOperand(Inst.getOperand(4)); 8353 TmpInst.addOperand(Inst.getOperand(5)); 8354 Inst = TmpInst; 8355 return true; 8356 } 8357 return false; 8358 } 8359 case ARM::ANDrsi: 8360 case ARM::ORRrsi: 8361 case ARM::EORrsi: 8362 case ARM::BICrsi: 8363 case ARM::SUBrsi: 8364 case ARM::ADDrsi: { 8365 unsigned newOpc; 8366 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8367 if (SOpc == ARM_AM::rrx) return false; 8368 switch (Inst.getOpcode()) { 8369 default: llvm_unreachable("unexpected opcode!"); 8370 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8371 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8372 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8373 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8374 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8375 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8376 } 8377 // If the shift is by zero, use the non-shifted instruction definition. 8378 // The exception is for right shifts, where 0 == 32 8379 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8380 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8381 MCInst TmpInst; 8382 TmpInst.setOpcode(newOpc); 8383 TmpInst.addOperand(Inst.getOperand(0)); 8384 TmpInst.addOperand(Inst.getOperand(1)); 8385 TmpInst.addOperand(Inst.getOperand(2)); 8386 TmpInst.addOperand(Inst.getOperand(4)); 8387 TmpInst.addOperand(Inst.getOperand(5)); 8388 TmpInst.addOperand(Inst.getOperand(6)); 8389 Inst = TmpInst; 8390 return true; 8391 } 8392 return false; 8393 } 8394 case ARM::ITasm: 8395 case ARM::t2IT: { 8396 // The mask bits for all but the first condition are represented as 8397 // the low bit of the condition code value implies 't'. We currently 8398 // always have 1 implies 't', so XOR toggle the bits if the low bit 8399 // of the condition code is zero. 8400 MCOperand &MO = Inst.getOperand(1); 8401 unsigned Mask = MO.getImm(); 8402 unsigned OrigMask = Mask; 8403 unsigned TZ = countTrailingZeros(Mask); 8404 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8405 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8406 Mask ^= (0xE << TZ) & 0xF; 8407 } 8408 MO.setImm(Mask); 8409 8410 // Set up the IT block state according to the IT instruction we just 8411 // matched. 8412 assert(!inITBlock() && "nested IT blocks?!"); 8413 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8414 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8415 ITState.CurPosition = 0; 8416 ITState.FirstCond = true; 8417 break; 8418 } 8419 case ARM::t2LSLrr: 8420 case ARM::t2LSRrr: 8421 case ARM::t2ASRrr: 8422 case ARM::t2SBCrr: 8423 case ARM::t2RORrr: 8424 case ARM::t2BICrr: 8425 { 8426 // Assemblers should use the narrow encodings of these instructions when permissible. 8427 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8428 isARMLowRegister(Inst.getOperand(2).getReg())) && 8429 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8430 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8431 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8432 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8433 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8434 ".w"))) { 8435 unsigned NewOpc; 8436 switch (Inst.getOpcode()) { 8437 default: llvm_unreachable("unexpected opcode"); 8438 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8439 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8440 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8441 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8442 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8443 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8444 } 8445 MCInst TmpInst; 8446 TmpInst.setOpcode(NewOpc); 8447 TmpInst.addOperand(Inst.getOperand(0)); 8448 TmpInst.addOperand(Inst.getOperand(5)); 8449 TmpInst.addOperand(Inst.getOperand(1)); 8450 TmpInst.addOperand(Inst.getOperand(2)); 8451 TmpInst.addOperand(Inst.getOperand(3)); 8452 TmpInst.addOperand(Inst.getOperand(4)); 8453 Inst = TmpInst; 8454 return true; 8455 } 8456 return false; 8457 } 8458 case ARM::t2ANDrr: 8459 case ARM::t2EORrr: 8460 case ARM::t2ADCrr: 8461 case ARM::t2ORRrr: 8462 { 8463 // Assemblers should use the narrow encodings of these instructions when permissible. 8464 // These instructions are special in that they are commutable, so shorter encodings 8465 // are available more often. 8466 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8467 isARMLowRegister(Inst.getOperand(2).getReg())) && 8468 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8469 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8470 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8471 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8472 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8473 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8474 ".w"))) { 8475 unsigned NewOpc; 8476 switch (Inst.getOpcode()) { 8477 default: llvm_unreachable("unexpected opcode"); 8478 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8479 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8480 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8481 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8482 } 8483 MCInst TmpInst; 8484 TmpInst.setOpcode(NewOpc); 8485 TmpInst.addOperand(Inst.getOperand(0)); 8486 TmpInst.addOperand(Inst.getOperand(5)); 8487 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8488 TmpInst.addOperand(Inst.getOperand(1)); 8489 TmpInst.addOperand(Inst.getOperand(2)); 8490 } else { 8491 TmpInst.addOperand(Inst.getOperand(2)); 8492 TmpInst.addOperand(Inst.getOperand(1)); 8493 } 8494 TmpInst.addOperand(Inst.getOperand(3)); 8495 TmpInst.addOperand(Inst.getOperand(4)); 8496 Inst = TmpInst; 8497 return true; 8498 } 8499 return false; 8500 } 8501 } 8502 return false; 8503 } 8504 8505 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8506 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8507 // suffix depending on whether they're in an IT block or not. 8508 unsigned Opc = Inst.getOpcode(); 8509 const MCInstrDesc &MCID = MII.get(Opc); 8510 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8511 assert(MCID.hasOptionalDef() && 8512 "optionally flag setting instruction missing optional def operand"); 8513 assert(MCID.NumOperands == Inst.getNumOperands() && 8514 "operand count mismatch!"); 8515 // Find the optional-def operand (cc_out). 8516 unsigned OpNo; 8517 for (OpNo = 0; 8518 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8519 ++OpNo) 8520 ; 8521 // If we're parsing Thumb1, reject it completely. 8522 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8523 return Match_MnemonicFail; 8524 // If we're parsing Thumb2, which form is legal depends on whether we're 8525 // in an IT block. 8526 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8527 !inITBlock()) 8528 return Match_RequiresITBlock; 8529 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8530 inITBlock()) 8531 return Match_RequiresNotITBlock; 8532 } 8533 // Some high-register supporting Thumb1 encodings only allow both registers 8534 // to be from r0-r7 when in Thumb2. 8535 else if (Opc == ARM::tADDhirr && isThumbOne() && !hasV6MOps() && 8536 isARMLowRegister(Inst.getOperand(1).getReg()) && 8537 isARMLowRegister(Inst.getOperand(2).getReg())) 8538 return Match_RequiresThumb2; 8539 // Others only require ARMv6 or later. 8540 else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() && 8541 isARMLowRegister(Inst.getOperand(0).getReg()) && 8542 isARMLowRegister(Inst.getOperand(1).getReg())) 8543 return Match_RequiresV6; 8544 return Match_Success; 8545 } 8546 8547 namespace llvm { 8548 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8549 return true; // In an assembly source, no need to second-guess 8550 } 8551 } 8552 8553 static const char *getSubtargetFeatureName(uint64_t Val); 8554 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8555 OperandVector &Operands, 8556 MCStreamer &Out, uint64_t &ErrorInfo, 8557 bool MatchingInlineAsm) { 8558 MCInst Inst; 8559 unsigned MatchResult; 8560 8561 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8562 MatchingInlineAsm); 8563 switch (MatchResult) { 8564 case Match_Success: 8565 // Context sensitive operand constraints aren't handled by the matcher, 8566 // so check them here. 8567 if (validateInstruction(Inst, Operands)) { 8568 // Still progress the IT block, otherwise one wrong condition causes 8569 // nasty cascading errors. 8570 forwardITPosition(); 8571 return true; 8572 } 8573 8574 { // processInstruction() updates inITBlock state, we need to save it away 8575 bool wasInITBlock = inITBlock(); 8576 8577 // Some instructions need post-processing to, for example, tweak which 8578 // encoding is selected. Loop on it while changes happen so the 8579 // individual transformations can chain off each other. E.g., 8580 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8581 while (processInstruction(Inst, Operands, Out)) 8582 ; 8583 8584 // Only after the instruction is fully processed, we can validate it 8585 if (wasInITBlock && hasV8Ops() && isThumb() && 8586 !isV8EligibleForIT(&Inst)) { 8587 Warning(IDLoc, "deprecated instruction in IT block"); 8588 } 8589 } 8590 8591 // Only move forward at the very end so that everything in validate 8592 // and process gets a consistent answer about whether we're in an IT 8593 // block. 8594 forwardITPosition(); 8595 8596 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8597 // doesn't actually encode. 8598 if (Inst.getOpcode() == ARM::ITasm) 8599 return false; 8600 8601 Inst.setLoc(IDLoc); 8602 Out.EmitInstruction(Inst, STI); 8603 return false; 8604 case Match_MissingFeature: { 8605 assert(ErrorInfo && "Unknown missing feature!"); 8606 // Special case the error message for the very common case where only 8607 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8608 std::string Msg = "instruction requires:"; 8609 uint64_t Mask = 1; 8610 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8611 if (ErrorInfo & Mask) { 8612 Msg += " "; 8613 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8614 } 8615 Mask <<= 1; 8616 } 8617 return Error(IDLoc, Msg); 8618 } 8619 case Match_InvalidOperand: { 8620 SMLoc ErrorLoc = IDLoc; 8621 if (ErrorInfo != ~0ULL) { 8622 if (ErrorInfo >= Operands.size()) 8623 return Error(IDLoc, "too few operands for instruction"); 8624 8625 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8626 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8627 } 8628 8629 return Error(ErrorLoc, "invalid operand for instruction"); 8630 } 8631 case Match_MnemonicFail: 8632 return Error(IDLoc, "invalid instruction", 8633 ((ARMOperand &)*Operands[0]).getLocRange()); 8634 case Match_RequiresNotITBlock: 8635 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8636 case Match_RequiresITBlock: 8637 return Error(IDLoc, "instruction only valid inside IT block"); 8638 case Match_RequiresV6: 8639 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8640 case Match_RequiresThumb2: 8641 return Error(IDLoc, "instruction variant requires Thumb2"); 8642 case Match_ImmRange0_15: { 8643 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8644 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8645 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8646 } 8647 case Match_ImmRange0_239: { 8648 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8649 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8650 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8651 } 8652 case Match_AlignedMemoryRequiresNone: 8653 case Match_DupAlignedMemoryRequiresNone: 8654 case Match_AlignedMemoryRequires16: 8655 case Match_DupAlignedMemoryRequires16: 8656 case Match_AlignedMemoryRequires32: 8657 case Match_DupAlignedMemoryRequires32: 8658 case Match_AlignedMemoryRequires64: 8659 case Match_DupAlignedMemoryRequires64: 8660 case Match_AlignedMemoryRequires64or128: 8661 case Match_DupAlignedMemoryRequires64or128: 8662 case Match_AlignedMemoryRequires64or128or256: 8663 { 8664 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8665 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8666 switch (MatchResult) { 8667 default: 8668 llvm_unreachable("Missing Match_Aligned type"); 8669 case Match_AlignedMemoryRequiresNone: 8670 case Match_DupAlignedMemoryRequiresNone: 8671 return Error(ErrorLoc, "alignment must be omitted"); 8672 case Match_AlignedMemoryRequires16: 8673 case Match_DupAlignedMemoryRequires16: 8674 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8675 case Match_AlignedMemoryRequires32: 8676 case Match_DupAlignedMemoryRequires32: 8677 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8678 case Match_AlignedMemoryRequires64: 8679 case Match_DupAlignedMemoryRequires64: 8680 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8681 case Match_AlignedMemoryRequires64or128: 8682 case Match_DupAlignedMemoryRequires64or128: 8683 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8684 case Match_AlignedMemoryRequires64or128or256: 8685 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8686 } 8687 } 8688 } 8689 8690 llvm_unreachable("Implement any new match types added!"); 8691 } 8692 8693 /// parseDirective parses the arm specific directives 8694 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8695 const MCObjectFileInfo::Environment Format = 8696 getContext().getObjectFileInfo()->getObjectFileType(); 8697 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8698 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8699 8700 StringRef IDVal = DirectiveID.getIdentifier(); 8701 if (IDVal == ".word") 8702 return parseLiteralValues(4, DirectiveID.getLoc()); 8703 else if (IDVal == ".short" || IDVal == ".hword") 8704 return parseLiteralValues(2, DirectiveID.getLoc()); 8705 else if (IDVal == ".thumb") 8706 return parseDirectiveThumb(DirectiveID.getLoc()); 8707 else if (IDVal == ".arm") 8708 return parseDirectiveARM(DirectiveID.getLoc()); 8709 else if (IDVal == ".thumb_func") 8710 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8711 else if (IDVal == ".code") 8712 return parseDirectiveCode(DirectiveID.getLoc()); 8713 else if (IDVal == ".syntax") 8714 return parseDirectiveSyntax(DirectiveID.getLoc()); 8715 else if (IDVal == ".unreq") 8716 return parseDirectiveUnreq(DirectiveID.getLoc()); 8717 else if (IDVal == ".fnend") 8718 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8719 else if (IDVal == ".cantunwind") 8720 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8721 else if (IDVal == ".personality") 8722 return parseDirectivePersonality(DirectiveID.getLoc()); 8723 else if (IDVal == ".handlerdata") 8724 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8725 else if (IDVal == ".setfp") 8726 return parseDirectiveSetFP(DirectiveID.getLoc()); 8727 else if (IDVal == ".pad") 8728 return parseDirectivePad(DirectiveID.getLoc()); 8729 else if (IDVal == ".save") 8730 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8731 else if (IDVal == ".vsave") 8732 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8733 else if (IDVal == ".ltorg" || IDVal == ".pool") 8734 return parseDirectiveLtorg(DirectiveID.getLoc()); 8735 else if (IDVal == ".even") 8736 return parseDirectiveEven(DirectiveID.getLoc()); 8737 else if (IDVal == ".personalityindex") 8738 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8739 else if (IDVal == ".unwind_raw") 8740 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8741 else if (IDVal == ".movsp") 8742 return parseDirectiveMovSP(DirectiveID.getLoc()); 8743 else if (IDVal == ".arch_extension") 8744 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8745 else if (IDVal == ".align") 8746 return parseDirectiveAlign(DirectiveID.getLoc()); 8747 else if (IDVal == ".thumb_set") 8748 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8749 8750 if (!IsMachO && !IsCOFF) { 8751 if (IDVal == ".arch") 8752 return parseDirectiveArch(DirectiveID.getLoc()); 8753 else if (IDVal == ".cpu") 8754 return parseDirectiveCPU(DirectiveID.getLoc()); 8755 else if (IDVal == ".eabi_attribute") 8756 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8757 else if (IDVal == ".fpu") 8758 return parseDirectiveFPU(DirectiveID.getLoc()); 8759 else if (IDVal == ".fnstart") 8760 return parseDirectiveFnStart(DirectiveID.getLoc()); 8761 else if (IDVal == ".inst") 8762 return parseDirectiveInst(DirectiveID.getLoc()); 8763 else if (IDVal == ".inst.n") 8764 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8765 else if (IDVal == ".inst.w") 8766 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8767 else if (IDVal == ".object_arch") 8768 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8769 else if (IDVal == ".tlsdescseq") 8770 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8771 } 8772 8773 return true; 8774 } 8775 8776 /// parseLiteralValues 8777 /// ::= .hword expression [, expression]* 8778 /// ::= .short expression [, expression]* 8779 /// ::= .word expression [, expression]* 8780 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8781 MCAsmParser &Parser = getParser(); 8782 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8783 for (;;) { 8784 const MCExpr *Value; 8785 if (getParser().parseExpression(Value)) { 8786 Parser.eatToEndOfStatement(); 8787 return false; 8788 } 8789 8790 getParser().getStreamer().EmitValue(Value, Size); 8791 8792 if (getLexer().is(AsmToken::EndOfStatement)) 8793 break; 8794 8795 // FIXME: Improve diagnostic. 8796 if (getLexer().isNot(AsmToken::Comma)) { 8797 Error(L, "unexpected token in directive"); 8798 return false; 8799 } 8800 Parser.Lex(); 8801 } 8802 } 8803 8804 Parser.Lex(); 8805 return false; 8806 } 8807 8808 /// parseDirectiveThumb 8809 /// ::= .thumb 8810 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 8811 MCAsmParser &Parser = getParser(); 8812 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8813 Error(L, "unexpected token in directive"); 8814 return false; 8815 } 8816 Parser.Lex(); 8817 8818 if (!hasThumb()) { 8819 Error(L, "target does not support Thumb mode"); 8820 return false; 8821 } 8822 8823 if (!isThumb()) 8824 SwitchMode(); 8825 8826 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8827 return false; 8828 } 8829 8830 /// parseDirectiveARM 8831 /// ::= .arm 8832 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 8833 MCAsmParser &Parser = getParser(); 8834 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8835 Error(L, "unexpected token in directive"); 8836 return false; 8837 } 8838 Parser.Lex(); 8839 8840 if (!hasARM()) { 8841 Error(L, "target does not support ARM mode"); 8842 return false; 8843 } 8844 8845 if (isThumb()) 8846 SwitchMode(); 8847 8848 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8849 return false; 8850 } 8851 8852 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 8853 if (NextSymbolIsThumb) { 8854 getParser().getStreamer().EmitThumbFunc(Symbol); 8855 NextSymbolIsThumb = false; 8856 } 8857 } 8858 8859 /// parseDirectiveThumbFunc 8860 /// ::= .thumbfunc symbol_name 8861 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 8862 MCAsmParser &Parser = getParser(); 8863 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 8864 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8865 8866 // Darwin asm has (optionally) function name after .thumb_func direction 8867 // ELF doesn't 8868 if (IsMachO) { 8869 const AsmToken &Tok = Parser.getTok(); 8870 if (Tok.isNot(AsmToken::EndOfStatement)) { 8871 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 8872 Error(L, "unexpected token in .thumb_func directive"); 8873 return false; 8874 } 8875 8876 MCSymbol *Func = 8877 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 8878 getParser().getStreamer().EmitThumbFunc(Func); 8879 Parser.Lex(); // Consume the identifier token. 8880 return false; 8881 } 8882 } 8883 8884 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8885 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8886 Parser.eatToEndOfStatement(); 8887 return false; 8888 } 8889 8890 NextSymbolIsThumb = true; 8891 return false; 8892 } 8893 8894 /// parseDirectiveSyntax 8895 /// ::= .syntax unified | divided 8896 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 8897 MCAsmParser &Parser = getParser(); 8898 const AsmToken &Tok = Parser.getTok(); 8899 if (Tok.isNot(AsmToken::Identifier)) { 8900 Error(L, "unexpected token in .syntax directive"); 8901 return false; 8902 } 8903 8904 StringRef Mode = Tok.getString(); 8905 if (Mode == "unified" || Mode == "UNIFIED") { 8906 Parser.Lex(); 8907 } else if (Mode == "divided" || Mode == "DIVIDED") { 8908 Error(L, "'.syntax divided' arm asssembly not supported"); 8909 return false; 8910 } else { 8911 Error(L, "unrecognized syntax mode in .syntax directive"); 8912 return false; 8913 } 8914 8915 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8916 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8917 return false; 8918 } 8919 Parser.Lex(); 8920 8921 // TODO tell the MC streamer the mode 8922 // getParser().getStreamer().Emit???(); 8923 return false; 8924 } 8925 8926 /// parseDirectiveCode 8927 /// ::= .code 16 | 32 8928 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 8929 MCAsmParser &Parser = getParser(); 8930 const AsmToken &Tok = Parser.getTok(); 8931 if (Tok.isNot(AsmToken::Integer)) { 8932 Error(L, "unexpected token in .code directive"); 8933 return false; 8934 } 8935 int64_t Val = Parser.getTok().getIntVal(); 8936 if (Val != 16 && Val != 32) { 8937 Error(L, "invalid operand to .code directive"); 8938 return false; 8939 } 8940 Parser.Lex(); 8941 8942 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8943 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8944 return false; 8945 } 8946 Parser.Lex(); 8947 8948 if (Val == 16) { 8949 if (!hasThumb()) { 8950 Error(L, "target does not support Thumb mode"); 8951 return false; 8952 } 8953 8954 if (!isThumb()) 8955 SwitchMode(); 8956 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8957 } else { 8958 if (!hasARM()) { 8959 Error(L, "target does not support ARM mode"); 8960 return false; 8961 } 8962 8963 if (isThumb()) 8964 SwitchMode(); 8965 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8966 } 8967 8968 return false; 8969 } 8970 8971 /// parseDirectiveReq 8972 /// ::= name .req registername 8973 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 8974 MCAsmParser &Parser = getParser(); 8975 Parser.Lex(); // Eat the '.req' token. 8976 unsigned Reg; 8977 SMLoc SRegLoc, ERegLoc; 8978 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 8979 Parser.eatToEndOfStatement(); 8980 Error(SRegLoc, "register name expected"); 8981 return false; 8982 } 8983 8984 // Shouldn't be anything else. 8985 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 8986 Parser.eatToEndOfStatement(); 8987 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 8988 return false; 8989 } 8990 8991 Parser.Lex(); // Consume the EndOfStatement 8992 8993 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 8994 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 8995 return false; 8996 } 8997 8998 return false; 8999 } 9000 9001 /// parseDirectiveUneq 9002 /// ::= .unreq registername 9003 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9004 MCAsmParser &Parser = getParser(); 9005 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9006 Parser.eatToEndOfStatement(); 9007 Error(L, "unexpected input in .unreq directive."); 9008 return false; 9009 } 9010 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9011 Parser.Lex(); // Eat the identifier. 9012 return false; 9013 } 9014 9015 /// parseDirectiveArch 9016 /// ::= .arch token 9017 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9018 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9019 9020 unsigned ID = ARM::parseArch(Arch); 9021 9022 if (ID == ARM::AK_INVALID) { 9023 Error(L, "Unknown arch name"); 9024 return false; 9025 } 9026 9027 Triple T; 9028 STI.setDefaultFeatures(T.getARMCPUForArch(Arch)); 9029 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9030 9031 getTargetStreamer().emitArch(ID); 9032 return false; 9033 } 9034 9035 /// parseDirectiveEabiAttr 9036 /// ::= .eabi_attribute int, int [, "str"] 9037 /// ::= .eabi_attribute Tag_name, int [, "str"] 9038 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9039 MCAsmParser &Parser = getParser(); 9040 int64_t Tag; 9041 SMLoc TagLoc; 9042 TagLoc = Parser.getTok().getLoc(); 9043 if (Parser.getTok().is(AsmToken::Identifier)) { 9044 StringRef Name = Parser.getTok().getIdentifier(); 9045 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9046 if (Tag == -1) { 9047 Error(TagLoc, "attribute name not recognised: " + Name); 9048 Parser.eatToEndOfStatement(); 9049 return false; 9050 } 9051 Parser.Lex(); 9052 } else { 9053 const MCExpr *AttrExpr; 9054 9055 TagLoc = Parser.getTok().getLoc(); 9056 if (Parser.parseExpression(AttrExpr)) { 9057 Parser.eatToEndOfStatement(); 9058 return false; 9059 } 9060 9061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9062 if (!CE) { 9063 Error(TagLoc, "expected numeric constant"); 9064 Parser.eatToEndOfStatement(); 9065 return false; 9066 } 9067 9068 Tag = CE->getValue(); 9069 } 9070 9071 if (Parser.getTok().isNot(AsmToken::Comma)) { 9072 Error(Parser.getTok().getLoc(), "comma expected"); 9073 Parser.eatToEndOfStatement(); 9074 return false; 9075 } 9076 Parser.Lex(); // skip comma 9077 9078 StringRef StringValue = ""; 9079 bool IsStringValue = false; 9080 9081 int64_t IntegerValue = 0; 9082 bool IsIntegerValue = false; 9083 9084 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9085 IsStringValue = true; 9086 else if (Tag == ARMBuildAttrs::compatibility) { 9087 IsStringValue = true; 9088 IsIntegerValue = true; 9089 } else if (Tag < 32 || Tag % 2 == 0) 9090 IsIntegerValue = true; 9091 else if (Tag % 2 == 1) 9092 IsStringValue = true; 9093 else 9094 llvm_unreachable("invalid tag type"); 9095 9096 if (IsIntegerValue) { 9097 const MCExpr *ValueExpr; 9098 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9099 if (Parser.parseExpression(ValueExpr)) { 9100 Parser.eatToEndOfStatement(); 9101 return false; 9102 } 9103 9104 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9105 if (!CE) { 9106 Error(ValueExprLoc, "expected numeric constant"); 9107 Parser.eatToEndOfStatement(); 9108 return false; 9109 } 9110 9111 IntegerValue = CE->getValue(); 9112 } 9113 9114 if (Tag == ARMBuildAttrs::compatibility) { 9115 if (Parser.getTok().isNot(AsmToken::Comma)) 9116 IsStringValue = false; 9117 if (Parser.getTok().isNot(AsmToken::Comma)) { 9118 Error(Parser.getTok().getLoc(), "comma expected"); 9119 Parser.eatToEndOfStatement(); 9120 return false; 9121 } else { 9122 Parser.Lex(); 9123 } 9124 } 9125 9126 if (IsStringValue) { 9127 if (Parser.getTok().isNot(AsmToken::String)) { 9128 Error(Parser.getTok().getLoc(), "bad string constant"); 9129 Parser.eatToEndOfStatement(); 9130 return false; 9131 } 9132 9133 StringValue = Parser.getTok().getStringContents(); 9134 Parser.Lex(); 9135 } 9136 9137 if (IsIntegerValue && IsStringValue) { 9138 assert(Tag == ARMBuildAttrs::compatibility); 9139 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9140 } else if (IsIntegerValue) 9141 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9142 else if (IsStringValue) 9143 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9144 return false; 9145 } 9146 9147 /// parseDirectiveCPU 9148 /// ::= .cpu str 9149 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9150 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9151 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9152 9153 // FIXME: This is using table-gen data, but should be moved to 9154 // ARMTargetParser once that is table-gen'd. 9155 if (!STI.isCPUStringValid(CPU)) { 9156 Error(L, "Unknown CPU name"); 9157 return false; 9158 } 9159 9160 STI.setDefaultFeatures(CPU); 9161 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9162 9163 return false; 9164 } 9165 /// parseDirectiveFPU 9166 /// ::= .fpu str 9167 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9168 SMLoc FPUNameLoc = getTok().getLoc(); 9169 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9170 9171 unsigned ID = ARM::parseFPU(FPU); 9172 std::vector<const char *> Features; 9173 if (!ARM::getFPUFeatures(ID, Features)) { 9174 Error(FPUNameLoc, "Unknown FPU name"); 9175 return false; 9176 } 9177 9178 for (auto Feature : Features) 9179 STI.ApplyFeatureFlag(Feature); 9180 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9181 9182 getTargetStreamer().emitFPU(ID); 9183 return false; 9184 } 9185 9186 /// parseDirectiveFnStart 9187 /// ::= .fnstart 9188 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9189 if (UC.hasFnStart()) { 9190 Error(L, ".fnstart starts before the end of previous one"); 9191 UC.emitFnStartLocNotes(); 9192 return false; 9193 } 9194 9195 // Reset the unwind directives parser state 9196 UC.reset(); 9197 9198 getTargetStreamer().emitFnStart(); 9199 9200 UC.recordFnStart(L); 9201 return false; 9202 } 9203 9204 /// parseDirectiveFnEnd 9205 /// ::= .fnend 9206 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9207 // Check the ordering of unwind directives 9208 if (!UC.hasFnStart()) { 9209 Error(L, ".fnstart must precede .fnend directive"); 9210 return false; 9211 } 9212 9213 // Reset the unwind directives parser state 9214 getTargetStreamer().emitFnEnd(); 9215 9216 UC.reset(); 9217 return false; 9218 } 9219 9220 /// parseDirectiveCantUnwind 9221 /// ::= .cantunwind 9222 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9223 UC.recordCantUnwind(L); 9224 9225 // Check the ordering of unwind directives 9226 if (!UC.hasFnStart()) { 9227 Error(L, ".fnstart must precede .cantunwind directive"); 9228 return false; 9229 } 9230 if (UC.hasHandlerData()) { 9231 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9232 UC.emitHandlerDataLocNotes(); 9233 return false; 9234 } 9235 if (UC.hasPersonality()) { 9236 Error(L, ".cantunwind can't be used with .personality directive"); 9237 UC.emitPersonalityLocNotes(); 9238 return false; 9239 } 9240 9241 getTargetStreamer().emitCantUnwind(); 9242 return false; 9243 } 9244 9245 /// parseDirectivePersonality 9246 /// ::= .personality name 9247 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9248 MCAsmParser &Parser = getParser(); 9249 bool HasExistingPersonality = UC.hasPersonality(); 9250 9251 UC.recordPersonality(L); 9252 9253 // Check the ordering of unwind directives 9254 if (!UC.hasFnStart()) { 9255 Error(L, ".fnstart must precede .personality directive"); 9256 return false; 9257 } 9258 if (UC.cantUnwind()) { 9259 Error(L, ".personality can't be used with .cantunwind directive"); 9260 UC.emitCantUnwindLocNotes(); 9261 return false; 9262 } 9263 if (UC.hasHandlerData()) { 9264 Error(L, ".personality must precede .handlerdata directive"); 9265 UC.emitHandlerDataLocNotes(); 9266 return false; 9267 } 9268 if (HasExistingPersonality) { 9269 Parser.eatToEndOfStatement(); 9270 Error(L, "multiple personality directives"); 9271 UC.emitPersonalityLocNotes(); 9272 return false; 9273 } 9274 9275 // Parse the name of the personality routine 9276 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9277 Parser.eatToEndOfStatement(); 9278 Error(L, "unexpected input in .personality directive."); 9279 return false; 9280 } 9281 StringRef Name(Parser.getTok().getIdentifier()); 9282 Parser.Lex(); 9283 9284 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9285 getTargetStreamer().emitPersonality(PR); 9286 return false; 9287 } 9288 9289 /// parseDirectiveHandlerData 9290 /// ::= .handlerdata 9291 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9292 UC.recordHandlerData(L); 9293 9294 // Check the ordering of unwind directives 9295 if (!UC.hasFnStart()) { 9296 Error(L, ".fnstart must precede .personality directive"); 9297 return false; 9298 } 9299 if (UC.cantUnwind()) { 9300 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9301 UC.emitCantUnwindLocNotes(); 9302 return false; 9303 } 9304 9305 getTargetStreamer().emitHandlerData(); 9306 return false; 9307 } 9308 9309 /// parseDirectiveSetFP 9310 /// ::= .setfp fpreg, spreg [, offset] 9311 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9312 MCAsmParser &Parser = getParser(); 9313 // Check the ordering of unwind directives 9314 if (!UC.hasFnStart()) { 9315 Error(L, ".fnstart must precede .setfp directive"); 9316 return false; 9317 } 9318 if (UC.hasHandlerData()) { 9319 Error(L, ".setfp must precede .handlerdata directive"); 9320 return false; 9321 } 9322 9323 // Parse fpreg 9324 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9325 int FPReg = tryParseRegister(); 9326 if (FPReg == -1) { 9327 Error(FPRegLoc, "frame pointer register expected"); 9328 return false; 9329 } 9330 9331 // Consume comma 9332 if (Parser.getTok().isNot(AsmToken::Comma)) { 9333 Error(Parser.getTok().getLoc(), "comma expected"); 9334 return false; 9335 } 9336 Parser.Lex(); // skip comma 9337 9338 // Parse spreg 9339 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9340 int SPReg = tryParseRegister(); 9341 if (SPReg == -1) { 9342 Error(SPRegLoc, "stack pointer register expected"); 9343 return false; 9344 } 9345 9346 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9347 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9348 return false; 9349 } 9350 9351 // Update the frame pointer register 9352 UC.saveFPReg(FPReg); 9353 9354 // Parse offset 9355 int64_t Offset = 0; 9356 if (Parser.getTok().is(AsmToken::Comma)) { 9357 Parser.Lex(); // skip comma 9358 9359 if (Parser.getTok().isNot(AsmToken::Hash) && 9360 Parser.getTok().isNot(AsmToken::Dollar)) { 9361 Error(Parser.getTok().getLoc(), "'#' expected"); 9362 return false; 9363 } 9364 Parser.Lex(); // skip hash token. 9365 9366 const MCExpr *OffsetExpr; 9367 SMLoc ExLoc = Parser.getTok().getLoc(); 9368 SMLoc EndLoc; 9369 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9370 Error(ExLoc, "malformed setfp offset"); 9371 return false; 9372 } 9373 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9374 if (!CE) { 9375 Error(ExLoc, "setfp offset must be an immediate"); 9376 return false; 9377 } 9378 9379 Offset = CE->getValue(); 9380 } 9381 9382 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9383 static_cast<unsigned>(SPReg), Offset); 9384 return false; 9385 } 9386 9387 /// parseDirective 9388 /// ::= .pad offset 9389 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9390 MCAsmParser &Parser = getParser(); 9391 // Check the ordering of unwind directives 9392 if (!UC.hasFnStart()) { 9393 Error(L, ".fnstart must precede .pad directive"); 9394 return false; 9395 } 9396 if (UC.hasHandlerData()) { 9397 Error(L, ".pad must precede .handlerdata directive"); 9398 return false; 9399 } 9400 9401 // Parse the offset 9402 if (Parser.getTok().isNot(AsmToken::Hash) && 9403 Parser.getTok().isNot(AsmToken::Dollar)) { 9404 Error(Parser.getTok().getLoc(), "'#' expected"); 9405 return false; 9406 } 9407 Parser.Lex(); // skip hash token. 9408 9409 const MCExpr *OffsetExpr; 9410 SMLoc ExLoc = Parser.getTok().getLoc(); 9411 SMLoc EndLoc; 9412 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9413 Error(ExLoc, "malformed pad offset"); 9414 return false; 9415 } 9416 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9417 if (!CE) { 9418 Error(ExLoc, "pad offset must be an immediate"); 9419 return false; 9420 } 9421 9422 getTargetStreamer().emitPad(CE->getValue()); 9423 return false; 9424 } 9425 9426 /// parseDirectiveRegSave 9427 /// ::= .save { registers } 9428 /// ::= .vsave { registers } 9429 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9430 // Check the ordering of unwind directives 9431 if (!UC.hasFnStart()) { 9432 Error(L, ".fnstart must precede .save or .vsave directives"); 9433 return false; 9434 } 9435 if (UC.hasHandlerData()) { 9436 Error(L, ".save or .vsave must precede .handlerdata directive"); 9437 return false; 9438 } 9439 9440 // RAII object to make sure parsed operands are deleted. 9441 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9442 9443 // Parse the register list 9444 if (parseRegisterList(Operands)) 9445 return false; 9446 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9447 if (!IsVector && !Op.isRegList()) { 9448 Error(L, ".save expects GPR registers"); 9449 return false; 9450 } 9451 if (IsVector && !Op.isDPRRegList()) { 9452 Error(L, ".vsave expects DPR registers"); 9453 return false; 9454 } 9455 9456 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9457 return false; 9458 } 9459 9460 /// parseDirectiveInst 9461 /// ::= .inst opcode [, ...] 9462 /// ::= .inst.n opcode [, ...] 9463 /// ::= .inst.w opcode [, ...] 9464 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9465 MCAsmParser &Parser = getParser(); 9466 int Width; 9467 9468 if (isThumb()) { 9469 switch (Suffix) { 9470 case 'n': 9471 Width = 2; 9472 break; 9473 case 'w': 9474 Width = 4; 9475 break; 9476 default: 9477 Parser.eatToEndOfStatement(); 9478 Error(Loc, "cannot determine Thumb instruction size, " 9479 "use inst.n/inst.w instead"); 9480 return false; 9481 } 9482 } else { 9483 if (Suffix) { 9484 Parser.eatToEndOfStatement(); 9485 Error(Loc, "width suffixes are invalid in ARM mode"); 9486 return false; 9487 } 9488 Width = 4; 9489 } 9490 9491 if (getLexer().is(AsmToken::EndOfStatement)) { 9492 Parser.eatToEndOfStatement(); 9493 Error(Loc, "expected expression following directive"); 9494 return false; 9495 } 9496 9497 for (;;) { 9498 const MCExpr *Expr; 9499 9500 if (getParser().parseExpression(Expr)) { 9501 Error(Loc, "expected expression"); 9502 return false; 9503 } 9504 9505 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9506 if (!Value) { 9507 Error(Loc, "expected constant expression"); 9508 return false; 9509 } 9510 9511 switch (Width) { 9512 case 2: 9513 if (Value->getValue() > 0xffff) { 9514 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9515 return false; 9516 } 9517 break; 9518 case 4: 9519 if (Value->getValue() > 0xffffffff) { 9520 Error(Loc, 9521 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9522 return false; 9523 } 9524 break; 9525 default: 9526 llvm_unreachable("only supported widths are 2 and 4"); 9527 } 9528 9529 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9530 9531 if (getLexer().is(AsmToken::EndOfStatement)) 9532 break; 9533 9534 if (getLexer().isNot(AsmToken::Comma)) { 9535 Error(Loc, "unexpected token in directive"); 9536 return false; 9537 } 9538 9539 Parser.Lex(); 9540 } 9541 9542 Parser.Lex(); 9543 return false; 9544 } 9545 9546 /// parseDirectiveLtorg 9547 /// ::= .ltorg | .pool 9548 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9549 getTargetStreamer().emitCurrentConstantPool(); 9550 return false; 9551 } 9552 9553 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9554 const MCSection *Section = getStreamer().getCurrentSection().first; 9555 9556 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9557 TokError("unexpected token in directive"); 9558 return false; 9559 } 9560 9561 if (!Section) { 9562 getStreamer().InitSections(false); 9563 Section = getStreamer().getCurrentSection().first; 9564 } 9565 9566 assert(Section && "must have section to emit alignment"); 9567 if (Section->UseCodeAlign()) 9568 getStreamer().EmitCodeAlignment(2); 9569 else 9570 getStreamer().EmitValueToAlignment(2); 9571 9572 return false; 9573 } 9574 9575 /// parseDirectivePersonalityIndex 9576 /// ::= .personalityindex index 9577 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9578 MCAsmParser &Parser = getParser(); 9579 bool HasExistingPersonality = UC.hasPersonality(); 9580 9581 UC.recordPersonalityIndex(L); 9582 9583 if (!UC.hasFnStart()) { 9584 Parser.eatToEndOfStatement(); 9585 Error(L, ".fnstart must precede .personalityindex directive"); 9586 return false; 9587 } 9588 if (UC.cantUnwind()) { 9589 Parser.eatToEndOfStatement(); 9590 Error(L, ".personalityindex cannot be used with .cantunwind"); 9591 UC.emitCantUnwindLocNotes(); 9592 return false; 9593 } 9594 if (UC.hasHandlerData()) { 9595 Parser.eatToEndOfStatement(); 9596 Error(L, ".personalityindex must precede .handlerdata directive"); 9597 UC.emitHandlerDataLocNotes(); 9598 return false; 9599 } 9600 if (HasExistingPersonality) { 9601 Parser.eatToEndOfStatement(); 9602 Error(L, "multiple personality directives"); 9603 UC.emitPersonalityLocNotes(); 9604 return false; 9605 } 9606 9607 const MCExpr *IndexExpression; 9608 SMLoc IndexLoc = Parser.getTok().getLoc(); 9609 if (Parser.parseExpression(IndexExpression)) { 9610 Parser.eatToEndOfStatement(); 9611 return false; 9612 } 9613 9614 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9615 if (!CE) { 9616 Parser.eatToEndOfStatement(); 9617 Error(IndexLoc, "index must be a constant number"); 9618 return false; 9619 } 9620 if (CE->getValue() < 0 || 9621 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9622 Parser.eatToEndOfStatement(); 9623 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9624 return false; 9625 } 9626 9627 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9628 return false; 9629 } 9630 9631 /// parseDirectiveUnwindRaw 9632 /// ::= .unwind_raw offset, opcode [, opcode...] 9633 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9634 MCAsmParser &Parser = getParser(); 9635 if (!UC.hasFnStart()) { 9636 Parser.eatToEndOfStatement(); 9637 Error(L, ".fnstart must precede .unwind_raw directives"); 9638 return false; 9639 } 9640 9641 int64_t StackOffset; 9642 9643 const MCExpr *OffsetExpr; 9644 SMLoc OffsetLoc = getLexer().getLoc(); 9645 if (getLexer().is(AsmToken::EndOfStatement) || 9646 getParser().parseExpression(OffsetExpr)) { 9647 Error(OffsetLoc, "expected expression"); 9648 Parser.eatToEndOfStatement(); 9649 return false; 9650 } 9651 9652 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9653 if (!CE) { 9654 Error(OffsetLoc, "offset must be a constant"); 9655 Parser.eatToEndOfStatement(); 9656 return false; 9657 } 9658 9659 StackOffset = CE->getValue(); 9660 9661 if (getLexer().isNot(AsmToken::Comma)) { 9662 Error(getLexer().getLoc(), "expected comma"); 9663 Parser.eatToEndOfStatement(); 9664 return false; 9665 } 9666 Parser.Lex(); 9667 9668 SmallVector<uint8_t, 16> Opcodes; 9669 for (;;) { 9670 const MCExpr *OE; 9671 9672 SMLoc OpcodeLoc = getLexer().getLoc(); 9673 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9674 Error(OpcodeLoc, "expected opcode expression"); 9675 Parser.eatToEndOfStatement(); 9676 return false; 9677 } 9678 9679 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9680 if (!OC) { 9681 Error(OpcodeLoc, "opcode value must be a constant"); 9682 Parser.eatToEndOfStatement(); 9683 return false; 9684 } 9685 9686 const int64_t Opcode = OC->getValue(); 9687 if (Opcode & ~0xff) { 9688 Error(OpcodeLoc, "invalid opcode"); 9689 Parser.eatToEndOfStatement(); 9690 return false; 9691 } 9692 9693 Opcodes.push_back(uint8_t(Opcode)); 9694 9695 if (getLexer().is(AsmToken::EndOfStatement)) 9696 break; 9697 9698 if (getLexer().isNot(AsmToken::Comma)) { 9699 Error(getLexer().getLoc(), "unexpected token in directive"); 9700 Parser.eatToEndOfStatement(); 9701 return false; 9702 } 9703 9704 Parser.Lex(); 9705 } 9706 9707 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9708 9709 Parser.Lex(); 9710 return false; 9711 } 9712 9713 /// parseDirectiveTLSDescSeq 9714 /// ::= .tlsdescseq tls-variable 9715 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9716 MCAsmParser &Parser = getParser(); 9717 9718 if (getLexer().isNot(AsmToken::Identifier)) { 9719 TokError("expected variable after '.tlsdescseq' directive"); 9720 Parser.eatToEndOfStatement(); 9721 return false; 9722 } 9723 9724 const MCSymbolRefExpr *SRE = 9725 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9726 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9727 Lex(); 9728 9729 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9730 Error(Parser.getTok().getLoc(), "unexpected token"); 9731 Parser.eatToEndOfStatement(); 9732 return false; 9733 } 9734 9735 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9736 return false; 9737 } 9738 9739 /// parseDirectiveMovSP 9740 /// ::= .movsp reg [, #offset] 9741 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9742 MCAsmParser &Parser = getParser(); 9743 if (!UC.hasFnStart()) { 9744 Parser.eatToEndOfStatement(); 9745 Error(L, ".fnstart must precede .movsp directives"); 9746 return false; 9747 } 9748 if (UC.getFPReg() != ARM::SP) { 9749 Parser.eatToEndOfStatement(); 9750 Error(L, "unexpected .movsp directive"); 9751 return false; 9752 } 9753 9754 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9755 int SPReg = tryParseRegister(); 9756 if (SPReg == -1) { 9757 Parser.eatToEndOfStatement(); 9758 Error(SPRegLoc, "register expected"); 9759 return false; 9760 } 9761 9762 if (SPReg == ARM::SP || SPReg == ARM::PC) { 9763 Parser.eatToEndOfStatement(); 9764 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9765 return false; 9766 } 9767 9768 int64_t Offset = 0; 9769 if (Parser.getTok().is(AsmToken::Comma)) { 9770 Parser.Lex(); 9771 9772 if (Parser.getTok().isNot(AsmToken::Hash)) { 9773 Error(Parser.getTok().getLoc(), "expected #constant"); 9774 Parser.eatToEndOfStatement(); 9775 return false; 9776 } 9777 Parser.Lex(); 9778 9779 const MCExpr *OffsetExpr; 9780 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9781 if (Parser.parseExpression(OffsetExpr)) { 9782 Parser.eatToEndOfStatement(); 9783 Error(OffsetLoc, "malformed offset expression"); 9784 return false; 9785 } 9786 9787 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9788 if (!CE) { 9789 Parser.eatToEndOfStatement(); 9790 Error(OffsetLoc, "offset must be an immediate constant"); 9791 return false; 9792 } 9793 9794 Offset = CE->getValue(); 9795 } 9796 9797 getTargetStreamer().emitMovSP(SPReg, Offset); 9798 UC.saveFPReg(SPReg); 9799 9800 return false; 9801 } 9802 9803 /// parseDirectiveObjectArch 9804 /// ::= .object_arch name 9805 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9806 MCAsmParser &Parser = getParser(); 9807 if (getLexer().isNot(AsmToken::Identifier)) { 9808 Error(getLexer().getLoc(), "unexpected token"); 9809 Parser.eatToEndOfStatement(); 9810 return false; 9811 } 9812 9813 StringRef Arch = Parser.getTok().getString(); 9814 SMLoc ArchLoc = Parser.getTok().getLoc(); 9815 getLexer().Lex(); 9816 9817 unsigned ID = ARM::parseArch(Arch); 9818 9819 if (ID == ARM::AK_INVALID) { 9820 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9821 Parser.eatToEndOfStatement(); 9822 return false; 9823 } 9824 9825 getTargetStreamer().emitObjectArch(ID); 9826 9827 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9828 Error(getLexer().getLoc(), "unexpected token"); 9829 Parser.eatToEndOfStatement(); 9830 } 9831 9832 return false; 9833 } 9834 9835 /// parseDirectiveAlign 9836 /// ::= .align 9837 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9838 // NOTE: if this is not the end of the statement, fall back to the target 9839 // agnostic handling for this directive which will correctly handle this. 9840 if (getLexer().isNot(AsmToken::EndOfStatement)) 9841 return true; 9842 9843 // '.align' is target specifically handled to mean 2**2 byte alignment. 9844 if (getStreamer().getCurrentSection().first->UseCodeAlign()) 9845 getStreamer().EmitCodeAlignment(4, 0); 9846 else 9847 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 9848 9849 return false; 9850 } 9851 9852 /// parseDirectiveThumbSet 9853 /// ::= .thumb_set name, value 9854 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 9855 MCAsmParser &Parser = getParser(); 9856 9857 StringRef Name; 9858 if (Parser.parseIdentifier(Name)) { 9859 TokError("expected identifier after '.thumb_set'"); 9860 Parser.eatToEndOfStatement(); 9861 return false; 9862 } 9863 9864 if (getLexer().isNot(AsmToken::Comma)) { 9865 TokError("expected comma after name '" + Name + "'"); 9866 Parser.eatToEndOfStatement(); 9867 return false; 9868 } 9869 Lex(); 9870 9871 MCSymbol *Sym; 9872 const MCExpr *Value; 9873 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 9874 Parser, Sym, Value)) 9875 return true; 9876 9877 getTargetStreamer().emitThumbSet(Sym, Value); 9878 return false; 9879 } 9880 9881 /// Force static initialization. 9882 extern "C" void LLVMInitializeARMAsmParser() { 9883 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 9884 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 9885 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 9886 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 9887 } 9888 9889 #define GET_REGISTER_MATCHER 9890 #define GET_SUBTARGET_FEATURE_NAME 9891 #define GET_MATCHER_IMPLEMENTATION 9892 #include "ARMGenAsmMatcher.inc" 9893 9894 // FIXME: This structure should be moved inside ARMTargetParser 9895 // when we start to table-generate them, and we can use the ARM 9896 // flags below, that were generated by table-gen. 9897 static const struct { 9898 const unsigned Kind; 9899 const unsigned ArchCheck; 9900 const FeatureBitset Features; 9901 } Extensions[] = { 9902 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 9903 { ARM::AEK_CRYPTO, Feature_HasV8, 9904 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9905 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 9906 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 9907 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 9908 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 9909 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9910 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 9911 // FIXME: Only available in A-class, isel not predicated 9912 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 9913 // FIXME: Unsupported extensions. 9914 { ARM::AEK_OS, Feature_None, {} }, 9915 { ARM::AEK_IWMMXT, Feature_None, {} }, 9916 { ARM::AEK_IWMMXT2, Feature_None, {} }, 9917 { ARM::AEK_MAVERICK, Feature_None, {} }, 9918 { ARM::AEK_XSCALE, Feature_None, {} }, 9919 }; 9920 9921 /// parseDirectiveArchExtension 9922 /// ::= .arch_extension [no]feature 9923 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 9924 MCAsmParser &Parser = getParser(); 9925 9926 if (getLexer().isNot(AsmToken::Identifier)) { 9927 Error(getLexer().getLoc(), "unexpected token"); 9928 Parser.eatToEndOfStatement(); 9929 return false; 9930 } 9931 9932 StringRef Name = Parser.getTok().getString(); 9933 SMLoc ExtLoc = Parser.getTok().getLoc(); 9934 getLexer().Lex(); 9935 9936 bool EnableFeature = true; 9937 if (Name.startswith_lower("no")) { 9938 EnableFeature = false; 9939 Name = Name.substr(2); 9940 } 9941 unsigned FeatureKind = ARM::parseArchExt(Name); 9942 if (FeatureKind == ARM::AEK_INVALID) 9943 Error(ExtLoc, "unknown architectural extension: " + Name); 9944 9945 for (const auto &Extension : Extensions) { 9946 if (Extension.Kind != FeatureKind) 9947 continue; 9948 9949 if (Extension.Features.none()) 9950 report_fatal_error("unsupported architectural extension: " + Name); 9951 9952 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 9953 Error(ExtLoc, "architectural extension '" + Name + "' is not " 9954 "allowed for the current base architecture"); 9955 return false; 9956 } 9957 9958 FeatureBitset ToggleFeatures = EnableFeature 9959 ? (~STI.getFeatureBits() & Extension.Features) 9960 : ( STI.getFeatureBits() & Extension.Features); 9961 9962 uint64_t Features = 9963 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 9964 setAvailableFeatures(Features); 9965 return false; 9966 } 9967 9968 Error(ExtLoc, "unknown architectural extension: " + Name); 9969 Parser.eatToEndOfStatement(); 9970 return false; 9971 } 9972 9973 // Define this matcher function after the auto-generated include so we 9974 // have the match class enum definitions. 9975 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 9976 unsigned Kind) { 9977 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 9978 // If the kind is a token for a literal immediate, check if our asm 9979 // operand matches. This is for InstAliases which have a fixed-value 9980 // immediate in the syntax. 9981 switch (Kind) { 9982 default: break; 9983 case MCK__35_0: 9984 if (Op.isImm()) 9985 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 9986 if (CE->getValue() == 0) 9987 return Match_Success; 9988 break; 9989 case MCK_ModImm: 9990 if (Op.isImm()) { 9991 const MCExpr *SOExpr = Op.getImm(); 9992 int64_t Value; 9993 if (!SOExpr->evaluateAsAbsolute(Value)) 9994 return Match_Success; 9995 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 9996 "expression value must be representable in 32 bits"); 9997 } 9998 break; 9999 case MCK_GPRPair: 10000 if (Op.isReg() && 10001 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10002 return Match_Success; 10003 break; 10004 } 10005 return Match_InvalidOperand; 10006 } 10007