1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 36 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 38 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/SubtargetFeature.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/SMLoc.h" 53 #include "llvm/Support/TargetParser.h" 54 #include "llvm/Support/TargetRegistry.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 #include <vector> 66 67 #define DEBUG_TYPE "asm-parser" 68 69 using namespace llvm; 70 71 namespace { 72 73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 74 75 static cl::opt<ImplicitItModeTy> ImplicitItMode( 76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 77 cl::desc("Allow conditional instructions outdside of an IT block"), 78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 79 "Accept in both ISAs, emit implicit ITs in Thumb"), 80 clEnumValN(ImplicitItModeTy::Never, "never", 81 "Warn in ARM, reject in Thumb"), 82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 83 "Accept in ARM, reject in Thumb"), 84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 85 "Warn in ARM, emit implicit ITs in Thumb"))); 86 87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 88 cl::init(false)); 89 90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 91 92 class UnwindContext { 93 using Locs = SmallVector<SMLoc, 4>; 94 95 MCAsmParser &Parser; 96 Locs FnStartLocs; 97 Locs CantUnwindLocs; 98 Locs PersonalityLocs; 99 Locs PersonalityIndexLocs; 100 Locs HandlerDataLocs; 101 int FPReg; 102 103 public: 104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 105 106 bool hasFnStart() const { return !FnStartLocs.empty(); } 107 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 109 110 bool hasPersonality() const { 111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 112 } 113 114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 119 120 void saveFPReg(int Reg) { FPReg = Reg; } 121 int getFPReg() const { return FPReg; } 122 123 void emitFnStartLocNotes() const { 124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 125 FI != FE; ++FI) 126 Parser.Note(*FI, ".fnstart was specified here"); 127 } 128 129 void emitCantUnwindLocNotes() const { 130 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 131 UE = CantUnwindLocs.end(); UI != UE; ++UI) 132 Parser.Note(*UI, ".cantunwind was specified here"); 133 } 134 135 void emitHandlerDataLocNotes() const { 136 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 137 HE = HandlerDataLocs.end(); HI != HE; ++HI) 138 Parser.Note(*HI, ".handlerdata was specified here"); 139 } 140 141 void emitPersonalityLocNotes() const { 142 for (Locs::const_iterator PI = PersonalityLocs.begin(), 143 PE = PersonalityLocs.end(), 144 PII = PersonalityIndexLocs.begin(), 145 PIE = PersonalityIndexLocs.end(); 146 PI != PE || PII != PIE;) { 147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 148 Parser.Note(*PI++, ".personality was specified here"); 149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 150 Parser.Note(*PII++, ".personalityindex was specified here"); 151 else 152 llvm_unreachable(".personality and .personalityindex cannot be " 153 "at the same location"); 154 } 155 } 156 157 void reset() { 158 FnStartLocs = Locs(); 159 CantUnwindLocs = Locs(); 160 PersonalityLocs = Locs(); 161 HandlerDataLocs = Locs(); 162 PersonalityIndexLocs = Locs(); 163 FPReg = ARM::SP; 164 } 165 }; 166 167 class ARMAsmParser : public MCTargetAsmParser { 168 const MCRegisterInfo *MRI; 169 UnwindContext UC; 170 171 ARMTargetStreamer &getTargetStreamer() { 172 assert(getParser().getStreamer().getTargetStreamer() && 173 "do not have a target streamer"); 174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 175 return static_cast<ARMTargetStreamer &>(TS); 176 } 177 178 // Map of register aliases registers via the .req directive. 179 StringMap<unsigned> RegisterReqs; 180 181 bool NextSymbolIsThumb; 182 183 bool useImplicitITThumb() const { 184 return ImplicitItMode == ImplicitItModeTy::Always || 185 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 186 } 187 188 bool useImplicitITARM() const { 189 return ImplicitItMode == ImplicitItModeTy::Always || 190 ImplicitItMode == ImplicitItModeTy::ARMOnly; 191 } 192 193 struct { 194 ARMCC::CondCodes Cond; // Condition for IT block. 195 unsigned Mask:4; // Condition mask for instructions. 196 // Starting at first 1 (from lsb). 197 // '1' condition as indicated in IT. 198 // '0' inverse of condition (else). 199 // Count of instructions in IT block is 200 // 4 - trailingzeroes(mask) 201 // Note that this does not have the same encoding 202 // as in the IT instruction, which also depends 203 // on the low bit of the condition code. 204 205 unsigned CurPosition; // Current position in parsing of IT 206 // block. In range [0,4], with 0 being the IT 207 // instruction itself. Initialized according to 208 // count of instructions in block. ~0U if no 209 // active IT block. 210 211 bool IsExplicit; // true - The IT instruction was present in the 212 // input, we should not modify it. 213 // false - The IT instruction was added 214 // implicitly, we can extend it if that 215 // would be legal. 216 } ITState; 217 218 SmallVector<MCInst, 4> PendingConditionalInsts; 219 220 void flushPendingInstructions(MCStreamer &Out) override { 221 if (!inImplicitITBlock()) { 222 assert(PendingConditionalInsts.size() == 0); 223 return; 224 } 225 226 // Emit the IT instruction 227 unsigned Mask = getITMaskEncoding(); 228 MCInst ITInst; 229 ITInst.setOpcode(ARM::t2IT); 230 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 231 ITInst.addOperand(MCOperand::createImm(Mask)); 232 Out.EmitInstruction(ITInst, getSTI()); 233 234 // Emit the conditonal instructions 235 assert(PendingConditionalInsts.size() <= 4); 236 for (const MCInst &Inst : PendingConditionalInsts) { 237 Out.EmitInstruction(Inst, getSTI()); 238 } 239 PendingConditionalInsts.clear(); 240 241 // Clear the IT state 242 ITState.Mask = 0; 243 ITState.CurPosition = ~0U; 244 } 245 246 bool inITBlock() { return ITState.CurPosition != ~0U; } 247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 249 250 bool lastInITBlock() { 251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 252 } 253 254 void forwardITPosition() { 255 if (!inITBlock()) return; 256 // Move to the next instruction in the IT block, if there is one. If not, 257 // mark the block as done, except for implicit IT blocks, which we leave 258 // open until we find an instruction that can't be added to it. 259 unsigned TZ = countTrailingZeros(ITState.Mask); 260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 261 ITState.CurPosition = ~0U; // Done with the IT block after this. 262 } 263 264 // Rewind the state of the current IT block, removing the last slot from it. 265 void rewindImplicitITPosition() { 266 assert(inImplicitITBlock()); 267 assert(ITState.CurPosition > 1); 268 ITState.CurPosition--; 269 unsigned TZ = countTrailingZeros(ITState.Mask); 270 unsigned NewMask = 0; 271 NewMask |= ITState.Mask & (0xC << TZ); 272 NewMask |= 0x2 << TZ; 273 ITState.Mask = NewMask; 274 } 275 276 // Rewind the state of the current IT block, removing the last slot from it. 277 // If we were at the first slot, this closes the IT block. 278 void discardImplicitITBlock() { 279 assert(inImplicitITBlock()); 280 assert(ITState.CurPosition == 1); 281 ITState.CurPosition = ~0U; 282 } 283 284 // Return the low-subreg of a given Q register. 285 unsigned getDRegFromQReg(unsigned QReg) const { 286 return MRI->getSubReg(QReg, ARM::dsub_0); 287 } 288 289 // Get the encoding of the IT mask, as it will appear in an IT instruction. 290 unsigned getITMaskEncoding() { 291 assert(inITBlock()); 292 unsigned Mask = ITState.Mask; 293 unsigned TZ = countTrailingZeros(Mask); 294 if ((ITState.Cond & 1) == 0) { 295 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 296 Mask ^= (0xE << TZ) & 0xF; 297 } 298 return Mask; 299 } 300 301 // Get the condition code corresponding to the current IT block slot. 302 ARMCC::CondCodes currentITCond() { 303 unsigned MaskBit; 304 if (ITState.CurPosition == 1) 305 MaskBit = 1; 306 else 307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 308 309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 310 } 311 312 // Invert the condition of the current IT block slot without changing any 313 // other slots in the same block. 314 void invertCurrentITCondition() { 315 if (ITState.CurPosition == 1) { 316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 317 } else { 318 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 319 } 320 } 321 322 // Returns true if the current IT block is full (all 4 slots used). 323 bool isITBlockFull() { 324 return inITBlock() && (ITState.Mask & 1); 325 } 326 327 // Extend the current implicit IT block to have one more slot with the given 328 // condition code. 329 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 330 assert(inImplicitITBlock()); 331 assert(!isITBlockFull()); 332 assert(Cond == ITState.Cond || 333 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 unsigned NewMask = 0; 336 // Keep any existing condition bits. 337 NewMask |= ITState.Mask & (0xE << TZ); 338 // Insert the new condition bit. 339 NewMask |= (Cond == ITState.Cond) << TZ; 340 // Move the trailing 1 down one bit. 341 NewMask |= 1 << (TZ - 1); 342 ITState.Mask = NewMask; 343 } 344 345 // Create a new implicit IT block with a dummy condition code. 346 void startImplicitITBlock() { 347 assert(!inITBlock()); 348 ITState.Cond = ARMCC::AL; 349 ITState.Mask = 8; 350 ITState.CurPosition = 1; 351 ITState.IsExplicit = false; 352 } 353 354 // Create a new explicit IT block with the given condition and mask. The mask 355 // should be in the parsed format, with a 1 implying 't', regardless of the 356 // low bit of the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 366 return getParser().Note(L, Msg, Range); 367 } 368 369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 370 return getParser().Warning(L, Msg, Range); 371 } 372 373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 374 return getParser().Error(L, Msg, Range); 375 } 376 377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 378 unsigned ListNo, bool IsARPop = false); 379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 380 unsigned ListNo); 381 382 int tryParseRegister(); 383 bool tryParseRegisterWithWriteBack(OperandVector &); 384 int tryParseShiftRegister(OperandVector &); 385 bool parseRegisterList(OperandVector &); 386 bool parseMemory(OperandVector &); 387 bool parseOperand(OperandVector &, StringRef Mnemonic); 388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 390 unsigned &ShiftAmount); 391 bool parseLiteralValues(unsigned Size, SMLoc L); 392 bool parseDirectiveThumb(SMLoc L); 393 bool parseDirectiveARM(SMLoc L); 394 bool parseDirectiveThumbFunc(SMLoc L); 395 bool parseDirectiveCode(SMLoc L); 396 bool parseDirectiveSyntax(SMLoc L); 397 bool parseDirectiveReq(StringRef Name, SMLoc L); 398 bool parseDirectiveUnreq(SMLoc L); 399 bool parseDirectiveArch(SMLoc L); 400 bool parseDirectiveEabiAttr(SMLoc L); 401 bool parseDirectiveCPU(SMLoc L); 402 bool parseDirectiveFPU(SMLoc L); 403 bool parseDirectiveFnStart(SMLoc L); 404 bool parseDirectiveFnEnd(SMLoc L); 405 bool parseDirectiveCantUnwind(SMLoc L); 406 bool parseDirectivePersonality(SMLoc L); 407 bool parseDirectiveHandlerData(SMLoc L); 408 bool parseDirectiveSetFP(SMLoc L); 409 bool parseDirectivePad(SMLoc L); 410 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 412 bool parseDirectiveLtorg(SMLoc L); 413 bool parseDirectiveEven(SMLoc L); 414 bool parseDirectivePersonalityIndex(SMLoc L); 415 bool parseDirectiveUnwindRaw(SMLoc L); 416 bool parseDirectiveTLSDescSeq(SMLoc L); 417 bool parseDirectiveMovSP(SMLoc L); 418 bool parseDirectiveObjectArch(SMLoc L); 419 bool parseDirectiveArchExtension(SMLoc L); 420 bool parseDirectiveAlign(SMLoc L); 421 bool parseDirectiveThumbSet(SMLoc L); 422 423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 424 bool &CarrySetting, unsigned &ProcessorIMod, 425 StringRef &ITMask); 426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 427 bool &CanAcceptCarrySet, 428 bool &CanAcceptPredicationCode); 429 430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 431 OperandVector &Operands); 432 bool isThumb() const { 433 // FIXME: Can tablegen auto-generate this? 434 return getSTI().getFeatureBits()[ARM::ModeThumb]; 435 } 436 437 bool isThumbOne() const { 438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 439 } 440 441 bool isThumbTwo() const { 442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 443 } 444 445 bool hasThumb() const { 446 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 447 } 448 449 bool hasThumb2() const { 450 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 451 } 452 453 bool hasV6Ops() const { 454 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 455 } 456 457 bool hasV6T2Ops() const { 458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 459 } 460 461 bool hasV6MOps() const { 462 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 463 } 464 465 bool hasV7Ops() const { 466 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 467 } 468 469 bool hasV8Ops() const { 470 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 471 } 472 473 bool hasV8MBaseline() const { 474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 475 } 476 477 bool hasV8MMainline() const { 478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 479 } 480 481 bool has8MSecExt() const { 482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 483 } 484 485 bool hasARM() const { 486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 487 } 488 489 bool hasDSP() const { 490 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 491 } 492 493 bool hasD16() const { 494 return getSTI().getFeatureBits()[ARM::FeatureD16]; 495 } 496 497 bool hasV8_1aOps() const { 498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 499 } 500 501 bool hasRAS() const { 502 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 503 } 504 505 void SwitchMode() { 506 MCSubtargetInfo &STI = copySTI(); 507 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 508 setAvailableFeatures(FB); 509 } 510 511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 512 513 bool isMClass() const { 514 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 515 } 516 517 /// @name Auto-generated Match Functions 518 /// { 519 520 #define GET_ASSEMBLER_HEADER 521 #include "ARMGenAsmMatcher.inc" 522 523 /// } 524 525 OperandMatchResultTy parseITCondCode(OperandVector &); 526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 530 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 531 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 532 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 533 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 534 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 535 int High); 536 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 537 return parsePKHImm(O, "lsl", 0, 31); 538 } 539 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 540 return parsePKHImm(O, "asr", 1, 32); 541 } 542 OperandMatchResultTy parseSetEndImm(OperandVector &); 543 OperandMatchResultTy parseShifterImm(OperandVector &); 544 OperandMatchResultTy parseRotImm(OperandVector &); 545 OperandMatchResultTy parseModImm(OperandVector &); 546 OperandMatchResultTy parseBitfield(OperandVector &); 547 OperandMatchResultTy parsePostIdxReg(OperandVector &); 548 OperandMatchResultTy parseAM3Offset(OperandVector &); 549 OperandMatchResultTy parseFPImm(OperandVector &); 550 OperandMatchResultTy parseVectorList(OperandVector &); 551 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 552 SMLoc &EndLoc); 553 554 // Asm Match Converter Methods 555 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 556 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 557 558 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 559 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 560 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 561 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 562 bool isITBlockTerminator(MCInst &Inst) const; 563 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 564 565 public: 566 enum ARMMatchResultTy { 567 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 568 Match_RequiresNotITBlock, 569 Match_RequiresV6, 570 Match_RequiresThumb2, 571 Match_RequiresV8, 572 Match_RequiresFlagSetting, 573 #define GET_OPERAND_DIAGNOSTIC_TYPES 574 #include "ARMGenAsmMatcher.inc" 575 576 }; 577 578 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 579 const MCInstrInfo &MII, const MCTargetOptions &Options) 580 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 581 MCAsmParserExtension::Initialize(Parser); 582 583 // Cache the MCRegisterInfo. 584 MRI = getContext().getRegisterInfo(); 585 586 // Initialize the set of available features. 587 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 588 589 // Add build attributes based on the selected target. 590 if (AddBuildAttributes) 591 getTargetStreamer().emitTargetAttributes(STI); 592 593 // Not in an ITBlock to start with. 594 ITState.CurPosition = ~0U; 595 596 NextSymbolIsThumb = false; 597 } 598 599 // Implementation of the MCTargetAsmParser interface: 600 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 601 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 602 SMLoc NameLoc, OperandVector &Operands) override; 603 bool ParseDirective(AsmToken DirectiveID) override; 604 605 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 606 unsigned Kind) override; 607 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 608 609 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 610 OperandVector &Operands, MCStreamer &Out, 611 uint64_t &ErrorInfo, 612 bool MatchingInlineAsm) override; 613 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 614 SmallVectorImpl<NearMissInfo> &NearMisses, 615 bool MatchingInlineAsm, bool &EmitInITBlock, 616 MCStreamer &Out); 617 618 struct NearMissMessage { 619 SMLoc Loc; 620 SmallString<128> Message; 621 }; 622 623 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 624 625 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 626 SmallVectorImpl<NearMissMessage> &NearMissesOut, 627 SMLoc IDLoc, OperandVector &Operands); 628 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 629 OperandVector &Operands); 630 631 void onLabelParsed(MCSymbol *Symbol) override; 632 }; 633 634 /// ARMOperand - Instances of this class represent a parsed ARM machine 635 /// operand. 636 class ARMOperand : public MCParsedAsmOperand { 637 enum KindTy { 638 k_CondCode, 639 k_CCOut, 640 k_ITCondMask, 641 k_CoprocNum, 642 k_CoprocReg, 643 k_CoprocOption, 644 k_Immediate, 645 k_MemBarrierOpt, 646 k_InstSyncBarrierOpt, 647 k_Memory, 648 k_PostIndexRegister, 649 k_MSRMask, 650 k_BankedReg, 651 k_ProcIFlags, 652 k_VectorIndex, 653 k_Register, 654 k_RegisterList, 655 k_DPRRegisterList, 656 k_SPRRegisterList, 657 k_VectorList, 658 k_VectorListAllLanes, 659 k_VectorListIndexed, 660 k_ShiftedRegister, 661 k_ShiftedImmediate, 662 k_ShifterImmediate, 663 k_RotateImmediate, 664 k_ModifiedImmediate, 665 k_ConstantPoolImmediate, 666 k_BitfieldDescriptor, 667 k_Token, 668 } Kind; 669 670 SMLoc StartLoc, EndLoc, AlignmentLoc; 671 SmallVector<unsigned, 8> Registers; 672 673 struct CCOp { 674 ARMCC::CondCodes Val; 675 }; 676 677 struct CopOp { 678 unsigned Val; 679 }; 680 681 struct CoprocOptionOp { 682 unsigned Val; 683 }; 684 685 struct ITMaskOp { 686 unsigned Mask:4; 687 }; 688 689 struct MBOptOp { 690 ARM_MB::MemBOpt Val; 691 }; 692 693 struct ISBOptOp { 694 ARM_ISB::InstSyncBOpt Val; 695 }; 696 697 struct IFlagsOp { 698 ARM_PROC::IFlags Val; 699 }; 700 701 struct MMaskOp { 702 unsigned Val; 703 }; 704 705 struct BankedRegOp { 706 unsigned Val; 707 }; 708 709 struct TokOp { 710 const char *Data; 711 unsigned Length; 712 }; 713 714 struct RegOp { 715 unsigned RegNum; 716 }; 717 718 // A vector register list is a sequential list of 1 to 4 registers. 719 struct VectorListOp { 720 unsigned RegNum; 721 unsigned Count; 722 unsigned LaneIndex; 723 bool isDoubleSpaced; 724 }; 725 726 struct VectorIndexOp { 727 unsigned Val; 728 }; 729 730 struct ImmOp { 731 const MCExpr *Val; 732 }; 733 734 /// Combined record for all forms of ARM address expressions. 735 struct MemoryOp { 736 unsigned BaseRegNum; 737 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 738 // was specified. 739 const MCConstantExpr *OffsetImm; // Offset immediate value 740 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 741 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 742 unsigned ShiftImm; // shift for OffsetReg. 743 unsigned Alignment; // 0 = no alignment specified 744 // n = alignment in bytes (2, 4, 8, 16, or 32) 745 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 746 }; 747 748 struct PostIdxRegOp { 749 unsigned RegNum; 750 bool isAdd; 751 ARM_AM::ShiftOpc ShiftTy; 752 unsigned ShiftImm; 753 }; 754 755 struct ShifterImmOp { 756 bool isASR; 757 unsigned Imm; 758 }; 759 760 struct RegShiftedRegOp { 761 ARM_AM::ShiftOpc ShiftTy; 762 unsigned SrcReg; 763 unsigned ShiftReg; 764 unsigned ShiftImm; 765 }; 766 767 struct RegShiftedImmOp { 768 ARM_AM::ShiftOpc ShiftTy; 769 unsigned SrcReg; 770 unsigned ShiftImm; 771 }; 772 773 struct RotImmOp { 774 unsigned Imm; 775 }; 776 777 struct ModImmOp { 778 unsigned Bits; 779 unsigned Rot; 780 }; 781 782 struct BitfieldOp { 783 unsigned LSB; 784 unsigned Width; 785 }; 786 787 union { 788 struct CCOp CC; 789 struct CopOp Cop; 790 struct CoprocOptionOp CoprocOption; 791 struct MBOptOp MBOpt; 792 struct ISBOptOp ISBOpt; 793 struct ITMaskOp ITMask; 794 struct IFlagsOp IFlags; 795 struct MMaskOp MMask; 796 struct BankedRegOp BankedReg; 797 struct TokOp Tok; 798 struct RegOp Reg; 799 struct VectorListOp VectorList; 800 struct VectorIndexOp VectorIndex; 801 struct ImmOp Imm; 802 struct MemoryOp Memory; 803 struct PostIdxRegOp PostIdxReg; 804 struct ShifterImmOp ShifterImm; 805 struct RegShiftedRegOp RegShiftedReg; 806 struct RegShiftedImmOp RegShiftedImm; 807 struct RotImmOp RotImm; 808 struct ModImmOp ModImm; 809 struct BitfieldOp Bitfield; 810 }; 811 812 public: 813 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 814 815 /// getStartLoc - Get the location of the first token of this operand. 816 SMLoc getStartLoc() const override { return StartLoc; } 817 818 /// getEndLoc - Get the location of the last token of this operand. 819 SMLoc getEndLoc() const override { return EndLoc; } 820 821 /// getLocRange - Get the range between the first and last token of this 822 /// operand. 823 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 824 825 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 826 SMLoc getAlignmentLoc() const { 827 assert(Kind == k_Memory && "Invalid access!"); 828 return AlignmentLoc; 829 } 830 831 ARMCC::CondCodes getCondCode() const { 832 assert(Kind == k_CondCode && "Invalid access!"); 833 return CC.Val; 834 } 835 836 unsigned getCoproc() const { 837 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 838 return Cop.Val; 839 } 840 841 StringRef getToken() const { 842 assert(Kind == k_Token && "Invalid access!"); 843 return StringRef(Tok.Data, Tok.Length); 844 } 845 846 unsigned getReg() const override { 847 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 848 return Reg.RegNum; 849 } 850 851 const SmallVectorImpl<unsigned> &getRegList() const { 852 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 853 Kind == k_SPRRegisterList) && "Invalid access!"); 854 return Registers; 855 } 856 857 const MCExpr *getImm() const { 858 assert(isImm() && "Invalid access!"); 859 return Imm.Val; 860 } 861 862 const MCExpr *getConstantPoolImm() const { 863 assert(isConstantPoolImm() && "Invalid access!"); 864 return Imm.Val; 865 } 866 867 unsigned getVectorIndex() const { 868 assert(Kind == k_VectorIndex && "Invalid access!"); 869 return VectorIndex.Val; 870 } 871 872 ARM_MB::MemBOpt getMemBarrierOpt() const { 873 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 874 return MBOpt.Val; 875 } 876 877 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 878 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 879 return ISBOpt.Val; 880 } 881 882 ARM_PROC::IFlags getProcIFlags() const { 883 assert(Kind == k_ProcIFlags && "Invalid access!"); 884 return IFlags.Val; 885 } 886 887 unsigned getMSRMask() const { 888 assert(Kind == k_MSRMask && "Invalid access!"); 889 return MMask.Val; 890 } 891 892 unsigned getBankedReg() const { 893 assert(Kind == k_BankedReg && "Invalid access!"); 894 return BankedReg.Val; 895 } 896 897 bool isCoprocNum() const { return Kind == k_CoprocNum; } 898 bool isCoprocReg() const { return Kind == k_CoprocReg; } 899 bool isCoprocOption() const { return Kind == k_CoprocOption; } 900 bool isCondCode() const { return Kind == k_CondCode; } 901 bool isCCOut() const { return Kind == k_CCOut; } 902 bool isITMask() const { return Kind == k_ITCondMask; } 903 bool isITCondCode() const { return Kind == k_CondCode; } 904 bool isImm() const override { 905 return Kind == k_Immediate; 906 } 907 908 bool isARMBranchTarget() const { 909 if (!isImm()) return false; 910 911 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 912 return CE->getValue() % 4 == 0; 913 return true; 914 } 915 916 917 bool isThumbBranchTarget() const { 918 if (!isImm()) return false; 919 920 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 921 return CE->getValue() % 2 == 0; 922 return true; 923 } 924 925 // checks whether this operand is an unsigned offset which fits is a field 926 // of specified width and scaled by a specific number of bits 927 template<unsigned width, unsigned scale> 928 bool isUnsignedOffset() const { 929 if (!isImm()) return false; 930 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 931 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 932 int64_t Val = CE->getValue(); 933 int64_t Align = 1LL << scale; 934 int64_t Max = Align * ((1LL << width) - 1); 935 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 936 } 937 return false; 938 } 939 940 // checks whether this operand is an signed offset which fits is a field 941 // of specified width and scaled by a specific number of bits 942 template<unsigned width, unsigned scale> 943 bool isSignedOffset() const { 944 if (!isImm()) return false; 945 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 946 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 947 int64_t Val = CE->getValue(); 948 int64_t Align = 1LL << scale; 949 int64_t Max = Align * ((1LL << (width-1)) - 1); 950 int64_t Min = -Align * (1LL << (width-1)); 951 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 952 } 953 return false; 954 } 955 956 // checks whether this operand is a memory operand computed as an offset 957 // applied to PC. the offset may have 8 bits of magnitude and is represented 958 // with two bits of shift. textually it may be either [pc, #imm], #imm or 959 // relocable expression... 960 bool isThumbMemPC() const { 961 int64_t Val = 0; 962 if (isImm()) { 963 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 964 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 965 if (!CE) return false; 966 Val = CE->getValue(); 967 } 968 else if (isMem()) { 969 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 970 if(Memory.BaseRegNum != ARM::PC) return false; 971 Val = Memory.OffsetImm->getValue(); 972 } 973 else return false; 974 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 975 } 976 977 bool isFPImm() const { 978 if (!isImm()) return false; 979 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 980 if (!CE) return false; 981 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 982 return Val != -1; 983 } 984 985 template<int64_t N, int64_t M> 986 bool isImmediate() const { 987 if (!isImm()) return false; 988 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 989 if (!CE) return false; 990 int64_t Value = CE->getValue(); 991 return Value >= N && Value <= M; 992 } 993 994 template<int64_t N, int64_t M> 995 bool isImmediateS4() const { 996 if (!isImm()) return false; 997 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 998 if (!CE) return false; 999 int64_t Value = CE->getValue(); 1000 return ((Value & 3) == 0) && Value >= N && Value <= M; 1001 } 1002 1003 bool isFBits16() const { 1004 return isImmediate<0, 17>(); 1005 } 1006 bool isFBits32() const { 1007 return isImmediate<1, 33>(); 1008 } 1009 bool isImm8s4() const { 1010 return isImmediateS4<-1020, 1020>(); 1011 } 1012 bool isImm0_1020s4() const { 1013 return isImmediateS4<0, 1020>(); 1014 } 1015 bool isImm0_508s4() const { 1016 return isImmediateS4<0, 508>(); 1017 } 1018 bool isImm0_508s4Neg() const { 1019 if (!isImm()) return false; 1020 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1021 if (!CE) return false; 1022 int64_t Value = -CE->getValue(); 1023 // explicitly exclude zero. we want that to use the normal 0_508 version. 1024 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1025 } 1026 1027 bool isImm0_4095Neg() const { 1028 if (!isImm()) return false; 1029 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1030 if (!CE) return false; 1031 int64_t Value = -CE->getValue(); 1032 return Value > 0 && Value < 4096; 1033 } 1034 1035 bool isImm0_7() const { 1036 return isImmediate<0, 7>(); 1037 } 1038 1039 bool isImm1_16() const { 1040 return isImmediate<1, 16>(); 1041 } 1042 1043 bool isImm1_32() const { 1044 return isImmediate<1, 32>(); 1045 } 1046 1047 bool isImm8_255() const { 1048 return isImmediate<8, 255>(); 1049 } 1050 1051 bool isImm256_65535Expr() const { 1052 if (!isImm()) return false; 1053 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1054 // If it's not a constant expression, it'll generate a fixup and be 1055 // handled later. 1056 if (!CE) return true; 1057 int64_t Value = CE->getValue(); 1058 return Value >= 256 && Value < 65536; 1059 } 1060 1061 bool isImm0_65535Expr() const { 1062 if (!isImm()) return false; 1063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1064 // If it's not a constant expression, it'll generate a fixup and be 1065 // handled later. 1066 if (!CE) return true; 1067 int64_t Value = CE->getValue(); 1068 return Value >= 0 && Value < 65536; 1069 } 1070 1071 bool isImm24bit() const { 1072 return isImmediate<0, 0xffffff + 1>(); 1073 } 1074 1075 bool isImmThumbSR() const { 1076 return isImmediate<1, 33>(); 1077 } 1078 1079 bool isPKHLSLImm() const { 1080 return isImmediate<0, 32>(); 1081 } 1082 1083 bool isPKHASRImm() const { 1084 return isImmediate<0, 33>(); 1085 } 1086 1087 bool isAdrLabel() const { 1088 // If we have an immediate that's not a constant, treat it as a label 1089 // reference needing a fixup. 1090 if (isImm() && !isa<MCConstantExpr>(getImm())) 1091 return true; 1092 1093 // If it is a constant, it must fit into a modified immediate encoding. 1094 if (!isImm()) return false; 1095 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1096 if (!CE) return false; 1097 int64_t Value = CE->getValue(); 1098 return (ARM_AM::getSOImmVal(Value) != -1 || 1099 ARM_AM::getSOImmVal(-Value) != -1); 1100 } 1101 1102 bool isT2SOImm() const { 1103 // If we have an immediate that's not a constant, treat it as an expression 1104 // needing a fixup. 1105 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1106 // We want to avoid matching :upper16: and :lower16: as we want these 1107 // expressions to match in isImm0_65535Expr() 1108 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1109 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1110 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1111 } 1112 if (!isImm()) return false; 1113 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1114 if (!CE) return false; 1115 int64_t Value = CE->getValue(); 1116 return ARM_AM::getT2SOImmVal(Value) != -1; 1117 } 1118 1119 bool isT2SOImmNot() const { 1120 if (!isImm()) return false; 1121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1122 if (!CE) return false; 1123 int64_t Value = CE->getValue(); 1124 return ARM_AM::getT2SOImmVal(Value) == -1 && 1125 ARM_AM::getT2SOImmVal(~Value) != -1; 1126 } 1127 1128 bool isT2SOImmNeg() const { 1129 if (!isImm()) return false; 1130 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1131 if (!CE) return false; 1132 int64_t Value = CE->getValue(); 1133 // Only use this when not representable as a plain so_imm. 1134 return ARM_AM::getT2SOImmVal(Value) == -1 && 1135 ARM_AM::getT2SOImmVal(-Value) != -1; 1136 } 1137 1138 bool isSetEndImm() const { 1139 if (!isImm()) return false; 1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1141 if (!CE) return false; 1142 int64_t Value = CE->getValue(); 1143 return Value == 1 || Value == 0; 1144 } 1145 1146 bool isReg() const override { return Kind == k_Register; } 1147 bool isRegList() const { return Kind == k_RegisterList; } 1148 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1149 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1150 bool isToken() const override { return Kind == k_Token; } 1151 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1152 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1153 bool isMem() const override { return Kind == k_Memory; } 1154 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1155 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1156 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1157 bool isRotImm() const { return Kind == k_RotateImmediate; } 1158 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1159 1160 bool isModImmNot() const { 1161 if (!isImm()) return false; 1162 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1163 if (!CE) return false; 1164 int64_t Value = CE->getValue(); 1165 return ARM_AM::getSOImmVal(~Value) != -1; 1166 } 1167 1168 bool isModImmNeg() const { 1169 if (!isImm()) return false; 1170 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1171 if (!CE) return false; 1172 int64_t Value = CE->getValue(); 1173 return ARM_AM::getSOImmVal(Value) == -1 && 1174 ARM_AM::getSOImmVal(-Value) != -1; 1175 } 1176 1177 bool isThumbModImmNeg1_7() const { 1178 if (!isImm()) return false; 1179 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1180 if (!CE) return false; 1181 int32_t Value = -(int32_t)CE->getValue(); 1182 return 0 < Value && Value < 8; 1183 } 1184 1185 bool isThumbModImmNeg8_255() const { 1186 if (!isImm()) return false; 1187 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1188 if (!CE) return false; 1189 int32_t Value = -(int32_t)CE->getValue(); 1190 return 7 < Value && Value < 256; 1191 } 1192 1193 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1194 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1195 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1196 bool isPostIdxReg() const { 1197 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1198 } 1199 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1200 if (!isMem()) 1201 return false; 1202 // No offset of any kind. 1203 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1204 (alignOK || Memory.Alignment == Alignment); 1205 } 1206 bool isMemPCRelImm12() const { 1207 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1208 return false; 1209 // Base register must be PC. 1210 if (Memory.BaseRegNum != ARM::PC) 1211 return false; 1212 // Immediate offset in range [-4095, 4095]. 1213 if (!Memory.OffsetImm) return true; 1214 int64_t Val = Memory.OffsetImm->getValue(); 1215 return (Val > -4096 && Val < 4096) || 1216 (Val == std::numeric_limits<int32_t>::min()); 1217 } 1218 1219 bool isAlignedMemory() const { 1220 return isMemNoOffset(true); 1221 } 1222 1223 bool isAlignedMemoryNone() const { 1224 return isMemNoOffset(false, 0); 1225 } 1226 1227 bool isDupAlignedMemoryNone() const { 1228 return isMemNoOffset(false, 0); 1229 } 1230 1231 bool isAlignedMemory16() const { 1232 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1233 return true; 1234 return isMemNoOffset(false, 0); 1235 } 1236 1237 bool isDupAlignedMemory16() const { 1238 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1239 return true; 1240 return isMemNoOffset(false, 0); 1241 } 1242 1243 bool isAlignedMemory32() const { 1244 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1245 return true; 1246 return isMemNoOffset(false, 0); 1247 } 1248 1249 bool isDupAlignedMemory32() const { 1250 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1251 return true; 1252 return isMemNoOffset(false, 0); 1253 } 1254 1255 bool isAlignedMemory64() const { 1256 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1257 return true; 1258 return isMemNoOffset(false, 0); 1259 } 1260 1261 bool isDupAlignedMemory64() const { 1262 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1263 return true; 1264 return isMemNoOffset(false, 0); 1265 } 1266 1267 bool isAlignedMemory64or128() const { 1268 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1269 return true; 1270 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1271 return true; 1272 return isMemNoOffset(false, 0); 1273 } 1274 1275 bool isDupAlignedMemory64or128() const { 1276 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1277 return true; 1278 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1279 return true; 1280 return isMemNoOffset(false, 0); 1281 } 1282 1283 bool isAlignedMemory64or128or256() const { 1284 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1285 return true; 1286 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1287 return true; 1288 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1289 return true; 1290 return isMemNoOffset(false, 0); 1291 } 1292 1293 bool isAddrMode2() const { 1294 if (!isMem() || Memory.Alignment != 0) return false; 1295 // Check for register offset. 1296 if (Memory.OffsetRegNum) return true; 1297 // Immediate offset in range [-4095, 4095]. 1298 if (!Memory.OffsetImm) return true; 1299 int64_t Val = Memory.OffsetImm->getValue(); 1300 return Val > -4096 && Val < 4096; 1301 } 1302 1303 bool isAM2OffsetImm() const { 1304 if (!isImm()) return false; 1305 // Immediate offset in range [-4095, 4095]. 1306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1307 if (!CE) return false; 1308 int64_t Val = CE->getValue(); 1309 return (Val == std::numeric_limits<int32_t>::min()) || 1310 (Val > -4096 && Val < 4096); 1311 } 1312 1313 bool isAddrMode3() const { 1314 // If we have an immediate that's not a constant, treat it as a label 1315 // reference needing a fixup. If it is a constant, it's something else 1316 // and we reject it. 1317 if (isImm() && !isa<MCConstantExpr>(getImm())) 1318 return true; 1319 if (!isMem() || Memory.Alignment != 0) return false; 1320 // No shifts are legal for AM3. 1321 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1322 // Check for register offset. 1323 if (Memory.OffsetRegNum) return true; 1324 // Immediate offset in range [-255, 255]. 1325 if (!Memory.OffsetImm) return true; 1326 int64_t Val = Memory.OffsetImm->getValue(); 1327 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1328 // have to check for this too. 1329 return (Val > -256 && Val < 256) || 1330 Val == std::numeric_limits<int32_t>::min(); 1331 } 1332 1333 bool isAM3Offset() const { 1334 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1335 return false; 1336 if (Kind == k_PostIndexRegister) 1337 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1338 // Immediate offset in range [-255, 255]. 1339 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1340 if (!CE) return false; 1341 int64_t Val = CE->getValue(); 1342 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1343 return (Val > -256 && Val < 256) || 1344 Val == std::numeric_limits<int32_t>::min(); 1345 } 1346 1347 bool isAddrMode5() const { 1348 // If we have an immediate that's not a constant, treat it as a label 1349 // reference needing a fixup. If it is a constant, it's something else 1350 // and we reject it. 1351 if (isImm() && !isa<MCConstantExpr>(getImm())) 1352 return true; 1353 if (!isMem() || Memory.Alignment != 0) return false; 1354 // Check for register offset. 1355 if (Memory.OffsetRegNum) return false; 1356 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1357 if (!Memory.OffsetImm) return true; 1358 int64_t Val = Memory.OffsetImm->getValue(); 1359 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1360 Val == std::numeric_limits<int32_t>::min(); 1361 } 1362 1363 bool isAddrMode5FP16() const { 1364 // If we have an immediate that's not a constant, treat it as a label 1365 // reference needing a fixup. If it is a constant, it's something else 1366 // and we reject it. 1367 if (isImm() && !isa<MCConstantExpr>(getImm())) 1368 return true; 1369 if (!isMem() || Memory.Alignment != 0) return false; 1370 // Check for register offset. 1371 if (Memory.OffsetRegNum) return false; 1372 // Immediate offset in range [-510, 510] and a multiple of 2. 1373 if (!Memory.OffsetImm) return true; 1374 int64_t Val = Memory.OffsetImm->getValue(); 1375 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1376 Val == std::numeric_limits<int32_t>::min(); 1377 } 1378 1379 bool isMemTBB() const { 1380 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1381 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1382 return false; 1383 return true; 1384 } 1385 1386 bool isMemTBH() const { 1387 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1388 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1389 Memory.Alignment != 0 ) 1390 return false; 1391 return true; 1392 } 1393 1394 bool isMemRegOffset() const { 1395 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1396 return false; 1397 return true; 1398 } 1399 1400 bool isT2MemRegOffset() const { 1401 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1402 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1403 return false; 1404 // Only lsl #{0, 1, 2, 3} allowed. 1405 if (Memory.ShiftType == ARM_AM::no_shift) 1406 return true; 1407 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1408 return false; 1409 return true; 1410 } 1411 1412 bool isMemThumbRR() const { 1413 // Thumb reg+reg addressing is simple. Just two registers, a base and 1414 // an offset. No shifts, negations or any other complicating factors. 1415 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1416 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1417 return false; 1418 return isARMLowRegister(Memory.BaseRegNum) && 1419 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1420 } 1421 1422 bool isMemThumbRIs4() const { 1423 if (!isMem() || Memory.OffsetRegNum != 0 || 1424 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1425 return false; 1426 // Immediate offset, multiple of 4 in range [0, 124]. 1427 if (!Memory.OffsetImm) return true; 1428 int64_t Val = Memory.OffsetImm->getValue(); 1429 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1430 } 1431 1432 bool isMemThumbRIs2() const { 1433 if (!isMem() || Memory.OffsetRegNum != 0 || 1434 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1435 return false; 1436 // Immediate offset, multiple of 4 in range [0, 62]. 1437 if (!Memory.OffsetImm) return true; 1438 int64_t Val = Memory.OffsetImm->getValue(); 1439 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1440 } 1441 1442 bool isMemThumbRIs1() const { 1443 if (!isMem() || Memory.OffsetRegNum != 0 || 1444 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1445 return false; 1446 // Immediate offset in range [0, 31]. 1447 if (!Memory.OffsetImm) return true; 1448 int64_t Val = Memory.OffsetImm->getValue(); 1449 return Val >= 0 && Val <= 31; 1450 } 1451 1452 bool isMemThumbSPI() const { 1453 if (!isMem() || Memory.OffsetRegNum != 0 || 1454 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1455 return false; 1456 // Immediate offset, multiple of 4 in range [0, 1020]. 1457 if (!Memory.OffsetImm) return true; 1458 int64_t Val = Memory.OffsetImm->getValue(); 1459 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1460 } 1461 1462 bool isMemImm8s4Offset() const { 1463 // If we have an immediate that's not a constant, treat it as a label 1464 // reference needing a fixup. If it is a constant, it's something else 1465 // and we reject it. 1466 if (isImm() && !isa<MCConstantExpr>(getImm())) 1467 return true; 1468 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1469 return false; 1470 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1471 if (!Memory.OffsetImm) return true; 1472 int64_t Val = Memory.OffsetImm->getValue(); 1473 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1474 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1475 Val == std::numeric_limits<int32_t>::min(); 1476 } 1477 1478 bool isMemImm0_1020s4Offset() const { 1479 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1480 return false; 1481 // Immediate offset a multiple of 4 in range [0, 1020]. 1482 if (!Memory.OffsetImm) return true; 1483 int64_t Val = Memory.OffsetImm->getValue(); 1484 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1485 } 1486 1487 bool isMemImm8Offset() const { 1488 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1489 return false; 1490 // Base reg of PC isn't allowed for these encodings. 1491 if (Memory.BaseRegNum == ARM::PC) return false; 1492 // Immediate offset in range [-255, 255]. 1493 if (!Memory.OffsetImm) return true; 1494 int64_t Val = Memory.OffsetImm->getValue(); 1495 return (Val == std::numeric_limits<int32_t>::min()) || 1496 (Val > -256 && Val < 256); 1497 } 1498 1499 bool isMemPosImm8Offset() const { 1500 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1501 return false; 1502 // Immediate offset in range [0, 255]. 1503 if (!Memory.OffsetImm) return true; 1504 int64_t Val = Memory.OffsetImm->getValue(); 1505 return Val >= 0 && Val < 256; 1506 } 1507 1508 bool isMemNegImm8Offset() const { 1509 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1510 return false; 1511 // Base reg of PC isn't allowed for these encodings. 1512 if (Memory.BaseRegNum == ARM::PC) return false; 1513 // Immediate offset in range [-255, -1]. 1514 if (!Memory.OffsetImm) return false; 1515 int64_t Val = Memory.OffsetImm->getValue(); 1516 return (Val == std::numeric_limits<int32_t>::min()) || 1517 (Val > -256 && Val < 0); 1518 } 1519 1520 bool isMemUImm12Offset() const { 1521 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1522 return false; 1523 // Immediate offset in range [0, 4095]. 1524 if (!Memory.OffsetImm) return true; 1525 int64_t Val = Memory.OffsetImm->getValue(); 1526 return (Val >= 0 && Val < 4096); 1527 } 1528 1529 bool isMemImm12Offset() const { 1530 // If we have an immediate that's not a constant, treat it as a label 1531 // reference needing a fixup. If it is a constant, it's something else 1532 // and we reject it. 1533 1534 if (isImm() && !isa<MCConstantExpr>(getImm())) 1535 return true; 1536 1537 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1538 return false; 1539 // Immediate offset in range [-4095, 4095]. 1540 if (!Memory.OffsetImm) return true; 1541 int64_t Val = Memory.OffsetImm->getValue(); 1542 return (Val > -4096 && Val < 4096) || 1543 (Val == std::numeric_limits<int32_t>::min()); 1544 } 1545 1546 bool isConstPoolAsmImm() const { 1547 // Delay processing of Constant Pool Immediate, this will turn into 1548 // a constant. Match no other operand 1549 return (isConstantPoolImm()); 1550 } 1551 1552 bool isPostIdxImm8() const { 1553 if (!isImm()) return false; 1554 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1555 if (!CE) return false; 1556 int64_t Val = CE->getValue(); 1557 return (Val > -256 && Val < 256) || 1558 (Val == std::numeric_limits<int32_t>::min()); 1559 } 1560 1561 bool isPostIdxImm8s4() const { 1562 if (!isImm()) return false; 1563 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1564 if (!CE) return false; 1565 int64_t Val = CE->getValue(); 1566 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1567 (Val == std::numeric_limits<int32_t>::min()); 1568 } 1569 1570 bool isMSRMask() const { return Kind == k_MSRMask; } 1571 bool isBankedReg() const { return Kind == k_BankedReg; } 1572 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1573 1574 // NEON operands. 1575 bool isSingleSpacedVectorList() const { 1576 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1577 } 1578 1579 bool isDoubleSpacedVectorList() const { 1580 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1581 } 1582 1583 bool isVecListOneD() const { 1584 if (!isSingleSpacedVectorList()) return false; 1585 return VectorList.Count == 1; 1586 } 1587 1588 bool isVecListDPair() const { 1589 if (!isSingleSpacedVectorList()) return false; 1590 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1591 .contains(VectorList.RegNum)); 1592 } 1593 1594 bool isVecListThreeD() const { 1595 if (!isSingleSpacedVectorList()) return false; 1596 return VectorList.Count == 3; 1597 } 1598 1599 bool isVecListFourD() const { 1600 if (!isSingleSpacedVectorList()) return false; 1601 return VectorList.Count == 4; 1602 } 1603 1604 bool isVecListDPairSpaced() const { 1605 if (Kind != k_VectorList) return false; 1606 if (isSingleSpacedVectorList()) return false; 1607 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1608 .contains(VectorList.RegNum)); 1609 } 1610 1611 bool isVecListThreeQ() const { 1612 if (!isDoubleSpacedVectorList()) return false; 1613 return VectorList.Count == 3; 1614 } 1615 1616 bool isVecListFourQ() const { 1617 if (!isDoubleSpacedVectorList()) return false; 1618 return VectorList.Count == 4; 1619 } 1620 1621 bool isSingleSpacedVectorAllLanes() const { 1622 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1623 } 1624 1625 bool isDoubleSpacedVectorAllLanes() const { 1626 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1627 } 1628 1629 bool isVecListOneDAllLanes() const { 1630 if (!isSingleSpacedVectorAllLanes()) return false; 1631 return VectorList.Count == 1; 1632 } 1633 1634 bool isVecListDPairAllLanes() const { 1635 if (!isSingleSpacedVectorAllLanes()) return false; 1636 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1637 .contains(VectorList.RegNum)); 1638 } 1639 1640 bool isVecListDPairSpacedAllLanes() const { 1641 if (!isDoubleSpacedVectorAllLanes()) return false; 1642 return VectorList.Count == 2; 1643 } 1644 1645 bool isVecListThreeDAllLanes() const { 1646 if (!isSingleSpacedVectorAllLanes()) return false; 1647 return VectorList.Count == 3; 1648 } 1649 1650 bool isVecListThreeQAllLanes() const { 1651 if (!isDoubleSpacedVectorAllLanes()) return false; 1652 return VectorList.Count == 3; 1653 } 1654 1655 bool isVecListFourDAllLanes() const { 1656 if (!isSingleSpacedVectorAllLanes()) return false; 1657 return VectorList.Count == 4; 1658 } 1659 1660 bool isVecListFourQAllLanes() const { 1661 if (!isDoubleSpacedVectorAllLanes()) return false; 1662 return VectorList.Count == 4; 1663 } 1664 1665 bool isSingleSpacedVectorIndexed() const { 1666 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1667 } 1668 1669 bool isDoubleSpacedVectorIndexed() const { 1670 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1671 } 1672 1673 bool isVecListOneDByteIndexed() const { 1674 if (!isSingleSpacedVectorIndexed()) return false; 1675 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1676 } 1677 1678 bool isVecListOneDHWordIndexed() const { 1679 if (!isSingleSpacedVectorIndexed()) return false; 1680 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1681 } 1682 1683 bool isVecListOneDWordIndexed() const { 1684 if (!isSingleSpacedVectorIndexed()) return false; 1685 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1686 } 1687 1688 bool isVecListTwoDByteIndexed() const { 1689 if (!isSingleSpacedVectorIndexed()) return false; 1690 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1691 } 1692 1693 bool isVecListTwoDHWordIndexed() const { 1694 if (!isSingleSpacedVectorIndexed()) return false; 1695 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1696 } 1697 1698 bool isVecListTwoQWordIndexed() const { 1699 if (!isDoubleSpacedVectorIndexed()) return false; 1700 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1701 } 1702 1703 bool isVecListTwoQHWordIndexed() const { 1704 if (!isDoubleSpacedVectorIndexed()) return false; 1705 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1706 } 1707 1708 bool isVecListTwoDWordIndexed() const { 1709 if (!isSingleSpacedVectorIndexed()) return false; 1710 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1711 } 1712 1713 bool isVecListThreeDByteIndexed() const { 1714 if (!isSingleSpacedVectorIndexed()) return false; 1715 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1716 } 1717 1718 bool isVecListThreeDHWordIndexed() const { 1719 if (!isSingleSpacedVectorIndexed()) return false; 1720 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1721 } 1722 1723 bool isVecListThreeQWordIndexed() const { 1724 if (!isDoubleSpacedVectorIndexed()) return false; 1725 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1726 } 1727 1728 bool isVecListThreeQHWordIndexed() const { 1729 if (!isDoubleSpacedVectorIndexed()) return false; 1730 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1731 } 1732 1733 bool isVecListThreeDWordIndexed() const { 1734 if (!isSingleSpacedVectorIndexed()) return false; 1735 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1736 } 1737 1738 bool isVecListFourDByteIndexed() const { 1739 if (!isSingleSpacedVectorIndexed()) return false; 1740 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1741 } 1742 1743 bool isVecListFourDHWordIndexed() const { 1744 if (!isSingleSpacedVectorIndexed()) return false; 1745 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1746 } 1747 1748 bool isVecListFourQWordIndexed() const { 1749 if (!isDoubleSpacedVectorIndexed()) return false; 1750 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1751 } 1752 1753 bool isVecListFourQHWordIndexed() const { 1754 if (!isDoubleSpacedVectorIndexed()) return false; 1755 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1756 } 1757 1758 bool isVecListFourDWordIndexed() const { 1759 if (!isSingleSpacedVectorIndexed()) return false; 1760 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1761 } 1762 1763 bool isVectorIndex8() const { 1764 if (Kind != k_VectorIndex) return false; 1765 return VectorIndex.Val < 8; 1766 } 1767 1768 bool isVectorIndex16() const { 1769 if (Kind != k_VectorIndex) return false; 1770 return VectorIndex.Val < 4; 1771 } 1772 1773 bool isVectorIndex32() const { 1774 if (Kind != k_VectorIndex) return false; 1775 return VectorIndex.Val < 2; 1776 } 1777 bool isVectorIndex64() const { 1778 if (Kind != k_VectorIndex) return false; 1779 return VectorIndex.Val < 1; 1780 } 1781 1782 bool isNEONi8splat() const { 1783 if (!isImm()) return false; 1784 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1785 // Must be a constant. 1786 if (!CE) return false; 1787 int64_t Value = CE->getValue(); 1788 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1789 // value. 1790 return Value >= 0 && Value < 256; 1791 } 1792 1793 bool isNEONi16splat() const { 1794 if (isNEONByteReplicate(2)) 1795 return false; // Leave that for bytes replication and forbid by default. 1796 if (!isImm()) 1797 return false; 1798 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1799 // Must be a constant. 1800 if (!CE) return false; 1801 unsigned Value = CE->getValue(); 1802 return ARM_AM::isNEONi16splat(Value); 1803 } 1804 1805 bool isNEONi16splatNot() const { 1806 if (!isImm()) 1807 return false; 1808 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1809 // Must be a constant. 1810 if (!CE) return false; 1811 unsigned Value = CE->getValue(); 1812 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1813 } 1814 1815 bool isNEONi32splat() const { 1816 if (isNEONByteReplicate(4)) 1817 return false; // Leave that for bytes replication and forbid by default. 1818 if (!isImm()) 1819 return false; 1820 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1821 // Must be a constant. 1822 if (!CE) return false; 1823 unsigned Value = CE->getValue(); 1824 return ARM_AM::isNEONi32splat(Value); 1825 } 1826 1827 bool isNEONi32splatNot() const { 1828 if (!isImm()) 1829 return false; 1830 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1831 // Must be a constant. 1832 if (!CE) return false; 1833 unsigned Value = CE->getValue(); 1834 return ARM_AM::isNEONi32splat(~Value); 1835 } 1836 1837 bool isNEONByteReplicate(unsigned NumBytes) const { 1838 if (!isImm()) 1839 return false; 1840 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1841 // Must be a constant. 1842 if (!CE) 1843 return false; 1844 int64_t Value = CE->getValue(); 1845 if (!Value) 1846 return false; // Don't bother with zero. 1847 1848 unsigned char B = Value & 0xff; 1849 for (unsigned i = 1; i < NumBytes; ++i) { 1850 Value >>= 8; 1851 if ((Value & 0xff) != B) 1852 return false; 1853 } 1854 return true; 1855 } 1856 1857 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1858 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1859 1860 bool isNEONi32vmov() const { 1861 if (isNEONByteReplicate(4)) 1862 return false; // Let it to be classified as byte-replicate case. 1863 if (!isImm()) 1864 return false; 1865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1866 // Must be a constant. 1867 if (!CE) 1868 return false; 1869 int64_t Value = CE->getValue(); 1870 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1871 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1872 // FIXME: This is probably wrong and a copy and paste from previous example 1873 return (Value >= 0 && Value < 256) || 1874 (Value >= 0x0100 && Value <= 0xff00) || 1875 (Value >= 0x010000 && Value <= 0xff0000) || 1876 (Value >= 0x01000000 && Value <= 0xff000000) || 1877 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1878 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1879 } 1880 1881 bool isNEONi32vmovNeg() const { 1882 if (!isImm()) return false; 1883 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1884 // Must be a constant. 1885 if (!CE) return false; 1886 int64_t Value = ~CE->getValue(); 1887 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1888 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1889 // FIXME: This is probably wrong and a copy and paste from previous example 1890 return (Value >= 0 && Value < 256) || 1891 (Value >= 0x0100 && Value <= 0xff00) || 1892 (Value >= 0x010000 && Value <= 0xff0000) || 1893 (Value >= 0x01000000 && Value <= 0xff000000) || 1894 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1895 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1896 } 1897 1898 bool isNEONi64splat() const { 1899 if (!isImm()) return false; 1900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1901 // Must be a constant. 1902 if (!CE) return false; 1903 uint64_t Value = CE->getValue(); 1904 // i64 value with each byte being either 0 or 0xff. 1905 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1906 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1907 return true; 1908 } 1909 1910 template<int64_t Angle, int64_t Remainder> 1911 bool isComplexRotation() const { 1912 if (!isImm()) return false; 1913 1914 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1915 if (!CE) return false; 1916 uint64_t Value = CE->getValue(); 1917 1918 return (Value % Angle == Remainder && Value <= 270); 1919 } 1920 1921 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1922 // Add as immediates when possible. Null MCExpr = 0. 1923 if (!Expr) 1924 Inst.addOperand(MCOperand::createImm(0)); 1925 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1926 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1927 else 1928 Inst.addOperand(MCOperand::createExpr(Expr)); 1929 } 1930 1931 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1932 assert(N == 1 && "Invalid number of operands!"); 1933 addExpr(Inst, getImm()); 1934 } 1935 1936 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1937 assert(N == 1 && "Invalid number of operands!"); 1938 addExpr(Inst, getImm()); 1939 } 1940 1941 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1942 assert(N == 2 && "Invalid number of operands!"); 1943 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1944 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1945 Inst.addOperand(MCOperand::createReg(RegNum)); 1946 } 1947 1948 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1949 assert(N == 1 && "Invalid number of operands!"); 1950 Inst.addOperand(MCOperand::createImm(getCoproc())); 1951 } 1952 1953 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1954 assert(N == 1 && "Invalid number of operands!"); 1955 Inst.addOperand(MCOperand::createImm(getCoproc())); 1956 } 1957 1958 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1959 assert(N == 1 && "Invalid number of operands!"); 1960 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1961 } 1962 1963 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1964 assert(N == 1 && "Invalid number of operands!"); 1965 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1966 } 1967 1968 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1969 assert(N == 1 && "Invalid number of operands!"); 1970 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1971 } 1972 1973 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1974 assert(N == 1 && "Invalid number of operands!"); 1975 Inst.addOperand(MCOperand::createReg(getReg())); 1976 } 1977 1978 void addRegOperands(MCInst &Inst, unsigned N) const { 1979 assert(N == 1 && "Invalid number of operands!"); 1980 Inst.addOperand(MCOperand::createReg(getReg())); 1981 } 1982 1983 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1984 assert(N == 3 && "Invalid number of operands!"); 1985 assert(isRegShiftedReg() && 1986 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1987 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1988 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1989 Inst.addOperand(MCOperand::createImm( 1990 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1991 } 1992 1993 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1994 assert(N == 2 && "Invalid number of operands!"); 1995 assert(isRegShiftedImm() && 1996 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1997 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1998 // Shift of #32 is encoded as 0 where permitted 1999 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2000 Inst.addOperand(MCOperand::createImm( 2001 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2002 } 2003 2004 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2005 assert(N == 1 && "Invalid number of operands!"); 2006 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2007 ShifterImm.Imm)); 2008 } 2009 2010 void addRegListOperands(MCInst &Inst, unsigned N) const { 2011 assert(N == 1 && "Invalid number of operands!"); 2012 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2013 for (SmallVectorImpl<unsigned>::const_iterator 2014 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2015 Inst.addOperand(MCOperand::createReg(*I)); 2016 } 2017 2018 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2019 addRegListOperands(Inst, N); 2020 } 2021 2022 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2023 addRegListOperands(Inst, N); 2024 } 2025 2026 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2027 assert(N == 1 && "Invalid number of operands!"); 2028 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2029 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2030 } 2031 2032 void addModImmOperands(MCInst &Inst, unsigned N) const { 2033 assert(N == 1 && "Invalid number of operands!"); 2034 2035 // Support for fixups (MCFixup) 2036 if (isImm()) 2037 return addImmOperands(Inst, N); 2038 2039 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2040 } 2041 2042 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2043 assert(N == 1 && "Invalid number of operands!"); 2044 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2045 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2046 Inst.addOperand(MCOperand::createImm(Enc)); 2047 } 2048 2049 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2050 assert(N == 1 && "Invalid number of operands!"); 2051 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2052 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2053 Inst.addOperand(MCOperand::createImm(Enc)); 2054 } 2055 2056 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2057 assert(N == 1 && "Invalid number of operands!"); 2058 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2059 uint32_t Val = -CE->getValue(); 2060 Inst.addOperand(MCOperand::createImm(Val)); 2061 } 2062 2063 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2064 assert(N == 1 && "Invalid number of operands!"); 2065 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2066 uint32_t Val = -CE->getValue(); 2067 Inst.addOperand(MCOperand::createImm(Val)); 2068 } 2069 2070 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2071 assert(N == 1 && "Invalid number of operands!"); 2072 // Munge the lsb/width into a bitfield mask. 2073 unsigned lsb = Bitfield.LSB; 2074 unsigned width = Bitfield.Width; 2075 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2076 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2077 (32 - (lsb + width))); 2078 Inst.addOperand(MCOperand::createImm(Mask)); 2079 } 2080 2081 void addImmOperands(MCInst &Inst, unsigned N) const { 2082 assert(N == 1 && "Invalid number of operands!"); 2083 addExpr(Inst, getImm()); 2084 } 2085 2086 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2087 assert(N == 1 && "Invalid number of operands!"); 2088 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2089 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2090 } 2091 2092 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2093 assert(N == 1 && "Invalid number of operands!"); 2094 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2095 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2096 } 2097 2098 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2099 assert(N == 1 && "Invalid number of operands!"); 2100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2101 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2102 Inst.addOperand(MCOperand::createImm(Val)); 2103 } 2104 2105 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2106 assert(N == 1 && "Invalid number of operands!"); 2107 // FIXME: We really want to scale the value here, but the LDRD/STRD 2108 // instruction don't encode operands that way yet. 2109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2110 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2111 } 2112 2113 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2114 assert(N == 1 && "Invalid number of operands!"); 2115 // The immediate is scaled by four in the encoding and is stored 2116 // in the MCInst as such. Lop off the low two bits here. 2117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2118 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2119 } 2120 2121 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2122 assert(N == 1 && "Invalid number of operands!"); 2123 // The immediate is scaled by four in the encoding and is stored 2124 // in the MCInst as such. Lop off the low two bits here. 2125 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2126 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2127 } 2128 2129 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2130 assert(N == 1 && "Invalid number of operands!"); 2131 // The immediate is scaled by four in the encoding and is stored 2132 // in the MCInst as such. Lop off the low two bits here. 2133 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2134 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2135 } 2136 2137 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2138 assert(N == 1 && "Invalid number of operands!"); 2139 // The constant encodes as the immediate-1, and we store in the instruction 2140 // the bits as encoded, so subtract off one here. 2141 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2142 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2143 } 2144 2145 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2146 assert(N == 1 && "Invalid number of operands!"); 2147 // The constant encodes as the immediate-1, and we store in the instruction 2148 // the bits as encoded, so subtract off one here. 2149 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2150 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2151 } 2152 2153 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2154 assert(N == 1 && "Invalid number of operands!"); 2155 // The constant encodes as the immediate, except for 32, which encodes as 2156 // zero. 2157 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2158 unsigned Imm = CE->getValue(); 2159 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2160 } 2161 2162 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2163 assert(N == 1 && "Invalid number of operands!"); 2164 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2165 // the instruction as well. 2166 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2167 int Val = CE->getValue(); 2168 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2169 } 2170 2171 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2172 assert(N == 1 && "Invalid number of operands!"); 2173 // The operand is actually a t2_so_imm, but we have its bitwise 2174 // negation in the assembly source, so twiddle it here. 2175 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2176 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2177 } 2178 2179 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2180 assert(N == 1 && "Invalid number of operands!"); 2181 // The operand is actually a t2_so_imm, but we have its 2182 // negation in the assembly source, so twiddle it here. 2183 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2184 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2185 } 2186 2187 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2188 assert(N == 1 && "Invalid number of operands!"); 2189 // The operand is actually an imm0_4095, but we have its 2190 // negation in the assembly source, so twiddle it here. 2191 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2192 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2193 } 2194 2195 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2196 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2197 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2198 return; 2199 } 2200 2201 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2202 assert(SR && "Unknown value type!"); 2203 Inst.addOperand(MCOperand::createExpr(SR)); 2204 } 2205 2206 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2207 assert(N == 1 && "Invalid number of operands!"); 2208 if (isImm()) { 2209 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2210 if (CE) { 2211 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2212 return; 2213 } 2214 2215 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2216 2217 assert(SR && "Unknown value type!"); 2218 Inst.addOperand(MCOperand::createExpr(SR)); 2219 return; 2220 } 2221 2222 assert(isMem() && "Unknown value type!"); 2223 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2224 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2225 } 2226 2227 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2228 assert(N == 1 && "Invalid number of operands!"); 2229 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2230 } 2231 2232 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2233 assert(N == 1 && "Invalid number of operands!"); 2234 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2235 } 2236 2237 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2238 assert(N == 1 && "Invalid number of operands!"); 2239 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2240 } 2241 2242 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2243 assert(N == 1 && "Invalid number of operands!"); 2244 int32_t Imm = Memory.OffsetImm->getValue(); 2245 Inst.addOperand(MCOperand::createImm(Imm)); 2246 } 2247 2248 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2249 assert(N == 1 && "Invalid number of operands!"); 2250 assert(isImm() && "Not an immediate!"); 2251 2252 // If we have an immediate that's not a constant, treat it as a label 2253 // reference needing a fixup. 2254 if (!isa<MCConstantExpr>(getImm())) { 2255 Inst.addOperand(MCOperand::createExpr(getImm())); 2256 return; 2257 } 2258 2259 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2260 int Val = CE->getValue(); 2261 Inst.addOperand(MCOperand::createImm(Val)); 2262 } 2263 2264 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2265 assert(N == 2 && "Invalid number of operands!"); 2266 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2267 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2268 } 2269 2270 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2271 addAlignedMemoryOperands(Inst, N); 2272 } 2273 2274 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2275 addAlignedMemoryOperands(Inst, N); 2276 } 2277 2278 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2279 addAlignedMemoryOperands(Inst, N); 2280 } 2281 2282 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2283 addAlignedMemoryOperands(Inst, N); 2284 } 2285 2286 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2287 addAlignedMemoryOperands(Inst, N); 2288 } 2289 2290 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2291 addAlignedMemoryOperands(Inst, N); 2292 } 2293 2294 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2295 addAlignedMemoryOperands(Inst, N); 2296 } 2297 2298 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2299 addAlignedMemoryOperands(Inst, N); 2300 } 2301 2302 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2303 addAlignedMemoryOperands(Inst, N); 2304 } 2305 2306 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2307 addAlignedMemoryOperands(Inst, N); 2308 } 2309 2310 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2311 addAlignedMemoryOperands(Inst, N); 2312 } 2313 2314 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2315 assert(N == 3 && "Invalid number of operands!"); 2316 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2317 if (!Memory.OffsetRegNum) { 2318 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2319 // Special case for #-0 2320 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2321 if (Val < 0) Val = -Val; 2322 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2323 } else { 2324 // For register offset, we encode the shift type and negation flag 2325 // here. 2326 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2327 Memory.ShiftImm, Memory.ShiftType); 2328 } 2329 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2330 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2331 Inst.addOperand(MCOperand::createImm(Val)); 2332 } 2333 2334 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2335 assert(N == 2 && "Invalid number of operands!"); 2336 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2337 assert(CE && "non-constant AM2OffsetImm operand!"); 2338 int32_t Val = CE->getValue(); 2339 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2340 // Special case for #-0 2341 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2342 if (Val < 0) Val = -Val; 2343 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2344 Inst.addOperand(MCOperand::createReg(0)); 2345 Inst.addOperand(MCOperand::createImm(Val)); 2346 } 2347 2348 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2349 assert(N == 3 && "Invalid number of operands!"); 2350 // If we have an immediate that's not a constant, treat it as a label 2351 // reference needing a fixup. If it is a constant, it's something else 2352 // and we reject it. 2353 if (isImm()) { 2354 Inst.addOperand(MCOperand::createExpr(getImm())); 2355 Inst.addOperand(MCOperand::createReg(0)); 2356 Inst.addOperand(MCOperand::createImm(0)); 2357 return; 2358 } 2359 2360 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2361 if (!Memory.OffsetRegNum) { 2362 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2363 // Special case for #-0 2364 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2365 if (Val < 0) Val = -Val; 2366 Val = ARM_AM::getAM3Opc(AddSub, Val); 2367 } else { 2368 // For register offset, we encode the shift type and negation flag 2369 // here. 2370 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2371 } 2372 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2373 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2374 Inst.addOperand(MCOperand::createImm(Val)); 2375 } 2376 2377 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2378 assert(N == 2 && "Invalid number of operands!"); 2379 if (Kind == k_PostIndexRegister) { 2380 int32_t Val = 2381 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2382 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2383 Inst.addOperand(MCOperand::createImm(Val)); 2384 return; 2385 } 2386 2387 // Constant offset. 2388 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2389 int32_t Val = CE->getValue(); 2390 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2391 // Special case for #-0 2392 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2393 if (Val < 0) Val = -Val; 2394 Val = ARM_AM::getAM3Opc(AddSub, Val); 2395 Inst.addOperand(MCOperand::createReg(0)); 2396 Inst.addOperand(MCOperand::createImm(Val)); 2397 } 2398 2399 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2400 assert(N == 2 && "Invalid number of operands!"); 2401 // If we have an immediate that's not a constant, treat it as a label 2402 // reference needing a fixup. If it is a constant, it's something else 2403 // and we reject it. 2404 if (isImm()) { 2405 Inst.addOperand(MCOperand::createExpr(getImm())); 2406 Inst.addOperand(MCOperand::createImm(0)); 2407 return; 2408 } 2409 2410 // The lower two bits are always zero and as such are not encoded. 2411 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2412 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2413 // Special case for #-0 2414 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2415 if (Val < 0) Val = -Val; 2416 Val = ARM_AM::getAM5Opc(AddSub, Val); 2417 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2418 Inst.addOperand(MCOperand::createImm(Val)); 2419 } 2420 2421 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2422 assert(N == 2 && "Invalid number of operands!"); 2423 // If we have an immediate that's not a constant, treat it as a label 2424 // reference needing a fixup. If it is a constant, it's something else 2425 // and we reject it. 2426 if (isImm()) { 2427 Inst.addOperand(MCOperand::createExpr(getImm())); 2428 Inst.addOperand(MCOperand::createImm(0)); 2429 return; 2430 } 2431 2432 // The lower bit is always zero and as such is not encoded. 2433 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2434 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2435 // Special case for #-0 2436 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2437 if (Val < 0) Val = -Val; 2438 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2439 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2440 Inst.addOperand(MCOperand::createImm(Val)); 2441 } 2442 2443 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2444 assert(N == 2 && "Invalid number of operands!"); 2445 // If we have an immediate that's not a constant, treat it as a label 2446 // reference needing a fixup. If it is a constant, it's something else 2447 // and we reject it. 2448 if (isImm()) { 2449 Inst.addOperand(MCOperand::createExpr(getImm())); 2450 Inst.addOperand(MCOperand::createImm(0)); 2451 return; 2452 } 2453 2454 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2455 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2456 Inst.addOperand(MCOperand::createImm(Val)); 2457 } 2458 2459 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2460 assert(N == 2 && "Invalid number of operands!"); 2461 // The lower two bits are always zero and as such are not encoded. 2462 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2463 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2464 Inst.addOperand(MCOperand::createImm(Val)); 2465 } 2466 2467 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2468 assert(N == 2 && "Invalid number of operands!"); 2469 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2470 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2471 Inst.addOperand(MCOperand::createImm(Val)); 2472 } 2473 2474 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2475 addMemImm8OffsetOperands(Inst, N); 2476 } 2477 2478 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2479 addMemImm8OffsetOperands(Inst, N); 2480 } 2481 2482 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2483 assert(N == 2 && "Invalid number of operands!"); 2484 // If this is an immediate, it's a label reference. 2485 if (isImm()) { 2486 addExpr(Inst, getImm()); 2487 Inst.addOperand(MCOperand::createImm(0)); 2488 return; 2489 } 2490 2491 // Otherwise, it's a normal memory reg+offset. 2492 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2493 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2494 Inst.addOperand(MCOperand::createImm(Val)); 2495 } 2496 2497 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2498 assert(N == 2 && "Invalid number of operands!"); 2499 // If this is an immediate, it's a label reference. 2500 if (isImm()) { 2501 addExpr(Inst, getImm()); 2502 Inst.addOperand(MCOperand::createImm(0)); 2503 return; 2504 } 2505 2506 // Otherwise, it's a normal memory reg+offset. 2507 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2508 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2509 Inst.addOperand(MCOperand::createImm(Val)); 2510 } 2511 2512 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2513 assert(N == 1 && "Invalid number of operands!"); 2514 // This is container for the immediate that we will create the constant 2515 // pool from 2516 addExpr(Inst, getConstantPoolImm()); 2517 return; 2518 } 2519 2520 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2521 assert(N == 2 && "Invalid number of operands!"); 2522 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2523 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2524 } 2525 2526 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2527 assert(N == 2 && "Invalid number of operands!"); 2528 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2529 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2530 } 2531 2532 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2533 assert(N == 3 && "Invalid number of operands!"); 2534 unsigned Val = 2535 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2536 Memory.ShiftImm, Memory.ShiftType); 2537 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2538 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2539 Inst.addOperand(MCOperand::createImm(Val)); 2540 } 2541 2542 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2543 assert(N == 3 && "Invalid number of operands!"); 2544 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2545 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2546 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2547 } 2548 2549 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2550 assert(N == 2 && "Invalid number of operands!"); 2551 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2552 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2553 } 2554 2555 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2556 assert(N == 2 && "Invalid number of operands!"); 2557 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2558 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2559 Inst.addOperand(MCOperand::createImm(Val)); 2560 } 2561 2562 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2563 assert(N == 2 && "Invalid number of operands!"); 2564 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2565 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2566 Inst.addOperand(MCOperand::createImm(Val)); 2567 } 2568 2569 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2570 assert(N == 2 && "Invalid number of operands!"); 2571 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2572 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2573 Inst.addOperand(MCOperand::createImm(Val)); 2574 } 2575 2576 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2577 assert(N == 2 && "Invalid number of operands!"); 2578 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2579 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2580 Inst.addOperand(MCOperand::createImm(Val)); 2581 } 2582 2583 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2584 assert(N == 1 && "Invalid number of operands!"); 2585 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2586 assert(CE && "non-constant post-idx-imm8 operand!"); 2587 int Imm = CE->getValue(); 2588 bool isAdd = Imm >= 0; 2589 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2590 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2591 Inst.addOperand(MCOperand::createImm(Imm)); 2592 } 2593 2594 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2595 assert(N == 1 && "Invalid number of operands!"); 2596 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2597 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2598 int Imm = CE->getValue(); 2599 bool isAdd = Imm >= 0; 2600 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2601 // Immediate is scaled by 4. 2602 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2603 Inst.addOperand(MCOperand::createImm(Imm)); 2604 } 2605 2606 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2607 assert(N == 2 && "Invalid number of operands!"); 2608 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2609 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2610 } 2611 2612 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2613 assert(N == 2 && "Invalid number of operands!"); 2614 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2615 // The sign, shift type, and shift amount are encoded in a single operand 2616 // using the AM2 encoding helpers. 2617 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2618 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2619 PostIdxReg.ShiftTy); 2620 Inst.addOperand(MCOperand::createImm(Imm)); 2621 } 2622 2623 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2624 assert(N == 1 && "Invalid number of operands!"); 2625 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2626 } 2627 2628 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2629 assert(N == 1 && "Invalid number of operands!"); 2630 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2631 } 2632 2633 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2634 assert(N == 1 && "Invalid number of operands!"); 2635 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2636 } 2637 2638 void addVecListOperands(MCInst &Inst, unsigned N) const { 2639 assert(N == 1 && "Invalid number of operands!"); 2640 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2641 } 2642 2643 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2644 assert(N == 2 && "Invalid number of operands!"); 2645 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2646 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2647 } 2648 2649 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2650 assert(N == 1 && "Invalid number of operands!"); 2651 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2652 } 2653 2654 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2655 assert(N == 1 && "Invalid number of operands!"); 2656 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2657 } 2658 2659 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2660 assert(N == 1 && "Invalid number of operands!"); 2661 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2662 } 2663 2664 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2665 assert(N == 1 && "Invalid number of operands!"); 2666 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2667 } 2668 2669 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2670 assert(N == 1 && "Invalid number of operands!"); 2671 // The immediate encodes the type of constant as well as the value. 2672 // Mask in that this is an i8 splat. 2673 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2674 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2675 } 2676 2677 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2678 assert(N == 1 && "Invalid number of operands!"); 2679 // The immediate encodes the type of constant as well as the value. 2680 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2681 unsigned Value = CE->getValue(); 2682 Value = ARM_AM::encodeNEONi16splat(Value); 2683 Inst.addOperand(MCOperand::createImm(Value)); 2684 } 2685 2686 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2687 assert(N == 1 && "Invalid number of operands!"); 2688 // The immediate encodes the type of constant as well as the value. 2689 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2690 unsigned Value = CE->getValue(); 2691 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2692 Inst.addOperand(MCOperand::createImm(Value)); 2693 } 2694 2695 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2696 assert(N == 1 && "Invalid number of operands!"); 2697 // The immediate encodes the type of constant as well as the value. 2698 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2699 unsigned Value = CE->getValue(); 2700 Value = ARM_AM::encodeNEONi32splat(Value); 2701 Inst.addOperand(MCOperand::createImm(Value)); 2702 } 2703 2704 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2705 assert(N == 1 && "Invalid number of operands!"); 2706 // The immediate encodes the type of constant as well as the value. 2707 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2708 unsigned Value = CE->getValue(); 2709 Value = ARM_AM::encodeNEONi32splat(~Value); 2710 Inst.addOperand(MCOperand::createImm(Value)); 2711 } 2712 2713 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2714 assert(N == 1 && "Invalid number of operands!"); 2715 // The immediate encodes the type of constant as well as the value. 2716 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2717 unsigned Value = CE->getValue(); 2718 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2719 Inst.getOpcode() == ARM::VMOVv16i8) && 2720 "All vmvn instructions that wants to replicate non-zero byte " 2721 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2722 unsigned B = ((~Value) & 0xff); 2723 B |= 0xe00; // cmode = 0b1110 2724 Inst.addOperand(MCOperand::createImm(B)); 2725 } 2726 2727 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2728 assert(N == 1 && "Invalid number of operands!"); 2729 // The immediate encodes the type of constant as well as the value. 2730 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2731 unsigned Value = CE->getValue(); 2732 if (Value >= 256 && Value <= 0xffff) 2733 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2734 else if (Value > 0xffff && Value <= 0xffffff) 2735 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2736 else if (Value > 0xffffff) 2737 Value = (Value >> 24) | 0x600; 2738 Inst.addOperand(MCOperand::createImm(Value)); 2739 } 2740 2741 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2742 assert(N == 1 && "Invalid number of operands!"); 2743 // The immediate encodes the type of constant as well as the value. 2744 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2745 unsigned Value = CE->getValue(); 2746 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2747 Inst.getOpcode() == ARM::VMOVv16i8) && 2748 "All instructions that wants to replicate non-zero byte " 2749 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2750 unsigned B = Value & 0xff; 2751 B |= 0xe00; // cmode = 0b1110 2752 Inst.addOperand(MCOperand::createImm(B)); 2753 } 2754 2755 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2756 assert(N == 1 && "Invalid number of operands!"); 2757 // The immediate encodes the type of constant as well as the value. 2758 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2759 unsigned Value = ~CE->getValue(); 2760 if (Value >= 256 && Value <= 0xffff) 2761 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2762 else if (Value > 0xffff && Value <= 0xffffff) 2763 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2764 else if (Value > 0xffffff) 2765 Value = (Value >> 24) | 0x600; 2766 Inst.addOperand(MCOperand::createImm(Value)); 2767 } 2768 2769 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2770 assert(N == 1 && "Invalid number of operands!"); 2771 // The immediate encodes the type of constant as well as the value. 2772 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2773 uint64_t Value = CE->getValue(); 2774 unsigned Imm = 0; 2775 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2776 Imm |= (Value & 1) << i; 2777 } 2778 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2779 } 2780 2781 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2782 assert(N == 1 && "Invalid number of operands!"); 2783 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2784 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2785 } 2786 2787 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2788 assert(N == 1 && "Invalid number of operands!"); 2789 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2790 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2791 } 2792 2793 void print(raw_ostream &OS) const override; 2794 2795 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2796 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2797 Op->ITMask.Mask = Mask; 2798 Op->StartLoc = S; 2799 Op->EndLoc = S; 2800 return Op; 2801 } 2802 2803 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2804 SMLoc S) { 2805 auto Op = make_unique<ARMOperand>(k_CondCode); 2806 Op->CC.Val = CC; 2807 Op->StartLoc = S; 2808 Op->EndLoc = S; 2809 return Op; 2810 } 2811 2812 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2813 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2814 Op->Cop.Val = CopVal; 2815 Op->StartLoc = S; 2816 Op->EndLoc = S; 2817 return Op; 2818 } 2819 2820 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2821 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2822 Op->Cop.Val = CopVal; 2823 Op->StartLoc = S; 2824 Op->EndLoc = S; 2825 return Op; 2826 } 2827 2828 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2829 SMLoc E) { 2830 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2831 Op->Cop.Val = Val; 2832 Op->StartLoc = S; 2833 Op->EndLoc = E; 2834 return Op; 2835 } 2836 2837 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2838 auto Op = make_unique<ARMOperand>(k_CCOut); 2839 Op->Reg.RegNum = RegNum; 2840 Op->StartLoc = S; 2841 Op->EndLoc = S; 2842 return Op; 2843 } 2844 2845 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2846 auto Op = make_unique<ARMOperand>(k_Token); 2847 Op->Tok.Data = Str.data(); 2848 Op->Tok.Length = Str.size(); 2849 Op->StartLoc = S; 2850 Op->EndLoc = S; 2851 return Op; 2852 } 2853 2854 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2855 SMLoc E) { 2856 auto Op = make_unique<ARMOperand>(k_Register); 2857 Op->Reg.RegNum = RegNum; 2858 Op->StartLoc = S; 2859 Op->EndLoc = E; 2860 return Op; 2861 } 2862 2863 static std::unique_ptr<ARMOperand> 2864 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2865 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2866 SMLoc E) { 2867 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2868 Op->RegShiftedReg.ShiftTy = ShTy; 2869 Op->RegShiftedReg.SrcReg = SrcReg; 2870 Op->RegShiftedReg.ShiftReg = ShiftReg; 2871 Op->RegShiftedReg.ShiftImm = ShiftImm; 2872 Op->StartLoc = S; 2873 Op->EndLoc = E; 2874 return Op; 2875 } 2876 2877 static std::unique_ptr<ARMOperand> 2878 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2879 unsigned ShiftImm, SMLoc S, SMLoc E) { 2880 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2881 Op->RegShiftedImm.ShiftTy = ShTy; 2882 Op->RegShiftedImm.SrcReg = SrcReg; 2883 Op->RegShiftedImm.ShiftImm = ShiftImm; 2884 Op->StartLoc = S; 2885 Op->EndLoc = E; 2886 return Op; 2887 } 2888 2889 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2890 SMLoc S, SMLoc E) { 2891 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2892 Op->ShifterImm.isASR = isASR; 2893 Op->ShifterImm.Imm = Imm; 2894 Op->StartLoc = S; 2895 Op->EndLoc = E; 2896 return Op; 2897 } 2898 2899 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2900 SMLoc E) { 2901 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2902 Op->RotImm.Imm = Imm; 2903 Op->StartLoc = S; 2904 Op->EndLoc = E; 2905 return Op; 2906 } 2907 2908 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2909 SMLoc S, SMLoc E) { 2910 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2911 Op->ModImm.Bits = Bits; 2912 Op->ModImm.Rot = Rot; 2913 Op->StartLoc = S; 2914 Op->EndLoc = E; 2915 return Op; 2916 } 2917 2918 static std::unique_ptr<ARMOperand> 2919 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2920 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2921 Op->Imm.Val = Val; 2922 Op->StartLoc = S; 2923 Op->EndLoc = E; 2924 return Op; 2925 } 2926 2927 static std::unique_ptr<ARMOperand> 2928 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2929 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2930 Op->Bitfield.LSB = LSB; 2931 Op->Bitfield.Width = Width; 2932 Op->StartLoc = S; 2933 Op->EndLoc = E; 2934 return Op; 2935 } 2936 2937 static std::unique_ptr<ARMOperand> 2938 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2939 SMLoc StartLoc, SMLoc EndLoc) { 2940 assert(Regs.size() > 0 && "RegList contains no registers?"); 2941 KindTy Kind = k_RegisterList; 2942 2943 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2944 Kind = k_DPRRegisterList; 2945 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2946 contains(Regs.front().second)) 2947 Kind = k_SPRRegisterList; 2948 2949 // Sort based on the register encoding values. 2950 array_pod_sort(Regs.begin(), Regs.end()); 2951 2952 auto Op = make_unique<ARMOperand>(Kind); 2953 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 2954 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2955 Op->Registers.push_back(I->second); 2956 Op->StartLoc = StartLoc; 2957 Op->EndLoc = EndLoc; 2958 return Op; 2959 } 2960 2961 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2962 unsigned Count, 2963 bool isDoubleSpaced, 2964 SMLoc S, SMLoc E) { 2965 auto Op = make_unique<ARMOperand>(k_VectorList); 2966 Op->VectorList.RegNum = RegNum; 2967 Op->VectorList.Count = Count; 2968 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2969 Op->StartLoc = S; 2970 Op->EndLoc = E; 2971 return Op; 2972 } 2973 2974 static std::unique_ptr<ARMOperand> 2975 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2976 SMLoc S, SMLoc E) { 2977 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2978 Op->VectorList.RegNum = RegNum; 2979 Op->VectorList.Count = Count; 2980 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2981 Op->StartLoc = S; 2982 Op->EndLoc = E; 2983 return Op; 2984 } 2985 2986 static std::unique_ptr<ARMOperand> 2987 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2988 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2989 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2990 Op->VectorList.RegNum = RegNum; 2991 Op->VectorList.Count = Count; 2992 Op->VectorList.LaneIndex = Index; 2993 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2994 Op->StartLoc = S; 2995 Op->EndLoc = E; 2996 return Op; 2997 } 2998 2999 static std::unique_ptr<ARMOperand> 3000 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3001 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3002 Op->VectorIndex.Val = Idx; 3003 Op->StartLoc = S; 3004 Op->EndLoc = E; 3005 return Op; 3006 } 3007 3008 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3009 SMLoc E) { 3010 auto Op = make_unique<ARMOperand>(k_Immediate); 3011 Op->Imm.Val = Val; 3012 Op->StartLoc = S; 3013 Op->EndLoc = E; 3014 return Op; 3015 } 3016 3017 static std::unique_ptr<ARMOperand> 3018 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3019 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3020 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3021 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3022 auto Op = make_unique<ARMOperand>(k_Memory); 3023 Op->Memory.BaseRegNum = BaseRegNum; 3024 Op->Memory.OffsetImm = OffsetImm; 3025 Op->Memory.OffsetRegNum = OffsetRegNum; 3026 Op->Memory.ShiftType = ShiftType; 3027 Op->Memory.ShiftImm = ShiftImm; 3028 Op->Memory.Alignment = Alignment; 3029 Op->Memory.isNegative = isNegative; 3030 Op->StartLoc = S; 3031 Op->EndLoc = E; 3032 Op->AlignmentLoc = AlignmentLoc; 3033 return Op; 3034 } 3035 3036 static std::unique_ptr<ARMOperand> 3037 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3038 unsigned ShiftImm, SMLoc S, SMLoc E) { 3039 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3040 Op->PostIdxReg.RegNum = RegNum; 3041 Op->PostIdxReg.isAdd = isAdd; 3042 Op->PostIdxReg.ShiftTy = ShiftTy; 3043 Op->PostIdxReg.ShiftImm = ShiftImm; 3044 Op->StartLoc = S; 3045 Op->EndLoc = E; 3046 return Op; 3047 } 3048 3049 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3050 SMLoc S) { 3051 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3052 Op->MBOpt.Val = Opt; 3053 Op->StartLoc = S; 3054 Op->EndLoc = S; 3055 return Op; 3056 } 3057 3058 static std::unique_ptr<ARMOperand> 3059 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3060 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3061 Op->ISBOpt.Val = Opt; 3062 Op->StartLoc = S; 3063 Op->EndLoc = S; 3064 return Op; 3065 } 3066 3067 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3068 SMLoc S) { 3069 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3070 Op->IFlags.Val = IFlags; 3071 Op->StartLoc = S; 3072 Op->EndLoc = S; 3073 return Op; 3074 } 3075 3076 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3077 auto Op = make_unique<ARMOperand>(k_MSRMask); 3078 Op->MMask.Val = MMask; 3079 Op->StartLoc = S; 3080 Op->EndLoc = S; 3081 return Op; 3082 } 3083 3084 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3085 auto Op = make_unique<ARMOperand>(k_BankedReg); 3086 Op->BankedReg.Val = Reg; 3087 Op->StartLoc = S; 3088 Op->EndLoc = S; 3089 return Op; 3090 } 3091 }; 3092 3093 } // end anonymous namespace. 3094 3095 void ARMOperand::print(raw_ostream &OS) const { 3096 switch (Kind) { 3097 case k_CondCode: 3098 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3099 break; 3100 case k_CCOut: 3101 OS << "<ccout " << getReg() << ">"; 3102 break; 3103 case k_ITCondMask: { 3104 static const char *const MaskStr[] = { 3105 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3106 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3107 }; 3108 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3109 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3110 break; 3111 } 3112 case k_CoprocNum: 3113 OS << "<coprocessor number: " << getCoproc() << ">"; 3114 break; 3115 case k_CoprocReg: 3116 OS << "<coprocessor register: " << getCoproc() << ">"; 3117 break; 3118 case k_CoprocOption: 3119 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3120 break; 3121 case k_MSRMask: 3122 OS << "<mask: " << getMSRMask() << ">"; 3123 break; 3124 case k_BankedReg: 3125 OS << "<banked reg: " << getBankedReg() << ">"; 3126 break; 3127 case k_Immediate: 3128 OS << *getImm(); 3129 break; 3130 case k_MemBarrierOpt: 3131 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3132 break; 3133 case k_InstSyncBarrierOpt: 3134 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3135 break; 3136 case k_Memory: 3137 OS << "<memory " 3138 << " base:" << Memory.BaseRegNum; 3139 OS << ">"; 3140 break; 3141 case k_PostIndexRegister: 3142 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3143 << PostIdxReg.RegNum; 3144 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3145 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3146 << PostIdxReg.ShiftImm; 3147 OS << ">"; 3148 break; 3149 case k_ProcIFlags: { 3150 OS << "<ARM_PROC::"; 3151 unsigned IFlags = getProcIFlags(); 3152 for (int i=2; i >= 0; --i) 3153 if (IFlags & (1 << i)) 3154 OS << ARM_PROC::IFlagsToString(1 << i); 3155 OS << ">"; 3156 break; 3157 } 3158 case k_Register: 3159 OS << "<register " << getReg() << ">"; 3160 break; 3161 case k_ShifterImmediate: 3162 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3163 << " #" << ShifterImm.Imm << ">"; 3164 break; 3165 case k_ShiftedRegister: 3166 OS << "<so_reg_reg " 3167 << RegShiftedReg.SrcReg << " " 3168 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3169 << " " << RegShiftedReg.ShiftReg << ">"; 3170 break; 3171 case k_ShiftedImmediate: 3172 OS << "<so_reg_imm " 3173 << RegShiftedImm.SrcReg << " " 3174 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3175 << " #" << RegShiftedImm.ShiftImm << ">"; 3176 break; 3177 case k_RotateImmediate: 3178 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3179 break; 3180 case k_ModifiedImmediate: 3181 OS << "<mod_imm #" << ModImm.Bits << ", #" 3182 << ModImm.Rot << ")>"; 3183 break; 3184 case k_ConstantPoolImmediate: 3185 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3186 break; 3187 case k_BitfieldDescriptor: 3188 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3189 << ", width: " << Bitfield.Width << ">"; 3190 break; 3191 case k_RegisterList: 3192 case k_DPRRegisterList: 3193 case k_SPRRegisterList: { 3194 OS << "<register_list "; 3195 3196 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3197 for (SmallVectorImpl<unsigned>::const_iterator 3198 I = RegList.begin(), E = RegList.end(); I != E; ) { 3199 OS << *I; 3200 if (++I < E) OS << ", "; 3201 } 3202 3203 OS << ">"; 3204 break; 3205 } 3206 case k_VectorList: 3207 OS << "<vector_list " << VectorList.Count << " * " 3208 << VectorList.RegNum << ">"; 3209 break; 3210 case k_VectorListAllLanes: 3211 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3212 << VectorList.RegNum << ">"; 3213 break; 3214 case k_VectorListIndexed: 3215 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3216 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3217 break; 3218 case k_Token: 3219 OS << "'" << getToken() << "'"; 3220 break; 3221 case k_VectorIndex: 3222 OS << "<vectorindex " << getVectorIndex() << ">"; 3223 break; 3224 } 3225 } 3226 3227 /// @name Auto-generated Match Functions 3228 /// { 3229 3230 static unsigned MatchRegisterName(StringRef Name); 3231 3232 /// } 3233 3234 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3235 SMLoc &StartLoc, SMLoc &EndLoc) { 3236 const AsmToken &Tok = getParser().getTok(); 3237 StartLoc = Tok.getLoc(); 3238 EndLoc = Tok.getEndLoc(); 3239 RegNo = tryParseRegister(); 3240 3241 return (RegNo == (unsigned)-1); 3242 } 3243 3244 /// Try to parse a register name. The token must be an Identifier when called, 3245 /// and if it is a register name the token is eaten and the register number is 3246 /// returned. Otherwise return -1. 3247 int ARMAsmParser::tryParseRegister() { 3248 MCAsmParser &Parser = getParser(); 3249 const AsmToken &Tok = Parser.getTok(); 3250 if (Tok.isNot(AsmToken::Identifier)) return -1; 3251 3252 std::string lowerCase = Tok.getString().lower(); 3253 unsigned RegNum = MatchRegisterName(lowerCase); 3254 if (!RegNum) { 3255 RegNum = StringSwitch<unsigned>(lowerCase) 3256 .Case("r13", ARM::SP) 3257 .Case("r14", ARM::LR) 3258 .Case("r15", ARM::PC) 3259 .Case("ip", ARM::R12) 3260 // Additional register name aliases for 'gas' compatibility. 3261 .Case("a1", ARM::R0) 3262 .Case("a2", ARM::R1) 3263 .Case("a3", ARM::R2) 3264 .Case("a4", ARM::R3) 3265 .Case("v1", ARM::R4) 3266 .Case("v2", ARM::R5) 3267 .Case("v3", ARM::R6) 3268 .Case("v4", ARM::R7) 3269 .Case("v5", ARM::R8) 3270 .Case("v6", ARM::R9) 3271 .Case("v7", ARM::R10) 3272 .Case("v8", ARM::R11) 3273 .Case("sb", ARM::R9) 3274 .Case("sl", ARM::R10) 3275 .Case("fp", ARM::R11) 3276 .Default(0); 3277 } 3278 if (!RegNum) { 3279 // Check for aliases registered via .req. Canonicalize to lower case. 3280 // That's more consistent since register names are case insensitive, and 3281 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3282 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3283 // If no match, return failure. 3284 if (Entry == RegisterReqs.end()) 3285 return -1; 3286 Parser.Lex(); // Eat identifier token. 3287 return Entry->getValue(); 3288 } 3289 3290 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3291 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3292 return -1; 3293 3294 Parser.Lex(); // Eat identifier token. 3295 3296 return RegNum; 3297 } 3298 3299 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3300 // If a recoverable error occurs, return 1. If an irrecoverable error 3301 // occurs, return -1. An irrecoverable error is one where tokens have been 3302 // consumed in the process of trying to parse the shifter (i.e., when it is 3303 // indeed a shifter operand, but malformed). 3304 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3305 MCAsmParser &Parser = getParser(); 3306 SMLoc S = Parser.getTok().getLoc(); 3307 const AsmToken &Tok = Parser.getTok(); 3308 if (Tok.isNot(AsmToken::Identifier)) 3309 return -1; 3310 3311 std::string lowerCase = Tok.getString().lower(); 3312 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3313 .Case("asl", ARM_AM::lsl) 3314 .Case("lsl", ARM_AM::lsl) 3315 .Case("lsr", ARM_AM::lsr) 3316 .Case("asr", ARM_AM::asr) 3317 .Case("ror", ARM_AM::ror) 3318 .Case("rrx", ARM_AM::rrx) 3319 .Default(ARM_AM::no_shift); 3320 3321 if (ShiftTy == ARM_AM::no_shift) 3322 return 1; 3323 3324 Parser.Lex(); // Eat the operator. 3325 3326 // The source register for the shift has already been added to the 3327 // operand list, so we need to pop it off and combine it into the shifted 3328 // register operand instead. 3329 std::unique_ptr<ARMOperand> PrevOp( 3330 (ARMOperand *)Operands.pop_back_val().release()); 3331 if (!PrevOp->isReg()) 3332 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3333 int SrcReg = PrevOp->getReg(); 3334 3335 SMLoc EndLoc; 3336 int64_t Imm = 0; 3337 int ShiftReg = 0; 3338 if (ShiftTy == ARM_AM::rrx) { 3339 // RRX Doesn't have an explicit shift amount. The encoder expects 3340 // the shift register to be the same as the source register. Seems odd, 3341 // but OK. 3342 ShiftReg = SrcReg; 3343 } else { 3344 // Figure out if this is shifted by a constant or a register (for non-RRX). 3345 if (Parser.getTok().is(AsmToken::Hash) || 3346 Parser.getTok().is(AsmToken::Dollar)) { 3347 Parser.Lex(); // Eat hash. 3348 SMLoc ImmLoc = Parser.getTok().getLoc(); 3349 const MCExpr *ShiftExpr = nullptr; 3350 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3351 Error(ImmLoc, "invalid immediate shift value"); 3352 return -1; 3353 } 3354 // The expression must be evaluatable as an immediate. 3355 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3356 if (!CE) { 3357 Error(ImmLoc, "invalid immediate shift value"); 3358 return -1; 3359 } 3360 // Range check the immediate. 3361 // lsl, ror: 0 <= imm <= 31 3362 // lsr, asr: 0 <= imm <= 32 3363 Imm = CE->getValue(); 3364 if (Imm < 0 || 3365 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3366 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3367 Error(ImmLoc, "immediate shift value out of range"); 3368 return -1; 3369 } 3370 // shift by zero is a nop. Always send it through as lsl. 3371 // ('as' compatibility) 3372 if (Imm == 0) 3373 ShiftTy = ARM_AM::lsl; 3374 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3375 SMLoc L = Parser.getTok().getLoc(); 3376 EndLoc = Parser.getTok().getEndLoc(); 3377 ShiftReg = tryParseRegister(); 3378 if (ShiftReg == -1) { 3379 Error(L, "expected immediate or register in shift operand"); 3380 return -1; 3381 } 3382 } else { 3383 Error(Parser.getTok().getLoc(), 3384 "expected immediate or register in shift operand"); 3385 return -1; 3386 } 3387 } 3388 3389 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3390 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3391 ShiftReg, Imm, 3392 S, EndLoc)); 3393 else 3394 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3395 S, EndLoc)); 3396 3397 return 0; 3398 } 3399 3400 /// Try to parse a register name. The token must be an Identifier when called. 3401 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3402 /// if there is a "writeback". 'true' if it's not a register. 3403 /// 3404 /// TODO this is likely to change to allow different register types and or to 3405 /// parse for a specific register type. 3406 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3407 MCAsmParser &Parser = getParser(); 3408 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3409 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3410 int RegNo = tryParseRegister(); 3411 if (RegNo == -1) 3412 return true; 3413 3414 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3415 3416 const AsmToken &ExclaimTok = Parser.getTok(); 3417 if (ExclaimTok.is(AsmToken::Exclaim)) { 3418 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3419 ExclaimTok.getLoc())); 3420 Parser.Lex(); // Eat exclaim token 3421 return false; 3422 } 3423 3424 // Also check for an index operand. This is only legal for vector registers, 3425 // but that'll get caught OK in operand matching, so we don't need to 3426 // explicitly filter everything else out here. 3427 if (Parser.getTok().is(AsmToken::LBrac)) { 3428 SMLoc SIdx = Parser.getTok().getLoc(); 3429 Parser.Lex(); // Eat left bracket token. 3430 3431 const MCExpr *ImmVal; 3432 if (getParser().parseExpression(ImmVal)) 3433 return true; 3434 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3435 if (!MCE) 3436 return TokError("immediate value expected for vector index"); 3437 3438 if (Parser.getTok().isNot(AsmToken::RBrac)) 3439 return Error(Parser.getTok().getLoc(), "']' expected"); 3440 3441 SMLoc E = Parser.getTok().getEndLoc(); 3442 Parser.Lex(); // Eat right bracket token. 3443 3444 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3445 SIdx, E, 3446 getContext())); 3447 } 3448 3449 return false; 3450 } 3451 3452 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3453 /// instruction with a symbolic operand name. 3454 /// We accept "crN" syntax for GAS compatibility. 3455 /// <operand-name> ::= <prefix><number> 3456 /// If CoprocOp is 'c', then: 3457 /// <prefix> ::= c | cr 3458 /// If CoprocOp is 'p', then : 3459 /// <prefix> ::= p 3460 /// <number> ::= integer in range [0, 15] 3461 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3462 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3463 // but efficient. 3464 if (Name.size() < 2 || Name[0] != CoprocOp) 3465 return -1; 3466 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3467 3468 switch (Name.size()) { 3469 default: return -1; 3470 case 1: 3471 switch (Name[0]) { 3472 default: return -1; 3473 case '0': return 0; 3474 case '1': return 1; 3475 case '2': return 2; 3476 case '3': return 3; 3477 case '4': return 4; 3478 case '5': return 5; 3479 case '6': return 6; 3480 case '7': return 7; 3481 case '8': return 8; 3482 case '9': return 9; 3483 } 3484 case 2: 3485 if (Name[0] != '1') 3486 return -1; 3487 switch (Name[1]) { 3488 default: return -1; 3489 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3490 // However, old cores (v5/v6) did use them in that way. 3491 case '0': return 10; 3492 case '1': return 11; 3493 case '2': return 12; 3494 case '3': return 13; 3495 case '4': return 14; 3496 case '5': return 15; 3497 } 3498 } 3499 } 3500 3501 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3502 OperandMatchResultTy 3503 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3504 MCAsmParser &Parser = getParser(); 3505 SMLoc S = Parser.getTok().getLoc(); 3506 const AsmToken &Tok = Parser.getTok(); 3507 if (!Tok.is(AsmToken::Identifier)) 3508 return MatchOperand_NoMatch; 3509 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3510 if (CC == ~0U) 3511 return MatchOperand_NoMatch; 3512 Parser.Lex(); // Eat the token. 3513 3514 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3515 3516 return MatchOperand_Success; 3517 } 3518 3519 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3520 /// token must be an Identifier when called, and if it is a coprocessor 3521 /// number, the token is eaten and the operand is added to the operand list. 3522 OperandMatchResultTy 3523 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3524 MCAsmParser &Parser = getParser(); 3525 SMLoc S = Parser.getTok().getLoc(); 3526 const AsmToken &Tok = Parser.getTok(); 3527 if (Tok.isNot(AsmToken::Identifier)) 3528 return MatchOperand_NoMatch; 3529 3530 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3531 if (Num == -1) 3532 return MatchOperand_NoMatch; 3533 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3534 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3535 return MatchOperand_NoMatch; 3536 3537 Parser.Lex(); // Eat identifier token. 3538 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3539 return MatchOperand_Success; 3540 } 3541 3542 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3543 /// token must be an Identifier when called, and if it is a coprocessor 3544 /// number, the token is eaten and the operand is added to the operand list. 3545 OperandMatchResultTy 3546 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3547 MCAsmParser &Parser = getParser(); 3548 SMLoc S = Parser.getTok().getLoc(); 3549 const AsmToken &Tok = Parser.getTok(); 3550 if (Tok.isNot(AsmToken::Identifier)) 3551 return MatchOperand_NoMatch; 3552 3553 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3554 if (Reg == -1) 3555 return MatchOperand_NoMatch; 3556 3557 Parser.Lex(); // Eat identifier token. 3558 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3559 return MatchOperand_Success; 3560 } 3561 3562 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3563 /// coproc_option : '{' imm0_255 '}' 3564 OperandMatchResultTy 3565 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3566 MCAsmParser &Parser = getParser(); 3567 SMLoc S = Parser.getTok().getLoc(); 3568 3569 // If this isn't a '{', this isn't a coprocessor immediate operand. 3570 if (Parser.getTok().isNot(AsmToken::LCurly)) 3571 return MatchOperand_NoMatch; 3572 Parser.Lex(); // Eat the '{' 3573 3574 const MCExpr *Expr; 3575 SMLoc Loc = Parser.getTok().getLoc(); 3576 if (getParser().parseExpression(Expr)) { 3577 Error(Loc, "illegal expression"); 3578 return MatchOperand_ParseFail; 3579 } 3580 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3581 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3582 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3583 return MatchOperand_ParseFail; 3584 } 3585 int Val = CE->getValue(); 3586 3587 // Check for and consume the closing '}' 3588 if (Parser.getTok().isNot(AsmToken::RCurly)) 3589 return MatchOperand_ParseFail; 3590 SMLoc E = Parser.getTok().getEndLoc(); 3591 Parser.Lex(); // Eat the '}' 3592 3593 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3594 return MatchOperand_Success; 3595 } 3596 3597 // For register list parsing, we need to map from raw GPR register numbering 3598 // to the enumeration values. The enumeration values aren't sorted by 3599 // register number due to our using "sp", "lr" and "pc" as canonical names. 3600 static unsigned getNextRegister(unsigned Reg) { 3601 // If this is a GPR, we need to do it manually, otherwise we can rely 3602 // on the sort ordering of the enumeration since the other reg-classes 3603 // are sane. 3604 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3605 return Reg + 1; 3606 switch(Reg) { 3607 default: llvm_unreachable("Invalid GPR number!"); 3608 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3609 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3610 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3611 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3612 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3613 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3614 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3615 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3616 } 3617 } 3618 3619 /// Parse a register list. 3620 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3621 MCAsmParser &Parser = getParser(); 3622 if (Parser.getTok().isNot(AsmToken::LCurly)) 3623 return TokError("Token is not a Left Curly Brace"); 3624 SMLoc S = Parser.getTok().getLoc(); 3625 Parser.Lex(); // Eat '{' token. 3626 SMLoc RegLoc = Parser.getTok().getLoc(); 3627 3628 // Check the first register in the list to see what register class 3629 // this is a list of. 3630 int Reg = tryParseRegister(); 3631 if (Reg == -1) 3632 return Error(RegLoc, "register expected"); 3633 3634 // The reglist instructions have at most 16 registers, so reserve 3635 // space for that many. 3636 int EReg = 0; 3637 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3638 3639 // Allow Q regs and just interpret them as the two D sub-registers. 3640 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3641 Reg = getDRegFromQReg(Reg); 3642 EReg = MRI->getEncodingValue(Reg); 3643 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3644 ++Reg; 3645 } 3646 const MCRegisterClass *RC; 3647 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3648 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3649 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3650 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3651 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3652 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3653 else 3654 return Error(RegLoc, "invalid register in register list"); 3655 3656 // Store the register. 3657 EReg = MRI->getEncodingValue(Reg); 3658 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3659 3660 // This starts immediately after the first register token in the list, 3661 // so we can see either a comma or a minus (range separator) as a legal 3662 // next token. 3663 while (Parser.getTok().is(AsmToken::Comma) || 3664 Parser.getTok().is(AsmToken::Minus)) { 3665 if (Parser.getTok().is(AsmToken::Minus)) { 3666 Parser.Lex(); // Eat the minus. 3667 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3668 int EndReg = tryParseRegister(); 3669 if (EndReg == -1) 3670 return Error(AfterMinusLoc, "register expected"); 3671 // Allow Q regs and just interpret them as the two D sub-registers. 3672 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3673 EndReg = getDRegFromQReg(EndReg) + 1; 3674 // If the register is the same as the start reg, there's nothing 3675 // more to do. 3676 if (Reg == EndReg) 3677 continue; 3678 // The register must be in the same register class as the first. 3679 if (!RC->contains(EndReg)) 3680 return Error(AfterMinusLoc, "invalid register in register list"); 3681 // Ranges must go from low to high. 3682 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3683 return Error(AfterMinusLoc, "bad range in register list"); 3684 3685 // Add all the registers in the range to the register list. 3686 while (Reg != EndReg) { 3687 Reg = getNextRegister(Reg); 3688 EReg = MRI->getEncodingValue(Reg); 3689 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3690 } 3691 continue; 3692 } 3693 Parser.Lex(); // Eat the comma. 3694 RegLoc = Parser.getTok().getLoc(); 3695 int OldReg = Reg; 3696 const AsmToken RegTok = Parser.getTok(); 3697 Reg = tryParseRegister(); 3698 if (Reg == -1) 3699 return Error(RegLoc, "register expected"); 3700 // Allow Q regs and just interpret them as the two D sub-registers. 3701 bool isQReg = false; 3702 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3703 Reg = getDRegFromQReg(Reg); 3704 isQReg = true; 3705 } 3706 // The register must be in the same register class as the first. 3707 if (!RC->contains(Reg)) 3708 return Error(RegLoc, "invalid register in register list"); 3709 // List must be monotonically increasing. 3710 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3711 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3712 Warning(RegLoc, "register list not in ascending order"); 3713 else 3714 return Error(RegLoc, "register list not in ascending order"); 3715 } 3716 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3717 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3718 ") in register list"); 3719 continue; 3720 } 3721 // VFP register lists must also be contiguous. 3722 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3723 Reg != OldReg + 1) 3724 return Error(RegLoc, "non-contiguous register range"); 3725 EReg = MRI->getEncodingValue(Reg); 3726 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3727 if (isQReg) { 3728 EReg = MRI->getEncodingValue(++Reg); 3729 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3730 } 3731 } 3732 3733 if (Parser.getTok().isNot(AsmToken::RCurly)) 3734 return Error(Parser.getTok().getLoc(), "'}' expected"); 3735 SMLoc E = Parser.getTok().getEndLoc(); 3736 Parser.Lex(); // Eat '}' token. 3737 3738 // Push the register list operand. 3739 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3740 3741 // The ARM system instruction variants for LDM/STM have a '^' token here. 3742 if (Parser.getTok().is(AsmToken::Caret)) { 3743 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3744 Parser.Lex(); // Eat '^' token. 3745 } 3746 3747 return false; 3748 } 3749 3750 // Helper function to parse the lane index for vector lists. 3751 OperandMatchResultTy ARMAsmParser:: 3752 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3753 MCAsmParser &Parser = getParser(); 3754 Index = 0; // Always return a defined index value. 3755 if (Parser.getTok().is(AsmToken::LBrac)) { 3756 Parser.Lex(); // Eat the '['. 3757 if (Parser.getTok().is(AsmToken::RBrac)) { 3758 // "Dn[]" is the 'all lanes' syntax. 3759 LaneKind = AllLanes; 3760 EndLoc = Parser.getTok().getEndLoc(); 3761 Parser.Lex(); // Eat the ']'. 3762 return MatchOperand_Success; 3763 } 3764 3765 // There's an optional '#' token here. Normally there wouldn't be, but 3766 // inline assemble puts one in, and it's friendly to accept that. 3767 if (Parser.getTok().is(AsmToken::Hash)) 3768 Parser.Lex(); // Eat '#' or '$'. 3769 3770 const MCExpr *LaneIndex; 3771 SMLoc Loc = Parser.getTok().getLoc(); 3772 if (getParser().parseExpression(LaneIndex)) { 3773 Error(Loc, "illegal expression"); 3774 return MatchOperand_ParseFail; 3775 } 3776 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3777 if (!CE) { 3778 Error(Loc, "lane index must be empty or an integer"); 3779 return MatchOperand_ParseFail; 3780 } 3781 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3782 Error(Parser.getTok().getLoc(), "']' expected"); 3783 return MatchOperand_ParseFail; 3784 } 3785 EndLoc = Parser.getTok().getEndLoc(); 3786 Parser.Lex(); // Eat the ']'. 3787 int64_t Val = CE->getValue(); 3788 3789 // FIXME: Make this range check context sensitive for .8, .16, .32. 3790 if (Val < 0 || Val > 7) { 3791 Error(Parser.getTok().getLoc(), "lane index out of range"); 3792 return MatchOperand_ParseFail; 3793 } 3794 Index = Val; 3795 LaneKind = IndexedLane; 3796 return MatchOperand_Success; 3797 } 3798 LaneKind = NoLanes; 3799 return MatchOperand_Success; 3800 } 3801 3802 // parse a vector register list 3803 OperandMatchResultTy 3804 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3805 MCAsmParser &Parser = getParser(); 3806 VectorLaneTy LaneKind; 3807 unsigned LaneIndex; 3808 SMLoc S = Parser.getTok().getLoc(); 3809 // As an extension (to match gas), support a plain D register or Q register 3810 // (without encosing curly braces) as a single or double entry list, 3811 // respectively. 3812 if (Parser.getTok().is(AsmToken::Identifier)) { 3813 SMLoc E = Parser.getTok().getEndLoc(); 3814 int Reg = tryParseRegister(); 3815 if (Reg == -1) 3816 return MatchOperand_NoMatch; 3817 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3818 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3819 if (Res != MatchOperand_Success) 3820 return Res; 3821 switch (LaneKind) { 3822 case NoLanes: 3823 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3824 break; 3825 case AllLanes: 3826 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3827 S, E)); 3828 break; 3829 case IndexedLane: 3830 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3831 LaneIndex, 3832 false, S, E)); 3833 break; 3834 } 3835 return MatchOperand_Success; 3836 } 3837 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3838 Reg = getDRegFromQReg(Reg); 3839 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3840 if (Res != MatchOperand_Success) 3841 return Res; 3842 switch (LaneKind) { 3843 case NoLanes: 3844 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3845 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3846 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3847 break; 3848 case AllLanes: 3849 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3850 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3851 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3852 S, E)); 3853 break; 3854 case IndexedLane: 3855 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3856 LaneIndex, 3857 false, S, E)); 3858 break; 3859 } 3860 return MatchOperand_Success; 3861 } 3862 Error(S, "vector register expected"); 3863 return MatchOperand_ParseFail; 3864 } 3865 3866 if (Parser.getTok().isNot(AsmToken::LCurly)) 3867 return MatchOperand_NoMatch; 3868 3869 Parser.Lex(); // Eat '{' token. 3870 SMLoc RegLoc = Parser.getTok().getLoc(); 3871 3872 int Reg = tryParseRegister(); 3873 if (Reg == -1) { 3874 Error(RegLoc, "register expected"); 3875 return MatchOperand_ParseFail; 3876 } 3877 unsigned Count = 1; 3878 int Spacing = 0; 3879 unsigned FirstReg = Reg; 3880 // The list is of D registers, but we also allow Q regs and just interpret 3881 // them as the two D sub-registers. 3882 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3883 FirstReg = Reg = getDRegFromQReg(Reg); 3884 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3885 // it's ambiguous with four-register single spaced. 3886 ++Reg; 3887 ++Count; 3888 } 3889 3890 SMLoc E; 3891 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3892 return MatchOperand_ParseFail; 3893 3894 while (Parser.getTok().is(AsmToken::Comma) || 3895 Parser.getTok().is(AsmToken::Minus)) { 3896 if (Parser.getTok().is(AsmToken::Minus)) { 3897 if (!Spacing) 3898 Spacing = 1; // Register range implies a single spaced list. 3899 else if (Spacing == 2) { 3900 Error(Parser.getTok().getLoc(), 3901 "sequential registers in double spaced list"); 3902 return MatchOperand_ParseFail; 3903 } 3904 Parser.Lex(); // Eat the minus. 3905 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3906 int EndReg = tryParseRegister(); 3907 if (EndReg == -1) { 3908 Error(AfterMinusLoc, "register expected"); 3909 return MatchOperand_ParseFail; 3910 } 3911 // Allow Q regs and just interpret them as the two D sub-registers. 3912 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3913 EndReg = getDRegFromQReg(EndReg) + 1; 3914 // If the register is the same as the start reg, there's nothing 3915 // more to do. 3916 if (Reg == EndReg) 3917 continue; 3918 // The register must be in the same register class as the first. 3919 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3920 Error(AfterMinusLoc, "invalid register in register list"); 3921 return MatchOperand_ParseFail; 3922 } 3923 // Ranges must go from low to high. 3924 if (Reg > EndReg) { 3925 Error(AfterMinusLoc, "bad range in register list"); 3926 return MatchOperand_ParseFail; 3927 } 3928 // Parse the lane specifier if present. 3929 VectorLaneTy NextLaneKind; 3930 unsigned NextLaneIndex; 3931 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3932 MatchOperand_Success) 3933 return MatchOperand_ParseFail; 3934 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3935 Error(AfterMinusLoc, "mismatched lane index in register list"); 3936 return MatchOperand_ParseFail; 3937 } 3938 3939 // Add all the registers in the range to the register list. 3940 Count += EndReg - Reg; 3941 Reg = EndReg; 3942 continue; 3943 } 3944 Parser.Lex(); // Eat the comma. 3945 RegLoc = Parser.getTok().getLoc(); 3946 int OldReg = Reg; 3947 Reg = tryParseRegister(); 3948 if (Reg == -1) { 3949 Error(RegLoc, "register expected"); 3950 return MatchOperand_ParseFail; 3951 } 3952 // vector register lists must be contiguous. 3953 // It's OK to use the enumeration values directly here rather, as the 3954 // VFP register classes have the enum sorted properly. 3955 // 3956 // The list is of D registers, but we also allow Q regs and just interpret 3957 // them as the two D sub-registers. 3958 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3959 if (!Spacing) 3960 Spacing = 1; // Register range implies a single spaced list. 3961 else if (Spacing == 2) { 3962 Error(RegLoc, 3963 "invalid register in double-spaced list (must be 'D' register')"); 3964 return MatchOperand_ParseFail; 3965 } 3966 Reg = getDRegFromQReg(Reg); 3967 if (Reg != OldReg + 1) { 3968 Error(RegLoc, "non-contiguous register range"); 3969 return MatchOperand_ParseFail; 3970 } 3971 ++Reg; 3972 Count += 2; 3973 // Parse the lane specifier if present. 3974 VectorLaneTy NextLaneKind; 3975 unsigned NextLaneIndex; 3976 SMLoc LaneLoc = Parser.getTok().getLoc(); 3977 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3978 MatchOperand_Success) 3979 return MatchOperand_ParseFail; 3980 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3981 Error(LaneLoc, "mismatched lane index in register list"); 3982 return MatchOperand_ParseFail; 3983 } 3984 continue; 3985 } 3986 // Normal D register. 3987 // Figure out the register spacing (single or double) of the list if 3988 // we don't know it already. 3989 if (!Spacing) 3990 Spacing = 1 + (Reg == OldReg + 2); 3991 3992 // Just check that it's contiguous and keep going. 3993 if (Reg != OldReg + Spacing) { 3994 Error(RegLoc, "non-contiguous register range"); 3995 return MatchOperand_ParseFail; 3996 } 3997 ++Count; 3998 // Parse the lane specifier if present. 3999 VectorLaneTy NextLaneKind; 4000 unsigned NextLaneIndex; 4001 SMLoc EndLoc = Parser.getTok().getLoc(); 4002 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4003 return MatchOperand_ParseFail; 4004 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4005 Error(EndLoc, "mismatched lane index in register list"); 4006 return MatchOperand_ParseFail; 4007 } 4008 } 4009 4010 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4011 Error(Parser.getTok().getLoc(), "'}' expected"); 4012 return MatchOperand_ParseFail; 4013 } 4014 E = Parser.getTok().getEndLoc(); 4015 Parser.Lex(); // Eat '}' token. 4016 4017 switch (LaneKind) { 4018 case NoLanes: 4019 // Two-register operands have been converted to the 4020 // composite register classes. 4021 if (Count == 2) { 4022 const MCRegisterClass *RC = (Spacing == 1) ? 4023 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4024 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4025 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4026 } 4027 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4028 (Spacing == 2), S, E)); 4029 break; 4030 case AllLanes: 4031 // Two-register operands have been converted to the 4032 // composite register classes. 4033 if (Count == 2) { 4034 const MCRegisterClass *RC = (Spacing == 1) ? 4035 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4036 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4037 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4038 } 4039 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4040 (Spacing == 2), 4041 S, E)); 4042 break; 4043 case IndexedLane: 4044 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4045 LaneIndex, 4046 (Spacing == 2), 4047 S, E)); 4048 break; 4049 } 4050 return MatchOperand_Success; 4051 } 4052 4053 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4054 OperandMatchResultTy 4055 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4056 MCAsmParser &Parser = getParser(); 4057 SMLoc S = Parser.getTok().getLoc(); 4058 const AsmToken &Tok = Parser.getTok(); 4059 unsigned Opt; 4060 4061 if (Tok.is(AsmToken::Identifier)) { 4062 StringRef OptStr = Tok.getString(); 4063 4064 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4065 .Case("sy", ARM_MB::SY) 4066 .Case("st", ARM_MB::ST) 4067 .Case("ld", ARM_MB::LD) 4068 .Case("sh", ARM_MB::ISH) 4069 .Case("ish", ARM_MB::ISH) 4070 .Case("shst", ARM_MB::ISHST) 4071 .Case("ishst", ARM_MB::ISHST) 4072 .Case("ishld", ARM_MB::ISHLD) 4073 .Case("nsh", ARM_MB::NSH) 4074 .Case("un", ARM_MB::NSH) 4075 .Case("nshst", ARM_MB::NSHST) 4076 .Case("nshld", ARM_MB::NSHLD) 4077 .Case("unst", ARM_MB::NSHST) 4078 .Case("osh", ARM_MB::OSH) 4079 .Case("oshst", ARM_MB::OSHST) 4080 .Case("oshld", ARM_MB::OSHLD) 4081 .Default(~0U); 4082 4083 // ishld, oshld, nshld and ld are only available from ARMv8. 4084 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4085 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4086 Opt = ~0U; 4087 4088 if (Opt == ~0U) 4089 return MatchOperand_NoMatch; 4090 4091 Parser.Lex(); // Eat identifier token. 4092 } else if (Tok.is(AsmToken::Hash) || 4093 Tok.is(AsmToken::Dollar) || 4094 Tok.is(AsmToken::Integer)) { 4095 if (Parser.getTok().isNot(AsmToken::Integer)) 4096 Parser.Lex(); // Eat '#' or '$'. 4097 SMLoc Loc = Parser.getTok().getLoc(); 4098 4099 const MCExpr *MemBarrierID; 4100 if (getParser().parseExpression(MemBarrierID)) { 4101 Error(Loc, "illegal expression"); 4102 return MatchOperand_ParseFail; 4103 } 4104 4105 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4106 if (!CE) { 4107 Error(Loc, "constant expression expected"); 4108 return MatchOperand_ParseFail; 4109 } 4110 4111 int Val = CE->getValue(); 4112 if (Val & ~0xf) { 4113 Error(Loc, "immediate value out of range"); 4114 return MatchOperand_ParseFail; 4115 } 4116 4117 Opt = ARM_MB::RESERVED_0 + Val; 4118 } else 4119 return MatchOperand_ParseFail; 4120 4121 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4122 return MatchOperand_Success; 4123 } 4124 4125 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4126 OperandMatchResultTy 4127 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4128 MCAsmParser &Parser = getParser(); 4129 SMLoc S = Parser.getTok().getLoc(); 4130 const AsmToken &Tok = Parser.getTok(); 4131 unsigned Opt; 4132 4133 if (Tok.is(AsmToken::Identifier)) { 4134 StringRef OptStr = Tok.getString(); 4135 4136 if (OptStr.equals_lower("sy")) 4137 Opt = ARM_ISB::SY; 4138 else 4139 return MatchOperand_NoMatch; 4140 4141 Parser.Lex(); // Eat identifier token. 4142 } else if (Tok.is(AsmToken::Hash) || 4143 Tok.is(AsmToken::Dollar) || 4144 Tok.is(AsmToken::Integer)) { 4145 if (Parser.getTok().isNot(AsmToken::Integer)) 4146 Parser.Lex(); // Eat '#' or '$'. 4147 SMLoc Loc = Parser.getTok().getLoc(); 4148 4149 const MCExpr *ISBarrierID; 4150 if (getParser().parseExpression(ISBarrierID)) { 4151 Error(Loc, "illegal expression"); 4152 return MatchOperand_ParseFail; 4153 } 4154 4155 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4156 if (!CE) { 4157 Error(Loc, "constant expression expected"); 4158 return MatchOperand_ParseFail; 4159 } 4160 4161 int Val = CE->getValue(); 4162 if (Val & ~0xf) { 4163 Error(Loc, "immediate value out of range"); 4164 return MatchOperand_ParseFail; 4165 } 4166 4167 Opt = ARM_ISB::RESERVED_0 + Val; 4168 } else 4169 return MatchOperand_ParseFail; 4170 4171 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4172 (ARM_ISB::InstSyncBOpt)Opt, S)); 4173 return MatchOperand_Success; 4174 } 4175 4176 4177 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4178 OperandMatchResultTy 4179 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4180 MCAsmParser &Parser = getParser(); 4181 SMLoc S = Parser.getTok().getLoc(); 4182 const AsmToken &Tok = Parser.getTok(); 4183 if (!Tok.is(AsmToken::Identifier)) 4184 return MatchOperand_NoMatch; 4185 StringRef IFlagsStr = Tok.getString(); 4186 4187 // An iflags string of "none" is interpreted to mean that none of the AIF 4188 // bits are set. Not a terribly useful instruction, but a valid encoding. 4189 unsigned IFlags = 0; 4190 if (IFlagsStr != "none") { 4191 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4192 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4193 .Case("a", ARM_PROC::A) 4194 .Case("i", ARM_PROC::I) 4195 .Case("f", ARM_PROC::F) 4196 .Default(~0U); 4197 4198 // If some specific iflag is already set, it means that some letter is 4199 // present more than once, this is not acceptable. 4200 if (Flag == ~0U || (IFlags & Flag)) 4201 return MatchOperand_NoMatch; 4202 4203 IFlags |= Flag; 4204 } 4205 } 4206 4207 Parser.Lex(); // Eat identifier token. 4208 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4209 return MatchOperand_Success; 4210 } 4211 4212 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4213 OperandMatchResultTy 4214 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4215 MCAsmParser &Parser = getParser(); 4216 SMLoc S = Parser.getTok().getLoc(); 4217 const AsmToken &Tok = Parser.getTok(); 4218 if (!Tok.is(AsmToken::Identifier)) 4219 return MatchOperand_NoMatch; 4220 StringRef Mask = Tok.getString(); 4221 4222 if (isMClass()) { 4223 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4224 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4225 return MatchOperand_NoMatch; 4226 4227 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4228 4229 Parser.Lex(); // Eat identifier token. 4230 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4231 return MatchOperand_Success; 4232 } 4233 4234 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4235 size_t Start = 0, Next = Mask.find('_'); 4236 StringRef Flags = ""; 4237 std::string SpecReg = Mask.slice(Start, Next).lower(); 4238 if (Next != StringRef::npos) 4239 Flags = Mask.slice(Next+1, Mask.size()); 4240 4241 // FlagsVal contains the complete mask: 4242 // 3-0: Mask 4243 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4244 unsigned FlagsVal = 0; 4245 4246 if (SpecReg == "apsr") { 4247 FlagsVal = StringSwitch<unsigned>(Flags) 4248 .Case("nzcvq", 0x8) // same as CPSR_f 4249 .Case("g", 0x4) // same as CPSR_s 4250 .Case("nzcvqg", 0xc) // same as CPSR_fs 4251 .Default(~0U); 4252 4253 if (FlagsVal == ~0U) { 4254 if (!Flags.empty()) 4255 return MatchOperand_NoMatch; 4256 else 4257 FlagsVal = 8; // No flag 4258 } 4259 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4260 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4261 if (Flags == "all" || Flags == "") 4262 Flags = "fc"; 4263 for (int i = 0, e = Flags.size(); i != e; ++i) { 4264 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4265 .Case("c", 1) 4266 .Case("x", 2) 4267 .Case("s", 4) 4268 .Case("f", 8) 4269 .Default(~0U); 4270 4271 // If some specific flag is already set, it means that some letter is 4272 // present more than once, this is not acceptable. 4273 if (Flag == ~0U || (FlagsVal & Flag)) 4274 return MatchOperand_NoMatch; 4275 FlagsVal |= Flag; 4276 } 4277 } else // No match for special register. 4278 return MatchOperand_NoMatch; 4279 4280 // Special register without flags is NOT equivalent to "fc" flags. 4281 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4282 // two lines would enable gas compatibility at the expense of breaking 4283 // round-tripping. 4284 // 4285 // if (!FlagsVal) 4286 // FlagsVal = 0x9; 4287 4288 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4289 if (SpecReg == "spsr") 4290 FlagsVal |= 16; 4291 4292 Parser.Lex(); // Eat identifier token. 4293 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4294 return MatchOperand_Success; 4295 } 4296 4297 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4298 /// use in the MRS/MSR instructions added to support virtualization. 4299 OperandMatchResultTy 4300 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4301 MCAsmParser &Parser = getParser(); 4302 SMLoc S = Parser.getTok().getLoc(); 4303 const AsmToken &Tok = Parser.getTok(); 4304 if (!Tok.is(AsmToken::Identifier)) 4305 return MatchOperand_NoMatch; 4306 StringRef RegName = Tok.getString(); 4307 4308 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4309 if (!TheReg) 4310 return MatchOperand_NoMatch; 4311 unsigned Encoding = TheReg->Encoding; 4312 4313 Parser.Lex(); // Eat identifier token. 4314 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4315 return MatchOperand_Success; 4316 } 4317 4318 OperandMatchResultTy 4319 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4320 int High) { 4321 MCAsmParser &Parser = getParser(); 4322 const AsmToken &Tok = Parser.getTok(); 4323 if (Tok.isNot(AsmToken::Identifier)) { 4324 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4325 return MatchOperand_ParseFail; 4326 } 4327 StringRef ShiftName = Tok.getString(); 4328 std::string LowerOp = Op.lower(); 4329 std::string UpperOp = Op.upper(); 4330 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4331 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4332 return MatchOperand_ParseFail; 4333 } 4334 Parser.Lex(); // Eat shift type token. 4335 4336 // There must be a '#' and a shift amount. 4337 if (Parser.getTok().isNot(AsmToken::Hash) && 4338 Parser.getTok().isNot(AsmToken::Dollar)) { 4339 Error(Parser.getTok().getLoc(), "'#' expected"); 4340 return MatchOperand_ParseFail; 4341 } 4342 Parser.Lex(); // Eat hash token. 4343 4344 const MCExpr *ShiftAmount; 4345 SMLoc Loc = Parser.getTok().getLoc(); 4346 SMLoc EndLoc; 4347 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4348 Error(Loc, "illegal expression"); 4349 return MatchOperand_ParseFail; 4350 } 4351 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4352 if (!CE) { 4353 Error(Loc, "constant expression expected"); 4354 return MatchOperand_ParseFail; 4355 } 4356 int Val = CE->getValue(); 4357 if (Val < Low || Val > High) { 4358 Error(Loc, "immediate value out of range"); 4359 return MatchOperand_ParseFail; 4360 } 4361 4362 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4363 4364 return MatchOperand_Success; 4365 } 4366 4367 OperandMatchResultTy 4368 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4369 MCAsmParser &Parser = getParser(); 4370 const AsmToken &Tok = Parser.getTok(); 4371 SMLoc S = Tok.getLoc(); 4372 if (Tok.isNot(AsmToken::Identifier)) { 4373 Error(S, "'be' or 'le' operand expected"); 4374 return MatchOperand_ParseFail; 4375 } 4376 int Val = StringSwitch<int>(Tok.getString().lower()) 4377 .Case("be", 1) 4378 .Case("le", 0) 4379 .Default(-1); 4380 Parser.Lex(); // Eat the token. 4381 4382 if (Val == -1) { 4383 Error(S, "'be' or 'le' operand expected"); 4384 return MatchOperand_ParseFail; 4385 } 4386 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4387 getContext()), 4388 S, Tok.getEndLoc())); 4389 return MatchOperand_Success; 4390 } 4391 4392 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4393 /// instructions. Legal values are: 4394 /// lsl #n 'n' in [0,31] 4395 /// asr #n 'n' in [1,32] 4396 /// n == 32 encoded as n == 0. 4397 OperandMatchResultTy 4398 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4399 MCAsmParser &Parser = getParser(); 4400 const AsmToken &Tok = Parser.getTok(); 4401 SMLoc S = Tok.getLoc(); 4402 if (Tok.isNot(AsmToken::Identifier)) { 4403 Error(S, "shift operator 'asr' or 'lsl' expected"); 4404 return MatchOperand_ParseFail; 4405 } 4406 StringRef ShiftName = Tok.getString(); 4407 bool isASR; 4408 if (ShiftName == "lsl" || ShiftName == "LSL") 4409 isASR = false; 4410 else if (ShiftName == "asr" || ShiftName == "ASR") 4411 isASR = true; 4412 else { 4413 Error(S, "shift operator 'asr' or 'lsl' expected"); 4414 return MatchOperand_ParseFail; 4415 } 4416 Parser.Lex(); // Eat the operator. 4417 4418 // A '#' and a shift amount. 4419 if (Parser.getTok().isNot(AsmToken::Hash) && 4420 Parser.getTok().isNot(AsmToken::Dollar)) { 4421 Error(Parser.getTok().getLoc(), "'#' expected"); 4422 return MatchOperand_ParseFail; 4423 } 4424 Parser.Lex(); // Eat hash token. 4425 SMLoc ExLoc = Parser.getTok().getLoc(); 4426 4427 const MCExpr *ShiftAmount; 4428 SMLoc EndLoc; 4429 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4430 Error(ExLoc, "malformed shift expression"); 4431 return MatchOperand_ParseFail; 4432 } 4433 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4434 if (!CE) { 4435 Error(ExLoc, "shift amount must be an immediate"); 4436 return MatchOperand_ParseFail; 4437 } 4438 4439 int64_t Val = CE->getValue(); 4440 if (isASR) { 4441 // Shift amount must be in [1,32] 4442 if (Val < 1 || Val > 32) { 4443 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4444 return MatchOperand_ParseFail; 4445 } 4446 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4447 if (isThumb() && Val == 32) { 4448 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4449 return MatchOperand_ParseFail; 4450 } 4451 if (Val == 32) Val = 0; 4452 } else { 4453 // Shift amount must be in [1,32] 4454 if (Val < 0 || Val > 31) { 4455 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4456 return MatchOperand_ParseFail; 4457 } 4458 } 4459 4460 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4461 4462 return MatchOperand_Success; 4463 } 4464 4465 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4466 /// of instructions. Legal values are: 4467 /// ror #n 'n' in {0, 8, 16, 24} 4468 OperandMatchResultTy 4469 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4470 MCAsmParser &Parser = getParser(); 4471 const AsmToken &Tok = Parser.getTok(); 4472 SMLoc S = Tok.getLoc(); 4473 if (Tok.isNot(AsmToken::Identifier)) 4474 return MatchOperand_NoMatch; 4475 StringRef ShiftName = Tok.getString(); 4476 if (ShiftName != "ror" && ShiftName != "ROR") 4477 return MatchOperand_NoMatch; 4478 Parser.Lex(); // Eat the operator. 4479 4480 // A '#' and a rotate amount. 4481 if (Parser.getTok().isNot(AsmToken::Hash) && 4482 Parser.getTok().isNot(AsmToken::Dollar)) { 4483 Error(Parser.getTok().getLoc(), "'#' expected"); 4484 return MatchOperand_ParseFail; 4485 } 4486 Parser.Lex(); // Eat hash token. 4487 SMLoc ExLoc = Parser.getTok().getLoc(); 4488 4489 const MCExpr *ShiftAmount; 4490 SMLoc EndLoc; 4491 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4492 Error(ExLoc, "malformed rotate expression"); 4493 return MatchOperand_ParseFail; 4494 } 4495 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4496 if (!CE) { 4497 Error(ExLoc, "rotate amount must be an immediate"); 4498 return MatchOperand_ParseFail; 4499 } 4500 4501 int64_t Val = CE->getValue(); 4502 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4503 // normally, zero is represented in asm by omitting the rotate operand 4504 // entirely. 4505 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4506 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4507 return MatchOperand_ParseFail; 4508 } 4509 4510 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4511 4512 return MatchOperand_Success; 4513 } 4514 4515 OperandMatchResultTy 4516 ARMAsmParser::parseModImm(OperandVector &Operands) { 4517 MCAsmParser &Parser = getParser(); 4518 MCAsmLexer &Lexer = getLexer(); 4519 int64_t Imm1, Imm2; 4520 4521 SMLoc S = Parser.getTok().getLoc(); 4522 4523 // 1) A mod_imm operand can appear in the place of a register name: 4524 // add r0, #mod_imm 4525 // add r0, r0, #mod_imm 4526 // to correctly handle the latter, we bail out as soon as we see an 4527 // identifier. 4528 // 4529 // 2) Similarly, we do not want to parse into complex operands: 4530 // mov r0, #mod_imm 4531 // mov r0, :lower16:(_foo) 4532 if (Parser.getTok().is(AsmToken::Identifier) || 4533 Parser.getTok().is(AsmToken::Colon)) 4534 return MatchOperand_NoMatch; 4535 4536 // Hash (dollar) is optional as per the ARMARM 4537 if (Parser.getTok().is(AsmToken::Hash) || 4538 Parser.getTok().is(AsmToken::Dollar)) { 4539 // Avoid parsing into complex operands (#:) 4540 if (Lexer.peekTok().is(AsmToken::Colon)) 4541 return MatchOperand_NoMatch; 4542 4543 // Eat the hash (dollar) 4544 Parser.Lex(); 4545 } 4546 4547 SMLoc Sx1, Ex1; 4548 Sx1 = Parser.getTok().getLoc(); 4549 const MCExpr *Imm1Exp; 4550 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4551 Error(Sx1, "malformed expression"); 4552 return MatchOperand_ParseFail; 4553 } 4554 4555 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4556 4557 if (CE) { 4558 // Immediate must fit within 32-bits 4559 Imm1 = CE->getValue(); 4560 int Enc = ARM_AM::getSOImmVal(Imm1); 4561 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4562 // We have a match! 4563 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4564 (Enc & 0xF00) >> 7, 4565 Sx1, Ex1)); 4566 return MatchOperand_Success; 4567 } 4568 4569 // We have parsed an immediate which is not for us, fallback to a plain 4570 // immediate. This can happen for instruction aliases. For an example, 4571 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4572 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4573 // instruction with a mod_imm operand. The alias is defined such that the 4574 // parser method is shared, that's why we have to do this here. 4575 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4576 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4577 return MatchOperand_Success; 4578 } 4579 } else { 4580 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4581 // MCFixup). Fallback to a plain immediate. 4582 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4583 return MatchOperand_Success; 4584 } 4585 4586 // From this point onward, we expect the input to be a (#bits, #rot) pair 4587 if (Parser.getTok().isNot(AsmToken::Comma)) { 4588 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4589 return MatchOperand_ParseFail; 4590 } 4591 4592 if (Imm1 & ~0xFF) { 4593 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4594 return MatchOperand_ParseFail; 4595 } 4596 4597 // Eat the comma 4598 Parser.Lex(); 4599 4600 // Repeat for #rot 4601 SMLoc Sx2, Ex2; 4602 Sx2 = Parser.getTok().getLoc(); 4603 4604 // Eat the optional hash (dollar) 4605 if (Parser.getTok().is(AsmToken::Hash) || 4606 Parser.getTok().is(AsmToken::Dollar)) 4607 Parser.Lex(); 4608 4609 const MCExpr *Imm2Exp; 4610 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4611 Error(Sx2, "malformed expression"); 4612 return MatchOperand_ParseFail; 4613 } 4614 4615 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4616 4617 if (CE) { 4618 Imm2 = CE->getValue(); 4619 if (!(Imm2 & ~0x1E)) { 4620 // We have a match! 4621 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4622 return MatchOperand_Success; 4623 } 4624 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4625 return MatchOperand_ParseFail; 4626 } else { 4627 Error(Sx2, "constant expression expected"); 4628 return MatchOperand_ParseFail; 4629 } 4630 } 4631 4632 OperandMatchResultTy 4633 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4634 MCAsmParser &Parser = getParser(); 4635 SMLoc S = Parser.getTok().getLoc(); 4636 // The bitfield descriptor is really two operands, the LSB and the width. 4637 if (Parser.getTok().isNot(AsmToken::Hash) && 4638 Parser.getTok().isNot(AsmToken::Dollar)) { 4639 Error(Parser.getTok().getLoc(), "'#' expected"); 4640 return MatchOperand_ParseFail; 4641 } 4642 Parser.Lex(); // Eat hash token. 4643 4644 const MCExpr *LSBExpr; 4645 SMLoc E = Parser.getTok().getLoc(); 4646 if (getParser().parseExpression(LSBExpr)) { 4647 Error(E, "malformed immediate expression"); 4648 return MatchOperand_ParseFail; 4649 } 4650 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4651 if (!CE) { 4652 Error(E, "'lsb' operand must be an immediate"); 4653 return MatchOperand_ParseFail; 4654 } 4655 4656 int64_t LSB = CE->getValue(); 4657 // The LSB must be in the range [0,31] 4658 if (LSB < 0 || LSB > 31) { 4659 Error(E, "'lsb' operand must be in the range [0,31]"); 4660 return MatchOperand_ParseFail; 4661 } 4662 E = Parser.getTok().getLoc(); 4663 4664 // Expect another immediate operand. 4665 if (Parser.getTok().isNot(AsmToken::Comma)) { 4666 Error(Parser.getTok().getLoc(), "too few operands"); 4667 return MatchOperand_ParseFail; 4668 } 4669 Parser.Lex(); // Eat hash token. 4670 if (Parser.getTok().isNot(AsmToken::Hash) && 4671 Parser.getTok().isNot(AsmToken::Dollar)) { 4672 Error(Parser.getTok().getLoc(), "'#' expected"); 4673 return MatchOperand_ParseFail; 4674 } 4675 Parser.Lex(); // Eat hash token. 4676 4677 const MCExpr *WidthExpr; 4678 SMLoc EndLoc; 4679 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4680 Error(E, "malformed immediate expression"); 4681 return MatchOperand_ParseFail; 4682 } 4683 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4684 if (!CE) { 4685 Error(E, "'width' operand must be an immediate"); 4686 return MatchOperand_ParseFail; 4687 } 4688 4689 int64_t Width = CE->getValue(); 4690 // The LSB must be in the range [1,32-lsb] 4691 if (Width < 1 || Width > 32 - LSB) { 4692 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4693 return MatchOperand_ParseFail; 4694 } 4695 4696 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4697 4698 return MatchOperand_Success; 4699 } 4700 4701 OperandMatchResultTy 4702 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4703 // Check for a post-index addressing register operand. Specifically: 4704 // postidx_reg := '+' register {, shift} 4705 // | '-' register {, shift} 4706 // | register {, shift} 4707 4708 // This method must return MatchOperand_NoMatch without consuming any tokens 4709 // in the case where there is no match, as other alternatives take other 4710 // parse methods. 4711 MCAsmParser &Parser = getParser(); 4712 AsmToken Tok = Parser.getTok(); 4713 SMLoc S = Tok.getLoc(); 4714 bool haveEaten = false; 4715 bool isAdd = true; 4716 if (Tok.is(AsmToken::Plus)) { 4717 Parser.Lex(); // Eat the '+' token. 4718 haveEaten = true; 4719 } else if (Tok.is(AsmToken::Minus)) { 4720 Parser.Lex(); // Eat the '-' token. 4721 isAdd = false; 4722 haveEaten = true; 4723 } 4724 4725 SMLoc E = Parser.getTok().getEndLoc(); 4726 int Reg = tryParseRegister(); 4727 if (Reg == -1) { 4728 if (!haveEaten) 4729 return MatchOperand_NoMatch; 4730 Error(Parser.getTok().getLoc(), "register expected"); 4731 return MatchOperand_ParseFail; 4732 } 4733 4734 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4735 unsigned ShiftImm = 0; 4736 if (Parser.getTok().is(AsmToken::Comma)) { 4737 Parser.Lex(); // Eat the ','. 4738 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4739 return MatchOperand_ParseFail; 4740 4741 // FIXME: Only approximates end...may include intervening whitespace. 4742 E = Parser.getTok().getLoc(); 4743 } 4744 4745 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4746 ShiftImm, S, E)); 4747 4748 return MatchOperand_Success; 4749 } 4750 4751 OperandMatchResultTy 4752 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4753 // Check for a post-index addressing register operand. Specifically: 4754 // am3offset := '+' register 4755 // | '-' register 4756 // | register 4757 // | # imm 4758 // | # + imm 4759 // | # - imm 4760 4761 // This method must return MatchOperand_NoMatch without consuming any tokens 4762 // in the case where there is no match, as other alternatives take other 4763 // parse methods. 4764 MCAsmParser &Parser = getParser(); 4765 AsmToken Tok = Parser.getTok(); 4766 SMLoc S = Tok.getLoc(); 4767 4768 // Do immediates first, as we always parse those if we have a '#'. 4769 if (Parser.getTok().is(AsmToken::Hash) || 4770 Parser.getTok().is(AsmToken::Dollar)) { 4771 Parser.Lex(); // Eat '#' or '$'. 4772 // Explicitly look for a '-', as we need to encode negative zero 4773 // differently. 4774 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4775 const MCExpr *Offset; 4776 SMLoc E; 4777 if (getParser().parseExpression(Offset, E)) 4778 return MatchOperand_ParseFail; 4779 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4780 if (!CE) { 4781 Error(S, "constant expression expected"); 4782 return MatchOperand_ParseFail; 4783 } 4784 // Negative zero is encoded as the flag value 4785 // std::numeric_limits<int32_t>::min(). 4786 int32_t Val = CE->getValue(); 4787 if (isNegative && Val == 0) 4788 Val = std::numeric_limits<int32_t>::min(); 4789 4790 Operands.push_back( 4791 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4792 4793 return MatchOperand_Success; 4794 } 4795 4796 bool haveEaten = false; 4797 bool isAdd = true; 4798 if (Tok.is(AsmToken::Plus)) { 4799 Parser.Lex(); // Eat the '+' token. 4800 haveEaten = true; 4801 } else if (Tok.is(AsmToken::Minus)) { 4802 Parser.Lex(); // Eat the '-' token. 4803 isAdd = false; 4804 haveEaten = true; 4805 } 4806 4807 Tok = Parser.getTok(); 4808 int Reg = tryParseRegister(); 4809 if (Reg == -1) { 4810 if (!haveEaten) 4811 return MatchOperand_NoMatch; 4812 Error(Tok.getLoc(), "register expected"); 4813 return MatchOperand_ParseFail; 4814 } 4815 4816 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4817 0, S, Tok.getEndLoc())); 4818 4819 return MatchOperand_Success; 4820 } 4821 4822 /// Convert parsed operands to MCInst. Needed here because this instruction 4823 /// only has two register operands, but multiplication is commutative so 4824 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4825 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4826 const OperandVector &Operands) { 4827 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4828 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4829 // If we have a three-operand form, make sure to set Rn to be the operand 4830 // that isn't the same as Rd. 4831 unsigned RegOp = 4; 4832 if (Operands.size() == 6 && 4833 ((ARMOperand &)*Operands[4]).getReg() == 4834 ((ARMOperand &)*Operands[3]).getReg()) 4835 RegOp = 5; 4836 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4837 Inst.addOperand(Inst.getOperand(0)); 4838 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4839 } 4840 4841 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4842 const OperandVector &Operands) { 4843 int CondOp = -1, ImmOp = -1; 4844 switch(Inst.getOpcode()) { 4845 case ARM::tB: 4846 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4847 4848 case ARM::t2B: 4849 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4850 4851 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4852 } 4853 // first decide whether or not the branch should be conditional 4854 // by looking at it's location relative to an IT block 4855 if(inITBlock()) { 4856 // inside an IT block we cannot have any conditional branches. any 4857 // such instructions needs to be converted to unconditional form 4858 switch(Inst.getOpcode()) { 4859 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4860 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4861 } 4862 } else { 4863 // outside IT blocks we can only have unconditional branches with AL 4864 // condition code or conditional branches with non-AL condition code 4865 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4866 switch(Inst.getOpcode()) { 4867 case ARM::tB: 4868 case ARM::tBcc: 4869 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4870 break; 4871 case ARM::t2B: 4872 case ARM::t2Bcc: 4873 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4874 break; 4875 } 4876 } 4877 4878 // now decide on encoding size based on branch target range 4879 switch(Inst.getOpcode()) { 4880 // classify tB as either t2B or t1B based on range of immediate operand 4881 case ARM::tB: { 4882 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4883 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4884 Inst.setOpcode(ARM::t2B); 4885 break; 4886 } 4887 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4888 case ARM::tBcc: { 4889 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4890 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4891 Inst.setOpcode(ARM::t2Bcc); 4892 break; 4893 } 4894 } 4895 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4896 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4897 } 4898 4899 /// Parse an ARM memory expression, return false if successful else return true 4900 /// or an error. The first token must be a '[' when called. 4901 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4902 MCAsmParser &Parser = getParser(); 4903 SMLoc S, E; 4904 if (Parser.getTok().isNot(AsmToken::LBrac)) 4905 return TokError("Token is not a Left Bracket"); 4906 S = Parser.getTok().getLoc(); 4907 Parser.Lex(); // Eat left bracket token. 4908 4909 const AsmToken &BaseRegTok = Parser.getTok(); 4910 int BaseRegNum = tryParseRegister(); 4911 if (BaseRegNum == -1) 4912 return Error(BaseRegTok.getLoc(), "register expected"); 4913 4914 // The next token must either be a comma, a colon or a closing bracket. 4915 const AsmToken &Tok = Parser.getTok(); 4916 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4917 !Tok.is(AsmToken::RBrac)) 4918 return Error(Tok.getLoc(), "malformed memory operand"); 4919 4920 if (Tok.is(AsmToken::RBrac)) { 4921 E = Tok.getEndLoc(); 4922 Parser.Lex(); // Eat right bracket token. 4923 4924 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4925 ARM_AM::no_shift, 0, 0, false, 4926 S, E)); 4927 4928 // If there's a pre-indexing writeback marker, '!', just add it as a token 4929 // operand. It's rather odd, but syntactically valid. 4930 if (Parser.getTok().is(AsmToken::Exclaim)) { 4931 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4932 Parser.Lex(); // Eat the '!'. 4933 } 4934 4935 return false; 4936 } 4937 4938 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4939 "Lost colon or comma in memory operand?!"); 4940 if (Tok.is(AsmToken::Comma)) { 4941 Parser.Lex(); // Eat the comma. 4942 } 4943 4944 // If we have a ':', it's an alignment specifier. 4945 if (Parser.getTok().is(AsmToken::Colon)) { 4946 Parser.Lex(); // Eat the ':'. 4947 E = Parser.getTok().getLoc(); 4948 SMLoc AlignmentLoc = Tok.getLoc(); 4949 4950 const MCExpr *Expr; 4951 if (getParser().parseExpression(Expr)) 4952 return true; 4953 4954 // The expression has to be a constant. Memory references with relocations 4955 // don't come through here, as they use the <label> forms of the relevant 4956 // instructions. 4957 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4958 if (!CE) 4959 return Error (E, "constant expression expected"); 4960 4961 unsigned Align = 0; 4962 switch (CE->getValue()) { 4963 default: 4964 return Error(E, 4965 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4966 case 16: Align = 2; break; 4967 case 32: Align = 4; break; 4968 case 64: Align = 8; break; 4969 case 128: Align = 16; break; 4970 case 256: Align = 32; break; 4971 } 4972 4973 // Now we should have the closing ']' 4974 if (Parser.getTok().isNot(AsmToken::RBrac)) 4975 return Error(Parser.getTok().getLoc(), "']' expected"); 4976 E = Parser.getTok().getEndLoc(); 4977 Parser.Lex(); // Eat right bracket token. 4978 4979 // Don't worry about range checking the value here. That's handled by 4980 // the is*() predicates. 4981 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4982 ARM_AM::no_shift, 0, Align, 4983 false, S, E, AlignmentLoc)); 4984 4985 // If there's a pre-indexing writeback marker, '!', just add it as a token 4986 // operand. 4987 if (Parser.getTok().is(AsmToken::Exclaim)) { 4988 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4989 Parser.Lex(); // Eat the '!'. 4990 } 4991 4992 return false; 4993 } 4994 4995 // If we have a '#', it's an immediate offset, else assume it's a register 4996 // offset. Be friendly and also accept a plain integer (without a leading 4997 // hash) for gas compatibility. 4998 if (Parser.getTok().is(AsmToken::Hash) || 4999 Parser.getTok().is(AsmToken::Dollar) || 5000 Parser.getTok().is(AsmToken::Integer)) { 5001 if (Parser.getTok().isNot(AsmToken::Integer)) 5002 Parser.Lex(); // Eat '#' or '$'. 5003 E = Parser.getTok().getLoc(); 5004 5005 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5006 const MCExpr *Offset; 5007 if (getParser().parseExpression(Offset)) 5008 return true; 5009 5010 // The expression has to be a constant. Memory references with relocations 5011 // don't come through here, as they use the <label> forms of the relevant 5012 // instructions. 5013 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5014 if (!CE) 5015 return Error (E, "constant expression expected"); 5016 5017 // If the constant was #-0, represent it as 5018 // std::numeric_limits<int32_t>::min(). 5019 int32_t Val = CE->getValue(); 5020 if (isNegative && Val == 0) 5021 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5022 getContext()); 5023 5024 // Now we should have the closing ']' 5025 if (Parser.getTok().isNot(AsmToken::RBrac)) 5026 return Error(Parser.getTok().getLoc(), "']' expected"); 5027 E = Parser.getTok().getEndLoc(); 5028 Parser.Lex(); // Eat right bracket token. 5029 5030 // Don't worry about range checking the value here. That's handled by 5031 // the is*() predicates. 5032 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5033 ARM_AM::no_shift, 0, 0, 5034 false, S, E)); 5035 5036 // If there's a pre-indexing writeback marker, '!', just add it as a token 5037 // operand. 5038 if (Parser.getTok().is(AsmToken::Exclaim)) { 5039 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5040 Parser.Lex(); // Eat the '!'. 5041 } 5042 5043 return false; 5044 } 5045 5046 // The register offset is optionally preceded by a '+' or '-' 5047 bool isNegative = false; 5048 if (Parser.getTok().is(AsmToken::Minus)) { 5049 isNegative = true; 5050 Parser.Lex(); // Eat the '-'. 5051 } else if (Parser.getTok().is(AsmToken::Plus)) { 5052 // Nothing to do. 5053 Parser.Lex(); // Eat the '+'. 5054 } 5055 5056 E = Parser.getTok().getLoc(); 5057 int OffsetRegNum = tryParseRegister(); 5058 if (OffsetRegNum == -1) 5059 return Error(E, "register expected"); 5060 5061 // If there's a shift operator, handle it. 5062 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5063 unsigned ShiftImm = 0; 5064 if (Parser.getTok().is(AsmToken::Comma)) { 5065 Parser.Lex(); // Eat the ','. 5066 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5067 return true; 5068 } 5069 5070 // Now we should have the closing ']' 5071 if (Parser.getTok().isNot(AsmToken::RBrac)) 5072 return Error(Parser.getTok().getLoc(), "']' expected"); 5073 E = Parser.getTok().getEndLoc(); 5074 Parser.Lex(); // Eat right bracket token. 5075 5076 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5077 ShiftType, ShiftImm, 0, isNegative, 5078 S, E)); 5079 5080 // If there's a pre-indexing writeback marker, '!', just add it as a token 5081 // operand. 5082 if (Parser.getTok().is(AsmToken::Exclaim)) { 5083 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5084 Parser.Lex(); // Eat the '!'. 5085 } 5086 5087 return false; 5088 } 5089 5090 /// parseMemRegOffsetShift - one of these two: 5091 /// ( lsl | lsr | asr | ror ) , # shift_amount 5092 /// rrx 5093 /// return true if it parses a shift otherwise it returns false. 5094 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5095 unsigned &Amount) { 5096 MCAsmParser &Parser = getParser(); 5097 SMLoc Loc = Parser.getTok().getLoc(); 5098 const AsmToken &Tok = Parser.getTok(); 5099 if (Tok.isNot(AsmToken::Identifier)) 5100 return Error(Loc, "illegal shift operator"); 5101 StringRef ShiftName = Tok.getString(); 5102 if (ShiftName == "lsl" || ShiftName == "LSL" || 5103 ShiftName == "asl" || ShiftName == "ASL") 5104 St = ARM_AM::lsl; 5105 else if (ShiftName == "lsr" || ShiftName == "LSR") 5106 St = ARM_AM::lsr; 5107 else if (ShiftName == "asr" || ShiftName == "ASR") 5108 St = ARM_AM::asr; 5109 else if (ShiftName == "ror" || ShiftName == "ROR") 5110 St = ARM_AM::ror; 5111 else if (ShiftName == "rrx" || ShiftName == "RRX") 5112 St = ARM_AM::rrx; 5113 else 5114 return Error(Loc, "illegal shift operator"); 5115 Parser.Lex(); // Eat shift type token. 5116 5117 // rrx stands alone. 5118 Amount = 0; 5119 if (St != ARM_AM::rrx) { 5120 Loc = Parser.getTok().getLoc(); 5121 // A '#' and a shift amount. 5122 const AsmToken &HashTok = Parser.getTok(); 5123 if (HashTok.isNot(AsmToken::Hash) && 5124 HashTok.isNot(AsmToken::Dollar)) 5125 return Error(HashTok.getLoc(), "'#' expected"); 5126 Parser.Lex(); // Eat hash token. 5127 5128 const MCExpr *Expr; 5129 if (getParser().parseExpression(Expr)) 5130 return true; 5131 // Range check the immediate. 5132 // lsl, ror: 0 <= imm <= 31 5133 // lsr, asr: 0 <= imm <= 32 5134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5135 if (!CE) 5136 return Error(Loc, "shift amount must be an immediate"); 5137 int64_t Imm = CE->getValue(); 5138 if (Imm < 0 || 5139 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5140 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5141 return Error(Loc, "immediate shift value out of range"); 5142 // If <ShiftTy> #0, turn it into a no_shift. 5143 if (Imm == 0) 5144 St = ARM_AM::lsl; 5145 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5146 if (Imm == 32) 5147 Imm = 0; 5148 Amount = Imm; 5149 } 5150 5151 return false; 5152 } 5153 5154 /// parseFPImm - A floating point immediate expression operand. 5155 OperandMatchResultTy 5156 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5157 MCAsmParser &Parser = getParser(); 5158 // Anything that can accept a floating point constant as an operand 5159 // needs to go through here, as the regular parseExpression is 5160 // integer only. 5161 // 5162 // This routine still creates a generic Immediate operand, containing 5163 // a bitcast of the 64-bit floating point value. The various operands 5164 // that accept floats can check whether the value is valid for them 5165 // via the standard is*() predicates. 5166 5167 SMLoc S = Parser.getTok().getLoc(); 5168 5169 if (Parser.getTok().isNot(AsmToken::Hash) && 5170 Parser.getTok().isNot(AsmToken::Dollar)) 5171 return MatchOperand_NoMatch; 5172 5173 // Disambiguate the VMOV forms that can accept an FP immediate. 5174 // vmov.f32 <sreg>, #imm 5175 // vmov.f64 <dreg>, #imm 5176 // vmov.f32 <dreg>, #imm @ vector f32x2 5177 // vmov.f32 <qreg>, #imm @ vector f32x4 5178 // 5179 // There are also the NEON VMOV instructions which expect an 5180 // integer constant. Make sure we don't try to parse an FPImm 5181 // for these: 5182 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5183 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5184 bool isVmovf = TyOp.isToken() && 5185 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5186 TyOp.getToken() == ".f16"); 5187 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5188 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5189 Mnemonic.getToken() == "fconsts"); 5190 if (!(isVmovf || isFconst)) 5191 return MatchOperand_NoMatch; 5192 5193 Parser.Lex(); // Eat '#' or '$'. 5194 5195 // Handle negation, as that still comes through as a separate token. 5196 bool isNegative = false; 5197 if (Parser.getTok().is(AsmToken::Minus)) { 5198 isNegative = true; 5199 Parser.Lex(); 5200 } 5201 const AsmToken &Tok = Parser.getTok(); 5202 SMLoc Loc = Tok.getLoc(); 5203 if (Tok.is(AsmToken::Real) && isVmovf) { 5204 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5205 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5206 // If we had a '-' in front, toggle the sign bit. 5207 IntVal ^= (uint64_t)isNegative << 31; 5208 Parser.Lex(); // Eat the token. 5209 Operands.push_back(ARMOperand::CreateImm( 5210 MCConstantExpr::create(IntVal, getContext()), 5211 S, Parser.getTok().getLoc())); 5212 return MatchOperand_Success; 5213 } 5214 // Also handle plain integers. Instructions which allow floating point 5215 // immediates also allow a raw encoded 8-bit value. 5216 if (Tok.is(AsmToken::Integer) && isFconst) { 5217 int64_t Val = Tok.getIntVal(); 5218 Parser.Lex(); // Eat the token. 5219 if (Val > 255 || Val < 0) { 5220 Error(Loc, "encoded floating point value out of range"); 5221 return MatchOperand_ParseFail; 5222 } 5223 float RealVal = ARM_AM::getFPImmFloat(Val); 5224 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5225 5226 Operands.push_back(ARMOperand::CreateImm( 5227 MCConstantExpr::create(Val, getContext()), S, 5228 Parser.getTok().getLoc())); 5229 return MatchOperand_Success; 5230 } 5231 5232 Error(Loc, "invalid floating point immediate"); 5233 return MatchOperand_ParseFail; 5234 } 5235 5236 /// Parse a arm instruction operand. For now this parses the operand regardless 5237 /// of the mnemonic. 5238 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5239 MCAsmParser &Parser = getParser(); 5240 SMLoc S, E; 5241 5242 // Check if the current operand has a custom associated parser, if so, try to 5243 // custom parse the operand, or fallback to the general approach. 5244 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5245 if (ResTy == MatchOperand_Success) 5246 return false; 5247 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5248 // there was a match, but an error occurred, in which case, just return that 5249 // the operand parsing failed. 5250 if (ResTy == MatchOperand_ParseFail) 5251 return true; 5252 5253 switch (getLexer().getKind()) { 5254 default: 5255 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5256 return true; 5257 case AsmToken::Identifier: { 5258 // If we've seen a branch mnemonic, the next operand must be a label. This 5259 // is true even if the label is a register name. So "br r1" means branch to 5260 // label "r1". 5261 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5262 if (!ExpectLabel) { 5263 if (!tryParseRegisterWithWriteBack(Operands)) 5264 return false; 5265 int Res = tryParseShiftRegister(Operands); 5266 if (Res == 0) // success 5267 return false; 5268 else if (Res == -1) // irrecoverable error 5269 return true; 5270 // If this is VMRS, check for the apsr_nzcv operand. 5271 if (Mnemonic == "vmrs" && 5272 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5273 S = Parser.getTok().getLoc(); 5274 Parser.Lex(); 5275 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5276 return false; 5277 } 5278 } 5279 5280 // Fall though for the Identifier case that is not a register or a 5281 // special name. 5282 LLVM_FALLTHROUGH; 5283 } 5284 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5285 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5286 case AsmToken::String: // quoted label names. 5287 case AsmToken::Dot: { // . as a branch target 5288 // This was not a register so parse other operands that start with an 5289 // identifier (like labels) as expressions and create them as immediates. 5290 const MCExpr *IdVal; 5291 S = Parser.getTok().getLoc(); 5292 if (getParser().parseExpression(IdVal)) 5293 return true; 5294 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5295 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5296 return false; 5297 } 5298 case AsmToken::LBrac: 5299 return parseMemory(Operands); 5300 case AsmToken::LCurly: 5301 return parseRegisterList(Operands); 5302 case AsmToken::Dollar: 5303 case AsmToken::Hash: 5304 // #42 -> immediate. 5305 S = Parser.getTok().getLoc(); 5306 Parser.Lex(); 5307 5308 if (Parser.getTok().isNot(AsmToken::Colon)) { 5309 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5310 const MCExpr *ImmVal; 5311 if (getParser().parseExpression(ImmVal)) 5312 return true; 5313 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5314 if (CE) { 5315 int32_t Val = CE->getValue(); 5316 if (isNegative && Val == 0) 5317 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5318 getContext()); 5319 } 5320 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5321 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5322 5323 // There can be a trailing '!' on operands that we want as a separate 5324 // '!' Token operand. Handle that here. For example, the compatibility 5325 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5326 if (Parser.getTok().is(AsmToken::Exclaim)) { 5327 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5328 Parser.getTok().getLoc())); 5329 Parser.Lex(); // Eat exclaim token 5330 } 5331 return false; 5332 } 5333 // w/ a ':' after the '#', it's just like a plain ':'. 5334 LLVM_FALLTHROUGH; 5335 5336 case AsmToken::Colon: { 5337 S = Parser.getTok().getLoc(); 5338 // ":lower16:" and ":upper16:" expression prefixes 5339 // FIXME: Check it's an expression prefix, 5340 // e.g. (FOO - :lower16:BAR) isn't legal. 5341 ARMMCExpr::VariantKind RefKind; 5342 if (parsePrefix(RefKind)) 5343 return true; 5344 5345 const MCExpr *SubExprVal; 5346 if (getParser().parseExpression(SubExprVal)) 5347 return true; 5348 5349 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5350 getContext()); 5351 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5352 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5353 return false; 5354 } 5355 case AsmToken::Equal: { 5356 S = Parser.getTok().getLoc(); 5357 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5358 return Error(S, "unexpected token in operand"); 5359 Parser.Lex(); // Eat '=' 5360 const MCExpr *SubExprVal; 5361 if (getParser().parseExpression(SubExprVal)) 5362 return true; 5363 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5364 5365 // execute-only: we assume that assembly programmers know what they are 5366 // doing and allow literal pool creation here 5367 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5368 return false; 5369 } 5370 } 5371 } 5372 5373 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5374 // :lower16: and :upper16:. 5375 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5376 MCAsmParser &Parser = getParser(); 5377 RefKind = ARMMCExpr::VK_ARM_None; 5378 5379 // consume an optional '#' (GNU compatibility) 5380 if (getLexer().is(AsmToken::Hash)) 5381 Parser.Lex(); 5382 5383 // :lower16: and :upper16: modifiers 5384 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5385 Parser.Lex(); // Eat ':' 5386 5387 if (getLexer().isNot(AsmToken::Identifier)) { 5388 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5389 return true; 5390 } 5391 5392 enum { 5393 COFF = (1 << MCObjectFileInfo::IsCOFF), 5394 ELF = (1 << MCObjectFileInfo::IsELF), 5395 MACHO = (1 << MCObjectFileInfo::IsMachO), 5396 WASM = (1 << MCObjectFileInfo::IsWasm), 5397 }; 5398 static const struct PrefixEntry { 5399 const char *Spelling; 5400 ARMMCExpr::VariantKind VariantKind; 5401 uint8_t SupportedFormats; 5402 } PrefixEntries[] = { 5403 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5404 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5405 }; 5406 5407 StringRef IDVal = Parser.getTok().getIdentifier(); 5408 5409 const auto &Prefix = 5410 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5411 [&IDVal](const PrefixEntry &PE) { 5412 return PE.Spelling == IDVal; 5413 }); 5414 if (Prefix == std::end(PrefixEntries)) { 5415 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5416 return true; 5417 } 5418 5419 uint8_t CurrentFormat; 5420 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5421 case MCObjectFileInfo::IsMachO: 5422 CurrentFormat = MACHO; 5423 break; 5424 case MCObjectFileInfo::IsELF: 5425 CurrentFormat = ELF; 5426 break; 5427 case MCObjectFileInfo::IsCOFF: 5428 CurrentFormat = COFF; 5429 break; 5430 case MCObjectFileInfo::IsWasm: 5431 CurrentFormat = WASM; 5432 break; 5433 } 5434 5435 if (~Prefix->SupportedFormats & CurrentFormat) { 5436 Error(Parser.getTok().getLoc(), 5437 "cannot represent relocation in the current file format"); 5438 return true; 5439 } 5440 5441 RefKind = Prefix->VariantKind; 5442 Parser.Lex(); 5443 5444 if (getLexer().isNot(AsmToken::Colon)) { 5445 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5446 return true; 5447 } 5448 Parser.Lex(); // Eat the last ':' 5449 5450 return false; 5451 } 5452 5453 /// \brief Given a mnemonic, split out possible predication code and carry 5454 /// setting letters to form a canonical mnemonic and flags. 5455 // 5456 // FIXME: Would be nice to autogen this. 5457 // FIXME: This is a bit of a maze of special cases. 5458 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5459 unsigned &PredicationCode, 5460 bool &CarrySetting, 5461 unsigned &ProcessorIMod, 5462 StringRef &ITMask) { 5463 PredicationCode = ARMCC::AL; 5464 CarrySetting = false; 5465 ProcessorIMod = 0; 5466 5467 // Ignore some mnemonics we know aren't predicated forms. 5468 // 5469 // FIXME: Would be nice to autogen this. 5470 if ((Mnemonic == "movs" && isThumb()) || 5471 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5472 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5473 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5474 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5475 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5476 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5477 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5478 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5479 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5480 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5481 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5482 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5483 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5484 Mnemonic == "bxns" || Mnemonic == "blxns" || 5485 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5486 Mnemonic == "vcmla" || Mnemonic == "vcadd") 5487 return Mnemonic; 5488 5489 // First, split out any predication code. Ignore mnemonics we know aren't 5490 // predicated but do have a carry-set and so weren't caught above. 5491 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5492 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5493 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5494 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5495 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5496 if (CC != ~0U) { 5497 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5498 PredicationCode = CC; 5499 } 5500 } 5501 5502 // Next, determine if we have a carry setting bit. We explicitly ignore all 5503 // the instructions we know end in 's'. 5504 if (Mnemonic.endswith("s") && 5505 !(Mnemonic == "cps" || Mnemonic == "mls" || 5506 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5507 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5508 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5509 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5510 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5511 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5512 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5513 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5514 Mnemonic == "bxns" || Mnemonic == "blxns" || 5515 (Mnemonic == "movs" && isThumb()))) { 5516 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5517 CarrySetting = true; 5518 } 5519 5520 // The "cps" instruction can have a interrupt mode operand which is glued into 5521 // the mnemonic. Check if this is the case, split it and parse the imod op 5522 if (Mnemonic.startswith("cps")) { 5523 // Split out any imod code. 5524 unsigned IMod = 5525 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5526 .Case("ie", ARM_PROC::IE) 5527 .Case("id", ARM_PROC::ID) 5528 .Default(~0U); 5529 if (IMod != ~0U) { 5530 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5531 ProcessorIMod = IMod; 5532 } 5533 } 5534 5535 // The "it" instruction has the condition mask on the end of the mnemonic. 5536 if (Mnemonic.startswith("it")) { 5537 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5538 Mnemonic = Mnemonic.slice(0, 2); 5539 } 5540 5541 return Mnemonic; 5542 } 5543 5544 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5545 /// inclusion of carry set or predication code operands. 5546 // 5547 // FIXME: It would be nice to autogen this. 5548 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5549 bool &CanAcceptCarrySet, 5550 bool &CanAcceptPredicationCode) { 5551 CanAcceptCarrySet = 5552 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5553 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5554 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5555 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5556 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5557 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5558 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5559 (!isThumb() && 5560 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5561 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5562 5563 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5564 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5565 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5566 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5567 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5568 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5569 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5570 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5571 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5572 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5573 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5574 Mnemonic == "vmovx" || Mnemonic == "vins" || 5575 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5576 Mnemonic == "vcmla" || Mnemonic == "vcadd") { 5577 // These mnemonics are never predicable 5578 CanAcceptPredicationCode = false; 5579 } else if (!isThumb()) { 5580 // Some instructions are only predicable in Thumb mode 5581 CanAcceptPredicationCode = 5582 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5583 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5584 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5585 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5586 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5587 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5588 !Mnemonic.startswith("srs"); 5589 } else if (isThumbOne()) { 5590 if (hasV6MOps()) 5591 CanAcceptPredicationCode = Mnemonic != "movs"; 5592 else 5593 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5594 } else 5595 CanAcceptPredicationCode = true; 5596 } 5597 5598 // \brief Some Thumb instructions have two operand forms that are not 5599 // available as three operand, convert to two operand form if possible. 5600 // 5601 // FIXME: We would really like to be able to tablegen'erate this. 5602 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5603 bool CarrySetting, 5604 OperandVector &Operands) { 5605 if (Operands.size() != 6) 5606 return; 5607 5608 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5609 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5610 if (!Op3.isReg() || !Op4.isReg()) 5611 return; 5612 5613 auto Op3Reg = Op3.getReg(); 5614 auto Op4Reg = Op4.getReg(); 5615 5616 // For most Thumb2 cases we just generate the 3 operand form and reduce 5617 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5618 // won't accept SP or PC so we do the transformation here taking care 5619 // with immediate range in the 'add sp, sp #imm' case. 5620 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5621 if (isThumbTwo()) { 5622 if (Mnemonic != "add") 5623 return; 5624 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5625 (Op5.isReg() && Op5.getReg() == ARM::PC); 5626 if (!TryTransform) { 5627 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5628 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5629 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5630 Op5.isImm() && !Op5.isImm0_508s4()); 5631 } 5632 if (!TryTransform) 5633 return; 5634 } else if (!isThumbOne()) 5635 return; 5636 5637 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5638 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5639 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5640 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5641 return; 5642 5643 // If first 2 operands of a 3 operand instruction are the same 5644 // then transform to 2 operand version of the same instruction 5645 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5646 bool Transform = Op3Reg == Op4Reg; 5647 5648 // For communtative operations, we might be able to transform if we swap 5649 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5650 // as tADDrsp. 5651 const ARMOperand *LastOp = &Op5; 5652 bool Swap = false; 5653 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5654 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5655 Mnemonic == "and" || Mnemonic == "eor" || 5656 Mnemonic == "adc" || Mnemonic == "orr")) { 5657 Swap = true; 5658 LastOp = &Op4; 5659 Transform = true; 5660 } 5661 5662 // If both registers are the same then remove one of them from 5663 // the operand list, with certain exceptions. 5664 if (Transform) { 5665 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5666 // 2 operand forms don't exist. 5667 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5668 LastOp->isReg()) 5669 Transform = false; 5670 5671 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5672 // 3-bits because the ARMARM says not to. 5673 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5674 Transform = false; 5675 } 5676 5677 if (Transform) { 5678 if (Swap) 5679 std::swap(Op4, Op5); 5680 Operands.erase(Operands.begin() + 3); 5681 } 5682 } 5683 5684 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5685 OperandVector &Operands) { 5686 // FIXME: This is all horribly hacky. We really need a better way to deal 5687 // with optional operands like this in the matcher table. 5688 5689 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5690 // another does not. Specifically, the MOVW instruction does not. So we 5691 // special case it here and remove the defaulted (non-setting) cc_out 5692 // operand if that's the instruction we're trying to match. 5693 // 5694 // We do this as post-processing of the explicit operands rather than just 5695 // conditionally adding the cc_out in the first place because we need 5696 // to check the type of the parsed immediate operand. 5697 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5698 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5699 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5700 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5701 return true; 5702 5703 // Register-register 'add' for thumb does not have a cc_out operand 5704 // when there are only two register operands. 5705 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5706 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5707 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5708 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5709 return true; 5710 // Register-register 'add' for thumb does not have a cc_out operand 5711 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5712 // have to check the immediate range here since Thumb2 has a variant 5713 // that can handle a different range and has a cc_out operand. 5714 if (((isThumb() && Mnemonic == "add") || 5715 (isThumbTwo() && Mnemonic == "sub")) && 5716 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5717 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5718 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5719 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5720 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5721 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5722 return true; 5723 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5724 // imm0_4095 variant. That's the least-preferred variant when 5725 // selecting via the generic "add" mnemonic, so to know that we 5726 // should remove the cc_out operand, we have to explicitly check that 5727 // it's not one of the other variants. Ugh. 5728 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5729 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5730 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5731 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5732 // Nest conditions rather than one big 'if' statement for readability. 5733 // 5734 // If both registers are low, we're in an IT block, and the immediate is 5735 // in range, we should use encoding T1 instead, which has a cc_out. 5736 if (inITBlock() && 5737 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5738 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5739 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5740 return false; 5741 // Check against T3. If the second register is the PC, this is an 5742 // alternate form of ADR, which uses encoding T4, so check for that too. 5743 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5744 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5745 return false; 5746 5747 // Otherwise, we use encoding T4, which does not have a cc_out 5748 // operand. 5749 return true; 5750 } 5751 5752 // The thumb2 multiply instruction doesn't have a CCOut register, so 5753 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5754 // use the 16-bit encoding or not. 5755 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5756 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5757 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5758 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5759 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5760 // If the registers aren't low regs, the destination reg isn't the 5761 // same as one of the source regs, or the cc_out operand is zero 5762 // outside of an IT block, we have to use the 32-bit encoding, so 5763 // remove the cc_out operand. 5764 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5765 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5766 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5767 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5768 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5769 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5770 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5771 return true; 5772 5773 // Also check the 'mul' syntax variant that doesn't specify an explicit 5774 // destination register. 5775 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5776 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5777 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5778 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5779 // If the registers aren't low regs or the cc_out operand is zero 5780 // outside of an IT block, we have to use the 32-bit encoding, so 5781 // remove the cc_out operand. 5782 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5783 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5784 !inITBlock())) 5785 return true; 5786 5787 // Register-register 'add/sub' for thumb does not have a cc_out operand 5788 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5789 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5790 // right, this will result in better diagnostics (which operand is off) 5791 // anyway. 5792 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5793 (Operands.size() == 5 || Operands.size() == 6) && 5794 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5795 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5796 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5797 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5798 (Operands.size() == 6 && 5799 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5800 return true; 5801 5802 return false; 5803 } 5804 5805 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5806 OperandVector &Operands) { 5807 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5808 unsigned RegIdx = 3; 5809 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5810 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5811 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5812 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5813 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5814 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5815 RegIdx = 4; 5816 5817 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5818 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5819 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5820 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5821 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5822 return true; 5823 } 5824 return false; 5825 } 5826 5827 static bool isDataTypeToken(StringRef Tok) { 5828 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5829 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5830 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5831 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5832 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5833 Tok == ".f" || Tok == ".d"; 5834 } 5835 5836 // FIXME: This bit should probably be handled via an explicit match class 5837 // in the .td files that matches the suffix instead of having it be 5838 // a literal string token the way it is now. 5839 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5840 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5841 } 5842 5843 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5844 unsigned VariantID); 5845 5846 static bool RequiresVFPRegListValidation(StringRef Inst, 5847 bool &AcceptSinglePrecisionOnly, 5848 bool &AcceptDoublePrecisionOnly) { 5849 if (Inst.size() < 7) 5850 return false; 5851 5852 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5853 StringRef AddressingMode = Inst.substr(4, 2); 5854 if (AddressingMode == "ia" || AddressingMode == "db" || 5855 AddressingMode == "ea" || AddressingMode == "fd") { 5856 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5857 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5858 return true; 5859 } 5860 } 5861 5862 return false; 5863 } 5864 5865 // The GNU assembler has aliases of ldrd and strd with the second register 5866 // omitted. We don't have a way to do that in tablegen, so fix it up here. 5867 // 5868 // We have to be careful to not emit an invalid Rt2 here, because the rest of 5869 // the assmebly parser could then generate confusing diagnostics refering to 5870 // it. If we do find anything that prevents us from doing the transformation we 5871 // bail out, and let the assembly parser report an error on the instruction as 5872 // it is written. 5873 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 5874 OperandVector &Operands) { 5875 if (Mnemonic != "ldrd" && Mnemonic != "strd") 5876 return; 5877 if (Operands.size() < 4) 5878 return; 5879 5880 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5881 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5882 5883 if (!Op2.isReg()) 5884 return; 5885 if (!Op3.isMem()) 5886 return; 5887 5888 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 5889 if (!GPR.contains(Op2.getReg())) 5890 return; 5891 5892 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 5893 if (!isThumb() && (RtEncoding & 1)) { 5894 // In ARM mode, the registers must be from an aligned pair, this 5895 // restriction does not apply in Thumb mode. 5896 return; 5897 } 5898 if (Op2.getReg() == ARM::PC) 5899 return; 5900 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 5901 if (!PairedReg || PairedReg == ARM::PC || 5902 (PairedReg == ARM::SP && !hasV8Ops())) 5903 return; 5904 5905 Operands.insert( 5906 Operands.begin() + 3, 5907 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5908 } 5909 5910 /// Parse an arm instruction mnemonic followed by its operands. 5911 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5912 SMLoc NameLoc, OperandVector &Operands) { 5913 MCAsmParser &Parser = getParser(); 5914 // FIXME: Can this be done via tablegen in some fashion? 5915 bool RequireVFPRegisterListCheck; 5916 bool AcceptSinglePrecisionOnly; 5917 bool AcceptDoublePrecisionOnly; 5918 RequireVFPRegisterListCheck = 5919 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5920 AcceptDoublePrecisionOnly); 5921 5922 // Apply mnemonic aliases before doing anything else, as the destination 5923 // mnemonic may include suffices and we want to handle them normally. 5924 // The generic tblgen'erated code does this later, at the start of 5925 // MatchInstructionImpl(), but that's too late for aliases that include 5926 // any sort of suffix. 5927 uint64_t AvailableFeatures = getAvailableFeatures(); 5928 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5929 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5930 5931 // First check for the ARM-specific .req directive. 5932 if (Parser.getTok().is(AsmToken::Identifier) && 5933 Parser.getTok().getIdentifier() == ".req") { 5934 parseDirectiveReq(Name, NameLoc); 5935 // We always return 'error' for this, as we're done with this 5936 // statement and don't need to match the 'instruction." 5937 return true; 5938 } 5939 5940 // Create the leading tokens for the mnemonic, split by '.' characters. 5941 size_t Start = 0, Next = Name.find('.'); 5942 StringRef Mnemonic = Name.slice(Start, Next); 5943 5944 // Split out the predication code and carry setting flag from the mnemonic. 5945 unsigned PredicationCode; 5946 unsigned ProcessorIMod; 5947 bool CarrySetting; 5948 StringRef ITMask; 5949 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5950 ProcessorIMod, ITMask); 5951 5952 // In Thumb1, only the branch (B) instruction can be predicated. 5953 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5954 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5955 } 5956 5957 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5958 5959 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5960 // is the mask as it will be for the IT encoding if the conditional 5961 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5962 // where the conditional bit0 is zero, the instruction post-processing 5963 // will adjust the mask accordingly. 5964 if (Mnemonic == "it") { 5965 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5966 if (ITMask.size() > 3) { 5967 return Error(Loc, "too many conditions on IT instruction"); 5968 } 5969 unsigned Mask = 8; 5970 for (unsigned i = ITMask.size(); i != 0; --i) { 5971 char pos = ITMask[i - 1]; 5972 if (pos != 't' && pos != 'e') { 5973 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5974 } 5975 Mask >>= 1; 5976 if (ITMask[i - 1] == 't') 5977 Mask |= 8; 5978 } 5979 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5980 } 5981 5982 // FIXME: This is all a pretty gross hack. We should automatically handle 5983 // optional operands like this via tblgen. 5984 5985 // Next, add the CCOut and ConditionCode operands, if needed. 5986 // 5987 // For mnemonics which can ever incorporate a carry setting bit or predication 5988 // code, our matching model involves us always generating CCOut and 5989 // ConditionCode operands to match the mnemonic "as written" and then we let 5990 // the matcher deal with finding the right instruction or generating an 5991 // appropriate error. 5992 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5993 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5994 5995 // If we had a carry-set on an instruction that can't do that, issue an 5996 // error. 5997 if (!CanAcceptCarrySet && CarrySetting) { 5998 return Error(NameLoc, "instruction '" + Mnemonic + 5999 "' can not set flags, but 's' suffix specified"); 6000 } 6001 // If we had a predication code on an instruction that can't do that, issue an 6002 // error. 6003 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6004 return Error(NameLoc, "instruction '" + Mnemonic + 6005 "' is not predicable, but condition code specified"); 6006 } 6007 6008 // Add the carry setting operand, if necessary. 6009 if (CanAcceptCarrySet) { 6010 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6011 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6012 Loc)); 6013 } 6014 6015 // Add the predication code operand, if necessary. 6016 if (CanAcceptPredicationCode) { 6017 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6018 CarrySetting); 6019 Operands.push_back(ARMOperand::CreateCondCode( 6020 ARMCC::CondCodes(PredicationCode), Loc)); 6021 } 6022 6023 // Add the processor imod operand, if necessary. 6024 if (ProcessorIMod) { 6025 Operands.push_back(ARMOperand::CreateImm( 6026 MCConstantExpr::create(ProcessorIMod, getContext()), 6027 NameLoc, NameLoc)); 6028 } else if (Mnemonic == "cps" && isMClass()) { 6029 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6030 } 6031 6032 // Add the remaining tokens in the mnemonic. 6033 while (Next != StringRef::npos) { 6034 Start = Next; 6035 Next = Name.find('.', Start + 1); 6036 StringRef ExtraToken = Name.slice(Start, Next); 6037 6038 // Some NEON instructions have an optional datatype suffix that is 6039 // completely ignored. Check for that. 6040 if (isDataTypeToken(ExtraToken) && 6041 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6042 continue; 6043 6044 // For for ARM mode generate an error if the .n qualifier is used. 6045 if (ExtraToken == ".n" && !isThumb()) { 6046 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6047 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6048 "arm mode"); 6049 } 6050 6051 // The .n qualifier is always discarded as that is what the tables 6052 // and matcher expect. In ARM mode the .w qualifier has no effect, 6053 // so discard it to avoid errors that can be caused by the matcher. 6054 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6055 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6056 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6057 } 6058 } 6059 6060 // Read the remaining operands. 6061 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6062 // Read the first operand. 6063 if (parseOperand(Operands, Mnemonic)) { 6064 return true; 6065 } 6066 6067 while (parseOptionalToken(AsmToken::Comma)) { 6068 // Parse and remember the operand. 6069 if (parseOperand(Operands, Mnemonic)) { 6070 return true; 6071 } 6072 } 6073 } 6074 6075 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6076 return true; 6077 6078 if (RequireVFPRegisterListCheck) { 6079 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 6080 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 6081 return Error(Op.getStartLoc(), 6082 "VFP/Neon single precision register expected"); 6083 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 6084 return Error(Op.getStartLoc(), 6085 "VFP/Neon double precision register expected"); 6086 } 6087 6088 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6089 6090 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6091 // do and don't have a cc_out optional-def operand. With some spot-checks 6092 // of the operand list, we can figure out which variant we're trying to 6093 // parse and adjust accordingly before actually matching. We shouldn't ever 6094 // try to remove a cc_out operand that was explicitly set on the 6095 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6096 // table driven matcher doesn't fit well with the ARM instruction set. 6097 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6098 Operands.erase(Operands.begin() + 1); 6099 6100 // Some instructions have the same mnemonic, but don't always 6101 // have a predicate. Distinguish them here and delete the 6102 // predicate if needed. 6103 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 6104 Operands.erase(Operands.begin() + 1); 6105 6106 // ARM mode 'blx' need special handling, as the register operand version 6107 // is predicable, but the label operand version is not. So, we can't rely 6108 // on the Mnemonic based checking to correctly figure out when to put 6109 // a k_CondCode operand in the list. If we're trying to match the label 6110 // version, remove the k_CondCode operand here. 6111 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6112 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6113 Operands.erase(Operands.begin() + 1); 6114 6115 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6116 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6117 // a single GPRPair reg operand is used in the .td file to replace the two 6118 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6119 // expressed as a GPRPair, so we have to manually merge them. 6120 // FIXME: We would really like to be able to tablegen'erate this. 6121 if (!isThumb() && Operands.size() > 4 && 6122 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6123 Mnemonic == "stlexd")) { 6124 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6125 unsigned Idx = isLoad ? 2 : 3; 6126 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6127 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6128 6129 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6130 // Adjust only if Op1 and Op2 are GPRs. 6131 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6132 MRC.contains(Op2.getReg())) { 6133 unsigned Reg1 = Op1.getReg(); 6134 unsigned Reg2 = Op2.getReg(); 6135 unsigned Rt = MRI->getEncodingValue(Reg1); 6136 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6137 6138 // Rt2 must be Rt + 1 and Rt must be even. 6139 if (Rt + 1 != Rt2 || (Rt & 1)) { 6140 return Error(Op2.getStartLoc(), 6141 isLoad ? "destination operands must be sequential" 6142 : "source operands must be sequential"); 6143 } 6144 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6145 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6146 Operands[Idx] = 6147 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6148 Operands.erase(Operands.begin() + Idx + 1); 6149 } 6150 } 6151 6152 // GNU Assembler extension (compatibility). 6153 fixupGNULDRDAlias(Mnemonic, Operands); 6154 6155 // FIXME: As said above, this is all a pretty gross hack. This instruction 6156 // does not fit with other "subs" and tblgen. 6157 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6158 // so the Mnemonic is the original name "subs" and delete the predicate 6159 // operand so it will match the table entry. 6160 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6161 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6162 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6163 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6164 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6165 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6166 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6167 Operands.erase(Operands.begin() + 1); 6168 } 6169 return false; 6170 } 6171 6172 // Validate context-sensitive operand constraints. 6173 6174 // return 'true' if register list contains non-low GPR registers, 6175 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6176 // 'containsReg' to true. 6177 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6178 unsigned Reg, unsigned HiReg, 6179 bool &containsReg) { 6180 containsReg = false; 6181 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6182 unsigned OpReg = Inst.getOperand(i).getReg(); 6183 if (OpReg == Reg) 6184 containsReg = true; 6185 // Anything other than a low register isn't legal here. 6186 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6187 return true; 6188 } 6189 return false; 6190 } 6191 6192 // Check if the specified regisgter is in the register list of the inst, 6193 // starting at the indicated operand number. 6194 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6195 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6196 unsigned OpReg = Inst.getOperand(i).getReg(); 6197 if (OpReg == Reg) 6198 return true; 6199 } 6200 return false; 6201 } 6202 6203 // Return true if instruction has the interesting property of being 6204 // allowed in IT blocks, but not being predicable. 6205 static bool instIsBreakpoint(const MCInst &Inst) { 6206 return Inst.getOpcode() == ARM::tBKPT || 6207 Inst.getOpcode() == ARM::BKPT || 6208 Inst.getOpcode() == ARM::tHLT || 6209 Inst.getOpcode() == ARM::HLT; 6210 } 6211 6212 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6213 const OperandVector &Operands, 6214 unsigned ListNo, bool IsARPop) { 6215 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6216 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6217 6218 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6219 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6220 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6221 6222 if (!IsARPop && ListContainsSP) 6223 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6224 "SP may not be in the register list"); 6225 else if (ListContainsPC && ListContainsLR) 6226 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6227 "PC and LR may not be in the register list simultaneously"); 6228 return false; 6229 } 6230 6231 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6232 const OperandVector &Operands, 6233 unsigned ListNo) { 6234 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6235 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6236 6237 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6238 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6239 6240 if (ListContainsSP && ListContainsPC) 6241 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6242 "SP and PC may not be in the register list"); 6243 else if (ListContainsSP) 6244 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6245 "SP may not be in the register list"); 6246 else if (ListContainsPC) 6247 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6248 "PC may not be in the register list"); 6249 return false; 6250 } 6251 6252 // FIXME: We would really like to be able to tablegen'erate this. 6253 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6254 const OperandVector &Operands) { 6255 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6256 SMLoc Loc = Operands[0]->getStartLoc(); 6257 6258 // Check the IT block state first. 6259 // NOTE: BKPT and HLT instructions have the interesting property of being 6260 // allowed in IT blocks, but not being predicable. They just always execute. 6261 if (inITBlock() && !instIsBreakpoint(Inst)) { 6262 // The instruction must be predicable. 6263 if (!MCID.isPredicable()) 6264 return Error(Loc, "instructions in IT block must be predicable"); 6265 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6266 if (Cond != currentITCond()) { 6267 // Find the condition code Operand to get its SMLoc information. 6268 SMLoc CondLoc; 6269 for (unsigned I = 1; I < Operands.size(); ++I) 6270 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6271 CondLoc = Operands[I]->getStartLoc(); 6272 return Error(CondLoc, "incorrect condition in IT block; got '" + 6273 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6274 "', but expected '" + 6275 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6276 } 6277 // Check for non-'al' condition codes outside of the IT block. 6278 } else if (isThumbTwo() && MCID.isPredicable() && 6279 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6280 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6281 Inst.getOpcode() != ARM::t2Bcc) { 6282 return Error(Loc, "predicated instructions must be in IT block"); 6283 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6284 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6285 ARMCC::AL) { 6286 return Warning(Loc, "predicated instructions should be in IT block"); 6287 } 6288 6289 // PC-setting instructions in an IT block, but not the last instruction of 6290 // the block, are UNPREDICTABLE. 6291 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6292 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6293 } 6294 6295 const unsigned Opcode = Inst.getOpcode(); 6296 switch (Opcode) { 6297 case ARM::LDRD: 6298 case ARM::LDRD_PRE: 6299 case ARM::LDRD_POST: { 6300 const unsigned RtReg = Inst.getOperand(0).getReg(); 6301 6302 // Rt can't be R14. 6303 if (RtReg == ARM::LR) 6304 return Error(Operands[3]->getStartLoc(), 6305 "Rt can't be R14"); 6306 6307 const unsigned Rt = MRI->getEncodingValue(RtReg); 6308 // Rt must be even-numbered. 6309 if ((Rt & 1) == 1) 6310 return Error(Operands[3]->getStartLoc(), 6311 "Rt must be even-numbered"); 6312 6313 // Rt2 must be Rt + 1. 6314 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6315 if (Rt2 != Rt + 1) 6316 return Error(Operands[3]->getStartLoc(), 6317 "destination operands must be sequential"); 6318 6319 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6320 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6321 // For addressing modes with writeback, the base register needs to be 6322 // different from the destination registers. 6323 if (Rn == Rt || Rn == Rt2) 6324 return Error(Operands[3]->getStartLoc(), 6325 "base register needs to be different from destination " 6326 "registers"); 6327 } 6328 6329 return false; 6330 } 6331 case ARM::t2LDRDi8: 6332 case ARM::t2LDRD_PRE: 6333 case ARM::t2LDRD_POST: { 6334 // Rt2 must be different from Rt. 6335 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6336 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6337 if (Rt2 == Rt) 6338 return Error(Operands[3]->getStartLoc(), 6339 "destination operands can't be identical"); 6340 return false; 6341 } 6342 case ARM::t2BXJ: { 6343 const unsigned RmReg = Inst.getOperand(0).getReg(); 6344 // Rm = SP is no longer unpredictable in v8-A 6345 if (RmReg == ARM::SP && !hasV8Ops()) 6346 return Error(Operands[2]->getStartLoc(), 6347 "r13 (SP) is an unpredictable operand to BXJ"); 6348 return false; 6349 } 6350 case ARM::STRD: { 6351 // Rt2 must be Rt + 1. 6352 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6353 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6354 if (Rt2 != Rt + 1) 6355 return Error(Operands[3]->getStartLoc(), 6356 "source operands must be sequential"); 6357 return false; 6358 } 6359 case ARM::STRD_PRE: 6360 case ARM::STRD_POST: { 6361 // Rt2 must be Rt + 1. 6362 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6363 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6364 if (Rt2 != Rt + 1) 6365 return Error(Operands[3]->getStartLoc(), 6366 "source operands must be sequential"); 6367 return false; 6368 } 6369 case ARM::STR_PRE_IMM: 6370 case ARM::STR_PRE_REG: 6371 case ARM::STR_POST_IMM: 6372 case ARM::STR_POST_REG: 6373 case ARM::STRH_PRE: 6374 case ARM::STRH_POST: 6375 case ARM::STRB_PRE_IMM: 6376 case ARM::STRB_PRE_REG: 6377 case ARM::STRB_POST_IMM: 6378 case ARM::STRB_POST_REG: { 6379 // Rt must be different from Rn. 6380 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6381 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6382 6383 if (Rt == Rn) 6384 return Error(Operands[3]->getStartLoc(), 6385 "source register and base register can't be identical"); 6386 return false; 6387 } 6388 case ARM::LDR_PRE_IMM: 6389 case ARM::LDR_PRE_REG: 6390 case ARM::LDR_POST_IMM: 6391 case ARM::LDR_POST_REG: 6392 case ARM::LDRH_PRE: 6393 case ARM::LDRH_POST: 6394 case ARM::LDRSH_PRE: 6395 case ARM::LDRSH_POST: 6396 case ARM::LDRB_PRE_IMM: 6397 case ARM::LDRB_PRE_REG: 6398 case ARM::LDRB_POST_IMM: 6399 case ARM::LDRB_POST_REG: 6400 case ARM::LDRSB_PRE: 6401 case ARM::LDRSB_POST: { 6402 // Rt must be different from Rn. 6403 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6404 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6405 6406 if (Rt == Rn) 6407 return Error(Operands[3]->getStartLoc(), 6408 "destination register and base register can't be identical"); 6409 return false; 6410 } 6411 case ARM::SBFX: 6412 case ARM::UBFX: { 6413 // Width must be in range [1, 32-lsb]. 6414 unsigned LSB = Inst.getOperand(2).getImm(); 6415 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6416 if (Widthm1 >= 32 - LSB) 6417 return Error(Operands[5]->getStartLoc(), 6418 "bitfield width must be in range [1,32-lsb]"); 6419 return false; 6420 } 6421 // Notionally handles ARM::tLDMIA_UPD too. 6422 case ARM::tLDMIA: { 6423 // If we're parsing Thumb2, the .w variant is available and handles 6424 // most cases that are normally illegal for a Thumb1 LDM instruction. 6425 // We'll make the transformation in processInstruction() if necessary. 6426 // 6427 // Thumb LDM instructions are writeback iff the base register is not 6428 // in the register list. 6429 unsigned Rn = Inst.getOperand(0).getReg(); 6430 bool HasWritebackToken = 6431 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6432 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6433 bool ListContainsBase; 6434 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6435 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6436 "registers must be in range r0-r7"); 6437 // If we should have writeback, then there should be a '!' token. 6438 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6439 return Error(Operands[2]->getStartLoc(), 6440 "writeback operator '!' expected"); 6441 // If we should not have writeback, there must not be a '!'. This is 6442 // true even for the 32-bit wide encodings. 6443 if (ListContainsBase && HasWritebackToken) 6444 return Error(Operands[3]->getStartLoc(), 6445 "writeback operator '!' not allowed when base register " 6446 "in register list"); 6447 6448 if (validatetLDMRegList(Inst, Operands, 3)) 6449 return true; 6450 break; 6451 } 6452 case ARM::LDMIA_UPD: 6453 case ARM::LDMDB_UPD: 6454 case ARM::LDMIB_UPD: 6455 case ARM::LDMDA_UPD: 6456 // ARM variants loading and updating the same register are only officially 6457 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6458 if (!hasV7Ops()) 6459 break; 6460 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6461 return Error(Operands.back()->getStartLoc(), 6462 "writeback register not allowed in register list"); 6463 break; 6464 case ARM::t2LDMIA: 6465 case ARM::t2LDMDB: 6466 if (validatetLDMRegList(Inst, Operands, 3)) 6467 return true; 6468 break; 6469 case ARM::t2STMIA: 6470 case ARM::t2STMDB: 6471 if (validatetSTMRegList(Inst, Operands, 3)) 6472 return true; 6473 break; 6474 case ARM::t2LDMIA_UPD: 6475 case ARM::t2LDMDB_UPD: 6476 case ARM::t2STMIA_UPD: 6477 case ARM::t2STMDB_UPD: 6478 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6479 return Error(Operands.back()->getStartLoc(), 6480 "writeback register not allowed in register list"); 6481 6482 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6483 if (validatetLDMRegList(Inst, Operands, 3)) 6484 return true; 6485 } else { 6486 if (validatetSTMRegList(Inst, Operands, 3)) 6487 return true; 6488 } 6489 break; 6490 6491 case ARM::sysLDMIA_UPD: 6492 case ARM::sysLDMDA_UPD: 6493 case ARM::sysLDMDB_UPD: 6494 case ARM::sysLDMIB_UPD: 6495 if (!listContainsReg(Inst, 3, ARM::PC)) 6496 return Error(Operands[4]->getStartLoc(), 6497 "writeback register only allowed on system LDM " 6498 "if PC in register-list"); 6499 break; 6500 case ARM::sysSTMIA_UPD: 6501 case ARM::sysSTMDA_UPD: 6502 case ARM::sysSTMDB_UPD: 6503 case ARM::sysSTMIB_UPD: 6504 return Error(Operands[2]->getStartLoc(), 6505 "system STM cannot have writeback register"); 6506 case ARM::tMUL: 6507 // The second source operand must be the same register as the destination 6508 // operand. 6509 // 6510 // In this case, we must directly check the parsed operands because the 6511 // cvtThumbMultiply() function is written in such a way that it guarantees 6512 // this first statement is always true for the new Inst. Essentially, the 6513 // destination is unconditionally copied into the second source operand 6514 // without checking to see if it matches what we actually parsed. 6515 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6516 ((ARMOperand &)*Operands[5]).getReg()) && 6517 (((ARMOperand &)*Operands[3]).getReg() != 6518 ((ARMOperand &)*Operands[4]).getReg())) { 6519 return Error(Operands[3]->getStartLoc(), 6520 "destination register must match source register"); 6521 } 6522 break; 6523 6524 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6525 // so only issue a diagnostic for thumb1. The instructions will be 6526 // switched to the t2 encodings in processInstruction() if necessary. 6527 case ARM::tPOP: { 6528 bool ListContainsBase; 6529 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6530 !isThumbTwo()) 6531 return Error(Operands[2]->getStartLoc(), 6532 "registers must be in range r0-r7 or pc"); 6533 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6534 return true; 6535 break; 6536 } 6537 case ARM::tPUSH: { 6538 bool ListContainsBase; 6539 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6540 !isThumbTwo()) 6541 return Error(Operands[2]->getStartLoc(), 6542 "registers must be in range r0-r7 or lr"); 6543 if (validatetSTMRegList(Inst, Operands, 2)) 6544 return true; 6545 break; 6546 } 6547 case ARM::tSTMIA_UPD: { 6548 bool ListContainsBase, InvalidLowList; 6549 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6550 0, ListContainsBase); 6551 if (InvalidLowList && !isThumbTwo()) 6552 return Error(Operands[4]->getStartLoc(), 6553 "registers must be in range r0-r7"); 6554 6555 // This would be converted to a 32-bit stm, but that's not valid if the 6556 // writeback register is in the list. 6557 if (InvalidLowList && ListContainsBase) 6558 return Error(Operands[4]->getStartLoc(), 6559 "writeback operator '!' not allowed when base register " 6560 "in register list"); 6561 6562 if (validatetSTMRegList(Inst, Operands, 4)) 6563 return true; 6564 break; 6565 } 6566 case ARM::tADDrSP: 6567 // If the non-SP source operand and the destination operand are not the 6568 // same, we need thumb2 (for the wide encoding), or we have an error. 6569 if (!isThumbTwo() && 6570 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6571 return Error(Operands[4]->getStartLoc(), 6572 "source register must be the same as destination"); 6573 } 6574 break; 6575 6576 // Final range checking for Thumb unconditional branch instructions. 6577 case ARM::tB: 6578 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6579 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6580 break; 6581 case ARM::t2B: { 6582 int op = (Operands[2]->isImm()) ? 2 : 3; 6583 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6584 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6585 break; 6586 } 6587 // Final range checking for Thumb conditional branch instructions. 6588 case ARM::tBcc: 6589 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6590 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6591 break; 6592 case ARM::t2Bcc: { 6593 int Op = (Operands[2]->isImm()) ? 2 : 3; 6594 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6595 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6596 break; 6597 } 6598 case ARM::tCBZ: 6599 case ARM::tCBNZ: { 6600 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6601 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6602 break; 6603 } 6604 case ARM::MOVi16: 6605 case ARM::MOVTi16: 6606 case ARM::t2MOVi16: 6607 case ARM::t2MOVTi16: 6608 { 6609 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6610 // especially when we turn it into a movw and the expression <symbol> does 6611 // not have a :lower16: or :upper16 as part of the expression. We don't 6612 // want the behavior of silently truncating, which can be unexpected and 6613 // lead to bugs that are difficult to find since this is an easy mistake 6614 // to make. 6615 int i = (Operands[3]->isImm()) ? 3 : 4; 6616 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6617 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6618 if (CE) break; 6619 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6620 if (!E) break; 6621 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6622 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6623 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6624 return Error( 6625 Op.getStartLoc(), 6626 "immediate expression for mov requires :lower16: or :upper16"); 6627 break; 6628 } 6629 case ARM::HINT: 6630 case ARM::t2HINT: 6631 if (hasRAS()) { 6632 // ESB is not predicable (pred must be AL) 6633 unsigned Imm8 = Inst.getOperand(0).getImm(); 6634 unsigned Pred = Inst.getOperand(1).getImm(); 6635 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6636 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6637 "predicable, but condition " 6638 "code specified"); 6639 } 6640 // Without the RAS extension, this behaves as any other unallocated hint. 6641 break; 6642 } 6643 6644 return false; 6645 } 6646 6647 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6648 switch(Opc) { 6649 default: llvm_unreachable("unexpected opcode!"); 6650 // VST1LN 6651 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6652 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6653 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6654 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6655 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6656 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6657 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6658 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6659 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6660 6661 // VST2LN 6662 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6663 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6664 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6665 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6666 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6667 6668 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6669 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6670 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6671 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6672 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6673 6674 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6675 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6676 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6677 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6678 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6679 6680 // VST3LN 6681 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6682 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6683 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6684 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6685 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6686 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6687 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6688 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6689 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6690 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6691 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6692 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6693 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6694 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6695 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6696 6697 // VST3 6698 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6699 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6700 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6701 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6702 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6703 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6704 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6705 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6706 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6707 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6708 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6709 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6710 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6711 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6712 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6713 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6714 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6715 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6716 6717 // VST4LN 6718 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6719 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6720 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6721 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6722 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6723 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6724 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6725 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6726 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6727 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6728 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6729 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6730 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6731 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6732 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6733 6734 // VST4 6735 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6736 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6737 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6738 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6739 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6740 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6741 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6742 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6743 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6744 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6745 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6746 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6747 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6748 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6749 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6750 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6751 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6752 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6753 } 6754 } 6755 6756 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6757 switch(Opc) { 6758 default: llvm_unreachable("unexpected opcode!"); 6759 // VLD1LN 6760 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6761 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6762 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6763 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6764 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6765 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6766 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6767 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6768 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6769 6770 // VLD2LN 6771 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6772 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6773 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6774 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6775 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6776 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6777 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6778 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6779 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6780 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6781 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6782 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6783 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6784 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6785 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6786 6787 // VLD3DUP 6788 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6789 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6790 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6791 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6792 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6793 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6794 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6795 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6796 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6797 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6798 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6799 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6800 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6801 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6802 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6803 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6804 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6805 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6806 6807 // VLD3LN 6808 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6809 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6810 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6811 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6812 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6813 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6814 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6815 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6816 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6817 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6818 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6819 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6820 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6821 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6822 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6823 6824 // VLD3 6825 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6826 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6827 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6828 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6829 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6830 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6831 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6832 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6833 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6834 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6835 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6836 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6837 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6838 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6839 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6840 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6841 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6842 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6843 6844 // VLD4LN 6845 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6846 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6847 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6848 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6849 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6850 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6851 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6852 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6853 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6854 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6855 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6856 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6857 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6858 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6859 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6860 6861 // VLD4DUP 6862 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6863 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6864 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6865 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6866 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6867 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6868 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6869 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6870 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6871 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6872 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6873 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6874 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6875 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6876 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6877 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6878 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6879 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6880 6881 // VLD4 6882 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6883 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6884 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6885 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6886 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6887 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6888 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6889 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6890 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6891 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6892 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6893 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6894 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6895 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6896 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6897 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6898 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6899 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6900 } 6901 } 6902 6903 bool ARMAsmParser::processInstruction(MCInst &Inst, 6904 const OperandVector &Operands, 6905 MCStreamer &Out) { 6906 // Check if we have the wide qualifier, because if it's present we 6907 // must avoid selecting a 16-bit thumb instruction. 6908 bool HasWideQualifier = false; 6909 for (auto &Op : Operands) { 6910 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 6911 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 6912 HasWideQualifier = true; 6913 break; 6914 } 6915 } 6916 6917 switch (Inst.getOpcode()) { 6918 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6919 case ARM::LDRT_POST: 6920 case ARM::LDRBT_POST: { 6921 const unsigned Opcode = 6922 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6923 : ARM::LDRBT_POST_IMM; 6924 MCInst TmpInst; 6925 TmpInst.setOpcode(Opcode); 6926 TmpInst.addOperand(Inst.getOperand(0)); 6927 TmpInst.addOperand(Inst.getOperand(1)); 6928 TmpInst.addOperand(Inst.getOperand(1)); 6929 TmpInst.addOperand(MCOperand::createReg(0)); 6930 TmpInst.addOperand(MCOperand::createImm(0)); 6931 TmpInst.addOperand(Inst.getOperand(2)); 6932 TmpInst.addOperand(Inst.getOperand(3)); 6933 Inst = TmpInst; 6934 return true; 6935 } 6936 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6937 case ARM::STRT_POST: 6938 case ARM::STRBT_POST: { 6939 const unsigned Opcode = 6940 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6941 : ARM::STRBT_POST_IMM; 6942 MCInst TmpInst; 6943 TmpInst.setOpcode(Opcode); 6944 TmpInst.addOperand(Inst.getOperand(1)); 6945 TmpInst.addOperand(Inst.getOperand(0)); 6946 TmpInst.addOperand(Inst.getOperand(1)); 6947 TmpInst.addOperand(MCOperand::createReg(0)); 6948 TmpInst.addOperand(MCOperand::createImm(0)); 6949 TmpInst.addOperand(Inst.getOperand(2)); 6950 TmpInst.addOperand(Inst.getOperand(3)); 6951 Inst = TmpInst; 6952 return true; 6953 } 6954 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6955 case ARM::ADDri: { 6956 if (Inst.getOperand(1).getReg() != ARM::PC || 6957 Inst.getOperand(5).getReg() != 0 || 6958 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6959 return false; 6960 MCInst TmpInst; 6961 TmpInst.setOpcode(ARM::ADR); 6962 TmpInst.addOperand(Inst.getOperand(0)); 6963 if (Inst.getOperand(2).isImm()) { 6964 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6965 // before passing it to the ADR instruction. 6966 unsigned Enc = Inst.getOperand(2).getImm(); 6967 TmpInst.addOperand(MCOperand::createImm( 6968 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6969 } else { 6970 // Turn PC-relative expression into absolute expression. 6971 // Reading PC provides the start of the current instruction + 8 and 6972 // the transform to adr is biased by that. 6973 MCSymbol *Dot = getContext().createTempSymbol(); 6974 Out.EmitLabel(Dot); 6975 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6976 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6977 MCSymbolRefExpr::VK_None, 6978 getContext()); 6979 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6980 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6981 getContext()); 6982 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6983 getContext()); 6984 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6985 } 6986 TmpInst.addOperand(Inst.getOperand(3)); 6987 TmpInst.addOperand(Inst.getOperand(4)); 6988 Inst = TmpInst; 6989 return true; 6990 } 6991 // Aliases for alternate PC+imm syntax of LDR instructions. 6992 case ARM::t2LDRpcrel: 6993 // Select the narrow version if the immediate will fit. 6994 if (Inst.getOperand(1).getImm() > 0 && 6995 Inst.getOperand(1).getImm() <= 0xff && 6996 !HasWideQualifier) 6997 Inst.setOpcode(ARM::tLDRpci); 6998 else 6999 Inst.setOpcode(ARM::t2LDRpci); 7000 return true; 7001 case ARM::t2LDRBpcrel: 7002 Inst.setOpcode(ARM::t2LDRBpci); 7003 return true; 7004 case ARM::t2LDRHpcrel: 7005 Inst.setOpcode(ARM::t2LDRHpci); 7006 return true; 7007 case ARM::t2LDRSBpcrel: 7008 Inst.setOpcode(ARM::t2LDRSBpci); 7009 return true; 7010 case ARM::t2LDRSHpcrel: 7011 Inst.setOpcode(ARM::t2LDRSHpci); 7012 return true; 7013 case ARM::LDRConstPool: 7014 case ARM::tLDRConstPool: 7015 case ARM::t2LDRConstPool: { 7016 // Pseudo instruction ldr rt, =immediate is converted to a 7017 // MOV rt, immediate if immediate is known and representable 7018 // otherwise we create a constant pool entry that we load from. 7019 MCInst TmpInst; 7020 if (Inst.getOpcode() == ARM::LDRConstPool) 7021 TmpInst.setOpcode(ARM::LDRi12); 7022 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7023 TmpInst.setOpcode(ARM::tLDRpci); 7024 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7025 TmpInst.setOpcode(ARM::t2LDRpci); 7026 const ARMOperand &PoolOperand = 7027 (HasWideQualifier ? 7028 static_cast<ARMOperand &>(*Operands[4]) : 7029 static_cast<ARMOperand &>(*Operands[3])); 7030 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7031 // If SubExprVal is a constant we may be able to use a MOV 7032 if (isa<MCConstantExpr>(SubExprVal) && 7033 Inst.getOperand(0).getReg() != ARM::PC && 7034 Inst.getOperand(0).getReg() != ARM::SP) { 7035 int64_t Value = 7036 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7037 bool UseMov = true; 7038 bool MovHasS = true; 7039 if (Inst.getOpcode() == ARM::LDRConstPool) { 7040 // ARM Constant 7041 if (ARM_AM::getSOImmVal(Value) != -1) { 7042 Value = ARM_AM::getSOImmVal(Value); 7043 TmpInst.setOpcode(ARM::MOVi); 7044 } 7045 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7046 Value = ARM_AM::getSOImmVal(~Value); 7047 TmpInst.setOpcode(ARM::MVNi); 7048 } 7049 else if (hasV6T2Ops() && 7050 Value >=0 && Value < 65536) { 7051 TmpInst.setOpcode(ARM::MOVi16); 7052 MovHasS = false; 7053 } 7054 else 7055 UseMov = false; 7056 } 7057 else { 7058 // Thumb/Thumb2 Constant 7059 if (hasThumb2() && 7060 ARM_AM::getT2SOImmVal(Value) != -1) 7061 TmpInst.setOpcode(ARM::t2MOVi); 7062 else if (hasThumb2() && 7063 ARM_AM::getT2SOImmVal(~Value) != -1) { 7064 TmpInst.setOpcode(ARM::t2MVNi); 7065 Value = ~Value; 7066 } 7067 else if (hasV8MBaseline() && 7068 Value >=0 && Value < 65536) { 7069 TmpInst.setOpcode(ARM::t2MOVi16); 7070 MovHasS = false; 7071 } 7072 else 7073 UseMov = false; 7074 } 7075 if (UseMov) { 7076 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7077 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7078 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7079 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7080 if (MovHasS) 7081 TmpInst.addOperand(MCOperand::createReg(0)); // S 7082 Inst = TmpInst; 7083 return true; 7084 } 7085 } 7086 // No opportunity to use MOV/MVN create constant pool 7087 const MCExpr *CPLoc = 7088 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7089 PoolOperand.getStartLoc()); 7090 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7091 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7092 if (TmpInst.getOpcode() == ARM::LDRi12) 7093 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7094 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7095 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7096 Inst = TmpInst; 7097 return true; 7098 } 7099 // Handle NEON VST complex aliases. 7100 case ARM::VST1LNdWB_register_Asm_8: 7101 case ARM::VST1LNdWB_register_Asm_16: 7102 case ARM::VST1LNdWB_register_Asm_32: { 7103 MCInst TmpInst; 7104 // Shuffle the operands around so the lane index operand is in the 7105 // right place. 7106 unsigned Spacing; 7107 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7108 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7109 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7110 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7111 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7112 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7113 TmpInst.addOperand(Inst.getOperand(1)); // lane 7114 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7115 TmpInst.addOperand(Inst.getOperand(6)); 7116 Inst = TmpInst; 7117 return true; 7118 } 7119 7120 case ARM::VST2LNdWB_register_Asm_8: 7121 case ARM::VST2LNdWB_register_Asm_16: 7122 case ARM::VST2LNdWB_register_Asm_32: 7123 case ARM::VST2LNqWB_register_Asm_16: 7124 case ARM::VST2LNqWB_register_Asm_32: { 7125 MCInst TmpInst; 7126 // Shuffle the operands around so the lane index operand is in the 7127 // right place. 7128 unsigned Spacing; 7129 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7130 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7131 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7132 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7133 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7134 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7135 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7136 Spacing)); 7137 TmpInst.addOperand(Inst.getOperand(1)); // lane 7138 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7139 TmpInst.addOperand(Inst.getOperand(6)); 7140 Inst = TmpInst; 7141 return true; 7142 } 7143 7144 case ARM::VST3LNdWB_register_Asm_8: 7145 case ARM::VST3LNdWB_register_Asm_16: 7146 case ARM::VST3LNdWB_register_Asm_32: 7147 case ARM::VST3LNqWB_register_Asm_16: 7148 case ARM::VST3LNqWB_register_Asm_32: { 7149 MCInst TmpInst; 7150 // Shuffle the operands around so the lane index operand is in the 7151 // right place. 7152 unsigned Spacing; 7153 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7154 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7155 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7156 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7157 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7158 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7159 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7160 Spacing)); 7161 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7162 Spacing * 2)); 7163 TmpInst.addOperand(Inst.getOperand(1)); // lane 7164 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7165 TmpInst.addOperand(Inst.getOperand(6)); 7166 Inst = TmpInst; 7167 return true; 7168 } 7169 7170 case ARM::VST4LNdWB_register_Asm_8: 7171 case ARM::VST4LNdWB_register_Asm_16: 7172 case ARM::VST4LNdWB_register_Asm_32: 7173 case ARM::VST4LNqWB_register_Asm_16: 7174 case ARM::VST4LNqWB_register_Asm_32: { 7175 MCInst TmpInst; 7176 // Shuffle the operands around so the lane index operand is in the 7177 // right place. 7178 unsigned Spacing; 7179 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7180 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7181 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7182 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7183 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7184 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7185 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7186 Spacing)); 7187 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7188 Spacing * 2)); 7189 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7190 Spacing * 3)); 7191 TmpInst.addOperand(Inst.getOperand(1)); // lane 7192 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7193 TmpInst.addOperand(Inst.getOperand(6)); 7194 Inst = TmpInst; 7195 return true; 7196 } 7197 7198 case ARM::VST1LNdWB_fixed_Asm_8: 7199 case ARM::VST1LNdWB_fixed_Asm_16: 7200 case ARM::VST1LNdWB_fixed_Asm_32: { 7201 MCInst TmpInst; 7202 // Shuffle the operands around so the lane index operand is in the 7203 // right place. 7204 unsigned Spacing; 7205 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7206 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7207 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7208 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7209 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7210 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7211 TmpInst.addOperand(Inst.getOperand(1)); // lane 7212 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7213 TmpInst.addOperand(Inst.getOperand(5)); 7214 Inst = TmpInst; 7215 return true; 7216 } 7217 7218 case ARM::VST2LNdWB_fixed_Asm_8: 7219 case ARM::VST2LNdWB_fixed_Asm_16: 7220 case ARM::VST2LNdWB_fixed_Asm_32: 7221 case ARM::VST2LNqWB_fixed_Asm_16: 7222 case ARM::VST2LNqWB_fixed_Asm_32: { 7223 MCInst TmpInst; 7224 // Shuffle the operands around so the lane index operand is in the 7225 // right place. 7226 unsigned Spacing; 7227 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7228 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7229 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7230 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7231 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7232 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7233 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7234 Spacing)); 7235 TmpInst.addOperand(Inst.getOperand(1)); // lane 7236 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7237 TmpInst.addOperand(Inst.getOperand(5)); 7238 Inst = TmpInst; 7239 return true; 7240 } 7241 7242 case ARM::VST3LNdWB_fixed_Asm_8: 7243 case ARM::VST3LNdWB_fixed_Asm_16: 7244 case ARM::VST3LNdWB_fixed_Asm_32: 7245 case ARM::VST3LNqWB_fixed_Asm_16: 7246 case ARM::VST3LNqWB_fixed_Asm_32: { 7247 MCInst TmpInst; 7248 // Shuffle the operands around so the lane index operand is in the 7249 // right place. 7250 unsigned Spacing; 7251 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7252 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7253 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7254 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7255 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7256 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7257 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7258 Spacing)); 7259 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7260 Spacing * 2)); 7261 TmpInst.addOperand(Inst.getOperand(1)); // lane 7262 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7263 TmpInst.addOperand(Inst.getOperand(5)); 7264 Inst = TmpInst; 7265 return true; 7266 } 7267 7268 case ARM::VST4LNdWB_fixed_Asm_8: 7269 case ARM::VST4LNdWB_fixed_Asm_16: 7270 case ARM::VST4LNdWB_fixed_Asm_32: 7271 case ARM::VST4LNqWB_fixed_Asm_16: 7272 case ARM::VST4LNqWB_fixed_Asm_32: { 7273 MCInst TmpInst; 7274 // Shuffle the operands around so the lane index operand is in the 7275 // right place. 7276 unsigned Spacing; 7277 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7278 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7279 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7280 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7281 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7282 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7283 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7284 Spacing)); 7285 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7286 Spacing * 2)); 7287 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7288 Spacing * 3)); 7289 TmpInst.addOperand(Inst.getOperand(1)); // lane 7290 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7291 TmpInst.addOperand(Inst.getOperand(5)); 7292 Inst = TmpInst; 7293 return true; 7294 } 7295 7296 case ARM::VST1LNdAsm_8: 7297 case ARM::VST1LNdAsm_16: 7298 case ARM::VST1LNdAsm_32: { 7299 MCInst TmpInst; 7300 // Shuffle the operands around so the lane index operand is in the 7301 // right place. 7302 unsigned Spacing; 7303 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7304 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7305 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7306 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7307 TmpInst.addOperand(Inst.getOperand(1)); // lane 7308 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7309 TmpInst.addOperand(Inst.getOperand(5)); 7310 Inst = TmpInst; 7311 return true; 7312 } 7313 7314 case ARM::VST2LNdAsm_8: 7315 case ARM::VST2LNdAsm_16: 7316 case ARM::VST2LNdAsm_32: 7317 case ARM::VST2LNqAsm_16: 7318 case ARM::VST2LNqAsm_32: { 7319 MCInst TmpInst; 7320 // Shuffle the operands around so the lane index operand is in the 7321 // right place. 7322 unsigned Spacing; 7323 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7324 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7325 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7326 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7327 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7328 Spacing)); 7329 TmpInst.addOperand(Inst.getOperand(1)); // lane 7330 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7331 TmpInst.addOperand(Inst.getOperand(5)); 7332 Inst = TmpInst; 7333 return true; 7334 } 7335 7336 case ARM::VST3LNdAsm_8: 7337 case ARM::VST3LNdAsm_16: 7338 case ARM::VST3LNdAsm_32: 7339 case ARM::VST3LNqAsm_16: 7340 case ARM::VST3LNqAsm_32: { 7341 MCInst TmpInst; 7342 // Shuffle the operands around so the lane index operand is in the 7343 // right place. 7344 unsigned Spacing; 7345 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7346 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7347 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7348 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7349 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7350 Spacing)); 7351 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7352 Spacing * 2)); 7353 TmpInst.addOperand(Inst.getOperand(1)); // lane 7354 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7355 TmpInst.addOperand(Inst.getOperand(5)); 7356 Inst = TmpInst; 7357 return true; 7358 } 7359 7360 case ARM::VST4LNdAsm_8: 7361 case ARM::VST4LNdAsm_16: 7362 case ARM::VST4LNdAsm_32: 7363 case ARM::VST4LNqAsm_16: 7364 case ARM::VST4LNqAsm_32: { 7365 MCInst TmpInst; 7366 // Shuffle the operands around so the lane index operand is in the 7367 // right place. 7368 unsigned Spacing; 7369 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7370 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7371 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7372 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7373 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7374 Spacing)); 7375 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7376 Spacing * 2)); 7377 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7378 Spacing * 3)); 7379 TmpInst.addOperand(Inst.getOperand(1)); // lane 7380 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7381 TmpInst.addOperand(Inst.getOperand(5)); 7382 Inst = TmpInst; 7383 return true; 7384 } 7385 7386 // Handle NEON VLD complex aliases. 7387 case ARM::VLD1LNdWB_register_Asm_8: 7388 case ARM::VLD1LNdWB_register_Asm_16: 7389 case ARM::VLD1LNdWB_register_Asm_32: { 7390 MCInst TmpInst; 7391 // Shuffle the operands around so the lane index operand is in the 7392 // right place. 7393 unsigned Spacing; 7394 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7395 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7396 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7397 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7398 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7399 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7400 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7401 TmpInst.addOperand(Inst.getOperand(1)); // lane 7402 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7403 TmpInst.addOperand(Inst.getOperand(6)); 7404 Inst = TmpInst; 7405 return true; 7406 } 7407 7408 case ARM::VLD2LNdWB_register_Asm_8: 7409 case ARM::VLD2LNdWB_register_Asm_16: 7410 case ARM::VLD2LNdWB_register_Asm_32: 7411 case ARM::VLD2LNqWB_register_Asm_16: 7412 case ARM::VLD2LNqWB_register_Asm_32: { 7413 MCInst TmpInst; 7414 // Shuffle the operands around so the lane index operand is in the 7415 // right place. 7416 unsigned Spacing; 7417 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7418 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7419 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7420 Spacing)); 7421 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7422 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7423 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7424 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7425 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7426 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7427 Spacing)); 7428 TmpInst.addOperand(Inst.getOperand(1)); // lane 7429 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7430 TmpInst.addOperand(Inst.getOperand(6)); 7431 Inst = TmpInst; 7432 return true; 7433 } 7434 7435 case ARM::VLD3LNdWB_register_Asm_8: 7436 case ARM::VLD3LNdWB_register_Asm_16: 7437 case ARM::VLD3LNdWB_register_Asm_32: 7438 case ARM::VLD3LNqWB_register_Asm_16: 7439 case ARM::VLD3LNqWB_register_Asm_32: { 7440 MCInst TmpInst; 7441 // Shuffle the operands around so the lane index operand is in the 7442 // right place. 7443 unsigned Spacing; 7444 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7445 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7446 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7447 Spacing)); 7448 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7449 Spacing * 2)); 7450 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7451 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7452 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7453 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7454 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7455 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7456 Spacing)); 7457 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7458 Spacing * 2)); 7459 TmpInst.addOperand(Inst.getOperand(1)); // lane 7460 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7461 TmpInst.addOperand(Inst.getOperand(6)); 7462 Inst = TmpInst; 7463 return true; 7464 } 7465 7466 case ARM::VLD4LNdWB_register_Asm_8: 7467 case ARM::VLD4LNdWB_register_Asm_16: 7468 case ARM::VLD4LNdWB_register_Asm_32: 7469 case ARM::VLD4LNqWB_register_Asm_16: 7470 case ARM::VLD4LNqWB_register_Asm_32: { 7471 MCInst TmpInst; 7472 // Shuffle the operands around so the lane index operand is in the 7473 // right place. 7474 unsigned Spacing; 7475 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7476 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7477 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7478 Spacing)); 7479 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7480 Spacing * 2)); 7481 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7482 Spacing * 3)); 7483 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7484 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7485 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7486 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7487 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7488 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7489 Spacing)); 7490 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7491 Spacing * 2)); 7492 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7493 Spacing * 3)); 7494 TmpInst.addOperand(Inst.getOperand(1)); // lane 7495 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7496 TmpInst.addOperand(Inst.getOperand(6)); 7497 Inst = TmpInst; 7498 return true; 7499 } 7500 7501 case ARM::VLD1LNdWB_fixed_Asm_8: 7502 case ARM::VLD1LNdWB_fixed_Asm_16: 7503 case ARM::VLD1LNdWB_fixed_Asm_32: { 7504 MCInst TmpInst; 7505 // Shuffle the operands around so the lane index operand is in the 7506 // right place. 7507 unsigned Spacing; 7508 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7509 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7510 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7511 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7512 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7513 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7514 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7515 TmpInst.addOperand(Inst.getOperand(1)); // lane 7516 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7517 TmpInst.addOperand(Inst.getOperand(5)); 7518 Inst = TmpInst; 7519 return true; 7520 } 7521 7522 case ARM::VLD2LNdWB_fixed_Asm_8: 7523 case ARM::VLD2LNdWB_fixed_Asm_16: 7524 case ARM::VLD2LNdWB_fixed_Asm_32: 7525 case ARM::VLD2LNqWB_fixed_Asm_16: 7526 case ARM::VLD2LNqWB_fixed_Asm_32: { 7527 MCInst TmpInst; 7528 // Shuffle the operands around so the lane index operand is in the 7529 // right place. 7530 unsigned Spacing; 7531 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7532 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7533 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7534 Spacing)); 7535 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7536 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7537 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7538 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7539 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7540 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7541 Spacing)); 7542 TmpInst.addOperand(Inst.getOperand(1)); // lane 7543 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7544 TmpInst.addOperand(Inst.getOperand(5)); 7545 Inst = TmpInst; 7546 return true; 7547 } 7548 7549 case ARM::VLD3LNdWB_fixed_Asm_8: 7550 case ARM::VLD3LNdWB_fixed_Asm_16: 7551 case ARM::VLD3LNdWB_fixed_Asm_32: 7552 case ARM::VLD3LNqWB_fixed_Asm_16: 7553 case ARM::VLD3LNqWB_fixed_Asm_32: { 7554 MCInst TmpInst; 7555 // Shuffle the operands around so the lane index operand is in the 7556 // right place. 7557 unsigned Spacing; 7558 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7559 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7560 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7561 Spacing)); 7562 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7563 Spacing * 2)); 7564 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7565 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7566 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7567 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7568 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7569 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7570 Spacing)); 7571 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7572 Spacing * 2)); 7573 TmpInst.addOperand(Inst.getOperand(1)); // lane 7574 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7575 TmpInst.addOperand(Inst.getOperand(5)); 7576 Inst = TmpInst; 7577 return true; 7578 } 7579 7580 case ARM::VLD4LNdWB_fixed_Asm_8: 7581 case ARM::VLD4LNdWB_fixed_Asm_16: 7582 case ARM::VLD4LNdWB_fixed_Asm_32: 7583 case ARM::VLD4LNqWB_fixed_Asm_16: 7584 case ARM::VLD4LNqWB_fixed_Asm_32: { 7585 MCInst TmpInst; 7586 // Shuffle the operands around so the lane index operand is in the 7587 // right place. 7588 unsigned Spacing; 7589 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7590 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7591 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7592 Spacing)); 7593 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7594 Spacing * 2)); 7595 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7596 Spacing * 3)); 7597 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7598 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7599 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7600 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7601 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7602 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7603 Spacing)); 7604 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7605 Spacing * 2)); 7606 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7607 Spacing * 3)); 7608 TmpInst.addOperand(Inst.getOperand(1)); // lane 7609 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7610 TmpInst.addOperand(Inst.getOperand(5)); 7611 Inst = TmpInst; 7612 return true; 7613 } 7614 7615 case ARM::VLD1LNdAsm_8: 7616 case ARM::VLD1LNdAsm_16: 7617 case ARM::VLD1LNdAsm_32: { 7618 MCInst TmpInst; 7619 // Shuffle the operands around so the lane index operand is in the 7620 // right place. 7621 unsigned Spacing; 7622 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7623 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7624 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7625 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7626 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7627 TmpInst.addOperand(Inst.getOperand(1)); // lane 7628 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7629 TmpInst.addOperand(Inst.getOperand(5)); 7630 Inst = TmpInst; 7631 return true; 7632 } 7633 7634 case ARM::VLD2LNdAsm_8: 7635 case ARM::VLD2LNdAsm_16: 7636 case ARM::VLD2LNdAsm_32: 7637 case ARM::VLD2LNqAsm_16: 7638 case ARM::VLD2LNqAsm_32: { 7639 MCInst TmpInst; 7640 // Shuffle the operands around so the lane index operand is in the 7641 // right place. 7642 unsigned Spacing; 7643 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7644 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7645 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7646 Spacing)); 7647 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7648 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7649 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7650 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7651 Spacing)); 7652 TmpInst.addOperand(Inst.getOperand(1)); // lane 7653 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7654 TmpInst.addOperand(Inst.getOperand(5)); 7655 Inst = TmpInst; 7656 return true; 7657 } 7658 7659 case ARM::VLD3LNdAsm_8: 7660 case ARM::VLD3LNdAsm_16: 7661 case ARM::VLD3LNdAsm_32: 7662 case ARM::VLD3LNqAsm_16: 7663 case ARM::VLD3LNqAsm_32: { 7664 MCInst TmpInst; 7665 // Shuffle the operands around so the lane index operand is in the 7666 // right place. 7667 unsigned Spacing; 7668 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7669 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7670 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7671 Spacing)); 7672 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7673 Spacing * 2)); 7674 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7675 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7676 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7677 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7678 Spacing)); 7679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7680 Spacing * 2)); 7681 TmpInst.addOperand(Inst.getOperand(1)); // lane 7682 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7683 TmpInst.addOperand(Inst.getOperand(5)); 7684 Inst = TmpInst; 7685 return true; 7686 } 7687 7688 case ARM::VLD4LNdAsm_8: 7689 case ARM::VLD4LNdAsm_16: 7690 case ARM::VLD4LNdAsm_32: 7691 case ARM::VLD4LNqAsm_16: 7692 case ARM::VLD4LNqAsm_32: { 7693 MCInst TmpInst; 7694 // Shuffle the operands around so the lane index operand is in the 7695 // right place. 7696 unsigned Spacing; 7697 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7698 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7699 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7700 Spacing)); 7701 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7702 Spacing * 2)); 7703 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7704 Spacing * 3)); 7705 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7706 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7707 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7708 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7709 Spacing)); 7710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7711 Spacing * 2)); 7712 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7713 Spacing * 3)); 7714 TmpInst.addOperand(Inst.getOperand(1)); // lane 7715 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7716 TmpInst.addOperand(Inst.getOperand(5)); 7717 Inst = TmpInst; 7718 return true; 7719 } 7720 7721 // VLD3DUP single 3-element structure to all lanes instructions. 7722 case ARM::VLD3DUPdAsm_8: 7723 case ARM::VLD3DUPdAsm_16: 7724 case ARM::VLD3DUPdAsm_32: 7725 case ARM::VLD3DUPqAsm_8: 7726 case ARM::VLD3DUPqAsm_16: 7727 case ARM::VLD3DUPqAsm_32: { 7728 MCInst TmpInst; 7729 unsigned Spacing; 7730 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7731 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7732 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7733 Spacing)); 7734 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7735 Spacing * 2)); 7736 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7737 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7738 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7739 TmpInst.addOperand(Inst.getOperand(4)); 7740 Inst = TmpInst; 7741 return true; 7742 } 7743 7744 case ARM::VLD3DUPdWB_fixed_Asm_8: 7745 case ARM::VLD3DUPdWB_fixed_Asm_16: 7746 case ARM::VLD3DUPdWB_fixed_Asm_32: 7747 case ARM::VLD3DUPqWB_fixed_Asm_8: 7748 case ARM::VLD3DUPqWB_fixed_Asm_16: 7749 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7750 MCInst TmpInst; 7751 unsigned Spacing; 7752 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7753 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7754 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7755 Spacing)); 7756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7757 Spacing * 2)); 7758 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7759 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7760 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7761 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7762 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7763 TmpInst.addOperand(Inst.getOperand(4)); 7764 Inst = TmpInst; 7765 return true; 7766 } 7767 7768 case ARM::VLD3DUPdWB_register_Asm_8: 7769 case ARM::VLD3DUPdWB_register_Asm_16: 7770 case ARM::VLD3DUPdWB_register_Asm_32: 7771 case ARM::VLD3DUPqWB_register_Asm_8: 7772 case ARM::VLD3DUPqWB_register_Asm_16: 7773 case ARM::VLD3DUPqWB_register_Asm_32: { 7774 MCInst TmpInst; 7775 unsigned Spacing; 7776 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7777 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7778 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7779 Spacing)); 7780 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7781 Spacing * 2)); 7782 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7783 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7784 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7785 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7786 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7787 TmpInst.addOperand(Inst.getOperand(5)); 7788 Inst = TmpInst; 7789 return true; 7790 } 7791 7792 // VLD3 multiple 3-element structure instructions. 7793 case ARM::VLD3dAsm_8: 7794 case ARM::VLD3dAsm_16: 7795 case ARM::VLD3dAsm_32: 7796 case ARM::VLD3qAsm_8: 7797 case ARM::VLD3qAsm_16: 7798 case ARM::VLD3qAsm_32: { 7799 MCInst TmpInst; 7800 unsigned Spacing; 7801 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7802 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7803 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7804 Spacing)); 7805 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7806 Spacing * 2)); 7807 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7808 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7809 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7810 TmpInst.addOperand(Inst.getOperand(4)); 7811 Inst = TmpInst; 7812 return true; 7813 } 7814 7815 case ARM::VLD3dWB_fixed_Asm_8: 7816 case ARM::VLD3dWB_fixed_Asm_16: 7817 case ARM::VLD3dWB_fixed_Asm_32: 7818 case ARM::VLD3qWB_fixed_Asm_8: 7819 case ARM::VLD3qWB_fixed_Asm_16: 7820 case ARM::VLD3qWB_fixed_Asm_32: { 7821 MCInst TmpInst; 7822 unsigned Spacing; 7823 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7824 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7825 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7826 Spacing)); 7827 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7828 Spacing * 2)); 7829 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7830 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7831 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7832 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7833 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7834 TmpInst.addOperand(Inst.getOperand(4)); 7835 Inst = TmpInst; 7836 return true; 7837 } 7838 7839 case ARM::VLD3dWB_register_Asm_8: 7840 case ARM::VLD3dWB_register_Asm_16: 7841 case ARM::VLD3dWB_register_Asm_32: 7842 case ARM::VLD3qWB_register_Asm_8: 7843 case ARM::VLD3qWB_register_Asm_16: 7844 case ARM::VLD3qWB_register_Asm_32: { 7845 MCInst TmpInst; 7846 unsigned Spacing; 7847 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7848 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7849 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7850 Spacing)); 7851 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7852 Spacing * 2)); 7853 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7854 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7855 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7856 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7857 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7858 TmpInst.addOperand(Inst.getOperand(5)); 7859 Inst = TmpInst; 7860 return true; 7861 } 7862 7863 // VLD4DUP single 3-element structure to all lanes instructions. 7864 case ARM::VLD4DUPdAsm_8: 7865 case ARM::VLD4DUPdAsm_16: 7866 case ARM::VLD4DUPdAsm_32: 7867 case ARM::VLD4DUPqAsm_8: 7868 case ARM::VLD4DUPqAsm_16: 7869 case ARM::VLD4DUPqAsm_32: { 7870 MCInst TmpInst; 7871 unsigned Spacing; 7872 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7873 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7874 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7875 Spacing)); 7876 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7877 Spacing * 2)); 7878 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7879 Spacing * 3)); 7880 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7881 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7882 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7883 TmpInst.addOperand(Inst.getOperand(4)); 7884 Inst = TmpInst; 7885 return true; 7886 } 7887 7888 case ARM::VLD4DUPdWB_fixed_Asm_8: 7889 case ARM::VLD4DUPdWB_fixed_Asm_16: 7890 case ARM::VLD4DUPdWB_fixed_Asm_32: 7891 case ARM::VLD4DUPqWB_fixed_Asm_8: 7892 case ARM::VLD4DUPqWB_fixed_Asm_16: 7893 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7894 MCInst TmpInst; 7895 unsigned Spacing; 7896 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7897 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7898 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7899 Spacing)); 7900 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7901 Spacing * 2)); 7902 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7903 Spacing * 3)); 7904 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7905 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7906 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7907 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7908 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7909 TmpInst.addOperand(Inst.getOperand(4)); 7910 Inst = TmpInst; 7911 return true; 7912 } 7913 7914 case ARM::VLD4DUPdWB_register_Asm_8: 7915 case ARM::VLD4DUPdWB_register_Asm_16: 7916 case ARM::VLD4DUPdWB_register_Asm_32: 7917 case ARM::VLD4DUPqWB_register_Asm_8: 7918 case ARM::VLD4DUPqWB_register_Asm_16: 7919 case ARM::VLD4DUPqWB_register_Asm_32: { 7920 MCInst TmpInst; 7921 unsigned Spacing; 7922 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7923 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7924 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7925 Spacing)); 7926 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7927 Spacing * 2)); 7928 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7929 Spacing * 3)); 7930 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7931 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7932 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7933 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7934 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7935 TmpInst.addOperand(Inst.getOperand(5)); 7936 Inst = TmpInst; 7937 return true; 7938 } 7939 7940 // VLD4 multiple 4-element structure instructions. 7941 case ARM::VLD4dAsm_8: 7942 case ARM::VLD4dAsm_16: 7943 case ARM::VLD4dAsm_32: 7944 case ARM::VLD4qAsm_8: 7945 case ARM::VLD4qAsm_16: 7946 case ARM::VLD4qAsm_32: { 7947 MCInst TmpInst; 7948 unsigned Spacing; 7949 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7950 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7951 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7952 Spacing)); 7953 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7954 Spacing * 2)); 7955 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7956 Spacing * 3)); 7957 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7958 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7959 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7960 TmpInst.addOperand(Inst.getOperand(4)); 7961 Inst = TmpInst; 7962 return true; 7963 } 7964 7965 case ARM::VLD4dWB_fixed_Asm_8: 7966 case ARM::VLD4dWB_fixed_Asm_16: 7967 case ARM::VLD4dWB_fixed_Asm_32: 7968 case ARM::VLD4qWB_fixed_Asm_8: 7969 case ARM::VLD4qWB_fixed_Asm_16: 7970 case ARM::VLD4qWB_fixed_Asm_32: { 7971 MCInst TmpInst; 7972 unsigned Spacing; 7973 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7974 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7975 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7976 Spacing)); 7977 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7978 Spacing * 2)); 7979 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7980 Spacing * 3)); 7981 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7982 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7983 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7984 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7985 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7986 TmpInst.addOperand(Inst.getOperand(4)); 7987 Inst = TmpInst; 7988 return true; 7989 } 7990 7991 case ARM::VLD4dWB_register_Asm_8: 7992 case ARM::VLD4dWB_register_Asm_16: 7993 case ARM::VLD4dWB_register_Asm_32: 7994 case ARM::VLD4qWB_register_Asm_8: 7995 case ARM::VLD4qWB_register_Asm_16: 7996 case ARM::VLD4qWB_register_Asm_32: { 7997 MCInst TmpInst; 7998 unsigned Spacing; 7999 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8000 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8001 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8002 Spacing)); 8003 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8004 Spacing * 2)); 8005 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8006 Spacing * 3)); 8007 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8008 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8009 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8010 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8011 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8012 TmpInst.addOperand(Inst.getOperand(5)); 8013 Inst = TmpInst; 8014 return true; 8015 } 8016 8017 // VST3 multiple 3-element structure instructions. 8018 case ARM::VST3dAsm_8: 8019 case ARM::VST3dAsm_16: 8020 case ARM::VST3dAsm_32: 8021 case ARM::VST3qAsm_8: 8022 case ARM::VST3qAsm_16: 8023 case ARM::VST3qAsm_32: { 8024 MCInst TmpInst; 8025 unsigned Spacing; 8026 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8027 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8028 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8029 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8030 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8031 Spacing)); 8032 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8033 Spacing * 2)); 8034 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8035 TmpInst.addOperand(Inst.getOperand(4)); 8036 Inst = TmpInst; 8037 return true; 8038 } 8039 8040 case ARM::VST3dWB_fixed_Asm_8: 8041 case ARM::VST3dWB_fixed_Asm_16: 8042 case ARM::VST3dWB_fixed_Asm_32: 8043 case ARM::VST3qWB_fixed_Asm_8: 8044 case ARM::VST3qWB_fixed_Asm_16: 8045 case ARM::VST3qWB_fixed_Asm_32: { 8046 MCInst TmpInst; 8047 unsigned Spacing; 8048 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8049 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8050 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8051 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8052 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8053 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8054 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8055 Spacing)); 8056 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8057 Spacing * 2)); 8058 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8059 TmpInst.addOperand(Inst.getOperand(4)); 8060 Inst = TmpInst; 8061 return true; 8062 } 8063 8064 case ARM::VST3dWB_register_Asm_8: 8065 case ARM::VST3dWB_register_Asm_16: 8066 case ARM::VST3dWB_register_Asm_32: 8067 case ARM::VST3qWB_register_Asm_8: 8068 case ARM::VST3qWB_register_Asm_16: 8069 case ARM::VST3qWB_register_Asm_32: { 8070 MCInst TmpInst; 8071 unsigned Spacing; 8072 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8073 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8074 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8075 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8076 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8077 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8078 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8079 Spacing)); 8080 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8081 Spacing * 2)); 8082 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8083 TmpInst.addOperand(Inst.getOperand(5)); 8084 Inst = TmpInst; 8085 return true; 8086 } 8087 8088 // VST4 multiple 3-element structure instructions. 8089 case ARM::VST4dAsm_8: 8090 case ARM::VST4dAsm_16: 8091 case ARM::VST4dAsm_32: 8092 case ARM::VST4qAsm_8: 8093 case ARM::VST4qAsm_16: 8094 case ARM::VST4qAsm_32: { 8095 MCInst TmpInst; 8096 unsigned Spacing; 8097 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8098 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8099 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8100 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8101 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8102 Spacing)); 8103 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8104 Spacing * 2)); 8105 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8106 Spacing * 3)); 8107 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8108 TmpInst.addOperand(Inst.getOperand(4)); 8109 Inst = TmpInst; 8110 return true; 8111 } 8112 8113 case ARM::VST4dWB_fixed_Asm_8: 8114 case ARM::VST4dWB_fixed_Asm_16: 8115 case ARM::VST4dWB_fixed_Asm_32: 8116 case ARM::VST4qWB_fixed_Asm_8: 8117 case ARM::VST4qWB_fixed_Asm_16: 8118 case ARM::VST4qWB_fixed_Asm_32: { 8119 MCInst TmpInst; 8120 unsigned Spacing; 8121 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8122 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8123 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8124 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8125 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8126 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8127 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8128 Spacing)); 8129 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8130 Spacing * 2)); 8131 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8132 Spacing * 3)); 8133 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8134 TmpInst.addOperand(Inst.getOperand(4)); 8135 Inst = TmpInst; 8136 return true; 8137 } 8138 8139 case ARM::VST4dWB_register_Asm_8: 8140 case ARM::VST4dWB_register_Asm_16: 8141 case ARM::VST4dWB_register_Asm_32: 8142 case ARM::VST4qWB_register_Asm_8: 8143 case ARM::VST4qWB_register_Asm_16: 8144 case ARM::VST4qWB_register_Asm_32: { 8145 MCInst TmpInst; 8146 unsigned Spacing; 8147 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8148 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8149 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8150 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8151 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8152 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8154 Spacing)); 8155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8156 Spacing * 2)); 8157 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8158 Spacing * 3)); 8159 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8160 TmpInst.addOperand(Inst.getOperand(5)); 8161 Inst = TmpInst; 8162 return true; 8163 } 8164 8165 // Handle encoding choice for the shift-immediate instructions. 8166 case ARM::t2LSLri: 8167 case ARM::t2LSRri: 8168 case ARM::t2ASRri: 8169 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8170 isARMLowRegister(Inst.getOperand(1).getReg()) && 8171 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8172 !HasWideQualifier) { 8173 unsigned NewOpc; 8174 switch (Inst.getOpcode()) { 8175 default: llvm_unreachable("unexpected opcode"); 8176 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8177 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8178 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8179 } 8180 // The Thumb1 operands aren't in the same order. Awesome, eh? 8181 MCInst TmpInst; 8182 TmpInst.setOpcode(NewOpc); 8183 TmpInst.addOperand(Inst.getOperand(0)); 8184 TmpInst.addOperand(Inst.getOperand(5)); 8185 TmpInst.addOperand(Inst.getOperand(1)); 8186 TmpInst.addOperand(Inst.getOperand(2)); 8187 TmpInst.addOperand(Inst.getOperand(3)); 8188 TmpInst.addOperand(Inst.getOperand(4)); 8189 Inst = TmpInst; 8190 return true; 8191 } 8192 return false; 8193 8194 // Handle the Thumb2 mode MOV complex aliases. 8195 case ARM::t2MOVsr: 8196 case ARM::t2MOVSsr: { 8197 // Which instruction to expand to depends on the CCOut operand and 8198 // whether we're in an IT block if the register operands are low 8199 // registers. 8200 bool isNarrow = false; 8201 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8202 isARMLowRegister(Inst.getOperand(1).getReg()) && 8203 isARMLowRegister(Inst.getOperand(2).getReg()) && 8204 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8205 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8206 !HasWideQualifier) 8207 isNarrow = true; 8208 MCInst TmpInst; 8209 unsigned newOpc; 8210 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8211 default: llvm_unreachable("unexpected opcode!"); 8212 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8213 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8214 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8215 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8216 } 8217 TmpInst.setOpcode(newOpc); 8218 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8219 if (isNarrow) 8220 TmpInst.addOperand(MCOperand::createReg( 8221 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8222 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8223 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8224 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8225 TmpInst.addOperand(Inst.getOperand(5)); 8226 if (!isNarrow) 8227 TmpInst.addOperand(MCOperand::createReg( 8228 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8229 Inst = TmpInst; 8230 return true; 8231 } 8232 case ARM::t2MOVsi: 8233 case ARM::t2MOVSsi: { 8234 // Which instruction to expand to depends on the CCOut operand and 8235 // whether we're in an IT block if the register operands are low 8236 // registers. 8237 bool isNarrow = false; 8238 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8239 isARMLowRegister(Inst.getOperand(1).getReg()) && 8240 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8241 !HasWideQualifier) 8242 isNarrow = true; 8243 MCInst TmpInst; 8244 unsigned newOpc; 8245 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8246 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8247 bool isMov = false; 8248 // MOV rd, rm, LSL #0 is actually a MOV instruction 8249 if (Shift == ARM_AM::lsl && Amount == 0) { 8250 isMov = true; 8251 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8252 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8253 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8254 // instead. 8255 if (inITBlock()) { 8256 isNarrow = false; 8257 } 8258 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8259 } else { 8260 switch(Shift) { 8261 default: llvm_unreachable("unexpected opcode!"); 8262 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8263 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8264 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8265 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8266 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8267 } 8268 } 8269 if (Amount == 32) Amount = 0; 8270 TmpInst.setOpcode(newOpc); 8271 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8272 if (isNarrow && !isMov) 8273 TmpInst.addOperand(MCOperand::createReg( 8274 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8275 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8276 if (newOpc != ARM::t2RRX && !isMov) 8277 TmpInst.addOperand(MCOperand::createImm(Amount)); 8278 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8279 TmpInst.addOperand(Inst.getOperand(4)); 8280 if (!isNarrow) 8281 TmpInst.addOperand(MCOperand::createReg( 8282 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8283 Inst = TmpInst; 8284 return true; 8285 } 8286 // Handle the ARM mode MOV complex aliases. 8287 case ARM::ASRr: 8288 case ARM::LSRr: 8289 case ARM::LSLr: 8290 case ARM::RORr: { 8291 ARM_AM::ShiftOpc ShiftTy; 8292 switch(Inst.getOpcode()) { 8293 default: llvm_unreachable("unexpected opcode!"); 8294 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8295 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8296 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8297 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8298 } 8299 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8300 MCInst TmpInst; 8301 TmpInst.setOpcode(ARM::MOVsr); 8302 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8303 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8304 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8305 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8306 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8307 TmpInst.addOperand(Inst.getOperand(4)); 8308 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8309 Inst = TmpInst; 8310 return true; 8311 } 8312 case ARM::ASRi: 8313 case ARM::LSRi: 8314 case ARM::LSLi: 8315 case ARM::RORi: { 8316 ARM_AM::ShiftOpc ShiftTy; 8317 switch(Inst.getOpcode()) { 8318 default: llvm_unreachable("unexpected opcode!"); 8319 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8320 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8321 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8322 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8323 } 8324 // A shift by zero is a plain MOVr, not a MOVsi. 8325 unsigned Amt = Inst.getOperand(2).getImm(); 8326 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8327 // A shift by 32 should be encoded as 0 when permitted 8328 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8329 Amt = 0; 8330 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8331 MCInst TmpInst; 8332 TmpInst.setOpcode(Opc); 8333 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8334 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8335 if (Opc == ARM::MOVsi) 8336 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8337 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8338 TmpInst.addOperand(Inst.getOperand(4)); 8339 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8340 Inst = TmpInst; 8341 return true; 8342 } 8343 case ARM::RRXi: { 8344 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8345 MCInst TmpInst; 8346 TmpInst.setOpcode(ARM::MOVsi); 8347 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8348 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8349 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8350 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8351 TmpInst.addOperand(Inst.getOperand(3)); 8352 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8353 Inst = TmpInst; 8354 return true; 8355 } 8356 case ARM::t2LDMIA_UPD: { 8357 // If this is a load of a single register, then we should use 8358 // a post-indexed LDR instruction instead, per the ARM ARM. 8359 if (Inst.getNumOperands() != 5) 8360 return false; 8361 MCInst TmpInst; 8362 TmpInst.setOpcode(ARM::t2LDR_POST); 8363 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8364 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8365 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8366 TmpInst.addOperand(MCOperand::createImm(4)); 8367 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8368 TmpInst.addOperand(Inst.getOperand(3)); 8369 Inst = TmpInst; 8370 return true; 8371 } 8372 case ARM::t2STMDB_UPD: { 8373 // If this is a store of a single register, then we should use 8374 // a pre-indexed STR instruction instead, per the ARM ARM. 8375 if (Inst.getNumOperands() != 5) 8376 return false; 8377 MCInst TmpInst; 8378 TmpInst.setOpcode(ARM::t2STR_PRE); 8379 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8380 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8381 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8382 TmpInst.addOperand(MCOperand::createImm(-4)); 8383 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8384 TmpInst.addOperand(Inst.getOperand(3)); 8385 Inst = TmpInst; 8386 return true; 8387 } 8388 case ARM::LDMIA_UPD: 8389 // If this is a load of a single register via a 'pop', then we should use 8390 // a post-indexed LDR instruction instead, per the ARM ARM. 8391 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8392 Inst.getNumOperands() == 5) { 8393 MCInst TmpInst; 8394 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8395 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8396 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8397 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8398 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8399 TmpInst.addOperand(MCOperand::createImm(4)); 8400 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8401 TmpInst.addOperand(Inst.getOperand(3)); 8402 Inst = TmpInst; 8403 return true; 8404 } 8405 break; 8406 case ARM::STMDB_UPD: 8407 // If this is a store of a single register via a 'push', then we should use 8408 // a pre-indexed STR instruction instead, per the ARM ARM. 8409 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8410 Inst.getNumOperands() == 5) { 8411 MCInst TmpInst; 8412 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8413 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8414 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8415 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8416 TmpInst.addOperand(MCOperand::createImm(-4)); 8417 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8418 TmpInst.addOperand(Inst.getOperand(3)); 8419 Inst = TmpInst; 8420 } 8421 break; 8422 case ARM::t2ADDri12: 8423 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8424 // mnemonic was used (not "addw"), encoding T3 is preferred. 8425 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8426 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8427 break; 8428 Inst.setOpcode(ARM::t2ADDri); 8429 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8430 break; 8431 case ARM::t2SUBri12: 8432 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8433 // mnemonic was used (not "subw"), encoding T3 is preferred. 8434 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8435 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8436 break; 8437 Inst.setOpcode(ARM::t2SUBri); 8438 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8439 break; 8440 case ARM::tADDi8: 8441 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8442 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8443 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8444 // to encoding T1 if <Rd> is omitted." 8445 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8446 Inst.setOpcode(ARM::tADDi3); 8447 return true; 8448 } 8449 break; 8450 case ARM::tSUBi8: 8451 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8452 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8453 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8454 // to encoding T1 if <Rd> is omitted." 8455 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8456 Inst.setOpcode(ARM::tSUBi3); 8457 return true; 8458 } 8459 break; 8460 case ARM::t2ADDri: 8461 case ARM::t2SUBri: { 8462 // If the destination and first source operand are the same, and 8463 // the flags are compatible with the current IT status, use encoding T2 8464 // instead of T3. For compatibility with the system 'as'. Make sure the 8465 // wide encoding wasn't explicit. 8466 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8467 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8468 (Inst.getOperand(2).isImm() && 8469 (unsigned)Inst.getOperand(2).getImm() > 255) || 8470 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8471 HasWideQualifier) 8472 break; 8473 MCInst TmpInst; 8474 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8475 ARM::tADDi8 : ARM::tSUBi8); 8476 TmpInst.addOperand(Inst.getOperand(0)); 8477 TmpInst.addOperand(Inst.getOperand(5)); 8478 TmpInst.addOperand(Inst.getOperand(0)); 8479 TmpInst.addOperand(Inst.getOperand(2)); 8480 TmpInst.addOperand(Inst.getOperand(3)); 8481 TmpInst.addOperand(Inst.getOperand(4)); 8482 Inst = TmpInst; 8483 return true; 8484 } 8485 case ARM::t2ADDrr: { 8486 // If the destination and first source operand are the same, and 8487 // there's no setting of the flags, use encoding T2 instead of T3. 8488 // Note that this is only for ADD, not SUB. This mirrors the system 8489 // 'as' behaviour. Also take advantage of ADD being commutative. 8490 // Make sure the wide encoding wasn't explicit. 8491 bool Swap = false; 8492 auto DestReg = Inst.getOperand(0).getReg(); 8493 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8494 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8495 Transform = true; 8496 Swap = true; 8497 } 8498 if (!Transform || 8499 Inst.getOperand(5).getReg() != 0 || 8500 HasWideQualifier) 8501 break; 8502 MCInst TmpInst; 8503 TmpInst.setOpcode(ARM::tADDhirr); 8504 TmpInst.addOperand(Inst.getOperand(0)); 8505 TmpInst.addOperand(Inst.getOperand(0)); 8506 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8507 TmpInst.addOperand(Inst.getOperand(3)); 8508 TmpInst.addOperand(Inst.getOperand(4)); 8509 Inst = TmpInst; 8510 return true; 8511 } 8512 case ARM::tADDrSP: 8513 // If the non-SP source operand and the destination operand are not the 8514 // same, we need to use the 32-bit encoding if it's available. 8515 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8516 Inst.setOpcode(ARM::t2ADDrr); 8517 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8518 return true; 8519 } 8520 break; 8521 case ARM::tB: 8522 // A Thumb conditional branch outside of an IT block is a tBcc. 8523 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8524 Inst.setOpcode(ARM::tBcc); 8525 return true; 8526 } 8527 break; 8528 case ARM::t2B: 8529 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8530 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8531 Inst.setOpcode(ARM::t2Bcc); 8532 return true; 8533 } 8534 break; 8535 case ARM::t2Bcc: 8536 // If the conditional is AL or we're in an IT block, we really want t2B. 8537 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8538 Inst.setOpcode(ARM::t2B); 8539 return true; 8540 } 8541 break; 8542 case ARM::tBcc: 8543 // If the conditional is AL, we really want tB. 8544 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8545 Inst.setOpcode(ARM::tB); 8546 return true; 8547 } 8548 break; 8549 case ARM::tLDMIA: { 8550 // If the register list contains any high registers, or if the writeback 8551 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8552 // instead if we're in Thumb2. Otherwise, this should have generated 8553 // an error in validateInstruction(). 8554 unsigned Rn = Inst.getOperand(0).getReg(); 8555 bool hasWritebackToken = 8556 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8557 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8558 bool listContainsBase; 8559 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8560 (!listContainsBase && !hasWritebackToken) || 8561 (listContainsBase && hasWritebackToken)) { 8562 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8563 assert(isThumbTwo()); 8564 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8565 // If we're switching to the updating version, we need to insert 8566 // the writeback tied operand. 8567 if (hasWritebackToken) 8568 Inst.insert(Inst.begin(), 8569 MCOperand::createReg(Inst.getOperand(0).getReg())); 8570 return true; 8571 } 8572 break; 8573 } 8574 case ARM::tSTMIA_UPD: { 8575 // If the register list contains any high registers, we need to use 8576 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8577 // should have generated an error in validateInstruction(). 8578 unsigned Rn = Inst.getOperand(0).getReg(); 8579 bool listContainsBase; 8580 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8581 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8582 assert(isThumbTwo()); 8583 Inst.setOpcode(ARM::t2STMIA_UPD); 8584 return true; 8585 } 8586 break; 8587 } 8588 case ARM::tPOP: { 8589 bool listContainsBase; 8590 // If the register list contains any high registers, we need to use 8591 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8592 // should have generated an error in validateInstruction(). 8593 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8594 return false; 8595 assert(isThumbTwo()); 8596 Inst.setOpcode(ARM::t2LDMIA_UPD); 8597 // Add the base register and writeback operands. 8598 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8599 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8600 return true; 8601 } 8602 case ARM::tPUSH: { 8603 bool listContainsBase; 8604 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8605 return false; 8606 assert(isThumbTwo()); 8607 Inst.setOpcode(ARM::t2STMDB_UPD); 8608 // Add the base register and writeback operands. 8609 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8610 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8611 return true; 8612 } 8613 case ARM::t2MOVi: 8614 // If we can use the 16-bit encoding and the user didn't explicitly 8615 // request the 32-bit variant, transform it here. 8616 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8617 (Inst.getOperand(1).isImm() && 8618 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8619 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8620 !HasWideQualifier) { 8621 // The operands aren't in the same order for tMOVi8... 8622 MCInst TmpInst; 8623 TmpInst.setOpcode(ARM::tMOVi8); 8624 TmpInst.addOperand(Inst.getOperand(0)); 8625 TmpInst.addOperand(Inst.getOperand(4)); 8626 TmpInst.addOperand(Inst.getOperand(1)); 8627 TmpInst.addOperand(Inst.getOperand(2)); 8628 TmpInst.addOperand(Inst.getOperand(3)); 8629 Inst = TmpInst; 8630 return true; 8631 } 8632 break; 8633 8634 case ARM::t2MOVr: 8635 // If we can use the 16-bit encoding and the user didn't explicitly 8636 // request the 32-bit variant, transform it here. 8637 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8638 isARMLowRegister(Inst.getOperand(1).getReg()) && 8639 Inst.getOperand(2).getImm() == ARMCC::AL && 8640 Inst.getOperand(4).getReg() == ARM::CPSR && 8641 !HasWideQualifier) { 8642 // The operands aren't the same for tMOV[S]r... (no cc_out) 8643 MCInst TmpInst; 8644 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8645 TmpInst.addOperand(Inst.getOperand(0)); 8646 TmpInst.addOperand(Inst.getOperand(1)); 8647 TmpInst.addOperand(Inst.getOperand(2)); 8648 TmpInst.addOperand(Inst.getOperand(3)); 8649 Inst = TmpInst; 8650 return true; 8651 } 8652 break; 8653 8654 case ARM::t2SXTH: 8655 case ARM::t2SXTB: 8656 case ARM::t2UXTH: 8657 case ARM::t2UXTB: 8658 // If we can use the 16-bit encoding and the user didn't explicitly 8659 // request the 32-bit variant, transform it here. 8660 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8661 isARMLowRegister(Inst.getOperand(1).getReg()) && 8662 Inst.getOperand(2).getImm() == 0 && 8663 !HasWideQualifier) { 8664 unsigned NewOpc; 8665 switch (Inst.getOpcode()) { 8666 default: llvm_unreachable("Illegal opcode!"); 8667 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8668 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8669 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8670 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8671 } 8672 // The operands aren't the same for thumb1 (no rotate operand). 8673 MCInst TmpInst; 8674 TmpInst.setOpcode(NewOpc); 8675 TmpInst.addOperand(Inst.getOperand(0)); 8676 TmpInst.addOperand(Inst.getOperand(1)); 8677 TmpInst.addOperand(Inst.getOperand(3)); 8678 TmpInst.addOperand(Inst.getOperand(4)); 8679 Inst = TmpInst; 8680 return true; 8681 } 8682 break; 8683 8684 case ARM::MOVsi: { 8685 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8686 // rrx shifts and asr/lsr of #32 is encoded as 0 8687 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8688 return false; 8689 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8690 // Shifting by zero is accepted as a vanilla 'MOVr' 8691 MCInst TmpInst; 8692 TmpInst.setOpcode(ARM::MOVr); 8693 TmpInst.addOperand(Inst.getOperand(0)); 8694 TmpInst.addOperand(Inst.getOperand(1)); 8695 TmpInst.addOperand(Inst.getOperand(3)); 8696 TmpInst.addOperand(Inst.getOperand(4)); 8697 TmpInst.addOperand(Inst.getOperand(5)); 8698 Inst = TmpInst; 8699 return true; 8700 } 8701 return false; 8702 } 8703 case ARM::ANDrsi: 8704 case ARM::ORRrsi: 8705 case ARM::EORrsi: 8706 case ARM::BICrsi: 8707 case ARM::SUBrsi: 8708 case ARM::ADDrsi: { 8709 unsigned newOpc; 8710 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8711 if (SOpc == ARM_AM::rrx) return false; 8712 switch (Inst.getOpcode()) { 8713 default: llvm_unreachable("unexpected opcode!"); 8714 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8715 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8716 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8717 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8718 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8719 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8720 } 8721 // If the shift is by zero, use the non-shifted instruction definition. 8722 // The exception is for right shifts, where 0 == 32 8723 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8724 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8725 MCInst TmpInst; 8726 TmpInst.setOpcode(newOpc); 8727 TmpInst.addOperand(Inst.getOperand(0)); 8728 TmpInst.addOperand(Inst.getOperand(1)); 8729 TmpInst.addOperand(Inst.getOperand(2)); 8730 TmpInst.addOperand(Inst.getOperand(4)); 8731 TmpInst.addOperand(Inst.getOperand(5)); 8732 TmpInst.addOperand(Inst.getOperand(6)); 8733 Inst = TmpInst; 8734 return true; 8735 } 8736 return false; 8737 } 8738 case ARM::ITasm: 8739 case ARM::t2IT: { 8740 MCOperand &MO = Inst.getOperand(1); 8741 unsigned Mask = MO.getImm(); 8742 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8743 8744 // Set up the IT block state according to the IT instruction we just 8745 // matched. 8746 assert(!inITBlock() && "nested IT blocks?!"); 8747 startExplicitITBlock(Cond, Mask); 8748 MO.setImm(getITMaskEncoding()); 8749 break; 8750 } 8751 case ARM::t2LSLrr: 8752 case ARM::t2LSRrr: 8753 case ARM::t2ASRrr: 8754 case ARM::t2SBCrr: 8755 case ARM::t2RORrr: 8756 case ARM::t2BICrr: 8757 // Assemblers should use the narrow encodings of these instructions when permissible. 8758 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8759 isARMLowRegister(Inst.getOperand(2).getReg())) && 8760 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8761 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8762 !HasWideQualifier) { 8763 unsigned NewOpc; 8764 switch (Inst.getOpcode()) { 8765 default: llvm_unreachable("unexpected opcode"); 8766 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8767 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8768 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8769 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8770 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8771 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8772 } 8773 MCInst TmpInst; 8774 TmpInst.setOpcode(NewOpc); 8775 TmpInst.addOperand(Inst.getOperand(0)); 8776 TmpInst.addOperand(Inst.getOperand(5)); 8777 TmpInst.addOperand(Inst.getOperand(1)); 8778 TmpInst.addOperand(Inst.getOperand(2)); 8779 TmpInst.addOperand(Inst.getOperand(3)); 8780 TmpInst.addOperand(Inst.getOperand(4)); 8781 Inst = TmpInst; 8782 return true; 8783 } 8784 return false; 8785 8786 case ARM::t2ANDrr: 8787 case ARM::t2EORrr: 8788 case ARM::t2ADCrr: 8789 case ARM::t2ORRrr: 8790 // Assemblers should use the narrow encodings of these instructions when permissible. 8791 // These instructions are special in that they are commutable, so shorter encodings 8792 // are available more often. 8793 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8794 isARMLowRegister(Inst.getOperand(2).getReg())) && 8795 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8796 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8797 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8798 !HasWideQualifier) { 8799 unsigned NewOpc; 8800 switch (Inst.getOpcode()) { 8801 default: llvm_unreachable("unexpected opcode"); 8802 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8803 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8804 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8805 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8806 } 8807 MCInst TmpInst; 8808 TmpInst.setOpcode(NewOpc); 8809 TmpInst.addOperand(Inst.getOperand(0)); 8810 TmpInst.addOperand(Inst.getOperand(5)); 8811 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8812 TmpInst.addOperand(Inst.getOperand(1)); 8813 TmpInst.addOperand(Inst.getOperand(2)); 8814 } else { 8815 TmpInst.addOperand(Inst.getOperand(2)); 8816 TmpInst.addOperand(Inst.getOperand(1)); 8817 } 8818 TmpInst.addOperand(Inst.getOperand(3)); 8819 TmpInst.addOperand(Inst.getOperand(4)); 8820 Inst = TmpInst; 8821 return true; 8822 } 8823 return false; 8824 } 8825 return false; 8826 } 8827 8828 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8829 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8830 // suffix depending on whether they're in an IT block or not. 8831 unsigned Opc = Inst.getOpcode(); 8832 const MCInstrDesc &MCID = MII.get(Opc); 8833 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8834 assert(MCID.hasOptionalDef() && 8835 "optionally flag setting instruction missing optional def operand"); 8836 assert(MCID.NumOperands == Inst.getNumOperands() && 8837 "operand count mismatch!"); 8838 // Find the optional-def operand (cc_out). 8839 unsigned OpNo; 8840 for (OpNo = 0; 8841 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8842 ++OpNo) 8843 ; 8844 // If we're parsing Thumb1, reject it completely. 8845 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8846 return Match_RequiresFlagSetting; 8847 // If we're parsing Thumb2, which form is legal depends on whether we're 8848 // in an IT block. 8849 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8850 !inITBlock()) 8851 return Match_RequiresITBlock; 8852 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8853 inITBlock()) 8854 return Match_RequiresNotITBlock; 8855 // LSL with zero immediate is not allowed in an IT block 8856 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 8857 return Match_RequiresNotITBlock; 8858 } else if (isThumbOne()) { 8859 // Some high-register supporting Thumb1 encodings only allow both registers 8860 // to be from r0-r7 when in Thumb2. 8861 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8862 isARMLowRegister(Inst.getOperand(1).getReg()) && 8863 isARMLowRegister(Inst.getOperand(2).getReg())) 8864 return Match_RequiresThumb2; 8865 // Others only require ARMv6 or later. 8866 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8867 isARMLowRegister(Inst.getOperand(0).getReg()) && 8868 isARMLowRegister(Inst.getOperand(1).getReg())) 8869 return Match_RequiresV6; 8870 } 8871 8872 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 8873 // than the loop below can handle, so it uses the GPRnopc register class and 8874 // we do SP handling here. 8875 if (Opc == ARM::t2MOVr && !hasV8Ops()) 8876 { 8877 // SP as both source and destination is not allowed 8878 if (Inst.getOperand(0).getReg() == ARM::SP && 8879 Inst.getOperand(1).getReg() == ARM::SP) 8880 return Match_RequiresV8; 8881 // When flags-setting SP as either source or destination is not allowed 8882 if (Inst.getOperand(4).getReg() == ARM::CPSR && 8883 (Inst.getOperand(0).getReg() == ARM::SP || 8884 Inst.getOperand(1).getReg() == ARM::SP)) 8885 return Match_RequiresV8; 8886 } 8887 8888 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 8889 // ARMv8-A. 8890 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 8891 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 8892 return Match_InvalidOperand; 8893 8894 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8895 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8896 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8897 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8898 return Match_RequiresV8; 8899 else if (Inst.getOperand(I).getReg() == ARM::PC) 8900 return Match_InvalidOperand; 8901 } 8902 8903 return Match_Success; 8904 } 8905 8906 namespace llvm { 8907 8908 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 8909 return true; // In an assembly source, no need to second-guess 8910 } 8911 8912 } // end namespace llvm 8913 8914 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8915 // the last instruction in the block. 8916 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8917 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8918 8919 // All branch & call instructions terminate IT blocks with the exception of 8920 // SVC. 8921 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 8922 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 8923 return true; 8924 8925 // Any arithmetic instruction which writes to the PC also terminates the IT 8926 // block. 8927 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 8928 MCOperand &Op = Inst.getOperand(OpIdx); 8929 if (Op.isReg() && Op.getReg() == ARM::PC) 8930 return true; 8931 } 8932 8933 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 8934 return true; 8935 8936 // Instructions with variable operand lists, which write to the variable 8937 // operands. We only care about Thumb instructions here, as ARM instructions 8938 // obviously can't be in an IT block. 8939 switch (Inst.getOpcode()) { 8940 case ARM::tLDMIA: 8941 case ARM::t2LDMIA: 8942 case ARM::t2LDMIA_UPD: 8943 case ARM::t2LDMDB: 8944 case ARM::t2LDMDB_UPD: 8945 if (listContainsReg(Inst, 3, ARM::PC)) 8946 return true; 8947 break; 8948 case ARM::tPOP: 8949 if (listContainsReg(Inst, 2, ARM::PC)) 8950 return true; 8951 break; 8952 } 8953 8954 return false; 8955 } 8956 8957 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 8958 SmallVectorImpl<NearMissInfo> &NearMisses, 8959 bool MatchingInlineAsm, 8960 bool &EmitInITBlock, 8961 MCStreamer &Out) { 8962 // If we can't use an implicit IT block here, just match as normal. 8963 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 8964 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 8965 8966 // Try to match the instruction in an extension of the current IT block (if 8967 // there is one). 8968 if (inImplicitITBlock()) { 8969 extendImplicitITBlock(ITState.Cond); 8970 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 8971 Match_Success) { 8972 // The match succeded, but we still have to check that the instruction is 8973 // valid in this implicit IT block. 8974 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8975 if (MCID.isPredicable()) { 8976 ARMCC::CondCodes InstCond = 8977 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8978 .getImm(); 8979 ARMCC::CondCodes ITCond = currentITCond(); 8980 if (InstCond == ITCond) { 8981 EmitInITBlock = true; 8982 return Match_Success; 8983 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 8984 invertCurrentITCondition(); 8985 EmitInITBlock = true; 8986 return Match_Success; 8987 } 8988 } 8989 } 8990 rewindImplicitITPosition(); 8991 } 8992 8993 // Finish the current IT block, and try to match outside any IT block. 8994 flushPendingInstructions(Out); 8995 unsigned PlainMatchResult = 8996 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 8997 if (PlainMatchResult == Match_Success) { 8998 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8999 if (MCID.isPredicable()) { 9000 ARMCC::CondCodes InstCond = 9001 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9002 .getImm(); 9003 // Some forms of the branch instruction have their own condition code 9004 // fields, so can be conditionally executed without an IT block. 9005 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9006 EmitInITBlock = false; 9007 return Match_Success; 9008 } 9009 if (InstCond == ARMCC::AL) { 9010 EmitInITBlock = false; 9011 return Match_Success; 9012 } 9013 } else { 9014 EmitInITBlock = false; 9015 return Match_Success; 9016 } 9017 } 9018 9019 // Try to match in a new IT block. The matcher doesn't check the actual 9020 // condition, so we create an IT block with a dummy condition, and fix it up 9021 // once we know the actual condition. 9022 startImplicitITBlock(); 9023 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9024 Match_Success) { 9025 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9026 if (MCID.isPredicable()) { 9027 ITState.Cond = 9028 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9029 .getImm(); 9030 EmitInITBlock = true; 9031 return Match_Success; 9032 } 9033 } 9034 discardImplicitITBlock(); 9035 9036 // If none of these succeed, return the error we got when trying to match 9037 // outside any IT blocks. 9038 EmitInITBlock = false; 9039 return PlainMatchResult; 9040 } 9041 9042 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS, 9043 unsigned VariantID = 0); 9044 9045 static const char *getSubtargetFeatureName(uint64_t Val); 9046 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9047 OperandVector &Operands, 9048 MCStreamer &Out, uint64_t &ErrorInfo, 9049 bool MatchingInlineAsm) { 9050 MCInst Inst; 9051 unsigned MatchResult; 9052 bool PendConditionalInstruction = false; 9053 9054 SmallVector<NearMissInfo, 4> NearMisses; 9055 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9056 PendConditionalInstruction, Out); 9057 9058 switch (MatchResult) { 9059 case Match_Success: 9060 // Context sensitive operand constraints aren't handled by the matcher, 9061 // so check them here. 9062 if (validateInstruction(Inst, Operands)) { 9063 // Still progress the IT block, otherwise one wrong condition causes 9064 // nasty cascading errors. 9065 forwardITPosition(); 9066 return true; 9067 } 9068 9069 { // processInstruction() updates inITBlock state, we need to save it away 9070 bool wasInITBlock = inITBlock(); 9071 9072 // Some instructions need post-processing to, for example, tweak which 9073 // encoding is selected. Loop on it while changes happen so the 9074 // individual transformations can chain off each other. E.g., 9075 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9076 while (processInstruction(Inst, Operands, Out)) 9077 ; 9078 9079 // Only after the instruction is fully processed, we can validate it 9080 if (wasInITBlock && hasV8Ops() && isThumb() && 9081 !isV8EligibleForIT(&Inst)) { 9082 Warning(IDLoc, "deprecated instruction in IT block"); 9083 } 9084 } 9085 9086 // Only move forward at the very end so that everything in validate 9087 // and process gets a consistent answer about whether we're in an IT 9088 // block. 9089 forwardITPosition(); 9090 9091 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9092 // doesn't actually encode. 9093 if (Inst.getOpcode() == ARM::ITasm) 9094 return false; 9095 9096 Inst.setLoc(IDLoc); 9097 if (PendConditionalInstruction) { 9098 PendingConditionalInsts.push_back(Inst); 9099 if (isITBlockFull() || isITBlockTerminator(Inst)) 9100 flushPendingInstructions(Out); 9101 } else { 9102 Out.EmitInstruction(Inst, getSTI()); 9103 } 9104 return false; 9105 case Match_NearMisses: 9106 ReportNearMisses(NearMisses, IDLoc, Operands); 9107 return true; 9108 case Match_MnemonicFail: { 9109 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9110 std::string Suggestion = ARMMnemonicSpellCheck( 9111 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9112 return Error(IDLoc, "invalid instruction" + Suggestion, 9113 ((ARMOperand &)*Operands[0]).getLocRange()); 9114 } 9115 } 9116 9117 llvm_unreachable("Implement any new match types added!"); 9118 } 9119 9120 /// parseDirective parses the arm specific directives 9121 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9122 const MCObjectFileInfo::Environment Format = 9123 getContext().getObjectFileInfo()->getObjectFileType(); 9124 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9125 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9126 9127 StringRef IDVal = DirectiveID.getIdentifier(); 9128 if (IDVal == ".word") 9129 parseLiteralValues(4, DirectiveID.getLoc()); 9130 else if (IDVal == ".short" || IDVal == ".hword") 9131 parseLiteralValues(2, DirectiveID.getLoc()); 9132 else if (IDVal == ".thumb") 9133 parseDirectiveThumb(DirectiveID.getLoc()); 9134 else if (IDVal == ".arm") 9135 parseDirectiveARM(DirectiveID.getLoc()); 9136 else if (IDVal == ".thumb_func") 9137 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9138 else if (IDVal == ".code") 9139 parseDirectiveCode(DirectiveID.getLoc()); 9140 else if (IDVal == ".syntax") 9141 parseDirectiveSyntax(DirectiveID.getLoc()); 9142 else if (IDVal == ".unreq") 9143 parseDirectiveUnreq(DirectiveID.getLoc()); 9144 else if (IDVal == ".fnend") 9145 parseDirectiveFnEnd(DirectiveID.getLoc()); 9146 else if (IDVal == ".cantunwind") 9147 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9148 else if (IDVal == ".personality") 9149 parseDirectivePersonality(DirectiveID.getLoc()); 9150 else if (IDVal == ".handlerdata") 9151 parseDirectiveHandlerData(DirectiveID.getLoc()); 9152 else if (IDVal == ".setfp") 9153 parseDirectiveSetFP(DirectiveID.getLoc()); 9154 else if (IDVal == ".pad") 9155 parseDirectivePad(DirectiveID.getLoc()); 9156 else if (IDVal == ".save") 9157 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9158 else if (IDVal == ".vsave") 9159 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9160 else if (IDVal == ".ltorg" || IDVal == ".pool") 9161 parseDirectiveLtorg(DirectiveID.getLoc()); 9162 else if (IDVal == ".even") 9163 parseDirectiveEven(DirectiveID.getLoc()); 9164 else if (IDVal == ".personalityindex") 9165 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9166 else if (IDVal == ".unwind_raw") 9167 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9168 else if (IDVal == ".movsp") 9169 parseDirectiveMovSP(DirectiveID.getLoc()); 9170 else if (IDVal == ".arch_extension") 9171 parseDirectiveArchExtension(DirectiveID.getLoc()); 9172 else if (IDVal == ".align") 9173 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9174 else if (IDVal == ".thumb_set") 9175 parseDirectiveThumbSet(DirectiveID.getLoc()); 9176 else if (!IsMachO && !IsCOFF) { 9177 if (IDVal == ".arch") 9178 parseDirectiveArch(DirectiveID.getLoc()); 9179 else if (IDVal == ".cpu") 9180 parseDirectiveCPU(DirectiveID.getLoc()); 9181 else if (IDVal == ".eabi_attribute") 9182 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9183 else if (IDVal == ".fpu") 9184 parseDirectiveFPU(DirectiveID.getLoc()); 9185 else if (IDVal == ".fnstart") 9186 parseDirectiveFnStart(DirectiveID.getLoc()); 9187 else if (IDVal == ".inst") 9188 parseDirectiveInst(DirectiveID.getLoc()); 9189 else if (IDVal == ".inst.n") 9190 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9191 else if (IDVal == ".inst.w") 9192 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9193 else if (IDVal == ".object_arch") 9194 parseDirectiveObjectArch(DirectiveID.getLoc()); 9195 else if (IDVal == ".tlsdescseq") 9196 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9197 else 9198 return true; 9199 } else 9200 return true; 9201 return false; 9202 } 9203 9204 /// parseLiteralValues 9205 /// ::= .hword expression [, expression]* 9206 /// ::= .short expression [, expression]* 9207 /// ::= .word expression [, expression]* 9208 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9209 auto parseOne = [&]() -> bool { 9210 const MCExpr *Value; 9211 if (getParser().parseExpression(Value)) 9212 return true; 9213 getParser().getStreamer().EmitValue(Value, Size, L); 9214 return false; 9215 }; 9216 return (parseMany(parseOne)); 9217 } 9218 9219 /// parseDirectiveThumb 9220 /// ::= .thumb 9221 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9222 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9223 check(!hasThumb(), L, "target does not support Thumb mode")) 9224 return true; 9225 9226 if (!isThumb()) 9227 SwitchMode(); 9228 9229 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9230 return false; 9231 } 9232 9233 /// parseDirectiveARM 9234 /// ::= .arm 9235 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9236 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9237 check(!hasARM(), L, "target does not support ARM mode")) 9238 return true; 9239 9240 if (isThumb()) 9241 SwitchMode(); 9242 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9243 return false; 9244 } 9245 9246 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9247 // We need to flush the current implicit IT block on a label, because it is 9248 // not legal to branch into an IT block. 9249 flushPendingInstructions(getStreamer()); 9250 if (NextSymbolIsThumb) { 9251 getParser().getStreamer().EmitThumbFunc(Symbol); 9252 NextSymbolIsThumb = false; 9253 } 9254 } 9255 9256 /// parseDirectiveThumbFunc 9257 /// ::= .thumbfunc symbol_name 9258 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9259 MCAsmParser &Parser = getParser(); 9260 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9261 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9262 9263 // Darwin asm has (optionally) function name after .thumb_func direction 9264 // ELF doesn't 9265 9266 if (IsMachO) { 9267 if (Parser.getTok().is(AsmToken::Identifier) || 9268 Parser.getTok().is(AsmToken::String)) { 9269 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9270 Parser.getTok().getIdentifier()); 9271 getParser().getStreamer().EmitThumbFunc(Func); 9272 Parser.Lex(); 9273 if (parseToken(AsmToken::EndOfStatement, 9274 "unexpected token in '.thumb_func' directive")) 9275 return true; 9276 return false; 9277 } 9278 } 9279 9280 if (parseToken(AsmToken::EndOfStatement, 9281 "unexpected token in '.thumb_func' directive")) 9282 return true; 9283 9284 NextSymbolIsThumb = true; 9285 return false; 9286 } 9287 9288 /// parseDirectiveSyntax 9289 /// ::= .syntax unified | divided 9290 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9291 MCAsmParser &Parser = getParser(); 9292 const AsmToken &Tok = Parser.getTok(); 9293 if (Tok.isNot(AsmToken::Identifier)) { 9294 Error(L, "unexpected token in .syntax directive"); 9295 return false; 9296 } 9297 9298 StringRef Mode = Tok.getString(); 9299 Parser.Lex(); 9300 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9301 "'.syntax divided' arm assembly not supported") || 9302 check(Mode != "unified" && Mode != "UNIFIED", L, 9303 "unrecognized syntax mode in .syntax directive") || 9304 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9305 return true; 9306 9307 // TODO tell the MC streamer the mode 9308 // getParser().getStreamer().Emit???(); 9309 return false; 9310 } 9311 9312 /// parseDirectiveCode 9313 /// ::= .code 16 | 32 9314 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9315 MCAsmParser &Parser = getParser(); 9316 const AsmToken &Tok = Parser.getTok(); 9317 if (Tok.isNot(AsmToken::Integer)) 9318 return Error(L, "unexpected token in .code directive"); 9319 int64_t Val = Parser.getTok().getIntVal(); 9320 if (Val != 16 && Val != 32) { 9321 Error(L, "invalid operand to .code directive"); 9322 return false; 9323 } 9324 Parser.Lex(); 9325 9326 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9327 return true; 9328 9329 if (Val == 16) { 9330 if (!hasThumb()) 9331 return Error(L, "target does not support Thumb mode"); 9332 9333 if (!isThumb()) 9334 SwitchMode(); 9335 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9336 } else { 9337 if (!hasARM()) 9338 return Error(L, "target does not support ARM mode"); 9339 9340 if (isThumb()) 9341 SwitchMode(); 9342 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9343 } 9344 9345 return false; 9346 } 9347 9348 /// parseDirectiveReq 9349 /// ::= name .req registername 9350 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9351 MCAsmParser &Parser = getParser(); 9352 Parser.Lex(); // Eat the '.req' token. 9353 unsigned Reg; 9354 SMLoc SRegLoc, ERegLoc; 9355 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9356 "register name expected") || 9357 parseToken(AsmToken::EndOfStatement, 9358 "unexpected input in .req directive.")) 9359 return true; 9360 9361 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9362 return Error(SRegLoc, 9363 "redefinition of '" + Name + "' does not match original."); 9364 9365 return false; 9366 } 9367 9368 /// parseDirectiveUneq 9369 /// ::= .unreq registername 9370 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9371 MCAsmParser &Parser = getParser(); 9372 if (Parser.getTok().isNot(AsmToken::Identifier)) 9373 return Error(L, "unexpected input in .unreq directive."); 9374 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9375 Parser.Lex(); // Eat the identifier. 9376 if (parseToken(AsmToken::EndOfStatement, 9377 "unexpected input in '.unreq' directive")) 9378 return true; 9379 return false; 9380 } 9381 9382 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9383 // before, if supported by the new target, or emit mapping symbols for the mode 9384 // switch. 9385 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9386 if (WasThumb != isThumb()) { 9387 if (WasThumb && hasThumb()) { 9388 // Stay in Thumb mode 9389 SwitchMode(); 9390 } else if (!WasThumb && hasARM()) { 9391 // Stay in ARM mode 9392 SwitchMode(); 9393 } else { 9394 // Mode switch forced, because the new arch doesn't support the old mode. 9395 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9396 : MCAF_Code32); 9397 // Warn about the implcit mode switch. GAS does not switch modes here, 9398 // but instead stays in the old mode, reporting an error on any following 9399 // instructions as the mode does not exist on the target. 9400 Warning(Loc, Twine("new target does not support ") + 9401 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9402 (!WasThumb ? "thumb" : "arm") + " mode"); 9403 } 9404 } 9405 } 9406 9407 /// parseDirectiveArch 9408 /// ::= .arch token 9409 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9410 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9411 ARM::ArchKind ID = ARM::parseArch(Arch); 9412 9413 if (ID == ARM::ArchKind::INVALID) 9414 return Error(L, "Unknown arch name"); 9415 9416 bool WasThumb = isThumb(); 9417 Triple T; 9418 MCSubtargetInfo &STI = copySTI(); 9419 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9420 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9421 FixModeAfterArchChange(WasThumb, L); 9422 9423 getTargetStreamer().emitArch(ID); 9424 return false; 9425 } 9426 9427 /// parseDirectiveEabiAttr 9428 /// ::= .eabi_attribute int, int [, "str"] 9429 /// ::= .eabi_attribute Tag_name, int [, "str"] 9430 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9431 MCAsmParser &Parser = getParser(); 9432 int64_t Tag; 9433 SMLoc TagLoc; 9434 TagLoc = Parser.getTok().getLoc(); 9435 if (Parser.getTok().is(AsmToken::Identifier)) { 9436 StringRef Name = Parser.getTok().getIdentifier(); 9437 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9438 if (Tag == -1) { 9439 Error(TagLoc, "attribute name not recognised: " + Name); 9440 return false; 9441 } 9442 Parser.Lex(); 9443 } else { 9444 const MCExpr *AttrExpr; 9445 9446 TagLoc = Parser.getTok().getLoc(); 9447 if (Parser.parseExpression(AttrExpr)) 9448 return true; 9449 9450 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9451 if (check(!CE, TagLoc, "expected numeric constant")) 9452 return true; 9453 9454 Tag = CE->getValue(); 9455 } 9456 9457 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9458 return true; 9459 9460 StringRef StringValue = ""; 9461 bool IsStringValue = false; 9462 9463 int64_t IntegerValue = 0; 9464 bool IsIntegerValue = false; 9465 9466 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9467 IsStringValue = true; 9468 else if (Tag == ARMBuildAttrs::compatibility) { 9469 IsStringValue = true; 9470 IsIntegerValue = true; 9471 } else if (Tag < 32 || Tag % 2 == 0) 9472 IsIntegerValue = true; 9473 else if (Tag % 2 == 1) 9474 IsStringValue = true; 9475 else 9476 llvm_unreachable("invalid tag type"); 9477 9478 if (IsIntegerValue) { 9479 const MCExpr *ValueExpr; 9480 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9481 if (Parser.parseExpression(ValueExpr)) 9482 return true; 9483 9484 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9485 if (!CE) 9486 return Error(ValueExprLoc, "expected numeric constant"); 9487 IntegerValue = CE->getValue(); 9488 } 9489 9490 if (Tag == ARMBuildAttrs::compatibility) { 9491 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9492 return true; 9493 } 9494 9495 if (IsStringValue) { 9496 if (Parser.getTok().isNot(AsmToken::String)) 9497 return Error(Parser.getTok().getLoc(), "bad string constant"); 9498 9499 StringValue = Parser.getTok().getStringContents(); 9500 Parser.Lex(); 9501 } 9502 9503 if (Parser.parseToken(AsmToken::EndOfStatement, 9504 "unexpected token in '.eabi_attribute' directive")) 9505 return true; 9506 9507 if (IsIntegerValue && IsStringValue) { 9508 assert(Tag == ARMBuildAttrs::compatibility); 9509 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9510 } else if (IsIntegerValue) 9511 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9512 else if (IsStringValue) 9513 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9514 return false; 9515 } 9516 9517 /// parseDirectiveCPU 9518 /// ::= .cpu str 9519 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9520 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9521 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9522 9523 // FIXME: This is using table-gen data, but should be moved to 9524 // ARMTargetParser once that is table-gen'd. 9525 if (!getSTI().isCPUStringValid(CPU)) 9526 return Error(L, "Unknown CPU name"); 9527 9528 bool WasThumb = isThumb(); 9529 MCSubtargetInfo &STI = copySTI(); 9530 STI.setDefaultFeatures(CPU, ""); 9531 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9532 FixModeAfterArchChange(WasThumb, L); 9533 9534 return false; 9535 } 9536 9537 /// parseDirectiveFPU 9538 /// ::= .fpu str 9539 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9540 SMLoc FPUNameLoc = getTok().getLoc(); 9541 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9542 9543 unsigned ID = ARM::parseFPU(FPU); 9544 std::vector<StringRef> Features; 9545 if (!ARM::getFPUFeatures(ID, Features)) 9546 return Error(FPUNameLoc, "Unknown FPU name"); 9547 9548 MCSubtargetInfo &STI = copySTI(); 9549 for (auto Feature : Features) 9550 STI.ApplyFeatureFlag(Feature); 9551 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9552 9553 getTargetStreamer().emitFPU(ID); 9554 return false; 9555 } 9556 9557 /// parseDirectiveFnStart 9558 /// ::= .fnstart 9559 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9560 if (parseToken(AsmToken::EndOfStatement, 9561 "unexpected token in '.fnstart' directive")) 9562 return true; 9563 9564 if (UC.hasFnStart()) { 9565 Error(L, ".fnstart starts before the end of previous one"); 9566 UC.emitFnStartLocNotes(); 9567 return true; 9568 } 9569 9570 // Reset the unwind directives parser state 9571 UC.reset(); 9572 9573 getTargetStreamer().emitFnStart(); 9574 9575 UC.recordFnStart(L); 9576 return false; 9577 } 9578 9579 /// parseDirectiveFnEnd 9580 /// ::= .fnend 9581 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9582 if (parseToken(AsmToken::EndOfStatement, 9583 "unexpected token in '.fnend' directive")) 9584 return true; 9585 // Check the ordering of unwind directives 9586 if (!UC.hasFnStart()) 9587 return Error(L, ".fnstart must precede .fnend directive"); 9588 9589 // Reset the unwind directives parser state 9590 getTargetStreamer().emitFnEnd(); 9591 9592 UC.reset(); 9593 return false; 9594 } 9595 9596 /// parseDirectiveCantUnwind 9597 /// ::= .cantunwind 9598 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9599 if (parseToken(AsmToken::EndOfStatement, 9600 "unexpected token in '.cantunwind' directive")) 9601 return true; 9602 9603 UC.recordCantUnwind(L); 9604 // Check the ordering of unwind directives 9605 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9606 return true; 9607 9608 if (UC.hasHandlerData()) { 9609 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9610 UC.emitHandlerDataLocNotes(); 9611 return true; 9612 } 9613 if (UC.hasPersonality()) { 9614 Error(L, ".cantunwind can't be used with .personality directive"); 9615 UC.emitPersonalityLocNotes(); 9616 return true; 9617 } 9618 9619 getTargetStreamer().emitCantUnwind(); 9620 return false; 9621 } 9622 9623 /// parseDirectivePersonality 9624 /// ::= .personality name 9625 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9626 MCAsmParser &Parser = getParser(); 9627 bool HasExistingPersonality = UC.hasPersonality(); 9628 9629 // Parse the name of the personality routine 9630 if (Parser.getTok().isNot(AsmToken::Identifier)) 9631 return Error(L, "unexpected input in .personality directive."); 9632 StringRef Name(Parser.getTok().getIdentifier()); 9633 Parser.Lex(); 9634 9635 if (parseToken(AsmToken::EndOfStatement, 9636 "unexpected token in '.personality' directive")) 9637 return true; 9638 9639 UC.recordPersonality(L); 9640 9641 // Check the ordering of unwind directives 9642 if (!UC.hasFnStart()) 9643 return Error(L, ".fnstart must precede .personality directive"); 9644 if (UC.cantUnwind()) { 9645 Error(L, ".personality can't be used with .cantunwind directive"); 9646 UC.emitCantUnwindLocNotes(); 9647 return true; 9648 } 9649 if (UC.hasHandlerData()) { 9650 Error(L, ".personality must precede .handlerdata directive"); 9651 UC.emitHandlerDataLocNotes(); 9652 return true; 9653 } 9654 if (HasExistingPersonality) { 9655 Error(L, "multiple personality directives"); 9656 UC.emitPersonalityLocNotes(); 9657 return true; 9658 } 9659 9660 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9661 getTargetStreamer().emitPersonality(PR); 9662 return false; 9663 } 9664 9665 /// parseDirectiveHandlerData 9666 /// ::= .handlerdata 9667 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9668 if (parseToken(AsmToken::EndOfStatement, 9669 "unexpected token in '.handlerdata' directive")) 9670 return true; 9671 9672 UC.recordHandlerData(L); 9673 // Check the ordering of unwind directives 9674 if (!UC.hasFnStart()) 9675 return Error(L, ".fnstart must precede .personality directive"); 9676 if (UC.cantUnwind()) { 9677 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9678 UC.emitCantUnwindLocNotes(); 9679 return true; 9680 } 9681 9682 getTargetStreamer().emitHandlerData(); 9683 return false; 9684 } 9685 9686 /// parseDirectiveSetFP 9687 /// ::= .setfp fpreg, spreg [, offset] 9688 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9689 MCAsmParser &Parser = getParser(); 9690 // Check the ordering of unwind directives 9691 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9692 check(UC.hasHandlerData(), L, 9693 ".setfp must precede .handlerdata directive")) 9694 return true; 9695 9696 // Parse fpreg 9697 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9698 int FPReg = tryParseRegister(); 9699 9700 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9701 Parser.parseToken(AsmToken::Comma, "comma expected")) 9702 return true; 9703 9704 // Parse spreg 9705 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9706 int SPReg = tryParseRegister(); 9707 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9708 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9709 "register should be either $sp or the latest fp register")) 9710 return true; 9711 9712 // Update the frame pointer register 9713 UC.saveFPReg(FPReg); 9714 9715 // Parse offset 9716 int64_t Offset = 0; 9717 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9718 if (Parser.getTok().isNot(AsmToken::Hash) && 9719 Parser.getTok().isNot(AsmToken::Dollar)) 9720 return Error(Parser.getTok().getLoc(), "'#' expected"); 9721 Parser.Lex(); // skip hash token. 9722 9723 const MCExpr *OffsetExpr; 9724 SMLoc ExLoc = Parser.getTok().getLoc(); 9725 SMLoc EndLoc; 9726 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9727 return Error(ExLoc, "malformed setfp offset"); 9728 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9729 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9730 return true; 9731 Offset = CE->getValue(); 9732 } 9733 9734 if (Parser.parseToken(AsmToken::EndOfStatement)) 9735 return true; 9736 9737 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9738 static_cast<unsigned>(SPReg), Offset); 9739 return false; 9740 } 9741 9742 /// parseDirective 9743 /// ::= .pad offset 9744 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9745 MCAsmParser &Parser = getParser(); 9746 // Check the ordering of unwind directives 9747 if (!UC.hasFnStart()) 9748 return Error(L, ".fnstart must precede .pad directive"); 9749 if (UC.hasHandlerData()) 9750 return Error(L, ".pad must precede .handlerdata directive"); 9751 9752 // Parse the offset 9753 if (Parser.getTok().isNot(AsmToken::Hash) && 9754 Parser.getTok().isNot(AsmToken::Dollar)) 9755 return Error(Parser.getTok().getLoc(), "'#' expected"); 9756 Parser.Lex(); // skip hash token. 9757 9758 const MCExpr *OffsetExpr; 9759 SMLoc ExLoc = Parser.getTok().getLoc(); 9760 SMLoc EndLoc; 9761 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9762 return Error(ExLoc, "malformed pad offset"); 9763 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9764 if (!CE) 9765 return Error(ExLoc, "pad offset must be an immediate"); 9766 9767 if (parseToken(AsmToken::EndOfStatement, 9768 "unexpected token in '.pad' directive")) 9769 return true; 9770 9771 getTargetStreamer().emitPad(CE->getValue()); 9772 return false; 9773 } 9774 9775 /// parseDirectiveRegSave 9776 /// ::= .save { registers } 9777 /// ::= .vsave { registers } 9778 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9779 // Check the ordering of unwind directives 9780 if (!UC.hasFnStart()) 9781 return Error(L, ".fnstart must precede .save or .vsave directives"); 9782 if (UC.hasHandlerData()) 9783 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9784 9785 // RAII object to make sure parsed operands are deleted. 9786 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9787 9788 // Parse the register list 9789 if (parseRegisterList(Operands) || 9790 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9791 return true; 9792 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9793 if (!IsVector && !Op.isRegList()) 9794 return Error(L, ".save expects GPR registers"); 9795 if (IsVector && !Op.isDPRRegList()) 9796 return Error(L, ".vsave expects DPR registers"); 9797 9798 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9799 return false; 9800 } 9801 9802 /// parseDirectiveInst 9803 /// ::= .inst opcode [, ...] 9804 /// ::= .inst.n opcode [, ...] 9805 /// ::= .inst.w opcode [, ...] 9806 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9807 int Width = 4; 9808 9809 if (isThumb()) { 9810 switch (Suffix) { 9811 case 'n': 9812 Width = 2; 9813 break; 9814 case 'w': 9815 break; 9816 default: 9817 return Error(Loc, "cannot determine Thumb instruction size, " 9818 "use inst.n/inst.w instead"); 9819 } 9820 } else { 9821 if (Suffix) 9822 return Error(Loc, "width suffixes are invalid in ARM mode"); 9823 } 9824 9825 auto parseOne = [&]() -> bool { 9826 const MCExpr *Expr; 9827 if (getParser().parseExpression(Expr)) 9828 return true; 9829 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9830 if (!Value) { 9831 return Error(Loc, "expected constant expression"); 9832 } 9833 9834 switch (Width) { 9835 case 2: 9836 if (Value->getValue() > 0xffff) 9837 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 9838 break; 9839 case 4: 9840 if (Value->getValue() > 0xffffffff) 9841 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 9842 " operand is too big"); 9843 break; 9844 default: 9845 llvm_unreachable("only supported widths are 2 and 4"); 9846 } 9847 9848 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9849 return false; 9850 }; 9851 9852 if (parseOptionalToken(AsmToken::EndOfStatement)) 9853 return Error(Loc, "expected expression following directive"); 9854 if (parseMany(parseOne)) 9855 return true; 9856 return false; 9857 } 9858 9859 /// parseDirectiveLtorg 9860 /// ::= .ltorg | .pool 9861 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9862 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9863 return true; 9864 getTargetStreamer().emitCurrentConstantPool(); 9865 return false; 9866 } 9867 9868 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9869 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 9870 9871 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9872 return true; 9873 9874 if (!Section) { 9875 getStreamer().InitSections(false); 9876 Section = getStreamer().getCurrentSectionOnly(); 9877 } 9878 9879 assert(Section && "must have section to emit alignment"); 9880 if (Section->UseCodeAlign()) 9881 getStreamer().EmitCodeAlignment(2); 9882 else 9883 getStreamer().EmitValueToAlignment(2); 9884 9885 return false; 9886 } 9887 9888 /// parseDirectivePersonalityIndex 9889 /// ::= .personalityindex index 9890 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9891 MCAsmParser &Parser = getParser(); 9892 bool HasExistingPersonality = UC.hasPersonality(); 9893 9894 const MCExpr *IndexExpression; 9895 SMLoc IndexLoc = Parser.getTok().getLoc(); 9896 if (Parser.parseExpression(IndexExpression) || 9897 parseToken(AsmToken::EndOfStatement, 9898 "unexpected token in '.personalityindex' directive")) { 9899 return true; 9900 } 9901 9902 UC.recordPersonalityIndex(L); 9903 9904 if (!UC.hasFnStart()) { 9905 return Error(L, ".fnstart must precede .personalityindex directive"); 9906 } 9907 if (UC.cantUnwind()) { 9908 Error(L, ".personalityindex cannot be used with .cantunwind"); 9909 UC.emitCantUnwindLocNotes(); 9910 return true; 9911 } 9912 if (UC.hasHandlerData()) { 9913 Error(L, ".personalityindex must precede .handlerdata directive"); 9914 UC.emitHandlerDataLocNotes(); 9915 return true; 9916 } 9917 if (HasExistingPersonality) { 9918 Error(L, "multiple personality directives"); 9919 UC.emitPersonalityLocNotes(); 9920 return true; 9921 } 9922 9923 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9924 if (!CE) 9925 return Error(IndexLoc, "index must be a constant number"); 9926 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 9927 return Error(IndexLoc, 9928 "personality routine index should be in range [0-3]"); 9929 9930 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9931 return false; 9932 } 9933 9934 /// parseDirectiveUnwindRaw 9935 /// ::= .unwind_raw offset, opcode [, opcode...] 9936 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9937 MCAsmParser &Parser = getParser(); 9938 int64_t StackOffset; 9939 const MCExpr *OffsetExpr; 9940 SMLoc OffsetLoc = getLexer().getLoc(); 9941 9942 if (!UC.hasFnStart()) 9943 return Error(L, ".fnstart must precede .unwind_raw directives"); 9944 if (getParser().parseExpression(OffsetExpr)) 9945 return Error(OffsetLoc, "expected expression"); 9946 9947 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9948 if (!CE) 9949 return Error(OffsetLoc, "offset must be a constant"); 9950 9951 StackOffset = CE->getValue(); 9952 9953 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 9954 return true; 9955 9956 SmallVector<uint8_t, 16> Opcodes; 9957 9958 auto parseOne = [&]() -> bool { 9959 const MCExpr *OE; 9960 SMLoc OpcodeLoc = getLexer().getLoc(); 9961 if (check(getLexer().is(AsmToken::EndOfStatement) || 9962 Parser.parseExpression(OE), 9963 OpcodeLoc, "expected opcode expression")) 9964 return true; 9965 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9966 if (!OC) 9967 return Error(OpcodeLoc, "opcode value must be a constant"); 9968 const int64_t Opcode = OC->getValue(); 9969 if (Opcode & ~0xff) 9970 return Error(OpcodeLoc, "invalid opcode"); 9971 Opcodes.push_back(uint8_t(Opcode)); 9972 return false; 9973 }; 9974 9975 // Must have at least 1 element 9976 SMLoc OpcodeLoc = getLexer().getLoc(); 9977 if (parseOptionalToken(AsmToken::EndOfStatement)) 9978 return Error(OpcodeLoc, "expected opcode expression"); 9979 if (parseMany(parseOne)) 9980 return true; 9981 9982 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9983 return false; 9984 } 9985 9986 /// parseDirectiveTLSDescSeq 9987 /// ::= .tlsdescseq tls-variable 9988 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9989 MCAsmParser &Parser = getParser(); 9990 9991 if (getLexer().isNot(AsmToken::Identifier)) 9992 return TokError("expected variable after '.tlsdescseq' directive"); 9993 9994 const MCSymbolRefExpr *SRE = 9995 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9996 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9997 Lex(); 9998 9999 if (parseToken(AsmToken::EndOfStatement, 10000 "unexpected token in '.tlsdescseq' directive")) 10001 return true; 10002 10003 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10004 return false; 10005 } 10006 10007 /// parseDirectiveMovSP 10008 /// ::= .movsp reg [, #offset] 10009 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10010 MCAsmParser &Parser = getParser(); 10011 if (!UC.hasFnStart()) 10012 return Error(L, ".fnstart must precede .movsp directives"); 10013 if (UC.getFPReg() != ARM::SP) 10014 return Error(L, "unexpected .movsp directive"); 10015 10016 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10017 int SPReg = tryParseRegister(); 10018 if (SPReg == -1) 10019 return Error(SPRegLoc, "register expected"); 10020 if (SPReg == ARM::SP || SPReg == ARM::PC) 10021 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10022 10023 int64_t Offset = 0; 10024 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10025 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10026 return true; 10027 10028 const MCExpr *OffsetExpr; 10029 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10030 10031 if (Parser.parseExpression(OffsetExpr)) 10032 return Error(OffsetLoc, "malformed offset expression"); 10033 10034 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10035 if (!CE) 10036 return Error(OffsetLoc, "offset must be an immediate constant"); 10037 10038 Offset = CE->getValue(); 10039 } 10040 10041 if (parseToken(AsmToken::EndOfStatement, 10042 "unexpected token in '.movsp' directive")) 10043 return true; 10044 10045 getTargetStreamer().emitMovSP(SPReg, Offset); 10046 UC.saveFPReg(SPReg); 10047 10048 return false; 10049 } 10050 10051 /// parseDirectiveObjectArch 10052 /// ::= .object_arch name 10053 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10054 MCAsmParser &Parser = getParser(); 10055 if (getLexer().isNot(AsmToken::Identifier)) 10056 return Error(getLexer().getLoc(), "unexpected token"); 10057 10058 StringRef Arch = Parser.getTok().getString(); 10059 SMLoc ArchLoc = Parser.getTok().getLoc(); 10060 Lex(); 10061 10062 ARM::ArchKind ID = ARM::parseArch(Arch); 10063 10064 if (ID == ARM::ArchKind::INVALID) 10065 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10066 if (parseToken(AsmToken::EndOfStatement)) 10067 return true; 10068 10069 getTargetStreamer().emitObjectArch(ID); 10070 return false; 10071 } 10072 10073 /// parseDirectiveAlign 10074 /// ::= .align 10075 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10076 // NOTE: if this is not the end of the statement, fall back to the target 10077 // agnostic handling for this directive which will correctly handle this. 10078 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10079 // '.align' is target specifically handled to mean 2**2 byte alignment. 10080 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10081 assert(Section && "must have section to emit alignment"); 10082 if (Section->UseCodeAlign()) 10083 getStreamer().EmitCodeAlignment(4, 0); 10084 else 10085 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10086 return false; 10087 } 10088 return true; 10089 } 10090 10091 /// parseDirectiveThumbSet 10092 /// ::= .thumb_set name, value 10093 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10094 MCAsmParser &Parser = getParser(); 10095 10096 StringRef Name; 10097 if (check(Parser.parseIdentifier(Name), 10098 "expected identifier after '.thumb_set'") || 10099 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10100 return true; 10101 10102 MCSymbol *Sym; 10103 const MCExpr *Value; 10104 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10105 Parser, Sym, Value)) 10106 return true; 10107 10108 getTargetStreamer().emitThumbSet(Sym, Value); 10109 return false; 10110 } 10111 10112 /// Force static initialization. 10113 extern "C" void LLVMInitializeARMAsmParser() { 10114 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10115 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10116 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10117 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10118 } 10119 10120 #define GET_REGISTER_MATCHER 10121 #define GET_SUBTARGET_FEATURE_NAME 10122 #define GET_MATCHER_IMPLEMENTATION 10123 #define GET_MNEMONIC_SPELL_CHECKER 10124 #include "ARMGenAsmMatcher.inc" 10125 10126 // Some diagnostics need to vary with subtarget features, so they are handled 10127 // here. For example, the DPR class has either 16 or 32 registers, depending 10128 // on the FPU available. 10129 const char * 10130 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10131 switch (MatchError) { 10132 // rGPR contains sp starting with ARMv8. 10133 case Match_rGPR: 10134 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10135 : "operand must be a register in range [r0, r12] or r14"; 10136 // DPR contains 16 registers for some FPUs, and 32 for others. 10137 case Match_DPR: 10138 return hasD16() ? "operand must be a register in range [d0, d15]" 10139 : "operand must be a register in range [d0, d31]"; 10140 10141 // For all other diags, use the static string from tablegen. 10142 default: 10143 return getMatchKindDiag(MatchError); 10144 } 10145 } 10146 10147 // Process the list of near-misses, throwing away ones we don't want to report 10148 // to the user, and converting the rest to a source location and string that 10149 // should be reported. 10150 void 10151 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10152 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10153 SMLoc IDLoc, OperandVector &Operands) { 10154 // TODO: If operand didn't match, sub in a dummy one and run target 10155 // predicate, so that we can avoid reporting near-misses that are invalid? 10156 // TODO: Many operand types dont have SuperClasses set, so we report 10157 // redundant ones. 10158 // TODO: Some operands are superclasses of registers (e.g. 10159 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10160 // TODO: This is not all ARM-specific, can some of it be factored out? 10161 10162 // Record some information about near-misses that we have already seen, so 10163 // that we can avoid reporting redundant ones. For example, if there are 10164 // variants of an instruction that take 8- and 16-bit immediates, we want 10165 // to only report the widest one. 10166 std::multimap<unsigned, unsigned> OperandMissesSeen; 10167 SmallSet<uint64_t, 4> FeatureMissesSeen; 10168 10169 // Process the near-misses in reverse order, so that we see more general ones 10170 // first, and so can avoid emitting more specific ones. 10171 for (NearMissInfo &I : reverse(NearMissesIn)) { 10172 switch (I.getKind()) { 10173 case NearMissInfo::NearMissOperand: { 10174 SMLoc OperandLoc = 10175 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10176 const char *OperandDiag = 10177 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10178 10179 // If we have already emitted a message for a superclass, don't also report 10180 // the sub-class. We consider all operand classes that we don't have a 10181 // specialised diagnostic for to be equal for the propose of this check, 10182 // so that we don't report the generic error multiple times on the same 10183 // operand. 10184 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10185 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10186 if (std::any_of(PrevReports.first, PrevReports.second, 10187 [DupCheckMatchClass]( 10188 const std::pair<unsigned, unsigned> Pair) { 10189 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10190 return Pair.second == DupCheckMatchClass; 10191 else 10192 return isSubclass((MatchClassKind)DupCheckMatchClass, 10193 (MatchClassKind)Pair.second); 10194 })) 10195 break; 10196 OperandMissesSeen.insert( 10197 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10198 10199 NearMissMessage Message; 10200 Message.Loc = OperandLoc; 10201 if (OperandDiag) { 10202 Message.Message = OperandDiag; 10203 } else if (I.getOperandClass() == InvalidMatchClass) { 10204 Message.Message = "too many operands for instruction"; 10205 } else { 10206 Message.Message = "invalid operand for instruction"; 10207 DEBUG(dbgs() << "Missing diagnostic string for operand class " << 10208 getMatchClassName((MatchClassKind)I.getOperandClass()) 10209 << I.getOperandClass() << ", error " << I.getOperandError() 10210 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10211 } 10212 NearMissesOut.emplace_back(Message); 10213 break; 10214 } 10215 case NearMissInfo::NearMissFeature: { 10216 uint64_t MissingFeatures = I.getFeatures(); 10217 // Don't report the same set of features twice. 10218 if (FeatureMissesSeen.count(MissingFeatures)) 10219 break; 10220 FeatureMissesSeen.insert(MissingFeatures); 10221 10222 // Special case: don't report a feature set which includes arm-mode for 10223 // targets that don't have ARM mode. 10224 if ((MissingFeatures & Feature_IsARM) && !hasARM()) 10225 break; 10226 // Don't report any near-misses that both require switching instruction 10227 // set, and adding other subtarget features. 10228 if (isThumb() && (MissingFeatures & Feature_IsARM) && 10229 (MissingFeatures & ~Feature_IsARM)) 10230 break; 10231 if (!isThumb() && (MissingFeatures & Feature_IsThumb) && 10232 (MissingFeatures & ~Feature_IsThumb)) 10233 break; 10234 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) && 10235 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb))) 10236 break; 10237 10238 NearMissMessage Message; 10239 Message.Loc = IDLoc; 10240 raw_svector_ostream OS(Message.Message); 10241 10242 OS << "instruction requires:"; 10243 uint64_t Mask = 1; 10244 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1); 10245 ++MaskPos) { 10246 if (MissingFeatures & Mask) { 10247 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask); 10248 } 10249 Mask <<= 1; 10250 } 10251 NearMissesOut.emplace_back(Message); 10252 10253 break; 10254 } 10255 case NearMissInfo::NearMissPredicate: { 10256 NearMissMessage Message; 10257 Message.Loc = IDLoc; 10258 switch (I.getPredicateError()) { 10259 case Match_RequiresNotITBlock: 10260 Message.Message = "flag setting instruction only valid outside IT block"; 10261 break; 10262 case Match_RequiresITBlock: 10263 Message.Message = "instruction only valid inside IT block"; 10264 break; 10265 case Match_RequiresV6: 10266 Message.Message = "instruction variant requires ARMv6 or later"; 10267 break; 10268 case Match_RequiresThumb2: 10269 Message.Message = "instruction variant requires Thumb2"; 10270 break; 10271 case Match_RequiresV8: 10272 Message.Message = "instruction variant requires ARMv8 or later"; 10273 break; 10274 case Match_RequiresFlagSetting: 10275 Message.Message = "no flag-preserving variant of this instruction available"; 10276 break; 10277 case Match_InvalidOperand: 10278 Message.Message = "invalid operand for instruction"; 10279 break; 10280 default: 10281 llvm_unreachable("Unhandled target predicate error"); 10282 break; 10283 } 10284 NearMissesOut.emplace_back(Message); 10285 break; 10286 } 10287 case NearMissInfo::NearMissTooFewOperands: { 10288 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10289 NearMissesOut.emplace_back( 10290 NearMissMessage{ EndLoc, StringRef("too few operands for instruction") }); 10291 break; 10292 } 10293 case NearMissInfo::NoNearMiss: 10294 // This should never leave the matcher. 10295 llvm_unreachable("not a near-miss"); 10296 break; 10297 } 10298 } 10299 } 10300 10301 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10302 SMLoc IDLoc, OperandVector &Operands) { 10303 SmallVector<NearMissMessage, 4> Messages; 10304 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10305 10306 if (Messages.size() == 0) { 10307 // No near-misses were found, so the best we can do is "invalid 10308 // instruction". 10309 Error(IDLoc, "invalid instruction"); 10310 } else if (Messages.size() == 1) { 10311 // One near miss was found, report it as the sole error. 10312 Error(Messages[0].Loc, Messages[0].Message); 10313 } else { 10314 // More than one near miss, so report a generic "invalid instruction" 10315 // error, followed by notes for each of the near-misses. 10316 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10317 for (auto &M : Messages) { 10318 Note(M.Loc, M.Message); 10319 } 10320 } 10321 } 10322 10323 // FIXME: This structure should be moved inside ARMTargetParser 10324 // when we start to table-generate them, and we can use the ARM 10325 // flags below, that were generated by table-gen. 10326 static const struct { 10327 const unsigned Kind; 10328 const uint64_t ArchCheck; 10329 const FeatureBitset Features; 10330 } Extensions[] = { 10331 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10332 { ARM::AEK_CRYPTO, Feature_HasV8, 10333 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10334 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10335 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10336 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10337 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10338 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10339 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10340 // FIXME: Only available in A-class, isel not predicated 10341 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10342 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10343 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10344 // FIXME: Unsupported extensions. 10345 { ARM::AEK_OS, Feature_None, {} }, 10346 { ARM::AEK_IWMMXT, Feature_None, {} }, 10347 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10348 { ARM::AEK_MAVERICK, Feature_None, {} }, 10349 { ARM::AEK_XSCALE, Feature_None, {} }, 10350 }; 10351 10352 /// parseDirectiveArchExtension 10353 /// ::= .arch_extension [no]feature 10354 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10355 MCAsmParser &Parser = getParser(); 10356 10357 if (getLexer().isNot(AsmToken::Identifier)) 10358 return Error(getLexer().getLoc(), "expected architecture extension name"); 10359 10360 StringRef Name = Parser.getTok().getString(); 10361 SMLoc ExtLoc = Parser.getTok().getLoc(); 10362 Lex(); 10363 10364 if (parseToken(AsmToken::EndOfStatement, 10365 "unexpected token in '.arch_extension' directive")) 10366 return true; 10367 10368 bool EnableFeature = true; 10369 if (Name.startswith_lower("no")) { 10370 EnableFeature = false; 10371 Name = Name.substr(2); 10372 } 10373 unsigned FeatureKind = ARM::parseArchExt(Name); 10374 if (FeatureKind == ARM::AEK_INVALID) 10375 return Error(ExtLoc, "unknown architectural extension: " + Name); 10376 10377 for (const auto &Extension : Extensions) { 10378 if (Extension.Kind != FeatureKind) 10379 continue; 10380 10381 if (Extension.Features.none()) 10382 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10383 10384 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10385 return Error(ExtLoc, "architectural extension '" + Name + 10386 "' is not " 10387 "allowed for the current base architecture"); 10388 10389 MCSubtargetInfo &STI = copySTI(); 10390 FeatureBitset ToggleFeatures = EnableFeature 10391 ? (~STI.getFeatureBits() & Extension.Features) 10392 : ( STI.getFeatureBits() & Extension.Features); 10393 10394 uint64_t Features = 10395 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10396 setAvailableFeatures(Features); 10397 return false; 10398 } 10399 10400 return Error(ExtLoc, "unknown architectural extension: " + Name); 10401 } 10402 10403 // Define this matcher function after the auto-generated include so we 10404 // have the match class enum definitions. 10405 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10406 unsigned Kind) { 10407 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10408 // If the kind is a token for a literal immediate, check if our asm 10409 // operand matches. This is for InstAliases which have a fixed-value 10410 // immediate in the syntax. 10411 switch (Kind) { 10412 default: break; 10413 case MCK__35_0: 10414 if (Op.isImm()) 10415 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10416 if (CE->getValue() == 0) 10417 return Match_Success; 10418 break; 10419 case MCK_ModImm: 10420 if (Op.isImm()) { 10421 const MCExpr *SOExpr = Op.getImm(); 10422 int64_t Value; 10423 if (!SOExpr->evaluateAsAbsolute(Value)) 10424 return Match_Success; 10425 assert((Value >= std::numeric_limits<int32_t>::min() && 10426 Value <= std::numeric_limits<uint32_t>::max()) && 10427 "expression value must be representable in 32 bits"); 10428 } 10429 break; 10430 case MCK_rGPR: 10431 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10432 return Match_Success; 10433 return Match_rGPR; 10434 case MCK_GPRPair: 10435 if (Op.isReg() && 10436 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10437 return Match_Success; 10438 break; 10439 } 10440 return Match_InvalidOperand; 10441 } 10442