1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCInstrInfo.h" 34 #include "llvm/MC/MCObjectFileInfo.h" 35 #include "llvm/MC/MCParser/MCAsmLexer.h" 36 #include "llvm/MC/MCParser/MCAsmParser.h" 37 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 38 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 40 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSubtargetInfo.h" 45 #include "llvm/MC/MCSymbol.h" 46 #include "llvm/MC/SubtargetFeature.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/ARMEHABI.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/SMLoc.h" 55 #include "llvm/Support/TargetParser.h" 56 #include "llvm/Support/TargetRegistry.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <utility> 67 #include <vector> 68 69 #define DEBUG_TYPE "asm-parser" 70 71 using namespace llvm; 72 73 namespace llvm { 74 extern const MCInstrDesc ARMInsts[]; 75 } // end namespace llvm 76 77 namespace { 78 79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 80 81 static cl::opt<ImplicitItModeTy> ImplicitItMode( 82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 83 cl::desc("Allow conditional instructions outdside of an IT block"), 84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 85 "Accept in both ISAs, emit implicit ITs in Thumb"), 86 clEnumValN(ImplicitItModeTy::Never, "never", 87 "Warn in ARM, reject in Thumb"), 88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 89 "Accept in ARM, reject in Thumb"), 90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 91 "Warn in ARM, emit implicit ITs in Thumb"))); 92 93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 94 cl::init(false)); 95 96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 97 98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 99 // Position==0 means we're not in an IT block at all. Position==1 100 // means we want the first state bit, which is always 0 (Then). 101 // Position==2 means we want the second state bit, stored at bit 3 102 // of Mask, and so on downwards. So (5 - Position) will shift the 103 // right bit down to bit 0, including the always-0 bit at bit 4 for 104 // the mandatory initial Then. 105 return (Mask >> (5 - Position) & 1); 106 } 107 108 class UnwindContext { 109 using Locs = SmallVector<SMLoc, 4>; 110 111 MCAsmParser &Parser; 112 Locs FnStartLocs; 113 Locs CantUnwindLocs; 114 Locs PersonalityLocs; 115 Locs PersonalityIndexLocs; 116 Locs HandlerDataLocs; 117 int FPReg; 118 119 public: 120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 121 122 bool hasFnStart() const { return !FnStartLocs.empty(); } 123 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 125 126 bool hasPersonality() const { 127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 128 } 129 130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 135 136 void saveFPReg(int Reg) { FPReg = Reg; } 137 int getFPReg() const { return FPReg; } 138 139 void emitFnStartLocNotes() const { 140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 141 FI != FE; ++FI) 142 Parser.Note(*FI, ".fnstart was specified here"); 143 } 144 145 void emitCantUnwindLocNotes() const { 146 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 147 UE = CantUnwindLocs.end(); UI != UE; ++UI) 148 Parser.Note(*UI, ".cantunwind was specified here"); 149 } 150 151 void emitHandlerDataLocNotes() const { 152 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 153 HE = HandlerDataLocs.end(); HI != HE; ++HI) 154 Parser.Note(*HI, ".handlerdata was specified here"); 155 } 156 157 void emitPersonalityLocNotes() const { 158 for (Locs::const_iterator PI = PersonalityLocs.begin(), 159 PE = PersonalityLocs.end(), 160 PII = PersonalityIndexLocs.begin(), 161 PIE = PersonalityIndexLocs.end(); 162 PI != PE || PII != PIE;) { 163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 164 Parser.Note(*PI++, ".personality was specified here"); 165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 166 Parser.Note(*PII++, ".personalityindex was specified here"); 167 else 168 llvm_unreachable(".personality and .personalityindex cannot be " 169 "at the same location"); 170 } 171 } 172 173 void reset() { 174 FnStartLocs = Locs(); 175 CantUnwindLocs = Locs(); 176 PersonalityLocs = Locs(); 177 HandlerDataLocs = Locs(); 178 PersonalityIndexLocs = Locs(); 179 FPReg = ARM::SP; 180 } 181 }; 182 183 184 class ARMAsmParser : public MCTargetAsmParser { 185 const MCRegisterInfo *MRI; 186 UnwindContext UC; 187 188 ARMTargetStreamer &getTargetStreamer() { 189 assert(getParser().getStreamer().getTargetStreamer() && 190 "do not have a target streamer"); 191 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 192 return static_cast<ARMTargetStreamer &>(TS); 193 } 194 195 // Map of register aliases registers via the .req directive. 196 StringMap<unsigned> RegisterReqs; 197 198 bool NextSymbolIsThumb; 199 200 bool useImplicitITThumb() const { 201 return ImplicitItMode == ImplicitItModeTy::Always || 202 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 203 } 204 205 bool useImplicitITARM() const { 206 return ImplicitItMode == ImplicitItModeTy::Always || 207 ImplicitItMode == ImplicitItModeTy::ARMOnly; 208 } 209 210 struct { 211 ARMCC::CondCodes Cond; // Condition for IT block. 212 unsigned Mask:4; // Condition mask for instructions. 213 // Starting at first 1 (from lsb). 214 // '1' condition as indicated in IT. 215 // '0' inverse of condition (else). 216 // Count of instructions in IT block is 217 // 4 - trailingzeroes(mask) 218 // Note that this does not have the same encoding 219 // as in the IT instruction, which also depends 220 // on the low bit of the condition code. 221 222 unsigned CurPosition; // Current position in parsing of IT 223 // block. In range [0,4], with 0 being the IT 224 // instruction itself. Initialized according to 225 // count of instructions in block. ~0U if no 226 // active IT block. 227 228 bool IsExplicit; // true - The IT instruction was present in the 229 // input, we should not modify it. 230 // false - The IT instruction was added 231 // implicitly, we can extend it if that 232 // would be legal. 233 } ITState; 234 235 SmallVector<MCInst, 4> PendingConditionalInsts; 236 237 void flushPendingInstructions(MCStreamer &Out) override { 238 if (!inImplicitITBlock()) { 239 assert(PendingConditionalInsts.size() == 0); 240 return; 241 } 242 243 // Emit the IT instruction 244 MCInst ITInst; 245 ITInst.setOpcode(ARM::t2IT); 246 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 247 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 248 Out.EmitInstruction(ITInst, getSTI()); 249 250 // Emit the conditonal instructions 251 assert(PendingConditionalInsts.size() <= 4); 252 for (const MCInst &Inst : PendingConditionalInsts) { 253 Out.EmitInstruction(Inst, getSTI()); 254 } 255 PendingConditionalInsts.clear(); 256 257 // Clear the IT state 258 ITState.Mask = 0; 259 ITState.CurPosition = ~0U; 260 } 261 262 bool inITBlock() { return ITState.CurPosition != ~0U; } 263 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 264 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 265 266 bool lastInITBlock() { 267 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 268 } 269 270 void forwardITPosition() { 271 if (!inITBlock()) return; 272 // Move to the next instruction in the IT block, if there is one. If not, 273 // mark the block as done, except for implicit IT blocks, which we leave 274 // open until we find an instruction that can't be added to it. 275 unsigned TZ = countTrailingZeros(ITState.Mask); 276 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 277 ITState.CurPosition = ~0U; // Done with the IT block after this. 278 } 279 280 // Rewind the state of the current IT block, removing the last slot from it. 281 void rewindImplicitITPosition() { 282 assert(inImplicitITBlock()); 283 assert(ITState.CurPosition > 1); 284 ITState.CurPosition--; 285 unsigned TZ = countTrailingZeros(ITState.Mask); 286 unsigned NewMask = 0; 287 NewMask |= ITState.Mask & (0xC << TZ); 288 NewMask |= 0x2 << TZ; 289 ITState.Mask = NewMask; 290 } 291 292 // Rewind the state of the current IT block, removing the last slot from it. 293 // If we were at the first slot, this closes the IT block. 294 void discardImplicitITBlock() { 295 assert(inImplicitITBlock()); 296 assert(ITState.CurPosition == 1); 297 ITState.CurPosition = ~0U; 298 } 299 300 // Return the low-subreg of a given Q register. 301 unsigned getDRegFromQReg(unsigned QReg) const { 302 return MRI->getSubReg(QReg, ARM::dsub_0); 303 } 304 305 // Get the condition code corresponding to the current IT block slot. 306 ARMCC::CondCodes currentITCond() { 307 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 308 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 309 } 310 311 // Invert the condition of the current IT block slot without changing any 312 // other slots in the same block. 313 void invertCurrentITCondition() { 314 if (ITState.CurPosition == 1) { 315 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 316 } else { 317 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 318 } 319 } 320 321 // Returns true if the current IT block is full (all 4 slots used). 322 bool isITBlockFull() { 323 return inITBlock() && (ITState.Mask & 1); 324 } 325 326 // Extend the current implicit IT block to have one more slot with the given 327 // condition code. 328 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 329 assert(inImplicitITBlock()); 330 assert(!isITBlockFull()); 331 assert(Cond == ITState.Cond || 332 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 333 unsigned TZ = countTrailingZeros(ITState.Mask); 334 unsigned NewMask = 0; 335 // Keep any existing condition bits. 336 NewMask |= ITState.Mask & (0xE << TZ); 337 // Insert the new condition bit. 338 NewMask |= (Cond != ITState.Cond) << TZ; 339 // Move the trailing 1 down one bit. 340 NewMask |= 1 << (TZ - 1); 341 ITState.Mask = NewMask; 342 } 343 344 // Create a new implicit IT block with a dummy condition code. 345 void startImplicitITBlock() { 346 assert(!inITBlock()); 347 ITState.Cond = ARMCC::AL; 348 ITState.Mask = 8; 349 ITState.CurPosition = 1; 350 ITState.IsExplicit = false; 351 } 352 353 // Create a new explicit IT block with the given condition and mask. 354 // The mask should be in the format used in ARMOperand and 355 // MCOperand, with a 1 implying 'e', regardless of the low bit of 356 // the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 struct { 366 unsigned Mask : 4; 367 unsigned CurPosition; 368 } VPTState; 369 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 370 void forwardVPTPosition() { 371 if (!inVPTBlock()) return; 372 unsigned TZ = countTrailingZeros(VPTState.Mask); 373 if (++VPTState.CurPosition == 5 - TZ) 374 VPTState.CurPosition = ~0U; 375 } 376 377 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 378 return getParser().Note(L, Msg, Range); 379 } 380 381 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 382 return getParser().Warning(L, Msg, Range); 383 } 384 385 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 386 return getParser().Error(L, Msg, Range); 387 } 388 389 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 390 unsigned ListNo, bool IsARPop = false); 391 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 392 unsigned ListNo); 393 394 int tryParseRegister(); 395 bool tryParseRegisterWithWriteBack(OperandVector &); 396 int tryParseShiftRegister(OperandVector &); 397 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 398 bool parseMemory(OperandVector &); 399 bool parseOperand(OperandVector &, StringRef Mnemonic); 400 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 401 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 402 unsigned &ShiftAmount); 403 bool parseLiteralValues(unsigned Size, SMLoc L); 404 bool parseDirectiveThumb(SMLoc L); 405 bool parseDirectiveARM(SMLoc L); 406 bool parseDirectiveThumbFunc(SMLoc L); 407 bool parseDirectiveCode(SMLoc L); 408 bool parseDirectiveSyntax(SMLoc L); 409 bool parseDirectiveReq(StringRef Name, SMLoc L); 410 bool parseDirectiveUnreq(SMLoc L); 411 bool parseDirectiveArch(SMLoc L); 412 bool parseDirectiveEabiAttr(SMLoc L); 413 bool parseDirectiveCPU(SMLoc L); 414 bool parseDirectiveFPU(SMLoc L); 415 bool parseDirectiveFnStart(SMLoc L); 416 bool parseDirectiveFnEnd(SMLoc L); 417 bool parseDirectiveCantUnwind(SMLoc L); 418 bool parseDirectivePersonality(SMLoc L); 419 bool parseDirectiveHandlerData(SMLoc L); 420 bool parseDirectiveSetFP(SMLoc L); 421 bool parseDirectivePad(SMLoc L); 422 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 423 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 424 bool parseDirectiveLtorg(SMLoc L); 425 bool parseDirectiveEven(SMLoc L); 426 bool parseDirectivePersonalityIndex(SMLoc L); 427 bool parseDirectiveUnwindRaw(SMLoc L); 428 bool parseDirectiveTLSDescSeq(SMLoc L); 429 bool parseDirectiveMovSP(SMLoc L); 430 bool parseDirectiveObjectArch(SMLoc L); 431 bool parseDirectiveArchExtension(SMLoc L); 432 bool parseDirectiveAlign(SMLoc L); 433 bool parseDirectiveThumbSet(SMLoc L); 434 435 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 436 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 437 unsigned &PredicationCode, 438 unsigned &VPTPredicationCode, bool &CarrySetting, 439 unsigned &ProcessorIMod, StringRef &ITMask); 440 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 441 StringRef FullInst, bool &CanAcceptCarrySet, 442 bool &CanAcceptPredicationCode, 443 bool &CanAcceptVPTPredicationCode); 444 445 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 446 OperandVector &Operands); 447 bool isThumb() const { 448 // FIXME: Can tablegen auto-generate this? 449 return getSTI().getFeatureBits()[ARM::ModeThumb]; 450 } 451 452 bool isThumbOne() const { 453 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 454 } 455 456 bool isThumbTwo() const { 457 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 458 } 459 460 bool hasThumb() const { 461 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 462 } 463 464 bool hasThumb2() const { 465 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 466 } 467 468 bool hasV6Ops() const { 469 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 470 } 471 472 bool hasV6T2Ops() const { 473 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 474 } 475 476 bool hasV6MOps() const { 477 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 478 } 479 480 bool hasV7Ops() const { 481 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 482 } 483 484 bool hasV8Ops() const { 485 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 486 } 487 488 bool hasV8MBaseline() const { 489 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 490 } 491 492 bool hasV8MMainline() const { 493 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 494 } 495 bool hasV8_1MMainline() const { 496 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 497 } 498 bool hasMVE() const { 499 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 500 } 501 bool hasMVEFloat() const { 502 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 503 } 504 bool has8MSecExt() const { 505 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 506 } 507 508 bool hasARM() const { 509 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 510 } 511 512 bool hasDSP() const { 513 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 514 } 515 516 bool hasD32() const { 517 return getSTI().getFeatureBits()[ARM::FeatureD32]; 518 } 519 520 bool hasV8_1aOps() const { 521 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 522 } 523 524 bool hasRAS() const { 525 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 526 } 527 528 void SwitchMode() { 529 MCSubtargetInfo &STI = copySTI(); 530 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 531 setAvailableFeatures(FB); 532 } 533 534 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 535 536 bool isMClass() const { 537 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 538 } 539 540 /// @name Auto-generated Match Functions 541 /// { 542 543 #define GET_ASSEMBLER_HEADER 544 #include "ARMGenAsmMatcher.inc" 545 546 /// } 547 548 OperandMatchResultTy parseITCondCode(OperandVector &); 549 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 550 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 551 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 552 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 553 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 554 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 555 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 556 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 557 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 558 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 559 int High); 560 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 561 return parsePKHImm(O, "lsl", 0, 31); 562 } 563 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 564 return parsePKHImm(O, "asr", 1, 32); 565 } 566 OperandMatchResultTy parseSetEndImm(OperandVector &); 567 OperandMatchResultTy parseShifterImm(OperandVector &); 568 OperandMatchResultTy parseRotImm(OperandVector &); 569 OperandMatchResultTy parseModImm(OperandVector &); 570 OperandMatchResultTy parseBitfield(OperandVector &); 571 OperandMatchResultTy parsePostIdxReg(OperandVector &); 572 OperandMatchResultTy parseAM3Offset(OperandVector &); 573 OperandMatchResultTy parseFPImm(OperandVector &); 574 OperandMatchResultTy parseVectorList(OperandVector &); 575 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 576 SMLoc &EndLoc); 577 578 // Asm Match Converter Methods 579 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 580 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 581 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 582 583 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 584 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 585 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 586 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 587 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 588 bool isITBlockTerminator(MCInst &Inst) const; 589 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 590 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 591 bool Load, bool ARMMode, bool Writeback); 592 593 public: 594 enum ARMMatchResultTy { 595 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 596 Match_RequiresNotITBlock, 597 Match_RequiresV6, 598 Match_RequiresThumb2, 599 Match_RequiresV8, 600 Match_RequiresFlagSetting, 601 #define GET_OPERAND_DIAGNOSTIC_TYPES 602 #include "ARMGenAsmMatcher.inc" 603 604 }; 605 606 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 607 const MCInstrInfo &MII, const MCTargetOptions &Options) 608 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 609 MCAsmParserExtension::Initialize(Parser); 610 611 // Cache the MCRegisterInfo. 612 MRI = getContext().getRegisterInfo(); 613 614 // Initialize the set of available features. 615 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 616 617 // Add build attributes based on the selected target. 618 if (AddBuildAttributes) 619 getTargetStreamer().emitTargetAttributes(STI); 620 621 // Not in an ITBlock to start with. 622 ITState.CurPosition = ~0U; 623 624 VPTState.CurPosition = ~0U; 625 626 NextSymbolIsThumb = false; 627 } 628 629 // Implementation of the MCTargetAsmParser interface: 630 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 631 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 632 SMLoc NameLoc, OperandVector &Operands) override; 633 bool ParseDirective(AsmToken DirectiveID) override; 634 635 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 636 unsigned Kind) override; 637 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 638 639 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 640 OperandVector &Operands, MCStreamer &Out, 641 uint64_t &ErrorInfo, 642 bool MatchingInlineAsm) override; 643 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 644 SmallVectorImpl<NearMissInfo> &NearMisses, 645 bool MatchingInlineAsm, bool &EmitInITBlock, 646 MCStreamer &Out); 647 648 struct NearMissMessage { 649 SMLoc Loc; 650 SmallString<128> Message; 651 }; 652 653 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 654 655 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 656 SmallVectorImpl<NearMissMessage> &NearMissesOut, 657 SMLoc IDLoc, OperandVector &Operands); 658 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 659 OperandVector &Operands); 660 661 void doBeforeLabelEmit(MCSymbol *Symbol) override; 662 663 void onLabelParsed(MCSymbol *Symbol) override; 664 }; 665 666 /// ARMOperand - Instances of this class represent a parsed ARM machine 667 /// operand. 668 class ARMOperand : public MCParsedAsmOperand { 669 enum KindTy { 670 k_CondCode, 671 k_VPTPred, 672 k_CCOut, 673 k_ITCondMask, 674 k_CoprocNum, 675 k_CoprocReg, 676 k_CoprocOption, 677 k_Immediate, 678 k_MemBarrierOpt, 679 k_InstSyncBarrierOpt, 680 k_TraceSyncBarrierOpt, 681 k_Memory, 682 k_PostIndexRegister, 683 k_MSRMask, 684 k_BankedReg, 685 k_ProcIFlags, 686 k_VectorIndex, 687 k_Register, 688 k_RegisterList, 689 k_RegisterListWithAPSR, 690 k_DPRRegisterList, 691 k_SPRRegisterList, 692 k_FPSRegisterListWithVPR, 693 k_FPDRegisterListWithVPR, 694 k_VectorList, 695 k_VectorListAllLanes, 696 k_VectorListIndexed, 697 k_ShiftedRegister, 698 k_ShiftedImmediate, 699 k_ShifterImmediate, 700 k_RotateImmediate, 701 k_ModifiedImmediate, 702 k_ConstantPoolImmediate, 703 k_BitfieldDescriptor, 704 k_Token, 705 } Kind; 706 707 SMLoc StartLoc, EndLoc, AlignmentLoc; 708 SmallVector<unsigned, 8> Registers; 709 710 struct CCOp { 711 ARMCC::CondCodes Val; 712 }; 713 714 struct VCCOp { 715 ARMVCC::VPTCodes Val; 716 }; 717 718 struct CopOp { 719 unsigned Val; 720 }; 721 722 struct CoprocOptionOp { 723 unsigned Val; 724 }; 725 726 struct ITMaskOp { 727 unsigned Mask:4; 728 }; 729 730 struct MBOptOp { 731 ARM_MB::MemBOpt Val; 732 }; 733 734 struct ISBOptOp { 735 ARM_ISB::InstSyncBOpt Val; 736 }; 737 738 struct TSBOptOp { 739 ARM_TSB::TraceSyncBOpt Val; 740 }; 741 742 struct IFlagsOp { 743 ARM_PROC::IFlags Val; 744 }; 745 746 struct MMaskOp { 747 unsigned Val; 748 }; 749 750 struct BankedRegOp { 751 unsigned Val; 752 }; 753 754 struct TokOp { 755 const char *Data; 756 unsigned Length; 757 }; 758 759 struct RegOp { 760 unsigned RegNum; 761 }; 762 763 // A vector register list is a sequential list of 1 to 4 registers. 764 struct VectorListOp { 765 unsigned RegNum; 766 unsigned Count; 767 unsigned LaneIndex; 768 bool isDoubleSpaced; 769 }; 770 771 struct VectorIndexOp { 772 unsigned Val; 773 }; 774 775 struct ImmOp { 776 const MCExpr *Val; 777 }; 778 779 /// Combined record for all forms of ARM address expressions. 780 struct MemoryOp { 781 unsigned BaseRegNum; 782 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 783 // was specified. 784 const MCConstantExpr *OffsetImm; // Offset immediate value 785 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 786 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 787 unsigned ShiftImm; // shift for OffsetReg. 788 unsigned Alignment; // 0 = no alignment specified 789 // n = alignment in bytes (2, 4, 8, 16, or 32) 790 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 791 }; 792 793 struct PostIdxRegOp { 794 unsigned RegNum; 795 bool isAdd; 796 ARM_AM::ShiftOpc ShiftTy; 797 unsigned ShiftImm; 798 }; 799 800 struct ShifterImmOp { 801 bool isASR; 802 unsigned Imm; 803 }; 804 805 struct RegShiftedRegOp { 806 ARM_AM::ShiftOpc ShiftTy; 807 unsigned SrcReg; 808 unsigned ShiftReg; 809 unsigned ShiftImm; 810 }; 811 812 struct RegShiftedImmOp { 813 ARM_AM::ShiftOpc ShiftTy; 814 unsigned SrcReg; 815 unsigned ShiftImm; 816 }; 817 818 struct RotImmOp { 819 unsigned Imm; 820 }; 821 822 struct ModImmOp { 823 unsigned Bits; 824 unsigned Rot; 825 }; 826 827 struct BitfieldOp { 828 unsigned LSB; 829 unsigned Width; 830 }; 831 832 union { 833 struct CCOp CC; 834 struct VCCOp VCC; 835 struct CopOp Cop; 836 struct CoprocOptionOp CoprocOption; 837 struct MBOptOp MBOpt; 838 struct ISBOptOp ISBOpt; 839 struct TSBOptOp TSBOpt; 840 struct ITMaskOp ITMask; 841 struct IFlagsOp IFlags; 842 struct MMaskOp MMask; 843 struct BankedRegOp BankedReg; 844 struct TokOp Tok; 845 struct RegOp Reg; 846 struct VectorListOp VectorList; 847 struct VectorIndexOp VectorIndex; 848 struct ImmOp Imm; 849 struct MemoryOp Memory; 850 struct PostIdxRegOp PostIdxReg; 851 struct ShifterImmOp ShifterImm; 852 struct RegShiftedRegOp RegShiftedReg; 853 struct RegShiftedImmOp RegShiftedImm; 854 struct RotImmOp RotImm; 855 struct ModImmOp ModImm; 856 struct BitfieldOp Bitfield; 857 }; 858 859 public: 860 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 861 862 /// getStartLoc - Get the location of the first token of this operand. 863 SMLoc getStartLoc() const override { return StartLoc; } 864 865 /// getEndLoc - Get the location of the last token of this operand. 866 SMLoc getEndLoc() const override { return EndLoc; } 867 868 /// getLocRange - Get the range between the first and last token of this 869 /// operand. 870 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 871 872 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 873 SMLoc getAlignmentLoc() const { 874 assert(Kind == k_Memory && "Invalid access!"); 875 return AlignmentLoc; 876 } 877 878 ARMCC::CondCodes getCondCode() const { 879 assert(Kind == k_CondCode && "Invalid access!"); 880 return CC.Val; 881 } 882 883 ARMVCC::VPTCodes getVPTPred() const { 884 assert(isVPTPred() && "Invalid access!"); 885 return VCC.Val; 886 } 887 888 unsigned getCoproc() const { 889 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 890 return Cop.Val; 891 } 892 893 StringRef getToken() const { 894 assert(Kind == k_Token && "Invalid access!"); 895 return StringRef(Tok.Data, Tok.Length); 896 } 897 898 unsigned getReg() const override { 899 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 900 return Reg.RegNum; 901 } 902 903 const SmallVectorImpl<unsigned> &getRegList() const { 904 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 905 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 906 Kind == k_FPSRegisterListWithVPR || 907 Kind == k_FPDRegisterListWithVPR) && 908 "Invalid access!"); 909 return Registers; 910 } 911 912 const MCExpr *getImm() const { 913 assert(isImm() && "Invalid access!"); 914 return Imm.Val; 915 } 916 917 const MCExpr *getConstantPoolImm() const { 918 assert(isConstantPoolImm() && "Invalid access!"); 919 return Imm.Val; 920 } 921 922 unsigned getVectorIndex() const { 923 assert(Kind == k_VectorIndex && "Invalid access!"); 924 return VectorIndex.Val; 925 } 926 927 ARM_MB::MemBOpt getMemBarrierOpt() const { 928 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 929 return MBOpt.Val; 930 } 931 932 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 933 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 934 return ISBOpt.Val; 935 } 936 937 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 938 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 939 return TSBOpt.Val; 940 } 941 942 ARM_PROC::IFlags getProcIFlags() const { 943 assert(Kind == k_ProcIFlags && "Invalid access!"); 944 return IFlags.Val; 945 } 946 947 unsigned getMSRMask() const { 948 assert(Kind == k_MSRMask && "Invalid access!"); 949 return MMask.Val; 950 } 951 952 unsigned getBankedReg() const { 953 assert(Kind == k_BankedReg && "Invalid access!"); 954 return BankedReg.Val; 955 } 956 957 bool isCoprocNum() const { return Kind == k_CoprocNum; } 958 bool isCoprocReg() const { return Kind == k_CoprocReg; } 959 bool isCoprocOption() const { return Kind == k_CoprocOption; } 960 bool isCondCode() const { return Kind == k_CondCode; } 961 bool isVPTPred() const { return Kind == k_VPTPred; } 962 bool isCCOut() const { return Kind == k_CCOut; } 963 bool isITMask() const { return Kind == k_ITCondMask; } 964 bool isITCondCode() const { return Kind == k_CondCode; } 965 bool isImm() const override { 966 return Kind == k_Immediate; 967 } 968 969 bool isARMBranchTarget() const { 970 if (!isImm()) return false; 971 972 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 973 return CE->getValue() % 4 == 0; 974 return true; 975 } 976 977 978 bool isThumbBranchTarget() const { 979 if (!isImm()) return false; 980 981 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 982 return CE->getValue() % 2 == 0; 983 return true; 984 } 985 986 // checks whether this operand is an unsigned offset which fits is a field 987 // of specified width and scaled by a specific number of bits 988 template<unsigned width, unsigned scale> 989 bool isUnsignedOffset() const { 990 if (!isImm()) return false; 991 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 992 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 993 int64_t Val = CE->getValue(); 994 int64_t Align = 1LL << scale; 995 int64_t Max = Align * ((1LL << width) - 1); 996 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 997 } 998 return false; 999 } 1000 1001 // checks whether this operand is an signed offset which fits is a field 1002 // of specified width and scaled by a specific number of bits 1003 template<unsigned width, unsigned scale> 1004 bool isSignedOffset() const { 1005 if (!isImm()) return false; 1006 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1007 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1008 int64_t Val = CE->getValue(); 1009 int64_t Align = 1LL << scale; 1010 int64_t Max = Align * ((1LL << (width-1)) - 1); 1011 int64_t Min = -Align * (1LL << (width-1)); 1012 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1013 } 1014 return false; 1015 } 1016 1017 // checks whether this operand is an offset suitable for the LE / 1018 // LETP instructions in Arm v8.1M 1019 bool isLEOffset() const { 1020 if (!isImm()) return false; 1021 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1022 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1023 int64_t Val = CE->getValue(); 1024 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1025 } 1026 return false; 1027 } 1028 1029 // checks whether this operand is a memory operand computed as an offset 1030 // applied to PC. the offset may have 8 bits of magnitude and is represented 1031 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1032 // relocable expression... 1033 bool isThumbMemPC() const { 1034 int64_t Val = 0; 1035 if (isImm()) { 1036 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1038 if (!CE) return false; 1039 Val = CE->getValue(); 1040 } 1041 else if (isGPRMem()) { 1042 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1043 if(Memory.BaseRegNum != ARM::PC) return false; 1044 Val = Memory.OffsetImm->getValue(); 1045 } 1046 else return false; 1047 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1048 } 1049 1050 bool isFPImm() const { 1051 if (!isImm()) return false; 1052 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1053 if (!CE) return false; 1054 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1055 return Val != -1; 1056 } 1057 1058 template<int64_t N, int64_t M> 1059 bool isImmediate() const { 1060 if (!isImm()) return false; 1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1062 if (!CE) return false; 1063 int64_t Value = CE->getValue(); 1064 return Value >= N && Value <= M; 1065 } 1066 1067 template<int64_t N, int64_t M> 1068 bool isImmediateS4() const { 1069 if (!isImm()) return false; 1070 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1071 if (!CE) return false; 1072 int64_t Value = CE->getValue(); 1073 return ((Value & 3) == 0) && Value >= N && Value <= M; 1074 } 1075 template<int64_t N, int64_t M> 1076 bool isImmediateS2() const { 1077 if (!isImm()) return false; 1078 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1079 if (!CE) return false; 1080 int64_t Value = CE->getValue(); 1081 return ((Value & 1) == 0) && Value >= N && Value <= M; 1082 } 1083 bool isFBits16() const { 1084 return isImmediate<0, 17>(); 1085 } 1086 bool isFBits32() const { 1087 return isImmediate<1, 33>(); 1088 } 1089 bool isImm8s4() const { 1090 return isImmediateS4<-1020, 1020>(); 1091 } 1092 bool isImm7s4() const { 1093 return isImmediateS4<-508, 508>(); 1094 } 1095 bool isImm7Shift0() const { 1096 return isImmediate<-127, 127>(); 1097 } 1098 bool isImm7Shift1() const { 1099 return isImmediateS2<-255, 255>(); 1100 } 1101 bool isImm7Shift2() const { 1102 return isImmediateS4<-511, 511>(); 1103 } 1104 bool isImm7() const { 1105 return isImmediate<-127, 127>(); 1106 } 1107 bool isImm0_1020s4() const { 1108 return isImmediateS4<0, 1020>(); 1109 } 1110 bool isImm0_508s4() const { 1111 return isImmediateS4<0, 508>(); 1112 } 1113 bool isImm0_508s4Neg() const { 1114 if (!isImm()) return false; 1115 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1116 if (!CE) return false; 1117 int64_t Value = -CE->getValue(); 1118 // explicitly exclude zero. we want that to use the normal 0_508 version. 1119 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1120 } 1121 1122 bool isImm0_4095Neg() const { 1123 if (!isImm()) return false; 1124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1125 if (!CE) return false; 1126 // isImm0_4095Neg is used with 32-bit immediates only. 1127 // 32-bit immediates are zero extended to 64-bit when parsed, 1128 // thus simple -CE->getValue() results in a big negative number, 1129 // not a small positive number as intended 1130 if ((CE->getValue() >> 32) > 0) return false; 1131 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1132 return Value > 0 && Value < 4096; 1133 } 1134 1135 bool isImm0_7() const { 1136 return isImmediate<0, 7>(); 1137 } 1138 1139 bool isImm1_16() const { 1140 return isImmediate<1, 16>(); 1141 } 1142 1143 bool isImm1_32() const { 1144 return isImmediate<1, 32>(); 1145 } 1146 1147 bool isImm8_255() const { 1148 return isImmediate<8, 255>(); 1149 } 1150 1151 bool isImm256_65535Expr() const { 1152 if (!isImm()) return false; 1153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1154 // If it's not a constant expression, it'll generate a fixup and be 1155 // handled later. 1156 if (!CE) return true; 1157 int64_t Value = CE->getValue(); 1158 return Value >= 256 && Value < 65536; 1159 } 1160 1161 bool isImm0_65535Expr() const { 1162 if (!isImm()) return false; 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 // If it's not a constant expression, it'll generate a fixup and be 1165 // handled later. 1166 if (!CE) return true; 1167 int64_t Value = CE->getValue(); 1168 return Value >= 0 && Value < 65536; 1169 } 1170 1171 bool isImm24bit() const { 1172 return isImmediate<0, 0xffffff + 1>(); 1173 } 1174 1175 bool isImmThumbSR() const { 1176 return isImmediate<1, 33>(); 1177 } 1178 1179 template<int shift> 1180 bool isExpImmValue(uint64_t Value) const { 1181 uint64_t mask = (1 << shift) - 1; 1182 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1183 return false; 1184 return true; 1185 } 1186 1187 template<int shift> 1188 bool isExpImm() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 1193 return isExpImmValue<shift>(CE->getValue()); 1194 } 1195 1196 template<int shift, int size> 1197 bool isInvertedExpImm() const { 1198 if (!isImm()) return false; 1199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1200 if (!CE) return false; 1201 1202 uint64_t OriginalValue = CE->getValue(); 1203 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1204 return isExpImmValue<shift>(InvertedValue); 1205 } 1206 1207 bool isPKHLSLImm() const { 1208 return isImmediate<0, 32>(); 1209 } 1210 1211 bool isPKHASRImm() const { 1212 return isImmediate<0, 33>(); 1213 } 1214 1215 bool isAdrLabel() const { 1216 // If we have an immediate that's not a constant, treat it as a label 1217 // reference needing a fixup. 1218 if (isImm() && !isa<MCConstantExpr>(getImm())) 1219 return true; 1220 1221 // If it is a constant, it must fit into a modified immediate encoding. 1222 if (!isImm()) return false; 1223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1224 if (!CE) return false; 1225 int64_t Value = CE->getValue(); 1226 return (ARM_AM::getSOImmVal(Value) != -1 || 1227 ARM_AM::getSOImmVal(-Value) != -1); 1228 } 1229 1230 bool isT2SOImm() const { 1231 // If we have an immediate that's not a constant, treat it as an expression 1232 // needing a fixup. 1233 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1234 // We want to avoid matching :upper16: and :lower16: as we want these 1235 // expressions to match in isImm0_65535Expr() 1236 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1237 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1238 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1239 } 1240 if (!isImm()) return false; 1241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1242 if (!CE) return false; 1243 int64_t Value = CE->getValue(); 1244 return ARM_AM::getT2SOImmVal(Value) != -1; 1245 } 1246 1247 bool isT2SOImmNot() const { 1248 if (!isImm()) return false; 1249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1250 if (!CE) return false; 1251 int64_t Value = CE->getValue(); 1252 return ARM_AM::getT2SOImmVal(Value) == -1 && 1253 ARM_AM::getT2SOImmVal(~Value) != -1; 1254 } 1255 1256 bool isT2SOImmNeg() const { 1257 if (!isImm()) return false; 1258 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1259 if (!CE) return false; 1260 int64_t Value = CE->getValue(); 1261 // Only use this when not representable as a plain so_imm. 1262 return ARM_AM::getT2SOImmVal(Value) == -1 && 1263 ARM_AM::getT2SOImmVal(-Value) != -1; 1264 } 1265 1266 bool isSetEndImm() const { 1267 if (!isImm()) return false; 1268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1269 if (!CE) return false; 1270 int64_t Value = CE->getValue(); 1271 return Value == 1 || Value == 0; 1272 } 1273 1274 bool isReg() const override { return Kind == k_Register; } 1275 bool isRegList() const { return Kind == k_RegisterList; } 1276 bool isRegListWithAPSR() const { 1277 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1278 } 1279 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1280 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1281 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1282 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1283 bool isToken() const override { return Kind == k_Token; } 1284 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1285 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1286 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1287 bool isMem() const override { 1288 return isGPRMem() || isMVEMem(); 1289 } 1290 bool isMVEMem() const { 1291 if (Kind != k_Memory) 1292 return false; 1293 if (Memory.BaseRegNum && 1294 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1295 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1296 return false; 1297 if (Memory.OffsetRegNum && 1298 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1299 Memory.OffsetRegNum)) 1300 return false; 1301 return true; 1302 } 1303 bool isGPRMem() const { 1304 if (Kind != k_Memory) 1305 return false; 1306 if (Memory.BaseRegNum && 1307 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1308 return false; 1309 if (Memory.OffsetRegNum && 1310 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1311 return false; 1312 return true; 1313 } 1314 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1315 bool isRegShiftedReg() const { 1316 return Kind == k_ShiftedRegister && 1317 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1318 RegShiftedReg.SrcReg) && 1319 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1320 RegShiftedReg.ShiftReg); 1321 } 1322 bool isRegShiftedImm() const { 1323 return Kind == k_ShiftedImmediate && 1324 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1325 RegShiftedImm.SrcReg); 1326 } 1327 bool isRotImm() const { return Kind == k_RotateImmediate; } 1328 1329 template<unsigned Min, unsigned Max> 1330 bool isPowerTwoInRange() const { 1331 if (!isImm()) return false; 1332 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1333 if (!CE) return false; 1334 int64_t Value = CE->getValue(); 1335 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1336 Value >= Min && Value <= Max; 1337 } 1338 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1339 1340 bool isModImmNot() const { 1341 if (!isImm()) return false; 1342 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1343 if (!CE) return false; 1344 int64_t Value = CE->getValue(); 1345 return ARM_AM::getSOImmVal(~Value) != -1; 1346 } 1347 1348 bool isModImmNeg() const { 1349 if (!isImm()) return false; 1350 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1351 if (!CE) return false; 1352 int64_t Value = CE->getValue(); 1353 return ARM_AM::getSOImmVal(Value) == -1 && 1354 ARM_AM::getSOImmVal(-Value) != -1; 1355 } 1356 1357 bool isThumbModImmNeg1_7() const { 1358 if (!isImm()) return false; 1359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1360 if (!CE) return false; 1361 int32_t Value = -(int32_t)CE->getValue(); 1362 return 0 < Value && Value < 8; 1363 } 1364 1365 bool isThumbModImmNeg8_255() const { 1366 if (!isImm()) return false; 1367 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1368 if (!CE) return false; 1369 int32_t Value = -(int32_t)CE->getValue(); 1370 return 7 < Value && Value < 256; 1371 } 1372 1373 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1374 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1375 bool isPostIdxRegShifted() const { 1376 return Kind == k_PostIndexRegister && 1377 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1378 } 1379 bool isPostIdxReg() const { 1380 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1381 } 1382 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1383 if (!isGPRMem()) 1384 return false; 1385 // No offset of any kind. 1386 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1387 (alignOK || Memory.Alignment == Alignment); 1388 } 1389 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1390 if (!isGPRMem()) 1391 return false; 1392 1393 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1394 Memory.BaseRegNum)) 1395 return false; 1396 1397 // No offset of any kind. 1398 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1399 (alignOK || Memory.Alignment == Alignment); 1400 } 1401 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1402 if (!isGPRMem()) 1403 return false; 1404 1405 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1406 Memory.BaseRegNum)) 1407 return false; 1408 1409 // No offset of any kind. 1410 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1411 (alignOK || Memory.Alignment == Alignment); 1412 } 1413 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1414 if (!isGPRMem()) 1415 return false; 1416 1417 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1418 Memory.BaseRegNum)) 1419 return false; 1420 1421 // No offset of any kind. 1422 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1423 (alignOK || Memory.Alignment == Alignment); 1424 } 1425 bool isMemPCRelImm12() const { 1426 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1427 return false; 1428 // Base register must be PC. 1429 if (Memory.BaseRegNum != ARM::PC) 1430 return false; 1431 // Immediate offset in range [-4095, 4095]. 1432 if (!Memory.OffsetImm) return true; 1433 int64_t Val = Memory.OffsetImm->getValue(); 1434 return (Val > -4096 && Val < 4096) || 1435 (Val == std::numeric_limits<int32_t>::min()); 1436 } 1437 1438 bool isAlignedMemory() const { 1439 return isMemNoOffset(true); 1440 } 1441 1442 bool isAlignedMemoryNone() const { 1443 return isMemNoOffset(false, 0); 1444 } 1445 1446 bool isDupAlignedMemoryNone() const { 1447 return isMemNoOffset(false, 0); 1448 } 1449 1450 bool isAlignedMemory16() const { 1451 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1452 return true; 1453 return isMemNoOffset(false, 0); 1454 } 1455 1456 bool isDupAlignedMemory16() const { 1457 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1458 return true; 1459 return isMemNoOffset(false, 0); 1460 } 1461 1462 bool isAlignedMemory32() const { 1463 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1464 return true; 1465 return isMemNoOffset(false, 0); 1466 } 1467 1468 bool isDupAlignedMemory32() const { 1469 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1470 return true; 1471 return isMemNoOffset(false, 0); 1472 } 1473 1474 bool isAlignedMemory64() const { 1475 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1476 return true; 1477 return isMemNoOffset(false, 0); 1478 } 1479 1480 bool isDupAlignedMemory64() const { 1481 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1482 return true; 1483 return isMemNoOffset(false, 0); 1484 } 1485 1486 bool isAlignedMemory64or128() const { 1487 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1488 return true; 1489 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1490 return true; 1491 return isMemNoOffset(false, 0); 1492 } 1493 1494 bool isDupAlignedMemory64or128() const { 1495 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1496 return true; 1497 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1498 return true; 1499 return isMemNoOffset(false, 0); 1500 } 1501 1502 bool isAlignedMemory64or128or256() const { 1503 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1504 return true; 1505 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1506 return true; 1507 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1508 return true; 1509 return isMemNoOffset(false, 0); 1510 } 1511 1512 bool isAddrMode2() const { 1513 if (!isGPRMem() || Memory.Alignment != 0) return false; 1514 // Check for register offset. 1515 if (Memory.OffsetRegNum) return true; 1516 // Immediate offset in range [-4095, 4095]. 1517 if (!Memory.OffsetImm) return true; 1518 int64_t Val = Memory.OffsetImm->getValue(); 1519 return Val > -4096 && Val < 4096; 1520 } 1521 1522 bool isAM2OffsetImm() const { 1523 if (!isImm()) return false; 1524 // Immediate offset in range [-4095, 4095]. 1525 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1526 if (!CE) return false; 1527 int64_t Val = CE->getValue(); 1528 return (Val == std::numeric_limits<int32_t>::min()) || 1529 (Val > -4096 && Val < 4096); 1530 } 1531 1532 bool isAddrMode3() const { 1533 // If we have an immediate that's not a constant, treat it as a label 1534 // reference needing a fixup. If it is a constant, it's something else 1535 // and we reject it. 1536 if (isImm() && !isa<MCConstantExpr>(getImm())) 1537 return true; 1538 if (!isGPRMem() || Memory.Alignment != 0) return false; 1539 // No shifts are legal for AM3. 1540 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1541 // Check for register offset. 1542 if (Memory.OffsetRegNum) return true; 1543 // Immediate offset in range [-255, 255]. 1544 if (!Memory.OffsetImm) return true; 1545 int64_t Val = Memory.OffsetImm->getValue(); 1546 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1547 // have to check for this too. 1548 return (Val > -256 && Val < 256) || 1549 Val == std::numeric_limits<int32_t>::min(); 1550 } 1551 1552 bool isAM3Offset() const { 1553 if (isPostIdxReg()) 1554 return true; 1555 if (!isImm()) 1556 return false; 1557 // Immediate offset in range [-255, 255]. 1558 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1559 if (!CE) return false; 1560 int64_t Val = CE->getValue(); 1561 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1562 return (Val > -256 && Val < 256) || 1563 Val == std::numeric_limits<int32_t>::min(); 1564 } 1565 1566 bool isAddrMode5() const { 1567 // If we have an immediate that's not a constant, treat it as a label 1568 // reference needing a fixup. If it is a constant, it's something else 1569 // and we reject it. 1570 if (isImm() && !isa<MCConstantExpr>(getImm())) 1571 return true; 1572 if (!isGPRMem() || Memory.Alignment != 0) return false; 1573 // Check for register offset. 1574 if (Memory.OffsetRegNum) return false; 1575 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1576 if (!Memory.OffsetImm) return true; 1577 int64_t Val = Memory.OffsetImm->getValue(); 1578 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1579 Val == std::numeric_limits<int32_t>::min(); 1580 } 1581 1582 bool isAddrMode5FP16() const { 1583 // If we have an immediate that's not a constant, treat it as a label 1584 // reference needing a fixup. If it is a constant, it's something else 1585 // and we reject it. 1586 if (isImm() && !isa<MCConstantExpr>(getImm())) 1587 return true; 1588 if (!isGPRMem() || Memory.Alignment != 0) return false; 1589 // Check for register offset. 1590 if (Memory.OffsetRegNum) return false; 1591 // Immediate offset in range [-510, 510] and a multiple of 2. 1592 if (!Memory.OffsetImm) return true; 1593 int64_t Val = Memory.OffsetImm->getValue(); 1594 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1595 Val == std::numeric_limits<int32_t>::min(); 1596 } 1597 1598 bool isMemTBB() const { 1599 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1600 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1601 return false; 1602 return true; 1603 } 1604 1605 bool isMemTBH() const { 1606 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1607 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1608 Memory.Alignment != 0 ) 1609 return false; 1610 return true; 1611 } 1612 1613 bool isMemRegOffset() const { 1614 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1615 return false; 1616 return true; 1617 } 1618 1619 bool isT2MemRegOffset() const { 1620 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1621 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1622 return false; 1623 // Only lsl #{0, 1, 2, 3} allowed. 1624 if (Memory.ShiftType == ARM_AM::no_shift) 1625 return true; 1626 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1627 return false; 1628 return true; 1629 } 1630 1631 bool isMemThumbRR() const { 1632 // Thumb reg+reg addressing is simple. Just two registers, a base and 1633 // an offset. No shifts, negations or any other complicating factors. 1634 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1635 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1636 return false; 1637 return isARMLowRegister(Memory.BaseRegNum) && 1638 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1639 } 1640 1641 bool isMemThumbRIs4() const { 1642 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1643 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1644 return false; 1645 // Immediate offset, multiple of 4 in range [0, 124]. 1646 if (!Memory.OffsetImm) return true; 1647 int64_t Val = Memory.OffsetImm->getValue(); 1648 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1649 } 1650 1651 bool isMemThumbRIs2() const { 1652 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1653 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1654 return false; 1655 // Immediate offset, multiple of 4 in range [0, 62]. 1656 if (!Memory.OffsetImm) return true; 1657 int64_t Val = Memory.OffsetImm->getValue(); 1658 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1659 } 1660 1661 bool isMemThumbRIs1() const { 1662 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1663 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1664 return false; 1665 // Immediate offset in range [0, 31]. 1666 if (!Memory.OffsetImm) return true; 1667 int64_t Val = Memory.OffsetImm->getValue(); 1668 return Val >= 0 && Val <= 31; 1669 } 1670 1671 bool isMemThumbSPI() const { 1672 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1673 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1674 return false; 1675 // Immediate offset, multiple of 4 in range [0, 1020]. 1676 if (!Memory.OffsetImm) return true; 1677 int64_t Val = Memory.OffsetImm->getValue(); 1678 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1679 } 1680 1681 bool isMemImm8s4Offset() const { 1682 // If we have an immediate that's not a constant, treat it as a label 1683 // reference needing a fixup. If it is a constant, it's something else 1684 // and we reject it. 1685 if (isImm() && !isa<MCConstantExpr>(getImm())) 1686 return true; 1687 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1688 return false; 1689 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1690 if (!Memory.OffsetImm) return true; 1691 int64_t Val = Memory.OffsetImm->getValue(); 1692 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1693 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1694 Val == std::numeric_limits<int32_t>::min(); 1695 } 1696 bool isMemImm7s4Offset() const { 1697 // If we have an immediate that's not a constant, treat it as a label 1698 // reference needing a fixup. If it is a constant, it's something else 1699 // and we reject it. 1700 if (isImm() && !isa<MCConstantExpr>(getImm())) 1701 return true; 1702 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1703 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1704 Memory.BaseRegNum)) 1705 return false; 1706 // Immediate offset a multiple of 4 in range [-508, 508]. 1707 if (!Memory.OffsetImm) return true; 1708 int64_t Val = Memory.OffsetImm->getValue(); 1709 // Special case, #-0 is INT32_MIN. 1710 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1711 } 1712 bool isMemImm0_1020s4Offset() const { 1713 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1714 return false; 1715 // Immediate offset a multiple of 4 in range [0, 1020]. 1716 if (!Memory.OffsetImm) return true; 1717 int64_t Val = Memory.OffsetImm->getValue(); 1718 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1719 } 1720 1721 bool isMemImm8Offset() const { 1722 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1723 return false; 1724 // Base reg of PC isn't allowed for these encodings. 1725 if (Memory.BaseRegNum == ARM::PC) return false; 1726 // Immediate offset in range [-255, 255]. 1727 if (!Memory.OffsetImm) return true; 1728 int64_t Val = Memory.OffsetImm->getValue(); 1729 return (Val == std::numeric_limits<int32_t>::min()) || 1730 (Val > -256 && Val < 256); 1731 } 1732 1733 template<unsigned Bits, unsigned RegClassID> 1734 bool isMemImm7ShiftedOffset() const { 1735 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1736 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1737 return false; 1738 1739 // Expect an immediate offset equal to an element of the range 1740 // [-127, 127], shifted left by Bits. 1741 1742 if (!Memory.OffsetImm) return true; 1743 int64_t Val = Memory.OffsetImm->getValue(); 1744 1745 // INT32_MIN is a special-case value (indicating the encoding with 1746 // zero offset and the subtract bit set) 1747 if (Val == INT32_MIN) 1748 return true; 1749 1750 unsigned Divisor = 1U << Bits; 1751 1752 // Check that the low bits are zero 1753 if (Val % Divisor != 0) 1754 return false; 1755 1756 // Check that the remaining offset is within range. 1757 Val /= Divisor; 1758 return (Val >= -127 && Val <= 127); 1759 } 1760 1761 template <int shift> bool isMemRegRQOffset() const { 1762 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1763 return false; 1764 1765 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1766 Memory.BaseRegNum)) 1767 return false; 1768 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1769 Memory.OffsetRegNum)) 1770 return false; 1771 1772 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1773 return false; 1774 1775 if (shift > 0 && 1776 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1777 return false; 1778 1779 return true; 1780 } 1781 1782 template <int shift> bool isMemRegQOffset() const { 1783 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1784 return false; 1785 1786 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1787 Memory.BaseRegNum)) 1788 return false; 1789 1790 if(!Memory.OffsetImm) return true; 1791 static_assert(shift < 56, 1792 "Such that we dont shift by a value higher than 62"); 1793 int64_t Val = Memory.OffsetImm->getValue(); 1794 1795 // The value must be a multiple of (1 << shift) 1796 if ((Val & ((1U << shift) - 1)) != 0) 1797 return false; 1798 1799 // And be in the right range, depending on the amount that it is shifted 1800 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1801 // separately. 1802 int64_t Range = (1U << (7+shift)) - 1; 1803 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1804 } 1805 1806 bool isMemPosImm8Offset() const { 1807 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1808 return false; 1809 // Immediate offset in range [0, 255]. 1810 if (!Memory.OffsetImm) return true; 1811 int64_t Val = Memory.OffsetImm->getValue(); 1812 return Val >= 0 && Val < 256; 1813 } 1814 1815 bool isMemNegImm8Offset() const { 1816 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1817 return false; 1818 // Base reg of PC isn't allowed for these encodings. 1819 if (Memory.BaseRegNum == ARM::PC) return false; 1820 // Immediate offset in range [-255, -1]. 1821 if (!Memory.OffsetImm) return false; 1822 int64_t Val = Memory.OffsetImm->getValue(); 1823 return (Val == std::numeric_limits<int32_t>::min()) || 1824 (Val > -256 && Val < 0); 1825 } 1826 1827 bool isMemUImm12Offset() const { 1828 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1829 return false; 1830 // Immediate offset in range [0, 4095]. 1831 if (!Memory.OffsetImm) return true; 1832 int64_t Val = Memory.OffsetImm->getValue(); 1833 return (Val >= 0 && Val < 4096); 1834 } 1835 1836 bool isMemImm12Offset() const { 1837 // If we have an immediate that's not a constant, treat it as a label 1838 // reference needing a fixup. If it is a constant, it's something else 1839 // and we reject it. 1840 1841 if (isImm() && !isa<MCConstantExpr>(getImm())) 1842 return true; 1843 1844 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1845 return false; 1846 // Immediate offset in range [-4095, 4095]. 1847 if (!Memory.OffsetImm) return true; 1848 int64_t Val = Memory.OffsetImm->getValue(); 1849 return (Val > -4096 && Val < 4096) || 1850 (Val == std::numeric_limits<int32_t>::min()); 1851 } 1852 1853 bool isConstPoolAsmImm() const { 1854 // Delay processing of Constant Pool Immediate, this will turn into 1855 // a constant. Match no other operand 1856 return (isConstantPoolImm()); 1857 } 1858 1859 bool isPostIdxImm8() const { 1860 if (!isImm()) return false; 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 if (!CE) return false; 1863 int64_t Val = CE->getValue(); 1864 return (Val > -256 && Val < 256) || 1865 (Val == std::numeric_limits<int32_t>::min()); 1866 } 1867 1868 bool isPostIdxImm8s4() const { 1869 if (!isImm()) return false; 1870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1871 if (!CE) return false; 1872 int64_t Val = CE->getValue(); 1873 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1874 (Val == std::numeric_limits<int32_t>::min()); 1875 } 1876 1877 bool isMSRMask() const { return Kind == k_MSRMask; } 1878 bool isBankedReg() const { return Kind == k_BankedReg; } 1879 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1880 1881 // NEON operands. 1882 bool isSingleSpacedVectorList() const { 1883 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1884 } 1885 1886 bool isDoubleSpacedVectorList() const { 1887 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1888 } 1889 1890 bool isVecListOneD() const { 1891 if (!isSingleSpacedVectorList()) return false; 1892 return VectorList.Count == 1; 1893 } 1894 1895 bool isVecListTwoMQ() const { 1896 return isSingleSpacedVectorList() && VectorList.Count == 2 && 1897 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1898 VectorList.RegNum); 1899 } 1900 1901 bool isVecListDPair() const { 1902 if (!isSingleSpacedVectorList()) return false; 1903 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1904 .contains(VectorList.RegNum)); 1905 } 1906 1907 bool isVecListThreeD() const { 1908 if (!isSingleSpacedVectorList()) return false; 1909 return VectorList.Count == 3; 1910 } 1911 1912 bool isVecListFourD() const { 1913 if (!isSingleSpacedVectorList()) return false; 1914 return VectorList.Count == 4; 1915 } 1916 1917 bool isVecListDPairSpaced() const { 1918 if (Kind != k_VectorList) return false; 1919 if (isSingleSpacedVectorList()) return false; 1920 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1921 .contains(VectorList.RegNum)); 1922 } 1923 1924 bool isVecListThreeQ() const { 1925 if (!isDoubleSpacedVectorList()) return false; 1926 return VectorList.Count == 3; 1927 } 1928 1929 bool isVecListFourQ() const { 1930 if (!isDoubleSpacedVectorList()) return false; 1931 return VectorList.Count == 4; 1932 } 1933 1934 bool isVecListFourMQ() const { 1935 return isSingleSpacedVectorList() && VectorList.Count == 4 && 1936 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1937 VectorList.RegNum); 1938 } 1939 1940 bool isSingleSpacedVectorAllLanes() const { 1941 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1942 } 1943 1944 bool isDoubleSpacedVectorAllLanes() const { 1945 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1946 } 1947 1948 bool isVecListOneDAllLanes() const { 1949 if (!isSingleSpacedVectorAllLanes()) return false; 1950 return VectorList.Count == 1; 1951 } 1952 1953 bool isVecListDPairAllLanes() const { 1954 if (!isSingleSpacedVectorAllLanes()) return false; 1955 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1956 .contains(VectorList.RegNum)); 1957 } 1958 1959 bool isVecListDPairSpacedAllLanes() const { 1960 if (!isDoubleSpacedVectorAllLanes()) return false; 1961 return VectorList.Count == 2; 1962 } 1963 1964 bool isVecListThreeDAllLanes() const { 1965 if (!isSingleSpacedVectorAllLanes()) return false; 1966 return VectorList.Count == 3; 1967 } 1968 1969 bool isVecListThreeQAllLanes() const { 1970 if (!isDoubleSpacedVectorAllLanes()) return false; 1971 return VectorList.Count == 3; 1972 } 1973 1974 bool isVecListFourDAllLanes() const { 1975 if (!isSingleSpacedVectorAllLanes()) return false; 1976 return VectorList.Count == 4; 1977 } 1978 1979 bool isVecListFourQAllLanes() const { 1980 if (!isDoubleSpacedVectorAllLanes()) return false; 1981 return VectorList.Count == 4; 1982 } 1983 1984 bool isSingleSpacedVectorIndexed() const { 1985 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1986 } 1987 1988 bool isDoubleSpacedVectorIndexed() const { 1989 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1990 } 1991 1992 bool isVecListOneDByteIndexed() const { 1993 if (!isSingleSpacedVectorIndexed()) return false; 1994 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1995 } 1996 1997 bool isVecListOneDHWordIndexed() const { 1998 if (!isSingleSpacedVectorIndexed()) return false; 1999 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2000 } 2001 2002 bool isVecListOneDWordIndexed() const { 2003 if (!isSingleSpacedVectorIndexed()) return false; 2004 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2005 } 2006 2007 bool isVecListTwoDByteIndexed() const { 2008 if (!isSingleSpacedVectorIndexed()) return false; 2009 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2010 } 2011 2012 bool isVecListTwoDHWordIndexed() const { 2013 if (!isSingleSpacedVectorIndexed()) return false; 2014 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2015 } 2016 2017 bool isVecListTwoQWordIndexed() const { 2018 if (!isDoubleSpacedVectorIndexed()) return false; 2019 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2020 } 2021 2022 bool isVecListTwoQHWordIndexed() const { 2023 if (!isDoubleSpacedVectorIndexed()) return false; 2024 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2025 } 2026 2027 bool isVecListTwoDWordIndexed() const { 2028 if (!isSingleSpacedVectorIndexed()) return false; 2029 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2030 } 2031 2032 bool isVecListThreeDByteIndexed() const { 2033 if (!isSingleSpacedVectorIndexed()) return false; 2034 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2035 } 2036 2037 bool isVecListThreeDHWordIndexed() const { 2038 if (!isSingleSpacedVectorIndexed()) return false; 2039 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2040 } 2041 2042 bool isVecListThreeQWordIndexed() const { 2043 if (!isDoubleSpacedVectorIndexed()) return false; 2044 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2045 } 2046 2047 bool isVecListThreeQHWordIndexed() const { 2048 if (!isDoubleSpacedVectorIndexed()) return false; 2049 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2050 } 2051 2052 bool isVecListThreeDWordIndexed() const { 2053 if (!isSingleSpacedVectorIndexed()) return false; 2054 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2055 } 2056 2057 bool isVecListFourDByteIndexed() const { 2058 if (!isSingleSpacedVectorIndexed()) return false; 2059 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2060 } 2061 2062 bool isVecListFourDHWordIndexed() const { 2063 if (!isSingleSpacedVectorIndexed()) return false; 2064 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2065 } 2066 2067 bool isVecListFourQWordIndexed() const { 2068 if (!isDoubleSpacedVectorIndexed()) return false; 2069 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2070 } 2071 2072 bool isVecListFourQHWordIndexed() const { 2073 if (!isDoubleSpacedVectorIndexed()) return false; 2074 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2075 } 2076 2077 bool isVecListFourDWordIndexed() const { 2078 if (!isSingleSpacedVectorIndexed()) return false; 2079 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2080 } 2081 2082 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2083 2084 template <unsigned NumLanes> 2085 bool isVectorIndexInRange() const { 2086 if (Kind != k_VectorIndex) return false; 2087 return VectorIndex.Val < NumLanes; 2088 } 2089 2090 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2091 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2092 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2093 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2094 2095 template<int PermittedValue, int OtherPermittedValue> 2096 bool isMVEPairVectorIndex() const { 2097 if (Kind != k_VectorIndex) return false; 2098 return VectorIndex.Val == PermittedValue || 2099 VectorIndex.Val == OtherPermittedValue; 2100 } 2101 2102 bool isNEONi8splat() const { 2103 if (!isImm()) return false; 2104 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2105 // Must be a constant. 2106 if (!CE) return false; 2107 int64_t Value = CE->getValue(); 2108 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2109 // value. 2110 return Value >= 0 && Value < 256; 2111 } 2112 2113 bool isNEONi16splat() const { 2114 if (isNEONByteReplicate(2)) 2115 return false; // Leave that for bytes replication and forbid by default. 2116 if (!isImm()) 2117 return false; 2118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2119 // Must be a constant. 2120 if (!CE) return false; 2121 unsigned Value = CE->getValue(); 2122 return ARM_AM::isNEONi16splat(Value); 2123 } 2124 2125 bool isNEONi16splatNot() const { 2126 if (!isImm()) 2127 return false; 2128 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2129 // Must be a constant. 2130 if (!CE) return false; 2131 unsigned Value = CE->getValue(); 2132 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2133 } 2134 2135 bool isNEONi32splat() const { 2136 if (isNEONByteReplicate(4)) 2137 return false; // Leave that for bytes replication and forbid by default. 2138 if (!isImm()) 2139 return false; 2140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2141 // Must be a constant. 2142 if (!CE) return false; 2143 unsigned Value = CE->getValue(); 2144 return ARM_AM::isNEONi32splat(Value); 2145 } 2146 2147 bool isNEONi32splatNot() const { 2148 if (!isImm()) 2149 return false; 2150 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2151 // Must be a constant. 2152 if (!CE) return false; 2153 unsigned Value = CE->getValue(); 2154 return ARM_AM::isNEONi32splat(~Value); 2155 } 2156 2157 static bool isValidNEONi32vmovImm(int64_t Value) { 2158 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2159 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2160 return ((Value & 0xffffffffffffff00) == 0) || 2161 ((Value & 0xffffffffffff00ff) == 0) || 2162 ((Value & 0xffffffffff00ffff) == 0) || 2163 ((Value & 0xffffffff00ffffff) == 0) || 2164 ((Value & 0xffffffffffff00ff) == 0xff) || 2165 ((Value & 0xffffffffff00ffff) == 0xffff); 2166 } 2167 2168 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2169 assert((Width == 8 || Width == 16 || Width == 32) && 2170 "Invalid element width"); 2171 assert(NumElems * Width <= 64 && "Invalid result width"); 2172 2173 if (!isImm()) 2174 return false; 2175 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2176 // Must be a constant. 2177 if (!CE) 2178 return false; 2179 int64_t Value = CE->getValue(); 2180 if (!Value) 2181 return false; // Don't bother with zero. 2182 if (Inv) 2183 Value = ~Value; 2184 2185 uint64_t Mask = (1ull << Width) - 1; 2186 uint64_t Elem = Value & Mask; 2187 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2188 return false; 2189 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2190 return false; 2191 2192 for (unsigned i = 1; i < NumElems; ++i) { 2193 Value >>= Width; 2194 if ((Value & Mask) != Elem) 2195 return false; 2196 } 2197 return true; 2198 } 2199 2200 bool isNEONByteReplicate(unsigned NumBytes) const { 2201 return isNEONReplicate(8, NumBytes, false); 2202 } 2203 2204 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2205 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2206 "Invalid source width"); 2207 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2208 "Invalid destination width"); 2209 assert(FromW < ToW && "ToW is not less than FromW"); 2210 } 2211 2212 template<unsigned FromW, unsigned ToW> 2213 bool isNEONmovReplicate() const { 2214 checkNeonReplicateArgs(FromW, ToW); 2215 if (ToW == 64 && isNEONi64splat()) 2216 return false; 2217 return isNEONReplicate(FromW, ToW / FromW, false); 2218 } 2219 2220 template<unsigned FromW, unsigned ToW> 2221 bool isNEONinvReplicate() const { 2222 checkNeonReplicateArgs(FromW, ToW); 2223 return isNEONReplicate(FromW, ToW / FromW, true); 2224 } 2225 2226 bool isNEONi32vmov() const { 2227 if (isNEONByteReplicate(4)) 2228 return false; // Let it to be classified as byte-replicate case. 2229 if (!isImm()) 2230 return false; 2231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2232 // Must be a constant. 2233 if (!CE) 2234 return false; 2235 return isValidNEONi32vmovImm(CE->getValue()); 2236 } 2237 2238 bool isNEONi32vmovNeg() const { 2239 if (!isImm()) return false; 2240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2241 // Must be a constant. 2242 if (!CE) return false; 2243 return isValidNEONi32vmovImm(~CE->getValue()); 2244 } 2245 2246 bool isNEONi64splat() const { 2247 if (!isImm()) return false; 2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2249 // Must be a constant. 2250 if (!CE) return false; 2251 uint64_t Value = CE->getValue(); 2252 // i64 value with each byte being either 0 or 0xff. 2253 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2254 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2255 return true; 2256 } 2257 2258 template<int64_t Angle, int64_t Remainder> 2259 bool isComplexRotation() const { 2260 if (!isImm()) return false; 2261 2262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2263 if (!CE) return false; 2264 uint64_t Value = CE->getValue(); 2265 2266 return (Value % Angle == Remainder && Value <= 270); 2267 } 2268 2269 bool isMVELongShift() const { 2270 if (!isImm()) return false; 2271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2272 // Must be a constant. 2273 if (!CE) return false; 2274 uint64_t Value = CE->getValue(); 2275 return Value >= 1 && Value <= 32; 2276 } 2277 2278 bool isMveSaturateOp() const { 2279 if (!isImm()) return false; 2280 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2281 if (!CE) return false; 2282 uint64_t Value = CE->getValue(); 2283 return Value == 48 || Value == 64; 2284 } 2285 2286 bool isITCondCodeNoAL() const { 2287 if (!isITCondCode()) return false; 2288 ARMCC::CondCodes CC = getCondCode(); 2289 return CC != ARMCC::AL; 2290 } 2291 2292 bool isITCondCodeRestrictedI() const { 2293 if (!isITCondCode()) 2294 return false; 2295 ARMCC::CondCodes CC = getCondCode(); 2296 return CC == ARMCC::EQ || CC == ARMCC::NE; 2297 } 2298 2299 bool isITCondCodeRestrictedS() const { 2300 if (!isITCondCode()) 2301 return false; 2302 ARMCC::CondCodes CC = getCondCode(); 2303 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2304 CC == ARMCC::GE; 2305 } 2306 2307 bool isITCondCodeRestrictedU() const { 2308 if (!isITCondCode()) 2309 return false; 2310 ARMCC::CondCodes CC = getCondCode(); 2311 return CC == ARMCC::HS || CC == ARMCC::HI; 2312 } 2313 2314 bool isITCondCodeRestrictedFP() const { 2315 if (!isITCondCode()) 2316 return false; 2317 ARMCC::CondCodes CC = getCondCode(); 2318 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2319 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2320 } 2321 2322 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2323 // Add as immediates when possible. Null MCExpr = 0. 2324 if (!Expr) 2325 Inst.addOperand(MCOperand::createImm(0)); 2326 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2327 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2328 else 2329 Inst.addOperand(MCOperand::createExpr(Expr)); 2330 } 2331 2332 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2333 assert(N == 1 && "Invalid number of operands!"); 2334 addExpr(Inst, getImm()); 2335 } 2336 2337 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2338 assert(N == 1 && "Invalid number of operands!"); 2339 addExpr(Inst, getImm()); 2340 } 2341 2342 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2345 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2346 Inst.addOperand(MCOperand::createReg(RegNum)); 2347 } 2348 2349 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2350 assert(N == 2 && "Invalid number of operands!"); 2351 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2352 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2353 Inst.addOperand(MCOperand::createReg(RegNum)); 2354 } 2355 2356 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2357 assert(N == 3 && "Invalid number of operands!"); 2358 addVPTPredNOperands(Inst, N-1); 2359 unsigned RegNum; 2360 if (getVPTPred() == ARMVCC::None) { 2361 RegNum = 0; 2362 } else { 2363 unsigned NextOpIndex = Inst.getNumOperands(); 2364 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2365 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2366 assert(TiedOp >= 0 && 2367 "Inactive register in vpred_r is not tied to an output!"); 2368 RegNum = Inst.getOperand(TiedOp).getReg(); 2369 } 2370 Inst.addOperand(MCOperand::createReg(RegNum)); 2371 } 2372 2373 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2374 assert(N == 1 && "Invalid number of operands!"); 2375 Inst.addOperand(MCOperand::createImm(getCoproc())); 2376 } 2377 2378 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2379 assert(N == 1 && "Invalid number of operands!"); 2380 Inst.addOperand(MCOperand::createImm(getCoproc())); 2381 } 2382 2383 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2384 assert(N == 1 && "Invalid number of operands!"); 2385 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2386 } 2387 2388 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2389 assert(N == 1 && "Invalid number of operands!"); 2390 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2391 } 2392 2393 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2394 assert(N == 1 && "Invalid number of operands!"); 2395 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2396 } 2397 2398 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2399 assert(N == 1 && "Invalid number of operands!"); 2400 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2401 } 2402 2403 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2404 assert(N == 1 && "Invalid number of operands!"); 2405 Inst.addOperand(MCOperand::createReg(getReg())); 2406 } 2407 2408 void addRegOperands(MCInst &Inst, unsigned N) const { 2409 assert(N == 1 && "Invalid number of operands!"); 2410 Inst.addOperand(MCOperand::createReg(getReg())); 2411 } 2412 2413 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2414 assert(N == 3 && "Invalid number of operands!"); 2415 assert(isRegShiftedReg() && 2416 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2417 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2418 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2419 Inst.addOperand(MCOperand::createImm( 2420 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2421 } 2422 2423 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2424 assert(N == 2 && "Invalid number of operands!"); 2425 assert(isRegShiftedImm() && 2426 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2427 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2428 // Shift of #32 is encoded as 0 where permitted 2429 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2430 Inst.addOperand(MCOperand::createImm( 2431 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2432 } 2433 2434 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2435 assert(N == 1 && "Invalid number of operands!"); 2436 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2437 ShifterImm.Imm)); 2438 } 2439 2440 void addRegListOperands(MCInst &Inst, unsigned N) const { 2441 assert(N == 1 && "Invalid number of operands!"); 2442 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2443 for (SmallVectorImpl<unsigned>::const_iterator 2444 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2445 Inst.addOperand(MCOperand::createReg(*I)); 2446 } 2447 2448 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2449 assert(N == 1 && "Invalid number of operands!"); 2450 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2451 for (SmallVectorImpl<unsigned>::const_iterator 2452 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2453 Inst.addOperand(MCOperand::createReg(*I)); 2454 } 2455 2456 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2457 addRegListOperands(Inst, N); 2458 } 2459 2460 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2461 addRegListOperands(Inst, N); 2462 } 2463 2464 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2465 addRegListOperands(Inst, N); 2466 } 2467 2468 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2469 addRegListOperands(Inst, N); 2470 } 2471 2472 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2473 assert(N == 1 && "Invalid number of operands!"); 2474 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2475 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2476 } 2477 2478 void addModImmOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 1 && "Invalid number of operands!"); 2480 2481 // Support for fixups (MCFixup) 2482 if (isImm()) 2483 return addImmOperands(Inst, N); 2484 2485 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2486 } 2487 2488 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 1 && "Invalid number of operands!"); 2490 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2491 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2492 Inst.addOperand(MCOperand::createImm(Enc)); 2493 } 2494 2495 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2496 assert(N == 1 && "Invalid number of operands!"); 2497 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2498 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2499 Inst.addOperand(MCOperand::createImm(Enc)); 2500 } 2501 2502 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2503 assert(N == 1 && "Invalid number of operands!"); 2504 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2505 uint32_t Val = -CE->getValue(); 2506 Inst.addOperand(MCOperand::createImm(Val)); 2507 } 2508 2509 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2510 assert(N == 1 && "Invalid number of operands!"); 2511 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2512 uint32_t Val = -CE->getValue(); 2513 Inst.addOperand(MCOperand::createImm(Val)); 2514 } 2515 2516 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2517 assert(N == 1 && "Invalid number of operands!"); 2518 // Munge the lsb/width into a bitfield mask. 2519 unsigned lsb = Bitfield.LSB; 2520 unsigned width = Bitfield.Width; 2521 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2522 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2523 (32 - (lsb + width))); 2524 Inst.addOperand(MCOperand::createImm(Mask)); 2525 } 2526 2527 void addImmOperands(MCInst &Inst, unsigned N) const { 2528 assert(N == 1 && "Invalid number of operands!"); 2529 addExpr(Inst, getImm()); 2530 } 2531 2532 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2533 assert(N == 1 && "Invalid number of operands!"); 2534 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2535 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2536 } 2537 2538 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2541 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2542 } 2543 2544 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 1 && "Invalid number of operands!"); 2546 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2547 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2548 Inst.addOperand(MCOperand::createImm(Val)); 2549 } 2550 2551 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2552 assert(N == 1 && "Invalid number of operands!"); 2553 // FIXME: We really want to scale the value here, but the LDRD/STRD 2554 // instruction don't encode operands that way yet. 2555 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2556 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2557 } 2558 2559 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2560 assert(N == 1 && "Invalid number of operands!"); 2561 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2562 // instruction don't encode operands that way yet. 2563 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2564 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2565 } 2566 2567 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2568 assert(N == 1 && "Invalid number of operands!"); 2569 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2570 assert(CE != nullptr && "Invalid operand type!"); 2571 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2572 } 2573 2574 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2575 assert(N == 1 && "Invalid number of operands!"); 2576 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2577 assert(CE != nullptr && "Invalid operand type!"); 2578 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2579 } 2580 2581 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2582 assert(N == 1 && "Invalid number of operands!"); 2583 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2584 assert(CE != nullptr && "Invalid operand type!"); 2585 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2586 } 2587 2588 void addImm7Operands(MCInst &Inst, unsigned N) const { 2589 assert(N == 1 && "Invalid number of operands!"); 2590 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2591 assert(CE != nullptr && "Invalid operand type!"); 2592 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2593 } 2594 2595 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2596 assert(N == 1 && "Invalid number of operands!"); 2597 // The immediate is scaled by four in the encoding and is stored 2598 // in the MCInst as such. Lop off the low two bits here. 2599 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2600 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2601 } 2602 2603 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2604 assert(N == 1 && "Invalid number of operands!"); 2605 // The immediate is scaled by four in the encoding and is stored 2606 // in the MCInst as such. Lop off the low two bits here. 2607 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2608 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2609 } 2610 2611 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2612 assert(N == 1 && "Invalid number of operands!"); 2613 // The immediate is scaled by four in the encoding and is stored 2614 // in the MCInst as such. Lop off the low two bits here. 2615 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2616 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2617 } 2618 2619 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2620 assert(N == 1 && "Invalid number of operands!"); 2621 // The constant encodes as the immediate-1, and we store in the instruction 2622 // the bits as encoded, so subtract off one here. 2623 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2624 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2625 } 2626 2627 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2628 assert(N == 1 && "Invalid number of operands!"); 2629 // The constant encodes as the immediate-1, and we store in the instruction 2630 // the bits as encoded, so subtract off one here. 2631 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2632 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2633 } 2634 2635 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2636 assert(N == 1 && "Invalid number of operands!"); 2637 // The constant encodes as the immediate, except for 32, which encodes as 2638 // zero. 2639 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2640 unsigned Imm = CE->getValue(); 2641 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2642 } 2643 2644 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2645 assert(N == 1 && "Invalid number of operands!"); 2646 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2647 // the instruction as well. 2648 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2649 int Val = CE->getValue(); 2650 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2651 } 2652 2653 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2654 assert(N == 1 && "Invalid number of operands!"); 2655 // The operand is actually a t2_so_imm, but we have its bitwise 2656 // negation in the assembly source, so twiddle it here. 2657 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2658 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2659 } 2660 2661 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2662 assert(N == 1 && "Invalid number of operands!"); 2663 // The operand is actually a t2_so_imm, but we have its 2664 // negation in the assembly source, so twiddle it here. 2665 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2666 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2667 } 2668 2669 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2670 assert(N == 1 && "Invalid number of operands!"); 2671 // The operand is actually an imm0_4095, but we have its 2672 // negation in the assembly source, so twiddle it here. 2673 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2674 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2675 } 2676 2677 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2678 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2679 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2680 return; 2681 } 2682 2683 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2684 assert(SR && "Unknown value type!"); 2685 Inst.addOperand(MCOperand::createExpr(SR)); 2686 } 2687 2688 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2689 assert(N == 1 && "Invalid number of operands!"); 2690 if (isImm()) { 2691 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2692 if (CE) { 2693 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2694 return; 2695 } 2696 2697 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2698 2699 assert(SR && "Unknown value type!"); 2700 Inst.addOperand(MCOperand::createExpr(SR)); 2701 return; 2702 } 2703 2704 assert(isGPRMem() && "Unknown value type!"); 2705 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2706 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2707 } 2708 2709 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2710 assert(N == 1 && "Invalid number of operands!"); 2711 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2712 } 2713 2714 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2715 assert(N == 1 && "Invalid number of operands!"); 2716 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2717 } 2718 2719 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2720 assert(N == 1 && "Invalid number of operands!"); 2721 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2722 } 2723 2724 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2725 assert(N == 1 && "Invalid number of operands!"); 2726 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2727 } 2728 2729 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2730 assert(N == 1 && "Invalid number of operands!"); 2731 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2732 } 2733 2734 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2735 assert(N == 1 && "Invalid number of operands!"); 2736 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2737 } 2738 2739 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2740 assert(N == 1 && "Invalid number of operands!"); 2741 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2742 } 2743 2744 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2745 assert(N == 1 && "Invalid number of operands!"); 2746 int32_t Imm = Memory.OffsetImm->getValue(); 2747 Inst.addOperand(MCOperand::createImm(Imm)); 2748 } 2749 2750 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2751 assert(N == 1 && "Invalid number of operands!"); 2752 assert(isImm() && "Not an immediate!"); 2753 2754 // If we have an immediate that's not a constant, treat it as a label 2755 // reference needing a fixup. 2756 if (!isa<MCConstantExpr>(getImm())) { 2757 Inst.addOperand(MCOperand::createExpr(getImm())); 2758 return; 2759 } 2760 2761 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2762 int Val = CE->getValue(); 2763 Inst.addOperand(MCOperand::createImm(Val)); 2764 } 2765 2766 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2767 assert(N == 2 && "Invalid number of operands!"); 2768 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2769 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2770 } 2771 2772 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2773 addAlignedMemoryOperands(Inst, N); 2774 } 2775 2776 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2777 addAlignedMemoryOperands(Inst, N); 2778 } 2779 2780 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2781 addAlignedMemoryOperands(Inst, N); 2782 } 2783 2784 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2785 addAlignedMemoryOperands(Inst, N); 2786 } 2787 2788 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2789 addAlignedMemoryOperands(Inst, N); 2790 } 2791 2792 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2793 addAlignedMemoryOperands(Inst, N); 2794 } 2795 2796 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2797 addAlignedMemoryOperands(Inst, N); 2798 } 2799 2800 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2801 addAlignedMemoryOperands(Inst, N); 2802 } 2803 2804 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2805 addAlignedMemoryOperands(Inst, N); 2806 } 2807 2808 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2809 addAlignedMemoryOperands(Inst, N); 2810 } 2811 2812 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2813 addAlignedMemoryOperands(Inst, N); 2814 } 2815 2816 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2817 assert(N == 3 && "Invalid number of operands!"); 2818 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2819 if (!Memory.OffsetRegNum) { 2820 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2821 // Special case for #-0 2822 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2823 if (Val < 0) Val = -Val; 2824 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2825 } else { 2826 // For register offset, we encode the shift type and negation flag 2827 // here. 2828 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2829 Memory.ShiftImm, Memory.ShiftType); 2830 } 2831 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2832 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2833 Inst.addOperand(MCOperand::createImm(Val)); 2834 } 2835 2836 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2837 assert(N == 2 && "Invalid number of operands!"); 2838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2839 assert(CE && "non-constant AM2OffsetImm operand!"); 2840 int32_t Val = CE->getValue(); 2841 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2842 // Special case for #-0 2843 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2844 if (Val < 0) Val = -Val; 2845 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2846 Inst.addOperand(MCOperand::createReg(0)); 2847 Inst.addOperand(MCOperand::createImm(Val)); 2848 } 2849 2850 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2851 assert(N == 3 && "Invalid number of operands!"); 2852 // If we have an immediate that's not a constant, treat it as a label 2853 // reference needing a fixup. If it is a constant, it's something else 2854 // and we reject it. 2855 if (isImm()) { 2856 Inst.addOperand(MCOperand::createExpr(getImm())); 2857 Inst.addOperand(MCOperand::createReg(0)); 2858 Inst.addOperand(MCOperand::createImm(0)); 2859 return; 2860 } 2861 2862 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2863 if (!Memory.OffsetRegNum) { 2864 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2865 // Special case for #-0 2866 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2867 if (Val < 0) Val = -Val; 2868 Val = ARM_AM::getAM3Opc(AddSub, Val); 2869 } else { 2870 // For register offset, we encode the shift type and negation flag 2871 // here. 2872 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2873 } 2874 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2875 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2876 Inst.addOperand(MCOperand::createImm(Val)); 2877 } 2878 2879 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2880 assert(N == 2 && "Invalid number of operands!"); 2881 if (Kind == k_PostIndexRegister) { 2882 int32_t Val = 2883 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2884 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2885 Inst.addOperand(MCOperand::createImm(Val)); 2886 return; 2887 } 2888 2889 // Constant offset. 2890 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2891 int32_t Val = CE->getValue(); 2892 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2893 // Special case for #-0 2894 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2895 if (Val < 0) Val = -Val; 2896 Val = ARM_AM::getAM3Opc(AddSub, Val); 2897 Inst.addOperand(MCOperand::createReg(0)); 2898 Inst.addOperand(MCOperand::createImm(Val)); 2899 } 2900 2901 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2902 assert(N == 2 && "Invalid number of operands!"); 2903 // If we have an immediate that's not a constant, treat it as a label 2904 // reference needing a fixup. If it is a constant, it's something else 2905 // and we reject it. 2906 if (isImm()) { 2907 Inst.addOperand(MCOperand::createExpr(getImm())); 2908 Inst.addOperand(MCOperand::createImm(0)); 2909 return; 2910 } 2911 2912 // The lower two bits are always zero and as such are not encoded. 2913 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2914 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2915 // Special case for #-0 2916 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2917 if (Val < 0) Val = -Val; 2918 Val = ARM_AM::getAM5Opc(AddSub, Val); 2919 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2920 Inst.addOperand(MCOperand::createImm(Val)); 2921 } 2922 2923 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2924 assert(N == 2 && "Invalid number of operands!"); 2925 // If we have an immediate that's not a constant, treat it as a label 2926 // reference needing a fixup. If it is a constant, it's something else 2927 // and we reject it. 2928 if (isImm()) { 2929 Inst.addOperand(MCOperand::createExpr(getImm())); 2930 Inst.addOperand(MCOperand::createImm(0)); 2931 return; 2932 } 2933 2934 // The lower bit is always zero and as such is not encoded. 2935 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2936 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2937 // Special case for #-0 2938 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2939 if (Val < 0) Val = -Val; 2940 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2941 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2942 Inst.addOperand(MCOperand::createImm(Val)); 2943 } 2944 2945 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2946 assert(N == 2 && "Invalid number of operands!"); 2947 // If we have an immediate that's not a constant, treat it as a label 2948 // reference needing a fixup. If it is a constant, it's something else 2949 // and we reject it. 2950 if (isImm()) { 2951 Inst.addOperand(MCOperand::createExpr(getImm())); 2952 Inst.addOperand(MCOperand::createImm(0)); 2953 return; 2954 } 2955 2956 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2957 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2958 Inst.addOperand(MCOperand::createImm(Val)); 2959 } 2960 2961 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 2962 assert(N == 2 && "Invalid number of operands!"); 2963 // If we have an immediate that's not a constant, treat it as a label 2964 // reference needing a fixup. If it is a constant, it's something else 2965 // and we reject it. 2966 if (isImm()) { 2967 Inst.addOperand(MCOperand::createExpr(getImm())); 2968 Inst.addOperand(MCOperand::createImm(0)); 2969 return; 2970 } 2971 2972 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2973 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2974 Inst.addOperand(MCOperand::createImm(Val)); 2975 } 2976 2977 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2978 assert(N == 2 && "Invalid number of operands!"); 2979 // The lower two bits are always zero and as such are not encoded. 2980 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2981 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2982 Inst.addOperand(MCOperand::createImm(Val)); 2983 } 2984 2985 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 2986 assert(N == 2 && "Invalid number of operands!"); 2987 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2988 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2989 Inst.addOperand(MCOperand::createImm(Val)); 2990 } 2991 2992 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 2993 assert(N == 2 && "Invalid number of operands!"); 2994 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2995 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2996 } 2997 2998 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2999 assert(N == 2 && "Invalid number of operands!"); 3000 // If this is an immediate, it's a label reference. 3001 if (isImm()) { 3002 addExpr(Inst, getImm()); 3003 Inst.addOperand(MCOperand::createImm(0)); 3004 return; 3005 } 3006 3007 // Otherwise, it's a normal memory reg+offset. 3008 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3009 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3010 Inst.addOperand(MCOperand::createImm(Val)); 3011 } 3012 3013 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3014 assert(N == 2 && "Invalid number of operands!"); 3015 // If this is an immediate, it's a label reference. 3016 if (isImm()) { 3017 addExpr(Inst, getImm()); 3018 Inst.addOperand(MCOperand::createImm(0)); 3019 return; 3020 } 3021 3022 // Otherwise, it's a normal memory reg+offset. 3023 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3024 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3025 Inst.addOperand(MCOperand::createImm(Val)); 3026 } 3027 3028 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3029 assert(N == 1 && "Invalid number of operands!"); 3030 // This is container for the immediate that we will create the constant 3031 // pool from 3032 addExpr(Inst, getConstantPoolImm()); 3033 return; 3034 } 3035 3036 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3037 assert(N == 2 && "Invalid number of operands!"); 3038 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3039 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3040 } 3041 3042 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3043 assert(N == 2 && "Invalid number of operands!"); 3044 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3045 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3046 } 3047 3048 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3049 assert(N == 3 && "Invalid number of operands!"); 3050 unsigned Val = 3051 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3052 Memory.ShiftImm, Memory.ShiftType); 3053 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3054 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3055 Inst.addOperand(MCOperand::createImm(Val)); 3056 } 3057 3058 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3059 assert(N == 3 && "Invalid number of operands!"); 3060 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3061 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3062 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3063 } 3064 3065 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3066 assert(N == 2 && "Invalid number of operands!"); 3067 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3068 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3069 } 3070 3071 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3072 assert(N == 2 && "Invalid number of operands!"); 3073 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3074 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3075 Inst.addOperand(MCOperand::createImm(Val)); 3076 } 3077 3078 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3079 assert(N == 2 && "Invalid number of operands!"); 3080 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 3081 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3082 Inst.addOperand(MCOperand::createImm(Val)); 3083 } 3084 3085 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3086 assert(N == 2 && "Invalid number of operands!"); 3087 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 3088 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3089 Inst.addOperand(MCOperand::createImm(Val)); 3090 } 3091 3092 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3093 assert(N == 2 && "Invalid number of operands!"); 3094 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3095 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3096 Inst.addOperand(MCOperand::createImm(Val)); 3097 } 3098 3099 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3100 assert(N == 1 && "Invalid number of operands!"); 3101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3102 assert(CE && "non-constant post-idx-imm8 operand!"); 3103 int Imm = CE->getValue(); 3104 bool isAdd = Imm >= 0; 3105 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3106 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3107 Inst.addOperand(MCOperand::createImm(Imm)); 3108 } 3109 3110 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3111 assert(N == 1 && "Invalid number of operands!"); 3112 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3113 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3114 int Imm = CE->getValue(); 3115 bool isAdd = Imm >= 0; 3116 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3117 // Immediate is scaled by 4. 3118 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3119 Inst.addOperand(MCOperand::createImm(Imm)); 3120 } 3121 3122 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3123 assert(N == 2 && "Invalid number of operands!"); 3124 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3125 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3126 } 3127 3128 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3129 assert(N == 2 && "Invalid number of operands!"); 3130 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3131 // The sign, shift type, and shift amount are encoded in a single operand 3132 // using the AM2 encoding helpers. 3133 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3134 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3135 PostIdxReg.ShiftTy); 3136 Inst.addOperand(MCOperand::createImm(Imm)); 3137 } 3138 3139 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3140 assert(N == 1 && "Invalid number of operands!"); 3141 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3142 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3143 } 3144 3145 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3146 assert(N == 1 && "Invalid number of operands!"); 3147 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3148 } 3149 3150 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3151 assert(N == 1 && "Invalid number of operands!"); 3152 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3153 } 3154 3155 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3156 assert(N == 1 && "Invalid number of operands!"); 3157 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3158 } 3159 3160 void addVecListOperands(MCInst &Inst, unsigned N) const { 3161 assert(N == 1 && "Invalid number of operands!"); 3162 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3163 } 3164 3165 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3166 assert(N == 1 && "Invalid number of operands!"); 3167 3168 // When we come here, the VectorList field will identify a range 3169 // of q-registers by its base register and length, and it will 3170 // have already been error-checked to be the expected length of 3171 // range and contain only q-regs in the range q0-q7. So we can 3172 // count on the base register being in the range q0-q6 (for 2 3173 // regs) or q0-q4 (for 4) 3174 // 3175 // The MVE instructions taking a register range of this kind will 3176 // need an operand in the QQPR or QQQQPR class, representing the 3177 // entire range as a unit. So we must translate into that class, 3178 // by finding the index of the base register in the MQPR reg 3179 // class, and returning the super-register at the corresponding 3180 // index in the target class. 3181 3182 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3183 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3184 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3185 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3186 3187 unsigned I, E = RC_out->getNumRegs(); 3188 for (I = 0; I < E; I++) 3189 if (RC_in->getRegister(I) == VectorList.RegNum) 3190 break; 3191 assert(I < E && "Invalid vector list start register!"); 3192 3193 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3194 } 3195 3196 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3197 assert(N == 2 && "Invalid number of operands!"); 3198 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3199 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3200 } 3201 3202 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3203 assert(N == 1 && "Invalid number of operands!"); 3204 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3205 } 3206 3207 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3208 assert(N == 1 && "Invalid number of operands!"); 3209 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3210 } 3211 3212 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3213 assert(N == 1 && "Invalid number of operands!"); 3214 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3215 } 3216 3217 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3218 assert(N == 1 && "Invalid number of operands!"); 3219 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3220 } 3221 3222 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3223 assert(N == 1 && "Invalid number of operands!"); 3224 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3225 } 3226 3227 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3228 assert(N == 1 && "Invalid number of operands!"); 3229 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3230 } 3231 3232 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3233 assert(N == 1 && "Invalid number of operands!"); 3234 // The immediate encodes the type of constant as well as the value. 3235 // Mask in that this is an i8 splat. 3236 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3237 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3238 } 3239 3240 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3241 assert(N == 1 && "Invalid number of operands!"); 3242 // The immediate encodes the type of constant as well as the value. 3243 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3244 unsigned Value = CE->getValue(); 3245 Value = ARM_AM::encodeNEONi16splat(Value); 3246 Inst.addOperand(MCOperand::createImm(Value)); 3247 } 3248 3249 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3250 assert(N == 1 && "Invalid number of operands!"); 3251 // The immediate encodes the type of constant as well as the value. 3252 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3253 unsigned Value = CE->getValue(); 3254 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3255 Inst.addOperand(MCOperand::createImm(Value)); 3256 } 3257 3258 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3259 assert(N == 1 && "Invalid number of operands!"); 3260 // The immediate encodes the type of constant as well as the value. 3261 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3262 unsigned Value = CE->getValue(); 3263 Value = ARM_AM::encodeNEONi32splat(Value); 3264 Inst.addOperand(MCOperand::createImm(Value)); 3265 } 3266 3267 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3268 assert(N == 1 && "Invalid number of operands!"); 3269 // The immediate encodes the type of constant as well as the value. 3270 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3271 unsigned Value = CE->getValue(); 3272 Value = ARM_AM::encodeNEONi32splat(~Value); 3273 Inst.addOperand(MCOperand::createImm(Value)); 3274 } 3275 3276 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3277 // The immediate encodes the type of constant as well as the value. 3278 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3279 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3280 Inst.getOpcode() == ARM::VMOVv16i8) && 3281 "All instructions that wants to replicate non-zero byte " 3282 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3283 unsigned Value = CE->getValue(); 3284 if (Inv) 3285 Value = ~Value; 3286 unsigned B = Value & 0xff; 3287 B |= 0xe00; // cmode = 0b1110 3288 Inst.addOperand(MCOperand::createImm(B)); 3289 } 3290 3291 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3292 assert(N == 1 && "Invalid number of operands!"); 3293 addNEONi8ReplicateOperands(Inst, true); 3294 } 3295 3296 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3297 if (Value >= 256 && Value <= 0xffff) 3298 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3299 else if (Value > 0xffff && Value <= 0xffffff) 3300 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3301 else if (Value > 0xffffff) 3302 Value = (Value >> 24) | 0x600; 3303 return Value; 3304 } 3305 3306 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3307 assert(N == 1 && "Invalid number of operands!"); 3308 // The immediate encodes the type of constant as well as the value. 3309 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3310 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3311 Inst.addOperand(MCOperand::createImm(Value)); 3312 } 3313 3314 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3315 assert(N == 1 && "Invalid number of operands!"); 3316 addNEONi8ReplicateOperands(Inst, false); 3317 } 3318 3319 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3320 assert(N == 1 && "Invalid number of operands!"); 3321 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3322 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3323 Inst.getOpcode() == ARM::VMOVv8i16 || 3324 Inst.getOpcode() == ARM::VMVNv4i16 || 3325 Inst.getOpcode() == ARM::VMVNv8i16) && 3326 "All instructions that want to replicate non-zero half-word " 3327 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3328 uint64_t Value = CE->getValue(); 3329 unsigned Elem = Value & 0xffff; 3330 if (Elem >= 256) 3331 Elem = (Elem >> 8) | 0x200; 3332 Inst.addOperand(MCOperand::createImm(Elem)); 3333 } 3334 3335 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3336 assert(N == 1 && "Invalid number of operands!"); 3337 // The immediate encodes the type of constant as well as the value. 3338 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3339 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3340 Inst.addOperand(MCOperand::createImm(Value)); 3341 } 3342 3343 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3344 assert(N == 1 && "Invalid number of operands!"); 3345 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3346 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3347 Inst.getOpcode() == ARM::VMOVv4i32 || 3348 Inst.getOpcode() == ARM::VMVNv2i32 || 3349 Inst.getOpcode() == ARM::VMVNv4i32) && 3350 "All instructions that want to replicate non-zero word " 3351 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3352 uint64_t Value = CE->getValue(); 3353 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3354 Inst.addOperand(MCOperand::createImm(Elem)); 3355 } 3356 3357 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3358 assert(N == 1 && "Invalid number of operands!"); 3359 // The immediate encodes the type of constant as well as the value. 3360 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3361 uint64_t Value = CE->getValue(); 3362 unsigned Imm = 0; 3363 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3364 Imm |= (Value & 1) << i; 3365 } 3366 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3367 } 3368 3369 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3370 assert(N == 1 && "Invalid number of operands!"); 3371 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3372 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3373 } 3374 3375 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3376 assert(N == 1 && "Invalid number of operands!"); 3377 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3378 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3379 } 3380 3381 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3382 assert(N == 1 && "Invalid number of operands!"); 3383 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3384 unsigned Imm = CE->getValue(); 3385 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3386 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3387 } 3388 3389 void print(raw_ostream &OS) const override; 3390 3391 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3392 auto Op = make_unique<ARMOperand>(k_ITCondMask); 3393 Op->ITMask.Mask = Mask; 3394 Op->StartLoc = S; 3395 Op->EndLoc = S; 3396 return Op; 3397 } 3398 3399 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3400 SMLoc S) { 3401 auto Op = make_unique<ARMOperand>(k_CondCode); 3402 Op->CC.Val = CC; 3403 Op->StartLoc = S; 3404 Op->EndLoc = S; 3405 return Op; 3406 } 3407 3408 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3409 SMLoc S) { 3410 auto Op = make_unique<ARMOperand>(k_VPTPred); 3411 Op->VCC.Val = CC; 3412 Op->StartLoc = S; 3413 Op->EndLoc = S; 3414 return Op; 3415 } 3416 3417 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3418 auto Op = make_unique<ARMOperand>(k_CoprocNum); 3419 Op->Cop.Val = CopVal; 3420 Op->StartLoc = S; 3421 Op->EndLoc = S; 3422 return Op; 3423 } 3424 3425 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3426 auto Op = make_unique<ARMOperand>(k_CoprocReg); 3427 Op->Cop.Val = CopVal; 3428 Op->StartLoc = S; 3429 Op->EndLoc = S; 3430 return Op; 3431 } 3432 3433 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3434 SMLoc E) { 3435 auto Op = make_unique<ARMOperand>(k_CoprocOption); 3436 Op->Cop.Val = Val; 3437 Op->StartLoc = S; 3438 Op->EndLoc = E; 3439 return Op; 3440 } 3441 3442 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3443 auto Op = make_unique<ARMOperand>(k_CCOut); 3444 Op->Reg.RegNum = RegNum; 3445 Op->StartLoc = S; 3446 Op->EndLoc = S; 3447 return Op; 3448 } 3449 3450 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3451 auto Op = make_unique<ARMOperand>(k_Token); 3452 Op->Tok.Data = Str.data(); 3453 Op->Tok.Length = Str.size(); 3454 Op->StartLoc = S; 3455 Op->EndLoc = S; 3456 return Op; 3457 } 3458 3459 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3460 SMLoc E) { 3461 auto Op = make_unique<ARMOperand>(k_Register); 3462 Op->Reg.RegNum = RegNum; 3463 Op->StartLoc = S; 3464 Op->EndLoc = E; 3465 return Op; 3466 } 3467 3468 static std::unique_ptr<ARMOperand> 3469 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3470 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3471 SMLoc E) { 3472 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 3473 Op->RegShiftedReg.ShiftTy = ShTy; 3474 Op->RegShiftedReg.SrcReg = SrcReg; 3475 Op->RegShiftedReg.ShiftReg = ShiftReg; 3476 Op->RegShiftedReg.ShiftImm = ShiftImm; 3477 Op->StartLoc = S; 3478 Op->EndLoc = E; 3479 return Op; 3480 } 3481 3482 static std::unique_ptr<ARMOperand> 3483 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3484 unsigned ShiftImm, SMLoc S, SMLoc E) { 3485 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 3486 Op->RegShiftedImm.ShiftTy = ShTy; 3487 Op->RegShiftedImm.SrcReg = SrcReg; 3488 Op->RegShiftedImm.ShiftImm = ShiftImm; 3489 Op->StartLoc = S; 3490 Op->EndLoc = E; 3491 return Op; 3492 } 3493 3494 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3495 SMLoc S, SMLoc E) { 3496 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 3497 Op->ShifterImm.isASR = isASR; 3498 Op->ShifterImm.Imm = Imm; 3499 Op->StartLoc = S; 3500 Op->EndLoc = E; 3501 return Op; 3502 } 3503 3504 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3505 SMLoc E) { 3506 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 3507 Op->RotImm.Imm = Imm; 3508 Op->StartLoc = S; 3509 Op->EndLoc = E; 3510 return Op; 3511 } 3512 3513 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3514 SMLoc S, SMLoc E) { 3515 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 3516 Op->ModImm.Bits = Bits; 3517 Op->ModImm.Rot = Rot; 3518 Op->StartLoc = S; 3519 Op->EndLoc = E; 3520 return Op; 3521 } 3522 3523 static std::unique_ptr<ARMOperand> 3524 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3525 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 3526 Op->Imm.Val = Val; 3527 Op->StartLoc = S; 3528 Op->EndLoc = E; 3529 return Op; 3530 } 3531 3532 static std::unique_ptr<ARMOperand> 3533 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3534 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3535 Op->Bitfield.LSB = LSB; 3536 Op->Bitfield.Width = Width; 3537 Op->StartLoc = S; 3538 Op->EndLoc = E; 3539 return Op; 3540 } 3541 3542 static std::unique_ptr<ARMOperand> 3543 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3544 SMLoc StartLoc, SMLoc EndLoc) { 3545 assert(Regs.size() > 0 && "RegList contains no registers?"); 3546 KindTy Kind = k_RegisterList; 3547 3548 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3549 Regs.front().second)) { 3550 if (Regs.back().second == ARM::VPR) 3551 Kind = k_FPDRegisterListWithVPR; 3552 else 3553 Kind = k_DPRRegisterList; 3554 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3555 Regs.front().second)) { 3556 if (Regs.back().second == ARM::VPR) 3557 Kind = k_FPSRegisterListWithVPR; 3558 else 3559 Kind = k_SPRRegisterList; 3560 } 3561 3562 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3563 Kind = k_RegisterListWithAPSR; 3564 3565 assert(std::is_sorted(Regs.begin(), Regs.end()) && 3566 "Register list must be sorted by encoding"); 3567 3568 auto Op = make_unique<ARMOperand>(Kind); 3569 for (const auto &P : Regs) 3570 Op->Registers.push_back(P.second); 3571 3572 Op->StartLoc = StartLoc; 3573 Op->EndLoc = EndLoc; 3574 return Op; 3575 } 3576 3577 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3578 unsigned Count, 3579 bool isDoubleSpaced, 3580 SMLoc S, SMLoc E) { 3581 auto Op = make_unique<ARMOperand>(k_VectorList); 3582 Op->VectorList.RegNum = RegNum; 3583 Op->VectorList.Count = Count; 3584 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3585 Op->StartLoc = S; 3586 Op->EndLoc = E; 3587 return Op; 3588 } 3589 3590 static std::unique_ptr<ARMOperand> 3591 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3592 SMLoc S, SMLoc E) { 3593 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3594 Op->VectorList.RegNum = RegNum; 3595 Op->VectorList.Count = Count; 3596 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3597 Op->StartLoc = S; 3598 Op->EndLoc = E; 3599 return Op; 3600 } 3601 3602 static std::unique_ptr<ARMOperand> 3603 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3604 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3605 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3606 Op->VectorList.RegNum = RegNum; 3607 Op->VectorList.Count = Count; 3608 Op->VectorList.LaneIndex = Index; 3609 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3610 Op->StartLoc = S; 3611 Op->EndLoc = E; 3612 return Op; 3613 } 3614 3615 static std::unique_ptr<ARMOperand> 3616 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3617 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3618 Op->VectorIndex.Val = Idx; 3619 Op->StartLoc = S; 3620 Op->EndLoc = E; 3621 return Op; 3622 } 3623 3624 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3625 SMLoc E) { 3626 auto Op = make_unique<ARMOperand>(k_Immediate); 3627 Op->Imm.Val = Val; 3628 Op->StartLoc = S; 3629 Op->EndLoc = E; 3630 return Op; 3631 } 3632 3633 static std::unique_ptr<ARMOperand> 3634 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3635 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3636 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3637 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3638 auto Op = make_unique<ARMOperand>(k_Memory); 3639 Op->Memory.BaseRegNum = BaseRegNum; 3640 Op->Memory.OffsetImm = OffsetImm; 3641 Op->Memory.OffsetRegNum = OffsetRegNum; 3642 Op->Memory.ShiftType = ShiftType; 3643 Op->Memory.ShiftImm = ShiftImm; 3644 Op->Memory.Alignment = Alignment; 3645 Op->Memory.isNegative = isNegative; 3646 Op->StartLoc = S; 3647 Op->EndLoc = E; 3648 Op->AlignmentLoc = AlignmentLoc; 3649 return Op; 3650 } 3651 3652 static std::unique_ptr<ARMOperand> 3653 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3654 unsigned ShiftImm, SMLoc S, SMLoc E) { 3655 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3656 Op->PostIdxReg.RegNum = RegNum; 3657 Op->PostIdxReg.isAdd = isAdd; 3658 Op->PostIdxReg.ShiftTy = ShiftTy; 3659 Op->PostIdxReg.ShiftImm = ShiftImm; 3660 Op->StartLoc = S; 3661 Op->EndLoc = E; 3662 return Op; 3663 } 3664 3665 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3666 SMLoc S) { 3667 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3668 Op->MBOpt.Val = Opt; 3669 Op->StartLoc = S; 3670 Op->EndLoc = S; 3671 return Op; 3672 } 3673 3674 static std::unique_ptr<ARMOperand> 3675 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3676 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3677 Op->ISBOpt.Val = Opt; 3678 Op->StartLoc = S; 3679 Op->EndLoc = S; 3680 return Op; 3681 } 3682 3683 static std::unique_ptr<ARMOperand> 3684 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3685 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3686 Op->TSBOpt.Val = Opt; 3687 Op->StartLoc = S; 3688 Op->EndLoc = S; 3689 return Op; 3690 } 3691 3692 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3693 SMLoc S) { 3694 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3695 Op->IFlags.Val = IFlags; 3696 Op->StartLoc = S; 3697 Op->EndLoc = S; 3698 return Op; 3699 } 3700 3701 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3702 auto Op = make_unique<ARMOperand>(k_MSRMask); 3703 Op->MMask.Val = MMask; 3704 Op->StartLoc = S; 3705 Op->EndLoc = S; 3706 return Op; 3707 } 3708 3709 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3710 auto Op = make_unique<ARMOperand>(k_BankedReg); 3711 Op->BankedReg.Val = Reg; 3712 Op->StartLoc = S; 3713 Op->EndLoc = S; 3714 return Op; 3715 } 3716 }; 3717 3718 } // end anonymous namespace. 3719 3720 void ARMOperand::print(raw_ostream &OS) const { 3721 auto RegName = [](unsigned Reg) { 3722 if (Reg) 3723 return ARMInstPrinter::getRegisterName(Reg); 3724 else 3725 return "noreg"; 3726 }; 3727 3728 switch (Kind) { 3729 case k_CondCode: 3730 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3731 break; 3732 case k_VPTPred: 3733 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3734 break; 3735 case k_CCOut: 3736 OS << "<ccout " << RegName(getReg()) << ">"; 3737 break; 3738 case k_ITCondMask: { 3739 static const char *const MaskStr[] = { 3740 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3741 "(tt)", "(ttet)", "(tte)", "(ttee)", 3742 "(t)", "(tett)", "(tet)", "(tete)", 3743 "(te)", "(teet)", "(tee)", "(teee)", 3744 }; 3745 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3746 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3747 break; 3748 } 3749 case k_CoprocNum: 3750 OS << "<coprocessor number: " << getCoproc() << ">"; 3751 break; 3752 case k_CoprocReg: 3753 OS << "<coprocessor register: " << getCoproc() << ">"; 3754 break; 3755 case k_CoprocOption: 3756 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3757 break; 3758 case k_MSRMask: 3759 OS << "<mask: " << getMSRMask() << ">"; 3760 break; 3761 case k_BankedReg: 3762 OS << "<banked reg: " << getBankedReg() << ">"; 3763 break; 3764 case k_Immediate: 3765 OS << *getImm(); 3766 break; 3767 case k_MemBarrierOpt: 3768 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3769 break; 3770 case k_InstSyncBarrierOpt: 3771 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3772 break; 3773 case k_TraceSyncBarrierOpt: 3774 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3775 break; 3776 case k_Memory: 3777 OS << "<memory"; 3778 if (Memory.BaseRegNum) 3779 OS << " base:" << RegName(Memory.BaseRegNum); 3780 if (Memory.OffsetImm) 3781 OS << " offset-imm:" << *Memory.OffsetImm; 3782 if (Memory.OffsetRegNum) 3783 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3784 << RegName(Memory.OffsetRegNum); 3785 if (Memory.ShiftType != ARM_AM::no_shift) { 3786 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3787 OS << " shift-imm:" << Memory.ShiftImm; 3788 } 3789 if (Memory.Alignment) 3790 OS << " alignment:" << Memory.Alignment; 3791 OS << ">"; 3792 break; 3793 case k_PostIndexRegister: 3794 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3795 << RegName(PostIdxReg.RegNum); 3796 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3797 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3798 << PostIdxReg.ShiftImm; 3799 OS << ">"; 3800 break; 3801 case k_ProcIFlags: { 3802 OS << "<ARM_PROC::"; 3803 unsigned IFlags = getProcIFlags(); 3804 for (int i=2; i >= 0; --i) 3805 if (IFlags & (1 << i)) 3806 OS << ARM_PROC::IFlagsToString(1 << i); 3807 OS << ">"; 3808 break; 3809 } 3810 case k_Register: 3811 OS << "<register " << RegName(getReg()) << ">"; 3812 break; 3813 case k_ShifterImmediate: 3814 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3815 << " #" << ShifterImm.Imm << ">"; 3816 break; 3817 case k_ShiftedRegister: 3818 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3819 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3820 << RegName(RegShiftedReg.ShiftReg) << ">"; 3821 break; 3822 case k_ShiftedImmediate: 3823 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3824 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3825 << RegShiftedImm.ShiftImm << ">"; 3826 break; 3827 case k_RotateImmediate: 3828 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3829 break; 3830 case k_ModifiedImmediate: 3831 OS << "<mod_imm #" << ModImm.Bits << ", #" 3832 << ModImm.Rot << ")>"; 3833 break; 3834 case k_ConstantPoolImmediate: 3835 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3836 break; 3837 case k_BitfieldDescriptor: 3838 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3839 << ", width: " << Bitfield.Width << ">"; 3840 break; 3841 case k_RegisterList: 3842 case k_RegisterListWithAPSR: 3843 case k_DPRRegisterList: 3844 case k_SPRRegisterList: 3845 case k_FPSRegisterListWithVPR: 3846 case k_FPDRegisterListWithVPR: { 3847 OS << "<register_list "; 3848 3849 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3850 for (SmallVectorImpl<unsigned>::const_iterator 3851 I = RegList.begin(), E = RegList.end(); I != E; ) { 3852 OS << RegName(*I); 3853 if (++I < E) OS << ", "; 3854 } 3855 3856 OS << ">"; 3857 break; 3858 } 3859 case k_VectorList: 3860 OS << "<vector_list " << VectorList.Count << " * " 3861 << RegName(VectorList.RegNum) << ">"; 3862 break; 3863 case k_VectorListAllLanes: 3864 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3865 << RegName(VectorList.RegNum) << ">"; 3866 break; 3867 case k_VectorListIndexed: 3868 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3869 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3870 break; 3871 case k_Token: 3872 OS << "'" << getToken() << "'"; 3873 break; 3874 case k_VectorIndex: 3875 OS << "<vectorindex " << getVectorIndex() << ">"; 3876 break; 3877 } 3878 } 3879 3880 /// @name Auto-generated Match Functions 3881 /// { 3882 3883 static unsigned MatchRegisterName(StringRef Name); 3884 3885 /// } 3886 3887 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3888 SMLoc &StartLoc, SMLoc &EndLoc) { 3889 const AsmToken &Tok = getParser().getTok(); 3890 StartLoc = Tok.getLoc(); 3891 EndLoc = Tok.getEndLoc(); 3892 RegNo = tryParseRegister(); 3893 3894 return (RegNo == (unsigned)-1); 3895 } 3896 3897 /// Try to parse a register name. The token must be an Identifier when called, 3898 /// and if it is a register name the token is eaten and the register number is 3899 /// returned. Otherwise return -1. 3900 int ARMAsmParser::tryParseRegister() { 3901 MCAsmParser &Parser = getParser(); 3902 const AsmToken &Tok = Parser.getTok(); 3903 if (Tok.isNot(AsmToken::Identifier)) return -1; 3904 3905 std::string lowerCase = Tok.getString().lower(); 3906 unsigned RegNum = MatchRegisterName(lowerCase); 3907 if (!RegNum) { 3908 RegNum = StringSwitch<unsigned>(lowerCase) 3909 .Case("r13", ARM::SP) 3910 .Case("r14", ARM::LR) 3911 .Case("r15", ARM::PC) 3912 .Case("ip", ARM::R12) 3913 // Additional register name aliases for 'gas' compatibility. 3914 .Case("a1", ARM::R0) 3915 .Case("a2", ARM::R1) 3916 .Case("a3", ARM::R2) 3917 .Case("a4", ARM::R3) 3918 .Case("v1", ARM::R4) 3919 .Case("v2", ARM::R5) 3920 .Case("v3", ARM::R6) 3921 .Case("v4", ARM::R7) 3922 .Case("v5", ARM::R8) 3923 .Case("v6", ARM::R9) 3924 .Case("v7", ARM::R10) 3925 .Case("v8", ARM::R11) 3926 .Case("sb", ARM::R9) 3927 .Case("sl", ARM::R10) 3928 .Case("fp", ARM::R11) 3929 .Default(0); 3930 } 3931 if (!RegNum) { 3932 // Check for aliases registered via .req. Canonicalize to lower case. 3933 // That's more consistent since register names are case insensitive, and 3934 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3935 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3936 // If no match, return failure. 3937 if (Entry == RegisterReqs.end()) 3938 return -1; 3939 Parser.Lex(); // Eat identifier token. 3940 return Entry->getValue(); 3941 } 3942 3943 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3944 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3945 return -1; 3946 3947 Parser.Lex(); // Eat identifier token. 3948 3949 return RegNum; 3950 } 3951 3952 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3953 // If a recoverable error occurs, return 1. If an irrecoverable error 3954 // occurs, return -1. An irrecoverable error is one where tokens have been 3955 // consumed in the process of trying to parse the shifter (i.e., when it is 3956 // indeed a shifter operand, but malformed). 3957 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3958 MCAsmParser &Parser = getParser(); 3959 SMLoc S = Parser.getTok().getLoc(); 3960 const AsmToken &Tok = Parser.getTok(); 3961 if (Tok.isNot(AsmToken::Identifier)) 3962 return -1; 3963 3964 std::string lowerCase = Tok.getString().lower(); 3965 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3966 .Case("asl", ARM_AM::lsl) 3967 .Case("lsl", ARM_AM::lsl) 3968 .Case("lsr", ARM_AM::lsr) 3969 .Case("asr", ARM_AM::asr) 3970 .Case("ror", ARM_AM::ror) 3971 .Case("rrx", ARM_AM::rrx) 3972 .Default(ARM_AM::no_shift); 3973 3974 if (ShiftTy == ARM_AM::no_shift) 3975 return 1; 3976 3977 Parser.Lex(); // Eat the operator. 3978 3979 // The source register for the shift has already been added to the 3980 // operand list, so we need to pop it off and combine it into the shifted 3981 // register operand instead. 3982 std::unique_ptr<ARMOperand> PrevOp( 3983 (ARMOperand *)Operands.pop_back_val().release()); 3984 if (!PrevOp->isReg()) 3985 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3986 int SrcReg = PrevOp->getReg(); 3987 3988 SMLoc EndLoc; 3989 int64_t Imm = 0; 3990 int ShiftReg = 0; 3991 if (ShiftTy == ARM_AM::rrx) { 3992 // RRX Doesn't have an explicit shift amount. The encoder expects 3993 // the shift register to be the same as the source register. Seems odd, 3994 // but OK. 3995 ShiftReg = SrcReg; 3996 } else { 3997 // Figure out if this is shifted by a constant or a register (for non-RRX). 3998 if (Parser.getTok().is(AsmToken::Hash) || 3999 Parser.getTok().is(AsmToken::Dollar)) { 4000 Parser.Lex(); // Eat hash. 4001 SMLoc ImmLoc = Parser.getTok().getLoc(); 4002 const MCExpr *ShiftExpr = nullptr; 4003 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4004 Error(ImmLoc, "invalid immediate shift value"); 4005 return -1; 4006 } 4007 // The expression must be evaluatable as an immediate. 4008 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4009 if (!CE) { 4010 Error(ImmLoc, "invalid immediate shift value"); 4011 return -1; 4012 } 4013 // Range check the immediate. 4014 // lsl, ror: 0 <= imm <= 31 4015 // lsr, asr: 0 <= imm <= 32 4016 Imm = CE->getValue(); 4017 if (Imm < 0 || 4018 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4019 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4020 Error(ImmLoc, "immediate shift value out of range"); 4021 return -1; 4022 } 4023 // shift by zero is a nop. Always send it through as lsl. 4024 // ('as' compatibility) 4025 if (Imm == 0) 4026 ShiftTy = ARM_AM::lsl; 4027 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4028 SMLoc L = Parser.getTok().getLoc(); 4029 EndLoc = Parser.getTok().getEndLoc(); 4030 ShiftReg = tryParseRegister(); 4031 if (ShiftReg == -1) { 4032 Error(L, "expected immediate or register in shift operand"); 4033 return -1; 4034 } 4035 } else { 4036 Error(Parser.getTok().getLoc(), 4037 "expected immediate or register in shift operand"); 4038 return -1; 4039 } 4040 } 4041 4042 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4043 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4044 ShiftReg, Imm, 4045 S, EndLoc)); 4046 else 4047 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4048 S, EndLoc)); 4049 4050 return 0; 4051 } 4052 4053 /// Try to parse a register name. The token must be an Identifier when called. 4054 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4055 /// if there is a "writeback". 'true' if it's not a register. 4056 /// 4057 /// TODO this is likely to change to allow different register types and or to 4058 /// parse for a specific register type. 4059 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4060 MCAsmParser &Parser = getParser(); 4061 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4062 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4063 int RegNo = tryParseRegister(); 4064 if (RegNo == -1) 4065 return true; 4066 4067 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4068 4069 const AsmToken &ExclaimTok = Parser.getTok(); 4070 if (ExclaimTok.is(AsmToken::Exclaim)) { 4071 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4072 ExclaimTok.getLoc())); 4073 Parser.Lex(); // Eat exclaim token 4074 return false; 4075 } 4076 4077 // Also check for an index operand. This is only legal for vector registers, 4078 // but that'll get caught OK in operand matching, so we don't need to 4079 // explicitly filter everything else out here. 4080 if (Parser.getTok().is(AsmToken::LBrac)) { 4081 SMLoc SIdx = Parser.getTok().getLoc(); 4082 Parser.Lex(); // Eat left bracket token. 4083 4084 const MCExpr *ImmVal; 4085 if (getParser().parseExpression(ImmVal)) 4086 return true; 4087 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4088 if (!MCE) 4089 return TokError("immediate value expected for vector index"); 4090 4091 if (Parser.getTok().isNot(AsmToken::RBrac)) 4092 return Error(Parser.getTok().getLoc(), "']' expected"); 4093 4094 SMLoc E = Parser.getTok().getEndLoc(); 4095 Parser.Lex(); // Eat right bracket token. 4096 4097 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4098 SIdx, E, 4099 getContext())); 4100 } 4101 4102 return false; 4103 } 4104 4105 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4106 /// instruction with a symbolic operand name. 4107 /// We accept "crN" syntax for GAS compatibility. 4108 /// <operand-name> ::= <prefix><number> 4109 /// If CoprocOp is 'c', then: 4110 /// <prefix> ::= c | cr 4111 /// If CoprocOp is 'p', then : 4112 /// <prefix> ::= p 4113 /// <number> ::= integer in range [0, 15] 4114 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4115 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4116 // but efficient. 4117 if (Name.size() < 2 || Name[0] != CoprocOp) 4118 return -1; 4119 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4120 4121 switch (Name.size()) { 4122 default: return -1; 4123 case 1: 4124 switch (Name[0]) { 4125 default: return -1; 4126 case '0': return 0; 4127 case '1': return 1; 4128 case '2': return 2; 4129 case '3': return 3; 4130 case '4': return 4; 4131 case '5': return 5; 4132 case '6': return 6; 4133 case '7': return 7; 4134 case '8': return 8; 4135 case '9': return 9; 4136 } 4137 case 2: 4138 if (Name[0] != '1') 4139 return -1; 4140 switch (Name[1]) { 4141 default: return -1; 4142 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4143 // However, old cores (v5/v6) did use them in that way. 4144 case '0': return 10; 4145 case '1': return 11; 4146 case '2': return 12; 4147 case '3': return 13; 4148 case '4': return 14; 4149 case '5': return 15; 4150 } 4151 } 4152 } 4153 4154 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4155 OperandMatchResultTy 4156 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4157 MCAsmParser &Parser = getParser(); 4158 SMLoc S = Parser.getTok().getLoc(); 4159 const AsmToken &Tok = Parser.getTok(); 4160 if (!Tok.is(AsmToken::Identifier)) 4161 return MatchOperand_NoMatch; 4162 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4163 if (CC == ~0U) 4164 return MatchOperand_NoMatch; 4165 Parser.Lex(); // Eat the token. 4166 4167 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4168 4169 return MatchOperand_Success; 4170 } 4171 4172 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4173 /// token must be an Identifier when called, and if it is a coprocessor 4174 /// number, the token is eaten and the operand is added to the operand list. 4175 OperandMatchResultTy 4176 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4177 MCAsmParser &Parser = getParser(); 4178 SMLoc S = Parser.getTok().getLoc(); 4179 const AsmToken &Tok = Parser.getTok(); 4180 if (Tok.isNot(AsmToken::Identifier)) 4181 return MatchOperand_NoMatch; 4182 4183 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4184 if (Num == -1) 4185 return MatchOperand_NoMatch; 4186 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4187 return MatchOperand_NoMatch; 4188 4189 Parser.Lex(); // Eat identifier token. 4190 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4191 return MatchOperand_Success; 4192 } 4193 4194 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4195 /// token must be an Identifier when called, and if it is a coprocessor 4196 /// number, the token is eaten and the operand is added to the operand list. 4197 OperandMatchResultTy 4198 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4199 MCAsmParser &Parser = getParser(); 4200 SMLoc S = Parser.getTok().getLoc(); 4201 const AsmToken &Tok = Parser.getTok(); 4202 if (Tok.isNot(AsmToken::Identifier)) 4203 return MatchOperand_NoMatch; 4204 4205 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4206 if (Reg == -1) 4207 return MatchOperand_NoMatch; 4208 4209 Parser.Lex(); // Eat identifier token. 4210 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4211 return MatchOperand_Success; 4212 } 4213 4214 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4215 /// coproc_option : '{' imm0_255 '}' 4216 OperandMatchResultTy 4217 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4218 MCAsmParser &Parser = getParser(); 4219 SMLoc S = Parser.getTok().getLoc(); 4220 4221 // If this isn't a '{', this isn't a coprocessor immediate operand. 4222 if (Parser.getTok().isNot(AsmToken::LCurly)) 4223 return MatchOperand_NoMatch; 4224 Parser.Lex(); // Eat the '{' 4225 4226 const MCExpr *Expr; 4227 SMLoc Loc = Parser.getTok().getLoc(); 4228 if (getParser().parseExpression(Expr)) { 4229 Error(Loc, "illegal expression"); 4230 return MatchOperand_ParseFail; 4231 } 4232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4233 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4234 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4235 return MatchOperand_ParseFail; 4236 } 4237 int Val = CE->getValue(); 4238 4239 // Check for and consume the closing '}' 4240 if (Parser.getTok().isNot(AsmToken::RCurly)) 4241 return MatchOperand_ParseFail; 4242 SMLoc E = Parser.getTok().getEndLoc(); 4243 Parser.Lex(); // Eat the '}' 4244 4245 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4246 return MatchOperand_Success; 4247 } 4248 4249 // For register list parsing, we need to map from raw GPR register numbering 4250 // to the enumeration values. The enumeration values aren't sorted by 4251 // register number due to our using "sp", "lr" and "pc" as canonical names. 4252 static unsigned getNextRegister(unsigned Reg) { 4253 // If this is a GPR, we need to do it manually, otherwise we can rely 4254 // on the sort ordering of the enumeration since the other reg-classes 4255 // are sane. 4256 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4257 return Reg + 1; 4258 switch(Reg) { 4259 default: llvm_unreachable("Invalid GPR number!"); 4260 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4261 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4262 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4263 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4264 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4265 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4266 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4267 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4268 } 4269 } 4270 4271 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4272 // success, or false, if duplicate encoding found. 4273 static bool 4274 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4275 unsigned Enc, unsigned Reg) { 4276 Regs.emplace_back(Enc, Reg); 4277 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4278 if (J->first == Enc) { 4279 Regs.erase(J.base()); 4280 return false; 4281 } 4282 if (J->first < Enc) 4283 break; 4284 std::swap(*I, *J); 4285 } 4286 return true; 4287 } 4288 4289 /// Parse a register list. 4290 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4291 bool EnforceOrder) { 4292 MCAsmParser &Parser = getParser(); 4293 if (Parser.getTok().isNot(AsmToken::LCurly)) 4294 return TokError("Token is not a Left Curly Brace"); 4295 SMLoc S = Parser.getTok().getLoc(); 4296 Parser.Lex(); // Eat '{' token. 4297 SMLoc RegLoc = Parser.getTok().getLoc(); 4298 4299 // Check the first register in the list to see what register class 4300 // this is a list of. 4301 int Reg = tryParseRegister(); 4302 if (Reg == -1) 4303 return Error(RegLoc, "register expected"); 4304 4305 // The reglist instructions have at most 16 registers, so reserve 4306 // space for that many. 4307 int EReg = 0; 4308 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4309 4310 // Allow Q regs and just interpret them as the two D sub-registers. 4311 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4312 Reg = getDRegFromQReg(Reg); 4313 EReg = MRI->getEncodingValue(Reg); 4314 Registers.emplace_back(EReg, Reg); 4315 ++Reg; 4316 } 4317 const MCRegisterClass *RC; 4318 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4319 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4320 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4321 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4322 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4323 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4324 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4325 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4326 else 4327 return Error(RegLoc, "invalid register in register list"); 4328 4329 // Store the register. 4330 EReg = MRI->getEncodingValue(Reg); 4331 Registers.emplace_back(EReg, Reg); 4332 4333 // This starts immediately after the first register token in the list, 4334 // so we can see either a comma or a minus (range separator) as a legal 4335 // next token. 4336 while (Parser.getTok().is(AsmToken::Comma) || 4337 Parser.getTok().is(AsmToken::Minus)) { 4338 if (Parser.getTok().is(AsmToken::Minus)) { 4339 Parser.Lex(); // Eat the minus. 4340 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4341 int EndReg = tryParseRegister(); 4342 if (EndReg == -1) 4343 return Error(AfterMinusLoc, "register expected"); 4344 // Allow Q regs and just interpret them as the two D sub-registers. 4345 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4346 EndReg = getDRegFromQReg(EndReg) + 1; 4347 // If the register is the same as the start reg, there's nothing 4348 // more to do. 4349 if (Reg == EndReg) 4350 continue; 4351 // The register must be in the same register class as the first. 4352 if (!RC->contains(EndReg)) 4353 return Error(AfterMinusLoc, "invalid register in register list"); 4354 // Ranges must go from low to high. 4355 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4356 return Error(AfterMinusLoc, "bad range in register list"); 4357 4358 // Add all the registers in the range to the register list. 4359 while (Reg != EndReg) { 4360 Reg = getNextRegister(Reg); 4361 EReg = MRI->getEncodingValue(Reg); 4362 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4363 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4364 ARMInstPrinter::getRegisterName(Reg) + 4365 ") in register list"); 4366 } 4367 } 4368 continue; 4369 } 4370 Parser.Lex(); // Eat the comma. 4371 RegLoc = Parser.getTok().getLoc(); 4372 int OldReg = Reg; 4373 const AsmToken RegTok = Parser.getTok(); 4374 Reg = tryParseRegister(); 4375 if (Reg == -1) 4376 return Error(RegLoc, "register expected"); 4377 // Allow Q regs and just interpret them as the two D sub-registers. 4378 bool isQReg = false; 4379 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4380 Reg = getDRegFromQReg(Reg); 4381 isQReg = true; 4382 } 4383 if (!RC->contains(Reg) && 4384 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4385 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4386 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4387 // subset of GPRRegClassId except it contains APSR as well. 4388 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4389 } 4390 if (Reg == ARM::VPR && 4391 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4392 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4393 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4394 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4395 EReg = MRI->getEncodingValue(Reg); 4396 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4397 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4398 ") in register list"); 4399 } 4400 continue; 4401 } 4402 // The register must be in the same register class as the first. 4403 if (!RC->contains(Reg)) 4404 return Error(RegLoc, "invalid register in register list"); 4405 // In most cases, the list must be monotonically increasing. An 4406 // exception is CLRM, which is order-independent anyway, so 4407 // there's no potential for confusion if you write clrm {r2,r1} 4408 // instead of clrm {r1,r2}. 4409 if (EnforceOrder && 4410 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4411 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4412 Warning(RegLoc, "register list not in ascending order"); 4413 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4414 return Error(RegLoc, "register list not in ascending order"); 4415 } 4416 // VFP register lists must also be contiguous. 4417 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4418 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4419 Reg != OldReg + 1) 4420 return Error(RegLoc, "non-contiguous register range"); 4421 EReg = MRI->getEncodingValue(Reg); 4422 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4423 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4424 ") in register list"); 4425 } 4426 if (isQReg) { 4427 EReg = MRI->getEncodingValue(++Reg); 4428 Registers.emplace_back(EReg, Reg); 4429 } 4430 } 4431 4432 if (Parser.getTok().isNot(AsmToken::RCurly)) 4433 return Error(Parser.getTok().getLoc(), "'}' expected"); 4434 SMLoc E = Parser.getTok().getEndLoc(); 4435 Parser.Lex(); // Eat '}' token. 4436 4437 // Push the register list operand. 4438 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4439 4440 // The ARM system instruction variants for LDM/STM have a '^' token here. 4441 if (Parser.getTok().is(AsmToken::Caret)) { 4442 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4443 Parser.Lex(); // Eat '^' token. 4444 } 4445 4446 return false; 4447 } 4448 4449 // Helper function to parse the lane index for vector lists. 4450 OperandMatchResultTy ARMAsmParser:: 4451 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4452 MCAsmParser &Parser = getParser(); 4453 Index = 0; // Always return a defined index value. 4454 if (Parser.getTok().is(AsmToken::LBrac)) { 4455 Parser.Lex(); // Eat the '['. 4456 if (Parser.getTok().is(AsmToken::RBrac)) { 4457 // "Dn[]" is the 'all lanes' syntax. 4458 LaneKind = AllLanes; 4459 EndLoc = Parser.getTok().getEndLoc(); 4460 Parser.Lex(); // Eat the ']'. 4461 return MatchOperand_Success; 4462 } 4463 4464 // There's an optional '#' token here. Normally there wouldn't be, but 4465 // inline assemble puts one in, and it's friendly to accept that. 4466 if (Parser.getTok().is(AsmToken::Hash)) 4467 Parser.Lex(); // Eat '#' or '$'. 4468 4469 const MCExpr *LaneIndex; 4470 SMLoc Loc = Parser.getTok().getLoc(); 4471 if (getParser().parseExpression(LaneIndex)) { 4472 Error(Loc, "illegal expression"); 4473 return MatchOperand_ParseFail; 4474 } 4475 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4476 if (!CE) { 4477 Error(Loc, "lane index must be empty or an integer"); 4478 return MatchOperand_ParseFail; 4479 } 4480 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4481 Error(Parser.getTok().getLoc(), "']' expected"); 4482 return MatchOperand_ParseFail; 4483 } 4484 EndLoc = Parser.getTok().getEndLoc(); 4485 Parser.Lex(); // Eat the ']'. 4486 int64_t Val = CE->getValue(); 4487 4488 // FIXME: Make this range check context sensitive for .8, .16, .32. 4489 if (Val < 0 || Val > 7) { 4490 Error(Parser.getTok().getLoc(), "lane index out of range"); 4491 return MatchOperand_ParseFail; 4492 } 4493 Index = Val; 4494 LaneKind = IndexedLane; 4495 return MatchOperand_Success; 4496 } 4497 LaneKind = NoLanes; 4498 return MatchOperand_Success; 4499 } 4500 4501 // parse a vector register list 4502 OperandMatchResultTy 4503 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4504 MCAsmParser &Parser = getParser(); 4505 VectorLaneTy LaneKind; 4506 unsigned LaneIndex; 4507 SMLoc S = Parser.getTok().getLoc(); 4508 // As an extension (to match gas), support a plain D register or Q register 4509 // (without encosing curly braces) as a single or double entry list, 4510 // respectively. 4511 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4512 SMLoc E = Parser.getTok().getEndLoc(); 4513 int Reg = tryParseRegister(); 4514 if (Reg == -1) 4515 return MatchOperand_NoMatch; 4516 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4517 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4518 if (Res != MatchOperand_Success) 4519 return Res; 4520 switch (LaneKind) { 4521 case NoLanes: 4522 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4523 break; 4524 case AllLanes: 4525 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4526 S, E)); 4527 break; 4528 case IndexedLane: 4529 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4530 LaneIndex, 4531 false, S, E)); 4532 break; 4533 } 4534 return MatchOperand_Success; 4535 } 4536 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4537 Reg = getDRegFromQReg(Reg); 4538 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4539 if (Res != MatchOperand_Success) 4540 return Res; 4541 switch (LaneKind) { 4542 case NoLanes: 4543 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4544 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4545 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4546 break; 4547 case AllLanes: 4548 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4549 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4550 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4551 S, E)); 4552 break; 4553 case IndexedLane: 4554 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4555 LaneIndex, 4556 false, S, E)); 4557 break; 4558 } 4559 return MatchOperand_Success; 4560 } 4561 Error(S, "vector register expected"); 4562 return MatchOperand_ParseFail; 4563 } 4564 4565 if (Parser.getTok().isNot(AsmToken::LCurly)) 4566 return MatchOperand_NoMatch; 4567 4568 Parser.Lex(); // Eat '{' token. 4569 SMLoc RegLoc = Parser.getTok().getLoc(); 4570 4571 int Reg = tryParseRegister(); 4572 if (Reg == -1) { 4573 Error(RegLoc, "register expected"); 4574 return MatchOperand_ParseFail; 4575 } 4576 unsigned Count = 1; 4577 int Spacing = 0; 4578 unsigned FirstReg = Reg; 4579 4580 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4581 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4582 return MatchOperand_ParseFail; 4583 } 4584 // The list is of D registers, but we also allow Q regs and just interpret 4585 // them as the two D sub-registers. 4586 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4587 FirstReg = Reg = getDRegFromQReg(Reg); 4588 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4589 // it's ambiguous with four-register single spaced. 4590 ++Reg; 4591 ++Count; 4592 } 4593 4594 SMLoc E; 4595 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4596 return MatchOperand_ParseFail; 4597 4598 while (Parser.getTok().is(AsmToken::Comma) || 4599 Parser.getTok().is(AsmToken::Minus)) { 4600 if (Parser.getTok().is(AsmToken::Minus)) { 4601 if (!Spacing) 4602 Spacing = 1; // Register range implies a single spaced list. 4603 else if (Spacing == 2) { 4604 Error(Parser.getTok().getLoc(), 4605 "sequential registers in double spaced list"); 4606 return MatchOperand_ParseFail; 4607 } 4608 Parser.Lex(); // Eat the minus. 4609 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4610 int EndReg = tryParseRegister(); 4611 if (EndReg == -1) { 4612 Error(AfterMinusLoc, "register expected"); 4613 return MatchOperand_ParseFail; 4614 } 4615 // Allow Q regs and just interpret them as the two D sub-registers. 4616 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4617 EndReg = getDRegFromQReg(EndReg) + 1; 4618 // If the register is the same as the start reg, there's nothing 4619 // more to do. 4620 if (Reg == EndReg) 4621 continue; 4622 // The register must be in the same register class as the first. 4623 if ((hasMVE() && 4624 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4625 (!hasMVE() && 4626 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4627 Error(AfterMinusLoc, "invalid register in register list"); 4628 return MatchOperand_ParseFail; 4629 } 4630 // Ranges must go from low to high. 4631 if (Reg > EndReg) { 4632 Error(AfterMinusLoc, "bad range in register list"); 4633 return MatchOperand_ParseFail; 4634 } 4635 // Parse the lane specifier if present. 4636 VectorLaneTy NextLaneKind; 4637 unsigned NextLaneIndex; 4638 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4639 MatchOperand_Success) 4640 return MatchOperand_ParseFail; 4641 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4642 Error(AfterMinusLoc, "mismatched lane index in register list"); 4643 return MatchOperand_ParseFail; 4644 } 4645 4646 // Add all the registers in the range to the register list. 4647 Count += EndReg - Reg; 4648 Reg = EndReg; 4649 continue; 4650 } 4651 Parser.Lex(); // Eat the comma. 4652 RegLoc = Parser.getTok().getLoc(); 4653 int OldReg = Reg; 4654 Reg = tryParseRegister(); 4655 if (Reg == -1) { 4656 Error(RegLoc, "register expected"); 4657 return MatchOperand_ParseFail; 4658 } 4659 4660 if (hasMVE()) { 4661 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4662 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4663 return MatchOperand_ParseFail; 4664 } 4665 Spacing = 1; 4666 } 4667 // vector register lists must be contiguous. 4668 // It's OK to use the enumeration values directly here rather, as the 4669 // VFP register classes have the enum sorted properly. 4670 // 4671 // The list is of D registers, but we also allow Q regs and just interpret 4672 // them as the two D sub-registers. 4673 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4674 if (!Spacing) 4675 Spacing = 1; // Register range implies a single spaced list. 4676 else if (Spacing == 2) { 4677 Error(RegLoc, 4678 "invalid register in double-spaced list (must be 'D' register')"); 4679 return MatchOperand_ParseFail; 4680 } 4681 Reg = getDRegFromQReg(Reg); 4682 if (Reg != OldReg + 1) { 4683 Error(RegLoc, "non-contiguous register range"); 4684 return MatchOperand_ParseFail; 4685 } 4686 ++Reg; 4687 Count += 2; 4688 // Parse the lane specifier if present. 4689 VectorLaneTy NextLaneKind; 4690 unsigned NextLaneIndex; 4691 SMLoc LaneLoc = Parser.getTok().getLoc(); 4692 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4693 MatchOperand_Success) 4694 return MatchOperand_ParseFail; 4695 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4696 Error(LaneLoc, "mismatched lane index in register list"); 4697 return MatchOperand_ParseFail; 4698 } 4699 continue; 4700 } 4701 // Normal D register. 4702 // Figure out the register spacing (single or double) of the list if 4703 // we don't know it already. 4704 if (!Spacing) 4705 Spacing = 1 + (Reg == OldReg + 2); 4706 4707 // Just check that it's contiguous and keep going. 4708 if (Reg != OldReg + Spacing) { 4709 Error(RegLoc, "non-contiguous register range"); 4710 return MatchOperand_ParseFail; 4711 } 4712 ++Count; 4713 // Parse the lane specifier if present. 4714 VectorLaneTy NextLaneKind; 4715 unsigned NextLaneIndex; 4716 SMLoc EndLoc = Parser.getTok().getLoc(); 4717 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4718 return MatchOperand_ParseFail; 4719 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4720 Error(EndLoc, "mismatched lane index in register list"); 4721 return MatchOperand_ParseFail; 4722 } 4723 } 4724 4725 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4726 Error(Parser.getTok().getLoc(), "'}' expected"); 4727 return MatchOperand_ParseFail; 4728 } 4729 E = Parser.getTok().getEndLoc(); 4730 Parser.Lex(); // Eat '}' token. 4731 4732 switch (LaneKind) { 4733 case NoLanes: 4734 case AllLanes: { 4735 // Two-register operands have been converted to the 4736 // composite register classes. 4737 if (Count == 2 && !hasMVE()) { 4738 const MCRegisterClass *RC = (Spacing == 1) ? 4739 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4740 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4741 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4742 } 4743 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4744 ARMOperand::CreateVectorListAllLanes); 4745 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4746 break; 4747 } 4748 case IndexedLane: 4749 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4750 LaneIndex, 4751 (Spacing == 2), 4752 S, E)); 4753 break; 4754 } 4755 return MatchOperand_Success; 4756 } 4757 4758 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4759 OperandMatchResultTy 4760 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4761 MCAsmParser &Parser = getParser(); 4762 SMLoc S = Parser.getTok().getLoc(); 4763 const AsmToken &Tok = Parser.getTok(); 4764 unsigned Opt; 4765 4766 if (Tok.is(AsmToken::Identifier)) { 4767 StringRef OptStr = Tok.getString(); 4768 4769 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4770 .Case("sy", ARM_MB::SY) 4771 .Case("st", ARM_MB::ST) 4772 .Case("ld", ARM_MB::LD) 4773 .Case("sh", ARM_MB::ISH) 4774 .Case("ish", ARM_MB::ISH) 4775 .Case("shst", ARM_MB::ISHST) 4776 .Case("ishst", ARM_MB::ISHST) 4777 .Case("ishld", ARM_MB::ISHLD) 4778 .Case("nsh", ARM_MB::NSH) 4779 .Case("un", ARM_MB::NSH) 4780 .Case("nshst", ARM_MB::NSHST) 4781 .Case("nshld", ARM_MB::NSHLD) 4782 .Case("unst", ARM_MB::NSHST) 4783 .Case("osh", ARM_MB::OSH) 4784 .Case("oshst", ARM_MB::OSHST) 4785 .Case("oshld", ARM_MB::OSHLD) 4786 .Default(~0U); 4787 4788 // ishld, oshld, nshld and ld are only available from ARMv8. 4789 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4790 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4791 Opt = ~0U; 4792 4793 if (Opt == ~0U) 4794 return MatchOperand_NoMatch; 4795 4796 Parser.Lex(); // Eat identifier token. 4797 } else if (Tok.is(AsmToken::Hash) || 4798 Tok.is(AsmToken::Dollar) || 4799 Tok.is(AsmToken::Integer)) { 4800 if (Parser.getTok().isNot(AsmToken::Integer)) 4801 Parser.Lex(); // Eat '#' or '$'. 4802 SMLoc Loc = Parser.getTok().getLoc(); 4803 4804 const MCExpr *MemBarrierID; 4805 if (getParser().parseExpression(MemBarrierID)) { 4806 Error(Loc, "illegal expression"); 4807 return MatchOperand_ParseFail; 4808 } 4809 4810 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4811 if (!CE) { 4812 Error(Loc, "constant expression expected"); 4813 return MatchOperand_ParseFail; 4814 } 4815 4816 int Val = CE->getValue(); 4817 if (Val & ~0xf) { 4818 Error(Loc, "immediate value out of range"); 4819 return MatchOperand_ParseFail; 4820 } 4821 4822 Opt = ARM_MB::RESERVED_0 + Val; 4823 } else 4824 return MatchOperand_ParseFail; 4825 4826 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4827 return MatchOperand_Success; 4828 } 4829 4830 OperandMatchResultTy 4831 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4832 MCAsmParser &Parser = getParser(); 4833 SMLoc S = Parser.getTok().getLoc(); 4834 const AsmToken &Tok = Parser.getTok(); 4835 4836 if (Tok.isNot(AsmToken::Identifier)) 4837 return MatchOperand_NoMatch; 4838 4839 if (!Tok.getString().equals_lower("csync")) 4840 return MatchOperand_NoMatch; 4841 4842 Parser.Lex(); // Eat identifier token. 4843 4844 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4845 return MatchOperand_Success; 4846 } 4847 4848 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4849 OperandMatchResultTy 4850 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4851 MCAsmParser &Parser = getParser(); 4852 SMLoc S = Parser.getTok().getLoc(); 4853 const AsmToken &Tok = Parser.getTok(); 4854 unsigned Opt; 4855 4856 if (Tok.is(AsmToken::Identifier)) { 4857 StringRef OptStr = Tok.getString(); 4858 4859 if (OptStr.equals_lower("sy")) 4860 Opt = ARM_ISB::SY; 4861 else 4862 return MatchOperand_NoMatch; 4863 4864 Parser.Lex(); // Eat identifier token. 4865 } else if (Tok.is(AsmToken::Hash) || 4866 Tok.is(AsmToken::Dollar) || 4867 Tok.is(AsmToken::Integer)) { 4868 if (Parser.getTok().isNot(AsmToken::Integer)) 4869 Parser.Lex(); // Eat '#' or '$'. 4870 SMLoc Loc = Parser.getTok().getLoc(); 4871 4872 const MCExpr *ISBarrierID; 4873 if (getParser().parseExpression(ISBarrierID)) { 4874 Error(Loc, "illegal expression"); 4875 return MatchOperand_ParseFail; 4876 } 4877 4878 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4879 if (!CE) { 4880 Error(Loc, "constant expression expected"); 4881 return MatchOperand_ParseFail; 4882 } 4883 4884 int Val = CE->getValue(); 4885 if (Val & ~0xf) { 4886 Error(Loc, "immediate value out of range"); 4887 return MatchOperand_ParseFail; 4888 } 4889 4890 Opt = ARM_ISB::RESERVED_0 + Val; 4891 } else 4892 return MatchOperand_ParseFail; 4893 4894 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4895 (ARM_ISB::InstSyncBOpt)Opt, S)); 4896 return MatchOperand_Success; 4897 } 4898 4899 4900 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4901 OperandMatchResultTy 4902 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4903 MCAsmParser &Parser = getParser(); 4904 SMLoc S = Parser.getTok().getLoc(); 4905 const AsmToken &Tok = Parser.getTok(); 4906 if (!Tok.is(AsmToken::Identifier)) 4907 return MatchOperand_NoMatch; 4908 StringRef IFlagsStr = Tok.getString(); 4909 4910 // An iflags string of "none" is interpreted to mean that none of the AIF 4911 // bits are set. Not a terribly useful instruction, but a valid encoding. 4912 unsigned IFlags = 0; 4913 if (IFlagsStr != "none") { 4914 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4915 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4916 .Case("a", ARM_PROC::A) 4917 .Case("i", ARM_PROC::I) 4918 .Case("f", ARM_PROC::F) 4919 .Default(~0U); 4920 4921 // If some specific iflag is already set, it means that some letter is 4922 // present more than once, this is not acceptable. 4923 if (Flag == ~0U || (IFlags & Flag)) 4924 return MatchOperand_NoMatch; 4925 4926 IFlags |= Flag; 4927 } 4928 } 4929 4930 Parser.Lex(); // Eat identifier token. 4931 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4932 return MatchOperand_Success; 4933 } 4934 4935 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4936 OperandMatchResultTy 4937 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4938 MCAsmParser &Parser = getParser(); 4939 SMLoc S = Parser.getTok().getLoc(); 4940 const AsmToken &Tok = Parser.getTok(); 4941 4942 if (Tok.is(AsmToken::Integer)) { 4943 int64_t Val = Tok.getIntVal(); 4944 if (Val > 255 || Val < 0) { 4945 return MatchOperand_NoMatch; 4946 } 4947 unsigned SYSmvalue = Val & 0xFF; 4948 Parser.Lex(); 4949 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4950 return MatchOperand_Success; 4951 } 4952 4953 if (!Tok.is(AsmToken::Identifier)) 4954 return MatchOperand_NoMatch; 4955 StringRef Mask = Tok.getString(); 4956 4957 if (isMClass()) { 4958 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4959 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4960 return MatchOperand_NoMatch; 4961 4962 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4963 4964 Parser.Lex(); // Eat identifier token. 4965 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4966 return MatchOperand_Success; 4967 } 4968 4969 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4970 size_t Start = 0, Next = Mask.find('_'); 4971 StringRef Flags = ""; 4972 std::string SpecReg = Mask.slice(Start, Next).lower(); 4973 if (Next != StringRef::npos) 4974 Flags = Mask.slice(Next+1, Mask.size()); 4975 4976 // FlagsVal contains the complete mask: 4977 // 3-0: Mask 4978 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4979 unsigned FlagsVal = 0; 4980 4981 if (SpecReg == "apsr") { 4982 FlagsVal = StringSwitch<unsigned>(Flags) 4983 .Case("nzcvq", 0x8) // same as CPSR_f 4984 .Case("g", 0x4) // same as CPSR_s 4985 .Case("nzcvqg", 0xc) // same as CPSR_fs 4986 .Default(~0U); 4987 4988 if (FlagsVal == ~0U) { 4989 if (!Flags.empty()) 4990 return MatchOperand_NoMatch; 4991 else 4992 FlagsVal = 8; // No flag 4993 } 4994 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4995 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4996 if (Flags == "all" || Flags == "") 4997 Flags = "fc"; 4998 for (int i = 0, e = Flags.size(); i != e; ++i) { 4999 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5000 .Case("c", 1) 5001 .Case("x", 2) 5002 .Case("s", 4) 5003 .Case("f", 8) 5004 .Default(~0U); 5005 5006 // If some specific flag is already set, it means that some letter is 5007 // present more than once, this is not acceptable. 5008 if (Flag == ~0U || (FlagsVal & Flag)) 5009 return MatchOperand_NoMatch; 5010 FlagsVal |= Flag; 5011 } 5012 } else // No match for special register. 5013 return MatchOperand_NoMatch; 5014 5015 // Special register without flags is NOT equivalent to "fc" flags. 5016 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5017 // two lines would enable gas compatibility at the expense of breaking 5018 // round-tripping. 5019 // 5020 // if (!FlagsVal) 5021 // FlagsVal = 0x9; 5022 5023 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5024 if (SpecReg == "spsr") 5025 FlagsVal |= 16; 5026 5027 Parser.Lex(); // Eat identifier token. 5028 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5029 return MatchOperand_Success; 5030 } 5031 5032 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5033 /// use in the MRS/MSR instructions added to support virtualization. 5034 OperandMatchResultTy 5035 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5036 MCAsmParser &Parser = getParser(); 5037 SMLoc S = Parser.getTok().getLoc(); 5038 const AsmToken &Tok = Parser.getTok(); 5039 if (!Tok.is(AsmToken::Identifier)) 5040 return MatchOperand_NoMatch; 5041 StringRef RegName = Tok.getString(); 5042 5043 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5044 if (!TheReg) 5045 return MatchOperand_NoMatch; 5046 unsigned Encoding = TheReg->Encoding; 5047 5048 Parser.Lex(); // Eat identifier token. 5049 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5050 return MatchOperand_Success; 5051 } 5052 5053 OperandMatchResultTy 5054 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5055 int High) { 5056 MCAsmParser &Parser = getParser(); 5057 const AsmToken &Tok = Parser.getTok(); 5058 if (Tok.isNot(AsmToken::Identifier)) { 5059 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5060 return MatchOperand_ParseFail; 5061 } 5062 StringRef ShiftName = Tok.getString(); 5063 std::string LowerOp = Op.lower(); 5064 std::string UpperOp = Op.upper(); 5065 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5066 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5067 return MatchOperand_ParseFail; 5068 } 5069 Parser.Lex(); // Eat shift type token. 5070 5071 // There must be a '#' and a shift amount. 5072 if (Parser.getTok().isNot(AsmToken::Hash) && 5073 Parser.getTok().isNot(AsmToken::Dollar)) { 5074 Error(Parser.getTok().getLoc(), "'#' expected"); 5075 return MatchOperand_ParseFail; 5076 } 5077 Parser.Lex(); // Eat hash token. 5078 5079 const MCExpr *ShiftAmount; 5080 SMLoc Loc = Parser.getTok().getLoc(); 5081 SMLoc EndLoc; 5082 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5083 Error(Loc, "illegal expression"); 5084 return MatchOperand_ParseFail; 5085 } 5086 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5087 if (!CE) { 5088 Error(Loc, "constant expression expected"); 5089 return MatchOperand_ParseFail; 5090 } 5091 int Val = CE->getValue(); 5092 if (Val < Low || Val > High) { 5093 Error(Loc, "immediate value out of range"); 5094 return MatchOperand_ParseFail; 5095 } 5096 5097 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5098 5099 return MatchOperand_Success; 5100 } 5101 5102 OperandMatchResultTy 5103 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5104 MCAsmParser &Parser = getParser(); 5105 const AsmToken &Tok = Parser.getTok(); 5106 SMLoc S = Tok.getLoc(); 5107 if (Tok.isNot(AsmToken::Identifier)) { 5108 Error(S, "'be' or 'le' operand expected"); 5109 return MatchOperand_ParseFail; 5110 } 5111 int Val = StringSwitch<int>(Tok.getString().lower()) 5112 .Case("be", 1) 5113 .Case("le", 0) 5114 .Default(-1); 5115 Parser.Lex(); // Eat the token. 5116 5117 if (Val == -1) { 5118 Error(S, "'be' or 'le' operand expected"); 5119 return MatchOperand_ParseFail; 5120 } 5121 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5122 getContext()), 5123 S, Tok.getEndLoc())); 5124 return MatchOperand_Success; 5125 } 5126 5127 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5128 /// instructions. Legal values are: 5129 /// lsl #n 'n' in [0,31] 5130 /// asr #n 'n' in [1,32] 5131 /// n == 32 encoded as n == 0. 5132 OperandMatchResultTy 5133 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5134 MCAsmParser &Parser = getParser(); 5135 const AsmToken &Tok = Parser.getTok(); 5136 SMLoc S = Tok.getLoc(); 5137 if (Tok.isNot(AsmToken::Identifier)) { 5138 Error(S, "shift operator 'asr' or 'lsl' expected"); 5139 return MatchOperand_ParseFail; 5140 } 5141 StringRef ShiftName = Tok.getString(); 5142 bool isASR; 5143 if (ShiftName == "lsl" || ShiftName == "LSL") 5144 isASR = false; 5145 else if (ShiftName == "asr" || ShiftName == "ASR") 5146 isASR = true; 5147 else { 5148 Error(S, "shift operator 'asr' or 'lsl' expected"); 5149 return MatchOperand_ParseFail; 5150 } 5151 Parser.Lex(); // Eat the operator. 5152 5153 // A '#' and a shift amount. 5154 if (Parser.getTok().isNot(AsmToken::Hash) && 5155 Parser.getTok().isNot(AsmToken::Dollar)) { 5156 Error(Parser.getTok().getLoc(), "'#' expected"); 5157 return MatchOperand_ParseFail; 5158 } 5159 Parser.Lex(); // Eat hash token. 5160 SMLoc ExLoc = Parser.getTok().getLoc(); 5161 5162 const MCExpr *ShiftAmount; 5163 SMLoc EndLoc; 5164 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5165 Error(ExLoc, "malformed shift expression"); 5166 return MatchOperand_ParseFail; 5167 } 5168 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5169 if (!CE) { 5170 Error(ExLoc, "shift amount must be an immediate"); 5171 return MatchOperand_ParseFail; 5172 } 5173 5174 int64_t Val = CE->getValue(); 5175 if (isASR) { 5176 // Shift amount must be in [1,32] 5177 if (Val < 1 || Val > 32) { 5178 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5179 return MatchOperand_ParseFail; 5180 } 5181 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5182 if (isThumb() && Val == 32) { 5183 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5184 return MatchOperand_ParseFail; 5185 } 5186 if (Val == 32) Val = 0; 5187 } else { 5188 // Shift amount must be in [1,32] 5189 if (Val < 0 || Val > 31) { 5190 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5191 return MatchOperand_ParseFail; 5192 } 5193 } 5194 5195 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5196 5197 return MatchOperand_Success; 5198 } 5199 5200 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5201 /// of instructions. Legal values are: 5202 /// ror #n 'n' in {0, 8, 16, 24} 5203 OperandMatchResultTy 5204 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5205 MCAsmParser &Parser = getParser(); 5206 const AsmToken &Tok = Parser.getTok(); 5207 SMLoc S = Tok.getLoc(); 5208 if (Tok.isNot(AsmToken::Identifier)) 5209 return MatchOperand_NoMatch; 5210 StringRef ShiftName = Tok.getString(); 5211 if (ShiftName != "ror" && ShiftName != "ROR") 5212 return MatchOperand_NoMatch; 5213 Parser.Lex(); // Eat the operator. 5214 5215 // A '#' and a rotate amount. 5216 if (Parser.getTok().isNot(AsmToken::Hash) && 5217 Parser.getTok().isNot(AsmToken::Dollar)) { 5218 Error(Parser.getTok().getLoc(), "'#' expected"); 5219 return MatchOperand_ParseFail; 5220 } 5221 Parser.Lex(); // Eat hash token. 5222 SMLoc ExLoc = Parser.getTok().getLoc(); 5223 5224 const MCExpr *ShiftAmount; 5225 SMLoc EndLoc; 5226 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5227 Error(ExLoc, "malformed rotate expression"); 5228 return MatchOperand_ParseFail; 5229 } 5230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5231 if (!CE) { 5232 Error(ExLoc, "rotate amount must be an immediate"); 5233 return MatchOperand_ParseFail; 5234 } 5235 5236 int64_t Val = CE->getValue(); 5237 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5238 // normally, zero is represented in asm by omitting the rotate operand 5239 // entirely. 5240 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5241 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5242 return MatchOperand_ParseFail; 5243 } 5244 5245 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5246 5247 return MatchOperand_Success; 5248 } 5249 5250 OperandMatchResultTy 5251 ARMAsmParser::parseModImm(OperandVector &Operands) { 5252 MCAsmParser &Parser = getParser(); 5253 MCAsmLexer &Lexer = getLexer(); 5254 int64_t Imm1, Imm2; 5255 5256 SMLoc S = Parser.getTok().getLoc(); 5257 5258 // 1) A mod_imm operand can appear in the place of a register name: 5259 // add r0, #mod_imm 5260 // add r0, r0, #mod_imm 5261 // to correctly handle the latter, we bail out as soon as we see an 5262 // identifier. 5263 // 5264 // 2) Similarly, we do not want to parse into complex operands: 5265 // mov r0, #mod_imm 5266 // mov r0, :lower16:(_foo) 5267 if (Parser.getTok().is(AsmToken::Identifier) || 5268 Parser.getTok().is(AsmToken::Colon)) 5269 return MatchOperand_NoMatch; 5270 5271 // Hash (dollar) is optional as per the ARMARM 5272 if (Parser.getTok().is(AsmToken::Hash) || 5273 Parser.getTok().is(AsmToken::Dollar)) { 5274 // Avoid parsing into complex operands (#:) 5275 if (Lexer.peekTok().is(AsmToken::Colon)) 5276 return MatchOperand_NoMatch; 5277 5278 // Eat the hash (dollar) 5279 Parser.Lex(); 5280 } 5281 5282 SMLoc Sx1, Ex1; 5283 Sx1 = Parser.getTok().getLoc(); 5284 const MCExpr *Imm1Exp; 5285 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5286 Error(Sx1, "malformed expression"); 5287 return MatchOperand_ParseFail; 5288 } 5289 5290 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5291 5292 if (CE) { 5293 // Immediate must fit within 32-bits 5294 Imm1 = CE->getValue(); 5295 int Enc = ARM_AM::getSOImmVal(Imm1); 5296 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5297 // We have a match! 5298 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5299 (Enc & 0xF00) >> 7, 5300 Sx1, Ex1)); 5301 return MatchOperand_Success; 5302 } 5303 5304 // We have parsed an immediate which is not for us, fallback to a plain 5305 // immediate. This can happen for instruction aliases. For an example, 5306 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5307 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5308 // instruction with a mod_imm operand. The alias is defined such that the 5309 // parser method is shared, that's why we have to do this here. 5310 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5311 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5312 return MatchOperand_Success; 5313 } 5314 } else { 5315 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5316 // MCFixup). Fallback to a plain immediate. 5317 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5318 return MatchOperand_Success; 5319 } 5320 5321 // From this point onward, we expect the input to be a (#bits, #rot) pair 5322 if (Parser.getTok().isNot(AsmToken::Comma)) { 5323 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5324 return MatchOperand_ParseFail; 5325 } 5326 5327 if (Imm1 & ~0xFF) { 5328 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5329 return MatchOperand_ParseFail; 5330 } 5331 5332 // Eat the comma 5333 Parser.Lex(); 5334 5335 // Repeat for #rot 5336 SMLoc Sx2, Ex2; 5337 Sx2 = Parser.getTok().getLoc(); 5338 5339 // Eat the optional hash (dollar) 5340 if (Parser.getTok().is(AsmToken::Hash) || 5341 Parser.getTok().is(AsmToken::Dollar)) 5342 Parser.Lex(); 5343 5344 const MCExpr *Imm2Exp; 5345 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5346 Error(Sx2, "malformed expression"); 5347 return MatchOperand_ParseFail; 5348 } 5349 5350 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5351 5352 if (CE) { 5353 Imm2 = CE->getValue(); 5354 if (!(Imm2 & ~0x1E)) { 5355 // We have a match! 5356 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5357 return MatchOperand_Success; 5358 } 5359 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5360 return MatchOperand_ParseFail; 5361 } else { 5362 Error(Sx2, "constant expression expected"); 5363 return MatchOperand_ParseFail; 5364 } 5365 } 5366 5367 OperandMatchResultTy 5368 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5369 MCAsmParser &Parser = getParser(); 5370 SMLoc S = Parser.getTok().getLoc(); 5371 // The bitfield descriptor is really two operands, the LSB and the width. 5372 if (Parser.getTok().isNot(AsmToken::Hash) && 5373 Parser.getTok().isNot(AsmToken::Dollar)) { 5374 Error(Parser.getTok().getLoc(), "'#' expected"); 5375 return MatchOperand_ParseFail; 5376 } 5377 Parser.Lex(); // Eat hash token. 5378 5379 const MCExpr *LSBExpr; 5380 SMLoc E = Parser.getTok().getLoc(); 5381 if (getParser().parseExpression(LSBExpr)) { 5382 Error(E, "malformed immediate expression"); 5383 return MatchOperand_ParseFail; 5384 } 5385 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5386 if (!CE) { 5387 Error(E, "'lsb' operand must be an immediate"); 5388 return MatchOperand_ParseFail; 5389 } 5390 5391 int64_t LSB = CE->getValue(); 5392 // The LSB must be in the range [0,31] 5393 if (LSB < 0 || LSB > 31) { 5394 Error(E, "'lsb' operand must be in the range [0,31]"); 5395 return MatchOperand_ParseFail; 5396 } 5397 E = Parser.getTok().getLoc(); 5398 5399 // Expect another immediate operand. 5400 if (Parser.getTok().isNot(AsmToken::Comma)) { 5401 Error(Parser.getTok().getLoc(), "too few operands"); 5402 return MatchOperand_ParseFail; 5403 } 5404 Parser.Lex(); // Eat hash token. 5405 if (Parser.getTok().isNot(AsmToken::Hash) && 5406 Parser.getTok().isNot(AsmToken::Dollar)) { 5407 Error(Parser.getTok().getLoc(), "'#' expected"); 5408 return MatchOperand_ParseFail; 5409 } 5410 Parser.Lex(); // Eat hash token. 5411 5412 const MCExpr *WidthExpr; 5413 SMLoc EndLoc; 5414 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5415 Error(E, "malformed immediate expression"); 5416 return MatchOperand_ParseFail; 5417 } 5418 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5419 if (!CE) { 5420 Error(E, "'width' operand must be an immediate"); 5421 return MatchOperand_ParseFail; 5422 } 5423 5424 int64_t Width = CE->getValue(); 5425 // The LSB must be in the range [1,32-lsb] 5426 if (Width < 1 || Width > 32 - LSB) { 5427 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5428 return MatchOperand_ParseFail; 5429 } 5430 5431 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5432 5433 return MatchOperand_Success; 5434 } 5435 5436 OperandMatchResultTy 5437 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5438 // Check for a post-index addressing register operand. Specifically: 5439 // postidx_reg := '+' register {, shift} 5440 // | '-' register {, shift} 5441 // | register {, shift} 5442 5443 // This method must return MatchOperand_NoMatch without consuming any tokens 5444 // in the case where there is no match, as other alternatives take other 5445 // parse methods. 5446 MCAsmParser &Parser = getParser(); 5447 AsmToken Tok = Parser.getTok(); 5448 SMLoc S = Tok.getLoc(); 5449 bool haveEaten = false; 5450 bool isAdd = true; 5451 if (Tok.is(AsmToken::Plus)) { 5452 Parser.Lex(); // Eat the '+' token. 5453 haveEaten = true; 5454 } else if (Tok.is(AsmToken::Minus)) { 5455 Parser.Lex(); // Eat the '-' token. 5456 isAdd = false; 5457 haveEaten = true; 5458 } 5459 5460 SMLoc E = Parser.getTok().getEndLoc(); 5461 int Reg = tryParseRegister(); 5462 if (Reg == -1) { 5463 if (!haveEaten) 5464 return MatchOperand_NoMatch; 5465 Error(Parser.getTok().getLoc(), "register expected"); 5466 return MatchOperand_ParseFail; 5467 } 5468 5469 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5470 unsigned ShiftImm = 0; 5471 if (Parser.getTok().is(AsmToken::Comma)) { 5472 Parser.Lex(); // Eat the ','. 5473 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5474 return MatchOperand_ParseFail; 5475 5476 // FIXME: Only approximates end...may include intervening whitespace. 5477 E = Parser.getTok().getLoc(); 5478 } 5479 5480 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5481 ShiftImm, S, E)); 5482 5483 return MatchOperand_Success; 5484 } 5485 5486 OperandMatchResultTy 5487 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5488 // Check for a post-index addressing register operand. Specifically: 5489 // am3offset := '+' register 5490 // | '-' register 5491 // | register 5492 // | # imm 5493 // | # + imm 5494 // | # - imm 5495 5496 // This method must return MatchOperand_NoMatch without consuming any tokens 5497 // in the case where there is no match, as other alternatives take other 5498 // parse methods. 5499 MCAsmParser &Parser = getParser(); 5500 AsmToken Tok = Parser.getTok(); 5501 SMLoc S = Tok.getLoc(); 5502 5503 // Do immediates first, as we always parse those if we have a '#'. 5504 if (Parser.getTok().is(AsmToken::Hash) || 5505 Parser.getTok().is(AsmToken::Dollar)) { 5506 Parser.Lex(); // Eat '#' or '$'. 5507 // Explicitly look for a '-', as we need to encode negative zero 5508 // differently. 5509 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5510 const MCExpr *Offset; 5511 SMLoc E; 5512 if (getParser().parseExpression(Offset, E)) 5513 return MatchOperand_ParseFail; 5514 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5515 if (!CE) { 5516 Error(S, "constant expression expected"); 5517 return MatchOperand_ParseFail; 5518 } 5519 // Negative zero is encoded as the flag value 5520 // std::numeric_limits<int32_t>::min(). 5521 int32_t Val = CE->getValue(); 5522 if (isNegative && Val == 0) 5523 Val = std::numeric_limits<int32_t>::min(); 5524 5525 Operands.push_back( 5526 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5527 5528 return MatchOperand_Success; 5529 } 5530 5531 bool haveEaten = false; 5532 bool isAdd = true; 5533 if (Tok.is(AsmToken::Plus)) { 5534 Parser.Lex(); // Eat the '+' token. 5535 haveEaten = true; 5536 } else if (Tok.is(AsmToken::Minus)) { 5537 Parser.Lex(); // Eat the '-' token. 5538 isAdd = false; 5539 haveEaten = true; 5540 } 5541 5542 Tok = Parser.getTok(); 5543 int Reg = tryParseRegister(); 5544 if (Reg == -1) { 5545 if (!haveEaten) 5546 return MatchOperand_NoMatch; 5547 Error(Tok.getLoc(), "register expected"); 5548 return MatchOperand_ParseFail; 5549 } 5550 5551 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5552 0, S, Tok.getEndLoc())); 5553 5554 return MatchOperand_Success; 5555 } 5556 5557 /// Convert parsed operands to MCInst. Needed here because this instruction 5558 /// only has two register operands, but multiplication is commutative so 5559 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5560 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5561 const OperandVector &Operands) { 5562 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5563 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5564 // If we have a three-operand form, make sure to set Rn to be the operand 5565 // that isn't the same as Rd. 5566 unsigned RegOp = 4; 5567 if (Operands.size() == 6 && 5568 ((ARMOperand &)*Operands[4]).getReg() == 5569 ((ARMOperand &)*Operands[3]).getReg()) 5570 RegOp = 5; 5571 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5572 Inst.addOperand(Inst.getOperand(0)); 5573 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5574 } 5575 5576 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5577 const OperandVector &Operands) { 5578 int CondOp = -1, ImmOp = -1; 5579 switch(Inst.getOpcode()) { 5580 case ARM::tB: 5581 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5582 5583 case ARM::t2B: 5584 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5585 5586 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5587 } 5588 // first decide whether or not the branch should be conditional 5589 // by looking at it's location relative to an IT block 5590 if(inITBlock()) { 5591 // inside an IT block we cannot have any conditional branches. any 5592 // such instructions needs to be converted to unconditional form 5593 switch(Inst.getOpcode()) { 5594 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5595 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5596 } 5597 } else { 5598 // outside IT blocks we can only have unconditional branches with AL 5599 // condition code or conditional branches with non-AL condition code 5600 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5601 switch(Inst.getOpcode()) { 5602 case ARM::tB: 5603 case ARM::tBcc: 5604 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5605 break; 5606 case ARM::t2B: 5607 case ARM::t2Bcc: 5608 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5609 break; 5610 } 5611 } 5612 5613 // now decide on encoding size based on branch target range 5614 switch(Inst.getOpcode()) { 5615 // classify tB as either t2B or t1B based on range of immediate operand 5616 case ARM::tB: { 5617 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5618 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5619 Inst.setOpcode(ARM::t2B); 5620 break; 5621 } 5622 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5623 case ARM::tBcc: { 5624 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5625 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5626 Inst.setOpcode(ARM::t2Bcc); 5627 break; 5628 } 5629 } 5630 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5631 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5632 } 5633 5634 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5635 MCInst &Inst, const OperandVector &Operands) { 5636 5637 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5638 assert(Operands.size() == 8); 5639 5640 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5641 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5642 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5643 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5644 // skip second copy of Qd in Operands[6] 5645 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5646 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5647 } 5648 5649 /// Parse an ARM memory expression, return false if successful else return true 5650 /// or an error. The first token must be a '[' when called. 5651 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5652 MCAsmParser &Parser = getParser(); 5653 SMLoc S, E; 5654 if (Parser.getTok().isNot(AsmToken::LBrac)) 5655 return TokError("Token is not a Left Bracket"); 5656 S = Parser.getTok().getLoc(); 5657 Parser.Lex(); // Eat left bracket token. 5658 5659 const AsmToken &BaseRegTok = Parser.getTok(); 5660 int BaseRegNum = tryParseRegister(); 5661 if (BaseRegNum == -1) 5662 return Error(BaseRegTok.getLoc(), "register expected"); 5663 5664 // The next token must either be a comma, a colon or a closing bracket. 5665 const AsmToken &Tok = Parser.getTok(); 5666 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5667 !Tok.is(AsmToken::RBrac)) 5668 return Error(Tok.getLoc(), "malformed memory operand"); 5669 5670 if (Tok.is(AsmToken::RBrac)) { 5671 E = Tok.getEndLoc(); 5672 Parser.Lex(); // Eat right bracket token. 5673 5674 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5675 ARM_AM::no_shift, 0, 0, false, 5676 S, E)); 5677 5678 // If there's a pre-indexing writeback marker, '!', just add it as a token 5679 // operand. It's rather odd, but syntactically valid. 5680 if (Parser.getTok().is(AsmToken::Exclaim)) { 5681 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5682 Parser.Lex(); // Eat the '!'. 5683 } 5684 5685 return false; 5686 } 5687 5688 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5689 "Lost colon or comma in memory operand?!"); 5690 if (Tok.is(AsmToken::Comma)) { 5691 Parser.Lex(); // Eat the comma. 5692 } 5693 5694 // If we have a ':', it's an alignment specifier. 5695 if (Parser.getTok().is(AsmToken::Colon)) { 5696 Parser.Lex(); // Eat the ':'. 5697 E = Parser.getTok().getLoc(); 5698 SMLoc AlignmentLoc = Tok.getLoc(); 5699 5700 const MCExpr *Expr; 5701 if (getParser().parseExpression(Expr)) 5702 return true; 5703 5704 // The expression has to be a constant. Memory references with relocations 5705 // don't come through here, as they use the <label> forms of the relevant 5706 // instructions. 5707 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5708 if (!CE) 5709 return Error (E, "constant expression expected"); 5710 5711 unsigned Align = 0; 5712 switch (CE->getValue()) { 5713 default: 5714 return Error(E, 5715 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5716 case 16: Align = 2; break; 5717 case 32: Align = 4; break; 5718 case 64: Align = 8; break; 5719 case 128: Align = 16; break; 5720 case 256: Align = 32; break; 5721 } 5722 5723 // Now we should have the closing ']' 5724 if (Parser.getTok().isNot(AsmToken::RBrac)) 5725 return Error(Parser.getTok().getLoc(), "']' expected"); 5726 E = Parser.getTok().getEndLoc(); 5727 Parser.Lex(); // Eat right bracket token. 5728 5729 // Don't worry about range checking the value here. That's handled by 5730 // the is*() predicates. 5731 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5732 ARM_AM::no_shift, 0, Align, 5733 false, S, E, AlignmentLoc)); 5734 5735 // If there's a pre-indexing writeback marker, '!', just add it as a token 5736 // operand. 5737 if (Parser.getTok().is(AsmToken::Exclaim)) { 5738 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5739 Parser.Lex(); // Eat the '!'. 5740 } 5741 5742 return false; 5743 } 5744 5745 // If we have a '#', it's an immediate offset, else assume it's a register 5746 // offset. Be friendly and also accept a plain integer (without a leading 5747 // hash) for gas compatibility. 5748 if (Parser.getTok().is(AsmToken::Hash) || 5749 Parser.getTok().is(AsmToken::Dollar) || 5750 Parser.getTok().is(AsmToken::Integer)) { 5751 if (Parser.getTok().isNot(AsmToken::Integer)) 5752 Parser.Lex(); // Eat '#' or '$'. 5753 E = Parser.getTok().getLoc(); 5754 5755 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5756 const MCExpr *Offset; 5757 if (getParser().parseExpression(Offset)) 5758 return true; 5759 5760 // The expression has to be a constant. Memory references with relocations 5761 // don't come through here, as they use the <label> forms of the relevant 5762 // instructions. 5763 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5764 if (!CE) 5765 return Error (E, "constant expression expected"); 5766 5767 // If the constant was #-0, represent it as 5768 // std::numeric_limits<int32_t>::min(). 5769 int32_t Val = CE->getValue(); 5770 if (isNegative && Val == 0) 5771 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5772 getContext()); 5773 5774 // Now we should have the closing ']' 5775 if (Parser.getTok().isNot(AsmToken::RBrac)) 5776 return Error(Parser.getTok().getLoc(), "']' expected"); 5777 E = Parser.getTok().getEndLoc(); 5778 Parser.Lex(); // Eat right bracket token. 5779 5780 // Don't worry about range checking the value here. That's handled by 5781 // the is*() predicates. 5782 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5783 ARM_AM::no_shift, 0, 0, 5784 false, S, E)); 5785 5786 // If there's a pre-indexing writeback marker, '!', just add it as a token 5787 // operand. 5788 if (Parser.getTok().is(AsmToken::Exclaim)) { 5789 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5790 Parser.Lex(); // Eat the '!'. 5791 } 5792 5793 return false; 5794 } 5795 5796 // The register offset is optionally preceded by a '+' or '-' 5797 bool isNegative = false; 5798 if (Parser.getTok().is(AsmToken::Minus)) { 5799 isNegative = true; 5800 Parser.Lex(); // Eat the '-'. 5801 } else if (Parser.getTok().is(AsmToken::Plus)) { 5802 // Nothing to do. 5803 Parser.Lex(); // Eat the '+'. 5804 } 5805 5806 E = Parser.getTok().getLoc(); 5807 int OffsetRegNum = tryParseRegister(); 5808 if (OffsetRegNum == -1) 5809 return Error(E, "register expected"); 5810 5811 // If there's a shift operator, handle it. 5812 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5813 unsigned ShiftImm = 0; 5814 if (Parser.getTok().is(AsmToken::Comma)) { 5815 Parser.Lex(); // Eat the ','. 5816 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5817 return true; 5818 } 5819 5820 // Now we should have the closing ']' 5821 if (Parser.getTok().isNot(AsmToken::RBrac)) 5822 return Error(Parser.getTok().getLoc(), "']' expected"); 5823 E = Parser.getTok().getEndLoc(); 5824 Parser.Lex(); // Eat right bracket token. 5825 5826 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5827 ShiftType, ShiftImm, 0, isNegative, 5828 S, E)); 5829 5830 // If there's a pre-indexing writeback marker, '!', just add it as a token 5831 // operand. 5832 if (Parser.getTok().is(AsmToken::Exclaim)) { 5833 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5834 Parser.Lex(); // Eat the '!'. 5835 } 5836 5837 return false; 5838 } 5839 5840 /// parseMemRegOffsetShift - one of these two: 5841 /// ( lsl | lsr | asr | ror ) , # shift_amount 5842 /// rrx 5843 /// return true if it parses a shift otherwise it returns false. 5844 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5845 unsigned &Amount) { 5846 MCAsmParser &Parser = getParser(); 5847 SMLoc Loc = Parser.getTok().getLoc(); 5848 const AsmToken &Tok = Parser.getTok(); 5849 if (Tok.isNot(AsmToken::Identifier)) 5850 return Error(Loc, "illegal shift operator"); 5851 StringRef ShiftName = Tok.getString(); 5852 if (ShiftName == "lsl" || ShiftName == "LSL" || 5853 ShiftName == "asl" || ShiftName == "ASL") 5854 St = ARM_AM::lsl; 5855 else if (ShiftName == "lsr" || ShiftName == "LSR") 5856 St = ARM_AM::lsr; 5857 else if (ShiftName == "asr" || ShiftName == "ASR") 5858 St = ARM_AM::asr; 5859 else if (ShiftName == "ror" || ShiftName == "ROR") 5860 St = ARM_AM::ror; 5861 else if (ShiftName == "rrx" || ShiftName == "RRX") 5862 St = ARM_AM::rrx; 5863 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 5864 St = ARM_AM::uxtw; 5865 else 5866 return Error(Loc, "illegal shift operator"); 5867 Parser.Lex(); // Eat shift type token. 5868 5869 // rrx stands alone. 5870 Amount = 0; 5871 if (St != ARM_AM::rrx) { 5872 Loc = Parser.getTok().getLoc(); 5873 // A '#' and a shift amount. 5874 const AsmToken &HashTok = Parser.getTok(); 5875 if (HashTok.isNot(AsmToken::Hash) && 5876 HashTok.isNot(AsmToken::Dollar)) 5877 return Error(HashTok.getLoc(), "'#' expected"); 5878 Parser.Lex(); // Eat hash token. 5879 5880 const MCExpr *Expr; 5881 if (getParser().parseExpression(Expr)) 5882 return true; 5883 // Range check the immediate. 5884 // lsl, ror: 0 <= imm <= 31 5885 // lsr, asr: 0 <= imm <= 32 5886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5887 if (!CE) 5888 return Error(Loc, "shift amount must be an immediate"); 5889 int64_t Imm = CE->getValue(); 5890 if (Imm < 0 || 5891 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5892 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5893 return Error(Loc, "immediate shift value out of range"); 5894 // If <ShiftTy> #0, turn it into a no_shift. 5895 if (Imm == 0) 5896 St = ARM_AM::lsl; 5897 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5898 if (Imm == 32) 5899 Imm = 0; 5900 Amount = Imm; 5901 } 5902 5903 return false; 5904 } 5905 5906 /// parseFPImm - A floating point immediate expression operand. 5907 OperandMatchResultTy 5908 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5909 MCAsmParser &Parser = getParser(); 5910 // Anything that can accept a floating point constant as an operand 5911 // needs to go through here, as the regular parseExpression is 5912 // integer only. 5913 // 5914 // This routine still creates a generic Immediate operand, containing 5915 // a bitcast of the 64-bit floating point value. The various operands 5916 // that accept floats can check whether the value is valid for them 5917 // via the standard is*() predicates. 5918 5919 SMLoc S = Parser.getTok().getLoc(); 5920 5921 if (Parser.getTok().isNot(AsmToken::Hash) && 5922 Parser.getTok().isNot(AsmToken::Dollar)) 5923 return MatchOperand_NoMatch; 5924 5925 // Disambiguate the VMOV forms that can accept an FP immediate. 5926 // vmov.f32 <sreg>, #imm 5927 // vmov.f64 <dreg>, #imm 5928 // vmov.f32 <dreg>, #imm @ vector f32x2 5929 // vmov.f32 <qreg>, #imm @ vector f32x4 5930 // 5931 // There are also the NEON VMOV instructions which expect an 5932 // integer constant. Make sure we don't try to parse an FPImm 5933 // for these: 5934 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5935 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5936 bool isVmovf = TyOp.isToken() && 5937 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5938 TyOp.getToken() == ".f16"); 5939 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5940 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5941 Mnemonic.getToken() == "fconsts"); 5942 if (!(isVmovf || isFconst)) 5943 return MatchOperand_NoMatch; 5944 5945 Parser.Lex(); // Eat '#' or '$'. 5946 5947 // Handle negation, as that still comes through as a separate token. 5948 bool isNegative = false; 5949 if (Parser.getTok().is(AsmToken::Minus)) { 5950 isNegative = true; 5951 Parser.Lex(); 5952 } 5953 const AsmToken &Tok = Parser.getTok(); 5954 SMLoc Loc = Tok.getLoc(); 5955 if (Tok.is(AsmToken::Real) && isVmovf) { 5956 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5957 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5958 // If we had a '-' in front, toggle the sign bit. 5959 IntVal ^= (uint64_t)isNegative << 31; 5960 Parser.Lex(); // Eat the token. 5961 Operands.push_back(ARMOperand::CreateImm( 5962 MCConstantExpr::create(IntVal, getContext()), 5963 S, Parser.getTok().getLoc())); 5964 return MatchOperand_Success; 5965 } 5966 // Also handle plain integers. Instructions which allow floating point 5967 // immediates also allow a raw encoded 8-bit value. 5968 if (Tok.is(AsmToken::Integer) && isFconst) { 5969 int64_t Val = Tok.getIntVal(); 5970 Parser.Lex(); // Eat the token. 5971 if (Val > 255 || Val < 0) { 5972 Error(Loc, "encoded floating point value out of range"); 5973 return MatchOperand_ParseFail; 5974 } 5975 float RealVal = ARM_AM::getFPImmFloat(Val); 5976 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5977 5978 Operands.push_back(ARMOperand::CreateImm( 5979 MCConstantExpr::create(Val, getContext()), S, 5980 Parser.getTok().getLoc())); 5981 return MatchOperand_Success; 5982 } 5983 5984 Error(Loc, "invalid floating point immediate"); 5985 return MatchOperand_ParseFail; 5986 } 5987 5988 /// Parse a arm instruction operand. For now this parses the operand regardless 5989 /// of the mnemonic. 5990 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5991 MCAsmParser &Parser = getParser(); 5992 SMLoc S, E; 5993 5994 // Check if the current operand has a custom associated parser, if so, try to 5995 // custom parse the operand, or fallback to the general approach. 5996 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5997 if (ResTy == MatchOperand_Success) 5998 return false; 5999 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6000 // there was a match, but an error occurred, in which case, just return that 6001 // the operand parsing failed. 6002 if (ResTy == MatchOperand_ParseFail) 6003 return true; 6004 6005 switch (getLexer().getKind()) { 6006 default: 6007 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6008 return true; 6009 case AsmToken::Identifier: { 6010 // If we've seen a branch mnemonic, the next operand must be a label. This 6011 // is true even if the label is a register name. So "br r1" means branch to 6012 // label "r1". 6013 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6014 if (!ExpectLabel) { 6015 if (!tryParseRegisterWithWriteBack(Operands)) 6016 return false; 6017 int Res = tryParseShiftRegister(Operands); 6018 if (Res == 0) // success 6019 return false; 6020 else if (Res == -1) // irrecoverable error 6021 return true; 6022 // If this is VMRS, check for the apsr_nzcv operand. 6023 if (Mnemonic == "vmrs" && 6024 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 6025 S = Parser.getTok().getLoc(); 6026 Parser.Lex(); 6027 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6028 return false; 6029 } 6030 } 6031 6032 // Fall though for the Identifier case that is not a register or a 6033 // special name. 6034 LLVM_FALLTHROUGH; 6035 } 6036 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6037 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6038 case AsmToken::String: // quoted label names. 6039 case AsmToken::Dot: { // . as a branch target 6040 // This was not a register so parse other operands that start with an 6041 // identifier (like labels) as expressions and create them as immediates. 6042 const MCExpr *IdVal; 6043 S = Parser.getTok().getLoc(); 6044 if (getParser().parseExpression(IdVal)) 6045 return true; 6046 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6047 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6048 return false; 6049 } 6050 case AsmToken::LBrac: 6051 return parseMemory(Operands); 6052 case AsmToken::LCurly: 6053 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6054 case AsmToken::Dollar: 6055 case AsmToken::Hash: 6056 // #42 -> immediate. 6057 S = Parser.getTok().getLoc(); 6058 Parser.Lex(); 6059 6060 if (Parser.getTok().isNot(AsmToken::Colon)) { 6061 bool isNegative = Parser.getTok().is(AsmToken::Minus); 6062 const MCExpr *ImmVal; 6063 if (getParser().parseExpression(ImmVal)) 6064 return true; 6065 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6066 if (CE) { 6067 int32_t Val = CE->getValue(); 6068 if (isNegative && Val == 0) 6069 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6070 getContext()); 6071 } 6072 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6073 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6074 6075 // There can be a trailing '!' on operands that we want as a separate 6076 // '!' Token operand. Handle that here. For example, the compatibility 6077 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6078 if (Parser.getTok().is(AsmToken::Exclaim)) { 6079 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6080 Parser.getTok().getLoc())); 6081 Parser.Lex(); // Eat exclaim token 6082 } 6083 return false; 6084 } 6085 // w/ a ':' after the '#', it's just like a plain ':'. 6086 LLVM_FALLTHROUGH; 6087 6088 case AsmToken::Colon: { 6089 S = Parser.getTok().getLoc(); 6090 // ":lower16:" and ":upper16:" expression prefixes 6091 // FIXME: Check it's an expression prefix, 6092 // e.g. (FOO - :lower16:BAR) isn't legal. 6093 ARMMCExpr::VariantKind RefKind; 6094 if (parsePrefix(RefKind)) 6095 return true; 6096 6097 const MCExpr *SubExprVal; 6098 if (getParser().parseExpression(SubExprVal)) 6099 return true; 6100 6101 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6102 getContext()); 6103 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6104 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6105 return false; 6106 } 6107 case AsmToken::Equal: { 6108 S = Parser.getTok().getLoc(); 6109 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6110 return Error(S, "unexpected token in operand"); 6111 Parser.Lex(); // Eat '=' 6112 const MCExpr *SubExprVal; 6113 if (getParser().parseExpression(SubExprVal)) 6114 return true; 6115 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6116 6117 // execute-only: we assume that assembly programmers know what they are 6118 // doing and allow literal pool creation here 6119 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6120 return false; 6121 } 6122 } 6123 } 6124 6125 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6126 // :lower16: and :upper16:. 6127 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6128 MCAsmParser &Parser = getParser(); 6129 RefKind = ARMMCExpr::VK_ARM_None; 6130 6131 // consume an optional '#' (GNU compatibility) 6132 if (getLexer().is(AsmToken::Hash)) 6133 Parser.Lex(); 6134 6135 // :lower16: and :upper16: modifiers 6136 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6137 Parser.Lex(); // Eat ':' 6138 6139 if (getLexer().isNot(AsmToken::Identifier)) { 6140 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6141 return true; 6142 } 6143 6144 enum { 6145 COFF = (1 << MCObjectFileInfo::IsCOFF), 6146 ELF = (1 << MCObjectFileInfo::IsELF), 6147 MACHO = (1 << MCObjectFileInfo::IsMachO), 6148 WASM = (1 << MCObjectFileInfo::IsWasm), 6149 }; 6150 static const struct PrefixEntry { 6151 const char *Spelling; 6152 ARMMCExpr::VariantKind VariantKind; 6153 uint8_t SupportedFormats; 6154 } PrefixEntries[] = { 6155 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6156 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6157 }; 6158 6159 StringRef IDVal = Parser.getTok().getIdentifier(); 6160 6161 const auto &Prefix = 6162 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 6163 [&IDVal](const PrefixEntry &PE) { 6164 return PE.Spelling == IDVal; 6165 }); 6166 if (Prefix == std::end(PrefixEntries)) { 6167 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6168 return true; 6169 } 6170 6171 uint8_t CurrentFormat; 6172 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 6173 case MCObjectFileInfo::IsMachO: 6174 CurrentFormat = MACHO; 6175 break; 6176 case MCObjectFileInfo::IsELF: 6177 CurrentFormat = ELF; 6178 break; 6179 case MCObjectFileInfo::IsCOFF: 6180 CurrentFormat = COFF; 6181 break; 6182 case MCObjectFileInfo::IsWasm: 6183 CurrentFormat = WASM; 6184 break; 6185 case MCObjectFileInfo::IsXCOFF: 6186 llvm_unreachable("unexpected object format"); 6187 break; 6188 } 6189 6190 if (~Prefix->SupportedFormats & CurrentFormat) { 6191 Error(Parser.getTok().getLoc(), 6192 "cannot represent relocation in the current file format"); 6193 return true; 6194 } 6195 6196 RefKind = Prefix->VariantKind; 6197 Parser.Lex(); 6198 6199 if (getLexer().isNot(AsmToken::Colon)) { 6200 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6201 return true; 6202 } 6203 Parser.Lex(); // Eat the last ':' 6204 6205 return false; 6206 } 6207 6208 /// Given a mnemonic, split out possible predication code and carry 6209 /// setting letters to form a canonical mnemonic and flags. 6210 // 6211 // FIXME: Would be nice to autogen this. 6212 // FIXME: This is a bit of a maze of special cases. 6213 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6214 StringRef ExtraToken, 6215 unsigned &PredicationCode, 6216 unsigned &VPTPredicationCode, 6217 bool &CarrySetting, 6218 unsigned &ProcessorIMod, 6219 StringRef &ITMask) { 6220 PredicationCode = ARMCC::AL; 6221 VPTPredicationCode = ARMVCC::None; 6222 CarrySetting = false; 6223 ProcessorIMod = 0; 6224 6225 // Ignore some mnemonics we know aren't predicated forms. 6226 // 6227 // FIXME: Would be nice to autogen this. 6228 if ((Mnemonic == "movs" && isThumb()) || 6229 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6230 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6231 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6232 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6233 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6234 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6235 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6236 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6237 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6238 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6239 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6240 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6241 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6242 Mnemonic == "bxns" || Mnemonic == "blxns" || 6243 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6244 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6245 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6246 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6247 Mnemonic == "csel" || Mnemonic == "csinc" || 6248 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6249 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6250 Mnemonic == "csetm") 6251 return Mnemonic; 6252 6253 // First, split out any predication code. Ignore mnemonics we know aren't 6254 // predicated but do have a carry-set and so weren't caught above. 6255 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6256 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6257 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6258 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6259 !(hasMVE() && 6260 (Mnemonic == "vmine" || 6261 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6262 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6263 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6264 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6265 Mnemonic == "vmule" || Mnemonic == "vmult" || 6266 Mnemonic == "vrintne" || 6267 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6268 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6269 Mnemonic.startswith("vq")))) { 6270 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6271 if (CC != ~0U) { 6272 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6273 PredicationCode = CC; 6274 } 6275 } 6276 6277 // Next, determine if we have a carry setting bit. We explicitly ignore all 6278 // the instructions we know end in 's'. 6279 if (Mnemonic.endswith("s") && 6280 !(Mnemonic == "cps" || Mnemonic == "mls" || 6281 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6282 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6283 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6284 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6285 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6286 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6287 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6288 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6289 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6290 Mnemonic == "vmlas" || 6291 (Mnemonic == "movs" && isThumb()))) { 6292 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6293 CarrySetting = true; 6294 } 6295 6296 // The "cps" instruction can have a interrupt mode operand which is glued into 6297 // the mnemonic. Check if this is the case, split it and parse the imod op 6298 if (Mnemonic.startswith("cps")) { 6299 // Split out any imod code. 6300 unsigned IMod = 6301 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6302 .Case("ie", ARM_PROC::IE) 6303 .Case("id", ARM_PROC::ID) 6304 .Default(~0U); 6305 if (IMod != ~0U) { 6306 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6307 ProcessorIMod = IMod; 6308 } 6309 } 6310 6311 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6312 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6313 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6314 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6315 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6316 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6317 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6318 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6319 if (CC != ~0U) { 6320 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6321 VPTPredicationCode = CC; 6322 } 6323 return Mnemonic; 6324 } 6325 6326 // The "it" instruction has the condition mask on the end of the mnemonic. 6327 if (Mnemonic.startswith("it")) { 6328 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6329 Mnemonic = Mnemonic.slice(0, 2); 6330 } 6331 6332 if (Mnemonic.startswith("vpst")) { 6333 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6334 Mnemonic = Mnemonic.slice(0, 4); 6335 } 6336 else if (Mnemonic.startswith("vpt")) { 6337 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6338 Mnemonic = Mnemonic.slice(0, 3); 6339 } 6340 6341 return Mnemonic; 6342 } 6343 6344 /// Given a canonical mnemonic, determine if the instruction ever allows 6345 /// inclusion of carry set or predication code operands. 6346 // 6347 // FIXME: It would be nice to autogen this. 6348 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6349 StringRef ExtraToken, 6350 StringRef FullInst, 6351 bool &CanAcceptCarrySet, 6352 bool &CanAcceptPredicationCode, 6353 bool &CanAcceptVPTPredicationCode) { 6354 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6355 6356 CanAcceptCarrySet = 6357 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6358 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6359 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6360 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6361 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6362 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6363 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6364 (!isThumb() && 6365 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6366 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6367 6368 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6369 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6370 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6371 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6372 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6373 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6374 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6375 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6376 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6377 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6378 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6379 Mnemonic == "vmovx" || Mnemonic == "vins" || 6380 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6381 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6382 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6383 Mnemonic == "sb" || Mnemonic == "ssbb" || 6384 Mnemonic == "pssbb" || 6385 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6386 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6387 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6388 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6389 Mnemonic == "cset" || Mnemonic == "csetm" || 6390 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6391 (hasMVE() && 6392 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6393 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6394 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6395 Mnemonic.startswith("letp")))) { 6396 // These mnemonics are never predicable 6397 CanAcceptPredicationCode = false; 6398 } else if (!isThumb()) { 6399 // Some instructions are only predicable in Thumb mode 6400 CanAcceptPredicationCode = 6401 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6402 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6403 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6404 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6405 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6406 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6407 Mnemonic != "tsb" && 6408 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6409 } else if (isThumbOne()) { 6410 if (hasV6MOps()) 6411 CanAcceptPredicationCode = Mnemonic != "movs"; 6412 else 6413 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6414 } else 6415 CanAcceptPredicationCode = true; 6416 } 6417 6418 // Some Thumb instructions have two operand forms that are not 6419 // available as three operand, convert to two operand form if possible. 6420 // 6421 // FIXME: We would really like to be able to tablegen'erate this. 6422 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6423 bool CarrySetting, 6424 OperandVector &Operands) { 6425 if (Operands.size() != 6) 6426 return; 6427 6428 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6429 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6430 if (!Op3.isReg() || !Op4.isReg()) 6431 return; 6432 6433 auto Op3Reg = Op3.getReg(); 6434 auto Op4Reg = Op4.getReg(); 6435 6436 // For most Thumb2 cases we just generate the 3 operand form and reduce 6437 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6438 // won't accept SP or PC so we do the transformation here taking care 6439 // with immediate range in the 'add sp, sp #imm' case. 6440 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6441 if (isThumbTwo()) { 6442 if (Mnemonic != "add") 6443 return; 6444 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6445 (Op5.isReg() && Op5.getReg() == ARM::PC); 6446 if (!TryTransform) { 6447 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6448 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6449 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6450 Op5.isImm() && !Op5.isImm0_508s4()); 6451 } 6452 if (!TryTransform) 6453 return; 6454 } else if (!isThumbOne()) 6455 return; 6456 6457 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6458 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6459 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6460 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6461 return; 6462 6463 // If first 2 operands of a 3 operand instruction are the same 6464 // then transform to 2 operand version of the same instruction 6465 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6466 bool Transform = Op3Reg == Op4Reg; 6467 6468 // For communtative operations, we might be able to transform if we swap 6469 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6470 // as tADDrsp. 6471 const ARMOperand *LastOp = &Op5; 6472 bool Swap = false; 6473 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6474 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6475 Mnemonic == "and" || Mnemonic == "eor" || 6476 Mnemonic == "adc" || Mnemonic == "orr")) { 6477 Swap = true; 6478 LastOp = &Op4; 6479 Transform = true; 6480 } 6481 6482 // If both registers are the same then remove one of them from 6483 // the operand list, with certain exceptions. 6484 if (Transform) { 6485 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6486 // 2 operand forms don't exist. 6487 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6488 LastOp->isReg()) 6489 Transform = false; 6490 6491 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6492 // 3-bits because the ARMARM says not to. 6493 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6494 Transform = false; 6495 } 6496 6497 if (Transform) { 6498 if (Swap) 6499 std::swap(Op4, Op5); 6500 Operands.erase(Operands.begin() + 3); 6501 } 6502 } 6503 6504 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6505 OperandVector &Operands) { 6506 // FIXME: This is all horribly hacky. We really need a better way to deal 6507 // with optional operands like this in the matcher table. 6508 6509 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6510 // another does not. Specifically, the MOVW instruction does not. So we 6511 // special case it here and remove the defaulted (non-setting) cc_out 6512 // operand if that's the instruction we're trying to match. 6513 // 6514 // We do this as post-processing of the explicit operands rather than just 6515 // conditionally adding the cc_out in the first place because we need 6516 // to check the type of the parsed immediate operand. 6517 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6518 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6519 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6520 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6521 return true; 6522 6523 // Register-register 'add' for thumb does not have a cc_out operand 6524 // when there are only two register operands. 6525 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6526 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6527 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6528 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6529 return true; 6530 // Register-register 'add' for thumb does not have a cc_out operand 6531 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6532 // have to check the immediate range here since Thumb2 has a variant 6533 // that can handle a different range and has a cc_out operand. 6534 if (((isThumb() && Mnemonic == "add") || 6535 (isThumbTwo() && Mnemonic == "sub")) && 6536 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6537 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6538 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6539 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6540 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6541 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6542 return true; 6543 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6544 // imm0_4095 variant. That's the least-preferred variant when 6545 // selecting via the generic "add" mnemonic, so to know that we 6546 // should remove the cc_out operand, we have to explicitly check that 6547 // it's not one of the other variants. Ugh. 6548 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6549 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6550 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6551 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6552 // Nest conditions rather than one big 'if' statement for readability. 6553 // 6554 // If both registers are low, we're in an IT block, and the immediate is 6555 // in range, we should use encoding T1 instead, which has a cc_out. 6556 if (inITBlock() && 6557 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6558 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6559 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6560 return false; 6561 // Check against T3. If the second register is the PC, this is an 6562 // alternate form of ADR, which uses encoding T4, so check for that too. 6563 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6564 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 6565 return false; 6566 6567 // Otherwise, we use encoding T4, which does not have a cc_out 6568 // operand. 6569 return true; 6570 } 6571 6572 // The thumb2 multiply instruction doesn't have a CCOut register, so 6573 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6574 // use the 16-bit encoding or not. 6575 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6576 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6577 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6578 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6579 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6580 // If the registers aren't low regs, the destination reg isn't the 6581 // same as one of the source regs, or the cc_out operand is zero 6582 // outside of an IT block, we have to use the 32-bit encoding, so 6583 // remove the cc_out operand. 6584 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6585 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6586 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6587 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6588 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6589 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6590 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6591 return true; 6592 6593 // Also check the 'mul' syntax variant that doesn't specify an explicit 6594 // destination register. 6595 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6596 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6597 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6598 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6599 // If the registers aren't low regs or the cc_out operand is zero 6600 // outside of an IT block, we have to use the 32-bit encoding, so 6601 // remove the cc_out operand. 6602 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6603 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6604 !inITBlock())) 6605 return true; 6606 6607 // Register-register 'add/sub' for thumb does not have a cc_out operand 6608 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6609 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6610 // right, this will result in better diagnostics (which operand is off) 6611 // anyway. 6612 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6613 (Operands.size() == 5 || Operands.size() == 6) && 6614 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6615 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6616 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6617 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6618 (Operands.size() == 6 && 6619 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 6620 return true; 6621 6622 return false; 6623 } 6624 6625 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6626 OperandVector &Operands) { 6627 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6628 unsigned RegIdx = 3; 6629 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6630 Mnemonic == "vrintr") && 6631 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6632 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6633 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6634 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6635 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6636 RegIdx = 4; 6637 6638 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6639 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6640 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6641 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6642 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6643 return true; 6644 } 6645 return false; 6646 } 6647 6648 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6649 OperandVector &Operands) { 6650 if (!hasMVE() || Operands.size() < 3) 6651 return true; 6652 6653 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6654 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6655 return true; 6656 6657 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6658 return false; 6659 6660 if (Mnemonic.startswith("vmov") && 6661 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6662 Mnemonic.startswith("vmovx"))) { 6663 for (auto &Operand : Operands) { 6664 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6665 ((*Operand).isReg() && 6666 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6667 (*Operand).getReg()) || 6668 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6669 (*Operand).getReg())))) { 6670 return true; 6671 } 6672 } 6673 return false; 6674 } else { 6675 for (auto &Operand : Operands) { 6676 // We check the larger class QPR instead of just the legal class 6677 // MQPR, to more accurately report errors when using Q registers 6678 // outside of the allowed range. 6679 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6680 (Operand->isReg() && 6681 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6682 Operand->getReg())))) 6683 return false; 6684 } 6685 return true; 6686 } 6687 } 6688 6689 static bool isDataTypeToken(StringRef Tok) { 6690 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6691 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6692 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6693 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6694 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6695 Tok == ".f" || Tok == ".d"; 6696 } 6697 6698 // FIXME: This bit should probably be handled via an explicit match class 6699 // in the .td files that matches the suffix instead of having it be 6700 // a literal string token the way it is now. 6701 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6702 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6703 } 6704 6705 static void applyMnemonicAliases(StringRef &Mnemonic, 6706 const FeatureBitset &Features, 6707 unsigned VariantID); 6708 6709 // The GNU assembler has aliases of ldrd and strd with the second register 6710 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6711 // 6712 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6713 // the assmebly parser could then generate confusing diagnostics refering to 6714 // it. If we do find anything that prevents us from doing the transformation we 6715 // bail out, and let the assembly parser report an error on the instruction as 6716 // it is written. 6717 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6718 OperandVector &Operands) { 6719 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6720 return; 6721 if (Operands.size() < 4) 6722 return; 6723 6724 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6725 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6726 6727 if (!Op2.isReg()) 6728 return; 6729 if (!Op3.isGPRMem()) 6730 return; 6731 6732 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6733 if (!GPR.contains(Op2.getReg())) 6734 return; 6735 6736 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6737 if (!isThumb() && (RtEncoding & 1)) { 6738 // In ARM mode, the registers must be from an aligned pair, this 6739 // restriction does not apply in Thumb mode. 6740 return; 6741 } 6742 if (Op2.getReg() == ARM::PC) 6743 return; 6744 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6745 if (!PairedReg || PairedReg == ARM::PC || 6746 (PairedReg == ARM::SP && !hasV8Ops())) 6747 return; 6748 6749 Operands.insert( 6750 Operands.begin() + 3, 6751 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6752 } 6753 6754 /// Parse an arm instruction mnemonic followed by its operands. 6755 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6756 SMLoc NameLoc, OperandVector &Operands) { 6757 MCAsmParser &Parser = getParser(); 6758 6759 // Apply mnemonic aliases before doing anything else, as the destination 6760 // mnemonic may include suffices and we want to handle them normally. 6761 // The generic tblgen'erated code does this later, at the start of 6762 // MatchInstructionImpl(), but that's too late for aliases that include 6763 // any sort of suffix. 6764 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6765 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6766 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6767 6768 // First check for the ARM-specific .req directive. 6769 if (Parser.getTok().is(AsmToken::Identifier) && 6770 Parser.getTok().getIdentifier() == ".req") { 6771 parseDirectiveReq(Name, NameLoc); 6772 // We always return 'error' for this, as we're done with this 6773 // statement and don't need to match the 'instruction." 6774 return true; 6775 } 6776 6777 // Create the leading tokens for the mnemonic, split by '.' characters. 6778 size_t Start = 0, Next = Name.find('.'); 6779 StringRef Mnemonic = Name.slice(Start, Next); 6780 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 6781 6782 // Split out the predication code and carry setting flag from the mnemonic. 6783 unsigned PredicationCode; 6784 unsigned VPTPredicationCode; 6785 unsigned ProcessorIMod; 6786 bool CarrySetting; 6787 StringRef ITMask; 6788 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 6789 CarrySetting, ProcessorIMod, ITMask); 6790 6791 // In Thumb1, only the branch (B) instruction can be predicated. 6792 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6793 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6794 } 6795 6796 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6797 6798 // Handle the mask for IT and VPT instructions. In ARMOperand and 6799 // MCOperand, this is stored in a format independent of the 6800 // condition code: the lowest set bit indicates the end of the 6801 // encoding, and above that, a 1 bit indicates 'else', and an 0 6802 // indicates 'then'. E.g. 6803 // IT -> 1000 6804 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 6805 // ITxy -> xy10 (e.g. ITET -> 1010) 6806 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 6807 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 6808 Mnemonic.startswith("vpst")) { 6809 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 6810 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 6811 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 6812 if (ITMask.size() > 3) { 6813 if (Mnemonic == "it") 6814 return Error(Loc, "too many conditions on IT instruction"); 6815 return Error(Loc, "too many conditions on VPT instruction"); 6816 } 6817 unsigned Mask = 8; 6818 for (unsigned i = ITMask.size(); i != 0; --i) { 6819 char pos = ITMask[i - 1]; 6820 if (pos != 't' && pos != 'e') { 6821 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6822 } 6823 Mask >>= 1; 6824 if (ITMask[i - 1] == 'e') 6825 Mask |= 8; 6826 } 6827 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6828 } 6829 6830 // FIXME: This is all a pretty gross hack. We should automatically handle 6831 // optional operands like this via tblgen. 6832 6833 // Next, add the CCOut and ConditionCode operands, if needed. 6834 // 6835 // For mnemonics which can ever incorporate a carry setting bit or predication 6836 // code, our matching model involves us always generating CCOut and 6837 // ConditionCode operands to match the mnemonic "as written" and then we let 6838 // the matcher deal with finding the right instruction or generating an 6839 // appropriate error. 6840 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 6841 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 6842 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 6843 6844 // If we had a carry-set on an instruction that can't do that, issue an 6845 // error. 6846 if (!CanAcceptCarrySet && CarrySetting) { 6847 return Error(NameLoc, "instruction '" + Mnemonic + 6848 "' can not set flags, but 's' suffix specified"); 6849 } 6850 // If we had a predication code on an instruction that can't do that, issue an 6851 // error. 6852 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6853 return Error(NameLoc, "instruction '" + Mnemonic + 6854 "' is not predicable, but condition code specified"); 6855 } 6856 6857 // If we had a VPT predication code on an instruction that can't do that, issue an 6858 // error. 6859 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 6860 return Error(NameLoc, "instruction '" + Mnemonic + 6861 "' is not VPT predicable, but VPT code T/E is specified"); 6862 } 6863 6864 // Add the carry setting operand, if necessary. 6865 if (CanAcceptCarrySet) { 6866 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6867 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6868 Loc)); 6869 } 6870 6871 // Add the predication code operand, if necessary. 6872 if (CanAcceptPredicationCode) { 6873 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6874 CarrySetting); 6875 Operands.push_back(ARMOperand::CreateCondCode( 6876 ARMCC::CondCodes(PredicationCode), Loc)); 6877 } 6878 6879 // Add the VPT predication code operand, if necessary. 6880 // FIXME: We don't add them for the instructions filtered below as these can 6881 // have custom operands which need special parsing. This parsing requires 6882 // the operand to be in the same place in the OperandVector as their 6883 // definition in tblgen. Since these instructions may also have the 6884 // scalar predication operand we do not add the vector one and leave until 6885 // now to fix it up. 6886 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 6887 !Mnemonic.startswith("vcmp") && 6888 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 6889 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 6890 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6891 CarrySetting); 6892 Operands.push_back(ARMOperand::CreateVPTPred( 6893 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 6894 } 6895 6896 // Add the processor imod operand, if necessary. 6897 if (ProcessorIMod) { 6898 Operands.push_back(ARMOperand::CreateImm( 6899 MCConstantExpr::create(ProcessorIMod, getContext()), 6900 NameLoc, NameLoc)); 6901 } else if (Mnemonic == "cps" && isMClass()) { 6902 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6903 } 6904 6905 // Add the remaining tokens in the mnemonic. 6906 while (Next != StringRef::npos) { 6907 Start = Next; 6908 Next = Name.find('.', Start + 1); 6909 ExtraToken = Name.slice(Start, Next); 6910 6911 // Some NEON instructions have an optional datatype suffix that is 6912 // completely ignored. Check for that. 6913 if (isDataTypeToken(ExtraToken) && 6914 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6915 continue; 6916 6917 // For for ARM mode generate an error if the .n qualifier is used. 6918 if (ExtraToken == ".n" && !isThumb()) { 6919 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6920 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6921 "arm mode"); 6922 } 6923 6924 // The .n qualifier is always discarded as that is what the tables 6925 // and matcher expect. In ARM mode the .w qualifier has no effect, 6926 // so discard it to avoid errors that can be caused by the matcher. 6927 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6928 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6929 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6930 } 6931 } 6932 6933 // Read the remaining operands. 6934 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6935 // Read the first operand. 6936 if (parseOperand(Operands, Mnemonic)) { 6937 return true; 6938 } 6939 6940 while (parseOptionalToken(AsmToken::Comma)) { 6941 // Parse and remember the operand. 6942 if (parseOperand(Operands, Mnemonic)) { 6943 return true; 6944 } 6945 } 6946 } 6947 6948 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6949 return true; 6950 6951 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6952 6953 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6954 // do and don't have a cc_out optional-def operand. With some spot-checks 6955 // of the operand list, we can figure out which variant we're trying to 6956 // parse and adjust accordingly before actually matching. We shouldn't ever 6957 // try to remove a cc_out operand that was explicitly set on the 6958 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6959 // table driven matcher doesn't fit well with the ARM instruction set. 6960 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6961 Operands.erase(Operands.begin() + 1); 6962 6963 // Some instructions have the same mnemonic, but don't always 6964 // have a predicate. Distinguish them here and delete the 6965 // appropriate predicate if needed. This could be either the scalar 6966 // predication code or the vector predication code. 6967 if (PredicationCode == ARMCC::AL && 6968 shouldOmitPredicateOperand(Mnemonic, Operands)) 6969 Operands.erase(Operands.begin() + 1); 6970 6971 6972 if (hasMVE()) { 6973 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 6974 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 6975 // Very nasty hack to deal with the vector predicated variant of vmovlt 6976 // the scalar predicated vmov with condition 'lt'. We can not tell them 6977 // apart until we have parsed their operands. 6978 Operands.erase(Operands.begin() + 1); 6979 Operands.erase(Operands.begin()); 6980 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 6981 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 6982 Mnemonic.size() - 1 + CarrySetting); 6983 Operands.insert(Operands.begin(), 6984 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 6985 Operands.insert(Operands.begin(), 6986 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 6987 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 6988 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 6989 // Another nasty hack to deal with the ambiguity between vcvt with scalar 6990 // predication 'ne' and vcvtn with vector predication 'e'. As above we 6991 // can only distinguish between the two after we have parsed their 6992 // operands. 6993 Operands.erase(Operands.begin() + 1); 6994 Operands.erase(Operands.begin()); 6995 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 6996 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 6997 Mnemonic.size() - 1 + CarrySetting); 6998 Operands.insert(Operands.begin(), 6999 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7000 Operands.insert(Operands.begin(), 7001 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7002 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7003 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7004 // Another hack, this time to distinguish between scalar predicated vmul 7005 // with 'lt' predication code and the vector instruction vmullt with 7006 // vector predication code "none" 7007 Operands.erase(Operands.begin() + 1); 7008 Operands.erase(Operands.begin()); 7009 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7010 Operands.insert(Operands.begin(), 7011 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7012 } 7013 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7014 // predication code, since these may contain operands that require 7015 // special parsing. So now we have to see if they require vector 7016 // predication and replace the scalar one with the vector predication 7017 // operand if that is the case. 7018 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7019 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7020 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7021 !Mnemonic.startswith("vcvtm"))) { 7022 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7023 // We could not split the vector predicate off vcvt because it might 7024 // have been the scalar vcvtt instruction. Now we know its a vector 7025 // instruction, we still need to check whether its the vector 7026 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7027 // distinguish the two based on the suffixes, if it is any of 7028 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7029 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7030 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7031 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7032 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7033 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7034 Operands.erase(Operands.begin()); 7035 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7036 VPTPredicationCode = ARMVCC::Then; 7037 7038 Mnemonic = Mnemonic.substr(0, 4); 7039 Operands.insert(Operands.begin(), 7040 ARMOperand::CreateToken(Mnemonic, MLoc)); 7041 } 7042 } 7043 Operands.erase(Operands.begin() + 1); 7044 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7045 Mnemonic.size() + CarrySetting); 7046 Operands.insert(Operands.begin() + 1, 7047 ARMOperand::CreateVPTPred( 7048 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7049 } 7050 } else if (CanAcceptVPTPredicationCode) { 7051 // For all other instructions, make sure only one of the two 7052 // predication operands is left behind, depending on whether we should 7053 // use the vector predication. 7054 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7055 if (CanAcceptPredicationCode) 7056 Operands.erase(Operands.begin() + 2); 7057 else 7058 Operands.erase(Operands.begin() + 1); 7059 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7060 Operands.erase(Operands.begin() + 1); 7061 } 7062 } 7063 } 7064 7065 if (VPTPredicationCode != ARMVCC::None) { 7066 bool usedVPTPredicationCode = false; 7067 for (unsigned I = 1; I < Operands.size(); ++I) 7068 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7069 usedVPTPredicationCode = true; 7070 if (!usedVPTPredicationCode) { 7071 // If we have a VPT predication code and we haven't just turned it 7072 // into an operand, then it was a mistake for splitMnemonic to 7073 // separate it from the rest of the mnemonic in the first place, 7074 // and this may lead to wrong disassembly (e.g. scalar floating 7075 // point VCMPE is actually a different instruction from VCMP, so 7076 // we mustn't treat them the same). In that situation, glue it 7077 // back on. 7078 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7079 Operands.erase(Operands.begin()); 7080 Operands.insert(Operands.begin(), 7081 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7082 } 7083 } 7084 7085 // ARM mode 'blx' need special handling, as the register operand version 7086 // is predicable, but the label operand version is not. So, we can't rely 7087 // on the Mnemonic based checking to correctly figure out when to put 7088 // a k_CondCode operand in the list. If we're trying to match the label 7089 // version, remove the k_CondCode operand here. 7090 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7091 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7092 Operands.erase(Operands.begin() + 1); 7093 7094 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7095 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7096 // a single GPRPair reg operand is used in the .td file to replace the two 7097 // GPRs. However, when parsing from asm, the two GRPs cannot be 7098 // automatically 7099 // expressed as a GPRPair, so we have to manually merge them. 7100 // FIXME: We would really like to be able to tablegen'erate this. 7101 if (!isThumb() && Operands.size() > 4 && 7102 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7103 Mnemonic == "stlexd")) { 7104 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7105 unsigned Idx = isLoad ? 2 : 3; 7106 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7107 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7108 7109 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7110 // Adjust only if Op1 and Op2 are GPRs. 7111 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7112 MRC.contains(Op2.getReg())) { 7113 unsigned Reg1 = Op1.getReg(); 7114 unsigned Reg2 = Op2.getReg(); 7115 unsigned Rt = MRI->getEncodingValue(Reg1); 7116 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7117 7118 // Rt2 must be Rt + 1 and Rt must be even. 7119 if (Rt + 1 != Rt2 || (Rt & 1)) { 7120 return Error(Op2.getStartLoc(), 7121 isLoad ? "destination operands must be sequential" 7122 : "source operands must be sequential"); 7123 } 7124 unsigned NewReg = MRI->getMatchingSuperReg( 7125 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7126 Operands[Idx] = 7127 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7128 Operands.erase(Operands.begin() + Idx + 1); 7129 } 7130 } 7131 7132 // GNU Assembler extension (compatibility). 7133 fixupGNULDRDAlias(Mnemonic, Operands); 7134 7135 // FIXME: As said above, this is all a pretty gross hack. This instruction 7136 // does not fit with other "subs" and tblgen. 7137 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7138 // so the Mnemonic is the original name "subs" and delete the predicate 7139 // operand so it will match the table entry. 7140 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7141 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7142 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7143 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7144 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7145 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7146 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7147 Operands.erase(Operands.begin() + 1); 7148 } 7149 return false; 7150 } 7151 7152 // Validate context-sensitive operand constraints. 7153 7154 // return 'true' if register list contains non-low GPR registers, 7155 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7156 // 'containsReg' to true. 7157 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7158 unsigned Reg, unsigned HiReg, 7159 bool &containsReg) { 7160 containsReg = false; 7161 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7162 unsigned OpReg = Inst.getOperand(i).getReg(); 7163 if (OpReg == Reg) 7164 containsReg = true; 7165 // Anything other than a low register isn't legal here. 7166 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7167 return true; 7168 } 7169 return false; 7170 } 7171 7172 // Check if the specified regisgter is in the register list of the inst, 7173 // starting at the indicated operand number. 7174 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7175 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7176 unsigned OpReg = Inst.getOperand(i).getReg(); 7177 if (OpReg == Reg) 7178 return true; 7179 } 7180 return false; 7181 } 7182 7183 // Return true if instruction has the interesting property of being 7184 // allowed in IT blocks, but not being predicable. 7185 static bool instIsBreakpoint(const MCInst &Inst) { 7186 return Inst.getOpcode() == ARM::tBKPT || 7187 Inst.getOpcode() == ARM::BKPT || 7188 Inst.getOpcode() == ARM::tHLT || 7189 Inst.getOpcode() == ARM::HLT; 7190 } 7191 7192 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7193 const OperandVector &Operands, 7194 unsigned ListNo, bool IsARPop) { 7195 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7196 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7197 7198 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7199 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7200 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7201 7202 if (!IsARPop && ListContainsSP) 7203 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7204 "SP may not be in the register list"); 7205 else if (ListContainsPC && ListContainsLR) 7206 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7207 "PC and LR may not be in the register list simultaneously"); 7208 return false; 7209 } 7210 7211 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7212 const OperandVector &Operands, 7213 unsigned ListNo) { 7214 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7215 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7216 7217 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7218 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7219 7220 if (ListContainsSP && ListContainsPC) 7221 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7222 "SP and PC may not be in the register list"); 7223 else if (ListContainsSP) 7224 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7225 "SP may not be in the register list"); 7226 else if (ListContainsPC) 7227 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7228 "PC may not be in the register list"); 7229 return false; 7230 } 7231 7232 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7233 const OperandVector &Operands, 7234 bool Load, bool ARMMode, bool Writeback) { 7235 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7236 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7237 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7238 7239 if (ARMMode) { 7240 // Rt can't be R14. 7241 if (Rt == 14) 7242 return Error(Operands[3]->getStartLoc(), 7243 "Rt can't be R14"); 7244 7245 // Rt must be even-numbered. 7246 if ((Rt & 1) == 1) 7247 return Error(Operands[3]->getStartLoc(), 7248 "Rt must be even-numbered"); 7249 7250 // Rt2 must be Rt + 1. 7251 if (Rt2 != Rt + 1) { 7252 if (Load) 7253 return Error(Operands[3]->getStartLoc(), 7254 "destination operands must be sequential"); 7255 else 7256 return Error(Operands[3]->getStartLoc(), 7257 "source operands must be sequential"); 7258 } 7259 7260 // FIXME: Diagnose m == 15 7261 // FIXME: Diagnose ldrd with m == t || m == t2. 7262 } 7263 7264 if (!ARMMode && Load) { 7265 if (Rt2 == Rt) 7266 return Error(Operands[3]->getStartLoc(), 7267 "destination operands can't be identical"); 7268 } 7269 7270 if (Writeback) { 7271 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7272 7273 if (Rn == Rt || Rn == Rt2) { 7274 if (Load) 7275 return Error(Operands[3]->getStartLoc(), 7276 "base register needs to be different from destination " 7277 "registers"); 7278 else 7279 return Error(Operands[3]->getStartLoc(), 7280 "source register and base register can't be identical"); 7281 } 7282 7283 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7284 // (Except the immediate form of ldrd?) 7285 } 7286 7287 return false; 7288 } 7289 7290 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7291 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7292 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7293 return i; 7294 } 7295 return -1; 7296 } 7297 7298 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7299 return findFirstVectorPredOperandIdx(MCID) != -1; 7300 } 7301 7302 // FIXME: We would really like to be able to tablegen'erate this. 7303 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7304 const OperandVector &Operands) { 7305 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7306 SMLoc Loc = Operands[0]->getStartLoc(); 7307 7308 // Check the IT block state first. 7309 // NOTE: BKPT and HLT instructions have the interesting property of being 7310 // allowed in IT blocks, but not being predicable. They just always execute. 7311 if (inITBlock() && !instIsBreakpoint(Inst)) { 7312 // The instruction must be predicable. 7313 if (!MCID.isPredicable()) 7314 return Error(Loc, "instructions in IT block must be predicable"); 7315 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7316 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7317 if (Cond != currentITCond()) { 7318 // Find the condition code Operand to get its SMLoc information. 7319 SMLoc CondLoc; 7320 for (unsigned I = 1; I < Operands.size(); ++I) 7321 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7322 CondLoc = Operands[I]->getStartLoc(); 7323 return Error(CondLoc, "incorrect condition in IT block; got '" + 7324 StringRef(ARMCondCodeToString(Cond)) + 7325 "', but expected '" + 7326 ARMCondCodeToString(currentITCond()) + "'"); 7327 } 7328 // Check for non-'al' condition codes outside of the IT block. 7329 } else if (isThumbTwo() && MCID.isPredicable() && 7330 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7331 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7332 Inst.getOpcode() != ARM::t2Bcc && 7333 Inst.getOpcode() != ARM::t2BFic) { 7334 return Error(Loc, "predicated instructions must be in IT block"); 7335 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7336 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7337 ARMCC::AL) { 7338 return Warning(Loc, "predicated instructions should be in IT block"); 7339 } else if (!MCID.isPredicable()) { 7340 // Check the instruction doesn't have a predicate operand anyway 7341 // that it's not allowed to use. Sometimes this happens in order 7342 // to keep instructions the same shape even though one cannot 7343 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7344 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7345 if (MCID.OpInfo[i].isPredicate()) { 7346 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7347 return Error(Loc, "instruction is not predicable"); 7348 break; 7349 } 7350 } 7351 } 7352 7353 // PC-setting instructions in an IT block, but not the last instruction of 7354 // the block, are UNPREDICTABLE. 7355 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7356 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7357 } 7358 7359 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7360 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7361 if (!isVectorPredicable(MCID)) 7362 return Error(Loc, "instruction in VPT block must be predicable"); 7363 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7364 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7365 if (Pred != VPTPred) { 7366 SMLoc PredLoc; 7367 for (unsigned I = 1; I < Operands.size(); ++I) 7368 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7369 PredLoc = Operands[I]->getStartLoc(); 7370 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7371 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7372 "', but expected '" + 7373 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7374 } 7375 } 7376 else if (isVectorPredicable(MCID) && 7377 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7378 ARMVCC::None) 7379 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7380 7381 const unsigned Opcode = Inst.getOpcode(); 7382 switch (Opcode) { 7383 case ARM::t2IT: { 7384 // Encoding is unpredictable if it ever results in a notional 'NV' 7385 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7386 // predicate with an "else" mask bit. 7387 unsigned Cond = Inst.getOperand(0).getImm(); 7388 unsigned Mask = Inst.getOperand(1).getImm(); 7389 7390 // Conditions only allowing a 't' are those with no set bit except 7391 // the lowest-order one that indicates the end of the sequence. In 7392 // other words, powers of 2. 7393 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7394 return Error(Loc, "unpredictable IT predicate sequence"); 7395 break; 7396 } 7397 case ARM::LDRD: 7398 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7399 /*Writeback*/false)) 7400 return true; 7401 break; 7402 case ARM::LDRD_PRE: 7403 case ARM::LDRD_POST: 7404 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7405 /*Writeback*/true)) 7406 return true; 7407 break; 7408 case ARM::t2LDRDi8: 7409 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7410 /*Writeback*/false)) 7411 return true; 7412 break; 7413 case ARM::t2LDRD_PRE: 7414 case ARM::t2LDRD_POST: 7415 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7416 /*Writeback*/true)) 7417 return true; 7418 break; 7419 case ARM::t2BXJ: { 7420 const unsigned RmReg = Inst.getOperand(0).getReg(); 7421 // Rm = SP is no longer unpredictable in v8-A 7422 if (RmReg == ARM::SP && !hasV8Ops()) 7423 return Error(Operands[2]->getStartLoc(), 7424 "r13 (SP) is an unpredictable operand to BXJ"); 7425 return false; 7426 } 7427 case ARM::STRD: 7428 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7429 /*Writeback*/false)) 7430 return true; 7431 break; 7432 case ARM::STRD_PRE: 7433 case ARM::STRD_POST: 7434 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7435 /*Writeback*/true)) 7436 return true; 7437 break; 7438 case ARM::t2STRD_PRE: 7439 case ARM::t2STRD_POST: 7440 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7441 /*Writeback*/true)) 7442 return true; 7443 break; 7444 case ARM::STR_PRE_IMM: 7445 case ARM::STR_PRE_REG: 7446 case ARM::t2STR_PRE: 7447 case ARM::STR_POST_IMM: 7448 case ARM::STR_POST_REG: 7449 case ARM::t2STR_POST: 7450 case ARM::STRH_PRE: 7451 case ARM::t2STRH_PRE: 7452 case ARM::STRH_POST: 7453 case ARM::t2STRH_POST: 7454 case ARM::STRB_PRE_IMM: 7455 case ARM::STRB_PRE_REG: 7456 case ARM::t2STRB_PRE: 7457 case ARM::STRB_POST_IMM: 7458 case ARM::STRB_POST_REG: 7459 case ARM::t2STRB_POST: { 7460 // Rt must be different from Rn. 7461 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7462 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7463 7464 if (Rt == Rn) 7465 return Error(Operands[3]->getStartLoc(), 7466 "source register and base register can't be identical"); 7467 return false; 7468 } 7469 case ARM::LDR_PRE_IMM: 7470 case ARM::LDR_PRE_REG: 7471 case ARM::t2LDR_PRE: 7472 case ARM::LDR_POST_IMM: 7473 case ARM::LDR_POST_REG: 7474 case ARM::t2LDR_POST: 7475 case ARM::LDRH_PRE: 7476 case ARM::t2LDRH_PRE: 7477 case ARM::LDRH_POST: 7478 case ARM::t2LDRH_POST: 7479 case ARM::LDRSH_PRE: 7480 case ARM::t2LDRSH_PRE: 7481 case ARM::LDRSH_POST: 7482 case ARM::t2LDRSH_POST: 7483 case ARM::LDRB_PRE_IMM: 7484 case ARM::LDRB_PRE_REG: 7485 case ARM::t2LDRB_PRE: 7486 case ARM::LDRB_POST_IMM: 7487 case ARM::LDRB_POST_REG: 7488 case ARM::t2LDRB_POST: 7489 case ARM::LDRSB_PRE: 7490 case ARM::t2LDRSB_PRE: 7491 case ARM::LDRSB_POST: 7492 case ARM::t2LDRSB_POST: { 7493 // Rt must be different from Rn. 7494 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7495 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7496 7497 if (Rt == Rn) 7498 return Error(Operands[3]->getStartLoc(), 7499 "destination register and base register can't be identical"); 7500 return false; 7501 } 7502 7503 case ARM::MVE_VLDRBU8_rq: 7504 case ARM::MVE_VLDRBU16_rq: 7505 case ARM::MVE_VLDRBS16_rq: 7506 case ARM::MVE_VLDRBU32_rq: 7507 case ARM::MVE_VLDRBS32_rq: 7508 case ARM::MVE_VLDRHU16_rq: 7509 case ARM::MVE_VLDRHU16_rq_u: 7510 case ARM::MVE_VLDRHU32_rq: 7511 case ARM::MVE_VLDRHU32_rq_u: 7512 case ARM::MVE_VLDRHS32_rq: 7513 case ARM::MVE_VLDRHS32_rq_u: 7514 case ARM::MVE_VLDRWU32_rq: 7515 case ARM::MVE_VLDRWU32_rq_u: 7516 case ARM::MVE_VLDRDU64_rq: 7517 case ARM::MVE_VLDRDU64_rq_u: 7518 case ARM::MVE_VLDRWU32_qi: 7519 case ARM::MVE_VLDRWU32_qi_pre: 7520 case ARM::MVE_VLDRDU64_qi: 7521 case ARM::MVE_VLDRDU64_qi_pre: { 7522 // Qd must be different from Qm. 7523 unsigned QdIdx = 0, QmIdx = 2; 7524 bool QmIsPointer = false; 7525 switch (Opcode) { 7526 case ARM::MVE_VLDRWU32_qi: 7527 case ARM::MVE_VLDRDU64_qi: 7528 QmIdx = 1; 7529 QmIsPointer = true; 7530 break; 7531 case ARM::MVE_VLDRWU32_qi_pre: 7532 case ARM::MVE_VLDRDU64_qi_pre: 7533 QdIdx = 1; 7534 QmIsPointer = true; 7535 break; 7536 } 7537 7538 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7539 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7540 7541 if (Qd == Qm) { 7542 return Error(Operands[3]->getStartLoc(), 7543 Twine("destination vector register and vector ") + 7544 (QmIsPointer ? "pointer" : "offset") + 7545 " register can't be identical"); 7546 } 7547 return false; 7548 } 7549 7550 case ARM::SBFX: 7551 case ARM::t2SBFX: 7552 case ARM::UBFX: 7553 case ARM::t2UBFX: { 7554 // Width must be in range [1, 32-lsb]. 7555 unsigned LSB = Inst.getOperand(2).getImm(); 7556 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7557 if (Widthm1 >= 32 - LSB) 7558 return Error(Operands[5]->getStartLoc(), 7559 "bitfield width must be in range [1,32-lsb]"); 7560 return false; 7561 } 7562 // Notionally handles ARM::tLDMIA_UPD too. 7563 case ARM::tLDMIA: { 7564 // If we're parsing Thumb2, the .w variant is available and handles 7565 // most cases that are normally illegal for a Thumb1 LDM instruction. 7566 // We'll make the transformation in processInstruction() if necessary. 7567 // 7568 // Thumb LDM instructions are writeback iff the base register is not 7569 // in the register list. 7570 unsigned Rn = Inst.getOperand(0).getReg(); 7571 bool HasWritebackToken = 7572 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7573 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7574 bool ListContainsBase; 7575 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7576 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7577 "registers must be in range r0-r7"); 7578 // If we should have writeback, then there should be a '!' token. 7579 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7580 return Error(Operands[2]->getStartLoc(), 7581 "writeback operator '!' expected"); 7582 // If we should not have writeback, there must not be a '!'. This is 7583 // true even for the 32-bit wide encodings. 7584 if (ListContainsBase && HasWritebackToken) 7585 return Error(Operands[3]->getStartLoc(), 7586 "writeback operator '!' not allowed when base register " 7587 "in register list"); 7588 7589 if (validatetLDMRegList(Inst, Operands, 3)) 7590 return true; 7591 break; 7592 } 7593 case ARM::LDMIA_UPD: 7594 case ARM::LDMDB_UPD: 7595 case ARM::LDMIB_UPD: 7596 case ARM::LDMDA_UPD: 7597 // ARM variants loading and updating the same register are only officially 7598 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7599 if (!hasV7Ops()) 7600 break; 7601 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7602 return Error(Operands.back()->getStartLoc(), 7603 "writeback register not allowed in register list"); 7604 break; 7605 case ARM::t2LDMIA: 7606 case ARM::t2LDMDB: 7607 if (validatetLDMRegList(Inst, Operands, 3)) 7608 return true; 7609 break; 7610 case ARM::t2STMIA: 7611 case ARM::t2STMDB: 7612 if (validatetSTMRegList(Inst, Operands, 3)) 7613 return true; 7614 break; 7615 case ARM::t2LDMIA_UPD: 7616 case ARM::t2LDMDB_UPD: 7617 case ARM::t2STMIA_UPD: 7618 case ARM::t2STMDB_UPD: 7619 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7620 return Error(Operands.back()->getStartLoc(), 7621 "writeback register not allowed in register list"); 7622 7623 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7624 if (validatetLDMRegList(Inst, Operands, 3)) 7625 return true; 7626 } else { 7627 if (validatetSTMRegList(Inst, Operands, 3)) 7628 return true; 7629 } 7630 break; 7631 7632 case ARM::sysLDMIA_UPD: 7633 case ARM::sysLDMDA_UPD: 7634 case ARM::sysLDMDB_UPD: 7635 case ARM::sysLDMIB_UPD: 7636 if (!listContainsReg(Inst, 3, ARM::PC)) 7637 return Error(Operands[4]->getStartLoc(), 7638 "writeback register only allowed on system LDM " 7639 "if PC in register-list"); 7640 break; 7641 case ARM::sysSTMIA_UPD: 7642 case ARM::sysSTMDA_UPD: 7643 case ARM::sysSTMDB_UPD: 7644 case ARM::sysSTMIB_UPD: 7645 return Error(Operands[2]->getStartLoc(), 7646 "system STM cannot have writeback register"); 7647 case ARM::tMUL: 7648 // The second source operand must be the same register as the destination 7649 // operand. 7650 // 7651 // In this case, we must directly check the parsed operands because the 7652 // cvtThumbMultiply() function is written in such a way that it guarantees 7653 // this first statement is always true for the new Inst. Essentially, the 7654 // destination is unconditionally copied into the second source operand 7655 // without checking to see if it matches what we actually parsed. 7656 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7657 ((ARMOperand &)*Operands[5]).getReg()) && 7658 (((ARMOperand &)*Operands[3]).getReg() != 7659 ((ARMOperand &)*Operands[4]).getReg())) { 7660 return Error(Operands[3]->getStartLoc(), 7661 "destination register must match source register"); 7662 } 7663 break; 7664 7665 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7666 // so only issue a diagnostic for thumb1. The instructions will be 7667 // switched to the t2 encodings in processInstruction() if necessary. 7668 case ARM::tPOP: { 7669 bool ListContainsBase; 7670 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7671 !isThumbTwo()) 7672 return Error(Operands[2]->getStartLoc(), 7673 "registers must be in range r0-r7 or pc"); 7674 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 7675 return true; 7676 break; 7677 } 7678 case ARM::tPUSH: { 7679 bool ListContainsBase; 7680 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 7681 !isThumbTwo()) 7682 return Error(Operands[2]->getStartLoc(), 7683 "registers must be in range r0-r7 or lr"); 7684 if (validatetSTMRegList(Inst, Operands, 2)) 7685 return true; 7686 break; 7687 } 7688 case ARM::tSTMIA_UPD: { 7689 bool ListContainsBase, InvalidLowList; 7690 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 7691 0, ListContainsBase); 7692 if (InvalidLowList && !isThumbTwo()) 7693 return Error(Operands[4]->getStartLoc(), 7694 "registers must be in range r0-r7"); 7695 7696 // This would be converted to a 32-bit stm, but that's not valid if the 7697 // writeback register is in the list. 7698 if (InvalidLowList && ListContainsBase) 7699 return Error(Operands[4]->getStartLoc(), 7700 "writeback operator '!' not allowed when base register " 7701 "in register list"); 7702 7703 if (validatetSTMRegList(Inst, Operands, 4)) 7704 return true; 7705 break; 7706 } 7707 case ARM::tADDrSP: 7708 // If the non-SP source operand and the destination operand are not the 7709 // same, we need thumb2 (for the wide encoding), or we have an error. 7710 if (!isThumbTwo() && 7711 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7712 return Error(Operands[4]->getStartLoc(), 7713 "source register must be the same as destination"); 7714 } 7715 break; 7716 7717 case ARM::t2ADDri: 7718 case ARM::t2ADDri12: 7719 case ARM::t2ADDrr: 7720 case ARM::t2ADDrs: 7721 case ARM::t2SUBri: 7722 case ARM::t2SUBri12: 7723 case ARM::t2SUBrr: 7724 case ARM::t2SUBrs: 7725 if (Inst.getOperand(0).getReg() == ARM::SP && 7726 Inst.getOperand(1).getReg() != ARM::SP) 7727 return Error(Operands[4]->getStartLoc(), 7728 "source register must be sp if destination is sp"); 7729 break; 7730 7731 // Final range checking for Thumb unconditional branch instructions. 7732 case ARM::tB: 7733 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 7734 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7735 break; 7736 case ARM::t2B: { 7737 int op = (Operands[2]->isImm()) ? 2 : 3; 7738 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 7739 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 7740 break; 7741 } 7742 // Final range checking for Thumb conditional branch instructions. 7743 case ARM::tBcc: 7744 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 7745 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7746 break; 7747 case ARM::t2Bcc: { 7748 int Op = (Operands[2]->isImm()) ? 2 : 3; 7749 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 7750 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 7751 break; 7752 } 7753 case ARM::tCBZ: 7754 case ARM::tCBNZ: { 7755 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 7756 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7757 break; 7758 } 7759 case ARM::MOVi16: 7760 case ARM::MOVTi16: 7761 case ARM::t2MOVi16: 7762 case ARM::t2MOVTi16: 7763 { 7764 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 7765 // especially when we turn it into a movw and the expression <symbol> does 7766 // not have a :lower16: or :upper16 as part of the expression. We don't 7767 // want the behavior of silently truncating, which can be unexpected and 7768 // lead to bugs that are difficult to find since this is an easy mistake 7769 // to make. 7770 int i = (Operands[3]->isImm()) ? 3 : 4; 7771 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 7772 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 7773 if (CE) break; 7774 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 7775 if (!E) break; 7776 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 7777 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 7778 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 7779 return Error( 7780 Op.getStartLoc(), 7781 "immediate expression for mov requires :lower16: or :upper16"); 7782 break; 7783 } 7784 case ARM::HINT: 7785 case ARM::t2HINT: { 7786 unsigned Imm8 = Inst.getOperand(0).getImm(); 7787 unsigned Pred = Inst.getOperand(1).getImm(); 7788 // ESB is not predicable (pred must be AL). Without the RAS extension, this 7789 // behaves as any other unallocated hint. 7790 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 7791 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 7792 "predicable, but condition " 7793 "code specified"); 7794 if (Imm8 == 0x14 && Pred != ARMCC::AL) 7795 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 7796 "predicable, but condition " 7797 "code specified"); 7798 break; 7799 } 7800 case ARM::t2BFi: 7801 case ARM::t2BFr: 7802 case ARM::t2BFLi: 7803 case ARM::t2BFLr: { 7804 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 7805 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7806 return Error(Operands[2]->getStartLoc(), 7807 "branch location out of range or not a multiple of 2"); 7808 7809 if (Opcode == ARM::t2BFi) { 7810 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 7811 return Error(Operands[3]->getStartLoc(), 7812 "branch target out of range or not a multiple of 2"); 7813 } else if (Opcode == ARM::t2BFLi) { 7814 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 7815 return Error(Operands[3]->getStartLoc(), 7816 "branch target out of range or not a multiple of 2"); 7817 } 7818 break; 7819 } 7820 case ARM::t2BFic: { 7821 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 7822 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7823 return Error(Operands[1]->getStartLoc(), 7824 "branch location out of range or not a multiple of 2"); 7825 7826 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 7827 return Error(Operands[2]->getStartLoc(), 7828 "branch target out of range or not a multiple of 2"); 7829 7830 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 7831 "branch location and else branch target should either both be " 7832 "immediates or both labels"); 7833 7834 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 7835 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 7836 if (Diff != 4 && Diff != 2) 7837 return Error( 7838 Operands[3]->getStartLoc(), 7839 "else branch target must be 2 or 4 greater than the branch location"); 7840 } 7841 break; 7842 } 7843 case ARM::t2CLRM: { 7844 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 7845 if (Inst.getOperand(i).isReg() && 7846 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 7847 Inst.getOperand(i).getReg())) { 7848 return Error(Operands[2]->getStartLoc(), 7849 "invalid register in register list. Valid registers are " 7850 "r0-r12, lr/r14 and APSR."); 7851 } 7852 } 7853 break; 7854 } 7855 case ARM::DSB: 7856 case ARM::t2DSB: { 7857 7858 if (Inst.getNumOperands() < 2) 7859 break; 7860 7861 unsigned Option = Inst.getOperand(0).getImm(); 7862 unsigned Pred = Inst.getOperand(1).getImm(); 7863 7864 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 7865 if (Option == 0 && Pred != ARMCC::AL) 7866 return Error(Operands[1]->getStartLoc(), 7867 "instruction 'ssbb' is not predicable, but condition code " 7868 "specified"); 7869 if (Option == 4 && Pred != ARMCC::AL) 7870 return Error(Operands[1]->getStartLoc(), 7871 "instruction 'pssbb' is not predicable, but condition code " 7872 "specified"); 7873 break; 7874 } 7875 case ARM::VMOVRRS: { 7876 // Source registers must be sequential. 7877 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7878 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7879 if (Sm1 != Sm + 1) 7880 return Error(Operands[5]->getStartLoc(), 7881 "source operands must be sequential"); 7882 break; 7883 } 7884 case ARM::VMOVSRR: { 7885 // Destination registers must be sequential. 7886 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7887 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7888 if (Sm1 != Sm + 1) 7889 return Error(Operands[3]->getStartLoc(), 7890 "destination operands must be sequential"); 7891 break; 7892 } 7893 case ARM::VLDMDIA: 7894 case ARM::VSTMDIA: { 7895 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 7896 auto &RegList = Op.getRegList(); 7897 if (RegList.size() < 1 || RegList.size() > 16) 7898 return Error(Operands[3]->getStartLoc(), 7899 "list of registers must be at least 1 and at most 16"); 7900 break; 7901 } 7902 case ARM::MVE_VQDMULLs32bh: 7903 case ARM::MVE_VQDMULLs32th: 7904 case ARM::MVE_VCMULf32: 7905 case ARM::MVE_VMULLs32bh: 7906 case ARM::MVE_VMULLs32th: 7907 case ARM::MVE_VMULLu32bh: 7908 case ARM::MVE_VMULLu32th: { 7909 if (Operands[3]->getReg() == Operands[4]->getReg()) { 7910 return Error (Operands[3]->getStartLoc(), 7911 "Qd register and Qn register can't be identical"); 7912 } 7913 if (Operands[3]->getReg() == Operands[5]->getReg()) { 7914 return Error (Operands[3]->getStartLoc(), 7915 "Qd register and Qm register can't be identical"); 7916 } 7917 break; 7918 } 7919 case ARM::MVE_VMOV_rr_q: { 7920 if (Operands[4]->getReg() != Operands[6]->getReg()) 7921 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 7922 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 7923 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 7924 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7925 break; 7926 } 7927 case ARM::MVE_VMOV_q_rr: { 7928 if (Operands[2]->getReg() != Operands[4]->getReg()) 7929 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 7930 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 7931 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 7932 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7933 break; 7934 } 7935 } 7936 7937 return false; 7938 } 7939 7940 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 7941 switch(Opc) { 7942 default: llvm_unreachable("unexpected opcode!"); 7943 // VST1LN 7944 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 7945 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 7946 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 7947 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 7948 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 7949 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 7950 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 7951 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 7952 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 7953 7954 // VST2LN 7955 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 7956 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 7957 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 7958 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 7959 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 7960 7961 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 7962 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 7963 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 7964 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 7965 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 7966 7967 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 7968 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 7969 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 7970 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 7971 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 7972 7973 // VST3LN 7974 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 7975 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 7976 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 7977 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 7978 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 7979 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 7980 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 7981 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 7982 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 7983 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 7984 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 7985 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 7986 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 7987 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 7988 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 7989 7990 // VST3 7991 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 7992 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 7993 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 7994 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 7995 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 7996 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 7997 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 7998 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 7999 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8000 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8001 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8002 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8003 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8004 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8005 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8006 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8007 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8008 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8009 8010 // VST4LN 8011 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8012 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8013 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8014 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8015 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8016 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8017 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8018 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8019 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8020 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8021 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8022 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8023 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8024 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8025 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8026 8027 // VST4 8028 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8029 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8030 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8031 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8032 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8033 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8034 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8035 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8036 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8037 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8038 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8039 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8040 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8041 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8042 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8043 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8044 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8045 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8046 } 8047 } 8048 8049 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8050 switch(Opc) { 8051 default: llvm_unreachable("unexpected opcode!"); 8052 // VLD1LN 8053 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8054 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8055 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8056 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8057 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8058 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8059 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8060 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8061 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8062 8063 // VLD2LN 8064 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8065 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8066 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8067 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8068 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8069 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8070 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8071 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8072 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8073 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8074 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8075 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8076 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8077 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8078 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8079 8080 // VLD3DUP 8081 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8082 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8083 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8084 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8085 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8086 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8087 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8088 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8089 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8090 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8091 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8092 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8093 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8094 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8095 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8096 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8097 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8098 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8099 8100 // VLD3LN 8101 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8102 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8103 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8104 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8105 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8106 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8107 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8108 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8109 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8110 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8111 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8112 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8113 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8114 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8115 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8116 8117 // VLD3 8118 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8119 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8120 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8121 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8122 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8123 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8124 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8125 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8126 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8127 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8128 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8129 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8130 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8131 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8132 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8133 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8134 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8135 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8136 8137 // VLD4LN 8138 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8139 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8140 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8141 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8142 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8143 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8144 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8145 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8146 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8147 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8148 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8149 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8150 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8151 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8152 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8153 8154 // VLD4DUP 8155 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8156 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8157 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8158 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8159 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8160 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8161 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8162 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8163 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8164 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8165 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8166 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8167 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8168 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8169 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8170 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8171 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8172 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8173 8174 // VLD4 8175 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8176 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8177 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8178 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8179 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8180 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8181 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8182 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8183 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8184 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8185 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8186 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8187 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8188 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8189 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8190 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8191 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8192 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8193 } 8194 } 8195 8196 bool ARMAsmParser::processInstruction(MCInst &Inst, 8197 const OperandVector &Operands, 8198 MCStreamer &Out) { 8199 // Check if we have the wide qualifier, because if it's present we 8200 // must avoid selecting a 16-bit thumb instruction. 8201 bool HasWideQualifier = false; 8202 for (auto &Op : Operands) { 8203 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8204 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8205 HasWideQualifier = true; 8206 break; 8207 } 8208 } 8209 8210 switch (Inst.getOpcode()) { 8211 case ARM::MVE_VORNIZ0v4i32: 8212 case ARM::MVE_VORNIZ0v8i16: 8213 case ARM::MVE_VORNIZ8v4i32: 8214 case ARM::MVE_VORNIZ8v8i16: 8215 case ARM::MVE_VORNIZ16v4i32: 8216 case ARM::MVE_VORNIZ24v4i32: 8217 case ARM::MVE_VANDIZ0v4i32: 8218 case ARM::MVE_VANDIZ0v8i16: 8219 case ARM::MVE_VANDIZ8v4i32: 8220 case ARM::MVE_VANDIZ8v8i16: 8221 case ARM::MVE_VANDIZ16v4i32: 8222 case ARM::MVE_VANDIZ24v4i32: { 8223 unsigned Opcode; 8224 bool imm16 = false; 8225 switch(Inst.getOpcode()) { 8226 case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break; 8227 case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break; 8228 case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break; 8229 case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break; 8230 case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break; 8231 case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break; 8232 case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break; 8233 case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break; 8234 case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break; 8235 case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break; 8236 case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break; 8237 case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break; 8238 default: llvm_unreachable("unexpected opcode"); 8239 } 8240 8241 MCInst TmpInst; 8242 TmpInst.setOpcode(Opcode); 8243 TmpInst.addOperand(Inst.getOperand(0)); 8244 TmpInst.addOperand(Inst.getOperand(1)); 8245 8246 // invert immediate 8247 unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff); 8248 TmpInst.addOperand(MCOperand::createImm(imm)); 8249 8250 TmpInst.addOperand(Inst.getOperand(3)); 8251 TmpInst.addOperand(Inst.getOperand(4)); 8252 Inst = TmpInst; 8253 return true; 8254 } 8255 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8256 case ARM::LDRT_POST: 8257 case ARM::LDRBT_POST: { 8258 const unsigned Opcode = 8259 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8260 : ARM::LDRBT_POST_IMM; 8261 MCInst TmpInst; 8262 TmpInst.setOpcode(Opcode); 8263 TmpInst.addOperand(Inst.getOperand(0)); 8264 TmpInst.addOperand(Inst.getOperand(1)); 8265 TmpInst.addOperand(Inst.getOperand(1)); 8266 TmpInst.addOperand(MCOperand::createReg(0)); 8267 TmpInst.addOperand(MCOperand::createImm(0)); 8268 TmpInst.addOperand(Inst.getOperand(2)); 8269 TmpInst.addOperand(Inst.getOperand(3)); 8270 Inst = TmpInst; 8271 return true; 8272 } 8273 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8274 case ARM::STRT_POST: 8275 case ARM::STRBT_POST: { 8276 const unsigned Opcode = 8277 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8278 : ARM::STRBT_POST_IMM; 8279 MCInst TmpInst; 8280 TmpInst.setOpcode(Opcode); 8281 TmpInst.addOperand(Inst.getOperand(1)); 8282 TmpInst.addOperand(Inst.getOperand(0)); 8283 TmpInst.addOperand(Inst.getOperand(1)); 8284 TmpInst.addOperand(MCOperand::createReg(0)); 8285 TmpInst.addOperand(MCOperand::createImm(0)); 8286 TmpInst.addOperand(Inst.getOperand(2)); 8287 TmpInst.addOperand(Inst.getOperand(3)); 8288 Inst = TmpInst; 8289 return true; 8290 } 8291 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8292 case ARM::ADDri: { 8293 if (Inst.getOperand(1).getReg() != ARM::PC || 8294 Inst.getOperand(5).getReg() != 0 || 8295 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8296 return false; 8297 MCInst TmpInst; 8298 TmpInst.setOpcode(ARM::ADR); 8299 TmpInst.addOperand(Inst.getOperand(0)); 8300 if (Inst.getOperand(2).isImm()) { 8301 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8302 // before passing it to the ADR instruction. 8303 unsigned Enc = Inst.getOperand(2).getImm(); 8304 TmpInst.addOperand(MCOperand::createImm( 8305 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8306 } else { 8307 // Turn PC-relative expression into absolute expression. 8308 // Reading PC provides the start of the current instruction + 8 and 8309 // the transform to adr is biased by that. 8310 MCSymbol *Dot = getContext().createTempSymbol(); 8311 Out.EmitLabel(Dot); 8312 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8313 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8314 MCSymbolRefExpr::VK_None, 8315 getContext()); 8316 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8317 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8318 getContext()); 8319 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8320 getContext()); 8321 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8322 } 8323 TmpInst.addOperand(Inst.getOperand(3)); 8324 TmpInst.addOperand(Inst.getOperand(4)); 8325 Inst = TmpInst; 8326 return true; 8327 } 8328 // Aliases for alternate PC+imm syntax of LDR instructions. 8329 case ARM::t2LDRpcrel: 8330 // Select the narrow version if the immediate will fit. 8331 if (Inst.getOperand(1).getImm() > 0 && 8332 Inst.getOperand(1).getImm() <= 0xff && 8333 !HasWideQualifier) 8334 Inst.setOpcode(ARM::tLDRpci); 8335 else 8336 Inst.setOpcode(ARM::t2LDRpci); 8337 return true; 8338 case ARM::t2LDRBpcrel: 8339 Inst.setOpcode(ARM::t2LDRBpci); 8340 return true; 8341 case ARM::t2LDRHpcrel: 8342 Inst.setOpcode(ARM::t2LDRHpci); 8343 return true; 8344 case ARM::t2LDRSBpcrel: 8345 Inst.setOpcode(ARM::t2LDRSBpci); 8346 return true; 8347 case ARM::t2LDRSHpcrel: 8348 Inst.setOpcode(ARM::t2LDRSHpci); 8349 return true; 8350 case ARM::LDRConstPool: 8351 case ARM::tLDRConstPool: 8352 case ARM::t2LDRConstPool: { 8353 // Pseudo instruction ldr rt, =immediate is converted to a 8354 // MOV rt, immediate if immediate is known and representable 8355 // otherwise we create a constant pool entry that we load from. 8356 MCInst TmpInst; 8357 if (Inst.getOpcode() == ARM::LDRConstPool) 8358 TmpInst.setOpcode(ARM::LDRi12); 8359 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8360 TmpInst.setOpcode(ARM::tLDRpci); 8361 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8362 TmpInst.setOpcode(ARM::t2LDRpci); 8363 const ARMOperand &PoolOperand = 8364 (HasWideQualifier ? 8365 static_cast<ARMOperand &>(*Operands[4]) : 8366 static_cast<ARMOperand &>(*Operands[3])); 8367 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8368 // If SubExprVal is a constant we may be able to use a MOV 8369 if (isa<MCConstantExpr>(SubExprVal) && 8370 Inst.getOperand(0).getReg() != ARM::PC && 8371 Inst.getOperand(0).getReg() != ARM::SP) { 8372 int64_t Value = 8373 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8374 bool UseMov = true; 8375 bool MovHasS = true; 8376 if (Inst.getOpcode() == ARM::LDRConstPool) { 8377 // ARM Constant 8378 if (ARM_AM::getSOImmVal(Value) != -1) { 8379 Value = ARM_AM::getSOImmVal(Value); 8380 TmpInst.setOpcode(ARM::MOVi); 8381 } 8382 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8383 Value = ARM_AM::getSOImmVal(~Value); 8384 TmpInst.setOpcode(ARM::MVNi); 8385 } 8386 else if (hasV6T2Ops() && 8387 Value >=0 && Value < 65536) { 8388 TmpInst.setOpcode(ARM::MOVi16); 8389 MovHasS = false; 8390 } 8391 else 8392 UseMov = false; 8393 } 8394 else { 8395 // Thumb/Thumb2 Constant 8396 if (hasThumb2() && 8397 ARM_AM::getT2SOImmVal(Value) != -1) 8398 TmpInst.setOpcode(ARM::t2MOVi); 8399 else if (hasThumb2() && 8400 ARM_AM::getT2SOImmVal(~Value) != -1) { 8401 TmpInst.setOpcode(ARM::t2MVNi); 8402 Value = ~Value; 8403 } 8404 else if (hasV8MBaseline() && 8405 Value >=0 && Value < 65536) { 8406 TmpInst.setOpcode(ARM::t2MOVi16); 8407 MovHasS = false; 8408 } 8409 else 8410 UseMov = false; 8411 } 8412 if (UseMov) { 8413 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8414 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8415 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8416 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8417 if (MovHasS) 8418 TmpInst.addOperand(MCOperand::createReg(0)); // S 8419 Inst = TmpInst; 8420 return true; 8421 } 8422 } 8423 // No opportunity to use MOV/MVN create constant pool 8424 const MCExpr *CPLoc = 8425 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8426 PoolOperand.getStartLoc()); 8427 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8428 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8429 if (TmpInst.getOpcode() == ARM::LDRi12) 8430 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8431 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8432 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8433 Inst = TmpInst; 8434 return true; 8435 } 8436 // Handle NEON VST complex aliases. 8437 case ARM::VST1LNdWB_register_Asm_8: 8438 case ARM::VST1LNdWB_register_Asm_16: 8439 case ARM::VST1LNdWB_register_Asm_32: { 8440 MCInst TmpInst; 8441 // Shuffle the operands around so the lane index operand is in the 8442 // right place. 8443 unsigned Spacing; 8444 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8445 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8446 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8447 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8448 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8449 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8450 TmpInst.addOperand(Inst.getOperand(1)); // lane 8451 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8452 TmpInst.addOperand(Inst.getOperand(6)); 8453 Inst = TmpInst; 8454 return true; 8455 } 8456 8457 case ARM::VST2LNdWB_register_Asm_8: 8458 case ARM::VST2LNdWB_register_Asm_16: 8459 case ARM::VST2LNdWB_register_Asm_32: 8460 case ARM::VST2LNqWB_register_Asm_16: 8461 case ARM::VST2LNqWB_register_Asm_32: { 8462 MCInst TmpInst; 8463 // Shuffle the operands around so the lane index operand is in the 8464 // right place. 8465 unsigned Spacing; 8466 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8467 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8468 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8469 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8470 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8471 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8472 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8473 Spacing)); 8474 TmpInst.addOperand(Inst.getOperand(1)); // lane 8475 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8476 TmpInst.addOperand(Inst.getOperand(6)); 8477 Inst = TmpInst; 8478 return true; 8479 } 8480 8481 case ARM::VST3LNdWB_register_Asm_8: 8482 case ARM::VST3LNdWB_register_Asm_16: 8483 case ARM::VST3LNdWB_register_Asm_32: 8484 case ARM::VST3LNqWB_register_Asm_16: 8485 case ARM::VST3LNqWB_register_Asm_32: { 8486 MCInst TmpInst; 8487 // Shuffle the operands around so the lane index operand is in the 8488 // right place. 8489 unsigned Spacing; 8490 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8491 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8492 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8493 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8494 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8495 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8496 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8497 Spacing)); 8498 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8499 Spacing * 2)); 8500 TmpInst.addOperand(Inst.getOperand(1)); // lane 8501 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8502 TmpInst.addOperand(Inst.getOperand(6)); 8503 Inst = TmpInst; 8504 return true; 8505 } 8506 8507 case ARM::VST4LNdWB_register_Asm_8: 8508 case ARM::VST4LNdWB_register_Asm_16: 8509 case ARM::VST4LNdWB_register_Asm_32: 8510 case ARM::VST4LNqWB_register_Asm_16: 8511 case ARM::VST4LNqWB_register_Asm_32: { 8512 MCInst TmpInst; 8513 // Shuffle the operands around so the lane index operand is in the 8514 // right place. 8515 unsigned Spacing; 8516 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8517 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8518 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8519 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8520 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8521 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8522 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8523 Spacing)); 8524 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8525 Spacing * 2)); 8526 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8527 Spacing * 3)); 8528 TmpInst.addOperand(Inst.getOperand(1)); // lane 8529 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8530 TmpInst.addOperand(Inst.getOperand(6)); 8531 Inst = TmpInst; 8532 return true; 8533 } 8534 8535 case ARM::VST1LNdWB_fixed_Asm_8: 8536 case ARM::VST1LNdWB_fixed_Asm_16: 8537 case ARM::VST1LNdWB_fixed_Asm_32: { 8538 MCInst TmpInst; 8539 // Shuffle the operands around so the lane index operand is in the 8540 // right place. 8541 unsigned Spacing; 8542 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8543 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8544 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8545 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8546 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8547 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8548 TmpInst.addOperand(Inst.getOperand(1)); // lane 8549 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8550 TmpInst.addOperand(Inst.getOperand(5)); 8551 Inst = TmpInst; 8552 return true; 8553 } 8554 8555 case ARM::VST2LNdWB_fixed_Asm_8: 8556 case ARM::VST2LNdWB_fixed_Asm_16: 8557 case ARM::VST2LNdWB_fixed_Asm_32: 8558 case ARM::VST2LNqWB_fixed_Asm_16: 8559 case ARM::VST2LNqWB_fixed_Asm_32: { 8560 MCInst TmpInst; 8561 // Shuffle the operands around so the lane index operand is in the 8562 // right place. 8563 unsigned Spacing; 8564 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8565 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8566 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8567 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8568 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8569 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8570 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8571 Spacing)); 8572 TmpInst.addOperand(Inst.getOperand(1)); // lane 8573 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8574 TmpInst.addOperand(Inst.getOperand(5)); 8575 Inst = TmpInst; 8576 return true; 8577 } 8578 8579 case ARM::VST3LNdWB_fixed_Asm_8: 8580 case ARM::VST3LNdWB_fixed_Asm_16: 8581 case ARM::VST3LNdWB_fixed_Asm_32: 8582 case ARM::VST3LNqWB_fixed_Asm_16: 8583 case ARM::VST3LNqWB_fixed_Asm_32: { 8584 MCInst TmpInst; 8585 // Shuffle the operands around so the lane index operand is in the 8586 // right place. 8587 unsigned Spacing; 8588 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8589 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8590 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8591 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8592 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8593 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8594 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8595 Spacing)); 8596 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8597 Spacing * 2)); 8598 TmpInst.addOperand(Inst.getOperand(1)); // lane 8599 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8600 TmpInst.addOperand(Inst.getOperand(5)); 8601 Inst = TmpInst; 8602 return true; 8603 } 8604 8605 case ARM::VST4LNdWB_fixed_Asm_8: 8606 case ARM::VST4LNdWB_fixed_Asm_16: 8607 case ARM::VST4LNdWB_fixed_Asm_32: 8608 case ARM::VST4LNqWB_fixed_Asm_16: 8609 case ARM::VST4LNqWB_fixed_Asm_32: { 8610 MCInst TmpInst; 8611 // Shuffle the operands around so the lane index operand is in the 8612 // right place. 8613 unsigned Spacing; 8614 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8615 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8616 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8617 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8618 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8619 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8620 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8621 Spacing)); 8622 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8623 Spacing * 2)); 8624 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8625 Spacing * 3)); 8626 TmpInst.addOperand(Inst.getOperand(1)); // lane 8627 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8628 TmpInst.addOperand(Inst.getOperand(5)); 8629 Inst = TmpInst; 8630 return true; 8631 } 8632 8633 case ARM::VST1LNdAsm_8: 8634 case ARM::VST1LNdAsm_16: 8635 case ARM::VST1LNdAsm_32: { 8636 MCInst TmpInst; 8637 // Shuffle the operands around so the lane index operand is in the 8638 // right place. 8639 unsigned Spacing; 8640 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8641 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8642 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8643 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8644 TmpInst.addOperand(Inst.getOperand(1)); // lane 8645 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8646 TmpInst.addOperand(Inst.getOperand(5)); 8647 Inst = TmpInst; 8648 return true; 8649 } 8650 8651 case ARM::VST2LNdAsm_8: 8652 case ARM::VST2LNdAsm_16: 8653 case ARM::VST2LNdAsm_32: 8654 case ARM::VST2LNqAsm_16: 8655 case ARM::VST2LNqAsm_32: { 8656 MCInst TmpInst; 8657 // Shuffle the operands around so the lane index operand is in the 8658 // right place. 8659 unsigned Spacing; 8660 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8661 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8662 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8663 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8664 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8665 Spacing)); 8666 TmpInst.addOperand(Inst.getOperand(1)); // lane 8667 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8668 TmpInst.addOperand(Inst.getOperand(5)); 8669 Inst = TmpInst; 8670 return true; 8671 } 8672 8673 case ARM::VST3LNdAsm_8: 8674 case ARM::VST3LNdAsm_16: 8675 case ARM::VST3LNdAsm_32: 8676 case ARM::VST3LNqAsm_16: 8677 case ARM::VST3LNqAsm_32: { 8678 MCInst TmpInst; 8679 // Shuffle the operands around so the lane index operand is in the 8680 // right place. 8681 unsigned Spacing; 8682 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8683 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8684 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8685 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8686 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8687 Spacing)); 8688 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8689 Spacing * 2)); 8690 TmpInst.addOperand(Inst.getOperand(1)); // lane 8691 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8692 TmpInst.addOperand(Inst.getOperand(5)); 8693 Inst = TmpInst; 8694 return true; 8695 } 8696 8697 case ARM::VST4LNdAsm_8: 8698 case ARM::VST4LNdAsm_16: 8699 case ARM::VST4LNdAsm_32: 8700 case ARM::VST4LNqAsm_16: 8701 case ARM::VST4LNqAsm_32: { 8702 MCInst TmpInst; 8703 // Shuffle the operands around so the lane index operand is in the 8704 // right place. 8705 unsigned Spacing; 8706 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8707 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8708 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8709 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8711 Spacing)); 8712 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8713 Spacing * 2)); 8714 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8715 Spacing * 3)); 8716 TmpInst.addOperand(Inst.getOperand(1)); // lane 8717 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8718 TmpInst.addOperand(Inst.getOperand(5)); 8719 Inst = TmpInst; 8720 return true; 8721 } 8722 8723 // Handle NEON VLD complex aliases. 8724 case ARM::VLD1LNdWB_register_Asm_8: 8725 case ARM::VLD1LNdWB_register_Asm_16: 8726 case ARM::VLD1LNdWB_register_Asm_32: { 8727 MCInst TmpInst; 8728 // Shuffle the operands around so the lane index operand is in the 8729 // right place. 8730 unsigned Spacing; 8731 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8732 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8733 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8734 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8735 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8736 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8737 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8738 TmpInst.addOperand(Inst.getOperand(1)); // lane 8739 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8740 TmpInst.addOperand(Inst.getOperand(6)); 8741 Inst = TmpInst; 8742 return true; 8743 } 8744 8745 case ARM::VLD2LNdWB_register_Asm_8: 8746 case ARM::VLD2LNdWB_register_Asm_16: 8747 case ARM::VLD2LNdWB_register_Asm_32: 8748 case ARM::VLD2LNqWB_register_Asm_16: 8749 case ARM::VLD2LNqWB_register_Asm_32: { 8750 MCInst TmpInst; 8751 // Shuffle the operands around so the lane index operand is in the 8752 // right place. 8753 unsigned Spacing; 8754 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8755 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8757 Spacing)); 8758 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8759 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8760 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8761 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8762 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8763 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8764 Spacing)); 8765 TmpInst.addOperand(Inst.getOperand(1)); // lane 8766 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8767 TmpInst.addOperand(Inst.getOperand(6)); 8768 Inst = TmpInst; 8769 return true; 8770 } 8771 8772 case ARM::VLD3LNdWB_register_Asm_8: 8773 case ARM::VLD3LNdWB_register_Asm_16: 8774 case ARM::VLD3LNdWB_register_Asm_32: 8775 case ARM::VLD3LNqWB_register_Asm_16: 8776 case ARM::VLD3LNqWB_register_Asm_32: { 8777 MCInst TmpInst; 8778 // Shuffle the operands around so the lane index operand is in the 8779 // right place. 8780 unsigned Spacing; 8781 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8782 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8783 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8784 Spacing)); 8785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8786 Spacing * 2)); 8787 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8788 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8789 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8790 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8791 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8793 Spacing)); 8794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8795 Spacing * 2)); 8796 TmpInst.addOperand(Inst.getOperand(1)); // lane 8797 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8798 TmpInst.addOperand(Inst.getOperand(6)); 8799 Inst = TmpInst; 8800 return true; 8801 } 8802 8803 case ARM::VLD4LNdWB_register_Asm_8: 8804 case ARM::VLD4LNdWB_register_Asm_16: 8805 case ARM::VLD4LNdWB_register_Asm_32: 8806 case ARM::VLD4LNqWB_register_Asm_16: 8807 case ARM::VLD4LNqWB_register_Asm_32: { 8808 MCInst TmpInst; 8809 // Shuffle the operands around so the lane index operand is in the 8810 // right place. 8811 unsigned Spacing; 8812 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8813 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8814 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8815 Spacing)); 8816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8817 Spacing * 2)); 8818 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8819 Spacing * 3)); 8820 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8821 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8822 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8823 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8824 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8825 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8826 Spacing)); 8827 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8828 Spacing * 2)); 8829 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8830 Spacing * 3)); 8831 TmpInst.addOperand(Inst.getOperand(1)); // lane 8832 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8833 TmpInst.addOperand(Inst.getOperand(6)); 8834 Inst = TmpInst; 8835 return true; 8836 } 8837 8838 case ARM::VLD1LNdWB_fixed_Asm_8: 8839 case ARM::VLD1LNdWB_fixed_Asm_16: 8840 case ARM::VLD1LNdWB_fixed_Asm_32: { 8841 MCInst TmpInst; 8842 // Shuffle the operands around so the lane index operand is in the 8843 // right place. 8844 unsigned Spacing; 8845 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8846 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8847 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8848 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8849 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8850 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8851 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8852 TmpInst.addOperand(Inst.getOperand(1)); // lane 8853 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8854 TmpInst.addOperand(Inst.getOperand(5)); 8855 Inst = TmpInst; 8856 return true; 8857 } 8858 8859 case ARM::VLD2LNdWB_fixed_Asm_8: 8860 case ARM::VLD2LNdWB_fixed_Asm_16: 8861 case ARM::VLD2LNdWB_fixed_Asm_32: 8862 case ARM::VLD2LNqWB_fixed_Asm_16: 8863 case ARM::VLD2LNqWB_fixed_Asm_32: { 8864 MCInst TmpInst; 8865 // Shuffle the operands around so the lane index operand is in the 8866 // right place. 8867 unsigned Spacing; 8868 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8869 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8871 Spacing)); 8872 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8873 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8874 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8875 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8876 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8877 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8878 Spacing)); 8879 TmpInst.addOperand(Inst.getOperand(1)); // lane 8880 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8881 TmpInst.addOperand(Inst.getOperand(5)); 8882 Inst = TmpInst; 8883 return true; 8884 } 8885 8886 case ARM::VLD3LNdWB_fixed_Asm_8: 8887 case ARM::VLD3LNdWB_fixed_Asm_16: 8888 case ARM::VLD3LNdWB_fixed_Asm_32: 8889 case ARM::VLD3LNqWB_fixed_Asm_16: 8890 case ARM::VLD3LNqWB_fixed_Asm_32: { 8891 MCInst TmpInst; 8892 // Shuffle the operands around so the lane index operand is in the 8893 // right place. 8894 unsigned Spacing; 8895 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8896 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8897 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8898 Spacing)); 8899 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8900 Spacing * 2)); 8901 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8902 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8903 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8904 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8905 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8906 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8907 Spacing)); 8908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8909 Spacing * 2)); 8910 TmpInst.addOperand(Inst.getOperand(1)); // lane 8911 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8912 TmpInst.addOperand(Inst.getOperand(5)); 8913 Inst = TmpInst; 8914 return true; 8915 } 8916 8917 case ARM::VLD4LNdWB_fixed_Asm_8: 8918 case ARM::VLD4LNdWB_fixed_Asm_16: 8919 case ARM::VLD4LNdWB_fixed_Asm_32: 8920 case ARM::VLD4LNqWB_fixed_Asm_16: 8921 case ARM::VLD4LNqWB_fixed_Asm_32: { 8922 MCInst TmpInst; 8923 // Shuffle the operands around so the lane index operand is in the 8924 // right place. 8925 unsigned Spacing; 8926 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8927 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8928 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8929 Spacing)); 8930 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8931 Spacing * 2)); 8932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8933 Spacing * 3)); 8934 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8935 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8936 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8937 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8938 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8939 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8940 Spacing)); 8941 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8942 Spacing * 2)); 8943 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8944 Spacing * 3)); 8945 TmpInst.addOperand(Inst.getOperand(1)); // lane 8946 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8947 TmpInst.addOperand(Inst.getOperand(5)); 8948 Inst = TmpInst; 8949 return true; 8950 } 8951 8952 case ARM::VLD1LNdAsm_8: 8953 case ARM::VLD1LNdAsm_16: 8954 case ARM::VLD1LNdAsm_32: { 8955 MCInst TmpInst; 8956 // Shuffle the operands around so the lane index operand is in the 8957 // right place. 8958 unsigned Spacing; 8959 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8960 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8961 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8962 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8963 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8964 TmpInst.addOperand(Inst.getOperand(1)); // lane 8965 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8966 TmpInst.addOperand(Inst.getOperand(5)); 8967 Inst = TmpInst; 8968 return true; 8969 } 8970 8971 case ARM::VLD2LNdAsm_8: 8972 case ARM::VLD2LNdAsm_16: 8973 case ARM::VLD2LNdAsm_32: 8974 case ARM::VLD2LNqAsm_16: 8975 case ARM::VLD2LNqAsm_32: { 8976 MCInst TmpInst; 8977 // Shuffle the operands around so the lane index operand is in the 8978 // right place. 8979 unsigned Spacing; 8980 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8981 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8982 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8983 Spacing)); 8984 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8985 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8986 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8987 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8988 Spacing)); 8989 TmpInst.addOperand(Inst.getOperand(1)); // lane 8990 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8991 TmpInst.addOperand(Inst.getOperand(5)); 8992 Inst = TmpInst; 8993 return true; 8994 } 8995 8996 case ARM::VLD3LNdAsm_8: 8997 case ARM::VLD3LNdAsm_16: 8998 case ARM::VLD3LNdAsm_32: 8999 case ARM::VLD3LNqAsm_16: 9000 case ARM::VLD3LNqAsm_32: { 9001 MCInst TmpInst; 9002 // Shuffle the operands around so the lane index operand is in the 9003 // right place. 9004 unsigned Spacing; 9005 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9006 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9007 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9008 Spacing)); 9009 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9010 Spacing * 2)); 9011 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9012 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9013 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9015 Spacing)); 9016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9017 Spacing * 2)); 9018 TmpInst.addOperand(Inst.getOperand(1)); // lane 9019 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9020 TmpInst.addOperand(Inst.getOperand(5)); 9021 Inst = TmpInst; 9022 return true; 9023 } 9024 9025 case ARM::VLD4LNdAsm_8: 9026 case ARM::VLD4LNdAsm_16: 9027 case ARM::VLD4LNdAsm_32: 9028 case ARM::VLD4LNqAsm_16: 9029 case ARM::VLD4LNqAsm_32: { 9030 MCInst TmpInst; 9031 // Shuffle the operands around so the lane index operand is in the 9032 // right place. 9033 unsigned Spacing; 9034 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9035 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9036 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9037 Spacing)); 9038 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9039 Spacing * 2)); 9040 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9041 Spacing * 3)); 9042 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9043 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9044 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9045 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9046 Spacing)); 9047 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9048 Spacing * 2)); 9049 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9050 Spacing * 3)); 9051 TmpInst.addOperand(Inst.getOperand(1)); // lane 9052 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9053 TmpInst.addOperand(Inst.getOperand(5)); 9054 Inst = TmpInst; 9055 return true; 9056 } 9057 9058 // VLD3DUP single 3-element structure to all lanes instructions. 9059 case ARM::VLD3DUPdAsm_8: 9060 case ARM::VLD3DUPdAsm_16: 9061 case ARM::VLD3DUPdAsm_32: 9062 case ARM::VLD3DUPqAsm_8: 9063 case ARM::VLD3DUPqAsm_16: 9064 case ARM::VLD3DUPqAsm_32: { 9065 MCInst TmpInst; 9066 unsigned Spacing; 9067 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9068 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9069 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9070 Spacing)); 9071 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9072 Spacing * 2)); 9073 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9074 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9075 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9076 TmpInst.addOperand(Inst.getOperand(4)); 9077 Inst = TmpInst; 9078 return true; 9079 } 9080 9081 case ARM::VLD3DUPdWB_fixed_Asm_8: 9082 case ARM::VLD3DUPdWB_fixed_Asm_16: 9083 case ARM::VLD3DUPdWB_fixed_Asm_32: 9084 case ARM::VLD3DUPqWB_fixed_Asm_8: 9085 case ARM::VLD3DUPqWB_fixed_Asm_16: 9086 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9087 MCInst TmpInst; 9088 unsigned Spacing; 9089 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9090 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9091 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9092 Spacing)); 9093 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9094 Spacing * 2)); 9095 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9096 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9097 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9098 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9099 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9100 TmpInst.addOperand(Inst.getOperand(4)); 9101 Inst = TmpInst; 9102 return true; 9103 } 9104 9105 case ARM::VLD3DUPdWB_register_Asm_8: 9106 case ARM::VLD3DUPdWB_register_Asm_16: 9107 case ARM::VLD3DUPdWB_register_Asm_32: 9108 case ARM::VLD3DUPqWB_register_Asm_8: 9109 case ARM::VLD3DUPqWB_register_Asm_16: 9110 case ARM::VLD3DUPqWB_register_Asm_32: { 9111 MCInst TmpInst; 9112 unsigned Spacing; 9113 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9114 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9115 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9116 Spacing)); 9117 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9118 Spacing * 2)); 9119 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9120 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9121 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9122 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9123 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9124 TmpInst.addOperand(Inst.getOperand(5)); 9125 Inst = TmpInst; 9126 return true; 9127 } 9128 9129 // VLD3 multiple 3-element structure instructions. 9130 case ARM::VLD3dAsm_8: 9131 case ARM::VLD3dAsm_16: 9132 case ARM::VLD3dAsm_32: 9133 case ARM::VLD3qAsm_8: 9134 case ARM::VLD3qAsm_16: 9135 case ARM::VLD3qAsm_32: { 9136 MCInst TmpInst; 9137 unsigned Spacing; 9138 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9139 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9140 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9141 Spacing)); 9142 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9143 Spacing * 2)); 9144 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9145 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9146 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9147 TmpInst.addOperand(Inst.getOperand(4)); 9148 Inst = TmpInst; 9149 return true; 9150 } 9151 9152 case ARM::VLD3dWB_fixed_Asm_8: 9153 case ARM::VLD3dWB_fixed_Asm_16: 9154 case ARM::VLD3dWB_fixed_Asm_32: 9155 case ARM::VLD3qWB_fixed_Asm_8: 9156 case ARM::VLD3qWB_fixed_Asm_16: 9157 case ARM::VLD3qWB_fixed_Asm_32: { 9158 MCInst TmpInst; 9159 unsigned Spacing; 9160 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9161 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9162 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9163 Spacing)); 9164 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9165 Spacing * 2)); 9166 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9167 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9168 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9169 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9170 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9171 TmpInst.addOperand(Inst.getOperand(4)); 9172 Inst = TmpInst; 9173 return true; 9174 } 9175 9176 case ARM::VLD3dWB_register_Asm_8: 9177 case ARM::VLD3dWB_register_Asm_16: 9178 case ARM::VLD3dWB_register_Asm_32: 9179 case ARM::VLD3qWB_register_Asm_8: 9180 case ARM::VLD3qWB_register_Asm_16: 9181 case ARM::VLD3qWB_register_Asm_32: { 9182 MCInst TmpInst; 9183 unsigned Spacing; 9184 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9185 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9186 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9187 Spacing)); 9188 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9189 Spacing * 2)); 9190 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9191 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9192 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9193 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9194 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9195 TmpInst.addOperand(Inst.getOperand(5)); 9196 Inst = TmpInst; 9197 return true; 9198 } 9199 9200 // VLD4DUP single 3-element structure to all lanes instructions. 9201 case ARM::VLD4DUPdAsm_8: 9202 case ARM::VLD4DUPdAsm_16: 9203 case ARM::VLD4DUPdAsm_32: 9204 case ARM::VLD4DUPqAsm_8: 9205 case ARM::VLD4DUPqAsm_16: 9206 case ARM::VLD4DUPqAsm_32: { 9207 MCInst TmpInst; 9208 unsigned Spacing; 9209 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9210 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9211 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9212 Spacing)); 9213 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9214 Spacing * 2)); 9215 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9216 Spacing * 3)); 9217 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9218 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9219 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9220 TmpInst.addOperand(Inst.getOperand(4)); 9221 Inst = TmpInst; 9222 return true; 9223 } 9224 9225 case ARM::VLD4DUPdWB_fixed_Asm_8: 9226 case ARM::VLD4DUPdWB_fixed_Asm_16: 9227 case ARM::VLD4DUPdWB_fixed_Asm_32: 9228 case ARM::VLD4DUPqWB_fixed_Asm_8: 9229 case ARM::VLD4DUPqWB_fixed_Asm_16: 9230 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9231 MCInst TmpInst; 9232 unsigned Spacing; 9233 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9234 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9235 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9236 Spacing)); 9237 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9238 Spacing * 2)); 9239 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9240 Spacing * 3)); 9241 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9242 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9243 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9244 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9245 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9246 TmpInst.addOperand(Inst.getOperand(4)); 9247 Inst = TmpInst; 9248 return true; 9249 } 9250 9251 case ARM::VLD4DUPdWB_register_Asm_8: 9252 case ARM::VLD4DUPdWB_register_Asm_16: 9253 case ARM::VLD4DUPdWB_register_Asm_32: 9254 case ARM::VLD4DUPqWB_register_Asm_8: 9255 case ARM::VLD4DUPqWB_register_Asm_16: 9256 case ARM::VLD4DUPqWB_register_Asm_32: { 9257 MCInst TmpInst; 9258 unsigned Spacing; 9259 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9260 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9261 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9262 Spacing)); 9263 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9264 Spacing * 2)); 9265 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9266 Spacing * 3)); 9267 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9268 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9269 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9270 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9271 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9272 TmpInst.addOperand(Inst.getOperand(5)); 9273 Inst = TmpInst; 9274 return true; 9275 } 9276 9277 // VLD4 multiple 4-element structure instructions. 9278 case ARM::VLD4dAsm_8: 9279 case ARM::VLD4dAsm_16: 9280 case ARM::VLD4dAsm_32: 9281 case ARM::VLD4qAsm_8: 9282 case ARM::VLD4qAsm_16: 9283 case ARM::VLD4qAsm_32: { 9284 MCInst TmpInst; 9285 unsigned Spacing; 9286 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9287 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9288 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9289 Spacing)); 9290 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9291 Spacing * 2)); 9292 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9293 Spacing * 3)); 9294 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9295 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9296 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9297 TmpInst.addOperand(Inst.getOperand(4)); 9298 Inst = TmpInst; 9299 return true; 9300 } 9301 9302 case ARM::VLD4dWB_fixed_Asm_8: 9303 case ARM::VLD4dWB_fixed_Asm_16: 9304 case ARM::VLD4dWB_fixed_Asm_32: 9305 case ARM::VLD4qWB_fixed_Asm_8: 9306 case ARM::VLD4qWB_fixed_Asm_16: 9307 case ARM::VLD4qWB_fixed_Asm_32: { 9308 MCInst TmpInst; 9309 unsigned Spacing; 9310 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9311 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9312 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9313 Spacing)); 9314 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9315 Spacing * 2)); 9316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9317 Spacing * 3)); 9318 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9319 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9320 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9321 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9322 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9323 TmpInst.addOperand(Inst.getOperand(4)); 9324 Inst = TmpInst; 9325 return true; 9326 } 9327 9328 case ARM::VLD4dWB_register_Asm_8: 9329 case ARM::VLD4dWB_register_Asm_16: 9330 case ARM::VLD4dWB_register_Asm_32: 9331 case ARM::VLD4qWB_register_Asm_8: 9332 case ARM::VLD4qWB_register_Asm_16: 9333 case ARM::VLD4qWB_register_Asm_32: { 9334 MCInst TmpInst; 9335 unsigned Spacing; 9336 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9339 Spacing)); 9340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9341 Spacing * 2)); 9342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9343 Spacing * 3)); 9344 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9345 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9346 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9347 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9348 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9349 TmpInst.addOperand(Inst.getOperand(5)); 9350 Inst = TmpInst; 9351 return true; 9352 } 9353 9354 // VST3 multiple 3-element structure instructions. 9355 case ARM::VST3dAsm_8: 9356 case ARM::VST3dAsm_16: 9357 case ARM::VST3dAsm_32: 9358 case ARM::VST3qAsm_8: 9359 case ARM::VST3qAsm_16: 9360 case ARM::VST3qAsm_32: { 9361 MCInst TmpInst; 9362 unsigned Spacing; 9363 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9364 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9365 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9366 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9367 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9368 Spacing)); 9369 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9370 Spacing * 2)); 9371 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9372 TmpInst.addOperand(Inst.getOperand(4)); 9373 Inst = TmpInst; 9374 return true; 9375 } 9376 9377 case ARM::VST3dWB_fixed_Asm_8: 9378 case ARM::VST3dWB_fixed_Asm_16: 9379 case ARM::VST3dWB_fixed_Asm_32: 9380 case ARM::VST3qWB_fixed_Asm_8: 9381 case ARM::VST3qWB_fixed_Asm_16: 9382 case ARM::VST3qWB_fixed_Asm_32: { 9383 MCInst TmpInst; 9384 unsigned Spacing; 9385 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9386 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9387 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9388 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9389 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9390 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9391 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9392 Spacing)); 9393 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9394 Spacing * 2)); 9395 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9396 TmpInst.addOperand(Inst.getOperand(4)); 9397 Inst = TmpInst; 9398 return true; 9399 } 9400 9401 case ARM::VST3dWB_register_Asm_8: 9402 case ARM::VST3dWB_register_Asm_16: 9403 case ARM::VST3dWB_register_Asm_32: 9404 case ARM::VST3qWB_register_Asm_8: 9405 case ARM::VST3qWB_register_Asm_16: 9406 case ARM::VST3qWB_register_Asm_32: { 9407 MCInst TmpInst; 9408 unsigned Spacing; 9409 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9410 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9411 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9412 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9413 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9414 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9415 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9416 Spacing)); 9417 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9418 Spacing * 2)); 9419 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9420 TmpInst.addOperand(Inst.getOperand(5)); 9421 Inst = TmpInst; 9422 return true; 9423 } 9424 9425 // VST4 multiple 3-element structure instructions. 9426 case ARM::VST4dAsm_8: 9427 case ARM::VST4dAsm_16: 9428 case ARM::VST4dAsm_32: 9429 case ARM::VST4qAsm_8: 9430 case ARM::VST4qAsm_16: 9431 case ARM::VST4qAsm_32: { 9432 MCInst TmpInst; 9433 unsigned Spacing; 9434 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9435 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9436 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9437 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9438 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9439 Spacing)); 9440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9441 Spacing * 2)); 9442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9443 Spacing * 3)); 9444 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9445 TmpInst.addOperand(Inst.getOperand(4)); 9446 Inst = TmpInst; 9447 return true; 9448 } 9449 9450 case ARM::VST4dWB_fixed_Asm_8: 9451 case ARM::VST4dWB_fixed_Asm_16: 9452 case ARM::VST4dWB_fixed_Asm_32: 9453 case ARM::VST4qWB_fixed_Asm_8: 9454 case ARM::VST4qWB_fixed_Asm_16: 9455 case ARM::VST4qWB_fixed_Asm_32: { 9456 MCInst TmpInst; 9457 unsigned Spacing; 9458 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9459 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9460 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9461 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9462 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9463 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9464 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9465 Spacing)); 9466 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9467 Spacing * 2)); 9468 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9469 Spacing * 3)); 9470 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9471 TmpInst.addOperand(Inst.getOperand(4)); 9472 Inst = TmpInst; 9473 return true; 9474 } 9475 9476 case ARM::VST4dWB_register_Asm_8: 9477 case ARM::VST4dWB_register_Asm_16: 9478 case ARM::VST4dWB_register_Asm_32: 9479 case ARM::VST4qWB_register_Asm_8: 9480 case ARM::VST4qWB_register_Asm_16: 9481 case ARM::VST4qWB_register_Asm_32: { 9482 MCInst TmpInst; 9483 unsigned Spacing; 9484 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9485 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9486 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9487 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9488 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9489 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9490 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9491 Spacing)); 9492 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9493 Spacing * 2)); 9494 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9495 Spacing * 3)); 9496 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9497 TmpInst.addOperand(Inst.getOperand(5)); 9498 Inst = TmpInst; 9499 return true; 9500 } 9501 9502 // Handle encoding choice for the shift-immediate instructions. 9503 case ARM::t2LSLri: 9504 case ARM::t2LSRri: 9505 case ARM::t2ASRri: 9506 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9507 isARMLowRegister(Inst.getOperand(1).getReg()) && 9508 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9509 !HasWideQualifier) { 9510 unsigned NewOpc; 9511 switch (Inst.getOpcode()) { 9512 default: llvm_unreachable("unexpected opcode"); 9513 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9514 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9515 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9516 } 9517 // The Thumb1 operands aren't in the same order. Awesome, eh? 9518 MCInst TmpInst; 9519 TmpInst.setOpcode(NewOpc); 9520 TmpInst.addOperand(Inst.getOperand(0)); 9521 TmpInst.addOperand(Inst.getOperand(5)); 9522 TmpInst.addOperand(Inst.getOperand(1)); 9523 TmpInst.addOperand(Inst.getOperand(2)); 9524 TmpInst.addOperand(Inst.getOperand(3)); 9525 TmpInst.addOperand(Inst.getOperand(4)); 9526 Inst = TmpInst; 9527 return true; 9528 } 9529 return false; 9530 9531 // Handle the Thumb2 mode MOV complex aliases. 9532 case ARM::t2MOVsr: 9533 case ARM::t2MOVSsr: { 9534 // Which instruction to expand to depends on the CCOut operand and 9535 // whether we're in an IT block if the register operands are low 9536 // registers. 9537 bool isNarrow = false; 9538 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9539 isARMLowRegister(Inst.getOperand(1).getReg()) && 9540 isARMLowRegister(Inst.getOperand(2).getReg()) && 9541 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9542 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 9543 !HasWideQualifier) 9544 isNarrow = true; 9545 MCInst TmpInst; 9546 unsigned newOpc; 9547 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 9548 default: llvm_unreachable("unexpected opcode!"); 9549 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 9550 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 9551 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 9552 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 9553 } 9554 TmpInst.setOpcode(newOpc); 9555 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9556 if (isNarrow) 9557 TmpInst.addOperand(MCOperand::createReg( 9558 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9559 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9560 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9561 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9562 TmpInst.addOperand(Inst.getOperand(5)); 9563 if (!isNarrow) 9564 TmpInst.addOperand(MCOperand::createReg( 9565 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9566 Inst = TmpInst; 9567 return true; 9568 } 9569 case ARM::t2MOVsi: 9570 case ARM::t2MOVSsi: { 9571 // Which instruction to expand to depends on the CCOut operand and 9572 // whether we're in an IT block if the register operands are low 9573 // registers. 9574 bool isNarrow = false; 9575 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9576 isARMLowRegister(Inst.getOperand(1).getReg()) && 9577 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 9578 !HasWideQualifier) 9579 isNarrow = true; 9580 MCInst TmpInst; 9581 unsigned newOpc; 9582 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9583 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 9584 bool isMov = false; 9585 // MOV rd, rm, LSL #0 is actually a MOV instruction 9586 if (Shift == ARM_AM::lsl && Amount == 0) { 9587 isMov = true; 9588 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 9589 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 9590 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 9591 // instead. 9592 if (inITBlock()) { 9593 isNarrow = false; 9594 } 9595 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 9596 } else { 9597 switch(Shift) { 9598 default: llvm_unreachable("unexpected opcode!"); 9599 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 9600 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 9601 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 9602 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 9603 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 9604 } 9605 } 9606 if (Amount == 32) Amount = 0; 9607 TmpInst.setOpcode(newOpc); 9608 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9609 if (isNarrow && !isMov) 9610 TmpInst.addOperand(MCOperand::createReg( 9611 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9612 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9613 if (newOpc != ARM::t2RRX && !isMov) 9614 TmpInst.addOperand(MCOperand::createImm(Amount)); 9615 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9616 TmpInst.addOperand(Inst.getOperand(4)); 9617 if (!isNarrow) 9618 TmpInst.addOperand(MCOperand::createReg( 9619 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9620 Inst = TmpInst; 9621 return true; 9622 } 9623 // Handle the ARM mode MOV complex aliases. 9624 case ARM::ASRr: 9625 case ARM::LSRr: 9626 case ARM::LSLr: 9627 case ARM::RORr: { 9628 ARM_AM::ShiftOpc ShiftTy; 9629 switch(Inst.getOpcode()) { 9630 default: llvm_unreachable("unexpected opcode!"); 9631 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 9632 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 9633 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 9634 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 9635 } 9636 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 9637 MCInst TmpInst; 9638 TmpInst.setOpcode(ARM::MOVsr); 9639 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9640 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9641 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9642 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9643 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9644 TmpInst.addOperand(Inst.getOperand(4)); 9645 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9646 Inst = TmpInst; 9647 return true; 9648 } 9649 case ARM::ASRi: 9650 case ARM::LSRi: 9651 case ARM::LSLi: 9652 case ARM::RORi: { 9653 ARM_AM::ShiftOpc ShiftTy; 9654 switch(Inst.getOpcode()) { 9655 default: llvm_unreachable("unexpected opcode!"); 9656 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 9657 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 9658 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 9659 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 9660 } 9661 // A shift by zero is a plain MOVr, not a MOVsi. 9662 unsigned Amt = Inst.getOperand(2).getImm(); 9663 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 9664 // A shift by 32 should be encoded as 0 when permitted 9665 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 9666 Amt = 0; 9667 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 9668 MCInst TmpInst; 9669 TmpInst.setOpcode(Opc); 9670 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9671 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9672 if (Opc == ARM::MOVsi) 9673 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9674 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9675 TmpInst.addOperand(Inst.getOperand(4)); 9676 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9677 Inst = TmpInst; 9678 return true; 9679 } 9680 case ARM::RRXi: { 9681 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 9682 MCInst TmpInst; 9683 TmpInst.setOpcode(ARM::MOVsi); 9684 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9685 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9686 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9687 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9688 TmpInst.addOperand(Inst.getOperand(3)); 9689 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 9690 Inst = TmpInst; 9691 return true; 9692 } 9693 case ARM::t2LDMIA_UPD: { 9694 // If this is a load of a single register, then we should use 9695 // a post-indexed LDR instruction instead, per the ARM ARM. 9696 if (Inst.getNumOperands() != 5) 9697 return false; 9698 MCInst TmpInst; 9699 TmpInst.setOpcode(ARM::t2LDR_POST); 9700 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9701 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9702 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9703 TmpInst.addOperand(MCOperand::createImm(4)); 9704 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9705 TmpInst.addOperand(Inst.getOperand(3)); 9706 Inst = TmpInst; 9707 return true; 9708 } 9709 case ARM::t2STMDB_UPD: { 9710 // If this is a store of a single register, then we should use 9711 // a pre-indexed STR instruction instead, per the ARM ARM. 9712 if (Inst.getNumOperands() != 5) 9713 return false; 9714 MCInst TmpInst; 9715 TmpInst.setOpcode(ARM::t2STR_PRE); 9716 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9717 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9718 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9719 TmpInst.addOperand(MCOperand::createImm(-4)); 9720 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9721 TmpInst.addOperand(Inst.getOperand(3)); 9722 Inst = TmpInst; 9723 return true; 9724 } 9725 case ARM::LDMIA_UPD: 9726 // If this is a load of a single register via a 'pop', then we should use 9727 // a post-indexed LDR instruction instead, per the ARM ARM. 9728 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 9729 Inst.getNumOperands() == 5) { 9730 MCInst TmpInst; 9731 TmpInst.setOpcode(ARM::LDR_POST_IMM); 9732 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9733 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9734 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9735 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 9736 TmpInst.addOperand(MCOperand::createImm(4)); 9737 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9738 TmpInst.addOperand(Inst.getOperand(3)); 9739 Inst = TmpInst; 9740 return true; 9741 } 9742 break; 9743 case ARM::STMDB_UPD: 9744 // If this is a store of a single register via a 'push', then we should use 9745 // a pre-indexed STR instruction instead, per the ARM ARM. 9746 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 9747 Inst.getNumOperands() == 5) { 9748 MCInst TmpInst; 9749 TmpInst.setOpcode(ARM::STR_PRE_IMM); 9750 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9751 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9752 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 9753 TmpInst.addOperand(MCOperand::createImm(-4)); 9754 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9755 TmpInst.addOperand(Inst.getOperand(3)); 9756 Inst = TmpInst; 9757 } 9758 break; 9759 case ARM::t2ADDri12: 9760 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 9761 // mnemonic was used (not "addw"), encoding T3 is preferred. 9762 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 9763 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 9764 break; 9765 Inst.setOpcode(ARM::t2ADDri); 9766 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9767 break; 9768 case ARM::t2SUBri12: 9769 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 9770 // mnemonic was used (not "subw"), encoding T3 is preferred. 9771 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 9772 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 9773 break; 9774 Inst.setOpcode(ARM::t2SUBri); 9775 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9776 break; 9777 case ARM::tADDi8: 9778 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9779 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9780 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9781 // to encoding T1 if <Rd> is omitted." 9782 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9783 Inst.setOpcode(ARM::tADDi3); 9784 return true; 9785 } 9786 break; 9787 case ARM::tSUBi8: 9788 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9789 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9790 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9791 // to encoding T1 if <Rd> is omitted." 9792 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9793 Inst.setOpcode(ARM::tSUBi3); 9794 return true; 9795 } 9796 break; 9797 case ARM::t2ADDri: 9798 case ARM::t2SUBri: { 9799 // If the destination and first source operand are the same, and 9800 // the flags are compatible with the current IT status, use encoding T2 9801 // instead of T3. For compatibility with the system 'as'. Make sure the 9802 // wide encoding wasn't explicit. 9803 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 9804 !isARMLowRegister(Inst.getOperand(0).getReg()) || 9805 (Inst.getOperand(2).isImm() && 9806 (unsigned)Inst.getOperand(2).getImm() > 255) || 9807 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 9808 HasWideQualifier) 9809 break; 9810 MCInst TmpInst; 9811 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 9812 ARM::tADDi8 : ARM::tSUBi8); 9813 TmpInst.addOperand(Inst.getOperand(0)); 9814 TmpInst.addOperand(Inst.getOperand(5)); 9815 TmpInst.addOperand(Inst.getOperand(0)); 9816 TmpInst.addOperand(Inst.getOperand(2)); 9817 TmpInst.addOperand(Inst.getOperand(3)); 9818 TmpInst.addOperand(Inst.getOperand(4)); 9819 Inst = TmpInst; 9820 return true; 9821 } 9822 case ARM::t2ADDrr: { 9823 // If the destination and first source operand are the same, and 9824 // there's no setting of the flags, use encoding T2 instead of T3. 9825 // Note that this is only for ADD, not SUB. This mirrors the system 9826 // 'as' behaviour. Also take advantage of ADD being commutative. 9827 // Make sure the wide encoding wasn't explicit. 9828 bool Swap = false; 9829 auto DestReg = Inst.getOperand(0).getReg(); 9830 bool Transform = DestReg == Inst.getOperand(1).getReg(); 9831 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 9832 Transform = true; 9833 Swap = true; 9834 } 9835 if (!Transform || 9836 Inst.getOperand(5).getReg() != 0 || 9837 HasWideQualifier) 9838 break; 9839 MCInst TmpInst; 9840 TmpInst.setOpcode(ARM::tADDhirr); 9841 TmpInst.addOperand(Inst.getOperand(0)); 9842 TmpInst.addOperand(Inst.getOperand(0)); 9843 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 9844 TmpInst.addOperand(Inst.getOperand(3)); 9845 TmpInst.addOperand(Inst.getOperand(4)); 9846 Inst = TmpInst; 9847 return true; 9848 } 9849 case ARM::tADDrSP: 9850 // If the non-SP source operand and the destination operand are not the 9851 // same, we need to use the 32-bit encoding if it's available. 9852 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 9853 Inst.setOpcode(ARM::t2ADDrr); 9854 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9855 return true; 9856 } 9857 break; 9858 case ARM::tB: 9859 // A Thumb conditional branch outside of an IT block is a tBcc. 9860 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 9861 Inst.setOpcode(ARM::tBcc); 9862 return true; 9863 } 9864 break; 9865 case ARM::t2B: 9866 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 9867 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 9868 Inst.setOpcode(ARM::t2Bcc); 9869 return true; 9870 } 9871 break; 9872 case ARM::t2Bcc: 9873 // If the conditional is AL or we're in an IT block, we really want t2B. 9874 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 9875 Inst.setOpcode(ARM::t2B); 9876 return true; 9877 } 9878 break; 9879 case ARM::tBcc: 9880 // If the conditional is AL, we really want tB. 9881 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 9882 Inst.setOpcode(ARM::tB); 9883 return true; 9884 } 9885 break; 9886 case ARM::tLDMIA: { 9887 // If the register list contains any high registers, or if the writeback 9888 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 9889 // instead if we're in Thumb2. Otherwise, this should have generated 9890 // an error in validateInstruction(). 9891 unsigned Rn = Inst.getOperand(0).getReg(); 9892 bool hasWritebackToken = 9893 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 9894 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 9895 bool listContainsBase; 9896 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 9897 (!listContainsBase && !hasWritebackToken) || 9898 (listContainsBase && hasWritebackToken)) { 9899 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9900 assert(isThumbTwo()); 9901 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 9902 // If we're switching to the updating version, we need to insert 9903 // the writeback tied operand. 9904 if (hasWritebackToken) 9905 Inst.insert(Inst.begin(), 9906 MCOperand::createReg(Inst.getOperand(0).getReg())); 9907 return true; 9908 } 9909 break; 9910 } 9911 case ARM::tSTMIA_UPD: { 9912 // If the register list contains any high registers, we need to use 9913 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9914 // should have generated an error in validateInstruction(). 9915 unsigned Rn = Inst.getOperand(0).getReg(); 9916 bool listContainsBase; 9917 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 9918 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9919 assert(isThumbTwo()); 9920 Inst.setOpcode(ARM::t2STMIA_UPD); 9921 return true; 9922 } 9923 break; 9924 } 9925 case ARM::tPOP: { 9926 bool listContainsBase; 9927 // If the register list contains any high registers, we need to use 9928 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9929 // should have generated an error in validateInstruction(). 9930 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 9931 return false; 9932 assert(isThumbTwo()); 9933 Inst.setOpcode(ARM::t2LDMIA_UPD); 9934 // Add the base register and writeback operands. 9935 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9936 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9937 return true; 9938 } 9939 case ARM::tPUSH: { 9940 bool listContainsBase; 9941 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 9942 return false; 9943 assert(isThumbTwo()); 9944 Inst.setOpcode(ARM::t2STMDB_UPD); 9945 // Add the base register and writeback operands. 9946 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9947 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9948 return true; 9949 } 9950 case ARM::t2MOVi: 9951 // If we can use the 16-bit encoding and the user didn't explicitly 9952 // request the 32-bit variant, transform it here. 9953 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9954 (Inst.getOperand(1).isImm() && 9955 (unsigned)Inst.getOperand(1).getImm() <= 255) && 9956 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9957 !HasWideQualifier) { 9958 // The operands aren't in the same order for tMOVi8... 9959 MCInst TmpInst; 9960 TmpInst.setOpcode(ARM::tMOVi8); 9961 TmpInst.addOperand(Inst.getOperand(0)); 9962 TmpInst.addOperand(Inst.getOperand(4)); 9963 TmpInst.addOperand(Inst.getOperand(1)); 9964 TmpInst.addOperand(Inst.getOperand(2)); 9965 TmpInst.addOperand(Inst.getOperand(3)); 9966 Inst = TmpInst; 9967 return true; 9968 } 9969 break; 9970 9971 case ARM::t2MOVr: 9972 // If we can use the 16-bit encoding and the user didn't explicitly 9973 // request the 32-bit variant, transform it here. 9974 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9975 isARMLowRegister(Inst.getOperand(1).getReg()) && 9976 Inst.getOperand(2).getImm() == ARMCC::AL && 9977 Inst.getOperand(4).getReg() == ARM::CPSR && 9978 !HasWideQualifier) { 9979 // The operands aren't the same for tMOV[S]r... (no cc_out) 9980 MCInst TmpInst; 9981 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 9982 TmpInst.addOperand(Inst.getOperand(0)); 9983 TmpInst.addOperand(Inst.getOperand(1)); 9984 TmpInst.addOperand(Inst.getOperand(2)); 9985 TmpInst.addOperand(Inst.getOperand(3)); 9986 Inst = TmpInst; 9987 return true; 9988 } 9989 break; 9990 9991 case ARM::t2SXTH: 9992 case ARM::t2SXTB: 9993 case ARM::t2UXTH: 9994 case ARM::t2UXTB: 9995 // If we can use the 16-bit encoding and the user didn't explicitly 9996 // request the 32-bit variant, transform it here. 9997 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9998 isARMLowRegister(Inst.getOperand(1).getReg()) && 9999 Inst.getOperand(2).getImm() == 0 && 10000 !HasWideQualifier) { 10001 unsigned NewOpc; 10002 switch (Inst.getOpcode()) { 10003 default: llvm_unreachable("Illegal opcode!"); 10004 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10005 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10006 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10007 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10008 } 10009 // The operands aren't the same for thumb1 (no rotate operand). 10010 MCInst TmpInst; 10011 TmpInst.setOpcode(NewOpc); 10012 TmpInst.addOperand(Inst.getOperand(0)); 10013 TmpInst.addOperand(Inst.getOperand(1)); 10014 TmpInst.addOperand(Inst.getOperand(3)); 10015 TmpInst.addOperand(Inst.getOperand(4)); 10016 Inst = TmpInst; 10017 return true; 10018 } 10019 break; 10020 10021 case ARM::MOVsi: { 10022 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10023 // rrx shifts and asr/lsr of #32 is encoded as 0 10024 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10025 return false; 10026 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10027 // Shifting by zero is accepted as a vanilla 'MOVr' 10028 MCInst TmpInst; 10029 TmpInst.setOpcode(ARM::MOVr); 10030 TmpInst.addOperand(Inst.getOperand(0)); 10031 TmpInst.addOperand(Inst.getOperand(1)); 10032 TmpInst.addOperand(Inst.getOperand(3)); 10033 TmpInst.addOperand(Inst.getOperand(4)); 10034 TmpInst.addOperand(Inst.getOperand(5)); 10035 Inst = TmpInst; 10036 return true; 10037 } 10038 return false; 10039 } 10040 case ARM::ANDrsi: 10041 case ARM::ORRrsi: 10042 case ARM::EORrsi: 10043 case ARM::BICrsi: 10044 case ARM::SUBrsi: 10045 case ARM::ADDrsi: { 10046 unsigned newOpc; 10047 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10048 if (SOpc == ARM_AM::rrx) return false; 10049 switch (Inst.getOpcode()) { 10050 default: llvm_unreachable("unexpected opcode!"); 10051 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10052 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10053 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10054 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10055 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10056 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10057 } 10058 // If the shift is by zero, use the non-shifted instruction definition. 10059 // The exception is for right shifts, where 0 == 32 10060 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10061 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10062 MCInst TmpInst; 10063 TmpInst.setOpcode(newOpc); 10064 TmpInst.addOperand(Inst.getOperand(0)); 10065 TmpInst.addOperand(Inst.getOperand(1)); 10066 TmpInst.addOperand(Inst.getOperand(2)); 10067 TmpInst.addOperand(Inst.getOperand(4)); 10068 TmpInst.addOperand(Inst.getOperand(5)); 10069 TmpInst.addOperand(Inst.getOperand(6)); 10070 Inst = TmpInst; 10071 return true; 10072 } 10073 return false; 10074 } 10075 case ARM::ITasm: 10076 case ARM::t2IT: { 10077 // Set up the IT block state according to the IT instruction we just 10078 // matched. 10079 assert(!inITBlock() && "nested IT blocks?!"); 10080 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10081 Inst.getOperand(1).getImm()); 10082 break; 10083 } 10084 case ARM::t2LSLrr: 10085 case ARM::t2LSRrr: 10086 case ARM::t2ASRrr: 10087 case ARM::t2SBCrr: 10088 case ARM::t2RORrr: 10089 case ARM::t2BICrr: 10090 // Assemblers should use the narrow encodings of these instructions when permissible. 10091 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10092 isARMLowRegister(Inst.getOperand(2).getReg())) && 10093 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10094 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10095 !HasWideQualifier) { 10096 unsigned NewOpc; 10097 switch (Inst.getOpcode()) { 10098 default: llvm_unreachable("unexpected opcode"); 10099 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10100 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10101 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10102 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10103 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10104 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10105 } 10106 MCInst TmpInst; 10107 TmpInst.setOpcode(NewOpc); 10108 TmpInst.addOperand(Inst.getOperand(0)); 10109 TmpInst.addOperand(Inst.getOperand(5)); 10110 TmpInst.addOperand(Inst.getOperand(1)); 10111 TmpInst.addOperand(Inst.getOperand(2)); 10112 TmpInst.addOperand(Inst.getOperand(3)); 10113 TmpInst.addOperand(Inst.getOperand(4)); 10114 Inst = TmpInst; 10115 return true; 10116 } 10117 return false; 10118 10119 case ARM::t2ANDrr: 10120 case ARM::t2EORrr: 10121 case ARM::t2ADCrr: 10122 case ARM::t2ORRrr: 10123 // Assemblers should use the narrow encodings of these instructions when permissible. 10124 // These instructions are special in that they are commutable, so shorter encodings 10125 // are available more often. 10126 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10127 isARMLowRegister(Inst.getOperand(2).getReg())) && 10128 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10129 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10130 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10131 !HasWideQualifier) { 10132 unsigned NewOpc; 10133 switch (Inst.getOpcode()) { 10134 default: llvm_unreachable("unexpected opcode"); 10135 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10136 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10137 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10138 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10139 } 10140 MCInst TmpInst; 10141 TmpInst.setOpcode(NewOpc); 10142 TmpInst.addOperand(Inst.getOperand(0)); 10143 TmpInst.addOperand(Inst.getOperand(5)); 10144 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10145 TmpInst.addOperand(Inst.getOperand(1)); 10146 TmpInst.addOperand(Inst.getOperand(2)); 10147 } else { 10148 TmpInst.addOperand(Inst.getOperand(2)); 10149 TmpInst.addOperand(Inst.getOperand(1)); 10150 } 10151 TmpInst.addOperand(Inst.getOperand(3)); 10152 TmpInst.addOperand(Inst.getOperand(4)); 10153 Inst = TmpInst; 10154 return true; 10155 } 10156 return false; 10157 case ARM::MVE_VPST: 10158 case ARM::MVE_VPTv16i8: 10159 case ARM::MVE_VPTv8i16: 10160 case ARM::MVE_VPTv4i32: 10161 case ARM::MVE_VPTv16u8: 10162 case ARM::MVE_VPTv8u16: 10163 case ARM::MVE_VPTv4u32: 10164 case ARM::MVE_VPTv16s8: 10165 case ARM::MVE_VPTv8s16: 10166 case ARM::MVE_VPTv4s32: 10167 case ARM::MVE_VPTv4f32: 10168 case ARM::MVE_VPTv8f16: 10169 case ARM::MVE_VPTv16i8r: 10170 case ARM::MVE_VPTv8i16r: 10171 case ARM::MVE_VPTv4i32r: 10172 case ARM::MVE_VPTv16u8r: 10173 case ARM::MVE_VPTv8u16r: 10174 case ARM::MVE_VPTv4u32r: 10175 case ARM::MVE_VPTv16s8r: 10176 case ARM::MVE_VPTv8s16r: 10177 case ARM::MVE_VPTv4s32r: 10178 case ARM::MVE_VPTv4f32r: 10179 case ARM::MVE_VPTv8f16r: { 10180 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10181 MCOperand &MO = Inst.getOperand(0); 10182 VPTState.Mask = MO.getImm(); 10183 VPTState.CurPosition = 0; 10184 break; 10185 } 10186 } 10187 return false; 10188 } 10189 10190 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10191 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10192 // suffix depending on whether they're in an IT block or not. 10193 unsigned Opc = Inst.getOpcode(); 10194 const MCInstrDesc &MCID = MII.get(Opc); 10195 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10196 assert(MCID.hasOptionalDef() && 10197 "optionally flag setting instruction missing optional def operand"); 10198 assert(MCID.NumOperands == Inst.getNumOperands() && 10199 "operand count mismatch!"); 10200 // Find the optional-def operand (cc_out). 10201 unsigned OpNo; 10202 for (OpNo = 0; 10203 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10204 ++OpNo) 10205 ; 10206 // If we're parsing Thumb1, reject it completely. 10207 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10208 return Match_RequiresFlagSetting; 10209 // If we're parsing Thumb2, which form is legal depends on whether we're 10210 // in an IT block. 10211 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10212 !inITBlock()) 10213 return Match_RequiresITBlock; 10214 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10215 inITBlock()) 10216 return Match_RequiresNotITBlock; 10217 // LSL with zero immediate is not allowed in an IT block 10218 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10219 return Match_RequiresNotITBlock; 10220 } else if (isThumbOne()) { 10221 // Some high-register supporting Thumb1 encodings only allow both registers 10222 // to be from r0-r7 when in Thumb2. 10223 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10224 isARMLowRegister(Inst.getOperand(1).getReg()) && 10225 isARMLowRegister(Inst.getOperand(2).getReg())) 10226 return Match_RequiresThumb2; 10227 // Others only require ARMv6 or later. 10228 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10229 isARMLowRegister(Inst.getOperand(0).getReg()) && 10230 isARMLowRegister(Inst.getOperand(1).getReg())) 10231 return Match_RequiresV6; 10232 } 10233 10234 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10235 // than the loop below can handle, so it uses the GPRnopc register class and 10236 // we do SP handling here. 10237 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10238 { 10239 // SP as both source and destination is not allowed 10240 if (Inst.getOperand(0).getReg() == ARM::SP && 10241 Inst.getOperand(1).getReg() == ARM::SP) 10242 return Match_RequiresV8; 10243 // When flags-setting SP as either source or destination is not allowed 10244 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10245 (Inst.getOperand(0).getReg() == ARM::SP || 10246 Inst.getOperand(1).getReg() == ARM::SP)) 10247 return Match_RequiresV8; 10248 } 10249 10250 switch (Inst.getOpcode()) { 10251 case ARM::VMRS: 10252 case ARM::VMSR: 10253 case ARM::VMRS_FPCXTS: 10254 case ARM::VMRS_FPCXTNS: 10255 case ARM::VMSR_FPCXTS: 10256 case ARM::VMSR_FPCXTNS: 10257 case ARM::VMRS_FPSCR_NZCVQC: 10258 case ARM::VMSR_FPSCR_NZCVQC: 10259 case ARM::FMSTAT: 10260 case ARM::VMRS_VPR: 10261 case ARM::VMRS_P0: 10262 case ARM::VMSR_VPR: 10263 case ARM::VMSR_P0: 10264 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10265 // ARMv8-A. 10266 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10267 (isThumb() && !hasV8Ops())) 10268 return Match_InvalidOperand; 10269 break; 10270 default: 10271 break; 10272 } 10273 10274 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10275 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10276 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10277 const auto &Op = Inst.getOperand(I); 10278 if (!Op.isReg()) { 10279 // This can happen in awkward cases with tied operands, e.g. a 10280 // writeback load/store with a complex addressing mode in 10281 // which there's an output operand corresponding to the 10282 // updated written-back base register: the Tablegen-generated 10283 // AsmMatcher will have written a placeholder operand to that 10284 // slot in the form of an immediate 0, because it can't 10285 // generate the register part of the complex addressing-mode 10286 // operand ahead of time. 10287 continue; 10288 } 10289 10290 unsigned Reg = Op.getReg(); 10291 if ((Reg == ARM::SP) && !hasV8Ops()) 10292 return Match_RequiresV8; 10293 else if (Reg == ARM::PC) 10294 return Match_InvalidOperand; 10295 } 10296 10297 return Match_Success; 10298 } 10299 10300 namespace llvm { 10301 10302 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10303 return true; // In an assembly source, no need to second-guess 10304 } 10305 10306 } // end namespace llvm 10307 10308 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10309 // the last instruction in the block. 10310 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10311 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10312 10313 // All branch & call instructions terminate IT blocks with the exception of 10314 // SVC. 10315 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10316 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10317 return true; 10318 10319 // Any arithmetic instruction which writes to the PC also terminates the IT 10320 // block. 10321 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10322 return true; 10323 10324 return false; 10325 } 10326 10327 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10328 SmallVectorImpl<NearMissInfo> &NearMisses, 10329 bool MatchingInlineAsm, 10330 bool &EmitInITBlock, 10331 MCStreamer &Out) { 10332 // If we can't use an implicit IT block here, just match as normal. 10333 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10334 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10335 10336 // Try to match the instruction in an extension of the current IT block (if 10337 // there is one). 10338 if (inImplicitITBlock()) { 10339 extendImplicitITBlock(ITState.Cond); 10340 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10341 Match_Success) { 10342 // The match succeded, but we still have to check that the instruction is 10343 // valid in this implicit IT block. 10344 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10345 if (MCID.isPredicable()) { 10346 ARMCC::CondCodes InstCond = 10347 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10348 .getImm(); 10349 ARMCC::CondCodes ITCond = currentITCond(); 10350 if (InstCond == ITCond) { 10351 EmitInITBlock = true; 10352 return Match_Success; 10353 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10354 invertCurrentITCondition(); 10355 EmitInITBlock = true; 10356 return Match_Success; 10357 } 10358 } 10359 } 10360 rewindImplicitITPosition(); 10361 } 10362 10363 // Finish the current IT block, and try to match outside any IT block. 10364 flushPendingInstructions(Out); 10365 unsigned PlainMatchResult = 10366 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10367 if (PlainMatchResult == Match_Success) { 10368 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10369 if (MCID.isPredicable()) { 10370 ARMCC::CondCodes InstCond = 10371 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10372 .getImm(); 10373 // Some forms of the branch instruction have their own condition code 10374 // fields, so can be conditionally executed without an IT block. 10375 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10376 EmitInITBlock = false; 10377 return Match_Success; 10378 } 10379 if (InstCond == ARMCC::AL) { 10380 EmitInITBlock = false; 10381 return Match_Success; 10382 } 10383 } else { 10384 EmitInITBlock = false; 10385 return Match_Success; 10386 } 10387 } 10388 10389 // Try to match in a new IT block. The matcher doesn't check the actual 10390 // condition, so we create an IT block with a dummy condition, and fix it up 10391 // once we know the actual condition. 10392 startImplicitITBlock(); 10393 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10394 Match_Success) { 10395 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10396 if (MCID.isPredicable()) { 10397 ITState.Cond = 10398 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10399 .getImm(); 10400 EmitInITBlock = true; 10401 return Match_Success; 10402 } 10403 } 10404 discardImplicitITBlock(); 10405 10406 // If none of these succeed, return the error we got when trying to match 10407 // outside any IT blocks. 10408 EmitInITBlock = false; 10409 return PlainMatchResult; 10410 } 10411 10412 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10413 unsigned VariantID = 0); 10414 10415 static const char *getSubtargetFeatureName(uint64_t Val); 10416 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10417 OperandVector &Operands, 10418 MCStreamer &Out, uint64_t &ErrorInfo, 10419 bool MatchingInlineAsm) { 10420 MCInst Inst; 10421 unsigned MatchResult; 10422 bool PendConditionalInstruction = false; 10423 10424 SmallVector<NearMissInfo, 4> NearMisses; 10425 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10426 PendConditionalInstruction, Out); 10427 10428 switch (MatchResult) { 10429 case Match_Success: 10430 LLVM_DEBUG(dbgs() << "Parsed as: "; 10431 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10432 dbgs() << "\n"); 10433 10434 // Context sensitive operand constraints aren't handled by the matcher, 10435 // so check them here. 10436 if (validateInstruction(Inst, Operands)) { 10437 // Still progress the IT block, otherwise one wrong condition causes 10438 // nasty cascading errors. 10439 forwardITPosition(); 10440 forwardVPTPosition(); 10441 return true; 10442 } 10443 10444 { // processInstruction() updates inITBlock state, we need to save it away 10445 bool wasInITBlock = inITBlock(); 10446 10447 // Some instructions need post-processing to, for example, tweak which 10448 // encoding is selected. Loop on it while changes happen so the 10449 // individual transformations can chain off each other. E.g., 10450 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10451 while (processInstruction(Inst, Operands, Out)) 10452 LLVM_DEBUG(dbgs() << "Changed to: "; 10453 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10454 dbgs() << "\n"); 10455 10456 // Only after the instruction is fully processed, we can validate it 10457 if (wasInITBlock && hasV8Ops() && isThumb() && 10458 !isV8EligibleForIT(&Inst)) { 10459 Warning(IDLoc, "deprecated instruction in IT block"); 10460 } 10461 } 10462 10463 // Only move forward at the very end so that everything in validate 10464 // and process gets a consistent answer about whether we're in an IT 10465 // block. 10466 forwardITPosition(); 10467 forwardVPTPosition(); 10468 10469 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10470 // doesn't actually encode. 10471 if (Inst.getOpcode() == ARM::ITasm) 10472 return false; 10473 10474 Inst.setLoc(IDLoc); 10475 if (PendConditionalInstruction) { 10476 PendingConditionalInsts.push_back(Inst); 10477 if (isITBlockFull() || isITBlockTerminator(Inst)) 10478 flushPendingInstructions(Out); 10479 } else { 10480 Out.EmitInstruction(Inst, getSTI()); 10481 } 10482 return false; 10483 case Match_NearMisses: 10484 ReportNearMisses(NearMisses, IDLoc, Operands); 10485 return true; 10486 case Match_MnemonicFail: { 10487 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10488 std::string Suggestion = ARMMnemonicSpellCheck( 10489 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10490 return Error(IDLoc, "invalid instruction" + Suggestion, 10491 ((ARMOperand &)*Operands[0]).getLocRange()); 10492 } 10493 } 10494 10495 llvm_unreachable("Implement any new match types added!"); 10496 } 10497 10498 /// parseDirective parses the arm specific directives 10499 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 10500 const MCObjectFileInfo::Environment Format = 10501 getContext().getObjectFileInfo()->getObjectFileType(); 10502 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10503 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 10504 10505 StringRef IDVal = DirectiveID.getIdentifier(); 10506 if (IDVal == ".word") 10507 parseLiteralValues(4, DirectiveID.getLoc()); 10508 else if (IDVal == ".short" || IDVal == ".hword") 10509 parseLiteralValues(2, DirectiveID.getLoc()); 10510 else if (IDVal == ".thumb") 10511 parseDirectiveThumb(DirectiveID.getLoc()); 10512 else if (IDVal == ".arm") 10513 parseDirectiveARM(DirectiveID.getLoc()); 10514 else if (IDVal == ".thumb_func") 10515 parseDirectiveThumbFunc(DirectiveID.getLoc()); 10516 else if (IDVal == ".code") 10517 parseDirectiveCode(DirectiveID.getLoc()); 10518 else if (IDVal == ".syntax") 10519 parseDirectiveSyntax(DirectiveID.getLoc()); 10520 else if (IDVal == ".unreq") 10521 parseDirectiveUnreq(DirectiveID.getLoc()); 10522 else if (IDVal == ".fnend") 10523 parseDirectiveFnEnd(DirectiveID.getLoc()); 10524 else if (IDVal == ".cantunwind") 10525 parseDirectiveCantUnwind(DirectiveID.getLoc()); 10526 else if (IDVal == ".personality") 10527 parseDirectivePersonality(DirectiveID.getLoc()); 10528 else if (IDVal == ".handlerdata") 10529 parseDirectiveHandlerData(DirectiveID.getLoc()); 10530 else if (IDVal == ".setfp") 10531 parseDirectiveSetFP(DirectiveID.getLoc()); 10532 else if (IDVal == ".pad") 10533 parseDirectivePad(DirectiveID.getLoc()); 10534 else if (IDVal == ".save") 10535 parseDirectiveRegSave(DirectiveID.getLoc(), false); 10536 else if (IDVal == ".vsave") 10537 parseDirectiveRegSave(DirectiveID.getLoc(), true); 10538 else if (IDVal == ".ltorg" || IDVal == ".pool") 10539 parseDirectiveLtorg(DirectiveID.getLoc()); 10540 else if (IDVal == ".even") 10541 parseDirectiveEven(DirectiveID.getLoc()); 10542 else if (IDVal == ".personalityindex") 10543 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 10544 else if (IDVal == ".unwind_raw") 10545 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 10546 else if (IDVal == ".movsp") 10547 parseDirectiveMovSP(DirectiveID.getLoc()); 10548 else if (IDVal == ".arch_extension") 10549 parseDirectiveArchExtension(DirectiveID.getLoc()); 10550 else if (IDVal == ".align") 10551 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 10552 else if (IDVal == ".thumb_set") 10553 parseDirectiveThumbSet(DirectiveID.getLoc()); 10554 else if (IDVal == ".inst") 10555 parseDirectiveInst(DirectiveID.getLoc()); 10556 else if (IDVal == ".inst.n") 10557 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 10558 else if (IDVal == ".inst.w") 10559 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 10560 else if (!IsMachO && !IsCOFF) { 10561 if (IDVal == ".arch") 10562 parseDirectiveArch(DirectiveID.getLoc()); 10563 else if (IDVal == ".cpu") 10564 parseDirectiveCPU(DirectiveID.getLoc()); 10565 else if (IDVal == ".eabi_attribute") 10566 parseDirectiveEabiAttr(DirectiveID.getLoc()); 10567 else if (IDVal == ".fpu") 10568 parseDirectiveFPU(DirectiveID.getLoc()); 10569 else if (IDVal == ".fnstart") 10570 parseDirectiveFnStart(DirectiveID.getLoc()); 10571 else if (IDVal == ".object_arch") 10572 parseDirectiveObjectArch(DirectiveID.getLoc()); 10573 else if (IDVal == ".tlsdescseq") 10574 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 10575 else 10576 return true; 10577 } else 10578 return true; 10579 return false; 10580 } 10581 10582 /// parseLiteralValues 10583 /// ::= .hword expression [, expression]* 10584 /// ::= .short expression [, expression]* 10585 /// ::= .word expression [, expression]* 10586 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 10587 auto parseOne = [&]() -> bool { 10588 const MCExpr *Value; 10589 if (getParser().parseExpression(Value)) 10590 return true; 10591 getParser().getStreamer().EmitValue(Value, Size, L); 10592 return false; 10593 }; 10594 return (parseMany(parseOne)); 10595 } 10596 10597 /// parseDirectiveThumb 10598 /// ::= .thumb 10599 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 10600 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10601 check(!hasThumb(), L, "target does not support Thumb mode")) 10602 return true; 10603 10604 if (!isThumb()) 10605 SwitchMode(); 10606 10607 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 10608 return false; 10609 } 10610 10611 /// parseDirectiveARM 10612 /// ::= .arm 10613 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 10614 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10615 check(!hasARM(), L, "target does not support ARM mode")) 10616 return true; 10617 10618 if (isThumb()) 10619 SwitchMode(); 10620 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 10621 return false; 10622 } 10623 10624 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 10625 // We need to flush the current implicit IT block on a label, because it is 10626 // not legal to branch into an IT block. 10627 flushPendingInstructions(getStreamer()); 10628 } 10629 10630 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 10631 if (NextSymbolIsThumb) { 10632 getParser().getStreamer().EmitThumbFunc(Symbol); 10633 NextSymbolIsThumb = false; 10634 } 10635 } 10636 10637 /// parseDirectiveThumbFunc 10638 /// ::= .thumbfunc symbol_name 10639 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 10640 MCAsmParser &Parser = getParser(); 10641 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 10642 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10643 10644 // Darwin asm has (optionally) function name after .thumb_func direction 10645 // ELF doesn't 10646 10647 if (IsMachO) { 10648 if (Parser.getTok().is(AsmToken::Identifier) || 10649 Parser.getTok().is(AsmToken::String)) { 10650 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 10651 Parser.getTok().getIdentifier()); 10652 getParser().getStreamer().EmitThumbFunc(Func); 10653 Parser.Lex(); 10654 if (parseToken(AsmToken::EndOfStatement, 10655 "unexpected token in '.thumb_func' directive")) 10656 return true; 10657 return false; 10658 } 10659 } 10660 10661 if (parseToken(AsmToken::EndOfStatement, 10662 "unexpected token in '.thumb_func' directive")) 10663 return true; 10664 10665 NextSymbolIsThumb = true; 10666 return false; 10667 } 10668 10669 /// parseDirectiveSyntax 10670 /// ::= .syntax unified | divided 10671 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 10672 MCAsmParser &Parser = getParser(); 10673 const AsmToken &Tok = Parser.getTok(); 10674 if (Tok.isNot(AsmToken::Identifier)) { 10675 Error(L, "unexpected token in .syntax directive"); 10676 return false; 10677 } 10678 10679 StringRef Mode = Tok.getString(); 10680 Parser.Lex(); 10681 if (check(Mode == "divided" || Mode == "DIVIDED", L, 10682 "'.syntax divided' arm assembly not supported") || 10683 check(Mode != "unified" && Mode != "UNIFIED", L, 10684 "unrecognized syntax mode in .syntax directive") || 10685 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10686 return true; 10687 10688 // TODO tell the MC streamer the mode 10689 // getParser().getStreamer().Emit???(); 10690 return false; 10691 } 10692 10693 /// parseDirectiveCode 10694 /// ::= .code 16 | 32 10695 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 10696 MCAsmParser &Parser = getParser(); 10697 const AsmToken &Tok = Parser.getTok(); 10698 if (Tok.isNot(AsmToken::Integer)) 10699 return Error(L, "unexpected token in .code directive"); 10700 int64_t Val = Parser.getTok().getIntVal(); 10701 if (Val != 16 && Val != 32) { 10702 Error(L, "invalid operand to .code directive"); 10703 return false; 10704 } 10705 Parser.Lex(); 10706 10707 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10708 return true; 10709 10710 if (Val == 16) { 10711 if (!hasThumb()) 10712 return Error(L, "target does not support Thumb mode"); 10713 10714 if (!isThumb()) 10715 SwitchMode(); 10716 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 10717 } else { 10718 if (!hasARM()) 10719 return Error(L, "target does not support ARM mode"); 10720 10721 if (isThumb()) 10722 SwitchMode(); 10723 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 10724 } 10725 10726 return false; 10727 } 10728 10729 /// parseDirectiveReq 10730 /// ::= name .req registername 10731 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 10732 MCAsmParser &Parser = getParser(); 10733 Parser.Lex(); // Eat the '.req' token. 10734 unsigned Reg; 10735 SMLoc SRegLoc, ERegLoc; 10736 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 10737 "register name expected") || 10738 parseToken(AsmToken::EndOfStatement, 10739 "unexpected input in .req directive.")) 10740 return true; 10741 10742 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 10743 return Error(SRegLoc, 10744 "redefinition of '" + Name + "' does not match original."); 10745 10746 return false; 10747 } 10748 10749 /// parseDirectiveUneq 10750 /// ::= .unreq registername 10751 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 10752 MCAsmParser &Parser = getParser(); 10753 if (Parser.getTok().isNot(AsmToken::Identifier)) 10754 return Error(L, "unexpected input in .unreq directive."); 10755 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 10756 Parser.Lex(); // Eat the identifier. 10757 if (parseToken(AsmToken::EndOfStatement, 10758 "unexpected input in '.unreq' directive")) 10759 return true; 10760 return false; 10761 } 10762 10763 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 10764 // before, if supported by the new target, or emit mapping symbols for the mode 10765 // switch. 10766 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 10767 if (WasThumb != isThumb()) { 10768 if (WasThumb && hasThumb()) { 10769 // Stay in Thumb mode 10770 SwitchMode(); 10771 } else if (!WasThumb && hasARM()) { 10772 // Stay in ARM mode 10773 SwitchMode(); 10774 } else { 10775 // Mode switch forced, because the new arch doesn't support the old mode. 10776 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 10777 : MCAF_Code32); 10778 // Warn about the implcit mode switch. GAS does not switch modes here, 10779 // but instead stays in the old mode, reporting an error on any following 10780 // instructions as the mode does not exist on the target. 10781 Warning(Loc, Twine("new target does not support ") + 10782 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 10783 (!WasThumb ? "thumb" : "arm") + " mode"); 10784 } 10785 } 10786 } 10787 10788 /// parseDirectiveArch 10789 /// ::= .arch token 10790 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 10791 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 10792 ARM::ArchKind ID = ARM::parseArch(Arch); 10793 10794 if (ID == ARM::ArchKind::INVALID) 10795 return Error(L, "Unknown arch name"); 10796 10797 bool WasThumb = isThumb(); 10798 Triple T; 10799 MCSubtargetInfo &STI = copySTI(); 10800 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 10801 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10802 FixModeAfterArchChange(WasThumb, L); 10803 10804 getTargetStreamer().emitArch(ID); 10805 return false; 10806 } 10807 10808 /// parseDirectiveEabiAttr 10809 /// ::= .eabi_attribute int, int [, "str"] 10810 /// ::= .eabi_attribute Tag_name, int [, "str"] 10811 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 10812 MCAsmParser &Parser = getParser(); 10813 int64_t Tag; 10814 SMLoc TagLoc; 10815 TagLoc = Parser.getTok().getLoc(); 10816 if (Parser.getTok().is(AsmToken::Identifier)) { 10817 StringRef Name = Parser.getTok().getIdentifier(); 10818 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 10819 if (Tag == -1) { 10820 Error(TagLoc, "attribute name not recognised: " + Name); 10821 return false; 10822 } 10823 Parser.Lex(); 10824 } else { 10825 const MCExpr *AttrExpr; 10826 10827 TagLoc = Parser.getTok().getLoc(); 10828 if (Parser.parseExpression(AttrExpr)) 10829 return true; 10830 10831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 10832 if (check(!CE, TagLoc, "expected numeric constant")) 10833 return true; 10834 10835 Tag = CE->getValue(); 10836 } 10837 10838 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10839 return true; 10840 10841 StringRef StringValue = ""; 10842 bool IsStringValue = false; 10843 10844 int64_t IntegerValue = 0; 10845 bool IsIntegerValue = false; 10846 10847 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 10848 IsStringValue = true; 10849 else if (Tag == ARMBuildAttrs::compatibility) { 10850 IsStringValue = true; 10851 IsIntegerValue = true; 10852 } else if (Tag < 32 || Tag % 2 == 0) 10853 IsIntegerValue = true; 10854 else if (Tag % 2 == 1) 10855 IsStringValue = true; 10856 else 10857 llvm_unreachable("invalid tag type"); 10858 10859 if (IsIntegerValue) { 10860 const MCExpr *ValueExpr; 10861 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 10862 if (Parser.parseExpression(ValueExpr)) 10863 return true; 10864 10865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 10866 if (!CE) 10867 return Error(ValueExprLoc, "expected numeric constant"); 10868 IntegerValue = CE->getValue(); 10869 } 10870 10871 if (Tag == ARMBuildAttrs::compatibility) { 10872 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10873 return true; 10874 } 10875 10876 if (IsStringValue) { 10877 if (Parser.getTok().isNot(AsmToken::String)) 10878 return Error(Parser.getTok().getLoc(), "bad string constant"); 10879 10880 StringValue = Parser.getTok().getStringContents(); 10881 Parser.Lex(); 10882 } 10883 10884 if (Parser.parseToken(AsmToken::EndOfStatement, 10885 "unexpected token in '.eabi_attribute' directive")) 10886 return true; 10887 10888 if (IsIntegerValue && IsStringValue) { 10889 assert(Tag == ARMBuildAttrs::compatibility); 10890 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 10891 } else if (IsIntegerValue) 10892 getTargetStreamer().emitAttribute(Tag, IntegerValue); 10893 else if (IsStringValue) 10894 getTargetStreamer().emitTextAttribute(Tag, StringValue); 10895 return false; 10896 } 10897 10898 /// parseDirectiveCPU 10899 /// ::= .cpu str 10900 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 10901 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 10902 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 10903 10904 // FIXME: This is using table-gen data, but should be moved to 10905 // ARMTargetParser once that is table-gen'd. 10906 if (!getSTI().isCPUStringValid(CPU)) 10907 return Error(L, "Unknown CPU name"); 10908 10909 bool WasThumb = isThumb(); 10910 MCSubtargetInfo &STI = copySTI(); 10911 STI.setDefaultFeatures(CPU, ""); 10912 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10913 FixModeAfterArchChange(WasThumb, L); 10914 10915 return false; 10916 } 10917 10918 /// parseDirectiveFPU 10919 /// ::= .fpu str 10920 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 10921 SMLoc FPUNameLoc = getTok().getLoc(); 10922 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 10923 10924 unsigned ID = ARM::parseFPU(FPU); 10925 std::vector<StringRef> Features; 10926 if (!ARM::getFPUFeatures(ID, Features)) 10927 return Error(FPUNameLoc, "Unknown FPU name"); 10928 10929 MCSubtargetInfo &STI = copySTI(); 10930 for (auto Feature : Features) 10931 STI.ApplyFeatureFlag(Feature); 10932 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10933 10934 getTargetStreamer().emitFPU(ID); 10935 return false; 10936 } 10937 10938 /// parseDirectiveFnStart 10939 /// ::= .fnstart 10940 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 10941 if (parseToken(AsmToken::EndOfStatement, 10942 "unexpected token in '.fnstart' directive")) 10943 return true; 10944 10945 if (UC.hasFnStart()) { 10946 Error(L, ".fnstart starts before the end of previous one"); 10947 UC.emitFnStartLocNotes(); 10948 return true; 10949 } 10950 10951 // Reset the unwind directives parser state 10952 UC.reset(); 10953 10954 getTargetStreamer().emitFnStart(); 10955 10956 UC.recordFnStart(L); 10957 return false; 10958 } 10959 10960 /// parseDirectiveFnEnd 10961 /// ::= .fnend 10962 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 10963 if (parseToken(AsmToken::EndOfStatement, 10964 "unexpected token in '.fnend' directive")) 10965 return true; 10966 // Check the ordering of unwind directives 10967 if (!UC.hasFnStart()) 10968 return Error(L, ".fnstart must precede .fnend directive"); 10969 10970 // Reset the unwind directives parser state 10971 getTargetStreamer().emitFnEnd(); 10972 10973 UC.reset(); 10974 return false; 10975 } 10976 10977 /// parseDirectiveCantUnwind 10978 /// ::= .cantunwind 10979 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 10980 if (parseToken(AsmToken::EndOfStatement, 10981 "unexpected token in '.cantunwind' directive")) 10982 return true; 10983 10984 UC.recordCantUnwind(L); 10985 // Check the ordering of unwind directives 10986 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 10987 return true; 10988 10989 if (UC.hasHandlerData()) { 10990 Error(L, ".cantunwind can't be used with .handlerdata directive"); 10991 UC.emitHandlerDataLocNotes(); 10992 return true; 10993 } 10994 if (UC.hasPersonality()) { 10995 Error(L, ".cantunwind can't be used with .personality directive"); 10996 UC.emitPersonalityLocNotes(); 10997 return true; 10998 } 10999 11000 getTargetStreamer().emitCantUnwind(); 11001 return false; 11002 } 11003 11004 /// parseDirectivePersonality 11005 /// ::= .personality name 11006 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11007 MCAsmParser &Parser = getParser(); 11008 bool HasExistingPersonality = UC.hasPersonality(); 11009 11010 // Parse the name of the personality routine 11011 if (Parser.getTok().isNot(AsmToken::Identifier)) 11012 return Error(L, "unexpected input in .personality directive."); 11013 StringRef Name(Parser.getTok().getIdentifier()); 11014 Parser.Lex(); 11015 11016 if (parseToken(AsmToken::EndOfStatement, 11017 "unexpected token in '.personality' directive")) 11018 return true; 11019 11020 UC.recordPersonality(L); 11021 11022 // Check the ordering of unwind directives 11023 if (!UC.hasFnStart()) 11024 return Error(L, ".fnstart must precede .personality directive"); 11025 if (UC.cantUnwind()) { 11026 Error(L, ".personality can't be used with .cantunwind directive"); 11027 UC.emitCantUnwindLocNotes(); 11028 return true; 11029 } 11030 if (UC.hasHandlerData()) { 11031 Error(L, ".personality must precede .handlerdata directive"); 11032 UC.emitHandlerDataLocNotes(); 11033 return true; 11034 } 11035 if (HasExistingPersonality) { 11036 Error(L, "multiple personality directives"); 11037 UC.emitPersonalityLocNotes(); 11038 return true; 11039 } 11040 11041 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11042 getTargetStreamer().emitPersonality(PR); 11043 return false; 11044 } 11045 11046 /// parseDirectiveHandlerData 11047 /// ::= .handlerdata 11048 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11049 if (parseToken(AsmToken::EndOfStatement, 11050 "unexpected token in '.handlerdata' directive")) 11051 return true; 11052 11053 UC.recordHandlerData(L); 11054 // Check the ordering of unwind directives 11055 if (!UC.hasFnStart()) 11056 return Error(L, ".fnstart must precede .personality directive"); 11057 if (UC.cantUnwind()) { 11058 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11059 UC.emitCantUnwindLocNotes(); 11060 return true; 11061 } 11062 11063 getTargetStreamer().emitHandlerData(); 11064 return false; 11065 } 11066 11067 /// parseDirectiveSetFP 11068 /// ::= .setfp fpreg, spreg [, offset] 11069 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11070 MCAsmParser &Parser = getParser(); 11071 // Check the ordering of unwind directives 11072 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11073 check(UC.hasHandlerData(), L, 11074 ".setfp must precede .handlerdata directive")) 11075 return true; 11076 11077 // Parse fpreg 11078 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11079 int FPReg = tryParseRegister(); 11080 11081 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11082 Parser.parseToken(AsmToken::Comma, "comma expected")) 11083 return true; 11084 11085 // Parse spreg 11086 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11087 int SPReg = tryParseRegister(); 11088 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11089 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11090 "register should be either $sp or the latest fp register")) 11091 return true; 11092 11093 // Update the frame pointer register 11094 UC.saveFPReg(FPReg); 11095 11096 // Parse offset 11097 int64_t Offset = 0; 11098 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11099 if (Parser.getTok().isNot(AsmToken::Hash) && 11100 Parser.getTok().isNot(AsmToken::Dollar)) 11101 return Error(Parser.getTok().getLoc(), "'#' expected"); 11102 Parser.Lex(); // skip hash token. 11103 11104 const MCExpr *OffsetExpr; 11105 SMLoc ExLoc = Parser.getTok().getLoc(); 11106 SMLoc EndLoc; 11107 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11108 return Error(ExLoc, "malformed setfp offset"); 11109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11110 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11111 return true; 11112 Offset = CE->getValue(); 11113 } 11114 11115 if (Parser.parseToken(AsmToken::EndOfStatement)) 11116 return true; 11117 11118 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11119 static_cast<unsigned>(SPReg), Offset); 11120 return false; 11121 } 11122 11123 /// parseDirective 11124 /// ::= .pad offset 11125 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11126 MCAsmParser &Parser = getParser(); 11127 // Check the ordering of unwind directives 11128 if (!UC.hasFnStart()) 11129 return Error(L, ".fnstart must precede .pad directive"); 11130 if (UC.hasHandlerData()) 11131 return Error(L, ".pad must precede .handlerdata directive"); 11132 11133 // Parse the offset 11134 if (Parser.getTok().isNot(AsmToken::Hash) && 11135 Parser.getTok().isNot(AsmToken::Dollar)) 11136 return Error(Parser.getTok().getLoc(), "'#' expected"); 11137 Parser.Lex(); // skip hash token. 11138 11139 const MCExpr *OffsetExpr; 11140 SMLoc ExLoc = Parser.getTok().getLoc(); 11141 SMLoc EndLoc; 11142 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11143 return Error(ExLoc, "malformed pad offset"); 11144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11145 if (!CE) 11146 return Error(ExLoc, "pad offset must be an immediate"); 11147 11148 if (parseToken(AsmToken::EndOfStatement, 11149 "unexpected token in '.pad' directive")) 11150 return true; 11151 11152 getTargetStreamer().emitPad(CE->getValue()); 11153 return false; 11154 } 11155 11156 /// parseDirectiveRegSave 11157 /// ::= .save { registers } 11158 /// ::= .vsave { registers } 11159 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11160 // Check the ordering of unwind directives 11161 if (!UC.hasFnStart()) 11162 return Error(L, ".fnstart must precede .save or .vsave directives"); 11163 if (UC.hasHandlerData()) 11164 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11165 11166 // RAII object to make sure parsed operands are deleted. 11167 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11168 11169 // Parse the register list 11170 if (parseRegisterList(Operands) || 11171 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11172 return true; 11173 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11174 if (!IsVector && !Op.isRegList()) 11175 return Error(L, ".save expects GPR registers"); 11176 if (IsVector && !Op.isDPRRegList()) 11177 return Error(L, ".vsave expects DPR registers"); 11178 11179 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11180 return false; 11181 } 11182 11183 /// parseDirectiveInst 11184 /// ::= .inst opcode [, ...] 11185 /// ::= .inst.n opcode [, ...] 11186 /// ::= .inst.w opcode [, ...] 11187 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11188 int Width = 4; 11189 11190 if (isThumb()) { 11191 switch (Suffix) { 11192 case 'n': 11193 Width = 2; 11194 break; 11195 case 'w': 11196 break; 11197 default: 11198 Width = 0; 11199 break; 11200 } 11201 } else { 11202 if (Suffix) 11203 return Error(Loc, "width suffixes are invalid in ARM mode"); 11204 } 11205 11206 auto parseOne = [&]() -> bool { 11207 const MCExpr *Expr; 11208 if (getParser().parseExpression(Expr)) 11209 return true; 11210 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11211 if (!Value) { 11212 return Error(Loc, "expected constant expression"); 11213 } 11214 11215 char CurSuffix = Suffix; 11216 switch (Width) { 11217 case 2: 11218 if (Value->getValue() > 0xffff) 11219 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11220 break; 11221 case 4: 11222 if (Value->getValue() > 0xffffffff) 11223 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11224 " operand is too big"); 11225 break; 11226 case 0: 11227 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11228 if (Value->getValue() < 0xe800) 11229 CurSuffix = 'n'; 11230 else if (Value->getValue() >= 0xe8000000) 11231 CurSuffix = 'w'; 11232 else 11233 return Error(Loc, "cannot determine Thumb instruction size, " 11234 "use inst.n/inst.w instead"); 11235 break; 11236 default: 11237 llvm_unreachable("only supported widths are 2 and 4"); 11238 } 11239 11240 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11241 return false; 11242 }; 11243 11244 if (parseOptionalToken(AsmToken::EndOfStatement)) 11245 return Error(Loc, "expected expression following directive"); 11246 if (parseMany(parseOne)) 11247 return true; 11248 return false; 11249 } 11250 11251 /// parseDirectiveLtorg 11252 /// ::= .ltorg | .pool 11253 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11254 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11255 return true; 11256 getTargetStreamer().emitCurrentConstantPool(); 11257 return false; 11258 } 11259 11260 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11261 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11262 11263 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11264 return true; 11265 11266 if (!Section) { 11267 getStreamer().InitSections(false); 11268 Section = getStreamer().getCurrentSectionOnly(); 11269 } 11270 11271 assert(Section && "must have section to emit alignment"); 11272 if (Section->UseCodeAlign()) 11273 getStreamer().EmitCodeAlignment(2); 11274 else 11275 getStreamer().EmitValueToAlignment(2); 11276 11277 return false; 11278 } 11279 11280 /// parseDirectivePersonalityIndex 11281 /// ::= .personalityindex index 11282 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11283 MCAsmParser &Parser = getParser(); 11284 bool HasExistingPersonality = UC.hasPersonality(); 11285 11286 const MCExpr *IndexExpression; 11287 SMLoc IndexLoc = Parser.getTok().getLoc(); 11288 if (Parser.parseExpression(IndexExpression) || 11289 parseToken(AsmToken::EndOfStatement, 11290 "unexpected token in '.personalityindex' directive")) { 11291 return true; 11292 } 11293 11294 UC.recordPersonalityIndex(L); 11295 11296 if (!UC.hasFnStart()) { 11297 return Error(L, ".fnstart must precede .personalityindex directive"); 11298 } 11299 if (UC.cantUnwind()) { 11300 Error(L, ".personalityindex cannot be used with .cantunwind"); 11301 UC.emitCantUnwindLocNotes(); 11302 return true; 11303 } 11304 if (UC.hasHandlerData()) { 11305 Error(L, ".personalityindex must precede .handlerdata directive"); 11306 UC.emitHandlerDataLocNotes(); 11307 return true; 11308 } 11309 if (HasExistingPersonality) { 11310 Error(L, "multiple personality directives"); 11311 UC.emitPersonalityLocNotes(); 11312 return true; 11313 } 11314 11315 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11316 if (!CE) 11317 return Error(IndexLoc, "index must be a constant number"); 11318 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11319 return Error(IndexLoc, 11320 "personality routine index should be in range [0-3]"); 11321 11322 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11323 return false; 11324 } 11325 11326 /// parseDirectiveUnwindRaw 11327 /// ::= .unwind_raw offset, opcode [, opcode...] 11328 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11329 MCAsmParser &Parser = getParser(); 11330 int64_t StackOffset; 11331 const MCExpr *OffsetExpr; 11332 SMLoc OffsetLoc = getLexer().getLoc(); 11333 11334 if (!UC.hasFnStart()) 11335 return Error(L, ".fnstart must precede .unwind_raw directives"); 11336 if (getParser().parseExpression(OffsetExpr)) 11337 return Error(OffsetLoc, "expected expression"); 11338 11339 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11340 if (!CE) 11341 return Error(OffsetLoc, "offset must be a constant"); 11342 11343 StackOffset = CE->getValue(); 11344 11345 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11346 return true; 11347 11348 SmallVector<uint8_t, 16> Opcodes; 11349 11350 auto parseOne = [&]() -> bool { 11351 const MCExpr *OE; 11352 SMLoc OpcodeLoc = getLexer().getLoc(); 11353 if (check(getLexer().is(AsmToken::EndOfStatement) || 11354 Parser.parseExpression(OE), 11355 OpcodeLoc, "expected opcode expression")) 11356 return true; 11357 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11358 if (!OC) 11359 return Error(OpcodeLoc, "opcode value must be a constant"); 11360 const int64_t Opcode = OC->getValue(); 11361 if (Opcode & ~0xff) 11362 return Error(OpcodeLoc, "invalid opcode"); 11363 Opcodes.push_back(uint8_t(Opcode)); 11364 return false; 11365 }; 11366 11367 // Must have at least 1 element 11368 SMLoc OpcodeLoc = getLexer().getLoc(); 11369 if (parseOptionalToken(AsmToken::EndOfStatement)) 11370 return Error(OpcodeLoc, "expected opcode expression"); 11371 if (parseMany(parseOne)) 11372 return true; 11373 11374 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11375 return false; 11376 } 11377 11378 /// parseDirectiveTLSDescSeq 11379 /// ::= .tlsdescseq tls-variable 11380 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11381 MCAsmParser &Parser = getParser(); 11382 11383 if (getLexer().isNot(AsmToken::Identifier)) 11384 return TokError("expected variable after '.tlsdescseq' directive"); 11385 11386 const MCSymbolRefExpr *SRE = 11387 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11388 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11389 Lex(); 11390 11391 if (parseToken(AsmToken::EndOfStatement, 11392 "unexpected token in '.tlsdescseq' directive")) 11393 return true; 11394 11395 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11396 return false; 11397 } 11398 11399 /// parseDirectiveMovSP 11400 /// ::= .movsp reg [, #offset] 11401 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11402 MCAsmParser &Parser = getParser(); 11403 if (!UC.hasFnStart()) 11404 return Error(L, ".fnstart must precede .movsp directives"); 11405 if (UC.getFPReg() != ARM::SP) 11406 return Error(L, "unexpected .movsp directive"); 11407 11408 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11409 int SPReg = tryParseRegister(); 11410 if (SPReg == -1) 11411 return Error(SPRegLoc, "register expected"); 11412 if (SPReg == ARM::SP || SPReg == ARM::PC) 11413 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11414 11415 int64_t Offset = 0; 11416 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11417 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11418 return true; 11419 11420 const MCExpr *OffsetExpr; 11421 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11422 11423 if (Parser.parseExpression(OffsetExpr)) 11424 return Error(OffsetLoc, "malformed offset expression"); 11425 11426 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11427 if (!CE) 11428 return Error(OffsetLoc, "offset must be an immediate constant"); 11429 11430 Offset = CE->getValue(); 11431 } 11432 11433 if (parseToken(AsmToken::EndOfStatement, 11434 "unexpected token in '.movsp' directive")) 11435 return true; 11436 11437 getTargetStreamer().emitMovSP(SPReg, Offset); 11438 UC.saveFPReg(SPReg); 11439 11440 return false; 11441 } 11442 11443 /// parseDirectiveObjectArch 11444 /// ::= .object_arch name 11445 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11446 MCAsmParser &Parser = getParser(); 11447 if (getLexer().isNot(AsmToken::Identifier)) 11448 return Error(getLexer().getLoc(), "unexpected token"); 11449 11450 StringRef Arch = Parser.getTok().getString(); 11451 SMLoc ArchLoc = Parser.getTok().getLoc(); 11452 Lex(); 11453 11454 ARM::ArchKind ID = ARM::parseArch(Arch); 11455 11456 if (ID == ARM::ArchKind::INVALID) 11457 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11458 if (parseToken(AsmToken::EndOfStatement)) 11459 return true; 11460 11461 getTargetStreamer().emitObjectArch(ID); 11462 return false; 11463 } 11464 11465 /// parseDirectiveAlign 11466 /// ::= .align 11467 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11468 // NOTE: if this is not the end of the statement, fall back to the target 11469 // agnostic handling for this directive which will correctly handle this. 11470 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11471 // '.align' is target specifically handled to mean 2**2 byte alignment. 11472 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11473 assert(Section && "must have section to emit alignment"); 11474 if (Section->UseCodeAlign()) 11475 getStreamer().EmitCodeAlignment(4, 0); 11476 else 11477 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 11478 return false; 11479 } 11480 return true; 11481 } 11482 11483 /// parseDirectiveThumbSet 11484 /// ::= .thumb_set name, value 11485 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11486 MCAsmParser &Parser = getParser(); 11487 11488 StringRef Name; 11489 if (check(Parser.parseIdentifier(Name), 11490 "expected identifier after '.thumb_set'") || 11491 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 11492 return true; 11493 11494 MCSymbol *Sym; 11495 const MCExpr *Value; 11496 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 11497 Parser, Sym, Value)) 11498 return true; 11499 11500 getTargetStreamer().emitThumbSet(Sym, Value); 11501 return false; 11502 } 11503 11504 /// Force static initialization. 11505 extern "C" void LLVMInitializeARMAsmParser() { 11506 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 11507 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 11508 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 11509 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 11510 } 11511 11512 #define GET_REGISTER_MATCHER 11513 #define GET_SUBTARGET_FEATURE_NAME 11514 #define GET_MATCHER_IMPLEMENTATION 11515 #define GET_MNEMONIC_SPELL_CHECKER 11516 #include "ARMGenAsmMatcher.inc" 11517 11518 // Some diagnostics need to vary with subtarget features, so they are handled 11519 // here. For example, the DPR class has either 16 or 32 registers, depending 11520 // on the FPU available. 11521 const char * 11522 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 11523 switch (MatchError) { 11524 // rGPR contains sp starting with ARMv8. 11525 case Match_rGPR: 11526 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 11527 : "operand must be a register in range [r0, r12] or r14"; 11528 // DPR contains 16 registers for some FPUs, and 32 for others. 11529 case Match_DPR: 11530 return hasD32() ? "operand must be a register in range [d0, d31]" 11531 : "operand must be a register in range [d0, d15]"; 11532 case Match_DPR_RegList: 11533 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 11534 : "operand must be a list of registers in range [d0, d15]"; 11535 11536 // For all other diags, use the static string from tablegen. 11537 default: 11538 return getMatchKindDiag(MatchError); 11539 } 11540 } 11541 11542 // Process the list of near-misses, throwing away ones we don't want to report 11543 // to the user, and converting the rest to a source location and string that 11544 // should be reported. 11545 void 11546 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 11547 SmallVectorImpl<NearMissMessage> &NearMissesOut, 11548 SMLoc IDLoc, OperandVector &Operands) { 11549 // TODO: If operand didn't match, sub in a dummy one and run target 11550 // predicate, so that we can avoid reporting near-misses that are invalid? 11551 // TODO: Many operand types dont have SuperClasses set, so we report 11552 // redundant ones. 11553 // TODO: Some operands are superclasses of registers (e.g. 11554 // MCK_RegShiftedImm), we don't have any way to represent that currently. 11555 // TODO: This is not all ARM-specific, can some of it be factored out? 11556 11557 // Record some information about near-misses that we have already seen, so 11558 // that we can avoid reporting redundant ones. For example, if there are 11559 // variants of an instruction that take 8- and 16-bit immediates, we want 11560 // to only report the widest one. 11561 std::multimap<unsigned, unsigned> OperandMissesSeen; 11562 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 11563 bool ReportedTooFewOperands = false; 11564 11565 // Process the near-misses in reverse order, so that we see more general ones 11566 // first, and so can avoid emitting more specific ones. 11567 for (NearMissInfo &I : reverse(NearMissesIn)) { 11568 switch (I.getKind()) { 11569 case NearMissInfo::NearMissOperand: { 11570 SMLoc OperandLoc = 11571 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 11572 const char *OperandDiag = 11573 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 11574 11575 // If we have already emitted a message for a superclass, don't also report 11576 // the sub-class. We consider all operand classes that we don't have a 11577 // specialised diagnostic for to be equal for the propose of this check, 11578 // so that we don't report the generic error multiple times on the same 11579 // operand. 11580 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 11581 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 11582 if (std::any_of(PrevReports.first, PrevReports.second, 11583 [DupCheckMatchClass]( 11584 const std::pair<unsigned, unsigned> Pair) { 11585 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 11586 return Pair.second == DupCheckMatchClass; 11587 else 11588 return isSubclass((MatchClassKind)DupCheckMatchClass, 11589 (MatchClassKind)Pair.second); 11590 })) 11591 break; 11592 OperandMissesSeen.insert( 11593 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 11594 11595 NearMissMessage Message; 11596 Message.Loc = OperandLoc; 11597 if (OperandDiag) { 11598 Message.Message = OperandDiag; 11599 } else if (I.getOperandClass() == InvalidMatchClass) { 11600 Message.Message = "too many operands for instruction"; 11601 } else { 11602 Message.Message = "invalid operand for instruction"; 11603 LLVM_DEBUG( 11604 dbgs() << "Missing diagnostic string for operand class " 11605 << getMatchClassName((MatchClassKind)I.getOperandClass()) 11606 << I.getOperandClass() << ", error " << I.getOperandError() 11607 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 11608 } 11609 NearMissesOut.emplace_back(Message); 11610 break; 11611 } 11612 case NearMissInfo::NearMissFeature: { 11613 const FeatureBitset &MissingFeatures = I.getFeatures(); 11614 // Don't report the same set of features twice. 11615 if (FeatureMissesSeen.count(MissingFeatures)) 11616 break; 11617 FeatureMissesSeen.insert(MissingFeatures); 11618 11619 // Special case: don't report a feature set which includes arm-mode for 11620 // targets that don't have ARM mode. 11621 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 11622 break; 11623 // Don't report any near-misses that both require switching instruction 11624 // set, and adding other subtarget features. 11625 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 11626 MissingFeatures.count() > 1) 11627 break; 11628 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 11629 MissingFeatures.count() > 1) 11630 break; 11631 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 11632 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 11633 Feature_IsThumbBit})).any()) 11634 break; 11635 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 11636 break; 11637 11638 NearMissMessage Message; 11639 Message.Loc = IDLoc; 11640 raw_svector_ostream OS(Message.Message); 11641 11642 OS << "instruction requires:"; 11643 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 11644 if (MissingFeatures.test(i)) 11645 OS << ' ' << getSubtargetFeatureName(i); 11646 11647 NearMissesOut.emplace_back(Message); 11648 11649 break; 11650 } 11651 case NearMissInfo::NearMissPredicate: { 11652 NearMissMessage Message; 11653 Message.Loc = IDLoc; 11654 switch (I.getPredicateError()) { 11655 case Match_RequiresNotITBlock: 11656 Message.Message = "flag setting instruction only valid outside IT block"; 11657 break; 11658 case Match_RequiresITBlock: 11659 Message.Message = "instruction only valid inside IT block"; 11660 break; 11661 case Match_RequiresV6: 11662 Message.Message = "instruction variant requires ARMv6 or later"; 11663 break; 11664 case Match_RequiresThumb2: 11665 Message.Message = "instruction variant requires Thumb2"; 11666 break; 11667 case Match_RequiresV8: 11668 Message.Message = "instruction variant requires ARMv8 or later"; 11669 break; 11670 case Match_RequiresFlagSetting: 11671 Message.Message = "no flag-preserving variant of this instruction available"; 11672 break; 11673 case Match_InvalidOperand: 11674 Message.Message = "invalid operand for instruction"; 11675 break; 11676 default: 11677 llvm_unreachable("Unhandled target predicate error"); 11678 break; 11679 } 11680 NearMissesOut.emplace_back(Message); 11681 break; 11682 } 11683 case NearMissInfo::NearMissTooFewOperands: { 11684 if (!ReportedTooFewOperands) { 11685 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 11686 NearMissesOut.emplace_back(NearMissMessage{ 11687 EndLoc, StringRef("too few operands for instruction")}); 11688 ReportedTooFewOperands = true; 11689 } 11690 break; 11691 } 11692 case NearMissInfo::NoNearMiss: 11693 // This should never leave the matcher. 11694 llvm_unreachable("not a near-miss"); 11695 break; 11696 } 11697 } 11698 } 11699 11700 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 11701 SMLoc IDLoc, OperandVector &Operands) { 11702 SmallVector<NearMissMessage, 4> Messages; 11703 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 11704 11705 if (Messages.size() == 0) { 11706 // No near-misses were found, so the best we can do is "invalid 11707 // instruction". 11708 Error(IDLoc, "invalid instruction"); 11709 } else if (Messages.size() == 1) { 11710 // One near miss was found, report it as the sole error. 11711 Error(Messages[0].Loc, Messages[0].Message); 11712 } else { 11713 // More than one near miss, so report a generic "invalid instruction" 11714 // error, followed by notes for each of the near-misses. 11715 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 11716 for (auto &M : Messages) { 11717 Note(M.Loc, M.Message); 11718 } 11719 } 11720 } 11721 11722 /// parseDirectiveArchExtension 11723 /// ::= .arch_extension [no]feature 11724 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 11725 // FIXME: This structure should be moved inside ARMTargetParser 11726 // when we start to table-generate them, and we can use the ARM 11727 // flags below, that were generated by table-gen. 11728 static const struct { 11729 const unsigned Kind; 11730 const FeatureBitset ArchCheck; 11731 const FeatureBitset Features; 11732 } Extensions[] = { 11733 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 11734 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 11735 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 11736 { ARM::AEK_FP, {Feature_HasV8Bit}, 11737 {ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} }, 11738 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 11739 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11740 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 11741 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11742 {ARM::FeatureMP} }, 11743 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 11744 {ARM::FeatureNEON, ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} }, 11745 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 11746 // FIXME: Only available in A-class, isel not predicated 11747 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 11748 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 11749 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 11750 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 11751 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, 11752 // FIXME: Unsupported extensions. 11753 { ARM::AEK_OS, {}, {} }, 11754 { ARM::AEK_IWMMXT, {}, {} }, 11755 { ARM::AEK_IWMMXT2, {}, {} }, 11756 { ARM::AEK_MAVERICK, {}, {} }, 11757 { ARM::AEK_XSCALE, {}, {} }, 11758 }; 11759 11760 MCAsmParser &Parser = getParser(); 11761 11762 if (getLexer().isNot(AsmToken::Identifier)) 11763 return Error(getLexer().getLoc(), "expected architecture extension name"); 11764 11765 StringRef Name = Parser.getTok().getString(); 11766 SMLoc ExtLoc = Parser.getTok().getLoc(); 11767 Lex(); 11768 11769 if (parseToken(AsmToken::EndOfStatement, 11770 "unexpected token in '.arch_extension' directive")) 11771 return true; 11772 11773 bool EnableFeature = true; 11774 if (Name.startswith_lower("no")) { 11775 EnableFeature = false; 11776 Name = Name.substr(2); 11777 } 11778 unsigned FeatureKind = ARM::parseArchExt(Name); 11779 if (FeatureKind == ARM::AEK_INVALID) 11780 return Error(ExtLoc, "unknown architectural extension: " + Name); 11781 11782 for (const auto &Extension : Extensions) { 11783 if (Extension.Kind != FeatureKind) 11784 continue; 11785 11786 if (Extension.Features.none()) 11787 return Error(ExtLoc, "unsupported architectural extension: " + Name); 11788 11789 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 11790 return Error(ExtLoc, "architectural extension '" + Name + 11791 "' is not " 11792 "allowed for the current base architecture"); 11793 11794 MCSubtargetInfo &STI = copySTI(); 11795 if (EnableFeature) { 11796 STI.SetFeatureBitsTransitively(Extension.Features); 11797 } else { 11798 STI.ClearFeatureBitsTransitively(Extension.Features); 11799 } 11800 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 11801 setAvailableFeatures(Features); 11802 return false; 11803 } 11804 11805 return Error(ExtLoc, "unknown architectural extension: " + Name); 11806 } 11807 11808 // Define this matcher function after the auto-generated include so we 11809 // have the match class enum definitions. 11810 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 11811 unsigned Kind) { 11812 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 11813 // If the kind is a token for a literal immediate, check if our asm 11814 // operand matches. This is for InstAliases which have a fixed-value 11815 // immediate in the syntax. 11816 switch (Kind) { 11817 default: break; 11818 case MCK__35_0: 11819 if (Op.isImm()) 11820 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11821 if (CE->getValue() == 0) 11822 return Match_Success; 11823 break; 11824 case MCK__35_8: 11825 if (Op.isImm()) 11826 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11827 if (CE->getValue() == 8) 11828 return Match_Success; 11829 break; 11830 case MCK__35_16: 11831 if (Op.isImm()) 11832 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11833 if (CE->getValue() == 16) 11834 return Match_Success; 11835 break; 11836 case MCK_ModImm: 11837 if (Op.isImm()) { 11838 const MCExpr *SOExpr = Op.getImm(); 11839 int64_t Value; 11840 if (!SOExpr->evaluateAsAbsolute(Value)) 11841 return Match_Success; 11842 assert((Value >= std::numeric_limits<int32_t>::min() && 11843 Value <= std::numeric_limits<uint32_t>::max()) && 11844 "expression value must be representable in 32 bits"); 11845 } 11846 break; 11847 case MCK_rGPR: 11848 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 11849 return Match_Success; 11850 return Match_rGPR; 11851 case MCK_GPRPair: 11852 if (Op.isReg() && 11853 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 11854 return Match_Success; 11855 break; 11856 } 11857 return Match_InvalidOperand; 11858 } 11859 11860 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 11861 StringRef ExtraToken) { 11862 if (!hasMVE()) 11863 return false; 11864 11865 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 11866 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 11867 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 11868 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 11869 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 11870 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 11871 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 11872 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 11873 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 11874 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 11875 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 11876 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 11877 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 11878 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 11879 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 11880 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 11881 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 11882 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 11883 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 11884 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 11885 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 11886 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 11887 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 11888 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 11889 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 11890 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 11891 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 11892 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 11893 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 11894 Mnemonic.startswith("vqabs") || 11895 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 11896 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 11897 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 11898 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 11899 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 11900 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 11901 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 11902 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 11903 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 11904 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 11905 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 11906 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 11907 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 11908 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 11909 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 11910 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 11911 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 11912 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 11913 Mnemonic.startswith("vldrb") || 11914 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 11915 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 11916 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 11917 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 11918 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 11919 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 11920 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 11921 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 11922 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 11923 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 11924 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 11925 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 11926 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 11927 Mnemonic.startswith("vcvt") || 11928 (Mnemonic.startswith("vmov") && 11929 !(ExtraToken == ".f16" || ExtraToken == ".32" || 11930 ExtraToken == ".16" || ExtraToken == ".8")); 11931 } 11932