1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMFeatures.h"
10 #include "ARMBaseInstrInfo.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMInstPrinter.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "TargetInfo/ARMTargetInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCInstrInfo.h"
34 #include "llvm/MC/MCObjectFileInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/ARMEHABI.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/SMLoc.h"
55 #include "llvm/Support/TargetParser.h"
56 #include "llvm/Support/TargetRegistry.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <utility>
67 #include <vector>
68 
69 #define DEBUG_TYPE "asm-parser"
70 
71 using namespace llvm;
72 
73 namespace llvm {
74 extern const MCInstrDesc ARMInsts[];
75 } // end namespace llvm
76 
77 namespace {
78 
79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
80 
81 static cl::opt<ImplicitItModeTy> ImplicitItMode(
82     "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
83     cl::desc("Allow conditional instructions outdside of an IT block"),
84     cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
85                           "Accept in both ISAs, emit implicit ITs in Thumb"),
86                clEnumValN(ImplicitItModeTy::Never, "never",
87                           "Warn in ARM, reject in Thumb"),
88                clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
89                           "Accept in ARM, reject in Thumb"),
90                clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
91                           "Warn in ARM, emit implicit ITs in Thumb")));
92 
93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
94                                         cl::init(false));
95 
96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
97 
98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
99   // Position==0 means we're not in an IT block at all. Position==1
100   // means we want the first state bit, which is always 0 (Then).
101   // Position==2 means we want the second state bit, stored at bit 3
102   // of Mask, and so on downwards. So (5 - Position) will shift the
103   // right bit down to bit 0, including the always-0 bit at bit 4 for
104   // the mandatory initial Then.
105   return (Mask >> (5 - Position) & 1);
106 }
107 
108 class UnwindContext {
109   using Locs = SmallVector<SMLoc, 4>;
110 
111   MCAsmParser &Parser;
112   Locs FnStartLocs;
113   Locs CantUnwindLocs;
114   Locs PersonalityLocs;
115   Locs PersonalityIndexLocs;
116   Locs HandlerDataLocs;
117   int FPReg;
118 
119 public:
120   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
121 
122   bool hasFnStart() const { return !FnStartLocs.empty(); }
123   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
124   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
125 
126   bool hasPersonality() const {
127     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
128   }
129 
130   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
131   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
132   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
133   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
134   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
135 
136   void saveFPReg(int Reg) { FPReg = Reg; }
137   int getFPReg() const { return FPReg; }
138 
139   void emitFnStartLocNotes() const {
140     for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
141          FI != FE; ++FI)
142       Parser.Note(*FI, ".fnstart was specified here");
143   }
144 
145   void emitCantUnwindLocNotes() const {
146     for (Locs::const_iterator UI = CantUnwindLocs.begin(),
147                               UE = CantUnwindLocs.end(); UI != UE; ++UI)
148       Parser.Note(*UI, ".cantunwind was specified here");
149   }
150 
151   void emitHandlerDataLocNotes() const {
152     for (Locs::const_iterator HI = HandlerDataLocs.begin(),
153                               HE = HandlerDataLocs.end(); HI != HE; ++HI)
154       Parser.Note(*HI, ".handlerdata was specified here");
155   }
156 
157   void emitPersonalityLocNotes() const {
158     for (Locs::const_iterator PI = PersonalityLocs.begin(),
159                               PE = PersonalityLocs.end(),
160                               PII = PersonalityIndexLocs.begin(),
161                               PIE = PersonalityIndexLocs.end();
162          PI != PE || PII != PIE;) {
163       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
164         Parser.Note(*PI++, ".personality was specified here");
165       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
166         Parser.Note(*PII++, ".personalityindex was specified here");
167       else
168         llvm_unreachable(".personality and .personalityindex cannot be "
169                          "at the same location");
170     }
171   }
172 
173   void reset() {
174     FnStartLocs = Locs();
175     CantUnwindLocs = Locs();
176     PersonalityLocs = Locs();
177     HandlerDataLocs = Locs();
178     PersonalityIndexLocs = Locs();
179     FPReg = ARM::SP;
180   }
181 };
182 
183 
184 class ARMAsmParser : public MCTargetAsmParser {
185   const MCRegisterInfo *MRI;
186   UnwindContext UC;
187 
188   ARMTargetStreamer &getTargetStreamer() {
189     assert(getParser().getStreamer().getTargetStreamer() &&
190            "do not have a target streamer");
191     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
192     return static_cast<ARMTargetStreamer &>(TS);
193   }
194 
195   // Map of register aliases registers via the .req directive.
196   StringMap<unsigned> RegisterReqs;
197 
198   bool NextSymbolIsThumb;
199 
200   bool useImplicitITThumb() const {
201     return ImplicitItMode == ImplicitItModeTy::Always ||
202            ImplicitItMode == ImplicitItModeTy::ThumbOnly;
203   }
204 
205   bool useImplicitITARM() const {
206     return ImplicitItMode == ImplicitItModeTy::Always ||
207            ImplicitItMode == ImplicitItModeTy::ARMOnly;
208   }
209 
210   struct {
211     ARMCC::CondCodes Cond;    // Condition for IT block.
212     unsigned Mask:4;          // Condition mask for instructions.
213                               // Starting at first 1 (from lsb).
214                               //   '1'  condition as indicated in IT.
215                               //   '0'  inverse of condition (else).
216                               // Count of instructions in IT block is
217                               // 4 - trailingzeroes(mask)
218                               // Note that this does not have the same encoding
219                               // as in the IT instruction, which also depends
220                               // on the low bit of the condition code.
221 
222     unsigned CurPosition;     // Current position in parsing of IT
223                               // block. In range [0,4], with 0 being the IT
224                               // instruction itself. Initialized according to
225                               // count of instructions in block.  ~0U if no
226                               // active IT block.
227 
228     bool IsExplicit;          // true  - The IT instruction was present in the
229                               //         input, we should not modify it.
230                               // false - The IT instruction was added
231                               //         implicitly, we can extend it if that
232                               //         would be legal.
233   } ITState;
234 
235   SmallVector<MCInst, 4> PendingConditionalInsts;
236 
237   void flushPendingInstructions(MCStreamer &Out) override {
238     if (!inImplicitITBlock()) {
239       assert(PendingConditionalInsts.size() == 0);
240       return;
241     }
242 
243     // Emit the IT instruction
244     MCInst ITInst;
245     ITInst.setOpcode(ARM::t2IT);
246     ITInst.addOperand(MCOperand::createImm(ITState.Cond));
247     ITInst.addOperand(MCOperand::createImm(ITState.Mask));
248     Out.EmitInstruction(ITInst, getSTI());
249 
250     // Emit the conditonal instructions
251     assert(PendingConditionalInsts.size() <= 4);
252     for (const MCInst &Inst : PendingConditionalInsts) {
253       Out.EmitInstruction(Inst, getSTI());
254     }
255     PendingConditionalInsts.clear();
256 
257     // Clear the IT state
258     ITState.Mask = 0;
259     ITState.CurPosition = ~0U;
260   }
261 
262   bool inITBlock() { return ITState.CurPosition != ~0U; }
263   bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
264   bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
265 
266   bool lastInITBlock() {
267     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
268   }
269 
270   void forwardITPosition() {
271     if (!inITBlock()) return;
272     // Move to the next instruction in the IT block, if there is one. If not,
273     // mark the block as done, except for implicit IT blocks, which we leave
274     // open until we find an instruction that can't be added to it.
275     unsigned TZ = countTrailingZeros(ITState.Mask);
276     if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
277       ITState.CurPosition = ~0U; // Done with the IT block after this.
278   }
279 
280   // Rewind the state of the current IT block, removing the last slot from it.
281   void rewindImplicitITPosition() {
282     assert(inImplicitITBlock());
283     assert(ITState.CurPosition > 1);
284     ITState.CurPosition--;
285     unsigned TZ = countTrailingZeros(ITState.Mask);
286     unsigned NewMask = 0;
287     NewMask |= ITState.Mask & (0xC << TZ);
288     NewMask |= 0x2 << TZ;
289     ITState.Mask = NewMask;
290   }
291 
292   // Rewind the state of the current IT block, removing the last slot from it.
293   // If we were at the first slot, this closes the IT block.
294   void discardImplicitITBlock() {
295     assert(inImplicitITBlock());
296     assert(ITState.CurPosition == 1);
297     ITState.CurPosition = ~0U;
298   }
299 
300   // Return the low-subreg of a given Q register.
301   unsigned getDRegFromQReg(unsigned QReg) const {
302     return MRI->getSubReg(QReg, ARM::dsub_0);
303   }
304 
305   // Get the condition code corresponding to the current IT block slot.
306   ARMCC::CondCodes currentITCond() {
307     unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
308     return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
309   }
310 
311   // Invert the condition of the current IT block slot without changing any
312   // other slots in the same block.
313   void invertCurrentITCondition() {
314     if (ITState.CurPosition == 1) {
315       ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
316     } else {
317       ITState.Mask ^= 1 << (5 - ITState.CurPosition);
318     }
319   }
320 
321   // Returns true if the current IT block is full (all 4 slots used).
322   bool isITBlockFull() {
323     return inITBlock() && (ITState.Mask & 1);
324   }
325 
326   // Extend the current implicit IT block to have one more slot with the given
327   // condition code.
328   void extendImplicitITBlock(ARMCC::CondCodes Cond) {
329     assert(inImplicitITBlock());
330     assert(!isITBlockFull());
331     assert(Cond == ITState.Cond ||
332            Cond == ARMCC::getOppositeCondition(ITState.Cond));
333     unsigned TZ = countTrailingZeros(ITState.Mask);
334     unsigned NewMask = 0;
335     // Keep any existing condition bits.
336     NewMask |= ITState.Mask & (0xE << TZ);
337     // Insert the new condition bit.
338     NewMask |= (Cond != ITState.Cond) << TZ;
339     // Move the trailing 1 down one bit.
340     NewMask |= 1 << (TZ - 1);
341     ITState.Mask = NewMask;
342   }
343 
344   // Create a new implicit IT block with a dummy condition code.
345   void startImplicitITBlock() {
346     assert(!inITBlock());
347     ITState.Cond = ARMCC::AL;
348     ITState.Mask = 8;
349     ITState.CurPosition = 1;
350     ITState.IsExplicit = false;
351   }
352 
353   // Create a new explicit IT block with the given condition and mask.
354   // The mask should be in the format used in ARMOperand and
355   // MCOperand, with a 1 implying 'e', regardless of the low bit of
356   // the condition.
357   void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
358     assert(!inITBlock());
359     ITState.Cond = Cond;
360     ITState.Mask = Mask;
361     ITState.CurPosition = 0;
362     ITState.IsExplicit = true;
363   }
364 
365   struct {
366     unsigned Mask : 4;
367     unsigned CurPosition;
368   } VPTState;
369   bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
370   void forwardVPTPosition() {
371     if (!inVPTBlock()) return;
372     unsigned TZ = countTrailingZeros(VPTState.Mask);
373     if (++VPTState.CurPosition == 5 - TZ)
374       VPTState.CurPosition = ~0U;
375   }
376 
377   void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
378     return getParser().Note(L, Msg, Range);
379   }
380 
381   bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
382     return getParser().Warning(L, Msg, Range);
383   }
384 
385   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
386     return getParser().Error(L, Msg, Range);
387   }
388 
389   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
390                            unsigned ListNo, bool IsARPop = false);
391   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
392                            unsigned ListNo);
393 
394   int tryParseRegister();
395   bool tryParseRegisterWithWriteBack(OperandVector &);
396   int tryParseShiftRegister(OperandVector &);
397   bool parseRegisterList(OperandVector &, bool EnforceOrder = true);
398   bool parseMemory(OperandVector &);
399   bool parseOperand(OperandVector &, StringRef Mnemonic);
400   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
401   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
402                               unsigned &ShiftAmount);
403   bool parseLiteralValues(unsigned Size, SMLoc L);
404   bool parseDirectiveThumb(SMLoc L);
405   bool parseDirectiveARM(SMLoc L);
406   bool parseDirectiveThumbFunc(SMLoc L);
407   bool parseDirectiveCode(SMLoc L);
408   bool parseDirectiveSyntax(SMLoc L);
409   bool parseDirectiveReq(StringRef Name, SMLoc L);
410   bool parseDirectiveUnreq(SMLoc L);
411   bool parseDirectiveArch(SMLoc L);
412   bool parseDirectiveEabiAttr(SMLoc L);
413   bool parseDirectiveCPU(SMLoc L);
414   bool parseDirectiveFPU(SMLoc L);
415   bool parseDirectiveFnStart(SMLoc L);
416   bool parseDirectiveFnEnd(SMLoc L);
417   bool parseDirectiveCantUnwind(SMLoc L);
418   bool parseDirectivePersonality(SMLoc L);
419   bool parseDirectiveHandlerData(SMLoc L);
420   bool parseDirectiveSetFP(SMLoc L);
421   bool parseDirectivePad(SMLoc L);
422   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
423   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
424   bool parseDirectiveLtorg(SMLoc L);
425   bool parseDirectiveEven(SMLoc L);
426   bool parseDirectivePersonalityIndex(SMLoc L);
427   bool parseDirectiveUnwindRaw(SMLoc L);
428   bool parseDirectiveTLSDescSeq(SMLoc L);
429   bool parseDirectiveMovSP(SMLoc L);
430   bool parseDirectiveObjectArch(SMLoc L);
431   bool parseDirectiveArchExtension(SMLoc L);
432   bool parseDirectiveAlign(SMLoc L);
433   bool parseDirectiveThumbSet(SMLoc L);
434 
435   bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
436   StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
437                           unsigned &PredicationCode,
438                           unsigned &VPTPredicationCode, bool &CarrySetting,
439                           unsigned &ProcessorIMod, StringRef &ITMask);
440   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
441                              StringRef FullInst, bool &CanAcceptCarrySet,
442                              bool &CanAcceptPredicationCode,
443                              bool &CanAcceptVPTPredicationCode);
444 
445   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
446                                      OperandVector &Operands);
447   bool isThumb() const {
448     // FIXME: Can tablegen auto-generate this?
449     return getSTI().getFeatureBits()[ARM::ModeThumb];
450   }
451 
452   bool isThumbOne() const {
453     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
454   }
455 
456   bool isThumbTwo() const {
457     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
458   }
459 
460   bool hasThumb() const {
461     return getSTI().getFeatureBits()[ARM::HasV4TOps];
462   }
463 
464   bool hasThumb2() const {
465     return getSTI().getFeatureBits()[ARM::FeatureThumb2];
466   }
467 
468   bool hasV6Ops() const {
469     return getSTI().getFeatureBits()[ARM::HasV6Ops];
470   }
471 
472   bool hasV6T2Ops() const {
473     return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
474   }
475 
476   bool hasV6MOps() const {
477     return getSTI().getFeatureBits()[ARM::HasV6MOps];
478   }
479 
480   bool hasV7Ops() const {
481     return getSTI().getFeatureBits()[ARM::HasV7Ops];
482   }
483 
484   bool hasV8Ops() const {
485     return getSTI().getFeatureBits()[ARM::HasV8Ops];
486   }
487 
488   bool hasV8MBaseline() const {
489     return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
490   }
491 
492   bool hasV8MMainline() const {
493     return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
494   }
495   bool hasV8_1MMainline() const {
496     return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
497   }
498   bool hasMVE() const {
499     return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
500   }
501   bool hasMVEFloat() const {
502     return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
503   }
504   bool has8MSecExt() const {
505     return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
506   }
507 
508   bool hasARM() const {
509     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
510   }
511 
512   bool hasDSP() const {
513     return getSTI().getFeatureBits()[ARM::FeatureDSP];
514   }
515 
516   bool hasD32() const {
517     return getSTI().getFeatureBits()[ARM::FeatureD32];
518   }
519 
520   bool hasV8_1aOps() const {
521     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
522   }
523 
524   bool hasRAS() const {
525     return getSTI().getFeatureBits()[ARM::FeatureRAS];
526   }
527 
528   void SwitchMode() {
529     MCSubtargetInfo &STI = copySTI();
530     auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
531     setAvailableFeatures(FB);
532   }
533 
534   void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
535 
536   bool isMClass() const {
537     return getSTI().getFeatureBits()[ARM::FeatureMClass];
538   }
539 
540   /// @name Auto-generated Match Functions
541   /// {
542 
543 #define GET_ASSEMBLER_HEADER
544 #include "ARMGenAsmMatcher.inc"
545 
546   /// }
547 
548   OperandMatchResultTy parseITCondCode(OperandVector &);
549   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
550   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
551   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
552   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
553   OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
554   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
555   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
556   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
557   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
558   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
559                                    int High);
560   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
561     return parsePKHImm(O, "lsl", 0, 31);
562   }
563   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
564     return parsePKHImm(O, "asr", 1, 32);
565   }
566   OperandMatchResultTy parseSetEndImm(OperandVector &);
567   OperandMatchResultTy parseShifterImm(OperandVector &);
568   OperandMatchResultTy parseRotImm(OperandVector &);
569   OperandMatchResultTy parseModImm(OperandVector &);
570   OperandMatchResultTy parseBitfield(OperandVector &);
571   OperandMatchResultTy parsePostIdxReg(OperandVector &);
572   OperandMatchResultTy parseAM3Offset(OperandVector &);
573   OperandMatchResultTy parseFPImm(OperandVector &);
574   OperandMatchResultTy parseVectorList(OperandVector &);
575   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
576                                        SMLoc &EndLoc);
577 
578   // Asm Match Converter Methods
579   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
580   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
581   void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
582 
583   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
584   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
585   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
586   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
587   bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
588   bool isITBlockTerminator(MCInst &Inst) const;
589   void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
590   bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
591                         bool Load, bool ARMMode, bool Writeback);
592 
593 public:
594   enum ARMMatchResultTy {
595     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
596     Match_RequiresNotITBlock,
597     Match_RequiresV6,
598     Match_RequiresThumb2,
599     Match_RequiresV8,
600     Match_RequiresFlagSetting,
601 #define GET_OPERAND_DIAGNOSTIC_TYPES
602 #include "ARMGenAsmMatcher.inc"
603 
604   };
605 
606   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
607                const MCInstrInfo &MII, const MCTargetOptions &Options)
608     : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
609     MCAsmParserExtension::Initialize(Parser);
610 
611     // Cache the MCRegisterInfo.
612     MRI = getContext().getRegisterInfo();
613 
614     // Initialize the set of available features.
615     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
616 
617     // Add build attributes based on the selected target.
618     if (AddBuildAttributes)
619       getTargetStreamer().emitTargetAttributes(STI);
620 
621     // Not in an ITBlock to start with.
622     ITState.CurPosition = ~0U;
623 
624     VPTState.CurPosition = ~0U;
625 
626     NextSymbolIsThumb = false;
627   }
628 
629   // Implementation of the MCTargetAsmParser interface:
630   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
631   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
632                         SMLoc NameLoc, OperandVector &Operands) override;
633   bool ParseDirective(AsmToken DirectiveID) override;
634 
635   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
636                                       unsigned Kind) override;
637   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
638 
639   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
640                                OperandVector &Operands, MCStreamer &Out,
641                                uint64_t &ErrorInfo,
642                                bool MatchingInlineAsm) override;
643   unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
644                             SmallVectorImpl<NearMissInfo> &NearMisses,
645                             bool MatchingInlineAsm, bool &EmitInITBlock,
646                             MCStreamer &Out);
647 
648   struct NearMissMessage {
649     SMLoc Loc;
650     SmallString<128> Message;
651   };
652 
653   const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
654 
655   void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
656                         SmallVectorImpl<NearMissMessage> &NearMissesOut,
657                         SMLoc IDLoc, OperandVector &Operands);
658   void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
659                         OperandVector &Operands);
660 
661   void doBeforeLabelEmit(MCSymbol *Symbol) override;
662 
663   void onLabelParsed(MCSymbol *Symbol) override;
664 };
665 
666 /// ARMOperand - Instances of this class represent a parsed ARM machine
667 /// operand.
668 class ARMOperand : public MCParsedAsmOperand {
669   enum KindTy {
670     k_CondCode,
671     k_VPTPred,
672     k_CCOut,
673     k_ITCondMask,
674     k_CoprocNum,
675     k_CoprocReg,
676     k_CoprocOption,
677     k_Immediate,
678     k_MemBarrierOpt,
679     k_InstSyncBarrierOpt,
680     k_TraceSyncBarrierOpt,
681     k_Memory,
682     k_PostIndexRegister,
683     k_MSRMask,
684     k_BankedReg,
685     k_ProcIFlags,
686     k_VectorIndex,
687     k_Register,
688     k_RegisterList,
689     k_RegisterListWithAPSR,
690     k_DPRRegisterList,
691     k_SPRRegisterList,
692     k_FPSRegisterListWithVPR,
693     k_FPDRegisterListWithVPR,
694     k_VectorList,
695     k_VectorListAllLanes,
696     k_VectorListIndexed,
697     k_ShiftedRegister,
698     k_ShiftedImmediate,
699     k_ShifterImmediate,
700     k_RotateImmediate,
701     k_ModifiedImmediate,
702     k_ConstantPoolImmediate,
703     k_BitfieldDescriptor,
704     k_Token,
705   } Kind;
706 
707   SMLoc StartLoc, EndLoc, AlignmentLoc;
708   SmallVector<unsigned, 8> Registers;
709 
710   struct CCOp {
711     ARMCC::CondCodes Val;
712   };
713 
714   struct VCCOp {
715     ARMVCC::VPTCodes Val;
716   };
717 
718   struct CopOp {
719     unsigned Val;
720   };
721 
722   struct CoprocOptionOp {
723     unsigned Val;
724   };
725 
726   struct ITMaskOp {
727     unsigned Mask:4;
728   };
729 
730   struct MBOptOp {
731     ARM_MB::MemBOpt Val;
732   };
733 
734   struct ISBOptOp {
735     ARM_ISB::InstSyncBOpt Val;
736   };
737 
738   struct TSBOptOp {
739     ARM_TSB::TraceSyncBOpt Val;
740   };
741 
742   struct IFlagsOp {
743     ARM_PROC::IFlags Val;
744   };
745 
746   struct MMaskOp {
747     unsigned Val;
748   };
749 
750   struct BankedRegOp {
751     unsigned Val;
752   };
753 
754   struct TokOp {
755     const char *Data;
756     unsigned Length;
757   };
758 
759   struct RegOp {
760     unsigned RegNum;
761   };
762 
763   // A vector register list is a sequential list of 1 to 4 registers.
764   struct VectorListOp {
765     unsigned RegNum;
766     unsigned Count;
767     unsigned LaneIndex;
768     bool isDoubleSpaced;
769   };
770 
771   struct VectorIndexOp {
772     unsigned Val;
773   };
774 
775   struct ImmOp {
776     const MCExpr *Val;
777   };
778 
779   /// Combined record for all forms of ARM address expressions.
780   struct MemoryOp {
781     unsigned BaseRegNum;
782     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
783     // was specified.
784     const MCConstantExpr *OffsetImm;  // Offset immediate value
785     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
786     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
787     unsigned ShiftImm;        // shift for OffsetReg.
788     unsigned Alignment;       // 0 = no alignment specified
789     // n = alignment in bytes (2, 4, 8, 16, or 32)
790     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
791   };
792 
793   struct PostIdxRegOp {
794     unsigned RegNum;
795     bool isAdd;
796     ARM_AM::ShiftOpc ShiftTy;
797     unsigned ShiftImm;
798   };
799 
800   struct ShifterImmOp {
801     bool isASR;
802     unsigned Imm;
803   };
804 
805   struct RegShiftedRegOp {
806     ARM_AM::ShiftOpc ShiftTy;
807     unsigned SrcReg;
808     unsigned ShiftReg;
809     unsigned ShiftImm;
810   };
811 
812   struct RegShiftedImmOp {
813     ARM_AM::ShiftOpc ShiftTy;
814     unsigned SrcReg;
815     unsigned ShiftImm;
816   };
817 
818   struct RotImmOp {
819     unsigned Imm;
820   };
821 
822   struct ModImmOp {
823     unsigned Bits;
824     unsigned Rot;
825   };
826 
827   struct BitfieldOp {
828     unsigned LSB;
829     unsigned Width;
830   };
831 
832   union {
833     struct CCOp CC;
834     struct VCCOp VCC;
835     struct CopOp Cop;
836     struct CoprocOptionOp CoprocOption;
837     struct MBOptOp MBOpt;
838     struct ISBOptOp ISBOpt;
839     struct TSBOptOp TSBOpt;
840     struct ITMaskOp ITMask;
841     struct IFlagsOp IFlags;
842     struct MMaskOp MMask;
843     struct BankedRegOp BankedReg;
844     struct TokOp Tok;
845     struct RegOp Reg;
846     struct VectorListOp VectorList;
847     struct VectorIndexOp VectorIndex;
848     struct ImmOp Imm;
849     struct MemoryOp Memory;
850     struct PostIdxRegOp PostIdxReg;
851     struct ShifterImmOp ShifterImm;
852     struct RegShiftedRegOp RegShiftedReg;
853     struct RegShiftedImmOp RegShiftedImm;
854     struct RotImmOp RotImm;
855     struct ModImmOp ModImm;
856     struct BitfieldOp Bitfield;
857   };
858 
859 public:
860   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
861 
862   /// getStartLoc - Get the location of the first token of this operand.
863   SMLoc getStartLoc() const override { return StartLoc; }
864 
865   /// getEndLoc - Get the location of the last token of this operand.
866   SMLoc getEndLoc() const override { return EndLoc; }
867 
868   /// getLocRange - Get the range between the first and last token of this
869   /// operand.
870   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
871 
872   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
873   SMLoc getAlignmentLoc() const {
874     assert(Kind == k_Memory && "Invalid access!");
875     return AlignmentLoc;
876   }
877 
878   ARMCC::CondCodes getCondCode() const {
879     assert(Kind == k_CondCode && "Invalid access!");
880     return CC.Val;
881   }
882 
883   ARMVCC::VPTCodes getVPTPred() const {
884     assert(isVPTPred() && "Invalid access!");
885     return VCC.Val;
886   }
887 
888   unsigned getCoproc() const {
889     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
890     return Cop.Val;
891   }
892 
893   StringRef getToken() const {
894     assert(Kind == k_Token && "Invalid access!");
895     return StringRef(Tok.Data, Tok.Length);
896   }
897 
898   unsigned getReg() const override {
899     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
900     return Reg.RegNum;
901   }
902 
903   const SmallVectorImpl<unsigned> &getRegList() const {
904     assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
905             Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
906             Kind == k_FPSRegisterListWithVPR ||
907             Kind == k_FPDRegisterListWithVPR) &&
908            "Invalid access!");
909     return Registers;
910   }
911 
912   const MCExpr *getImm() const {
913     assert(isImm() && "Invalid access!");
914     return Imm.Val;
915   }
916 
917   const MCExpr *getConstantPoolImm() const {
918     assert(isConstantPoolImm() && "Invalid access!");
919     return Imm.Val;
920   }
921 
922   unsigned getVectorIndex() const {
923     assert(Kind == k_VectorIndex && "Invalid access!");
924     return VectorIndex.Val;
925   }
926 
927   ARM_MB::MemBOpt getMemBarrierOpt() const {
928     assert(Kind == k_MemBarrierOpt && "Invalid access!");
929     return MBOpt.Val;
930   }
931 
932   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
933     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
934     return ISBOpt.Val;
935   }
936 
937   ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
938     assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
939     return TSBOpt.Val;
940   }
941 
942   ARM_PROC::IFlags getProcIFlags() const {
943     assert(Kind == k_ProcIFlags && "Invalid access!");
944     return IFlags.Val;
945   }
946 
947   unsigned getMSRMask() const {
948     assert(Kind == k_MSRMask && "Invalid access!");
949     return MMask.Val;
950   }
951 
952   unsigned getBankedReg() const {
953     assert(Kind == k_BankedReg && "Invalid access!");
954     return BankedReg.Val;
955   }
956 
957   bool isCoprocNum() const { return Kind == k_CoprocNum; }
958   bool isCoprocReg() const { return Kind == k_CoprocReg; }
959   bool isCoprocOption() const { return Kind == k_CoprocOption; }
960   bool isCondCode() const { return Kind == k_CondCode; }
961   bool isVPTPred() const { return Kind == k_VPTPred; }
962   bool isCCOut() const { return Kind == k_CCOut; }
963   bool isITMask() const { return Kind == k_ITCondMask; }
964   bool isITCondCode() const { return Kind == k_CondCode; }
965   bool isImm() const override {
966     return Kind == k_Immediate;
967   }
968 
969   bool isARMBranchTarget() const {
970     if (!isImm()) return false;
971 
972     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
973       return CE->getValue() % 4 == 0;
974     return true;
975   }
976 
977 
978   bool isThumbBranchTarget() const {
979     if (!isImm()) return false;
980 
981     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
982       return CE->getValue() % 2 == 0;
983     return true;
984   }
985 
986   // checks whether this operand is an unsigned offset which fits is a field
987   // of specified width and scaled by a specific number of bits
988   template<unsigned width, unsigned scale>
989   bool isUnsignedOffset() const {
990     if (!isImm()) return false;
991     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
992     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
993       int64_t Val = CE->getValue();
994       int64_t Align = 1LL << scale;
995       int64_t Max = Align * ((1LL << width) - 1);
996       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
997     }
998     return false;
999   }
1000 
1001   // checks whether this operand is an signed offset which fits is a field
1002   // of specified width and scaled by a specific number of bits
1003   template<unsigned width, unsigned scale>
1004   bool isSignedOffset() const {
1005     if (!isImm()) return false;
1006     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1007     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1008       int64_t Val = CE->getValue();
1009       int64_t Align = 1LL << scale;
1010       int64_t Max = Align * ((1LL << (width-1)) - 1);
1011       int64_t Min = -Align * (1LL << (width-1));
1012       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1013     }
1014     return false;
1015   }
1016 
1017   // checks whether this operand is an offset suitable for the LE /
1018   // LETP instructions in Arm v8.1M
1019   bool isLEOffset() const {
1020     if (!isImm()) return false;
1021     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1022     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1023       int64_t Val = CE->getValue();
1024       return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1025     }
1026     return false;
1027   }
1028 
1029   // checks whether this operand is a memory operand computed as an offset
1030   // applied to PC. the offset may have 8 bits of magnitude and is represented
1031   // with two bits of shift. textually it may be either [pc, #imm], #imm or
1032   // relocable expression...
1033   bool isThumbMemPC() const {
1034     int64_t Val = 0;
1035     if (isImm()) {
1036       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1037       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1038       if (!CE) return false;
1039       Val = CE->getValue();
1040     }
1041     else if (isGPRMem()) {
1042       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1043       if(Memory.BaseRegNum != ARM::PC) return false;
1044       Val = Memory.OffsetImm->getValue();
1045     }
1046     else return false;
1047     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1048   }
1049 
1050   bool isFPImm() const {
1051     if (!isImm()) return false;
1052     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1053     if (!CE) return false;
1054     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1055     return Val != -1;
1056   }
1057 
1058   template<int64_t N, int64_t M>
1059   bool isImmediate() const {
1060     if (!isImm()) return false;
1061     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1062     if (!CE) return false;
1063     int64_t Value = CE->getValue();
1064     return Value >= N && Value <= M;
1065   }
1066 
1067   template<int64_t N, int64_t M>
1068   bool isImmediateS4() const {
1069     if (!isImm()) return false;
1070     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1071     if (!CE) return false;
1072     int64_t Value = CE->getValue();
1073     return ((Value & 3) == 0) && Value >= N && Value <= M;
1074   }
1075   template<int64_t N, int64_t M>
1076   bool isImmediateS2() const {
1077     if (!isImm()) return false;
1078     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1079     if (!CE) return false;
1080     int64_t Value = CE->getValue();
1081     return ((Value & 1) == 0) && Value >= N && Value <= M;
1082   }
1083   bool isFBits16() const {
1084     return isImmediate<0, 17>();
1085   }
1086   bool isFBits32() const {
1087     return isImmediate<1, 33>();
1088   }
1089   bool isImm8s4() const {
1090     return isImmediateS4<-1020, 1020>();
1091   }
1092   bool isImm7s4() const {
1093     return isImmediateS4<-508, 508>();
1094   }
1095   bool isImm7Shift0() const {
1096     return isImmediate<-127, 127>();
1097   }
1098   bool isImm7Shift1() const {
1099     return isImmediateS2<-255, 255>();
1100   }
1101   bool isImm7Shift2() const {
1102     return isImmediateS4<-511, 511>();
1103   }
1104   bool isImm7() const {
1105     return isImmediate<-127, 127>();
1106   }
1107   bool isImm0_1020s4() const {
1108     return isImmediateS4<0, 1020>();
1109   }
1110   bool isImm0_508s4() const {
1111     return isImmediateS4<0, 508>();
1112   }
1113   bool isImm0_508s4Neg() const {
1114     if (!isImm()) return false;
1115     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1116     if (!CE) return false;
1117     int64_t Value = -CE->getValue();
1118     // explicitly exclude zero. we want that to use the normal 0_508 version.
1119     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1120   }
1121 
1122   bool isImm0_4095Neg() const {
1123     if (!isImm()) return false;
1124     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1125     if (!CE) return false;
1126     // isImm0_4095Neg is used with 32-bit immediates only.
1127     // 32-bit immediates are zero extended to 64-bit when parsed,
1128     // thus simple -CE->getValue() results in a big negative number,
1129     // not a small positive number as intended
1130     if ((CE->getValue() >> 32) > 0) return false;
1131     uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1132     return Value > 0 && Value < 4096;
1133   }
1134 
1135   bool isImm0_7() const {
1136     return isImmediate<0, 7>();
1137   }
1138 
1139   bool isImm1_16() const {
1140     return isImmediate<1, 16>();
1141   }
1142 
1143   bool isImm1_32() const {
1144     return isImmediate<1, 32>();
1145   }
1146 
1147   bool isImm8_255() const {
1148     return isImmediate<8, 255>();
1149   }
1150 
1151   bool isImm256_65535Expr() const {
1152     if (!isImm()) return false;
1153     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1154     // If it's not a constant expression, it'll generate a fixup and be
1155     // handled later.
1156     if (!CE) return true;
1157     int64_t Value = CE->getValue();
1158     return Value >= 256 && Value < 65536;
1159   }
1160 
1161   bool isImm0_65535Expr() const {
1162     if (!isImm()) return false;
1163     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1164     // If it's not a constant expression, it'll generate a fixup and be
1165     // handled later.
1166     if (!CE) return true;
1167     int64_t Value = CE->getValue();
1168     return Value >= 0 && Value < 65536;
1169   }
1170 
1171   bool isImm24bit() const {
1172     return isImmediate<0, 0xffffff + 1>();
1173   }
1174 
1175   bool isImmThumbSR() const {
1176     return isImmediate<1, 33>();
1177   }
1178 
1179   template<int shift>
1180   bool isExpImmValue(uint64_t Value) const {
1181     uint64_t mask = (1 << shift) - 1;
1182     if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1183       return false;
1184     return true;
1185   }
1186 
1187   template<int shift>
1188   bool isExpImm() const {
1189     if (!isImm()) return false;
1190     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1191     if (!CE) return false;
1192 
1193     return isExpImmValue<shift>(CE->getValue());
1194   }
1195 
1196   template<int shift, int size>
1197   bool isInvertedExpImm() const {
1198     if (!isImm()) return false;
1199     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1200     if (!CE) return false;
1201 
1202     uint64_t OriginalValue = CE->getValue();
1203     uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1204     return isExpImmValue<shift>(InvertedValue);
1205   }
1206 
1207   bool isPKHLSLImm() const {
1208     return isImmediate<0, 32>();
1209   }
1210 
1211   bool isPKHASRImm() const {
1212     return isImmediate<0, 33>();
1213   }
1214 
1215   bool isAdrLabel() const {
1216     // If we have an immediate that's not a constant, treat it as a label
1217     // reference needing a fixup.
1218     if (isImm() && !isa<MCConstantExpr>(getImm()))
1219       return true;
1220 
1221     // If it is a constant, it must fit into a modified immediate encoding.
1222     if (!isImm()) return false;
1223     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1224     if (!CE) return false;
1225     int64_t Value = CE->getValue();
1226     return (ARM_AM::getSOImmVal(Value) != -1 ||
1227             ARM_AM::getSOImmVal(-Value) != -1);
1228   }
1229 
1230   bool isT2SOImm() const {
1231     // If we have an immediate that's not a constant, treat it as an expression
1232     // needing a fixup.
1233     if (isImm() && !isa<MCConstantExpr>(getImm())) {
1234       // We want to avoid matching :upper16: and :lower16: as we want these
1235       // expressions to match in isImm0_65535Expr()
1236       const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1237       return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1238                              ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1239     }
1240     if (!isImm()) return false;
1241     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1242     if (!CE) return false;
1243     int64_t Value = CE->getValue();
1244     return ARM_AM::getT2SOImmVal(Value) != -1;
1245   }
1246 
1247   bool isT2SOImmNot() const {
1248     if (!isImm()) return false;
1249     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1250     if (!CE) return false;
1251     int64_t Value = CE->getValue();
1252     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1253       ARM_AM::getT2SOImmVal(~Value) != -1;
1254   }
1255 
1256   bool isT2SOImmNeg() const {
1257     if (!isImm()) return false;
1258     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1259     if (!CE) return false;
1260     int64_t Value = CE->getValue();
1261     // Only use this when not representable as a plain so_imm.
1262     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1263       ARM_AM::getT2SOImmVal(-Value) != -1;
1264   }
1265 
1266   bool isSetEndImm() const {
1267     if (!isImm()) return false;
1268     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1269     if (!CE) return false;
1270     int64_t Value = CE->getValue();
1271     return Value == 1 || Value == 0;
1272   }
1273 
1274   bool isReg() const override { return Kind == k_Register; }
1275   bool isRegList() const { return Kind == k_RegisterList; }
1276   bool isRegListWithAPSR() const {
1277     return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1278   }
1279   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1280   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1281   bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
1282   bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
1283   bool isToken() const override { return Kind == k_Token; }
1284   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1285   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1286   bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1287   bool isMem() const override {
1288       return isGPRMem() || isMVEMem();
1289   }
1290   bool isMVEMem() const {
1291     if (Kind != k_Memory)
1292       return false;
1293     if (Memory.BaseRegNum &&
1294         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1295         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1296       return false;
1297     if (Memory.OffsetRegNum &&
1298         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1299             Memory.OffsetRegNum))
1300       return false;
1301     return true;
1302   }
1303   bool isGPRMem() const {
1304     if (Kind != k_Memory)
1305       return false;
1306     if (Memory.BaseRegNum &&
1307         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1308       return false;
1309     if (Memory.OffsetRegNum &&
1310         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1311       return false;
1312     return true;
1313   }
1314   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1315   bool isRegShiftedReg() const {
1316     return Kind == k_ShiftedRegister &&
1317            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1318                RegShiftedReg.SrcReg) &&
1319            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1320                RegShiftedReg.ShiftReg);
1321   }
1322   bool isRegShiftedImm() const {
1323     return Kind == k_ShiftedImmediate &&
1324            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1325                RegShiftedImm.SrcReg);
1326   }
1327   bool isRotImm() const { return Kind == k_RotateImmediate; }
1328 
1329   template<unsigned Min, unsigned Max>
1330   bool isPowerTwoInRange() const {
1331     if (!isImm()) return false;
1332     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1333     if (!CE) return false;
1334     int64_t Value = CE->getValue();
1335     return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
1336            Value >= Min && Value <= Max;
1337   }
1338   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1339 
1340   bool isModImmNot() const {
1341     if (!isImm()) return false;
1342     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1343     if (!CE) return false;
1344     int64_t Value = CE->getValue();
1345     return ARM_AM::getSOImmVal(~Value) != -1;
1346   }
1347 
1348   bool isModImmNeg() const {
1349     if (!isImm()) return false;
1350     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1351     if (!CE) return false;
1352     int64_t Value = CE->getValue();
1353     return ARM_AM::getSOImmVal(Value) == -1 &&
1354       ARM_AM::getSOImmVal(-Value) != -1;
1355   }
1356 
1357   bool isThumbModImmNeg1_7() const {
1358     if (!isImm()) return false;
1359     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1360     if (!CE) return false;
1361     int32_t Value = -(int32_t)CE->getValue();
1362     return 0 < Value && Value < 8;
1363   }
1364 
1365   bool isThumbModImmNeg8_255() const {
1366     if (!isImm()) return false;
1367     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1368     if (!CE) return false;
1369     int32_t Value = -(int32_t)CE->getValue();
1370     return 7 < Value && Value < 256;
1371   }
1372 
1373   bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1374   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1375   bool isPostIdxRegShifted() const {
1376     return Kind == k_PostIndexRegister &&
1377            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1378   }
1379   bool isPostIdxReg() const {
1380     return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1381   }
1382   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1383     if (!isGPRMem())
1384       return false;
1385     // No offset of any kind.
1386     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1387      (alignOK || Memory.Alignment == Alignment);
1388   }
1389   bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1390     if (!isGPRMem())
1391       return false;
1392 
1393     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1394             Memory.BaseRegNum))
1395       return false;
1396 
1397     // No offset of any kind.
1398     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1399      (alignOK || Memory.Alignment == Alignment);
1400   }
1401   bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1402     if (!isGPRMem())
1403       return false;
1404 
1405     if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1406             Memory.BaseRegNum))
1407       return false;
1408 
1409     // No offset of any kind.
1410     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1411      (alignOK || Memory.Alignment == Alignment);
1412   }
1413   bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1414     if (!isGPRMem())
1415       return false;
1416 
1417     if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1418             Memory.BaseRegNum))
1419       return false;
1420 
1421     // No offset of any kind.
1422     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1423      (alignOK || Memory.Alignment == Alignment);
1424   }
1425   bool isMemPCRelImm12() const {
1426     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1427       return false;
1428     // Base register must be PC.
1429     if (Memory.BaseRegNum != ARM::PC)
1430       return false;
1431     // Immediate offset in range [-4095, 4095].
1432     if (!Memory.OffsetImm) return true;
1433     int64_t Val = Memory.OffsetImm->getValue();
1434     return (Val > -4096 && Val < 4096) ||
1435            (Val == std::numeric_limits<int32_t>::min());
1436   }
1437 
1438   bool isAlignedMemory() const {
1439     return isMemNoOffset(true);
1440   }
1441 
1442   bool isAlignedMemoryNone() const {
1443     return isMemNoOffset(false, 0);
1444   }
1445 
1446   bool isDupAlignedMemoryNone() const {
1447     return isMemNoOffset(false, 0);
1448   }
1449 
1450   bool isAlignedMemory16() const {
1451     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1452       return true;
1453     return isMemNoOffset(false, 0);
1454   }
1455 
1456   bool isDupAlignedMemory16() const {
1457     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1458       return true;
1459     return isMemNoOffset(false, 0);
1460   }
1461 
1462   bool isAlignedMemory32() const {
1463     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1464       return true;
1465     return isMemNoOffset(false, 0);
1466   }
1467 
1468   bool isDupAlignedMemory32() const {
1469     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1470       return true;
1471     return isMemNoOffset(false, 0);
1472   }
1473 
1474   bool isAlignedMemory64() const {
1475     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1476       return true;
1477     return isMemNoOffset(false, 0);
1478   }
1479 
1480   bool isDupAlignedMemory64() const {
1481     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1482       return true;
1483     return isMemNoOffset(false, 0);
1484   }
1485 
1486   bool isAlignedMemory64or128() const {
1487     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1488       return true;
1489     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1490       return true;
1491     return isMemNoOffset(false, 0);
1492   }
1493 
1494   bool isDupAlignedMemory64or128() const {
1495     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1496       return true;
1497     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1498       return true;
1499     return isMemNoOffset(false, 0);
1500   }
1501 
1502   bool isAlignedMemory64or128or256() const {
1503     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1504       return true;
1505     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1506       return true;
1507     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1508       return true;
1509     return isMemNoOffset(false, 0);
1510   }
1511 
1512   bool isAddrMode2() const {
1513     if (!isGPRMem() || Memory.Alignment != 0) return false;
1514     // Check for register offset.
1515     if (Memory.OffsetRegNum) return true;
1516     // Immediate offset in range [-4095, 4095].
1517     if (!Memory.OffsetImm) return true;
1518     int64_t Val = Memory.OffsetImm->getValue();
1519     return Val > -4096 && Val < 4096;
1520   }
1521 
1522   bool isAM2OffsetImm() const {
1523     if (!isImm()) return false;
1524     // Immediate offset in range [-4095, 4095].
1525     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1526     if (!CE) return false;
1527     int64_t Val = CE->getValue();
1528     return (Val == std::numeric_limits<int32_t>::min()) ||
1529            (Val > -4096 && Val < 4096);
1530   }
1531 
1532   bool isAddrMode3() const {
1533     // If we have an immediate that's not a constant, treat it as a label
1534     // reference needing a fixup. If it is a constant, it's something else
1535     // and we reject it.
1536     if (isImm() && !isa<MCConstantExpr>(getImm()))
1537       return true;
1538     if (!isGPRMem() || Memory.Alignment != 0) return false;
1539     // No shifts are legal for AM3.
1540     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1541     // Check for register offset.
1542     if (Memory.OffsetRegNum) return true;
1543     // Immediate offset in range [-255, 255].
1544     if (!Memory.OffsetImm) return true;
1545     int64_t Val = Memory.OffsetImm->getValue();
1546     // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1547     // have to check for this too.
1548     return (Val > -256 && Val < 256) ||
1549            Val == std::numeric_limits<int32_t>::min();
1550   }
1551 
1552   bool isAM3Offset() const {
1553     if (isPostIdxReg())
1554       return true;
1555     if (!isImm())
1556       return false;
1557     // Immediate offset in range [-255, 255].
1558     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1559     if (!CE) return false;
1560     int64_t Val = CE->getValue();
1561     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1562     return (Val > -256 && Val < 256) ||
1563            Val == std::numeric_limits<int32_t>::min();
1564   }
1565 
1566   bool isAddrMode5() const {
1567     // If we have an immediate that's not a constant, treat it as a label
1568     // reference needing a fixup. If it is a constant, it's something else
1569     // and we reject it.
1570     if (isImm() && !isa<MCConstantExpr>(getImm()))
1571       return true;
1572     if (!isGPRMem() || Memory.Alignment != 0) return false;
1573     // Check for register offset.
1574     if (Memory.OffsetRegNum) return false;
1575     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1576     if (!Memory.OffsetImm) return true;
1577     int64_t Val = Memory.OffsetImm->getValue();
1578     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1579       Val == std::numeric_limits<int32_t>::min();
1580   }
1581 
1582   bool isAddrMode5FP16() const {
1583     // If we have an immediate that's not a constant, treat it as a label
1584     // reference needing a fixup. If it is a constant, it's something else
1585     // and we reject it.
1586     if (isImm() && !isa<MCConstantExpr>(getImm()))
1587       return true;
1588     if (!isGPRMem() || Memory.Alignment != 0) return false;
1589     // Check for register offset.
1590     if (Memory.OffsetRegNum) return false;
1591     // Immediate offset in range [-510, 510] and a multiple of 2.
1592     if (!Memory.OffsetImm) return true;
1593     int64_t Val = Memory.OffsetImm->getValue();
1594     return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1595            Val == std::numeric_limits<int32_t>::min();
1596   }
1597 
1598   bool isMemTBB() const {
1599     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1600         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1601       return false;
1602     return true;
1603   }
1604 
1605   bool isMemTBH() const {
1606     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1607         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1608         Memory.Alignment != 0 )
1609       return false;
1610     return true;
1611   }
1612 
1613   bool isMemRegOffset() const {
1614     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1615       return false;
1616     return true;
1617   }
1618 
1619   bool isT2MemRegOffset() const {
1620     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1621         Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1622       return false;
1623     // Only lsl #{0, 1, 2, 3} allowed.
1624     if (Memory.ShiftType == ARM_AM::no_shift)
1625       return true;
1626     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1627       return false;
1628     return true;
1629   }
1630 
1631   bool isMemThumbRR() const {
1632     // Thumb reg+reg addressing is simple. Just two registers, a base and
1633     // an offset. No shifts, negations or any other complicating factors.
1634     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1635         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1636       return false;
1637     return isARMLowRegister(Memory.BaseRegNum) &&
1638       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1639   }
1640 
1641   bool isMemThumbRIs4() const {
1642     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1643         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1644       return false;
1645     // Immediate offset, multiple of 4 in range [0, 124].
1646     if (!Memory.OffsetImm) return true;
1647     int64_t Val = Memory.OffsetImm->getValue();
1648     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1649   }
1650 
1651   bool isMemThumbRIs2() const {
1652     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1653         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1654       return false;
1655     // Immediate offset, multiple of 4 in range [0, 62].
1656     if (!Memory.OffsetImm) return true;
1657     int64_t Val = Memory.OffsetImm->getValue();
1658     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1659   }
1660 
1661   bool isMemThumbRIs1() const {
1662     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1663         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1664       return false;
1665     // Immediate offset in range [0, 31].
1666     if (!Memory.OffsetImm) return true;
1667     int64_t Val = Memory.OffsetImm->getValue();
1668     return Val >= 0 && Val <= 31;
1669   }
1670 
1671   bool isMemThumbSPI() const {
1672     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1673         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1674       return false;
1675     // Immediate offset, multiple of 4 in range [0, 1020].
1676     if (!Memory.OffsetImm) return true;
1677     int64_t Val = Memory.OffsetImm->getValue();
1678     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1679   }
1680 
1681   bool isMemImm8s4Offset() const {
1682     // If we have an immediate that's not a constant, treat it as a label
1683     // reference needing a fixup. If it is a constant, it's something else
1684     // and we reject it.
1685     if (isImm() && !isa<MCConstantExpr>(getImm()))
1686       return true;
1687     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1688       return false;
1689     // Immediate offset a multiple of 4 in range [-1020, 1020].
1690     if (!Memory.OffsetImm) return true;
1691     int64_t Val = Memory.OffsetImm->getValue();
1692     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1693     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1694            Val == std::numeric_limits<int32_t>::min();
1695   }
1696   bool isMemImm7s4Offset() const {
1697     // If we have an immediate that's not a constant, treat it as a label
1698     // reference needing a fixup. If it is a constant, it's something else
1699     // and we reject it.
1700     if (isImm() && !isa<MCConstantExpr>(getImm()))
1701       return true;
1702     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1703         !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1704             Memory.BaseRegNum))
1705       return false;
1706     // Immediate offset a multiple of 4 in range [-508, 508].
1707     if (!Memory.OffsetImm) return true;
1708     int64_t Val = Memory.OffsetImm->getValue();
1709     // Special case, #-0 is INT32_MIN.
1710     return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1711   }
1712   bool isMemImm0_1020s4Offset() const {
1713     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1714       return false;
1715     // Immediate offset a multiple of 4 in range [0, 1020].
1716     if (!Memory.OffsetImm) return true;
1717     int64_t Val = Memory.OffsetImm->getValue();
1718     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1719   }
1720 
1721   bool isMemImm8Offset() const {
1722     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1723       return false;
1724     // Base reg of PC isn't allowed for these encodings.
1725     if (Memory.BaseRegNum == ARM::PC) return false;
1726     // Immediate offset in range [-255, 255].
1727     if (!Memory.OffsetImm) return true;
1728     int64_t Val = Memory.OffsetImm->getValue();
1729     return (Val == std::numeric_limits<int32_t>::min()) ||
1730            (Val > -256 && Val < 256);
1731   }
1732 
1733   template<unsigned Bits, unsigned RegClassID>
1734   bool isMemImm7ShiftedOffset() const {
1735     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1736         !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1737       return false;
1738 
1739     // Expect an immediate offset equal to an element of the range
1740     // [-127, 127], shifted left by Bits.
1741 
1742     if (!Memory.OffsetImm) return true;
1743     int64_t Val = Memory.OffsetImm->getValue();
1744 
1745     // INT32_MIN is a special-case value (indicating the encoding with
1746     // zero offset and the subtract bit set)
1747     if (Val == INT32_MIN)
1748       return true;
1749 
1750     unsigned Divisor = 1U << Bits;
1751 
1752     // Check that the low bits are zero
1753     if (Val % Divisor != 0)
1754       return false;
1755 
1756     // Check that the remaining offset is within range.
1757     Val /= Divisor;
1758     return (Val >= -127 && Val <= 127);
1759   }
1760 
1761   template <int shift> bool isMemRegRQOffset() const {
1762     if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0)
1763       return false;
1764 
1765     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1766             Memory.BaseRegNum))
1767       return false;
1768     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1769             Memory.OffsetRegNum))
1770       return false;
1771 
1772     if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1773       return false;
1774 
1775     if (shift > 0 &&
1776         (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1777       return false;
1778 
1779     return true;
1780   }
1781 
1782   template <int shift> bool isMemRegQOffset() const {
1783     if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1784       return false;
1785 
1786     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1787             Memory.BaseRegNum))
1788       return false;
1789 
1790     if(!Memory.OffsetImm) return true;
1791     static_assert(shift < 56,
1792                   "Such that we dont shift by a value higher than 62");
1793     int64_t Val = Memory.OffsetImm->getValue();
1794 
1795     // The value must be a multiple of (1 << shift)
1796     if ((Val & ((1U << shift) - 1)) != 0)
1797       return false;
1798 
1799     // And be in the right range, depending on the amount that it is shifted
1800     // by.  Shift 0, is equal to 7 unsigned bits, the sign bit is set
1801     // separately.
1802     int64_t Range = (1U << (7+shift)) - 1;
1803     return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1804   }
1805 
1806   bool isMemPosImm8Offset() const {
1807     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1808       return false;
1809     // Immediate offset in range [0, 255].
1810     if (!Memory.OffsetImm) return true;
1811     int64_t Val = Memory.OffsetImm->getValue();
1812     return Val >= 0 && Val < 256;
1813   }
1814 
1815   bool isMemNegImm8Offset() const {
1816     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1817       return false;
1818     // Base reg of PC isn't allowed for these encodings.
1819     if (Memory.BaseRegNum == ARM::PC) return false;
1820     // Immediate offset in range [-255, -1].
1821     if (!Memory.OffsetImm) return false;
1822     int64_t Val = Memory.OffsetImm->getValue();
1823     return (Val == std::numeric_limits<int32_t>::min()) ||
1824            (Val > -256 && Val < 0);
1825   }
1826 
1827   bool isMemUImm12Offset() const {
1828     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1829       return false;
1830     // Immediate offset in range [0, 4095].
1831     if (!Memory.OffsetImm) return true;
1832     int64_t Val = Memory.OffsetImm->getValue();
1833     return (Val >= 0 && Val < 4096);
1834   }
1835 
1836   bool isMemImm12Offset() const {
1837     // If we have an immediate that's not a constant, treat it as a label
1838     // reference needing a fixup. If it is a constant, it's something else
1839     // and we reject it.
1840 
1841     if (isImm() && !isa<MCConstantExpr>(getImm()))
1842       return true;
1843 
1844     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1845       return false;
1846     // Immediate offset in range [-4095, 4095].
1847     if (!Memory.OffsetImm) return true;
1848     int64_t Val = Memory.OffsetImm->getValue();
1849     return (Val > -4096 && Val < 4096) ||
1850            (Val == std::numeric_limits<int32_t>::min());
1851   }
1852 
1853   bool isConstPoolAsmImm() const {
1854     // Delay processing of Constant Pool Immediate, this will turn into
1855     // a constant. Match no other operand
1856     return (isConstantPoolImm());
1857   }
1858 
1859   bool isPostIdxImm8() const {
1860     if (!isImm()) return false;
1861     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1862     if (!CE) return false;
1863     int64_t Val = CE->getValue();
1864     return (Val > -256 && Val < 256) ||
1865            (Val == std::numeric_limits<int32_t>::min());
1866   }
1867 
1868   bool isPostIdxImm8s4() const {
1869     if (!isImm()) return false;
1870     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1871     if (!CE) return false;
1872     int64_t Val = CE->getValue();
1873     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1874            (Val == std::numeric_limits<int32_t>::min());
1875   }
1876 
1877   bool isMSRMask() const { return Kind == k_MSRMask; }
1878   bool isBankedReg() const { return Kind == k_BankedReg; }
1879   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1880 
1881   // NEON operands.
1882   bool isSingleSpacedVectorList() const {
1883     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1884   }
1885 
1886   bool isDoubleSpacedVectorList() const {
1887     return Kind == k_VectorList && VectorList.isDoubleSpaced;
1888   }
1889 
1890   bool isVecListOneD() const {
1891     if (!isSingleSpacedVectorList()) return false;
1892     return VectorList.Count == 1;
1893   }
1894 
1895   bool isVecListTwoMQ() const {
1896     return isSingleSpacedVectorList() && VectorList.Count == 2 &&
1897            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1898                VectorList.RegNum);
1899   }
1900 
1901   bool isVecListDPair() const {
1902     if (!isSingleSpacedVectorList()) return false;
1903     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1904               .contains(VectorList.RegNum));
1905   }
1906 
1907   bool isVecListThreeD() const {
1908     if (!isSingleSpacedVectorList()) return false;
1909     return VectorList.Count == 3;
1910   }
1911 
1912   bool isVecListFourD() const {
1913     if (!isSingleSpacedVectorList()) return false;
1914     return VectorList.Count == 4;
1915   }
1916 
1917   bool isVecListDPairSpaced() const {
1918     if (Kind != k_VectorList) return false;
1919     if (isSingleSpacedVectorList()) return false;
1920     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1921               .contains(VectorList.RegNum));
1922   }
1923 
1924   bool isVecListThreeQ() const {
1925     if (!isDoubleSpacedVectorList()) return false;
1926     return VectorList.Count == 3;
1927   }
1928 
1929   bool isVecListFourQ() const {
1930     if (!isDoubleSpacedVectorList()) return false;
1931     return VectorList.Count == 4;
1932   }
1933 
1934   bool isVecListFourMQ() const {
1935     return isSingleSpacedVectorList() && VectorList.Count == 4 &&
1936            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1937                VectorList.RegNum);
1938   }
1939 
1940   bool isSingleSpacedVectorAllLanes() const {
1941     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1942   }
1943 
1944   bool isDoubleSpacedVectorAllLanes() const {
1945     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1946   }
1947 
1948   bool isVecListOneDAllLanes() const {
1949     if (!isSingleSpacedVectorAllLanes()) return false;
1950     return VectorList.Count == 1;
1951   }
1952 
1953   bool isVecListDPairAllLanes() const {
1954     if (!isSingleSpacedVectorAllLanes()) return false;
1955     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1956               .contains(VectorList.RegNum));
1957   }
1958 
1959   bool isVecListDPairSpacedAllLanes() const {
1960     if (!isDoubleSpacedVectorAllLanes()) return false;
1961     return VectorList.Count == 2;
1962   }
1963 
1964   bool isVecListThreeDAllLanes() const {
1965     if (!isSingleSpacedVectorAllLanes()) return false;
1966     return VectorList.Count == 3;
1967   }
1968 
1969   bool isVecListThreeQAllLanes() const {
1970     if (!isDoubleSpacedVectorAllLanes()) return false;
1971     return VectorList.Count == 3;
1972   }
1973 
1974   bool isVecListFourDAllLanes() const {
1975     if (!isSingleSpacedVectorAllLanes()) return false;
1976     return VectorList.Count == 4;
1977   }
1978 
1979   bool isVecListFourQAllLanes() const {
1980     if (!isDoubleSpacedVectorAllLanes()) return false;
1981     return VectorList.Count == 4;
1982   }
1983 
1984   bool isSingleSpacedVectorIndexed() const {
1985     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1986   }
1987 
1988   bool isDoubleSpacedVectorIndexed() const {
1989     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1990   }
1991 
1992   bool isVecListOneDByteIndexed() const {
1993     if (!isSingleSpacedVectorIndexed()) return false;
1994     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1995   }
1996 
1997   bool isVecListOneDHWordIndexed() const {
1998     if (!isSingleSpacedVectorIndexed()) return false;
1999     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2000   }
2001 
2002   bool isVecListOneDWordIndexed() const {
2003     if (!isSingleSpacedVectorIndexed()) return false;
2004     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2005   }
2006 
2007   bool isVecListTwoDByteIndexed() const {
2008     if (!isSingleSpacedVectorIndexed()) return false;
2009     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2010   }
2011 
2012   bool isVecListTwoDHWordIndexed() const {
2013     if (!isSingleSpacedVectorIndexed()) return false;
2014     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2015   }
2016 
2017   bool isVecListTwoQWordIndexed() const {
2018     if (!isDoubleSpacedVectorIndexed()) return false;
2019     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2020   }
2021 
2022   bool isVecListTwoQHWordIndexed() const {
2023     if (!isDoubleSpacedVectorIndexed()) return false;
2024     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2025   }
2026 
2027   bool isVecListTwoDWordIndexed() const {
2028     if (!isSingleSpacedVectorIndexed()) return false;
2029     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2030   }
2031 
2032   bool isVecListThreeDByteIndexed() const {
2033     if (!isSingleSpacedVectorIndexed()) return false;
2034     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2035   }
2036 
2037   bool isVecListThreeDHWordIndexed() const {
2038     if (!isSingleSpacedVectorIndexed()) return false;
2039     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2040   }
2041 
2042   bool isVecListThreeQWordIndexed() const {
2043     if (!isDoubleSpacedVectorIndexed()) return false;
2044     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2045   }
2046 
2047   bool isVecListThreeQHWordIndexed() const {
2048     if (!isDoubleSpacedVectorIndexed()) return false;
2049     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2050   }
2051 
2052   bool isVecListThreeDWordIndexed() const {
2053     if (!isSingleSpacedVectorIndexed()) return false;
2054     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2055   }
2056 
2057   bool isVecListFourDByteIndexed() const {
2058     if (!isSingleSpacedVectorIndexed()) return false;
2059     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2060   }
2061 
2062   bool isVecListFourDHWordIndexed() const {
2063     if (!isSingleSpacedVectorIndexed()) return false;
2064     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2065   }
2066 
2067   bool isVecListFourQWordIndexed() const {
2068     if (!isDoubleSpacedVectorIndexed()) return false;
2069     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2070   }
2071 
2072   bool isVecListFourQHWordIndexed() const {
2073     if (!isDoubleSpacedVectorIndexed()) return false;
2074     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2075   }
2076 
2077   bool isVecListFourDWordIndexed() const {
2078     if (!isSingleSpacedVectorIndexed()) return false;
2079     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2080   }
2081 
2082   bool isVectorIndex() const { return Kind == k_VectorIndex; }
2083 
2084   template <unsigned NumLanes>
2085   bool isVectorIndexInRange() const {
2086     if (Kind != k_VectorIndex) return false;
2087     return VectorIndex.Val < NumLanes;
2088   }
2089 
2090   bool isVectorIndex8()  const { return isVectorIndexInRange<8>(); }
2091   bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
2092   bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
2093   bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2094 
2095   template<int PermittedValue, int OtherPermittedValue>
2096   bool isMVEPairVectorIndex() const {
2097     if (Kind != k_VectorIndex) return false;
2098     return VectorIndex.Val == PermittedValue ||
2099            VectorIndex.Val == OtherPermittedValue;
2100   }
2101 
2102   bool isNEONi8splat() const {
2103     if (!isImm()) return false;
2104     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2105     // Must be a constant.
2106     if (!CE) return false;
2107     int64_t Value = CE->getValue();
2108     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2109     // value.
2110     return Value >= 0 && Value < 256;
2111   }
2112 
2113   bool isNEONi16splat() const {
2114     if (isNEONByteReplicate(2))
2115       return false; // Leave that for bytes replication and forbid by default.
2116     if (!isImm())
2117       return false;
2118     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2119     // Must be a constant.
2120     if (!CE) return false;
2121     unsigned Value = CE->getValue();
2122     return ARM_AM::isNEONi16splat(Value);
2123   }
2124 
2125   bool isNEONi16splatNot() const {
2126     if (!isImm())
2127       return false;
2128     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2129     // Must be a constant.
2130     if (!CE) return false;
2131     unsigned Value = CE->getValue();
2132     return ARM_AM::isNEONi16splat(~Value & 0xffff);
2133   }
2134 
2135   bool isNEONi32splat() const {
2136     if (isNEONByteReplicate(4))
2137       return false; // Leave that for bytes replication and forbid by default.
2138     if (!isImm())
2139       return false;
2140     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2141     // Must be a constant.
2142     if (!CE) return false;
2143     unsigned Value = CE->getValue();
2144     return ARM_AM::isNEONi32splat(Value);
2145   }
2146 
2147   bool isNEONi32splatNot() const {
2148     if (!isImm())
2149       return false;
2150     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2151     // Must be a constant.
2152     if (!CE) return false;
2153     unsigned Value = CE->getValue();
2154     return ARM_AM::isNEONi32splat(~Value);
2155   }
2156 
2157   static bool isValidNEONi32vmovImm(int64_t Value) {
2158     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2159     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2160     return ((Value & 0xffffffffffffff00) == 0) ||
2161            ((Value & 0xffffffffffff00ff) == 0) ||
2162            ((Value & 0xffffffffff00ffff) == 0) ||
2163            ((Value & 0xffffffff00ffffff) == 0) ||
2164            ((Value & 0xffffffffffff00ff) == 0xff) ||
2165            ((Value & 0xffffffffff00ffff) == 0xffff);
2166   }
2167 
2168   bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2169     assert((Width == 8 || Width == 16 || Width == 32) &&
2170            "Invalid element width");
2171     assert(NumElems * Width <= 64 && "Invalid result width");
2172 
2173     if (!isImm())
2174       return false;
2175     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2176     // Must be a constant.
2177     if (!CE)
2178       return false;
2179     int64_t Value = CE->getValue();
2180     if (!Value)
2181       return false; // Don't bother with zero.
2182     if (Inv)
2183       Value = ~Value;
2184 
2185     uint64_t Mask = (1ull << Width) - 1;
2186     uint64_t Elem = Value & Mask;
2187     if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2188       return false;
2189     if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2190       return false;
2191 
2192     for (unsigned i = 1; i < NumElems; ++i) {
2193       Value >>= Width;
2194       if ((Value & Mask) != Elem)
2195         return false;
2196     }
2197     return true;
2198   }
2199 
2200   bool isNEONByteReplicate(unsigned NumBytes) const {
2201     return isNEONReplicate(8, NumBytes, false);
2202   }
2203 
2204   static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2205     assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2206            "Invalid source width");
2207     assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2208            "Invalid destination width");
2209     assert(FromW < ToW && "ToW is not less than FromW");
2210   }
2211 
2212   template<unsigned FromW, unsigned ToW>
2213   bool isNEONmovReplicate() const {
2214     checkNeonReplicateArgs(FromW, ToW);
2215     if (ToW == 64 && isNEONi64splat())
2216       return false;
2217     return isNEONReplicate(FromW, ToW / FromW, false);
2218   }
2219 
2220   template<unsigned FromW, unsigned ToW>
2221   bool isNEONinvReplicate() const {
2222     checkNeonReplicateArgs(FromW, ToW);
2223     return isNEONReplicate(FromW, ToW / FromW, true);
2224   }
2225 
2226   bool isNEONi32vmov() const {
2227     if (isNEONByteReplicate(4))
2228       return false; // Let it to be classified as byte-replicate case.
2229     if (!isImm())
2230       return false;
2231     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2232     // Must be a constant.
2233     if (!CE)
2234       return false;
2235     return isValidNEONi32vmovImm(CE->getValue());
2236   }
2237 
2238   bool isNEONi32vmovNeg() const {
2239     if (!isImm()) return false;
2240     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2241     // Must be a constant.
2242     if (!CE) return false;
2243     return isValidNEONi32vmovImm(~CE->getValue());
2244   }
2245 
2246   bool isNEONi64splat() const {
2247     if (!isImm()) return false;
2248     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2249     // Must be a constant.
2250     if (!CE) return false;
2251     uint64_t Value = CE->getValue();
2252     // i64 value with each byte being either 0 or 0xff.
2253     for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2254       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2255     return true;
2256   }
2257 
2258   template<int64_t Angle, int64_t Remainder>
2259   bool isComplexRotation() const {
2260     if (!isImm()) return false;
2261 
2262     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2263     if (!CE) return false;
2264     uint64_t Value = CE->getValue();
2265 
2266     return (Value % Angle == Remainder && Value <= 270);
2267   }
2268 
2269   bool isMVELongShift() const {
2270     if (!isImm()) return false;
2271     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2272     // Must be a constant.
2273     if (!CE) return false;
2274     uint64_t Value = CE->getValue();
2275     return Value >= 1 && Value <= 32;
2276   }
2277 
2278   bool isMveSaturateOp() const {
2279     if (!isImm()) return false;
2280     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2281     if (!CE) return false;
2282     uint64_t Value = CE->getValue();
2283     return Value == 48 || Value == 64;
2284   }
2285 
2286   bool isITCondCodeNoAL() const {
2287     if (!isITCondCode()) return false;
2288     ARMCC::CondCodes CC = getCondCode();
2289     return CC != ARMCC::AL;
2290   }
2291 
2292   bool isITCondCodeRestrictedI() const {
2293     if (!isITCondCode())
2294       return false;
2295     ARMCC::CondCodes CC = getCondCode();
2296     return CC == ARMCC::EQ || CC == ARMCC::NE;
2297   }
2298 
2299   bool isITCondCodeRestrictedS() const {
2300     if (!isITCondCode())
2301       return false;
2302     ARMCC::CondCodes CC = getCondCode();
2303     return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2304            CC == ARMCC::GE;
2305   }
2306 
2307   bool isITCondCodeRestrictedU() const {
2308     if (!isITCondCode())
2309       return false;
2310     ARMCC::CondCodes CC = getCondCode();
2311     return CC == ARMCC::HS || CC == ARMCC::HI;
2312   }
2313 
2314   bool isITCondCodeRestrictedFP() const {
2315     if (!isITCondCode())
2316       return false;
2317     ARMCC::CondCodes CC = getCondCode();
2318     return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2319            CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2320   }
2321 
2322   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2323     // Add as immediates when possible.  Null MCExpr = 0.
2324     if (!Expr)
2325       Inst.addOperand(MCOperand::createImm(0));
2326     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2327       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2328     else
2329       Inst.addOperand(MCOperand::createExpr(Expr));
2330   }
2331 
2332   void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2333     assert(N == 1 && "Invalid number of operands!");
2334     addExpr(Inst, getImm());
2335   }
2336 
2337   void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2338     assert(N == 1 && "Invalid number of operands!");
2339     addExpr(Inst, getImm());
2340   }
2341 
2342   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2343     assert(N == 2 && "Invalid number of operands!");
2344     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2345     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2346     Inst.addOperand(MCOperand::createReg(RegNum));
2347   }
2348 
2349   void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2350     assert(N == 2 && "Invalid number of operands!");
2351     Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2352     unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2353     Inst.addOperand(MCOperand::createReg(RegNum));
2354   }
2355 
2356   void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2357     assert(N == 3 && "Invalid number of operands!");
2358     addVPTPredNOperands(Inst, N-1);
2359     unsigned RegNum;
2360     if (getVPTPred() == ARMVCC::None) {
2361       RegNum = 0;
2362     } else {
2363       unsigned NextOpIndex = Inst.getNumOperands();
2364       const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
2365       int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2366       assert(TiedOp >= 0 &&
2367              "Inactive register in vpred_r is not tied to an output!");
2368       RegNum = Inst.getOperand(TiedOp).getReg();
2369     }
2370     Inst.addOperand(MCOperand::createReg(RegNum));
2371   }
2372 
2373   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2374     assert(N == 1 && "Invalid number of operands!");
2375     Inst.addOperand(MCOperand::createImm(getCoproc()));
2376   }
2377 
2378   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2379     assert(N == 1 && "Invalid number of operands!");
2380     Inst.addOperand(MCOperand::createImm(getCoproc()));
2381   }
2382 
2383   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2384     assert(N == 1 && "Invalid number of operands!");
2385     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2386   }
2387 
2388   void addITMaskOperands(MCInst &Inst, unsigned N) const {
2389     assert(N == 1 && "Invalid number of operands!");
2390     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2391   }
2392 
2393   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2394     assert(N == 1 && "Invalid number of operands!");
2395     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2396   }
2397 
2398   void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2399     assert(N == 1 && "Invalid number of operands!");
2400     Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2401   }
2402 
2403   void addCCOutOperands(MCInst &Inst, unsigned N) const {
2404     assert(N == 1 && "Invalid number of operands!");
2405     Inst.addOperand(MCOperand::createReg(getReg()));
2406   }
2407 
2408   void addRegOperands(MCInst &Inst, unsigned N) const {
2409     assert(N == 1 && "Invalid number of operands!");
2410     Inst.addOperand(MCOperand::createReg(getReg()));
2411   }
2412 
2413   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2414     assert(N == 3 && "Invalid number of operands!");
2415     assert(isRegShiftedReg() &&
2416            "addRegShiftedRegOperands() on non-RegShiftedReg!");
2417     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2418     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2419     Inst.addOperand(MCOperand::createImm(
2420       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2421   }
2422 
2423   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2424     assert(N == 2 && "Invalid number of operands!");
2425     assert(isRegShiftedImm() &&
2426            "addRegShiftedImmOperands() on non-RegShiftedImm!");
2427     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2428     // Shift of #32 is encoded as 0 where permitted
2429     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2430     Inst.addOperand(MCOperand::createImm(
2431       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2432   }
2433 
2434   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2435     assert(N == 1 && "Invalid number of operands!");
2436     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2437                                          ShifterImm.Imm));
2438   }
2439 
2440   void addRegListOperands(MCInst &Inst, unsigned N) const {
2441     assert(N == 1 && "Invalid number of operands!");
2442     const SmallVectorImpl<unsigned> &RegList = getRegList();
2443     for (SmallVectorImpl<unsigned>::const_iterator
2444            I = RegList.begin(), E = RegList.end(); I != E; ++I)
2445       Inst.addOperand(MCOperand::createReg(*I));
2446   }
2447 
2448   void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2449     assert(N == 1 && "Invalid number of operands!");
2450     const SmallVectorImpl<unsigned> &RegList = getRegList();
2451     for (SmallVectorImpl<unsigned>::const_iterator
2452            I = RegList.begin(), E = RegList.end(); I != E; ++I)
2453       Inst.addOperand(MCOperand::createReg(*I));
2454   }
2455 
2456   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2457     addRegListOperands(Inst, N);
2458   }
2459 
2460   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2461     addRegListOperands(Inst, N);
2462   }
2463 
2464   void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2465     addRegListOperands(Inst, N);
2466   }
2467 
2468   void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2469     addRegListOperands(Inst, N);
2470   }
2471 
2472   void addRotImmOperands(MCInst &Inst, unsigned N) const {
2473     assert(N == 1 && "Invalid number of operands!");
2474     // Encoded as val>>3. The printer handles display as 8, 16, 24.
2475     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2476   }
2477 
2478   void addModImmOperands(MCInst &Inst, unsigned N) const {
2479     assert(N == 1 && "Invalid number of operands!");
2480 
2481     // Support for fixups (MCFixup)
2482     if (isImm())
2483       return addImmOperands(Inst, N);
2484 
2485     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2486   }
2487 
2488   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2489     assert(N == 1 && "Invalid number of operands!");
2490     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2491     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2492     Inst.addOperand(MCOperand::createImm(Enc));
2493   }
2494 
2495   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2496     assert(N == 1 && "Invalid number of operands!");
2497     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2498     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2499     Inst.addOperand(MCOperand::createImm(Enc));
2500   }
2501 
2502   void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2503     assert(N == 1 && "Invalid number of operands!");
2504     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2505     uint32_t Val = -CE->getValue();
2506     Inst.addOperand(MCOperand::createImm(Val));
2507   }
2508 
2509   void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2510     assert(N == 1 && "Invalid number of operands!");
2511     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2512     uint32_t Val = -CE->getValue();
2513     Inst.addOperand(MCOperand::createImm(Val));
2514   }
2515 
2516   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2517     assert(N == 1 && "Invalid number of operands!");
2518     // Munge the lsb/width into a bitfield mask.
2519     unsigned lsb = Bitfield.LSB;
2520     unsigned width = Bitfield.Width;
2521     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2522     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2523                       (32 - (lsb + width)));
2524     Inst.addOperand(MCOperand::createImm(Mask));
2525   }
2526 
2527   void addImmOperands(MCInst &Inst, unsigned N) const {
2528     assert(N == 1 && "Invalid number of operands!");
2529     addExpr(Inst, getImm());
2530   }
2531 
2532   void addFBits16Operands(MCInst &Inst, unsigned N) const {
2533     assert(N == 1 && "Invalid number of operands!");
2534     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2535     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2536   }
2537 
2538   void addFBits32Operands(MCInst &Inst, unsigned N) const {
2539     assert(N == 1 && "Invalid number of operands!");
2540     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2541     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2542   }
2543 
2544   void addFPImmOperands(MCInst &Inst, unsigned N) const {
2545     assert(N == 1 && "Invalid number of operands!");
2546     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2547     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2548     Inst.addOperand(MCOperand::createImm(Val));
2549   }
2550 
2551   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2552     assert(N == 1 && "Invalid number of operands!");
2553     // FIXME: We really want to scale the value here, but the LDRD/STRD
2554     // instruction don't encode operands that way yet.
2555     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2556     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2557   }
2558 
2559   void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2560     assert(N == 1 && "Invalid number of operands!");
2561     // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2562     // instruction don't encode operands that way yet.
2563     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2564     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2565   }
2566 
2567   void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2568     assert(N == 1 && "Invalid number of operands!");
2569     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2570     assert(CE != nullptr && "Invalid operand type!");
2571     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2572   }
2573 
2574   void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2575     assert(N == 1 && "Invalid number of operands!");
2576     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2577     assert(CE != nullptr && "Invalid operand type!");
2578     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2579   }
2580 
2581   void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2582     assert(N == 1 && "Invalid number of operands!");
2583     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2584     assert(CE != nullptr && "Invalid operand type!");
2585     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2586   }
2587 
2588   void addImm7Operands(MCInst &Inst, unsigned N) const {
2589     assert(N == 1 && "Invalid number of operands!");
2590     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2591     assert(CE != nullptr && "Invalid operand type!");
2592     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2593   }
2594 
2595   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2596     assert(N == 1 && "Invalid number of operands!");
2597     // The immediate is scaled by four in the encoding and is stored
2598     // in the MCInst as such. Lop off the low two bits here.
2599     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2600     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2601   }
2602 
2603   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2604     assert(N == 1 && "Invalid number of operands!");
2605     // The immediate is scaled by four in the encoding and is stored
2606     // in the MCInst as such. Lop off the low two bits here.
2607     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2608     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2609   }
2610 
2611   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2612     assert(N == 1 && "Invalid number of operands!");
2613     // The immediate is scaled by four in the encoding and is stored
2614     // in the MCInst as such. Lop off the low two bits here.
2615     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2616     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2617   }
2618 
2619   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2620     assert(N == 1 && "Invalid number of operands!");
2621     // The constant encodes as the immediate-1, and we store in the instruction
2622     // the bits as encoded, so subtract off one here.
2623     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2624     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2625   }
2626 
2627   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2628     assert(N == 1 && "Invalid number of operands!");
2629     // The constant encodes as the immediate-1, and we store in the instruction
2630     // the bits as encoded, so subtract off one here.
2631     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2632     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2633   }
2634 
2635   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2636     assert(N == 1 && "Invalid number of operands!");
2637     // The constant encodes as the immediate, except for 32, which encodes as
2638     // zero.
2639     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2640     unsigned Imm = CE->getValue();
2641     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2642   }
2643 
2644   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2645     assert(N == 1 && "Invalid number of operands!");
2646     // An ASR value of 32 encodes as 0, so that's how we want to add it to
2647     // the instruction as well.
2648     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2649     int Val = CE->getValue();
2650     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2651   }
2652 
2653   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2654     assert(N == 1 && "Invalid number of operands!");
2655     // The operand is actually a t2_so_imm, but we have its bitwise
2656     // negation in the assembly source, so twiddle it here.
2657     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2658     Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2659   }
2660 
2661   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2662     assert(N == 1 && "Invalid number of operands!");
2663     // The operand is actually a t2_so_imm, but we have its
2664     // negation in the assembly source, so twiddle it here.
2665     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2666     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2667   }
2668 
2669   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2670     assert(N == 1 && "Invalid number of operands!");
2671     // The operand is actually an imm0_4095, but we have its
2672     // negation in the assembly source, so twiddle it here.
2673     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2674     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2675   }
2676 
2677   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2678     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2679       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2680       return;
2681     }
2682 
2683     const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2684     assert(SR && "Unknown value type!");
2685     Inst.addOperand(MCOperand::createExpr(SR));
2686   }
2687 
2688   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2689     assert(N == 1 && "Invalid number of operands!");
2690     if (isImm()) {
2691       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2692       if (CE) {
2693         Inst.addOperand(MCOperand::createImm(CE->getValue()));
2694         return;
2695       }
2696 
2697       const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2698 
2699       assert(SR && "Unknown value type!");
2700       Inst.addOperand(MCOperand::createExpr(SR));
2701       return;
2702     }
2703 
2704     assert(isGPRMem()  && "Unknown value type!");
2705     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2706     Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2707   }
2708 
2709   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2710     assert(N == 1 && "Invalid number of operands!");
2711     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2712   }
2713 
2714   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2715     assert(N == 1 && "Invalid number of operands!");
2716     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2717   }
2718 
2719   void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2720     assert(N == 1 && "Invalid number of operands!");
2721     Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2722   }
2723 
2724   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2725     assert(N == 1 && "Invalid number of operands!");
2726     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2727   }
2728 
2729   void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2730     assert(N == 1 && "Invalid number of operands!");
2731     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2732   }
2733 
2734   void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2735     assert(N == 1 && "Invalid number of operands!");
2736     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2737   }
2738 
2739   void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2740     assert(N == 1 && "Invalid number of operands!");
2741     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2742   }
2743 
2744   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2745     assert(N == 1 && "Invalid number of operands!");
2746     int32_t Imm = Memory.OffsetImm->getValue();
2747     Inst.addOperand(MCOperand::createImm(Imm));
2748   }
2749 
2750   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2751     assert(N == 1 && "Invalid number of operands!");
2752     assert(isImm() && "Not an immediate!");
2753 
2754     // If we have an immediate that's not a constant, treat it as a label
2755     // reference needing a fixup.
2756     if (!isa<MCConstantExpr>(getImm())) {
2757       Inst.addOperand(MCOperand::createExpr(getImm()));
2758       return;
2759     }
2760 
2761     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2762     int Val = CE->getValue();
2763     Inst.addOperand(MCOperand::createImm(Val));
2764   }
2765 
2766   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2767     assert(N == 2 && "Invalid number of operands!");
2768     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2769     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2770   }
2771 
2772   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2773     addAlignedMemoryOperands(Inst, N);
2774   }
2775 
2776   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2777     addAlignedMemoryOperands(Inst, N);
2778   }
2779 
2780   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2781     addAlignedMemoryOperands(Inst, N);
2782   }
2783 
2784   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2785     addAlignedMemoryOperands(Inst, N);
2786   }
2787 
2788   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2789     addAlignedMemoryOperands(Inst, N);
2790   }
2791 
2792   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2793     addAlignedMemoryOperands(Inst, N);
2794   }
2795 
2796   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2797     addAlignedMemoryOperands(Inst, N);
2798   }
2799 
2800   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2801     addAlignedMemoryOperands(Inst, N);
2802   }
2803 
2804   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2805     addAlignedMemoryOperands(Inst, N);
2806   }
2807 
2808   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2809     addAlignedMemoryOperands(Inst, N);
2810   }
2811 
2812   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2813     addAlignedMemoryOperands(Inst, N);
2814   }
2815 
2816   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2817     assert(N == 3 && "Invalid number of operands!");
2818     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2819     if (!Memory.OffsetRegNum) {
2820       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2821       // Special case for #-0
2822       if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2823       if (Val < 0) Val = -Val;
2824       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2825     } else {
2826       // For register offset, we encode the shift type and negation flag
2827       // here.
2828       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2829                               Memory.ShiftImm, Memory.ShiftType);
2830     }
2831     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2832     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2833     Inst.addOperand(MCOperand::createImm(Val));
2834   }
2835 
2836   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2837     assert(N == 2 && "Invalid number of operands!");
2838     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2839     assert(CE && "non-constant AM2OffsetImm operand!");
2840     int32_t Val = CE->getValue();
2841     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2842     // Special case for #-0
2843     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2844     if (Val < 0) Val = -Val;
2845     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2846     Inst.addOperand(MCOperand::createReg(0));
2847     Inst.addOperand(MCOperand::createImm(Val));
2848   }
2849 
2850   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2851     assert(N == 3 && "Invalid number of operands!");
2852     // If we have an immediate that's not a constant, treat it as a label
2853     // reference needing a fixup. If it is a constant, it's something else
2854     // and we reject it.
2855     if (isImm()) {
2856       Inst.addOperand(MCOperand::createExpr(getImm()));
2857       Inst.addOperand(MCOperand::createReg(0));
2858       Inst.addOperand(MCOperand::createImm(0));
2859       return;
2860     }
2861 
2862     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2863     if (!Memory.OffsetRegNum) {
2864       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2865       // Special case for #-0
2866       if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2867       if (Val < 0) Val = -Val;
2868       Val = ARM_AM::getAM3Opc(AddSub, Val);
2869     } else {
2870       // For register offset, we encode the shift type and negation flag
2871       // here.
2872       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2873     }
2874     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2875     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2876     Inst.addOperand(MCOperand::createImm(Val));
2877   }
2878 
2879   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2880     assert(N == 2 && "Invalid number of operands!");
2881     if (Kind == k_PostIndexRegister) {
2882       int32_t Val =
2883         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2884       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2885       Inst.addOperand(MCOperand::createImm(Val));
2886       return;
2887     }
2888 
2889     // Constant offset.
2890     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2891     int32_t Val = CE->getValue();
2892     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2893     // Special case for #-0
2894     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2895     if (Val < 0) Val = -Val;
2896     Val = ARM_AM::getAM3Opc(AddSub, Val);
2897     Inst.addOperand(MCOperand::createReg(0));
2898     Inst.addOperand(MCOperand::createImm(Val));
2899   }
2900 
2901   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2902     assert(N == 2 && "Invalid number of operands!");
2903     // If we have an immediate that's not a constant, treat it as a label
2904     // reference needing a fixup. If it is a constant, it's something else
2905     // and we reject it.
2906     if (isImm()) {
2907       Inst.addOperand(MCOperand::createExpr(getImm()));
2908       Inst.addOperand(MCOperand::createImm(0));
2909       return;
2910     }
2911 
2912     // The lower two bits are always zero and as such are not encoded.
2913     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2914     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2915     // Special case for #-0
2916     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2917     if (Val < 0) Val = -Val;
2918     Val = ARM_AM::getAM5Opc(AddSub, Val);
2919     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2920     Inst.addOperand(MCOperand::createImm(Val));
2921   }
2922 
2923   void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2924     assert(N == 2 && "Invalid number of operands!");
2925     // If we have an immediate that's not a constant, treat it as a label
2926     // reference needing a fixup. If it is a constant, it's something else
2927     // and we reject it.
2928     if (isImm()) {
2929       Inst.addOperand(MCOperand::createExpr(getImm()));
2930       Inst.addOperand(MCOperand::createImm(0));
2931       return;
2932     }
2933 
2934     // The lower bit is always zero and as such is not encoded.
2935     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2936     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2937     // Special case for #-0
2938     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2939     if (Val < 0) Val = -Val;
2940     Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2941     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2942     Inst.addOperand(MCOperand::createImm(Val));
2943   }
2944 
2945   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2946     assert(N == 2 && "Invalid number of operands!");
2947     // If we have an immediate that's not a constant, treat it as a label
2948     // reference needing a fixup. If it is a constant, it's something else
2949     // and we reject it.
2950     if (isImm()) {
2951       Inst.addOperand(MCOperand::createExpr(getImm()));
2952       Inst.addOperand(MCOperand::createImm(0));
2953       return;
2954     }
2955 
2956     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2957     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2958     Inst.addOperand(MCOperand::createImm(Val));
2959   }
2960 
2961   void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
2962     assert(N == 2 && "Invalid number of operands!");
2963     // If we have an immediate that's not a constant, treat it as a label
2964     // reference needing a fixup. If it is a constant, it's something else
2965     // and we reject it.
2966     if (isImm()) {
2967       Inst.addOperand(MCOperand::createExpr(getImm()));
2968       Inst.addOperand(MCOperand::createImm(0));
2969       return;
2970     }
2971 
2972     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2973     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2974     Inst.addOperand(MCOperand::createImm(Val));
2975   }
2976 
2977   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2978     assert(N == 2 && "Invalid number of operands!");
2979     // The lower two bits are always zero and as such are not encoded.
2980     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2981     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2982     Inst.addOperand(MCOperand::createImm(Val));
2983   }
2984 
2985   void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
2986     assert(N == 2 && "Invalid number of operands!");
2987     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2988     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2989     Inst.addOperand(MCOperand::createImm(Val));
2990   }
2991 
2992   void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
2993     assert(N == 2 && "Invalid number of operands!");
2994     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2995     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2996   }
2997 
2998   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2999     assert(N == 2 && "Invalid number of operands!");
3000     // If this is an immediate, it's a label reference.
3001     if (isImm()) {
3002       addExpr(Inst, getImm());
3003       Inst.addOperand(MCOperand::createImm(0));
3004       return;
3005     }
3006 
3007     // Otherwise, it's a normal memory reg+offset.
3008     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3009     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3010     Inst.addOperand(MCOperand::createImm(Val));
3011   }
3012 
3013   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3014     assert(N == 2 && "Invalid number of operands!");
3015     // If this is an immediate, it's a label reference.
3016     if (isImm()) {
3017       addExpr(Inst, getImm());
3018       Inst.addOperand(MCOperand::createImm(0));
3019       return;
3020     }
3021 
3022     // Otherwise, it's a normal memory reg+offset.
3023     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3024     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3025     Inst.addOperand(MCOperand::createImm(Val));
3026   }
3027 
3028   void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3029     assert(N == 1 && "Invalid number of operands!");
3030     // This is container for the immediate that we will create the constant
3031     // pool from
3032     addExpr(Inst, getConstantPoolImm());
3033     return;
3034   }
3035 
3036   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3037     assert(N == 2 && "Invalid number of operands!");
3038     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3039     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3040   }
3041 
3042   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3043     assert(N == 2 && "Invalid number of operands!");
3044     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3045     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3046   }
3047 
3048   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3049     assert(N == 3 && "Invalid number of operands!");
3050     unsigned Val =
3051       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3052                         Memory.ShiftImm, Memory.ShiftType);
3053     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3054     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3055     Inst.addOperand(MCOperand::createImm(Val));
3056   }
3057 
3058   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3059     assert(N == 3 && "Invalid number of operands!");
3060     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3061     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3062     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3063   }
3064 
3065   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3066     assert(N == 2 && "Invalid number of operands!");
3067     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3068     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3069   }
3070 
3071   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3072     assert(N == 2 && "Invalid number of operands!");
3073     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
3074     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3075     Inst.addOperand(MCOperand::createImm(Val));
3076   }
3077 
3078   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3079     assert(N == 2 && "Invalid number of operands!");
3080     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
3081     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3082     Inst.addOperand(MCOperand::createImm(Val));
3083   }
3084 
3085   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3086     assert(N == 2 && "Invalid number of operands!");
3087     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
3088     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3089     Inst.addOperand(MCOperand::createImm(Val));
3090   }
3091 
3092   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3093     assert(N == 2 && "Invalid number of operands!");
3094     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
3095     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3096     Inst.addOperand(MCOperand::createImm(Val));
3097   }
3098 
3099   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3100     assert(N == 1 && "Invalid number of operands!");
3101     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3102     assert(CE && "non-constant post-idx-imm8 operand!");
3103     int Imm = CE->getValue();
3104     bool isAdd = Imm >= 0;
3105     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3106     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3107     Inst.addOperand(MCOperand::createImm(Imm));
3108   }
3109 
3110   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3111     assert(N == 1 && "Invalid number of operands!");
3112     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3113     assert(CE && "non-constant post-idx-imm8s4 operand!");
3114     int Imm = CE->getValue();
3115     bool isAdd = Imm >= 0;
3116     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3117     // Immediate is scaled by 4.
3118     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3119     Inst.addOperand(MCOperand::createImm(Imm));
3120   }
3121 
3122   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3123     assert(N == 2 && "Invalid number of operands!");
3124     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3125     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3126   }
3127 
3128   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3129     assert(N == 2 && "Invalid number of operands!");
3130     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3131     // The sign, shift type, and shift amount are encoded in a single operand
3132     // using the AM2 encoding helpers.
3133     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3134     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3135                                      PostIdxReg.ShiftTy);
3136     Inst.addOperand(MCOperand::createImm(Imm));
3137   }
3138 
3139   void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3140     assert(N == 1 && "Invalid number of operands!");
3141     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3142     Inst.addOperand(MCOperand::createImm(CE->getValue()));
3143   }
3144 
3145   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3146     assert(N == 1 && "Invalid number of operands!");
3147     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3148   }
3149 
3150   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3151     assert(N == 1 && "Invalid number of operands!");
3152     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3153   }
3154 
3155   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3156     assert(N == 1 && "Invalid number of operands!");
3157     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3158   }
3159 
3160   void addVecListOperands(MCInst &Inst, unsigned N) const {
3161     assert(N == 1 && "Invalid number of operands!");
3162     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3163   }
3164 
3165   void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3166     assert(N == 1 && "Invalid number of operands!");
3167 
3168     // When we come here, the VectorList field will identify a range
3169     // of q-registers by its base register and length, and it will
3170     // have already been error-checked to be the expected length of
3171     // range and contain only q-regs in the range q0-q7. So we can
3172     // count on the base register being in the range q0-q6 (for 2
3173     // regs) or q0-q4 (for 4)
3174     //
3175     // The MVE instructions taking a register range of this kind will
3176     // need an operand in the QQPR or QQQQPR class, representing the
3177     // entire range as a unit. So we must translate into that class,
3178     // by finding the index of the base register in the MQPR reg
3179     // class, and returning the super-register at the corresponding
3180     // index in the target class.
3181 
3182     const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3183     const MCRegisterClass *RC_out = (VectorList.Count == 2) ?
3184       &ARMMCRegisterClasses[ARM::QQPRRegClassID] :
3185       &ARMMCRegisterClasses[ARM::QQQQPRRegClassID];
3186 
3187     unsigned I, E = RC_out->getNumRegs();
3188     for (I = 0; I < E; I++)
3189       if (RC_in->getRegister(I) == VectorList.RegNum)
3190         break;
3191     assert(I < E && "Invalid vector list start register!");
3192 
3193     Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3194   }
3195 
3196   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3197     assert(N == 2 && "Invalid number of operands!");
3198     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3199     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3200   }
3201 
3202   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3203     assert(N == 1 && "Invalid number of operands!");
3204     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3205   }
3206 
3207   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3208     assert(N == 1 && "Invalid number of operands!");
3209     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3210   }
3211 
3212   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3213     assert(N == 1 && "Invalid number of operands!");
3214     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3215   }
3216 
3217   void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3218     assert(N == 1 && "Invalid number of operands!");
3219     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3220   }
3221 
3222   void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3223     assert(N == 1 && "Invalid number of operands!");
3224     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3225   }
3226 
3227   void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3228     assert(N == 1 && "Invalid number of operands!");
3229     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3230   }
3231 
3232   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3233     assert(N == 1 && "Invalid number of operands!");
3234     // The immediate encodes the type of constant as well as the value.
3235     // Mask in that this is an i8 splat.
3236     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3237     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3238   }
3239 
3240   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3241     assert(N == 1 && "Invalid number of operands!");
3242     // The immediate encodes the type of constant as well as the value.
3243     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3244     unsigned Value = CE->getValue();
3245     Value = ARM_AM::encodeNEONi16splat(Value);
3246     Inst.addOperand(MCOperand::createImm(Value));
3247   }
3248 
3249   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3250     assert(N == 1 && "Invalid number of operands!");
3251     // The immediate encodes the type of constant as well as the value.
3252     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3253     unsigned Value = CE->getValue();
3254     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3255     Inst.addOperand(MCOperand::createImm(Value));
3256   }
3257 
3258   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3259     assert(N == 1 && "Invalid number of operands!");
3260     // The immediate encodes the type of constant as well as the value.
3261     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3262     unsigned Value = CE->getValue();
3263     Value = ARM_AM::encodeNEONi32splat(Value);
3264     Inst.addOperand(MCOperand::createImm(Value));
3265   }
3266 
3267   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3268     assert(N == 1 && "Invalid number of operands!");
3269     // The immediate encodes the type of constant as well as the value.
3270     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3271     unsigned Value = CE->getValue();
3272     Value = ARM_AM::encodeNEONi32splat(~Value);
3273     Inst.addOperand(MCOperand::createImm(Value));
3274   }
3275 
3276   void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3277     // The immediate encodes the type of constant as well as the value.
3278     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3279     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3280             Inst.getOpcode() == ARM::VMOVv16i8) &&
3281           "All instructions that wants to replicate non-zero byte "
3282           "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3283     unsigned Value = CE->getValue();
3284     if (Inv)
3285       Value = ~Value;
3286     unsigned B = Value & 0xff;
3287     B |= 0xe00; // cmode = 0b1110
3288     Inst.addOperand(MCOperand::createImm(B));
3289   }
3290 
3291   void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3292     assert(N == 1 && "Invalid number of operands!");
3293     addNEONi8ReplicateOperands(Inst, true);
3294   }
3295 
3296   static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3297     if (Value >= 256 && Value <= 0xffff)
3298       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3299     else if (Value > 0xffff && Value <= 0xffffff)
3300       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3301     else if (Value > 0xffffff)
3302       Value = (Value >> 24) | 0x600;
3303     return Value;
3304   }
3305 
3306   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3307     assert(N == 1 && "Invalid number of operands!");
3308     // The immediate encodes the type of constant as well as the value.
3309     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3310     unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3311     Inst.addOperand(MCOperand::createImm(Value));
3312   }
3313 
3314   void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3315     assert(N == 1 && "Invalid number of operands!");
3316     addNEONi8ReplicateOperands(Inst, false);
3317   }
3318 
3319   void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3320     assert(N == 1 && "Invalid number of operands!");
3321     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3322     assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3323             Inst.getOpcode() == ARM::VMOVv8i16 ||
3324             Inst.getOpcode() == ARM::VMVNv4i16 ||
3325             Inst.getOpcode() == ARM::VMVNv8i16) &&
3326           "All instructions that want to replicate non-zero half-word "
3327           "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3328     uint64_t Value = CE->getValue();
3329     unsigned Elem = Value & 0xffff;
3330     if (Elem >= 256)
3331       Elem = (Elem >> 8) | 0x200;
3332     Inst.addOperand(MCOperand::createImm(Elem));
3333   }
3334 
3335   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3336     assert(N == 1 && "Invalid number of operands!");
3337     // The immediate encodes the type of constant as well as the value.
3338     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3339     unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3340     Inst.addOperand(MCOperand::createImm(Value));
3341   }
3342 
3343   void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3344     assert(N == 1 && "Invalid number of operands!");
3345     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3346     assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3347             Inst.getOpcode() == ARM::VMOVv4i32 ||
3348             Inst.getOpcode() == ARM::VMVNv2i32 ||
3349             Inst.getOpcode() == ARM::VMVNv4i32) &&
3350           "All instructions that want to replicate non-zero word "
3351           "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3352     uint64_t Value = CE->getValue();
3353     unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3354     Inst.addOperand(MCOperand::createImm(Elem));
3355   }
3356 
3357   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3358     assert(N == 1 && "Invalid number of operands!");
3359     // The immediate encodes the type of constant as well as the value.
3360     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3361     uint64_t Value = CE->getValue();
3362     unsigned Imm = 0;
3363     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3364       Imm |= (Value & 1) << i;
3365     }
3366     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3367   }
3368 
3369   void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3370     assert(N == 1 && "Invalid number of operands!");
3371     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3372     Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3373   }
3374 
3375   void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3376     assert(N == 1 && "Invalid number of operands!");
3377     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3378     Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3379   }
3380 
3381   void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3382     assert(N == 1 && "Invalid number of operands!");
3383     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3384     unsigned Imm = CE->getValue();
3385     assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3386     Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3387   }
3388 
3389   void print(raw_ostream &OS) const override;
3390 
3391   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3392     auto Op = make_unique<ARMOperand>(k_ITCondMask);
3393     Op->ITMask.Mask = Mask;
3394     Op->StartLoc = S;
3395     Op->EndLoc = S;
3396     return Op;
3397   }
3398 
3399   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3400                                                     SMLoc S) {
3401     auto Op = make_unique<ARMOperand>(k_CondCode);
3402     Op->CC.Val = CC;
3403     Op->StartLoc = S;
3404     Op->EndLoc = S;
3405     return Op;
3406   }
3407 
3408   static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3409                                                    SMLoc S) {
3410     auto Op = make_unique<ARMOperand>(k_VPTPred);
3411     Op->VCC.Val = CC;
3412     Op->StartLoc = S;
3413     Op->EndLoc = S;
3414     return Op;
3415   }
3416 
3417   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3418     auto Op = make_unique<ARMOperand>(k_CoprocNum);
3419     Op->Cop.Val = CopVal;
3420     Op->StartLoc = S;
3421     Op->EndLoc = S;
3422     return Op;
3423   }
3424 
3425   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3426     auto Op = make_unique<ARMOperand>(k_CoprocReg);
3427     Op->Cop.Val = CopVal;
3428     Op->StartLoc = S;
3429     Op->EndLoc = S;
3430     return Op;
3431   }
3432 
3433   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3434                                                         SMLoc E) {
3435     auto Op = make_unique<ARMOperand>(k_CoprocOption);
3436     Op->Cop.Val = Val;
3437     Op->StartLoc = S;
3438     Op->EndLoc = E;
3439     return Op;
3440   }
3441 
3442   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3443     auto Op = make_unique<ARMOperand>(k_CCOut);
3444     Op->Reg.RegNum = RegNum;
3445     Op->StartLoc = S;
3446     Op->EndLoc = S;
3447     return Op;
3448   }
3449 
3450   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3451     auto Op = make_unique<ARMOperand>(k_Token);
3452     Op->Tok.Data = Str.data();
3453     Op->Tok.Length = Str.size();
3454     Op->StartLoc = S;
3455     Op->EndLoc = S;
3456     return Op;
3457   }
3458 
3459   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3460                                                SMLoc E) {
3461     auto Op = make_unique<ARMOperand>(k_Register);
3462     Op->Reg.RegNum = RegNum;
3463     Op->StartLoc = S;
3464     Op->EndLoc = E;
3465     return Op;
3466   }
3467 
3468   static std::unique_ptr<ARMOperand>
3469   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3470                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3471                         SMLoc E) {
3472     auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
3473     Op->RegShiftedReg.ShiftTy = ShTy;
3474     Op->RegShiftedReg.SrcReg = SrcReg;
3475     Op->RegShiftedReg.ShiftReg = ShiftReg;
3476     Op->RegShiftedReg.ShiftImm = ShiftImm;
3477     Op->StartLoc = S;
3478     Op->EndLoc = E;
3479     return Op;
3480   }
3481 
3482   static std::unique_ptr<ARMOperand>
3483   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3484                          unsigned ShiftImm, SMLoc S, SMLoc E) {
3485     auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
3486     Op->RegShiftedImm.ShiftTy = ShTy;
3487     Op->RegShiftedImm.SrcReg = SrcReg;
3488     Op->RegShiftedImm.ShiftImm = ShiftImm;
3489     Op->StartLoc = S;
3490     Op->EndLoc = E;
3491     return Op;
3492   }
3493 
3494   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3495                                                       SMLoc S, SMLoc E) {
3496     auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
3497     Op->ShifterImm.isASR = isASR;
3498     Op->ShifterImm.Imm = Imm;
3499     Op->StartLoc = S;
3500     Op->EndLoc = E;
3501     return Op;
3502   }
3503 
3504   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3505                                                   SMLoc E) {
3506     auto Op = make_unique<ARMOperand>(k_RotateImmediate);
3507     Op->RotImm.Imm = Imm;
3508     Op->StartLoc = S;
3509     Op->EndLoc = E;
3510     return Op;
3511   }
3512 
3513   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3514                                                   SMLoc S, SMLoc E) {
3515     auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
3516     Op->ModImm.Bits = Bits;
3517     Op->ModImm.Rot = Rot;
3518     Op->StartLoc = S;
3519     Op->EndLoc = E;
3520     return Op;
3521   }
3522 
3523   static std::unique_ptr<ARMOperand>
3524   CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3525     auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate);
3526     Op->Imm.Val = Val;
3527     Op->StartLoc = S;
3528     Op->EndLoc = E;
3529     return Op;
3530   }
3531 
3532   static std::unique_ptr<ARMOperand>
3533   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3534     auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
3535     Op->Bitfield.LSB = LSB;
3536     Op->Bitfield.Width = Width;
3537     Op->StartLoc = S;
3538     Op->EndLoc = E;
3539     return Op;
3540   }
3541 
3542   static std::unique_ptr<ARMOperand>
3543   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3544                 SMLoc StartLoc, SMLoc EndLoc) {
3545     assert(Regs.size() > 0 && "RegList contains no registers?");
3546     KindTy Kind = k_RegisterList;
3547 
3548     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3549             Regs.front().second)) {
3550       if (Regs.back().second == ARM::VPR)
3551         Kind = k_FPDRegisterListWithVPR;
3552       else
3553         Kind = k_DPRRegisterList;
3554     } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3555                    Regs.front().second)) {
3556       if (Regs.back().second == ARM::VPR)
3557         Kind = k_FPSRegisterListWithVPR;
3558       else
3559         Kind = k_SPRRegisterList;
3560     }
3561 
3562     if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3563       Kind = k_RegisterListWithAPSR;
3564 
3565     assert(std::is_sorted(Regs.begin(), Regs.end()) &&
3566            "Register list must be sorted by encoding");
3567 
3568     auto Op = make_unique<ARMOperand>(Kind);
3569     for (const auto &P : Regs)
3570       Op->Registers.push_back(P.second);
3571 
3572     Op->StartLoc = StartLoc;
3573     Op->EndLoc = EndLoc;
3574     return Op;
3575   }
3576 
3577   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3578                                                       unsigned Count,
3579                                                       bool isDoubleSpaced,
3580                                                       SMLoc S, SMLoc E) {
3581     auto Op = make_unique<ARMOperand>(k_VectorList);
3582     Op->VectorList.RegNum = RegNum;
3583     Op->VectorList.Count = Count;
3584     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3585     Op->StartLoc = S;
3586     Op->EndLoc = E;
3587     return Op;
3588   }
3589 
3590   static std::unique_ptr<ARMOperand>
3591   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3592                            SMLoc S, SMLoc E) {
3593     auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
3594     Op->VectorList.RegNum = RegNum;
3595     Op->VectorList.Count = Count;
3596     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3597     Op->StartLoc = S;
3598     Op->EndLoc = E;
3599     return Op;
3600   }
3601 
3602   static std::unique_ptr<ARMOperand>
3603   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3604                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
3605     auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
3606     Op->VectorList.RegNum = RegNum;
3607     Op->VectorList.Count = Count;
3608     Op->VectorList.LaneIndex = Index;
3609     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3610     Op->StartLoc = S;
3611     Op->EndLoc = E;
3612     return Op;
3613   }
3614 
3615   static std::unique_ptr<ARMOperand>
3616   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3617     auto Op = make_unique<ARMOperand>(k_VectorIndex);
3618     Op->VectorIndex.Val = Idx;
3619     Op->StartLoc = S;
3620     Op->EndLoc = E;
3621     return Op;
3622   }
3623 
3624   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3625                                                SMLoc E) {
3626     auto Op = make_unique<ARMOperand>(k_Immediate);
3627     Op->Imm.Val = Val;
3628     Op->StartLoc = S;
3629     Op->EndLoc = E;
3630     return Op;
3631   }
3632 
3633   static std::unique_ptr<ARMOperand>
3634   CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3635             unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3636             unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3637             SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3638     auto Op = make_unique<ARMOperand>(k_Memory);
3639     Op->Memory.BaseRegNum = BaseRegNum;
3640     Op->Memory.OffsetImm = OffsetImm;
3641     Op->Memory.OffsetRegNum = OffsetRegNum;
3642     Op->Memory.ShiftType = ShiftType;
3643     Op->Memory.ShiftImm = ShiftImm;
3644     Op->Memory.Alignment = Alignment;
3645     Op->Memory.isNegative = isNegative;
3646     Op->StartLoc = S;
3647     Op->EndLoc = E;
3648     Op->AlignmentLoc = AlignmentLoc;
3649     return Op;
3650   }
3651 
3652   static std::unique_ptr<ARMOperand>
3653   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3654                    unsigned ShiftImm, SMLoc S, SMLoc E) {
3655     auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
3656     Op->PostIdxReg.RegNum = RegNum;
3657     Op->PostIdxReg.isAdd = isAdd;
3658     Op->PostIdxReg.ShiftTy = ShiftTy;
3659     Op->PostIdxReg.ShiftImm = ShiftImm;
3660     Op->StartLoc = S;
3661     Op->EndLoc = E;
3662     return Op;
3663   }
3664 
3665   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3666                                                          SMLoc S) {
3667     auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
3668     Op->MBOpt.Val = Opt;
3669     Op->StartLoc = S;
3670     Op->EndLoc = S;
3671     return Op;
3672   }
3673 
3674   static std::unique_ptr<ARMOperand>
3675   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3676     auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3677     Op->ISBOpt.Val = Opt;
3678     Op->StartLoc = S;
3679     Op->EndLoc = S;
3680     return Op;
3681   }
3682 
3683   static std::unique_ptr<ARMOperand>
3684   CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3685     auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3686     Op->TSBOpt.Val = Opt;
3687     Op->StartLoc = S;
3688     Op->EndLoc = S;
3689     return Op;
3690   }
3691 
3692   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3693                                                       SMLoc S) {
3694     auto Op = make_unique<ARMOperand>(k_ProcIFlags);
3695     Op->IFlags.Val = IFlags;
3696     Op->StartLoc = S;
3697     Op->EndLoc = S;
3698     return Op;
3699   }
3700 
3701   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3702     auto Op = make_unique<ARMOperand>(k_MSRMask);
3703     Op->MMask.Val = MMask;
3704     Op->StartLoc = S;
3705     Op->EndLoc = S;
3706     return Op;
3707   }
3708 
3709   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3710     auto Op = make_unique<ARMOperand>(k_BankedReg);
3711     Op->BankedReg.Val = Reg;
3712     Op->StartLoc = S;
3713     Op->EndLoc = S;
3714     return Op;
3715   }
3716 };
3717 
3718 } // end anonymous namespace.
3719 
3720 void ARMOperand::print(raw_ostream &OS) const {
3721   auto RegName = [](unsigned Reg) {
3722     if (Reg)
3723       return ARMInstPrinter::getRegisterName(Reg);
3724     else
3725       return "noreg";
3726   };
3727 
3728   switch (Kind) {
3729   case k_CondCode:
3730     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3731     break;
3732   case k_VPTPred:
3733     OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3734     break;
3735   case k_CCOut:
3736     OS << "<ccout " << RegName(getReg()) << ">";
3737     break;
3738   case k_ITCondMask: {
3739     static const char *const MaskStr[] = {
3740       "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3741       "(tt)",      "(ttet)", "(tte)", "(ttee)",
3742       "(t)",       "(tett)", "(tet)", "(tete)",
3743       "(te)",      "(teet)", "(tee)", "(teee)",
3744     };
3745     assert((ITMask.Mask & 0xf) == ITMask.Mask);
3746     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3747     break;
3748   }
3749   case k_CoprocNum:
3750     OS << "<coprocessor number: " << getCoproc() << ">";
3751     break;
3752   case k_CoprocReg:
3753     OS << "<coprocessor register: " << getCoproc() << ">";
3754     break;
3755   case k_CoprocOption:
3756     OS << "<coprocessor option: " << CoprocOption.Val << ">";
3757     break;
3758   case k_MSRMask:
3759     OS << "<mask: " << getMSRMask() << ">";
3760     break;
3761   case k_BankedReg:
3762     OS << "<banked reg: " << getBankedReg() << ">";
3763     break;
3764   case k_Immediate:
3765     OS << *getImm();
3766     break;
3767   case k_MemBarrierOpt:
3768     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3769     break;
3770   case k_InstSyncBarrierOpt:
3771     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3772     break;
3773   case k_TraceSyncBarrierOpt:
3774     OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3775     break;
3776   case k_Memory:
3777     OS << "<memory";
3778     if (Memory.BaseRegNum)
3779       OS << " base:" << RegName(Memory.BaseRegNum);
3780     if (Memory.OffsetImm)
3781       OS << " offset-imm:" << *Memory.OffsetImm;
3782     if (Memory.OffsetRegNum)
3783       OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3784          << RegName(Memory.OffsetRegNum);
3785     if (Memory.ShiftType != ARM_AM::no_shift) {
3786       OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3787       OS << " shift-imm:" << Memory.ShiftImm;
3788     }
3789     if (Memory.Alignment)
3790       OS << " alignment:" << Memory.Alignment;
3791     OS << ">";
3792     break;
3793   case k_PostIndexRegister:
3794     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3795        << RegName(PostIdxReg.RegNum);
3796     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3797       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3798          << PostIdxReg.ShiftImm;
3799     OS << ">";
3800     break;
3801   case k_ProcIFlags: {
3802     OS << "<ARM_PROC::";
3803     unsigned IFlags = getProcIFlags();
3804     for (int i=2; i >= 0; --i)
3805       if (IFlags & (1 << i))
3806         OS << ARM_PROC::IFlagsToString(1 << i);
3807     OS << ">";
3808     break;
3809   }
3810   case k_Register:
3811     OS << "<register " << RegName(getReg()) << ">";
3812     break;
3813   case k_ShifterImmediate:
3814     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3815        << " #" << ShifterImm.Imm << ">";
3816     break;
3817   case k_ShiftedRegister:
3818     OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3819        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3820        << RegName(RegShiftedReg.ShiftReg) << ">";
3821     break;
3822   case k_ShiftedImmediate:
3823     OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3824        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3825        << RegShiftedImm.ShiftImm << ">";
3826     break;
3827   case k_RotateImmediate:
3828     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3829     break;
3830   case k_ModifiedImmediate:
3831     OS << "<mod_imm #" << ModImm.Bits << ", #"
3832        <<  ModImm.Rot << ")>";
3833     break;
3834   case k_ConstantPoolImmediate:
3835     OS << "<constant_pool_imm #" << *getConstantPoolImm();
3836     break;
3837   case k_BitfieldDescriptor:
3838     OS << "<bitfield " << "lsb: " << Bitfield.LSB
3839        << ", width: " << Bitfield.Width << ">";
3840     break;
3841   case k_RegisterList:
3842   case k_RegisterListWithAPSR:
3843   case k_DPRRegisterList:
3844   case k_SPRRegisterList:
3845   case k_FPSRegisterListWithVPR:
3846   case k_FPDRegisterListWithVPR: {
3847     OS << "<register_list ";
3848 
3849     const SmallVectorImpl<unsigned> &RegList = getRegList();
3850     for (SmallVectorImpl<unsigned>::const_iterator
3851            I = RegList.begin(), E = RegList.end(); I != E; ) {
3852       OS << RegName(*I);
3853       if (++I < E) OS << ", ";
3854     }
3855 
3856     OS << ">";
3857     break;
3858   }
3859   case k_VectorList:
3860     OS << "<vector_list " << VectorList.Count << " * "
3861        << RegName(VectorList.RegNum) << ">";
3862     break;
3863   case k_VectorListAllLanes:
3864     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3865        << RegName(VectorList.RegNum) << ">";
3866     break;
3867   case k_VectorListIndexed:
3868     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3869        << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
3870     break;
3871   case k_Token:
3872     OS << "'" << getToken() << "'";
3873     break;
3874   case k_VectorIndex:
3875     OS << "<vectorindex " << getVectorIndex() << ">";
3876     break;
3877   }
3878 }
3879 
3880 /// @name Auto-generated Match Functions
3881 /// {
3882 
3883 static unsigned MatchRegisterName(StringRef Name);
3884 
3885 /// }
3886 
3887 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3888                                  SMLoc &StartLoc, SMLoc &EndLoc) {
3889   const AsmToken &Tok = getParser().getTok();
3890   StartLoc = Tok.getLoc();
3891   EndLoc = Tok.getEndLoc();
3892   RegNo = tryParseRegister();
3893 
3894   return (RegNo == (unsigned)-1);
3895 }
3896 
3897 /// Try to parse a register name.  The token must be an Identifier when called,
3898 /// and if it is a register name the token is eaten and the register number is
3899 /// returned.  Otherwise return -1.
3900 int ARMAsmParser::tryParseRegister() {
3901   MCAsmParser &Parser = getParser();
3902   const AsmToken &Tok = Parser.getTok();
3903   if (Tok.isNot(AsmToken::Identifier)) return -1;
3904 
3905   std::string lowerCase = Tok.getString().lower();
3906   unsigned RegNum = MatchRegisterName(lowerCase);
3907   if (!RegNum) {
3908     RegNum = StringSwitch<unsigned>(lowerCase)
3909       .Case("r13", ARM::SP)
3910       .Case("r14", ARM::LR)
3911       .Case("r15", ARM::PC)
3912       .Case("ip", ARM::R12)
3913       // Additional register name aliases for 'gas' compatibility.
3914       .Case("a1", ARM::R0)
3915       .Case("a2", ARM::R1)
3916       .Case("a3", ARM::R2)
3917       .Case("a4", ARM::R3)
3918       .Case("v1", ARM::R4)
3919       .Case("v2", ARM::R5)
3920       .Case("v3", ARM::R6)
3921       .Case("v4", ARM::R7)
3922       .Case("v5", ARM::R8)
3923       .Case("v6", ARM::R9)
3924       .Case("v7", ARM::R10)
3925       .Case("v8", ARM::R11)
3926       .Case("sb", ARM::R9)
3927       .Case("sl", ARM::R10)
3928       .Case("fp", ARM::R11)
3929       .Default(0);
3930   }
3931   if (!RegNum) {
3932     // Check for aliases registered via .req. Canonicalize to lower case.
3933     // That's more consistent since register names are case insensitive, and
3934     // it's how the original entry was passed in from MC/MCParser/AsmParser.
3935     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3936     // If no match, return failure.
3937     if (Entry == RegisterReqs.end())
3938       return -1;
3939     Parser.Lex(); // Eat identifier token.
3940     return Entry->getValue();
3941   }
3942 
3943   // Some FPUs only have 16 D registers, so D16-D31 are invalid
3944   if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3945     return -1;
3946 
3947   Parser.Lex(); // Eat identifier token.
3948 
3949   return RegNum;
3950 }
3951 
3952 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
3953 // If a recoverable error occurs, return 1. If an irrecoverable error
3954 // occurs, return -1. An irrecoverable error is one where tokens have been
3955 // consumed in the process of trying to parse the shifter (i.e., when it is
3956 // indeed a shifter operand, but malformed).
3957 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3958   MCAsmParser &Parser = getParser();
3959   SMLoc S = Parser.getTok().getLoc();
3960   const AsmToken &Tok = Parser.getTok();
3961   if (Tok.isNot(AsmToken::Identifier))
3962     return -1;
3963 
3964   std::string lowerCase = Tok.getString().lower();
3965   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3966       .Case("asl", ARM_AM::lsl)
3967       .Case("lsl", ARM_AM::lsl)
3968       .Case("lsr", ARM_AM::lsr)
3969       .Case("asr", ARM_AM::asr)
3970       .Case("ror", ARM_AM::ror)
3971       .Case("rrx", ARM_AM::rrx)
3972       .Default(ARM_AM::no_shift);
3973 
3974   if (ShiftTy == ARM_AM::no_shift)
3975     return 1;
3976 
3977   Parser.Lex(); // Eat the operator.
3978 
3979   // The source register for the shift has already been added to the
3980   // operand list, so we need to pop it off and combine it into the shifted
3981   // register operand instead.
3982   std::unique_ptr<ARMOperand> PrevOp(
3983       (ARMOperand *)Operands.pop_back_val().release());
3984   if (!PrevOp->isReg())
3985     return Error(PrevOp->getStartLoc(), "shift must be of a register");
3986   int SrcReg = PrevOp->getReg();
3987 
3988   SMLoc EndLoc;
3989   int64_t Imm = 0;
3990   int ShiftReg = 0;
3991   if (ShiftTy == ARM_AM::rrx) {
3992     // RRX Doesn't have an explicit shift amount. The encoder expects
3993     // the shift register to be the same as the source register. Seems odd,
3994     // but OK.
3995     ShiftReg = SrcReg;
3996   } else {
3997     // Figure out if this is shifted by a constant or a register (for non-RRX).
3998     if (Parser.getTok().is(AsmToken::Hash) ||
3999         Parser.getTok().is(AsmToken::Dollar)) {
4000       Parser.Lex(); // Eat hash.
4001       SMLoc ImmLoc = Parser.getTok().getLoc();
4002       const MCExpr *ShiftExpr = nullptr;
4003       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
4004         Error(ImmLoc, "invalid immediate shift value");
4005         return -1;
4006       }
4007       // The expression must be evaluatable as an immediate.
4008       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4009       if (!CE) {
4010         Error(ImmLoc, "invalid immediate shift value");
4011         return -1;
4012       }
4013       // Range check the immediate.
4014       // lsl, ror: 0 <= imm <= 31
4015       // lsr, asr: 0 <= imm <= 32
4016       Imm = CE->getValue();
4017       if (Imm < 0 ||
4018           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4019           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4020         Error(ImmLoc, "immediate shift value out of range");
4021         return -1;
4022       }
4023       // shift by zero is a nop. Always send it through as lsl.
4024       // ('as' compatibility)
4025       if (Imm == 0)
4026         ShiftTy = ARM_AM::lsl;
4027     } else if (Parser.getTok().is(AsmToken::Identifier)) {
4028       SMLoc L = Parser.getTok().getLoc();
4029       EndLoc = Parser.getTok().getEndLoc();
4030       ShiftReg = tryParseRegister();
4031       if (ShiftReg == -1) {
4032         Error(L, "expected immediate or register in shift operand");
4033         return -1;
4034       }
4035     } else {
4036       Error(Parser.getTok().getLoc(),
4037             "expected immediate or register in shift operand");
4038       return -1;
4039     }
4040   }
4041 
4042   if (ShiftReg && ShiftTy != ARM_AM::rrx)
4043     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4044                                                          ShiftReg, Imm,
4045                                                          S, EndLoc));
4046   else
4047     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4048                                                           S, EndLoc));
4049 
4050   return 0;
4051 }
4052 
4053 /// Try to parse a register name.  The token must be an Identifier when called.
4054 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4055 /// if there is a "writeback". 'true' if it's not a register.
4056 ///
4057 /// TODO this is likely to change to allow different register types and or to
4058 /// parse for a specific register type.
4059 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4060   MCAsmParser &Parser = getParser();
4061   SMLoc RegStartLoc = Parser.getTok().getLoc();
4062   SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4063   int RegNo = tryParseRegister();
4064   if (RegNo == -1)
4065     return true;
4066 
4067   Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4068 
4069   const AsmToken &ExclaimTok = Parser.getTok();
4070   if (ExclaimTok.is(AsmToken::Exclaim)) {
4071     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4072                                                ExclaimTok.getLoc()));
4073     Parser.Lex(); // Eat exclaim token
4074     return false;
4075   }
4076 
4077   // Also check for an index operand. This is only legal for vector registers,
4078   // but that'll get caught OK in operand matching, so we don't need to
4079   // explicitly filter everything else out here.
4080   if (Parser.getTok().is(AsmToken::LBrac)) {
4081     SMLoc SIdx = Parser.getTok().getLoc();
4082     Parser.Lex(); // Eat left bracket token.
4083 
4084     const MCExpr *ImmVal;
4085     if (getParser().parseExpression(ImmVal))
4086       return true;
4087     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4088     if (!MCE)
4089       return TokError("immediate value expected for vector index");
4090 
4091     if (Parser.getTok().isNot(AsmToken::RBrac))
4092       return Error(Parser.getTok().getLoc(), "']' expected");
4093 
4094     SMLoc E = Parser.getTok().getEndLoc();
4095     Parser.Lex(); // Eat right bracket token.
4096 
4097     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4098                                                      SIdx, E,
4099                                                      getContext()));
4100   }
4101 
4102   return false;
4103 }
4104 
4105 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4106 /// instruction with a symbolic operand name.
4107 /// We accept "crN" syntax for GAS compatibility.
4108 /// <operand-name> ::= <prefix><number>
4109 /// If CoprocOp is 'c', then:
4110 ///   <prefix> ::= c | cr
4111 /// If CoprocOp is 'p', then :
4112 ///   <prefix> ::= p
4113 /// <number> ::= integer in range [0, 15]
4114 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4115   // Use the same layout as the tablegen'erated register name matcher. Ugly,
4116   // but efficient.
4117   if (Name.size() < 2 || Name[0] != CoprocOp)
4118     return -1;
4119   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4120 
4121   switch (Name.size()) {
4122   default: return -1;
4123   case 1:
4124     switch (Name[0]) {
4125     default:  return -1;
4126     case '0': return 0;
4127     case '1': return 1;
4128     case '2': return 2;
4129     case '3': return 3;
4130     case '4': return 4;
4131     case '5': return 5;
4132     case '6': return 6;
4133     case '7': return 7;
4134     case '8': return 8;
4135     case '9': return 9;
4136     }
4137   case 2:
4138     if (Name[0] != '1')
4139       return -1;
4140     switch (Name[1]) {
4141     default:  return -1;
4142     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4143     // However, old cores (v5/v6) did use them in that way.
4144     case '0': return 10;
4145     case '1': return 11;
4146     case '2': return 12;
4147     case '3': return 13;
4148     case '4': return 14;
4149     case '5': return 15;
4150     }
4151   }
4152 }
4153 
4154 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4155 OperandMatchResultTy
4156 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4157   MCAsmParser &Parser = getParser();
4158   SMLoc S = Parser.getTok().getLoc();
4159   const AsmToken &Tok = Parser.getTok();
4160   if (!Tok.is(AsmToken::Identifier))
4161     return MatchOperand_NoMatch;
4162   unsigned CC = ARMCondCodeFromString(Tok.getString());
4163   if (CC == ~0U)
4164     return MatchOperand_NoMatch;
4165   Parser.Lex(); // Eat the token.
4166 
4167   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4168 
4169   return MatchOperand_Success;
4170 }
4171 
4172 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4173 /// token must be an Identifier when called, and if it is a coprocessor
4174 /// number, the token is eaten and the operand is added to the operand list.
4175 OperandMatchResultTy
4176 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4177   MCAsmParser &Parser = getParser();
4178   SMLoc S = Parser.getTok().getLoc();
4179   const AsmToken &Tok = Parser.getTok();
4180   if (Tok.isNot(AsmToken::Identifier))
4181     return MatchOperand_NoMatch;
4182 
4183   int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4184   if (Num == -1)
4185     return MatchOperand_NoMatch;
4186   if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4187     return MatchOperand_NoMatch;
4188 
4189   Parser.Lex(); // Eat identifier token.
4190   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4191   return MatchOperand_Success;
4192 }
4193 
4194 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4195 /// token must be an Identifier when called, and if it is a coprocessor
4196 /// number, the token is eaten and the operand is added to the operand list.
4197 OperandMatchResultTy
4198 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4199   MCAsmParser &Parser = getParser();
4200   SMLoc S = Parser.getTok().getLoc();
4201   const AsmToken &Tok = Parser.getTok();
4202   if (Tok.isNot(AsmToken::Identifier))
4203     return MatchOperand_NoMatch;
4204 
4205   int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4206   if (Reg == -1)
4207     return MatchOperand_NoMatch;
4208 
4209   Parser.Lex(); // Eat identifier token.
4210   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4211   return MatchOperand_Success;
4212 }
4213 
4214 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4215 /// coproc_option : '{' imm0_255 '}'
4216 OperandMatchResultTy
4217 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4218   MCAsmParser &Parser = getParser();
4219   SMLoc S = Parser.getTok().getLoc();
4220 
4221   // If this isn't a '{', this isn't a coprocessor immediate operand.
4222   if (Parser.getTok().isNot(AsmToken::LCurly))
4223     return MatchOperand_NoMatch;
4224   Parser.Lex(); // Eat the '{'
4225 
4226   const MCExpr *Expr;
4227   SMLoc Loc = Parser.getTok().getLoc();
4228   if (getParser().parseExpression(Expr)) {
4229     Error(Loc, "illegal expression");
4230     return MatchOperand_ParseFail;
4231   }
4232   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4233   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4234     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4235     return MatchOperand_ParseFail;
4236   }
4237   int Val = CE->getValue();
4238 
4239   // Check for and consume the closing '}'
4240   if (Parser.getTok().isNot(AsmToken::RCurly))
4241     return MatchOperand_ParseFail;
4242   SMLoc E = Parser.getTok().getEndLoc();
4243   Parser.Lex(); // Eat the '}'
4244 
4245   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4246   return MatchOperand_Success;
4247 }
4248 
4249 // For register list parsing, we need to map from raw GPR register numbering
4250 // to the enumeration values. The enumeration values aren't sorted by
4251 // register number due to our using "sp", "lr" and "pc" as canonical names.
4252 static unsigned getNextRegister(unsigned Reg) {
4253   // If this is a GPR, we need to do it manually, otherwise we can rely
4254   // on the sort ordering of the enumeration since the other reg-classes
4255   // are sane.
4256   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4257     return Reg + 1;
4258   switch(Reg) {
4259   default: llvm_unreachable("Invalid GPR number!");
4260   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
4261   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
4262   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
4263   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
4264   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
4265   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4266   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
4267   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
4268   }
4269 }
4270 
4271 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4272 // success, or false, if duplicate encoding found.
4273 static bool
4274 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4275                    unsigned Enc, unsigned Reg) {
4276   Regs.emplace_back(Enc, Reg);
4277   for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4278     if (J->first == Enc) {
4279       Regs.erase(J.base());
4280       return false;
4281     }
4282     if (J->first < Enc)
4283       break;
4284     std::swap(*I, *J);
4285   }
4286   return true;
4287 }
4288 
4289 /// Parse a register list.
4290 bool ARMAsmParser::parseRegisterList(OperandVector &Operands,
4291                                      bool EnforceOrder) {
4292   MCAsmParser &Parser = getParser();
4293   if (Parser.getTok().isNot(AsmToken::LCurly))
4294     return TokError("Token is not a Left Curly Brace");
4295   SMLoc S = Parser.getTok().getLoc();
4296   Parser.Lex(); // Eat '{' token.
4297   SMLoc RegLoc = Parser.getTok().getLoc();
4298 
4299   // Check the first register in the list to see what register class
4300   // this is a list of.
4301   int Reg = tryParseRegister();
4302   if (Reg == -1)
4303     return Error(RegLoc, "register expected");
4304 
4305   // The reglist instructions have at most 16 registers, so reserve
4306   // space for that many.
4307   int EReg = 0;
4308   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4309 
4310   // Allow Q regs and just interpret them as the two D sub-registers.
4311   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4312     Reg = getDRegFromQReg(Reg);
4313     EReg = MRI->getEncodingValue(Reg);
4314     Registers.emplace_back(EReg, Reg);
4315     ++Reg;
4316   }
4317   const MCRegisterClass *RC;
4318   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4319     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4320   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4321     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4322   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4323     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4324   else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4325     RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4326   else
4327     return Error(RegLoc, "invalid register in register list");
4328 
4329   // Store the register.
4330   EReg = MRI->getEncodingValue(Reg);
4331   Registers.emplace_back(EReg, Reg);
4332 
4333   // This starts immediately after the first register token in the list,
4334   // so we can see either a comma or a minus (range separator) as a legal
4335   // next token.
4336   while (Parser.getTok().is(AsmToken::Comma) ||
4337          Parser.getTok().is(AsmToken::Minus)) {
4338     if (Parser.getTok().is(AsmToken::Minus)) {
4339       Parser.Lex(); // Eat the minus.
4340       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4341       int EndReg = tryParseRegister();
4342       if (EndReg == -1)
4343         return Error(AfterMinusLoc, "register expected");
4344       // Allow Q regs and just interpret them as the two D sub-registers.
4345       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4346         EndReg = getDRegFromQReg(EndReg) + 1;
4347       // If the register is the same as the start reg, there's nothing
4348       // more to do.
4349       if (Reg == EndReg)
4350         continue;
4351       // The register must be in the same register class as the first.
4352       if (!RC->contains(EndReg))
4353         return Error(AfterMinusLoc, "invalid register in register list");
4354       // Ranges must go from low to high.
4355       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4356         return Error(AfterMinusLoc, "bad range in register list");
4357 
4358       // Add all the registers in the range to the register list.
4359       while (Reg != EndReg) {
4360         Reg = getNextRegister(Reg);
4361         EReg = MRI->getEncodingValue(Reg);
4362         if (!insertNoDuplicates(Registers, EReg, Reg)) {
4363           Warning(AfterMinusLoc, StringRef("duplicated register (") +
4364                                      ARMInstPrinter::getRegisterName(Reg) +
4365                                      ") in register list");
4366         }
4367       }
4368       continue;
4369     }
4370     Parser.Lex(); // Eat the comma.
4371     RegLoc = Parser.getTok().getLoc();
4372     int OldReg = Reg;
4373     const AsmToken RegTok = Parser.getTok();
4374     Reg = tryParseRegister();
4375     if (Reg == -1)
4376       return Error(RegLoc, "register expected");
4377     // Allow Q regs and just interpret them as the two D sub-registers.
4378     bool isQReg = false;
4379     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4380       Reg = getDRegFromQReg(Reg);
4381       isQReg = true;
4382     }
4383     if (!RC->contains(Reg) &&
4384         RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4385         ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4386       // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4387       // subset of GPRRegClassId except it contains APSR as well.
4388       RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4389     }
4390     if (Reg == ARM::VPR &&
4391         (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4392          RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4393          RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4394       RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4395       EReg = MRI->getEncodingValue(Reg);
4396       if (!insertNoDuplicates(Registers, EReg, Reg)) {
4397         Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4398                             ") in register list");
4399       }
4400       continue;
4401     }
4402     // The register must be in the same register class as the first.
4403     if (!RC->contains(Reg))
4404       return Error(RegLoc, "invalid register in register list");
4405     // In most cases, the list must be monotonically increasing. An
4406     // exception is CLRM, which is order-independent anyway, so
4407     // there's no potential for confusion if you write clrm {r2,r1}
4408     // instead of clrm {r1,r2}.
4409     if (EnforceOrder &&
4410         MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4411       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4412         Warning(RegLoc, "register list not in ascending order");
4413       else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4414         return Error(RegLoc, "register list not in ascending order");
4415     }
4416     // VFP register lists must also be contiguous.
4417     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4418         RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4419         Reg != OldReg + 1)
4420       return Error(RegLoc, "non-contiguous register range");
4421     EReg = MRI->getEncodingValue(Reg);
4422     if (!insertNoDuplicates(Registers, EReg, Reg)) {
4423       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4424                           ") in register list");
4425     }
4426     if (isQReg) {
4427       EReg = MRI->getEncodingValue(++Reg);
4428       Registers.emplace_back(EReg, Reg);
4429     }
4430   }
4431 
4432   if (Parser.getTok().isNot(AsmToken::RCurly))
4433     return Error(Parser.getTok().getLoc(), "'}' expected");
4434   SMLoc E = Parser.getTok().getEndLoc();
4435   Parser.Lex(); // Eat '}' token.
4436 
4437   // Push the register list operand.
4438   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4439 
4440   // The ARM system instruction variants for LDM/STM have a '^' token here.
4441   if (Parser.getTok().is(AsmToken::Caret)) {
4442     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4443     Parser.Lex(); // Eat '^' token.
4444   }
4445 
4446   return false;
4447 }
4448 
4449 // Helper function to parse the lane index for vector lists.
4450 OperandMatchResultTy ARMAsmParser::
4451 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4452   MCAsmParser &Parser = getParser();
4453   Index = 0; // Always return a defined index value.
4454   if (Parser.getTok().is(AsmToken::LBrac)) {
4455     Parser.Lex(); // Eat the '['.
4456     if (Parser.getTok().is(AsmToken::RBrac)) {
4457       // "Dn[]" is the 'all lanes' syntax.
4458       LaneKind = AllLanes;
4459       EndLoc = Parser.getTok().getEndLoc();
4460       Parser.Lex(); // Eat the ']'.
4461       return MatchOperand_Success;
4462     }
4463 
4464     // There's an optional '#' token here. Normally there wouldn't be, but
4465     // inline assemble puts one in, and it's friendly to accept that.
4466     if (Parser.getTok().is(AsmToken::Hash))
4467       Parser.Lex(); // Eat '#' or '$'.
4468 
4469     const MCExpr *LaneIndex;
4470     SMLoc Loc = Parser.getTok().getLoc();
4471     if (getParser().parseExpression(LaneIndex)) {
4472       Error(Loc, "illegal expression");
4473       return MatchOperand_ParseFail;
4474     }
4475     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4476     if (!CE) {
4477       Error(Loc, "lane index must be empty or an integer");
4478       return MatchOperand_ParseFail;
4479     }
4480     if (Parser.getTok().isNot(AsmToken::RBrac)) {
4481       Error(Parser.getTok().getLoc(), "']' expected");
4482       return MatchOperand_ParseFail;
4483     }
4484     EndLoc = Parser.getTok().getEndLoc();
4485     Parser.Lex(); // Eat the ']'.
4486     int64_t Val = CE->getValue();
4487 
4488     // FIXME: Make this range check context sensitive for .8, .16, .32.
4489     if (Val < 0 || Val > 7) {
4490       Error(Parser.getTok().getLoc(), "lane index out of range");
4491       return MatchOperand_ParseFail;
4492     }
4493     Index = Val;
4494     LaneKind = IndexedLane;
4495     return MatchOperand_Success;
4496   }
4497   LaneKind = NoLanes;
4498   return MatchOperand_Success;
4499 }
4500 
4501 // parse a vector register list
4502 OperandMatchResultTy
4503 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4504   MCAsmParser &Parser = getParser();
4505   VectorLaneTy LaneKind;
4506   unsigned LaneIndex;
4507   SMLoc S = Parser.getTok().getLoc();
4508   // As an extension (to match gas), support a plain D register or Q register
4509   // (without encosing curly braces) as a single or double entry list,
4510   // respectively.
4511   if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4512     SMLoc E = Parser.getTok().getEndLoc();
4513     int Reg = tryParseRegister();
4514     if (Reg == -1)
4515       return MatchOperand_NoMatch;
4516     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4517       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4518       if (Res != MatchOperand_Success)
4519         return Res;
4520       switch (LaneKind) {
4521       case NoLanes:
4522         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4523         break;
4524       case AllLanes:
4525         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4526                                                                 S, E));
4527         break;
4528       case IndexedLane:
4529         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4530                                                                LaneIndex,
4531                                                                false, S, E));
4532         break;
4533       }
4534       return MatchOperand_Success;
4535     }
4536     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4537       Reg = getDRegFromQReg(Reg);
4538       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4539       if (Res != MatchOperand_Success)
4540         return Res;
4541       switch (LaneKind) {
4542       case NoLanes:
4543         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4544                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4545         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4546         break;
4547       case AllLanes:
4548         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4549                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4550         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4551                                                                 S, E));
4552         break;
4553       case IndexedLane:
4554         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4555                                                                LaneIndex,
4556                                                                false, S, E));
4557         break;
4558       }
4559       return MatchOperand_Success;
4560     }
4561     Error(S, "vector register expected");
4562     return MatchOperand_ParseFail;
4563   }
4564 
4565   if (Parser.getTok().isNot(AsmToken::LCurly))
4566     return MatchOperand_NoMatch;
4567 
4568   Parser.Lex(); // Eat '{' token.
4569   SMLoc RegLoc = Parser.getTok().getLoc();
4570 
4571   int Reg = tryParseRegister();
4572   if (Reg == -1) {
4573     Error(RegLoc, "register expected");
4574     return MatchOperand_ParseFail;
4575   }
4576   unsigned Count = 1;
4577   int Spacing = 0;
4578   unsigned FirstReg = Reg;
4579 
4580   if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4581       Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4582       return MatchOperand_ParseFail;
4583   }
4584   // The list is of D registers, but we also allow Q regs and just interpret
4585   // them as the two D sub-registers.
4586   else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4587     FirstReg = Reg = getDRegFromQReg(Reg);
4588     Spacing = 1; // double-spacing requires explicit D registers, otherwise
4589                  // it's ambiguous with four-register single spaced.
4590     ++Reg;
4591     ++Count;
4592   }
4593 
4594   SMLoc E;
4595   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4596     return MatchOperand_ParseFail;
4597 
4598   while (Parser.getTok().is(AsmToken::Comma) ||
4599          Parser.getTok().is(AsmToken::Minus)) {
4600     if (Parser.getTok().is(AsmToken::Minus)) {
4601       if (!Spacing)
4602         Spacing = 1; // Register range implies a single spaced list.
4603       else if (Spacing == 2) {
4604         Error(Parser.getTok().getLoc(),
4605               "sequential registers in double spaced list");
4606         return MatchOperand_ParseFail;
4607       }
4608       Parser.Lex(); // Eat the minus.
4609       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4610       int EndReg = tryParseRegister();
4611       if (EndReg == -1) {
4612         Error(AfterMinusLoc, "register expected");
4613         return MatchOperand_ParseFail;
4614       }
4615       // Allow Q regs and just interpret them as the two D sub-registers.
4616       if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4617         EndReg = getDRegFromQReg(EndReg) + 1;
4618       // If the register is the same as the start reg, there's nothing
4619       // more to do.
4620       if (Reg == EndReg)
4621         continue;
4622       // The register must be in the same register class as the first.
4623       if ((hasMVE() &&
4624            !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4625           (!hasMVE() &&
4626            !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4627         Error(AfterMinusLoc, "invalid register in register list");
4628         return MatchOperand_ParseFail;
4629       }
4630       // Ranges must go from low to high.
4631       if (Reg > EndReg) {
4632         Error(AfterMinusLoc, "bad range in register list");
4633         return MatchOperand_ParseFail;
4634       }
4635       // Parse the lane specifier if present.
4636       VectorLaneTy NextLaneKind;
4637       unsigned NextLaneIndex;
4638       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4639           MatchOperand_Success)
4640         return MatchOperand_ParseFail;
4641       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4642         Error(AfterMinusLoc, "mismatched lane index in register list");
4643         return MatchOperand_ParseFail;
4644       }
4645 
4646       // Add all the registers in the range to the register list.
4647       Count += EndReg - Reg;
4648       Reg = EndReg;
4649       continue;
4650     }
4651     Parser.Lex(); // Eat the comma.
4652     RegLoc = Parser.getTok().getLoc();
4653     int OldReg = Reg;
4654     Reg = tryParseRegister();
4655     if (Reg == -1) {
4656       Error(RegLoc, "register expected");
4657       return MatchOperand_ParseFail;
4658     }
4659 
4660     if (hasMVE()) {
4661       if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4662         Error(RegLoc, "vector register in range Q0-Q7 expected");
4663         return MatchOperand_ParseFail;
4664       }
4665       Spacing = 1;
4666     }
4667     // vector register lists must be contiguous.
4668     // It's OK to use the enumeration values directly here rather, as the
4669     // VFP register classes have the enum sorted properly.
4670     //
4671     // The list is of D registers, but we also allow Q regs and just interpret
4672     // them as the two D sub-registers.
4673     else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4674       if (!Spacing)
4675         Spacing = 1; // Register range implies a single spaced list.
4676       else if (Spacing == 2) {
4677         Error(RegLoc,
4678               "invalid register in double-spaced list (must be 'D' register')");
4679         return MatchOperand_ParseFail;
4680       }
4681       Reg = getDRegFromQReg(Reg);
4682       if (Reg != OldReg + 1) {
4683         Error(RegLoc, "non-contiguous register range");
4684         return MatchOperand_ParseFail;
4685       }
4686       ++Reg;
4687       Count += 2;
4688       // Parse the lane specifier if present.
4689       VectorLaneTy NextLaneKind;
4690       unsigned NextLaneIndex;
4691       SMLoc LaneLoc = Parser.getTok().getLoc();
4692       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4693           MatchOperand_Success)
4694         return MatchOperand_ParseFail;
4695       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4696         Error(LaneLoc, "mismatched lane index in register list");
4697         return MatchOperand_ParseFail;
4698       }
4699       continue;
4700     }
4701     // Normal D register.
4702     // Figure out the register spacing (single or double) of the list if
4703     // we don't know it already.
4704     if (!Spacing)
4705       Spacing = 1 + (Reg == OldReg + 2);
4706 
4707     // Just check that it's contiguous and keep going.
4708     if (Reg != OldReg + Spacing) {
4709       Error(RegLoc, "non-contiguous register range");
4710       return MatchOperand_ParseFail;
4711     }
4712     ++Count;
4713     // Parse the lane specifier if present.
4714     VectorLaneTy NextLaneKind;
4715     unsigned NextLaneIndex;
4716     SMLoc EndLoc = Parser.getTok().getLoc();
4717     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4718       return MatchOperand_ParseFail;
4719     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4720       Error(EndLoc, "mismatched lane index in register list");
4721       return MatchOperand_ParseFail;
4722     }
4723   }
4724 
4725   if (Parser.getTok().isNot(AsmToken::RCurly)) {
4726     Error(Parser.getTok().getLoc(), "'}' expected");
4727     return MatchOperand_ParseFail;
4728   }
4729   E = Parser.getTok().getEndLoc();
4730   Parser.Lex(); // Eat '}' token.
4731 
4732   switch (LaneKind) {
4733   case NoLanes:
4734   case AllLanes: {
4735     // Two-register operands have been converted to the
4736     // composite register classes.
4737     if (Count == 2 && !hasMVE()) {
4738       const MCRegisterClass *RC = (Spacing == 1) ?
4739         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4740         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4741       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4742     }
4743     auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4744                    ARMOperand::CreateVectorListAllLanes);
4745     Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4746     break;
4747   }
4748   case IndexedLane:
4749     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4750                                                            LaneIndex,
4751                                                            (Spacing == 2),
4752                                                            S, E));
4753     break;
4754   }
4755   return MatchOperand_Success;
4756 }
4757 
4758 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4759 OperandMatchResultTy
4760 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4761   MCAsmParser &Parser = getParser();
4762   SMLoc S = Parser.getTok().getLoc();
4763   const AsmToken &Tok = Parser.getTok();
4764   unsigned Opt;
4765 
4766   if (Tok.is(AsmToken::Identifier)) {
4767     StringRef OptStr = Tok.getString();
4768 
4769     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4770       .Case("sy",    ARM_MB::SY)
4771       .Case("st",    ARM_MB::ST)
4772       .Case("ld",    ARM_MB::LD)
4773       .Case("sh",    ARM_MB::ISH)
4774       .Case("ish",   ARM_MB::ISH)
4775       .Case("shst",  ARM_MB::ISHST)
4776       .Case("ishst", ARM_MB::ISHST)
4777       .Case("ishld", ARM_MB::ISHLD)
4778       .Case("nsh",   ARM_MB::NSH)
4779       .Case("un",    ARM_MB::NSH)
4780       .Case("nshst", ARM_MB::NSHST)
4781       .Case("nshld", ARM_MB::NSHLD)
4782       .Case("unst",  ARM_MB::NSHST)
4783       .Case("osh",   ARM_MB::OSH)
4784       .Case("oshst", ARM_MB::OSHST)
4785       .Case("oshld", ARM_MB::OSHLD)
4786       .Default(~0U);
4787 
4788     // ishld, oshld, nshld and ld are only available from ARMv8.
4789     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4790                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4791       Opt = ~0U;
4792 
4793     if (Opt == ~0U)
4794       return MatchOperand_NoMatch;
4795 
4796     Parser.Lex(); // Eat identifier token.
4797   } else if (Tok.is(AsmToken::Hash) ||
4798              Tok.is(AsmToken::Dollar) ||
4799              Tok.is(AsmToken::Integer)) {
4800     if (Parser.getTok().isNot(AsmToken::Integer))
4801       Parser.Lex(); // Eat '#' or '$'.
4802     SMLoc Loc = Parser.getTok().getLoc();
4803 
4804     const MCExpr *MemBarrierID;
4805     if (getParser().parseExpression(MemBarrierID)) {
4806       Error(Loc, "illegal expression");
4807       return MatchOperand_ParseFail;
4808     }
4809 
4810     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4811     if (!CE) {
4812       Error(Loc, "constant expression expected");
4813       return MatchOperand_ParseFail;
4814     }
4815 
4816     int Val = CE->getValue();
4817     if (Val & ~0xf) {
4818       Error(Loc, "immediate value out of range");
4819       return MatchOperand_ParseFail;
4820     }
4821 
4822     Opt = ARM_MB::RESERVED_0 + Val;
4823   } else
4824     return MatchOperand_ParseFail;
4825 
4826   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4827   return MatchOperand_Success;
4828 }
4829 
4830 OperandMatchResultTy
4831 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4832   MCAsmParser &Parser = getParser();
4833   SMLoc S = Parser.getTok().getLoc();
4834   const AsmToken &Tok = Parser.getTok();
4835 
4836   if (Tok.isNot(AsmToken::Identifier))
4837      return MatchOperand_NoMatch;
4838 
4839   if (!Tok.getString().equals_lower("csync"))
4840     return MatchOperand_NoMatch;
4841 
4842   Parser.Lex(); // Eat identifier token.
4843 
4844   Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4845   return MatchOperand_Success;
4846 }
4847 
4848 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4849 OperandMatchResultTy
4850 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4851   MCAsmParser &Parser = getParser();
4852   SMLoc S = Parser.getTok().getLoc();
4853   const AsmToken &Tok = Parser.getTok();
4854   unsigned Opt;
4855 
4856   if (Tok.is(AsmToken::Identifier)) {
4857     StringRef OptStr = Tok.getString();
4858 
4859     if (OptStr.equals_lower("sy"))
4860       Opt = ARM_ISB::SY;
4861     else
4862       return MatchOperand_NoMatch;
4863 
4864     Parser.Lex(); // Eat identifier token.
4865   } else if (Tok.is(AsmToken::Hash) ||
4866              Tok.is(AsmToken::Dollar) ||
4867              Tok.is(AsmToken::Integer)) {
4868     if (Parser.getTok().isNot(AsmToken::Integer))
4869       Parser.Lex(); // Eat '#' or '$'.
4870     SMLoc Loc = Parser.getTok().getLoc();
4871 
4872     const MCExpr *ISBarrierID;
4873     if (getParser().parseExpression(ISBarrierID)) {
4874       Error(Loc, "illegal expression");
4875       return MatchOperand_ParseFail;
4876     }
4877 
4878     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4879     if (!CE) {
4880       Error(Loc, "constant expression expected");
4881       return MatchOperand_ParseFail;
4882     }
4883 
4884     int Val = CE->getValue();
4885     if (Val & ~0xf) {
4886       Error(Loc, "immediate value out of range");
4887       return MatchOperand_ParseFail;
4888     }
4889 
4890     Opt = ARM_ISB::RESERVED_0 + Val;
4891   } else
4892     return MatchOperand_ParseFail;
4893 
4894   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4895           (ARM_ISB::InstSyncBOpt)Opt, S));
4896   return MatchOperand_Success;
4897 }
4898 
4899 
4900 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4901 OperandMatchResultTy
4902 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4903   MCAsmParser &Parser = getParser();
4904   SMLoc S = Parser.getTok().getLoc();
4905   const AsmToken &Tok = Parser.getTok();
4906   if (!Tok.is(AsmToken::Identifier))
4907     return MatchOperand_NoMatch;
4908   StringRef IFlagsStr = Tok.getString();
4909 
4910   // An iflags string of "none" is interpreted to mean that none of the AIF
4911   // bits are set.  Not a terribly useful instruction, but a valid encoding.
4912   unsigned IFlags = 0;
4913   if (IFlagsStr != "none") {
4914         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4915       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4916         .Case("a", ARM_PROC::A)
4917         .Case("i", ARM_PROC::I)
4918         .Case("f", ARM_PROC::F)
4919         .Default(~0U);
4920 
4921       // If some specific iflag is already set, it means that some letter is
4922       // present more than once, this is not acceptable.
4923       if (Flag == ~0U || (IFlags & Flag))
4924         return MatchOperand_NoMatch;
4925 
4926       IFlags |= Flag;
4927     }
4928   }
4929 
4930   Parser.Lex(); // Eat identifier token.
4931   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4932   return MatchOperand_Success;
4933 }
4934 
4935 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4936 OperandMatchResultTy
4937 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4938   MCAsmParser &Parser = getParser();
4939   SMLoc S = Parser.getTok().getLoc();
4940   const AsmToken &Tok = Parser.getTok();
4941 
4942   if (Tok.is(AsmToken::Integer)) {
4943     int64_t Val = Tok.getIntVal();
4944     if (Val > 255 || Val < 0) {
4945       return MatchOperand_NoMatch;
4946     }
4947     unsigned SYSmvalue = Val & 0xFF;
4948     Parser.Lex();
4949     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4950     return MatchOperand_Success;
4951   }
4952 
4953   if (!Tok.is(AsmToken::Identifier))
4954     return MatchOperand_NoMatch;
4955   StringRef Mask = Tok.getString();
4956 
4957   if (isMClass()) {
4958     auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4959     if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4960       return MatchOperand_NoMatch;
4961 
4962     unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4963 
4964     Parser.Lex(); // Eat identifier token.
4965     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4966     return MatchOperand_Success;
4967   }
4968 
4969   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4970   size_t Start = 0, Next = Mask.find('_');
4971   StringRef Flags = "";
4972   std::string SpecReg = Mask.slice(Start, Next).lower();
4973   if (Next != StringRef::npos)
4974     Flags = Mask.slice(Next+1, Mask.size());
4975 
4976   // FlagsVal contains the complete mask:
4977   // 3-0: Mask
4978   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4979   unsigned FlagsVal = 0;
4980 
4981   if (SpecReg == "apsr") {
4982     FlagsVal = StringSwitch<unsigned>(Flags)
4983     .Case("nzcvq",  0x8) // same as CPSR_f
4984     .Case("g",      0x4) // same as CPSR_s
4985     .Case("nzcvqg", 0xc) // same as CPSR_fs
4986     .Default(~0U);
4987 
4988     if (FlagsVal == ~0U) {
4989       if (!Flags.empty())
4990         return MatchOperand_NoMatch;
4991       else
4992         FlagsVal = 8; // No flag
4993     }
4994   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4995     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4996     if (Flags == "all" || Flags == "")
4997       Flags = "fc";
4998     for (int i = 0, e = Flags.size(); i != e; ++i) {
4999       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
5000       .Case("c", 1)
5001       .Case("x", 2)
5002       .Case("s", 4)
5003       .Case("f", 8)
5004       .Default(~0U);
5005 
5006       // If some specific flag is already set, it means that some letter is
5007       // present more than once, this is not acceptable.
5008       if (Flag == ~0U || (FlagsVal & Flag))
5009         return MatchOperand_NoMatch;
5010       FlagsVal |= Flag;
5011     }
5012   } else // No match for special register.
5013     return MatchOperand_NoMatch;
5014 
5015   // Special register without flags is NOT equivalent to "fc" flags.
5016   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
5017   // two lines would enable gas compatibility at the expense of breaking
5018   // round-tripping.
5019   //
5020   // if (!FlagsVal)
5021   //  FlagsVal = 0x9;
5022 
5023   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5024   if (SpecReg == "spsr")
5025     FlagsVal |= 16;
5026 
5027   Parser.Lex(); // Eat identifier token.
5028   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5029   return MatchOperand_Success;
5030 }
5031 
5032 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5033 /// use in the MRS/MSR instructions added to support virtualization.
5034 OperandMatchResultTy
5035 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5036   MCAsmParser &Parser = getParser();
5037   SMLoc S = Parser.getTok().getLoc();
5038   const AsmToken &Tok = Parser.getTok();
5039   if (!Tok.is(AsmToken::Identifier))
5040     return MatchOperand_NoMatch;
5041   StringRef RegName = Tok.getString();
5042 
5043   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5044   if (!TheReg)
5045     return MatchOperand_NoMatch;
5046   unsigned Encoding = TheReg->Encoding;
5047 
5048   Parser.Lex(); // Eat identifier token.
5049   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5050   return MatchOperand_Success;
5051 }
5052 
5053 OperandMatchResultTy
5054 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5055                           int High) {
5056   MCAsmParser &Parser = getParser();
5057   const AsmToken &Tok = Parser.getTok();
5058   if (Tok.isNot(AsmToken::Identifier)) {
5059     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5060     return MatchOperand_ParseFail;
5061   }
5062   StringRef ShiftName = Tok.getString();
5063   std::string LowerOp = Op.lower();
5064   std::string UpperOp = Op.upper();
5065   if (ShiftName != LowerOp && ShiftName != UpperOp) {
5066     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5067     return MatchOperand_ParseFail;
5068   }
5069   Parser.Lex(); // Eat shift type token.
5070 
5071   // There must be a '#' and a shift amount.
5072   if (Parser.getTok().isNot(AsmToken::Hash) &&
5073       Parser.getTok().isNot(AsmToken::Dollar)) {
5074     Error(Parser.getTok().getLoc(), "'#' expected");
5075     return MatchOperand_ParseFail;
5076   }
5077   Parser.Lex(); // Eat hash token.
5078 
5079   const MCExpr *ShiftAmount;
5080   SMLoc Loc = Parser.getTok().getLoc();
5081   SMLoc EndLoc;
5082   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5083     Error(Loc, "illegal expression");
5084     return MatchOperand_ParseFail;
5085   }
5086   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5087   if (!CE) {
5088     Error(Loc, "constant expression expected");
5089     return MatchOperand_ParseFail;
5090   }
5091   int Val = CE->getValue();
5092   if (Val < Low || Val > High) {
5093     Error(Loc, "immediate value out of range");
5094     return MatchOperand_ParseFail;
5095   }
5096 
5097   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5098 
5099   return MatchOperand_Success;
5100 }
5101 
5102 OperandMatchResultTy
5103 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5104   MCAsmParser &Parser = getParser();
5105   const AsmToken &Tok = Parser.getTok();
5106   SMLoc S = Tok.getLoc();
5107   if (Tok.isNot(AsmToken::Identifier)) {
5108     Error(S, "'be' or 'le' operand expected");
5109     return MatchOperand_ParseFail;
5110   }
5111   int Val = StringSwitch<int>(Tok.getString().lower())
5112     .Case("be", 1)
5113     .Case("le", 0)
5114     .Default(-1);
5115   Parser.Lex(); // Eat the token.
5116 
5117   if (Val == -1) {
5118     Error(S, "'be' or 'le' operand expected");
5119     return MatchOperand_ParseFail;
5120   }
5121   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5122                                                                   getContext()),
5123                                            S, Tok.getEndLoc()));
5124   return MatchOperand_Success;
5125 }
5126 
5127 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5128 /// instructions. Legal values are:
5129 ///     lsl #n  'n' in [0,31]
5130 ///     asr #n  'n' in [1,32]
5131 ///             n == 32 encoded as n == 0.
5132 OperandMatchResultTy
5133 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5134   MCAsmParser &Parser = getParser();
5135   const AsmToken &Tok = Parser.getTok();
5136   SMLoc S = Tok.getLoc();
5137   if (Tok.isNot(AsmToken::Identifier)) {
5138     Error(S, "shift operator 'asr' or 'lsl' expected");
5139     return MatchOperand_ParseFail;
5140   }
5141   StringRef ShiftName = Tok.getString();
5142   bool isASR;
5143   if (ShiftName == "lsl" || ShiftName == "LSL")
5144     isASR = false;
5145   else if (ShiftName == "asr" || ShiftName == "ASR")
5146     isASR = true;
5147   else {
5148     Error(S, "shift operator 'asr' or 'lsl' expected");
5149     return MatchOperand_ParseFail;
5150   }
5151   Parser.Lex(); // Eat the operator.
5152 
5153   // A '#' and a shift amount.
5154   if (Parser.getTok().isNot(AsmToken::Hash) &&
5155       Parser.getTok().isNot(AsmToken::Dollar)) {
5156     Error(Parser.getTok().getLoc(), "'#' expected");
5157     return MatchOperand_ParseFail;
5158   }
5159   Parser.Lex(); // Eat hash token.
5160   SMLoc ExLoc = Parser.getTok().getLoc();
5161 
5162   const MCExpr *ShiftAmount;
5163   SMLoc EndLoc;
5164   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5165     Error(ExLoc, "malformed shift expression");
5166     return MatchOperand_ParseFail;
5167   }
5168   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5169   if (!CE) {
5170     Error(ExLoc, "shift amount must be an immediate");
5171     return MatchOperand_ParseFail;
5172   }
5173 
5174   int64_t Val = CE->getValue();
5175   if (isASR) {
5176     // Shift amount must be in [1,32]
5177     if (Val < 1 || Val > 32) {
5178       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5179       return MatchOperand_ParseFail;
5180     }
5181     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5182     if (isThumb() && Val == 32) {
5183       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5184       return MatchOperand_ParseFail;
5185     }
5186     if (Val == 32) Val = 0;
5187   } else {
5188     // Shift amount must be in [1,32]
5189     if (Val < 0 || Val > 31) {
5190       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5191       return MatchOperand_ParseFail;
5192     }
5193   }
5194 
5195   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5196 
5197   return MatchOperand_Success;
5198 }
5199 
5200 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5201 /// of instructions. Legal values are:
5202 ///     ror #n  'n' in {0, 8, 16, 24}
5203 OperandMatchResultTy
5204 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5205   MCAsmParser &Parser = getParser();
5206   const AsmToken &Tok = Parser.getTok();
5207   SMLoc S = Tok.getLoc();
5208   if (Tok.isNot(AsmToken::Identifier))
5209     return MatchOperand_NoMatch;
5210   StringRef ShiftName = Tok.getString();
5211   if (ShiftName != "ror" && ShiftName != "ROR")
5212     return MatchOperand_NoMatch;
5213   Parser.Lex(); // Eat the operator.
5214 
5215   // A '#' and a rotate amount.
5216   if (Parser.getTok().isNot(AsmToken::Hash) &&
5217       Parser.getTok().isNot(AsmToken::Dollar)) {
5218     Error(Parser.getTok().getLoc(), "'#' expected");
5219     return MatchOperand_ParseFail;
5220   }
5221   Parser.Lex(); // Eat hash token.
5222   SMLoc ExLoc = Parser.getTok().getLoc();
5223 
5224   const MCExpr *ShiftAmount;
5225   SMLoc EndLoc;
5226   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5227     Error(ExLoc, "malformed rotate expression");
5228     return MatchOperand_ParseFail;
5229   }
5230   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5231   if (!CE) {
5232     Error(ExLoc, "rotate amount must be an immediate");
5233     return MatchOperand_ParseFail;
5234   }
5235 
5236   int64_t Val = CE->getValue();
5237   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5238   // normally, zero is represented in asm by omitting the rotate operand
5239   // entirely.
5240   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5241     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5242     return MatchOperand_ParseFail;
5243   }
5244 
5245   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5246 
5247   return MatchOperand_Success;
5248 }
5249 
5250 OperandMatchResultTy
5251 ARMAsmParser::parseModImm(OperandVector &Operands) {
5252   MCAsmParser &Parser = getParser();
5253   MCAsmLexer &Lexer = getLexer();
5254   int64_t Imm1, Imm2;
5255 
5256   SMLoc S = Parser.getTok().getLoc();
5257 
5258   // 1) A mod_imm operand can appear in the place of a register name:
5259   //   add r0, #mod_imm
5260   //   add r0, r0, #mod_imm
5261   // to correctly handle the latter, we bail out as soon as we see an
5262   // identifier.
5263   //
5264   // 2) Similarly, we do not want to parse into complex operands:
5265   //   mov r0, #mod_imm
5266   //   mov r0, :lower16:(_foo)
5267   if (Parser.getTok().is(AsmToken::Identifier) ||
5268       Parser.getTok().is(AsmToken::Colon))
5269     return MatchOperand_NoMatch;
5270 
5271   // Hash (dollar) is optional as per the ARMARM
5272   if (Parser.getTok().is(AsmToken::Hash) ||
5273       Parser.getTok().is(AsmToken::Dollar)) {
5274     // Avoid parsing into complex operands (#:)
5275     if (Lexer.peekTok().is(AsmToken::Colon))
5276       return MatchOperand_NoMatch;
5277 
5278     // Eat the hash (dollar)
5279     Parser.Lex();
5280   }
5281 
5282   SMLoc Sx1, Ex1;
5283   Sx1 = Parser.getTok().getLoc();
5284   const MCExpr *Imm1Exp;
5285   if (getParser().parseExpression(Imm1Exp, Ex1)) {
5286     Error(Sx1, "malformed expression");
5287     return MatchOperand_ParseFail;
5288   }
5289 
5290   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5291 
5292   if (CE) {
5293     // Immediate must fit within 32-bits
5294     Imm1 = CE->getValue();
5295     int Enc = ARM_AM::getSOImmVal(Imm1);
5296     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5297       // We have a match!
5298       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5299                                                   (Enc & 0xF00) >> 7,
5300                                                   Sx1, Ex1));
5301       return MatchOperand_Success;
5302     }
5303 
5304     // We have parsed an immediate which is not for us, fallback to a plain
5305     // immediate. This can happen for instruction aliases. For an example,
5306     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5307     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5308     // instruction with a mod_imm operand. The alias is defined such that the
5309     // parser method is shared, that's why we have to do this here.
5310     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5311       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5312       return MatchOperand_Success;
5313     }
5314   } else {
5315     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5316     // MCFixup). Fallback to a plain immediate.
5317     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5318     return MatchOperand_Success;
5319   }
5320 
5321   // From this point onward, we expect the input to be a (#bits, #rot) pair
5322   if (Parser.getTok().isNot(AsmToken::Comma)) {
5323     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5324     return MatchOperand_ParseFail;
5325   }
5326 
5327   if (Imm1 & ~0xFF) {
5328     Error(Sx1, "immediate operand must a number in the range [0, 255]");
5329     return MatchOperand_ParseFail;
5330   }
5331 
5332   // Eat the comma
5333   Parser.Lex();
5334 
5335   // Repeat for #rot
5336   SMLoc Sx2, Ex2;
5337   Sx2 = Parser.getTok().getLoc();
5338 
5339   // Eat the optional hash (dollar)
5340   if (Parser.getTok().is(AsmToken::Hash) ||
5341       Parser.getTok().is(AsmToken::Dollar))
5342     Parser.Lex();
5343 
5344   const MCExpr *Imm2Exp;
5345   if (getParser().parseExpression(Imm2Exp, Ex2)) {
5346     Error(Sx2, "malformed expression");
5347     return MatchOperand_ParseFail;
5348   }
5349 
5350   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5351 
5352   if (CE) {
5353     Imm2 = CE->getValue();
5354     if (!(Imm2 & ~0x1E)) {
5355       // We have a match!
5356       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5357       return MatchOperand_Success;
5358     }
5359     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5360     return MatchOperand_ParseFail;
5361   } else {
5362     Error(Sx2, "constant expression expected");
5363     return MatchOperand_ParseFail;
5364   }
5365 }
5366 
5367 OperandMatchResultTy
5368 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5369   MCAsmParser &Parser = getParser();
5370   SMLoc S = Parser.getTok().getLoc();
5371   // The bitfield descriptor is really two operands, the LSB and the width.
5372   if (Parser.getTok().isNot(AsmToken::Hash) &&
5373       Parser.getTok().isNot(AsmToken::Dollar)) {
5374     Error(Parser.getTok().getLoc(), "'#' expected");
5375     return MatchOperand_ParseFail;
5376   }
5377   Parser.Lex(); // Eat hash token.
5378 
5379   const MCExpr *LSBExpr;
5380   SMLoc E = Parser.getTok().getLoc();
5381   if (getParser().parseExpression(LSBExpr)) {
5382     Error(E, "malformed immediate expression");
5383     return MatchOperand_ParseFail;
5384   }
5385   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5386   if (!CE) {
5387     Error(E, "'lsb' operand must be an immediate");
5388     return MatchOperand_ParseFail;
5389   }
5390 
5391   int64_t LSB = CE->getValue();
5392   // The LSB must be in the range [0,31]
5393   if (LSB < 0 || LSB > 31) {
5394     Error(E, "'lsb' operand must be in the range [0,31]");
5395     return MatchOperand_ParseFail;
5396   }
5397   E = Parser.getTok().getLoc();
5398 
5399   // Expect another immediate operand.
5400   if (Parser.getTok().isNot(AsmToken::Comma)) {
5401     Error(Parser.getTok().getLoc(), "too few operands");
5402     return MatchOperand_ParseFail;
5403   }
5404   Parser.Lex(); // Eat hash token.
5405   if (Parser.getTok().isNot(AsmToken::Hash) &&
5406       Parser.getTok().isNot(AsmToken::Dollar)) {
5407     Error(Parser.getTok().getLoc(), "'#' expected");
5408     return MatchOperand_ParseFail;
5409   }
5410   Parser.Lex(); // Eat hash token.
5411 
5412   const MCExpr *WidthExpr;
5413   SMLoc EndLoc;
5414   if (getParser().parseExpression(WidthExpr, EndLoc)) {
5415     Error(E, "malformed immediate expression");
5416     return MatchOperand_ParseFail;
5417   }
5418   CE = dyn_cast<MCConstantExpr>(WidthExpr);
5419   if (!CE) {
5420     Error(E, "'width' operand must be an immediate");
5421     return MatchOperand_ParseFail;
5422   }
5423 
5424   int64_t Width = CE->getValue();
5425   // The LSB must be in the range [1,32-lsb]
5426   if (Width < 1 || Width > 32 - LSB) {
5427     Error(E, "'width' operand must be in the range [1,32-lsb]");
5428     return MatchOperand_ParseFail;
5429   }
5430 
5431   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5432 
5433   return MatchOperand_Success;
5434 }
5435 
5436 OperandMatchResultTy
5437 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5438   // Check for a post-index addressing register operand. Specifically:
5439   // postidx_reg := '+' register {, shift}
5440   //              | '-' register {, shift}
5441   //              | register {, shift}
5442 
5443   // This method must return MatchOperand_NoMatch without consuming any tokens
5444   // in the case where there is no match, as other alternatives take other
5445   // parse methods.
5446   MCAsmParser &Parser = getParser();
5447   AsmToken Tok = Parser.getTok();
5448   SMLoc S = Tok.getLoc();
5449   bool haveEaten = false;
5450   bool isAdd = true;
5451   if (Tok.is(AsmToken::Plus)) {
5452     Parser.Lex(); // Eat the '+' token.
5453     haveEaten = true;
5454   } else if (Tok.is(AsmToken::Minus)) {
5455     Parser.Lex(); // Eat the '-' token.
5456     isAdd = false;
5457     haveEaten = true;
5458   }
5459 
5460   SMLoc E = Parser.getTok().getEndLoc();
5461   int Reg = tryParseRegister();
5462   if (Reg == -1) {
5463     if (!haveEaten)
5464       return MatchOperand_NoMatch;
5465     Error(Parser.getTok().getLoc(), "register expected");
5466     return MatchOperand_ParseFail;
5467   }
5468 
5469   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5470   unsigned ShiftImm = 0;
5471   if (Parser.getTok().is(AsmToken::Comma)) {
5472     Parser.Lex(); // Eat the ','.
5473     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5474       return MatchOperand_ParseFail;
5475 
5476     // FIXME: Only approximates end...may include intervening whitespace.
5477     E = Parser.getTok().getLoc();
5478   }
5479 
5480   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5481                                                   ShiftImm, S, E));
5482 
5483   return MatchOperand_Success;
5484 }
5485 
5486 OperandMatchResultTy
5487 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5488   // Check for a post-index addressing register operand. Specifically:
5489   // am3offset := '+' register
5490   //              | '-' register
5491   //              | register
5492   //              | # imm
5493   //              | # + imm
5494   //              | # - imm
5495 
5496   // This method must return MatchOperand_NoMatch without consuming any tokens
5497   // in the case where there is no match, as other alternatives take other
5498   // parse methods.
5499   MCAsmParser &Parser = getParser();
5500   AsmToken Tok = Parser.getTok();
5501   SMLoc S = Tok.getLoc();
5502 
5503   // Do immediates first, as we always parse those if we have a '#'.
5504   if (Parser.getTok().is(AsmToken::Hash) ||
5505       Parser.getTok().is(AsmToken::Dollar)) {
5506     Parser.Lex(); // Eat '#' or '$'.
5507     // Explicitly look for a '-', as we need to encode negative zero
5508     // differently.
5509     bool isNegative = Parser.getTok().is(AsmToken::Minus);
5510     const MCExpr *Offset;
5511     SMLoc E;
5512     if (getParser().parseExpression(Offset, E))
5513       return MatchOperand_ParseFail;
5514     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5515     if (!CE) {
5516       Error(S, "constant expression expected");
5517       return MatchOperand_ParseFail;
5518     }
5519     // Negative zero is encoded as the flag value
5520     // std::numeric_limits<int32_t>::min().
5521     int32_t Val = CE->getValue();
5522     if (isNegative && Val == 0)
5523       Val = std::numeric_limits<int32_t>::min();
5524 
5525     Operands.push_back(
5526       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5527 
5528     return MatchOperand_Success;
5529   }
5530 
5531   bool haveEaten = false;
5532   bool isAdd = true;
5533   if (Tok.is(AsmToken::Plus)) {
5534     Parser.Lex(); // Eat the '+' token.
5535     haveEaten = true;
5536   } else if (Tok.is(AsmToken::Minus)) {
5537     Parser.Lex(); // Eat the '-' token.
5538     isAdd = false;
5539     haveEaten = true;
5540   }
5541 
5542   Tok = Parser.getTok();
5543   int Reg = tryParseRegister();
5544   if (Reg == -1) {
5545     if (!haveEaten)
5546       return MatchOperand_NoMatch;
5547     Error(Tok.getLoc(), "register expected");
5548     return MatchOperand_ParseFail;
5549   }
5550 
5551   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5552                                                   0, S, Tok.getEndLoc()));
5553 
5554   return MatchOperand_Success;
5555 }
5556 
5557 /// Convert parsed operands to MCInst.  Needed here because this instruction
5558 /// only has two register operands, but multiplication is commutative so
5559 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5560 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5561                                     const OperandVector &Operands) {
5562   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5563   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5564   // If we have a three-operand form, make sure to set Rn to be the operand
5565   // that isn't the same as Rd.
5566   unsigned RegOp = 4;
5567   if (Operands.size() == 6 &&
5568       ((ARMOperand &)*Operands[4]).getReg() ==
5569           ((ARMOperand &)*Operands[3]).getReg())
5570     RegOp = 5;
5571   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5572   Inst.addOperand(Inst.getOperand(0));
5573   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5574 }
5575 
5576 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5577                                     const OperandVector &Operands) {
5578   int CondOp = -1, ImmOp = -1;
5579   switch(Inst.getOpcode()) {
5580     case ARM::tB:
5581     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
5582 
5583     case ARM::t2B:
5584     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5585 
5586     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5587   }
5588   // first decide whether or not the branch should be conditional
5589   // by looking at it's location relative to an IT block
5590   if(inITBlock()) {
5591     // inside an IT block we cannot have any conditional branches. any
5592     // such instructions needs to be converted to unconditional form
5593     switch(Inst.getOpcode()) {
5594       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5595       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5596     }
5597   } else {
5598     // outside IT blocks we can only have unconditional branches with AL
5599     // condition code or conditional branches with non-AL condition code
5600     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5601     switch(Inst.getOpcode()) {
5602       case ARM::tB:
5603       case ARM::tBcc:
5604         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5605         break;
5606       case ARM::t2B:
5607       case ARM::t2Bcc:
5608         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5609         break;
5610     }
5611   }
5612 
5613   // now decide on encoding size based on branch target range
5614   switch(Inst.getOpcode()) {
5615     // classify tB as either t2B or t1B based on range of immediate operand
5616     case ARM::tB: {
5617       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5618       if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5619         Inst.setOpcode(ARM::t2B);
5620       break;
5621     }
5622     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5623     case ARM::tBcc: {
5624       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5625       if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5626         Inst.setOpcode(ARM::t2Bcc);
5627       break;
5628     }
5629   }
5630   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5631   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5632 }
5633 
5634 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5635   MCInst &Inst, const OperandVector &Operands) {
5636 
5637   // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5638   assert(Operands.size() == 8);
5639 
5640   ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5641   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5642   ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5643   ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5644   // skip second copy of Qd in Operands[6]
5645   ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5646   ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5647 }
5648 
5649 /// Parse an ARM memory expression, return false if successful else return true
5650 /// or an error.  The first token must be a '[' when called.
5651 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5652   MCAsmParser &Parser = getParser();
5653   SMLoc S, E;
5654   if (Parser.getTok().isNot(AsmToken::LBrac))
5655     return TokError("Token is not a Left Bracket");
5656   S = Parser.getTok().getLoc();
5657   Parser.Lex(); // Eat left bracket token.
5658 
5659   const AsmToken &BaseRegTok = Parser.getTok();
5660   int BaseRegNum = tryParseRegister();
5661   if (BaseRegNum == -1)
5662     return Error(BaseRegTok.getLoc(), "register expected");
5663 
5664   // The next token must either be a comma, a colon or a closing bracket.
5665   const AsmToken &Tok = Parser.getTok();
5666   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5667       !Tok.is(AsmToken::RBrac))
5668     return Error(Tok.getLoc(), "malformed memory operand");
5669 
5670   if (Tok.is(AsmToken::RBrac)) {
5671     E = Tok.getEndLoc();
5672     Parser.Lex(); // Eat right bracket token.
5673 
5674     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5675                                              ARM_AM::no_shift, 0, 0, false,
5676                                              S, E));
5677 
5678     // If there's a pre-indexing writeback marker, '!', just add it as a token
5679     // operand. It's rather odd, but syntactically valid.
5680     if (Parser.getTok().is(AsmToken::Exclaim)) {
5681       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5682       Parser.Lex(); // Eat the '!'.
5683     }
5684 
5685     return false;
5686   }
5687 
5688   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5689          "Lost colon or comma in memory operand?!");
5690   if (Tok.is(AsmToken::Comma)) {
5691     Parser.Lex(); // Eat the comma.
5692   }
5693 
5694   // If we have a ':', it's an alignment specifier.
5695   if (Parser.getTok().is(AsmToken::Colon)) {
5696     Parser.Lex(); // Eat the ':'.
5697     E = Parser.getTok().getLoc();
5698     SMLoc AlignmentLoc = Tok.getLoc();
5699 
5700     const MCExpr *Expr;
5701     if (getParser().parseExpression(Expr))
5702      return true;
5703 
5704     // The expression has to be a constant. Memory references with relocations
5705     // don't come through here, as they use the <label> forms of the relevant
5706     // instructions.
5707     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5708     if (!CE)
5709       return Error (E, "constant expression expected");
5710 
5711     unsigned Align = 0;
5712     switch (CE->getValue()) {
5713     default:
5714       return Error(E,
5715                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5716     case 16:  Align = 2; break;
5717     case 32:  Align = 4; break;
5718     case 64:  Align = 8; break;
5719     case 128: Align = 16; break;
5720     case 256: Align = 32; break;
5721     }
5722 
5723     // Now we should have the closing ']'
5724     if (Parser.getTok().isNot(AsmToken::RBrac))
5725       return Error(Parser.getTok().getLoc(), "']' expected");
5726     E = Parser.getTok().getEndLoc();
5727     Parser.Lex(); // Eat right bracket token.
5728 
5729     // Don't worry about range checking the value here. That's handled by
5730     // the is*() predicates.
5731     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5732                                              ARM_AM::no_shift, 0, Align,
5733                                              false, S, E, AlignmentLoc));
5734 
5735     // If there's a pre-indexing writeback marker, '!', just add it as a token
5736     // operand.
5737     if (Parser.getTok().is(AsmToken::Exclaim)) {
5738       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5739       Parser.Lex(); // Eat the '!'.
5740     }
5741 
5742     return false;
5743   }
5744 
5745   // If we have a '#', it's an immediate offset, else assume it's a register
5746   // offset. Be friendly and also accept a plain integer (without a leading
5747   // hash) for gas compatibility.
5748   if (Parser.getTok().is(AsmToken::Hash) ||
5749       Parser.getTok().is(AsmToken::Dollar) ||
5750       Parser.getTok().is(AsmToken::Integer)) {
5751     if (Parser.getTok().isNot(AsmToken::Integer))
5752       Parser.Lex(); // Eat '#' or '$'.
5753     E = Parser.getTok().getLoc();
5754 
5755     bool isNegative = getParser().getTok().is(AsmToken::Minus);
5756     const MCExpr *Offset;
5757     if (getParser().parseExpression(Offset))
5758      return true;
5759 
5760     // The expression has to be a constant. Memory references with relocations
5761     // don't come through here, as they use the <label> forms of the relevant
5762     // instructions.
5763     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5764     if (!CE)
5765       return Error (E, "constant expression expected");
5766 
5767     // If the constant was #-0, represent it as
5768     // std::numeric_limits<int32_t>::min().
5769     int32_t Val = CE->getValue();
5770     if (isNegative && Val == 0)
5771       CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5772                                   getContext());
5773 
5774     // Now we should have the closing ']'
5775     if (Parser.getTok().isNot(AsmToken::RBrac))
5776       return Error(Parser.getTok().getLoc(), "']' expected");
5777     E = Parser.getTok().getEndLoc();
5778     Parser.Lex(); // Eat right bracket token.
5779 
5780     // Don't worry about range checking the value here. That's handled by
5781     // the is*() predicates.
5782     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5783                                              ARM_AM::no_shift, 0, 0,
5784                                              false, S, E));
5785 
5786     // If there's a pre-indexing writeback marker, '!', just add it as a token
5787     // operand.
5788     if (Parser.getTok().is(AsmToken::Exclaim)) {
5789       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5790       Parser.Lex(); // Eat the '!'.
5791     }
5792 
5793     return false;
5794   }
5795 
5796   // The register offset is optionally preceded by a '+' or '-'
5797   bool isNegative = false;
5798   if (Parser.getTok().is(AsmToken::Minus)) {
5799     isNegative = true;
5800     Parser.Lex(); // Eat the '-'.
5801   } else if (Parser.getTok().is(AsmToken::Plus)) {
5802     // Nothing to do.
5803     Parser.Lex(); // Eat the '+'.
5804   }
5805 
5806   E = Parser.getTok().getLoc();
5807   int OffsetRegNum = tryParseRegister();
5808   if (OffsetRegNum == -1)
5809     return Error(E, "register expected");
5810 
5811   // If there's a shift operator, handle it.
5812   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5813   unsigned ShiftImm = 0;
5814   if (Parser.getTok().is(AsmToken::Comma)) {
5815     Parser.Lex(); // Eat the ','.
5816     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5817       return true;
5818   }
5819 
5820   // Now we should have the closing ']'
5821   if (Parser.getTok().isNot(AsmToken::RBrac))
5822     return Error(Parser.getTok().getLoc(), "']' expected");
5823   E = Parser.getTok().getEndLoc();
5824   Parser.Lex(); // Eat right bracket token.
5825 
5826   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5827                                            ShiftType, ShiftImm, 0, isNegative,
5828                                            S, E));
5829 
5830   // If there's a pre-indexing writeback marker, '!', just add it as a token
5831   // operand.
5832   if (Parser.getTok().is(AsmToken::Exclaim)) {
5833     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5834     Parser.Lex(); // Eat the '!'.
5835   }
5836 
5837   return false;
5838 }
5839 
5840 /// parseMemRegOffsetShift - one of these two:
5841 ///   ( lsl | lsr | asr | ror ) , # shift_amount
5842 ///   rrx
5843 /// return true if it parses a shift otherwise it returns false.
5844 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5845                                           unsigned &Amount) {
5846   MCAsmParser &Parser = getParser();
5847   SMLoc Loc = Parser.getTok().getLoc();
5848   const AsmToken &Tok = Parser.getTok();
5849   if (Tok.isNot(AsmToken::Identifier))
5850     return Error(Loc, "illegal shift operator");
5851   StringRef ShiftName = Tok.getString();
5852   if (ShiftName == "lsl" || ShiftName == "LSL" ||
5853       ShiftName == "asl" || ShiftName == "ASL")
5854     St = ARM_AM::lsl;
5855   else if (ShiftName == "lsr" || ShiftName == "LSR")
5856     St = ARM_AM::lsr;
5857   else if (ShiftName == "asr" || ShiftName == "ASR")
5858     St = ARM_AM::asr;
5859   else if (ShiftName == "ror" || ShiftName == "ROR")
5860     St = ARM_AM::ror;
5861   else if (ShiftName == "rrx" || ShiftName == "RRX")
5862     St = ARM_AM::rrx;
5863   else if (ShiftName == "uxtw" || ShiftName == "UXTW")
5864     St = ARM_AM::uxtw;
5865   else
5866     return Error(Loc, "illegal shift operator");
5867   Parser.Lex(); // Eat shift type token.
5868 
5869   // rrx stands alone.
5870   Amount = 0;
5871   if (St != ARM_AM::rrx) {
5872     Loc = Parser.getTok().getLoc();
5873     // A '#' and a shift amount.
5874     const AsmToken &HashTok = Parser.getTok();
5875     if (HashTok.isNot(AsmToken::Hash) &&
5876         HashTok.isNot(AsmToken::Dollar))
5877       return Error(HashTok.getLoc(), "'#' expected");
5878     Parser.Lex(); // Eat hash token.
5879 
5880     const MCExpr *Expr;
5881     if (getParser().parseExpression(Expr))
5882       return true;
5883     // Range check the immediate.
5884     // lsl, ror: 0 <= imm <= 31
5885     // lsr, asr: 0 <= imm <= 32
5886     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5887     if (!CE)
5888       return Error(Loc, "shift amount must be an immediate");
5889     int64_t Imm = CE->getValue();
5890     if (Imm < 0 ||
5891         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5892         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5893       return Error(Loc, "immediate shift value out of range");
5894     // If <ShiftTy> #0, turn it into a no_shift.
5895     if (Imm == 0)
5896       St = ARM_AM::lsl;
5897     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5898     if (Imm == 32)
5899       Imm = 0;
5900     Amount = Imm;
5901   }
5902 
5903   return false;
5904 }
5905 
5906 /// parseFPImm - A floating point immediate expression operand.
5907 OperandMatchResultTy
5908 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5909   MCAsmParser &Parser = getParser();
5910   // Anything that can accept a floating point constant as an operand
5911   // needs to go through here, as the regular parseExpression is
5912   // integer only.
5913   //
5914   // This routine still creates a generic Immediate operand, containing
5915   // a bitcast of the 64-bit floating point value. The various operands
5916   // that accept floats can check whether the value is valid for them
5917   // via the standard is*() predicates.
5918 
5919   SMLoc S = Parser.getTok().getLoc();
5920 
5921   if (Parser.getTok().isNot(AsmToken::Hash) &&
5922       Parser.getTok().isNot(AsmToken::Dollar))
5923     return MatchOperand_NoMatch;
5924 
5925   // Disambiguate the VMOV forms that can accept an FP immediate.
5926   // vmov.f32 <sreg>, #imm
5927   // vmov.f64 <dreg>, #imm
5928   // vmov.f32 <dreg>, #imm  @ vector f32x2
5929   // vmov.f32 <qreg>, #imm  @ vector f32x4
5930   //
5931   // There are also the NEON VMOV instructions which expect an
5932   // integer constant. Make sure we don't try to parse an FPImm
5933   // for these:
5934   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5935   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5936   bool isVmovf = TyOp.isToken() &&
5937                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5938                   TyOp.getToken() == ".f16");
5939   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5940   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5941                                          Mnemonic.getToken() == "fconsts");
5942   if (!(isVmovf || isFconst))
5943     return MatchOperand_NoMatch;
5944 
5945   Parser.Lex(); // Eat '#' or '$'.
5946 
5947   // Handle negation, as that still comes through as a separate token.
5948   bool isNegative = false;
5949   if (Parser.getTok().is(AsmToken::Minus)) {
5950     isNegative = true;
5951     Parser.Lex();
5952   }
5953   const AsmToken &Tok = Parser.getTok();
5954   SMLoc Loc = Tok.getLoc();
5955   if (Tok.is(AsmToken::Real) && isVmovf) {
5956     APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5957     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5958     // If we had a '-' in front, toggle the sign bit.
5959     IntVal ^= (uint64_t)isNegative << 31;
5960     Parser.Lex(); // Eat the token.
5961     Operands.push_back(ARMOperand::CreateImm(
5962           MCConstantExpr::create(IntVal, getContext()),
5963           S, Parser.getTok().getLoc()));
5964     return MatchOperand_Success;
5965   }
5966   // Also handle plain integers. Instructions which allow floating point
5967   // immediates also allow a raw encoded 8-bit value.
5968   if (Tok.is(AsmToken::Integer) && isFconst) {
5969     int64_t Val = Tok.getIntVal();
5970     Parser.Lex(); // Eat the token.
5971     if (Val > 255 || Val < 0) {
5972       Error(Loc, "encoded floating point value out of range");
5973       return MatchOperand_ParseFail;
5974     }
5975     float RealVal = ARM_AM::getFPImmFloat(Val);
5976     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5977 
5978     Operands.push_back(ARMOperand::CreateImm(
5979         MCConstantExpr::create(Val, getContext()), S,
5980         Parser.getTok().getLoc()));
5981     return MatchOperand_Success;
5982   }
5983 
5984   Error(Loc, "invalid floating point immediate");
5985   return MatchOperand_ParseFail;
5986 }
5987 
5988 /// Parse a arm instruction operand.  For now this parses the operand regardless
5989 /// of the mnemonic.
5990 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5991   MCAsmParser &Parser = getParser();
5992   SMLoc S, E;
5993 
5994   // Check if the current operand has a custom associated parser, if so, try to
5995   // custom parse the operand, or fallback to the general approach.
5996   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5997   if (ResTy == MatchOperand_Success)
5998     return false;
5999   // If there wasn't a custom match, try the generic matcher below. Otherwise,
6000   // there was a match, but an error occurred, in which case, just return that
6001   // the operand parsing failed.
6002   if (ResTy == MatchOperand_ParseFail)
6003     return true;
6004 
6005   switch (getLexer().getKind()) {
6006   default:
6007     Error(Parser.getTok().getLoc(), "unexpected token in operand");
6008     return true;
6009   case AsmToken::Identifier: {
6010     // If we've seen a branch mnemonic, the next operand must be a label.  This
6011     // is true even if the label is a register name.  So "br r1" means branch to
6012     // label "r1".
6013     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6014     if (!ExpectLabel) {
6015       if (!tryParseRegisterWithWriteBack(Operands))
6016         return false;
6017       int Res = tryParseShiftRegister(Operands);
6018       if (Res == 0) // success
6019         return false;
6020       else if (Res == -1) // irrecoverable error
6021         return true;
6022       // If this is VMRS, check for the apsr_nzcv operand.
6023       if (Mnemonic == "vmrs" &&
6024           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
6025         S = Parser.getTok().getLoc();
6026         Parser.Lex();
6027         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6028         return false;
6029       }
6030     }
6031 
6032     // Fall though for the Identifier case that is not a register or a
6033     // special name.
6034     LLVM_FALLTHROUGH;
6035   }
6036   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
6037   case AsmToken::Integer: // things like 1f and 2b as a branch targets
6038   case AsmToken::String:  // quoted label names.
6039   case AsmToken::Dot: {   // . as a branch target
6040     // This was not a register so parse other operands that start with an
6041     // identifier (like labels) as expressions and create them as immediates.
6042     const MCExpr *IdVal;
6043     S = Parser.getTok().getLoc();
6044     if (getParser().parseExpression(IdVal))
6045       return true;
6046     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6047     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6048     return false;
6049   }
6050   case AsmToken::LBrac:
6051     return parseMemory(Operands);
6052   case AsmToken::LCurly:
6053     return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6054   case AsmToken::Dollar:
6055   case AsmToken::Hash:
6056     // #42 -> immediate.
6057     S = Parser.getTok().getLoc();
6058     Parser.Lex();
6059 
6060     if (Parser.getTok().isNot(AsmToken::Colon)) {
6061       bool isNegative = Parser.getTok().is(AsmToken::Minus);
6062       const MCExpr *ImmVal;
6063       if (getParser().parseExpression(ImmVal))
6064         return true;
6065       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6066       if (CE) {
6067         int32_t Val = CE->getValue();
6068         if (isNegative && Val == 0)
6069           ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6070                                           getContext());
6071       }
6072       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6073       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6074 
6075       // There can be a trailing '!' on operands that we want as a separate
6076       // '!' Token operand. Handle that here. For example, the compatibility
6077       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6078       if (Parser.getTok().is(AsmToken::Exclaim)) {
6079         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6080                                                    Parser.getTok().getLoc()));
6081         Parser.Lex(); // Eat exclaim token
6082       }
6083       return false;
6084     }
6085     // w/ a ':' after the '#', it's just like a plain ':'.
6086     LLVM_FALLTHROUGH;
6087 
6088   case AsmToken::Colon: {
6089     S = Parser.getTok().getLoc();
6090     // ":lower16:" and ":upper16:" expression prefixes
6091     // FIXME: Check it's an expression prefix,
6092     // e.g. (FOO - :lower16:BAR) isn't legal.
6093     ARMMCExpr::VariantKind RefKind;
6094     if (parsePrefix(RefKind))
6095       return true;
6096 
6097     const MCExpr *SubExprVal;
6098     if (getParser().parseExpression(SubExprVal))
6099       return true;
6100 
6101     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6102                                               getContext());
6103     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6104     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6105     return false;
6106   }
6107   case AsmToken::Equal: {
6108     S = Parser.getTok().getLoc();
6109     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6110       return Error(S, "unexpected token in operand");
6111     Parser.Lex(); // Eat '='
6112     const MCExpr *SubExprVal;
6113     if (getParser().parseExpression(SubExprVal))
6114       return true;
6115     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6116 
6117     // execute-only: we assume that assembly programmers know what they are
6118     // doing and allow literal pool creation here
6119     Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6120     return false;
6121   }
6122   }
6123 }
6124 
6125 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6126 //  :lower16: and :upper16:.
6127 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6128   MCAsmParser &Parser = getParser();
6129   RefKind = ARMMCExpr::VK_ARM_None;
6130 
6131   // consume an optional '#' (GNU compatibility)
6132   if (getLexer().is(AsmToken::Hash))
6133     Parser.Lex();
6134 
6135   // :lower16: and :upper16: modifiers
6136   assert(getLexer().is(AsmToken::Colon) && "expected a :");
6137   Parser.Lex(); // Eat ':'
6138 
6139   if (getLexer().isNot(AsmToken::Identifier)) {
6140     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6141     return true;
6142   }
6143 
6144   enum {
6145     COFF = (1 << MCObjectFileInfo::IsCOFF),
6146     ELF = (1 << MCObjectFileInfo::IsELF),
6147     MACHO = (1 << MCObjectFileInfo::IsMachO),
6148     WASM = (1 << MCObjectFileInfo::IsWasm),
6149   };
6150   static const struct PrefixEntry {
6151     const char *Spelling;
6152     ARMMCExpr::VariantKind VariantKind;
6153     uint8_t SupportedFormats;
6154   } PrefixEntries[] = {
6155     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6156     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6157   };
6158 
6159   StringRef IDVal = Parser.getTok().getIdentifier();
6160 
6161   const auto &Prefix =
6162       std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
6163                    [&IDVal](const PrefixEntry &PE) {
6164                       return PE.Spelling == IDVal;
6165                    });
6166   if (Prefix == std::end(PrefixEntries)) {
6167     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6168     return true;
6169   }
6170 
6171   uint8_t CurrentFormat;
6172   switch (getContext().getObjectFileInfo()->getObjectFileType()) {
6173   case MCObjectFileInfo::IsMachO:
6174     CurrentFormat = MACHO;
6175     break;
6176   case MCObjectFileInfo::IsELF:
6177     CurrentFormat = ELF;
6178     break;
6179   case MCObjectFileInfo::IsCOFF:
6180     CurrentFormat = COFF;
6181     break;
6182   case MCObjectFileInfo::IsWasm:
6183     CurrentFormat = WASM;
6184     break;
6185   case MCObjectFileInfo::IsXCOFF:
6186     llvm_unreachable("unexpected object format");
6187     break;
6188   }
6189 
6190   if (~Prefix->SupportedFormats & CurrentFormat) {
6191     Error(Parser.getTok().getLoc(),
6192           "cannot represent relocation in the current file format");
6193     return true;
6194   }
6195 
6196   RefKind = Prefix->VariantKind;
6197   Parser.Lex();
6198 
6199   if (getLexer().isNot(AsmToken::Colon)) {
6200     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6201     return true;
6202   }
6203   Parser.Lex(); // Eat the last ':'
6204 
6205   return false;
6206 }
6207 
6208 /// Given a mnemonic, split out possible predication code and carry
6209 /// setting letters to form a canonical mnemonic and flags.
6210 //
6211 // FIXME: Would be nice to autogen this.
6212 // FIXME: This is a bit of a maze of special cases.
6213 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6214                                       StringRef ExtraToken,
6215                                       unsigned &PredicationCode,
6216                                       unsigned &VPTPredicationCode,
6217                                       bool &CarrySetting,
6218                                       unsigned &ProcessorIMod,
6219                                       StringRef &ITMask) {
6220   PredicationCode = ARMCC::AL;
6221   VPTPredicationCode = ARMVCC::None;
6222   CarrySetting = false;
6223   ProcessorIMod = 0;
6224 
6225   // Ignore some mnemonics we know aren't predicated forms.
6226   //
6227   // FIXME: Would be nice to autogen this.
6228   if ((Mnemonic == "movs" && isThumb()) ||
6229       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
6230       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
6231       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
6232       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
6233       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
6234       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
6235       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
6236       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6237       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6238       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
6239       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6240       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6241       Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6242       Mnemonic == "bxns"  || Mnemonic == "blxns" ||
6243       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6244       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6245       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6246       Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" ||
6247       Mnemonic == "csel" || Mnemonic == "csinc" ||
6248       Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6249       Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" ||
6250       Mnemonic == "csetm")
6251     return Mnemonic;
6252 
6253   // First, split out any predication code. Ignore mnemonics we know aren't
6254   // predicated but do have a carry-set and so weren't caught above.
6255   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6256       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6257       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6258       Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6259       !(hasMVE() &&
6260         (Mnemonic == "vmine" ||
6261          Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6262          Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6263          Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6264          Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6265          Mnemonic == "vmule" || Mnemonic == "vmult" ||
6266          Mnemonic == "vrintne" ||
6267          Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6268          Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6269          Mnemonic.startswith("vq")))) {
6270     unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6271     if (CC != ~0U) {
6272       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6273       PredicationCode = CC;
6274     }
6275   }
6276 
6277   // Next, determine if we have a carry setting bit. We explicitly ignore all
6278   // the instructions we know end in 's'.
6279   if (Mnemonic.endswith("s") &&
6280       !(Mnemonic == "cps" || Mnemonic == "mls" ||
6281         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6282         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6283         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6284         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6285         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6286         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6287         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6288         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6289         Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6290         Mnemonic == "vmlas" ||
6291         (Mnemonic == "movs" && isThumb()))) {
6292     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6293     CarrySetting = true;
6294   }
6295 
6296   // The "cps" instruction can have a interrupt mode operand which is glued into
6297   // the mnemonic. Check if this is the case, split it and parse the imod op
6298   if (Mnemonic.startswith("cps")) {
6299     // Split out any imod code.
6300     unsigned IMod =
6301       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6302       .Case("ie", ARM_PROC::IE)
6303       .Case("id", ARM_PROC::ID)
6304       .Default(~0U);
6305     if (IMod != ~0U) {
6306       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6307       ProcessorIMod = IMod;
6308     }
6309   }
6310 
6311   if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6312       Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6313       Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6314       Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6315       Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6316       Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6317       Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6318     unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6319     if (CC != ~0U) {
6320       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6321       VPTPredicationCode = CC;
6322     }
6323     return Mnemonic;
6324   }
6325 
6326   // The "it" instruction has the condition mask on the end of the mnemonic.
6327   if (Mnemonic.startswith("it")) {
6328     ITMask = Mnemonic.slice(2, Mnemonic.size());
6329     Mnemonic = Mnemonic.slice(0, 2);
6330   }
6331 
6332   if (Mnemonic.startswith("vpst")) {
6333     ITMask = Mnemonic.slice(4, Mnemonic.size());
6334     Mnemonic = Mnemonic.slice(0, 4);
6335   }
6336   else if (Mnemonic.startswith("vpt")) {
6337     ITMask = Mnemonic.slice(3, Mnemonic.size());
6338     Mnemonic = Mnemonic.slice(0, 3);
6339   }
6340 
6341   return Mnemonic;
6342 }
6343 
6344 /// Given a canonical mnemonic, determine if the instruction ever allows
6345 /// inclusion of carry set or predication code operands.
6346 //
6347 // FIXME: It would be nice to autogen this.
6348 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6349                                          StringRef ExtraToken,
6350                                          StringRef FullInst,
6351                                          bool &CanAcceptCarrySet,
6352                                          bool &CanAcceptPredicationCode,
6353                                          bool &CanAcceptVPTPredicationCode) {
6354   CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6355 
6356   CanAcceptCarrySet =
6357       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6358       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6359       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6360       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6361       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6362       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6363       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6364       (!isThumb() &&
6365        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6366         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6367 
6368   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6369       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6370       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6371       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6372       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6373       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6374       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6375       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6376       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6377       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6378       (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6379       Mnemonic == "vmovx" || Mnemonic == "vins" ||
6380       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6381       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6382       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6383       Mnemonic == "sb"    || Mnemonic == "ssbb"  ||
6384       Mnemonic == "pssbb" ||
6385       Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6386       Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6387       Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6388       Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6389       Mnemonic == "cset" || Mnemonic == "csetm" ||
6390       Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6391       (hasMVE() &&
6392        (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6393         Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6394         Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6395         Mnemonic.startswith("letp")))) {
6396     // These mnemonics are never predicable
6397     CanAcceptPredicationCode = false;
6398   } else if (!isThumb()) {
6399     // Some instructions are only predicable in Thumb mode
6400     CanAcceptPredicationCode =
6401         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6402         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6403         Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6404         Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6405         Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6406         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6407         Mnemonic != "tsb" &&
6408         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6409   } else if (isThumbOne()) {
6410     if (hasV6MOps())
6411       CanAcceptPredicationCode = Mnemonic != "movs";
6412     else
6413       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6414   } else
6415     CanAcceptPredicationCode = true;
6416 }
6417 
6418 // Some Thumb instructions have two operand forms that are not
6419 // available as three operand, convert to two operand form if possible.
6420 //
6421 // FIXME: We would really like to be able to tablegen'erate this.
6422 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6423                                                  bool CarrySetting,
6424                                                  OperandVector &Operands) {
6425   if (Operands.size() != 6)
6426     return;
6427 
6428   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6429         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6430   if (!Op3.isReg() || !Op4.isReg())
6431     return;
6432 
6433   auto Op3Reg = Op3.getReg();
6434   auto Op4Reg = Op4.getReg();
6435 
6436   // For most Thumb2 cases we just generate the 3 operand form and reduce
6437   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6438   // won't accept SP or PC so we do the transformation here taking care
6439   // with immediate range in the 'add sp, sp #imm' case.
6440   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6441   if (isThumbTwo()) {
6442     if (Mnemonic != "add")
6443       return;
6444     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6445                         (Op5.isReg() && Op5.getReg() == ARM::PC);
6446     if (!TryTransform) {
6447       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6448                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6449                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6450                        Op5.isImm() && !Op5.isImm0_508s4());
6451     }
6452     if (!TryTransform)
6453       return;
6454   } else if (!isThumbOne())
6455     return;
6456 
6457   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6458         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6459         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6460         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6461     return;
6462 
6463   // If first 2 operands of a 3 operand instruction are the same
6464   // then transform to 2 operand version of the same instruction
6465   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6466   bool Transform = Op3Reg == Op4Reg;
6467 
6468   // For communtative operations, we might be able to transform if we swap
6469   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
6470   // as tADDrsp.
6471   const ARMOperand *LastOp = &Op5;
6472   bool Swap = false;
6473   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6474       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6475        Mnemonic == "and" || Mnemonic == "eor" ||
6476        Mnemonic == "adc" || Mnemonic == "orr")) {
6477     Swap = true;
6478     LastOp = &Op4;
6479     Transform = true;
6480   }
6481 
6482   // If both registers are the same then remove one of them from
6483   // the operand list, with certain exceptions.
6484   if (Transform) {
6485     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6486     // 2 operand forms don't exist.
6487     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6488         LastOp->isReg())
6489       Transform = false;
6490 
6491     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6492     // 3-bits because the ARMARM says not to.
6493     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6494       Transform = false;
6495   }
6496 
6497   if (Transform) {
6498     if (Swap)
6499       std::swap(Op4, Op5);
6500     Operands.erase(Operands.begin() + 3);
6501   }
6502 }
6503 
6504 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6505                                           OperandVector &Operands) {
6506   // FIXME: This is all horribly hacky. We really need a better way to deal
6507   // with optional operands like this in the matcher table.
6508 
6509   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6510   // another does not. Specifically, the MOVW instruction does not. So we
6511   // special case it here and remove the defaulted (non-setting) cc_out
6512   // operand if that's the instruction we're trying to match.
6513   //
6514   // We do this as post-processing of the explicit operands rather than just
6515   // conditionally adding the cc_out in the first place because we need
6516   // to check the type of the parsed immediate operand.
6517   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6518       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6519       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6520       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6521     return true;
6522 
6523   // Register-register 'add' for thumb does not have a cc_out operand
6524   // when there are only two register operands.
6525   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6526       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6527       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6528       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6529     return true;
6530   // Register-register 'add' for thumb does not have a cc_out operand
6531   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6532   // have to check the immediate range here since Thumb2 has a variant
6533   // that can handle a different range and has a cc_out operand.
6534   if (((isThumb() && Mnemonic == "add") ||
6535        (isThumbTwo() && Mnemonic == "sub")) &&
6536       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6537       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6538       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6539       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6540       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6541        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6542     return true;
6543   // For Thumb2, add/sub immediate does not have a cc_out operand for the
6544   // imm0_4095 variant. That's the least-preferred variant when
6545   // selecting via the generic "add" mnemonic, so to know that we
6546   // should remove the cc_out operand, we have to explicitly check that
6547   // it's not one of the other variants. Ugh.
6548   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6549       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6550       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6551       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6552     // Nest conditions rather than one big 'if' statement for readability.
6553     //
6554     // If both registers are low, we're in an IT block, and the immediate is
6555     // in range, we should use encoding T1 instead, which has a cc_out.
6556     if (inITBlock() &&
6557         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6558         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6559         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6560       return false;
6561     // Check against T3. If the second register is the PC, this is an
6562     // alternate form of ADR, which uses encoding T4, so check for that too.
6563     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6564         static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
6565       return false;
6566 
6567     // Otherwise, we use encoding T4, which does not have a cc_out
6568     // operand.
6569     return true;
6570   }
6571 
6572   // The thumb2 multiply instruction doesn't have a CCOut register, so
6573   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6574   // use the 16-bit encoding or not.
6575   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6576       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6577       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6578       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6579       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6580       // If the registers aren't low regs, the destination reg isn't the
6581       // same as one of the source regs, or the cc_out operand is zero
6582       // outside of an IT block, we have to use the 32-bit encoding, so
6583       // remove the cc_out operand.
6584       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6585        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6586        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6587        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6588                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6589                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6590                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
6591     return true;
6592 
6593   // Also check the 'mul' syntax variant that doesn't specify an explicit
6594   // destination register.
6595   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6596       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6597       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6598       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6599       // If the registers aren't low regs  or the cc_out operand is zero
6600       // outside of an IT block, we have to use the 32-bit encoding, so
6601       // remove the cc_out operand.
6602       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6603        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6604        !inITBlock()))
6605     return true;
6606 
6607   // Register-register 'add/sub' for thumb does not have a cc_out operand
6608   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6609   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6610   // right, this will result in better diagnostics (which operand is off)
6611   // anyway.
6612   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6613       (Operands.size() == 5 || Operands.size() == 6) &&
6614       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6615       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6616       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6617       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6618        (Operands.size() == 6 &&
6619         static_cast<ARMOperand &>(*Operands[5]).isImm())))
6620     return true;
6621 
6622   return false;
6623 }
6624 
6625 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6626                                               OperandVector &Operands) {
6627   // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6628   unsigned RegIdx = 3;
6629   if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6630       Mnemonic == "vrintr") &&
6631       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6632        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6633     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6634         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6635          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6636       RegIdx = 4;
6637 
6638     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6639         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6640              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6641          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6642              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6643       return true;
6644   }
6645   return false;
6646 }
6647 
6648 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6649                                                     OperandVector &Operands) {
6650   if (!hasMVE() || Operands.size() < 3)
6651     return true;
6652 
6653   if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6654       Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6655     return true;
6656 
6657   if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6658     return false;
6659 
6660   if (Mnemonic.startswith("vmov") &&
6661       !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6662         Mnemonic.startswith("vmovx"))) {
6663     for (auto &Operand : Operands) {
6664       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6665           ((*Operand).isReg() &&
6666            (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6667              (*Operand).getReg()) ||
6668             ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6669               (*Operand).getReg())))) {
6670         return true;
6671       }
6672     }
6673     return false;
6674   } else {
6675     for (auto &Operand : Operands) {
6676       // We check the larger class QPR instead of just the legal class
6677       // MQPR, to more accurately report errors when using Q registers
6678       // outside of the allowed range.
6679       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6680           (Operand->isReg() &&
6681            (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6682              Operand->getReg()))))
6683         return false;
6684     }
6685     return true;
6686   }
6687 }
6688 
6689 static bool isDataTypeToken(StringRef Tok) {
6690   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6691     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6692     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6693     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6694     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6695     Tok == ".f" || Tok == ".d";
6696 }
6697 
6698 // FIXME: This bit should probably be handled via an explicit match class
6699 // in the .td files that matches the suffix instead of having it be
6700 // a literal string token the way it is now.
6701 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6702   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6703 }
6704 
6705 static void applyMnemonicAliases(StringRef &Mnemonic,
6706                                  const FeatureBitset &Features,
6707                                  unsigned VariantID);
6708 
6709 // The GNU assembler has aliases of ldrd and strd with the second register
6710 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6711 //
6712 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6713 // the assmebly parser could then generate confusing diagnostics refering to
6714 // it. If we do find anything that prevents us from doing the transformation we
6715 // bail out, and let the assembly parser report an error on the instruction as
6716 // it is written.
6717 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6718                                      OperandVector &Operands) {
6719   if (Mnemonic != "ldrd" && Mnemonic != "strd")
6720     return;
6721   if (Operands.size() < 4)
6722     return;
6723 
6724   ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6725   ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6726 
6727   if (!Op2.isReg())
6728     return;
6729   if (!Op3.isGPRMem())
6730     return;
6731 
6732   const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6733   if (!GPR.contains(Op2.getReg()))
6734     return;
6735 
6736   unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6737   if (!isThumb() && (RtEncoding & 1)) {
6738     // In ARM mode, the registers must be from an aligned pair, this
6739     // restriction does not apply in Thumb mode.
6740     return;
6741   }
6742   if (Op2.getReg() == ARM::PC)
6743     return;
6744   unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6745   if (!PairedReg || PairedReg == ARM::PC ||
6746       (PairedReg == ARM::SP && !hasV8Ops()))
6747     return;
6748 
6749   Operands.insert(
6750       Operands.begin() + 3,
6751       ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6752 }
6753 
6754 /// Parse an arm instruction mnemonic followed by its operands.
6755 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6756                                     SMLoc NameLoc, OperandVector &Operands) {
6757   MCAsmParser &Parser = getParser();
6758 
6759   // Apply mnemonic aliases before doing anything else, as the destination
6760   // mnemonic may include suffices and we want to handle them normally.
6761   // The generic tblgen'erated code does this later, at the start of
6762   // MatchInstructionImpl(), but that's too late for aliases that include
6763   // any sort of suffix.
6764   const FeatureBitset &AvailableFeatures = getAvailableFeatures();
6765   unsigned AssemblerDialect = getParser().getAssemblerDialect();
6766   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6767 
6768   // First check for the ARM-specific .req directive.
6769   if (Parser.getTok().is(AsmToken::Identifier) &&
6770       Parser.getTok().getIdentifier() == ".req") {
6771     parseDirectiveReq(Name, NameLoc);
6772     // We always return 'error' for this, as we're done with this
6773     // statement and don't need to match the 'instruction."
6774     return true;
6775   }
6776 
6777   // Create the leading tokens for the mnemonic, split by '.' characters.
6778   size_t Start = 0, Next = Name.find('.');
6779   StringRef Mnemonic = Name.slice(Start, Next);
6780   StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
6781 
6782   // Split out the predication code and carry setting flag from the mnemonic.
6783   unsigned PredicationCode;
6784   unsigned VPTPredicationCode;
6785   unsigned ProcessorIMod;
6786   bool CarrySetting;
6787   StringRef ITMask;
6788   Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
6789                            CarrySetting, ProcessorIMod, ITMask);
6790 
6791   // In Thumb1, only the branch (B) instruction can be predicated.
6792   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6793     return Error(NameLoc, "conditional execution not supported in Thumb1");
6794   }
6795 
6796   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6797 
6798   // Handle the mask for IT and VPT instructions. In ARMOperand and
6799   // MCOperand, this is stored in a format independent of the
6800   // condition code: the lowest set bit indicates the end of the
6801   // encoding, and above that, a 1 bit indicates 'else', and an 0
6802   // indicates 'then'. E.g.
6803   //    IT    -> 1000
6804   //    ITx   -> x100    (ITT -> 0100, ITE -> 1100)
6805   //    ITxy  -> xy10    (e.g. ITET -> 1010)
6806   //    ITxyz -> xyz1    (e.g. ITEET -> 1101)
6807   if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
6808       Mnemonic.startswith("vpst")) {
6809     SMLoc Loc = Mnemonic == "it"  ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
6810                 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
6811                                     SMLoc::getFromPointer(NameLoc.getPointer() + 4);
6812     if (ITMask.size() > 3) {
6813       if (Mnemonic == "it")
6814         return Error(Loc, "too many conditions on IT instruction");
6815       return Error(Loc, "too many conditions on VPT instruction");
6816     }
6817     unsigned Mask = 8;
6818     for (unsigned i = ITMask.size(); i != 0; --i) {
6819       char pos = ITMask[i - 1];
6820       if (pos != 't' && pos != 'e') {
6821         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6822       }
6823       Mask >>= 1;
6824       if (ITMask[i - 1] == 'e')
6825         Mask |= 8;
6826     }
6827     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6828   }
6829 
6830   // FIXME: This is all a pretty gross hack. We should automatically handle
6831   // optional operands like this via tblgen.
6832 
6833   // Next, add the CCOut and ConditionCode operands, if needed.
6834   //
6835   // For mnemonics which can ever incorporate a carry setting bit or predication
6836   // code, our matching model involves us always generating CCOut and
6837   // ConditionCode operands to match the mnemonic "as written" and then we let
6838   // the matcher deal with finding the right instruction or generating an
6839   // appropriate error.
6840   bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
6841   getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
6842                         CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
6843 
6844   // If we had a carry-set on an instruction that can't do that, issue an
6845   // error.
6846   if (!CanAcceptCarrySet && CarrySetting) {
6847     return Error(NameLoc, "instruction '" + Mnemonic +
6848                  "' can not set flags, but 's' suffix specified");
6849   }
6850   // If we had a predication code on an instruction that can't do that, issue an
6851   // error.
6852   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6853     return Error(NameLoc, "instruction '" + Mnemonic +
6854                  "' is not predicable, but condition code specified");
6855   }
6856 
6857   // If we had a VPT predication code on an instruction that can't do that, issue an
6858   // error.
6859   if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
6860     return Error(NameLoc, "instruction '" + Mnemonic +
6861                  "' is not VPT predicable, but VPT code T/E is specified");
6862   }
6863 
6864   // Add the carry setting operand, if necessary.
6865   if (CanAcceptCarrySet) {
6866     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6867     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6868                                                Loc));
6869   }
6870 
6871   // Add the predication code operand, if necessary.
6872   if (CanAcceptPredicationCode) {
6873     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6874                                       CarrySetting);
6875     Operands.push_back(ARMOperand::CreateCondCode(
6876                        ARMCC::CondCodes(PredicationCode), Loc));
6877   }
6878 
6879   // Add the VPT predication code operand, if necessary.
6880   // FIXME: We don't add them for the instructions filtered below as these can
6881   // have custom operands which need special parsing.  This parsing requires
6882   // the operand to be in the same place in the OperandVector as their
6883   // definition in tblgen.  Since these instructions may also have the
6884   // scalar predication operand we do not add the vector one and leave until
6885   // now to fix it up.
6886   if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
6887       !Mnemonic.startswith("vcmp") &&
6888       !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
6889         Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
6890     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6891                                       CarrySetting);
6892     Operands.push_back(ARMOperand::CreateVPTPred(
6893                          ARMVCC::VPTCodes(VPTPredicationCode), Loc));
6894   }
6895 
6896   // Add the processor imod operand, if necessary.
6897   if (ProcessorIMod) {
6898     Operands.push_back(ARMOperand::CreateImm(
6899           MCConstantExpr::create(ProcessorIMod, getContext()),
6900                                  NameLoc, NameLoc));
6901   } else if (Mnemonic == "cps" && isMClass()) {
6902     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6903   }
6904 
6905   // Add the remaining tokens in the mnemonic.
6906   while (Next != StringRef::npos) {
6907     Start = Next;
6908     Next = Name.find('.', Start + 1);
6909     ExtraToken = Name.slice(Start, Next);
6910 
6911     // Some NEON instructions have an optional datatype suffix that is
6912     // completely ignored. Check for that.
6913     if (isDataTypeToken(ExtraToken) &&
6914         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6915       continue;
6916 
6917     // For for ARM mode generate an error if the .n qualifier is used.
6918     if (ExtraToken == ".n" && !isThumb()) {
6919       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6920       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6921                    "arm mode");
6922     }
6923 
6924     // The .n qualifier is always discarded as that is what the tables
6925     // and matcher expect.  In ARM mode the .w qualifier has no effect,
6926     // so discard it to avoid errors that can be caused by the matcher.
6927     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6928       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6929       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6930     }
6931   }
6932 
6933   // Read the remaining operands.
6934   if (getLexer().isNot(AsmToken::EndOfStatement)) {
6935     // Read the first operand.
6936     if (parseOperand(Operands, Mnemonic)) {
6937       return true;
6938     }
6939 
6940     while (parseOptionalToken(AsmToken::Comma)) {
6941       // Parse and remember the operand.
6942       if (parseOperand(Operands, Mnemonic)) {
6943         return true;
6944       }
6945     }
6946   }
6947 
6948   if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6949     return true;
6950 
6951   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6952 
6953   // Some instructions, mostly Thumb, have forms for the same mnemonic that
6954   // do and don't have a cc_out optional-def operand. With some spot-checks
6955   // of the operand list, we can figure out which variant we're trying to
6956   // parse and adjust accordingly before actually matching. We shouldn't ever
6957   // try to remove a cc_out operand that was explicitly set on the
6958   // mnemonic, of course (CarrySetting == true). Reason number #317 the
6959   // table driven matcher doesn't fit well with the ARM instruction set.
6960   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6961     Operands.erase(Operands.begin() + 1);
6962 
6963   // Some instructions have the same mnemonic, but don't always
6964   // have a predicate. Distinguish them here and delete the
6965   // appropriate predicate if needed.  This could be either the scalar
6966   // predication code or the vector predication code.
6967   if (PredicationCode == ARMCC::AL &&
6968       shouldOmitPredicateOperand(Mnemonic, Operands))
6969     Operands.erase(Operands.begin() + 1);
6970 
6971 
6972   if (hasMVE()) {
6973     if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
6974         Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
6975       // Very nasty hack to deal with the vector predicated variant of vmovlt
6976       // the scalar predicated vmov with condition 'lt'.  We can not tell them
6977       // apart until we have parsed their operands.
6978       Operands.erase(Operands.begin() + 1);
6979       Operands.erase(Operands.begin());
6980       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
6981       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
6982                                          Mnemonic.size() - 1 + CarrySetting);
6983       Operands.insert(Operands.begin(),
6984                       ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
6985       Operands.insert(Operands.begin(),
6986                       ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
6987     } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
6988                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
6989       // Another nasty hack to deal with the ambiguity between vcvt with scalar
6990       // predication 'ne' and vcvtn with vector predication 'e'.  As above we
6991       // can only distinguish between the two after we have parsed their
6992       // operands.
6993       Operands.erase(Operands.begin() + 1);
6994       Operands.erase(Operands.begin());
6995       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
6996       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
6997                                          Mnemonic.size() - 1 + CarrySetting);
6998       Operands.insert(Operands.begin(),
6999                       ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
7000       Operands.insert(Operands.begin(),
7001                       ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
7002     } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
7003                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7004       // Another hack, this time to distinguish between scalar predicated vmul
7005       // with 'lt' predication code and the vector instruction vmullt with
7006       // vector predication code "none"
7007       Operands.erase(Operands.begin() + 1);
7008       Operands.erase(Operands.begin());
7009       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7010       Operands.insert(Operands.begin(),
7011                       ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7012     }
7013     // For vmov and vcmp, as mentioned earlier, we did not add the vector
7014     // predication code, since these may contain operands that require
7015     // special parsing.  So now we have to see if they require vector
7016     // predication and replace the scalar one with the vector predication
7017     // operand if that is the case.
7018     else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7019              (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7020               !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7021               !Mnemonic.startswith("vcvtm"))) {
7022       if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7023         // We could not split the vector predicate off vcvt because it might
7024         // have been the scalar vcvtt instruction.  Now we know its a vector
7025         // instruction, we still need to check whether its the vector
7026         // predicated vcvt with 'Then' predication or the vector vcvtt.  We can
7027         // distinguish the two based on the suffixes, if it is any of
7028         // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7029         if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7030           auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7031           auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7032           if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7033               Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7034             Operands.erase(Operands.begin());
7035             SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7036             VPTPredicationCode = ARMVCC::Then;
7037 
7038             Mnemonic = Mnemonic.substr(0, 4);
7039             Operands.insert(Operands.begin(),
7040                             ARMOperand::CreateToken(Mnemonic, MLoc));
7041           }
7042         }
7043         Operands.erase(Operands.begin() + 1);
7044         SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7045                                           Mnemonic.size() + CarrySetting);
7046         Operands.insert(Operands.begin() + 1,
7047                         ARMOperand::CreateVPTPred(
7048                             ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7049       }
7050     } else if (CanAcceptVPTPredicationCode) {
7051       // For all other instructions, make sure only one of the two
7052       // predication operands is left behind, depending on whether we should
7053       // use the vector predication.
7054       if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7055         if (CanAcceptPredicationCode)
7056           Operands.erase(Operands.begin() + 2);
7057         else
7058           Operands.erase(Operands.begin() + 1);
7059       } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7060         Operands.erase(Operands.begin() + 1);
7061       }
7062     }
7063   }
7064 
7065   if (VPTPredicationCode != ARMVCC::None) {
7066     bool usedVPTPredicationCode = false;
7067     for (unsigned I = 1; I < Operands.size(); ++I)
7068       if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7069         usedVPTPredicationCode = true;
7070     if (!usedVPTPredicationCode) {
7071       // If we have a VPT predication code and we haven't just turned it
7072       // into an operand, then it was a mistake for splitMnemonic to
7073       // separate it from the rest of the mnemonic in the first place,
7074       // and this may lead to wrong disassembly (e.g. scalar floating
7075       // point VCMPE is actually a different instruction from VCMP, so
7076       // we mustn't treat them the same). In that situation, glue it
7077       // back on.
7078       Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7079       Operands.erase(Operands.begin());
7080       Operands.insert(Operands.begin(),
7081                       ARMOperand::CreateToken(Mnemonic, NameLoc));
7082     }
7083   }
7084 
7085     // ARM mode 'blx' need special handling, as the register operand version
7086     // is predicable, but the label operand version is not. So, we can't rely
7087     // on the Mnemonic based checking to correctly figure out when to put
7088     // a k_CondCode operand in the list. If we're trying to match the label
7089     // version, remove the k_CondCode operand here.
7090     if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7091         static_cast<ARMOperand &>(*Operands[2]).isImm())
7092       Operands.erase(Operands.begin() + 1);
7093 
7094     // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7095     // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7096     // a single GPRPair reg operand is used in the .td file to replace the two
7097     // GPRs. However, when parsing from asm, the two GRPs cannot be
7098     // automatically
7099     // expressed as a GPRPair, so we have to manually merge them.
7100     // FIXME: We would really like to be able to tablegen'erate this.
7101     if (!isThumb() && Operands.size() > 4 &&
7102         (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7103          Mnemonic == "stlexd")) {
7104       bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7105       unsigned Idx = isLoad ? 2 : 3;
7106       ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7107       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7108 
7109       const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7110       // Adjust only if Op1 and Op2 are GPRs.
7111       if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7112           MRC.contains(Op2.getReg())) {
7113         unsigned Reg1 = Op1.getReg();
7114         unsigned Reg2 = Op2.getReg();
7115         unsigned Rt = MRI->getEncodingValue(Reg1);
7116         unsigned Rt2 = MRI->getEncodingValue(Reg2);
7117 
7118         // Rt2 must be Rt + 1 and Rt must be even.
7119         if (Rt + 1 != Rt2 || (Rt & 1)) {
7120           return Error(Op2.getStartLoc(),
7121                        isLoad ? "destination operands must be sequential"
7122                               : "source operands must be sequential");
7123         }
7124         unsigned NewReg = MRI->getMatchingSuperReg(
7125             Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7126         Operands[Idx] =
7127             ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7128         Operands.erase(Operands.begin() + Idx + 1);
7129       }
7130   }
7131 
7132   // GNU Assembler extension (compatibility).
7133   fixupGNULDRDAlias(Mnemonic, Operands);
7134 
7135   // FIXME: As said above, this is all a pretty gross hack.  This instruction
7136   // does not fit with other "subs" and tblgen.
7137   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7138   // so the Mnemonic is the original name "subs" and delete the predicate
7139   // operand so it will match the table entry.
7140   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7141       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7142       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7143       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7144       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7145       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7146     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7147     Operands.erase(Operands.begin() + 1);
7148   }
7149   return false;
7150 }
7151 
7152 // Validate context-sensitive operand constraints.
7153 
7154 // return 'true' if register list contains non-low GPR registers,
7155 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7156 // 'containsReg' to true.
7157 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7158                                  unsigned Reg, unsigned HiReg,
7159                                  bool &containsReg) {
7160   containsReg = false;
7161   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7162     unsigned OpReg = Inst.getOperand(i).getReg();
7163     if (OpReg == Reg)
7164       containsReg = true;
7165     // Anything other than a low register isn't legal here.
7166     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7167       return true;
7168   }
7169   return false;
7170 }
7171 
7172 // Check if the specified regisgter is in the register list of the inst,
7173 // starting at the indicated operand number.
7174 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7175   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7176     unsigned OpReg = Inst.getOperand(i).getReg();
7177     if (OpReg == Reg)
7178       return true;
7179   }
7180   return false;
7181 }
7182 
7183 // Return true if instruction has the interesting property of being
7184 // allowed in IT blocks, but not being predicable.
7185 static bool instIsBreakpoint(const MCInst &Inst) {
7186     return Inst.getOpcode() == ARM::tBKPT ||
7187            Inst.getOpcode() == ARM::BKPT ||
7188            Inst.getOpcode() == ARM::tHLT ||
7189            Inst.getOpcode() == ARM::HLT;
7190 }
7191 
7192 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7193                                        const OperandVector &Operands,
7194                                        unsigned ListNo, bool IsARPop) {
7195   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7196   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7197 
7198   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7199   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7200   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7201 
7202   if (!IsARPop && ListContainsSP)
7203     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7204                  "SP may not be in the register list");
7205   else if (ListContainsPC && ListContainsLR)
7206     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7207                  "PC and LR may not be in the register list simultaneously");
7208   return false;
7209 }
7210 
7211 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7212                                        const OperandVector &Operands,
7213                                        unsigned ListNo) {
7214   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7215   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7216 
7217   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7218   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7219 
7220   if (ListContainsSP && ListContainsPC)
7221     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7222                  "SP and PC may not be in the register list");
7223   else if (ListContainsSP)
7224     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7225                  "SP may not be in the register list");
7226   else if (ListContainsPC)
7227     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7228                  "PC may not be in the register list");
7229   return false;
7230 }
7231 
7232 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7233                                     const OperandVector &Operands,
7234                                     bool Load, bool ARMMode, bool Writeback) {
7235   unsigned RtIndex = Load || !Writeback ? 0 : 1;
7236   unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7237   unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7238 
7239   if (ARMMode) {
7240     // Rt can't be R14.
7241     if (Rt == 14)
7242       return Error(Operands[3]->getStartLoc(),
7243                   "Rt can't be R14");
7244 
7245     // Rt must be even-numbered.
7246     if ((Rt & 1) == 1)
7247       return Error(Operands[3]->getStartLoc(),
7248                    "Rt must be even-numbered");
7249 
7250     // Rt2 must be Rt + 1.
7251     if (Rt2 != Rt + 1) {
7252       if (Load)
7253         return Error(Operands[3]->getStartLoc(),
7254                      "destination operands must be sequential");
7255       else
7256         return Error(Operands[3]->getStartLoc(),
7257                      "source operands must be sequential");
7258     }
7259 
7260     // FIXME: Diagnose m == 15
7261     // FIXME: Diagnose ldrd with m == t || m == t2.
7262   }
7263 
7264   if (!ARMMode && Load) {
7265     if (Rt2 == Rt)
7266       return Error(Operands[3]->getStartLoc(),
7267                    "destination operands can't be identical");
7268   }
7269 
7270   if (Writeback) {
7271     unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7272 
7273     if (Rn == Rt || Rn == Rt2) {
7274       if (Load)
7275         return Error(Operands[3]->getStartLoc(),
7276                      "base register needs to be different from destination "
7277                      "registers");
7278       else
7279         return Error(Operands[3]->getStartLoc(),
7280                      "source register and base register can't be identical");
7281     }
7282 
7283     // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7284     // (Except the immediate form of ldrd?)
7285   }
7286 
7287   return false;
7288 }
7289 
7290 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7291   for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7292     if (ARM::isVpred(MCID.OpInfo[i].OperandType))
7293       return i;
7294   }
7295   return -1;
7296 }
7297 
7298 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7299   return findFirstVectorPredOperandIdx(MCID) != -1;
7300 }
7301 
7302 // FIXME: We would really like to be able to tablegen'erate this.
7303 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7304                                        const OperandVector &Operands) {
7305   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7306   SMLoc Loc = Operands[0]->getStartLoc();
7307 
7308   // Check the IT block state first.
7309   // NOTE: BKPT and HLT instructions have the interesting property of being
7310   // allowed in IT blocks, but not being predicable. They just always execute.
7311   if (inITBlock() && !instIsBreakpoint(Inst)) {
7312     // The instruction must be predicable.
7313     if (!MCID.isPredicable())
7314       return Error(Loc, "instructions in IT block must be predicable");
7315     ARMCC::CondCodes Cond = ARMCC::CondCodes(
7316         Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7317     if (Cond != currentITCond()) {
7318       // Find the condition code Operand to get its SMLoc information.
7319       SMLoc CondLoc;
7320       for (unsigned I = 1; I < Operands.size(); ++I)
7321         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7322           CondLoc = Operands[I]->getStartLoc();
7323       return Error(CondLoc, "incorrect condition in IT block; got '" +
7324                                 StringRef(ARMCondCodeToString(Cond)) +
7325                                 "', but expected '" +
7326                                 ARMCondCodeToString(currentITCond()) + "'");
7327     }
7328   // Check for non-'al' condition codes outside of the IT block.
7329   } else if (isThumbTwo() && MCID.isPredicable() &&
7330              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7331              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7332              Inst.getOpcode() != ARM::t2Bcc &&
7333              Inst.getOpcode() != ARM::t2BFic) {
7334     return Error(Loc, "predicated instructions must be in IT block");
7335   } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7336              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7337                  ARMCC::AL) {
7338     return Warning(Loc, "predicated instructions should be in IT block");
7339   } else if (!MCID.isPredicable()) {
7340     // Check the instruction doesn't have a predicate operand anyway
7341     // that it's not allowed to use. Sometimes this happens in order
7342     // to keep instructions the same shape even though one cannot
7343     // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7344     for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7345       if (MCID.OpInfo[i].isPredicate()) {
7346         if (Inst.getOperand(i).getImm() != ARMCC::AL)
7347           return Error(Loc, "instruction is not predicable");
7348         break;
7349       }
7350     }
7351   }
7352 
7353   // PC-setting instructions in an IT block, but not the last instruction of
7354   // the block, are UNPREDICTABLE.
7355   if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7356     return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7357   }
7358 
7359   if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7360     unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7361     if (!isVectorPredicable(MCID))
7362       return Error(Loc, "instruction in VPT block must be predicable");
7363     unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7364     unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7365     if (Pred != VPTPred) {
7366       SMLoc PredLoc;
7367       for (unsigned I = 1; I < Operands.size(); ++I)
7368         if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7369           PredLoc = Operands[I]->getStartLoc();
7370       return Error(PredLoc, "incorrect predication in VPT block; got '" +
7371                    StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7372                    "', but expected '" +
7373                    ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7374     }
7375   }
7376   else if (isVectorPredicable(MCID) &&
7377            Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7378            ARMVCC::None)
7379     return Error(Loc, "VPT predicated instructions must be in VPT block");
7380 
7381   const unsigned Opcode = Inst.getOpcode();
7382   switch (Opcode) {
7383   case ARM::t2IT: {
7384     // Encoding is unpredictable if it ever results in a notional 'NV'
7385     // predicate. Since we don't parse 'NV' directly this means an 'AL'
7386     // predicate with an "else" mask bit.
7387     unsigned Cond = Inst.getOperand(0).getImm();
7388     unsigned Mask = Inst.getOperand(1).getImm();
7389 
7390     // Conditions only allowing a 't' are those with no set bit except
7391     // the lowest-order one that indicates the end of the sequence. In
7392     // other words, powers of 2.
7393     if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
7394       return Error(Loc, "unpredictable IT predicate sequence");
7395     break;
7396   }
7397   case ARM::LDRD:
7398     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7399                          /*Writeback*/false))
7400       return true;
7401     break;
7402   case ARM::LDRD_PRE:
7403   case ARM::LDRD_POST:
7404     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7405                          /*Writeback*/true))
7406       return true;
7407     break;
7408   case ARM::t2LDRDi8:
7409     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7410                          /*Writeback*/false))
7411       return true;
7412     break;
7413   case ARM::t2LDRD_PRE:
7414   case ARM::t2LDRD_POST:
7415     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7416                          /*Writeback*/true))
7417       return true;
7418     break;
7419   case ARM::t2BXJ: {
7420     const unsigned RmReg = Inst.getOperand(0).getReg();
7421     // Rm = SP is no longer unpredictable in v8-A
7422     if (RmReg == ARM::SP && !hasV8Ops())
7423       return Error(Operands[2]->getStartLoc(),
7424                    "r13 (SP) is an unpredictable operand to BXJ");
7425     return false;
7426   }
7427   case ARM::STRD:
7428     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7429                          /*Writeback*/false))
7430       return true;
7431     break;
7432   case ARM::STRD_PRE:
7433   case ARM::STRD_POST:
7434     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7435                          /*Writeback*/true))
7436       return true;
7437     break;
7438   case ARM::t2STRD_PRE:
7439   case ARM::t2STRD_POST:
7440     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7441                          /*Writeback*/true))
7442       return true;
7443     break;
7444   case ARM::STR_PRE_IMM:
7445   case ARM::STR_PRE_REG:
7446   case ARM::t2STR_PRE:
7447   case ARM::STR_POST_IMM:
7448   case ARM::STR_POST_REG:
7449   case ARM::t2STR_POST:
7450   case ARM::STRH_PRE:
7451   case ARM::t2STRH_PRE:
7452   case ARM::STRH_POST:
7453   case ARM::t2STRH_POST:
7454   case ARM::STRB_PRE_IMM:
7455   case ARM::STRB_PRE_REG:
7456   case ARM::t2STRB_PRE:
7457   case ARM::STRB_POST_IMM:
7458   case ARM::STRB_POST_REG:
7459   case ARM::t2STRB_POST: {
7460     // Rt must be different from Rn.
7461     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7462     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7463 
7464     if (Rt == Rn)
7465       return Error(Operands[3]->getStartLoc(),
7466                    "source register and base register can't be identical");
7467     return false;
7468   }
7469   case ARM::LDR_PRE_IMM:
7470   case ARM::LDR_PRE_REG:
7471   case ARM::t2LDR_PRE:
7472   case ARM::LDR_POST_IMM:
7473   case ARM::LDR_POST_REG:
7474   case ARM::t2LDR_POST:
7475   case ARM::LDRH_PRE:
7476   case ARM::t2LDRH_PRE:
7477   case ARM::LDRH_POST:
7478   case ARM::t2LDRH_POST:
7479   case ARM::LDRSH_PRE:
7480   case ARM::t2LDRSH_PRE:
7481   case ARM::LDRSH_POST:
7482   case ARM::t2LDRSH_POST:
7483   case ARM::LDRB_PRE_IMM:
7484   case ARM::LDRB_PRE_REG:
7485   case ARM::t2LDRB_PRE:
7486   case ARM::LDRB_POST_IMM:
7487   case ARM::LDRB_POST_REG:
7488   case ARM::t2LDRB_POST:
7489   case ARM::LDRSB_PRE:
7490   case ARM::t2LDRSB_PRE:
7491   case ARM::LDRSB_POST:
7492   case ARM::t2LDRSB_POST: {
7493     // Rt must be different from Rn.
7494     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7495     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7496 
7497     if (Rt == Rn)
7498       return Error(Operands[3]->getStartLoc(),
7499                    "destination register and base register can't be identical");
7500     return false;
7501   }
7502 
7503   case ARM::MVE_VLDRBU8_rq:
7504   case ARM::MVE_VLDRBU16_rq:
7505   case ARM::MVE_VLDRBS16_rq:
7506   case ARM::MVE_VLDRBU32_rq:
7507   case ARM::MVE_VLDRBS32_rq:
7508   case ARM::MVE_VLDRHU16_rq:
7509   case ARM::MVE_VLDRHU16_rq_u:
7510   case ARM::MVE_VLDRHU32_rq:
7511   case ARM::MVE_VLDRHU32_rq_u:
7512   case ARM::MVE_VLDRHS32_rq:
7513   case ARM::MVE_VLDRHS32_rq_u:
7514   case ARM::MVE_VLDRWU32_rq:
7515   case ARM::MVE_VLDRWU32_rq_u:
7516   case ARM::MVE_VLDRDU64_rq:
7517   case ARM::MVE_VLDRDU64_rq_u:
7518   case ARM::MVE_VLDRWU32_qi:
7519   case ARM::MVE_VLDRWU32_qi_pre:
7520   case ARM::MVE_VLDRDU64_qi:
7521   case ARM::MVE_VLDRDU64_qi_pre: {
7522     // Qd must be different from Qm.
7523     unsigned QdIdx = 0, QmIdx = 2;
7524     bool QmIsPointer = false;
7525     switch (Opcode) {
7526     case ARM::MVE_VLDRWU32_qi:
7527     case ARM::MVE_VLDRDU64_qi:
7528       QmIdx = 1;
7529       QmIsPointer = true;
7530       break;
7531     case ARM::MVE_VLDRWU32_qi_pre:
7532     case ARM::MVE_VLDRDU64_qi_pre:
7533       QdIdx = 1;
7534       QmIsPointer = true;
7535       break;
7536     }
7537 
7538     const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7539     const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7540 
7541     if (Qd == Qm) {
7542       return Error(Operands[3]->getStartLoc(),
7543                    Twine("destination vector register and vector ") +
7544                    (QmIsPointer ? "pointer" : "offset") +
7545                    " register can't be identical");
7546     }
7547     return false;
7548   }
7549 
7550   case ARM::SBFX:
7551   case ARM::t2SBFX:
7552   case ARM::UBFX:
7553   case ARM::t2UBFX: {
7554     // Width must be in range [1, 32-lsb].
7555     unsigned LSB = Inst.getOperand(2).getImm();
7556     unsigned Widthm1 = Inst.getOperand(3).getImm();
7557     if (Widthm1 >= 32 - LSB)
7558       return Error(Operands[5]->getStartLoc(),
7559                    "bitfield width must be in range [1,32-lsb]");
7560     return false;
7561   }
7562   // Notionally handles ARM::tLDMIA_UPD too.
7563   case ARM::tLDMIA: {
7564     // If we're parsing Thumb2, the .w variant is available and handles
7565     // most cases that are normally illegal for a Thumb1 LDM instruction.
7566     // We'll make the transformation in processInstruction() if necessary.
7567     //
7568     // Thumb LDM instructions are writeback iff the base register is not
7569     // in the register list.
7570     unsigned Rn = Inst.getOperand(0).getReg();
7571     bool HasWritebackToken =
7572         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7573          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7574     bool ListContainsBase;
7575     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7576       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7577                    "registers must be in range r0-r7");
7578     // If we should have writeback, then there should be a '!' token.
7579     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7580       return Error(Operands[2]->getStartLoc(),
7581                    "writeback operator '!' expected");
7582     // If we should not have writeback, there must not be a '!'. This is
7583     // true even for the 32-bit wide encodings.
7584     if (ListContainsBase && HasWritebackToken)
7585       return Error(Operands[3]->getStartLoc(),
7586                    "writeback operator '!' not allowed when base register "
7587                    "in register list");
7588 
7589     if (validatetLDMRegList(Inst, Operands, 3))
7590       return true;
7591     break;
7592   }
7593   case ARM::LDMIA_UPD:
7594   case ARM::LDMDB_UPD:
7595   case ARM::LDMIB_UPD:
7596   case ARM::LDMDA_UPD:
7597     // ARM variants loading and updating the same register are only officially
7598     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7599     if (!hasV7Ops())
7600       break;
7601     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7602       return Error(Operands.back()->getStartLoc(),
7603                    "writeback register not allowed in register list");
7604     break;
7605   case ARM::t2LDMIA:
7606   case ARM::t2LDMDB:
7607     if (validatetLDMRegList(Inst, Operands, 3))
7608       return true;
7609     break;
7610   case ARM::t2STMIA:
7611   case ARM::t2STMDB:
7612     if (validatetSTMRegList(Inst, Operands, 3))
7613       return true;
7614     break;
7615   case ARM::t2LDMIA_UPD:
7616   case ARM::t2LDMDB_UPD:
7617   case ARM::t2STMIA_UPD:
7618   case ARM::t2STMDB_UPD:
7619     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7620       return Error(Operands.back()->getStartLoc(),
7621                    "writeback register not allowed in register list");
7622 
7623     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7624       if (validatetLDMRegList(Inst, Operands, 3))
7625         return true;
7626     } else {
7627       if (validatetSTMRegList(Inst, Operands, 3))
7628         return true;
7629     }
7630     break;
7631 
7632   case ARM::sysLDMIA_UPD:
7633   case ARM::sysLDMDA_UPD:
7634   case ARM::sysLDMDB_UPD:
7635   case ARM::sysLDMIB_UPD:
7636     if (!listContainsReg(Inst, 3, ARM::PC))
7637       return Error(Operands[4]->getStartLoc(),
7638                    "writeback register only allowed on system LDM "
7639                    "if PC in register-list");
7640     break;
7641   case ARM::sysSTMIA_UPD:
7642   case ARM::sysSTMDA_UPD:
7643   case ARM::sysSTMDB_UPD:
7644   case ARM::sysSTMIB_UPD:
7645     return Error(Operands[2]->getStartLoc(),
7646                  "system STM cannot have writeback register");
7647   case ARM::tMUL:
7648     // The second source operand must be the same register as the destination
7649     // operand.
7650     //
7651     // In this case, we must directly check the parsed operands because the
7652     // cvtThumbMultiply() function is written in such a way that it guarantees
7653     // this first statement is always true for the new Inst.  Essentially, the
7654     // destination is unconditionally copied into the second source operand
7655     // without checking to see if it matches what we actually parsed.
7656     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
7657                                  ((ARMOperand &)*Operands[5]).getReg()) &&
7658         (((ARMOperand &)*Operands[3]).getReg() !=
7659          ((ARMOperand &)*Operands[4]).getReg())) {
7660       return Error(Operands[3]->getStartLoc(),
7661                    "destination register must match source register");
7662     }
7663     break;
7664 
7665   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
7666   // so only issue a diagnostic for thumb1. The instructions will be
7667   // switched to the t2 encodings in processInstruction() if necessary.
7668   case ARM::tPOP: {
7669     bool ListContainsBase;
7670     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
7671         !isThumbTwo())
7672       return Error(Operands[2]->getStartLoc(),
7673                    "registers must be in range r0-r7 or pc");
7674     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
7675       return true;
7676     break;
7677   }
7678   case ARM::tPUSH: {
7679     bool ListContainsBase;
7680     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
7681         !isThumbTwo())
7682       return Error(Operands[2]->getStartLoc(),
7683                    "registers must be in range r0-r7 or lr");
7684     if (validatetSTMRegList(Inst, Operands, 2))
7685       return true;
7686     break;
7687   }
7688   case ARM::tSTMIA_UPD: {
7689     bool ListContainsBase, InvalidLowList;
7690     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
7691                                           0, ListContainsBase);
7692     if (InvalidLowList && !isThumbTwo())
7693       return Error(Operands[4]->getStartLoc(),
7694                    "registers must be in range r0-r7");
7695 
7696     // This would be converted to a 32-bit stm, but that's not valid if the
7697     // writeback register is in the list.
7698     if (InvalidLowList && ListContainsBase)
7699       return Error(Operands[4]->getStartLoc(),
7700                    "writeback operator '!' not allowed when base register "
7701                    "in register list");
7702 
7703     if (validatetSTMRegList(Inst, Operands, 4))
7704       return true;
7705     break;
7706   }
7707   case ARM::tADDrSP:
7708     // If the non-SP source operand and the destination operand are not the
7709     // same, we need thumb2 (for the wide encoding), or we have an error.
7710     if (!isThumbTwo() &&
7711         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7712       return Error(Operands[4]->getStartLoc(),
7713                    "source register must be the same as destination");
7714     }
7715     break;
7716 
7717   case ARM::t2ADDri:
7718   case ARM::t2ADDri12:
7719   case ARM::t2ADDrr:
7720   case ARM::t2ADDrs:
7721   case ARM::t2SUBri:
7722   case ARM::t2SUBri12:
7723   case ARM::t2SUBrr:
7724   case ARM::t2SUBrs:
7725     if (Inst.getOperand(0).getReg() == ARM::SP &&
7726         Inst.getOperand(1).getReg() != ARM::SP)
7727       return Error(Operands[4]->getStartLoc(),
7728                    "source register must be sp if destination is sp");
7729     break;
7730 
7731   // Final range checking for Thumb unconditional branch instructions.
7732   case ARM::tB:
7733     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
7734       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7735     break;
7736   case ARM::t2B: {
7737     int op = (Operands[2]->isImm()) ? 2 : 3;
7738     if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
7739       return Error(Operands[op]->getStartLoc(), "branch target out of range");
7740     break;
7741   }
7742   // Final range checking for Thumb conditional branch instructions.
7743   case ARM::tBcc:
7744     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
7745       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7746     break;
7747   case ARM::t2Bcc: {
7748     int Op = (Operands[2]->isImm()) ? 2 : 3;
7749     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
7750       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
7751     break;
7752   }
7753   case ARM::tCBZ:
7754   case ARM::tCBNZ: {
7755     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
7756       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7757     break;
7758   }
7759   case ARM::MOVi16:
7760   case ARM::MOVTi16:
7761   case ARM::t2MOVi16:
7762   case ARM::t2MOVTi16:
7763     {
7764     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
7765     // especially when we turn it into a movw and the expression <symbol> does
7766     // not have a :lower16: or :upper16 as part of the expression.  We don't
7767     // want the behavior of silently truncating, which can be unexpected and
7768     // lead to bugs that are difficult to find since this is an easy mistake
7769     // to make.
7770     int i = (Operands[3]->isImm()) ? 3 : 4;
7771     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
7772     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
7773     if (CE) break;
7774     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
7775     if (!E) break;
7776     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
7777     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
7778                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
7779       return Error(
7780           Op.getStartLoc(),
7781           "immediate expression for mov requires :lower16: or :upper16");
7782     break;
7783   }
7784   case ARM::HINT:
7785   case ARM::t2HINT: {
7786     unsigned Imm8 = Inst.getOperand(0).getImm();
7787     unsigned Pred = Inst.getOperand(1).getImm();
7788     // ESB is not predicable (pred must be AL). Without the RAS extension, this
7789     // behaves as any other unallocated hint.
7790     if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
7791       return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
7792                                                "predicable, but condition "
7793                                                "code specified");
7794     if (Imm8 == 0x14 && Pred != ARMCC::AL)
7795       return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
7796                                                "predicable, but condition "
7797                                                "code specified");
7798     break;
7799   }
7800   case ARM::t2BFi:
7801   case ARM::t2BFr:
7802   case ARM::t2BFLi:
7803   case ARM::t2BFLr: {
7804     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
7805         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
7806       return Error(Operands[2]->getStartLoc(),
7807                    "branch location out of range or not a multiple of 2");
7808 
7809     if (Opcode == ARM::t2BFi) {
7810       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
7811         return Error(Operands[3]->getStartLoc(),
7812                      "branch target out of range or not a multiple of 2");
7813     } else if (Opcode == ARM::t2BFLi) {
7814       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
7815         return Error(Operands[3]->getStartLoc(),
7816                      "branch target out of range or not a multiple of 2");
7817     }
7818     break;
7819   }
7820   case ARM::t2BFic: {
7821     if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
7822         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
7823       return Error(Operands[1]->getStartLoc(),
7824                    "branch location out of range or not a multiple of 2");
7825 
7826     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
7827       return Error(Operands[2]->getStartLoc(),
7828                    "branch target out of range or not a multiple of 2");
7829 
7830     assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
7831            "branch location and else branch target should either both be "
7832            "immediates or both labels");
7833 
7834     if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
7835       int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
7836       if (Diff != 4 && Diff != 2)
7837         return Error(
7838             Operands[3]->getStartLoc(),
7839             "else branch target must be 2 or 4 greater than the branch location");
7840     }
7841     break;
7842   }
7843   case ARM::t2CLRM: {
7844     for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
7845       if (Inst.getOperand(i).isReg() &&
7846           !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
7847               Inst.getOperand(i).getReg())) {
7848         return Error(Operands[2]->getStartLoc(),
7849                      "invalid register in register list. Valid registers are "
7850                      "r0-r12, lr/r14 and APSR.");
7851       }
7852     }
7853     break;
7854   }
7855   case ARM::DSB:
7856   case ARM::t2DSB: {
7857 
7858     if (Inst.getNumOperands() < 2)
7859       break;
7860 
7861     unsigned Option = Inst.getOperand(0).getImm();
7862     unsigned Pred = Inst.getOperand(1).getImm();
7863 
7864     // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
7865     if (Option == 0 && Pred != ARMCC::AL)
7866       return Error(Operands[1]->getStartLoc(),
7867                    "instruction 'ssbb' is not predicable, but condition code "
7868                    "specified");
7869     if (Option == 4 && Pred != ARMCC::AL)
7870       return Error(Operands[1]->getStartLoc(),
7871                    "instruction 'pssbb' is not predicable, but condition code "
7872                    "specified");
7873     break;
7874   }
7875   case ARM::VMOVRRS: {
7876     // Source registers must be sequential.
7877     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7878     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7879     if (Sm1 != Sm + 1)
7880       return Error(Operands[5]->getStartLoc(),
7881                    "source operands must be sequential");
7882     break;
7883   }
7884   case ARM::VMOVSRR: {
7885     // Destination registers must be sequential.
7886     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7887     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7888     if (Sm1 != Sm + 1)
7889       return Error(Operands[3]->getStartLoc(),
7890                    "destination operands must be sequential");
7891     break;
7892   }
7893   case ARM::VLDMDIA:
7894   case ARM::VSTMDIA: {
7895     ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
7896     auto &RegList = Op.getRegList();
7897     if (RegList.size() < 1 || RegList.size() > 16)
7898       return Error(Operands[3]->getStartLoc(),
7899                    "list of registers must be at least 1 and at most 16");
7900     break;
7901   }
7902   case ARM::MVE_VQDMULLs32bh:
7903   case ARM::MVE_VQDMULLs32th:
7904   case ARM::MVE_VCMULf32:
7905   case ARM::MVE_VMULLs32bh:
7906   case ARM::MVE_VMULLs32th:
7907   case ARM::MVE_VMULLu32bh:
7908   case ARM::MVE_VMULLu32th: {
7909     if (Operands[3]->getReg() == Operands[4]->getReg()) {
7910       return Error (Operands[3]->getStartLoc(),
7911                     "Qd register and Qn register can't be identical");
7912     }
7913     if (Operands[3]->getReg() == Operands[5]->getReg()) {
7914       return Error (Operands[3]->getStartLoc(),
7915                     "Qd register and Qm register can't be identical");
7916     }
7917     break;
7918   }
7919   case ARM::MVE_VMOV_rr_q: {
7920     if (Operands[4]->getReg() != Operands[6]->getReg())
7921       return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
7922     if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
7923         static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
7924       return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
7925     break;
7926   }
7927   case ARM::MVE_VMOV_q_rr: {
7928     if (Operands[2]->getReg() != Operands[4]->getReg())
7929       return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
7930     if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
7931         static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
7932       return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
7933     break;
7934   }
7935   }
7936 
7937   return false;
7938 }
7939 
7940 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
7941   switch(Opc) {
7942   default: llvm_unreachable("unexpected opcode!");
7943   // VST1LN
7944   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
7945   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
7946   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
7947   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
7948   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
7949   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
7950   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
7951   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
7952   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
7953 
7954   // VST2LN
7955   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
7956   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
7957   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
7958   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
7959   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
7960 
7961   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
7962   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
7963   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
7964   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
7965   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
7966 
7967   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
7968   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
7969   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
7970   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
7971   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
7972 
7973   // VST3LN
7974   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
7975   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
7976   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
7977   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
7978   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
7979   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
7980   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
7981   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
7982   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
7983   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
7984   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
7985   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
7986   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
7987   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
7988   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
7989 
7990   // VST3
7991   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
7992   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
7993   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
7994   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
7995   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
7996   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
7997   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
7998   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
7999   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8000   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8001   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8002   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8003   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
8004   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
8005   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
8006   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
8007   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8008   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8009 
8010   // VST4LN
8011   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8012   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8013   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8014   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8015   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8016   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8017   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8018   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8019   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8020   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8021   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
8022   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8023   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8024   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8025   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8026 
8027   // VST4
8028   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8029   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8030   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8031   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8032   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8033   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8034   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8035   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8036   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8037   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8038   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8039   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8040   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
8041   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8042   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8043   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
8044   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8045   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8046   }
8047 }
8048 
8049 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8050   switch(Opc) {
8051   default: llvm_unreachable("unexpected opcode!");
8052   // VLD1LN
8053   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8054   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8055   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8056   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8057   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8058   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8059   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
8060   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8061   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8062 
8063   // VLD2LN
8064   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8065   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8066   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8067   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8068   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8069   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8070   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8071   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8072   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8073   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8074   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
8075   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8076   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8077   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8078   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8079 
8080   // VLD3DUP
8081   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8082   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8083   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8084   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8085   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8086   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8087   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8088   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8089   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8090   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8091   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8092   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8093   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
8094   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8095   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8096   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8097   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8098   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8099 
8100   // VLD3LN
8101   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8102   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8103   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8104   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8105   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8106   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8107   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8108   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8109   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8110   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8111   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
8112   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8113   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8114   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8115   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8116 
8117   // VLD3
8118   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8119   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8120   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8121   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8122   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8123   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8124   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8125   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8126   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8127   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8128   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8129   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8130   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
8131   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8132   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8133   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
8134   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8135   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8136 
8137   // VLD4LN
8138   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8139   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8140   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8141   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8142   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8143   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8144   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8145   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8146   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8147   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8148   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
8149   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8150   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8151   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8152   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8153 
8154   // VLD4DUP
8155   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8156   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8157   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8158   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8159   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8160   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8161   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8162   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8163   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8164   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8165   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8166   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8167   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
8168   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8169   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8170   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8171   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8172   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8173 
8174   // VLD4
8175   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8176   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8177   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8178   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8179   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8180   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8181   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8182   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8183   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8184   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8185   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8186   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8187   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
8188   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8189   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8190   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
8191   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8192   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8193   }
8194 }
8195 
8196 bool ARMAsmParser::processInstruction(MCInst &Inst,
8197                                       const OperandVector &Operands,
8198                                       MCStreamer &Out) {
8199   // Check if we have the wide qualifier, because if it's present we
8200   // must avoid selecting a 16-bit thumb instruction.
8201   bool HasWideQualifier = false;
8202   for (auto &Op : Operands) {
8203     ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8204     if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8205       HasWideQualifier = true;
8206       break;
8207     }
8208   }
8209 
8210   switch (Inst.getOpcode()) {
8211   case ARM::MVE_VORNIZ0v4i32:
8212   case ARM::MVE_VORNIZ0v8i16:
8213   case ARM::MVE_VORNIZ8v4i32:
8214   case ARM::MVE_VORNIZ8v8i16:
8215   case ARM::MVE_VORNIZ16v4i32:
8216   case ARM::MVE_VORNIZ24v4i32:
8217   case ARM::MVE_VANDIZ0v4i32:
8218   case ARM::MVE_VANDIZ0v8i16:
8219   case ARM::MVE_VANDIZ8v4i32:
8220   case ARM::MVE_VANDIZ8v8i16:
8221   case ARM::MVE_VANDIZ16v4i32:
8222   case ARM::MVE_VANDIZ24v4i32: {
8223     unsigned Opcode;
8224     bool imm16 = false;
8225     switch(Inst.getOpcode()) {
8226     case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break;
8227     case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break;
8228     case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break;
8229     case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break;
8230     case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break;
8231     case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break;
8232     case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break;
8233     case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break;
8234     case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break;
8235     case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break;
8236     case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break;
8237     case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break;
8238     default: llvm_unreachable("unexpected opcode");
8239     }
8240 
8241     MCInst TmpInst;
8242     TmpInst.setOpcode(Opcode);
8243     TmpInst.addOperand(Inst.getOperand(0));
8244     TmpInst.addOperand(Inst.getOperand(1));
8245 
8246     // invert immediate
8247     unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff);
8248     TmpInst.addOperand(MCOperand::createImm(imm));
8249 
8250     TmpInst.addOperand(Inst.getOperand(3));
8251     TmpInst.addOperand(Inst.getOperand(4));
8252     Inst = TmpInst;
8253     return true;
8254   }
8255   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8256   case ARM::LDRT_POST:
8257   case ARM::LDRBT_POST: {
8258     const unsigned Opcode =
8259       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8260                                            : ARM::LDRBT_POST_IMM;
8261     MCInst TmpInst;
8262     TmpInst.setOpcode(Opcode);
8263     TmpInst.addOperand(Inst.getOperand(0));
8264     TmpInst.addOperand(Inst.getOperand(1));
8265     TmpInst.addOperand(Inst.getOperand(1));
8266     TmpInst.addOperand(MCOperand::createReg(0));
8267     TmpInst.addOperand(MCOperand::createImm(0));
8268     TmpInst.addOperand(Inst.getOperand(2));
8269     TmpInst.addOperand(Inst.getOperand(3));
8270     Inst = TmpInst;
8271     return true;
8272   }
8273   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8274   case ARM::STRT_POST:
8275   case ARM::STRBT_POST: {
8276     const unsigned Opcode =
8277       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8278                                            : ARM::STRBT_POST_IMM;
8279     MCInst TmpInst;
8280     TmpInst.setOpcode(Opcode);
8281     TmpInst.addOperand(Inst.getOperand(1));
8282     TmpInst.addOperand(Inst.getOperand(0));
8283     TmpInst.addOperand(Inst.getOperand(1));
8284     TmpInst.addOperand(MCOperand::createReg(0));
8285     TmpInst.addOperand(MCOperand::createImm(0));
8286     TmpInst.addOperand(Inst.getOperand(2));
8287     TmpInst.addOperand(Inst.getOperand(3));
8288     Inst = TmpInst;
8289     return true;
8290   }
8291   // Alias for alternate form of 'ADR Rd, #imm' instruction.
8292   case ARM::ADDri: {
8293     if (Inst.getOperand(1).getReg() != ARM::PC ||
8294         Inst.getOperand(5).getReg() != 0 ||
8295         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8296       return false;
8297     MCInst TmpInst;
8298     TmpInst.setOpcode(ARM::ADR);
8299     TmpInst.addOperand(Inst.getOperand(0));
8300     if (Inst.getOperand(2).isImm()) {
8301       // Immediate (mod_imm) will be in its encoded form, we must unencode it
8302       // before passing it to the ADR instruction.
8303       unsigned Enc = Inst.getOperand(2).getImm();
8304       TmpInst.addOperand(MCOperand::createImm(
8305         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8306     } else {
8307       // Turn PC-relative expression into absolute expression.
8308       // Reading PC provides the start of the current instruction + 8 and
8309       // the transform to adr is biased by that.
8310       MCSymbol *Dot = getContext().createTempSymbol();
8311       Out.EmitLabel(Dot);
8312       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8313       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8314                                                      MCSymbolRefExpr::VK_None,
8315                                                      getContext());
8316       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8317       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8318                                                      getContext());
8319       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8320                                                         getContext());
8321       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8322     }
8323     TmpInst.addOperand(Inst.getOperand(3));
8324     TmpInst.addOperand(Inst.getOperand(4));
8325     Inst = TmpInst;
8326     return true;
8327   }
8328   // Aliases for alternate PC+imm syntax of LDR instructions.
8329   case ARM::t2LDRpcrel:
8330     // Select the narrow version if the immediate will fit.
8331     if (Inst.getOperand(1).getImm() > 0 &&
8332         Inst.getOperand(1).getImm() <= 0xff &&
8333         !HasWideQualifier)
8334       Inst.setOpcode(ARM::tLDRpci);
8335     else
8336       Inst.setOpcode(ARM::t2LDRpci);
8337     return true;
8338   case ARM::t2LDRBpcrel:
8339     Inst.setOpcode(ARM::t2LDRBpci);
8340     return true;
8341   case ARM::t2LDRHpcrel:
8342     Inst.setOpcode(ARM::t2LDRHpci);
8343     return true;
8344   case ARM::t2LDRSBpcrel:
8345     Inst.setOpcode(ARM::t2LDRSBpci);
8346     return true;
8347   case ARM::t2LDRSHpcrel:
8348     Inst.setOpcode(ARM::t2LDRSHpci);
8349     return true;
8350   case ARM::LDRConstPool:
8351   case ARM::tLDRConstPool:
8352   case ARM::t2LDRConstPool: {
8353     // Pseudo instruction ldr rt, =immediate is converted to a
8354     // MOV rt, immediate if immediate is known and representable
8355     // otherwise we create a constant pool entry that we load from.
8356     MCInst TmpInst;
8357     if (Inst.getOpcode() == ARM::LDRConstPool)
8358       TmpInst.setOpcode(ARM::LDRi12);
8359     else if (Inst.getOpcode() == ARM::tLDRConstPool)
8360       TmpInst.setOpcode(ARM::tLDRpci);
8361     else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8362       TmpInst.setOpcode(ARM::t2LDRpci);
8363     const ARMOperand &PoolOperand =
8364       (HasWideQualifier ?
8365        static_cast<ARMOperand &>(*Operands[4]) :
8366        static_cast<ARMOperand &>(*Operands[3]));
8367     const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8368     // If SubExprVal is a constant we may be able to use a MOV
8369     if (isa<MCConstantExpr>(SubExprVal) &&
8370         Inst.getOperand(0).getReg() != ARM::PC &&
8371         Inst.getOperand(0).getReg() != ARM::SP) {
8372       int64_t Value =
8373         (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8374       bool UseMov  = true;
8375       bool MovHasS = true;
8376       if (Inst.getOpcode() == ARM::LDRConstPool) {
8377         // ARM Constant
8378         if (ARM_AM::getSOImmVal(Value) != -1) {
8379           Value = ARM_AM::getSOImmVal(Value);
8380           TmpInst.setOpcode(ARM::MOVi);
8381         }
8382         else if (ARM_AM::getSOImmVal(~Value) != -1) {
8383           Value = ARM_AM::getSOImmVal(~Value);
8384           TmpInst.setOpcode(ARM::MVNi);
8385         }
8386         else if (hasV6T2Ops() &&
8387                  Value >=0 && Value < 65536) {
8388           TmpInst.setOpcode(ARM::MOVi16);
8389           MovHasS = false;
8390         }
8391         else
8392           UseMov = false;
8393       }
8394       else {
8395         // Thumb/Thumb2 Constant
8396         if (hasThumb2() &&
8397             ARM_AM::getT2SOImmVal(Value) != -1)
8398           TmpInst.setOpcode(ARM::t2MOVi);
8399         else if (hasThumb2() &&
8400                  ARM_AM::getT2SOImmVal(~Value) != -1) {
8401           TmpInst.setOpcode(ARM::t2MVNi);
8402           Value = ~Value;
8403         }
8404         else if (hasV8MBaseline() &&
8405                  Value >=0 && Value < 65536) {
8406           TmpInst.setOpcode(ARM::t2MOVi16);
8407           MovHasS = false;
8408         }
8409         else
8410           UseMov = false;
8411       }
8412       if (UseMov) {
8413         TmpInst.addOperand(Inst.getOperand(0));           // Rt
8414         TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
8415         TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8416         TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8417         if (MovHasS)
8418           TmpInst.addOperand(MCOperand::createReg(0));    // S
8419         Inst = TmpInst;
8420         return true;
8421       }
8422     }
8423     // No opportunity to use MOV/MVN create constant pool
8424     const MCExpr *CPLoc =
8425       getTargetStreamer().addConstantPoolEntry(SubExprVal,
8426                                                PoolOperand.getStartLoc());
8427     TmpInst.addOperand(Inst.getOperand(0));           // Rt
8428     TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8429     if (TmpInst.getOpcode() == ARM::LDRi12)
8430       TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
8431     TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8432     TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8433     Inst = TmpInst;
8434     return true;
8435   }
8436   // Handle NEON VST complex aliases.
8437   case ARM::VST1LNdWB_register_Asm_8:
8438   case ARM::VST1LNdWB_register_Asm_16:
8439   case ARM::VST1LNdWB_register_Asm_32: {
8440     MCInst TmpInst;
8441     // Shuffle the operands around so the lane index operand is in the
8442     // right place.
8443     unsigned Spacing;
8444     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8445     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8446     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8447     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8448     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8449     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8450     TmpInst.addOperand(Inst.getOperand(1)); // lane
8451     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8452     TmpInst.addOperand(Inst.getOperand(6));
8453     Inst = TmpInst;
8454     return true;
8455   }
8456 
8457   case ARM::VST2LNdWB_register_Asm_8:
8458   case ARM::VST2LNdWB_register_Asm_16:
8459   case ARM::VST2LNdWB_register_Asm_32:
8460   case ARM::VST2LNqWB_register_Asm_16:
8461   case ARM::VST2LNqWB_register_Asm_32: {
8462     MCInst TmpInst;
8463     // Shuffle the operands around so the lane index operand is in the
8464     // right place.
8465     unsigned Spacing;
8466     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8467     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8468     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8469     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8470     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8471     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8472     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8473                                             Spacing));
8474     TmpInst.addOperand(Inst.getOperand(1)); // lane
8475     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8476     TmpInst.addOperand(Inst.getOperand(6));
8477     Inst = TmpInst;
8478     return true;
8479   }
8480 
8481   case ARM::VST3LNdWB_register_Asm_8:
8482   case ARM::VST3LNdWB_register_Asm_16:
8483   case ARM::VST3LNdWB_register_Asm_32:
8484   case ARM::VST3LNqWB_register_Asm_16:
8485   case ARM::VST3LNqWB_register_Asm_32: {
8486     MCInst TmpInst;
8487     // Shuffle the operands around so the lane index operand is in the
8488     // right place.
8489     unsigned Spacing;
8490     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8491     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8492     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8493     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8494     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8495     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8496     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8497                                             Spacing));
8498     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8499                                             Spacing * 2));
8500     TmpInst.addOperand(Inst.getOperand(1)); // lane
8501     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8502     TmpInst.addOperand(Inst.getOperand(6));
8503     Inst = TmpInst;
8504     return true;
8505   }
8506 
8507   case ARM::VST4LNdWB_register_Asm_8:
8508   case ARM::VST4LNdWB_register_Asm_16:
8509   case ARM::VST4LNdWB_register_Asm_32:
8510   case ARM::VST4LNqWB_register_Asm_16:
8511   case ARM::VST4LNqWB_register_Asm_32: {
8512     MCInst TmpInst;
8513     // Shuffle the operands around so the lane index operand is in the
8514     // right place.
8515     unsigned Spacing;
8516     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8517     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8518     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8519     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8520     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8521     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8522     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8523                                             Spacing));
8524     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8525                                             Spacing * 2));
8526     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8527                                             Spacing * 3));
8528     TmpInst.addOperand(Inst.getOperand(1)); // lane
8529     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8530     TmpInst.addOperand(Inst.getOperand(6));
8531     Inst = TmpInst;
8532     return true;
8533   }
8534 
8535   case ARM::VST1LNdWB_fixed_Asm_8:
8536   case ARM::VST1LNdWB_fixed_Asm_16:
8537   case ARM::VST1LNdWB_fixed_Asm_32: {
8538     MCInst TmpInst;
8539     // Shuffle the operands around so the lane index operand is in the
8540     // right place.
8541     unsigned Spacing;
8542     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8543     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8544     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8545     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8546     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8547     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8548     TmpInst.addOperand(Inst.getOperand(1)); // lane
8549     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8550     TmpInst.addOperand(Inst.getOperand(5));
8551     Inst = TmpInst;
8552     return true;
8553   }
8554 
8555   case ARM::VST2LNdWB_fixed_Asm_8:
8556   case ARM::VST2LNdWB_fixed_Asm_16:
8557   case ARM::VST2LNdWB_fixed_Asm_32:
8558   case ARM::VST2LNqWB_fixed_Asm_16:
8559   case ARM::VST2LNqWB_fixed_Asm_32: {
8560     MCInst TmpInst;
8561     // Shuffle the operands around so the lane index operand is in the
8562     // right place.
8563     unsigned Spacing;
8564     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8565     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8566     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8567     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8568     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8569     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8570     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8571                                             Spacing));
8572     TmpInst.addOperand(Inst.getOperand(1)); // lane
8573     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8574     TmpInst.addOperand(Inst.getOperand(5));
8575     Inst = TmpInst;
8576     return true;
8577   }
8578 
8579   case ARM::VST3LNdWB_fixed_Asm_8:
8580   case ARM::VST3LNdWB_fixed_Asm_16:
8581   case ARM::VST3LNdWB_fixed_Asm_32:
8582   case ARM::VST3LNqWB_fixed_Asm_16:
8583   case ARM::VST3LNqWB_fixed_Asm_32: {
8584     MCInst TmpInst;
8585     // Shuffle the operands around so the lane index operand is in the
8586     // right place.
8587     unsigned Spacing;
8588     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8589     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8590     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8591     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8592     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8593     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8594     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8595                                             Spacing));
8596     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8597                                             Spacing * 2));
8598     TmpInst.addOperand(Inst.getOperand(1)); // lane
8599     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8600     TmpInst.addOperand(Inst.getOperand(5));
8601     Inst = TmpInst;
8602     return true;
8603   }
8604 
8605   case ARM::VST4LNdWB_fixed_Asm_8:
8606   case ARM::VST4LNdWB_fixed_Asm_16:
8607   case ARM::VST4LNdWB_fixed_Asm_32:
8608   case ARM::VST4LNqWB_fixed_Asm_16:
8609   case ARM::VST4LNqWB_fixed_Asm_32: {
8610     MCInst TmpInst;
8611     // Shuffle the operands around so the lane index operand is in the
8612     // right place.
8613     unsigned Spacing;
8614     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8615     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8616     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8617     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8618     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8619     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8620     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8621                                             Spacing));
8622     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8623                                             Spacing * 2));
8624     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8625                                             Spacing * 3));
8626     TmpInst.addOperand(Inst.getOperand(1)); // lane
8627     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8628     TmpInst.addOperand(Inst.getOperand(5));
8629     Inst = TmpInst;
8630     return true;
8631   }
8632 
8633   case ARM::VST1LNdAsm_8:
8634   case ARM::VST1LNdAsm_16:
8635   case ARM::VST1LNdAsm_32: {
8636     MCInst TmpInst;
8637     // Shuffle the operands around so the lane index operand is in the
8638     // right place.
8639     unsigned Spacing;
8640     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8641     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8642     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8643     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8644     TmpInst.addOperand(Inst.getOperand(1)); // lane
8645     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8646     TmpInst.addOperand(Inst.getOperand(5));
8647     Inst = TmpInst;
8648     return true;
8649   }
8650 
8651   case ARM::VST2LNdAsm_8:
8652   case ARM::VST2LNdAsm_16:
8653   case ARM::VST2LNdAsm_32:
8654   case ARM::VST2LNqAsm_16:
8655   case ARM::VST2LNqAsm_32: {
8656     MCInst TmpInst;
8657     // Shuffle the operands around so the lane index operand is in the
8658     // right place.
8659     unsigned Spacing;
8660     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8661     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8662     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8663     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8664     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8665                                             Spacing));
8666     TmpInst.addOperand(Inst.getOperand(1)); // lane
8667     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8668     TmpInst.addOperand(Inst.getOperand(5));
8669     Inst = TmpInst;
8670     return true;
8671   }
8672 
8673   case ARM::VST3LNdAsm_8:
8674   case ARM::VST3LNdAsm_16:
8675   case ARM::VST3LNdAsm_32:
8676   case ARM::VST3LNqAsm_16:
8677   case ARM::VST3LNqAsm_32: {
8678     MCInst TmpInst;
8679     // Shuffle the operands around so the lane index operand is in the
8680     // right place.
8681     unsigned Spacing;
8682     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8683     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8684     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8685     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8686     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8687                                             Spacing));
8688     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8689                                             Spacing * 2));
8690     TmpInst.addOperand(Inst.getOperand(1)); // lane
8691     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8692     TmpInst.addOperand(Inst.getOperand(5));
8693     Inst = TmpInst;
8694     return true;
8695   }
8696 
8697   case ARM::VST4LNdAsm_8:
8698   case ARM::VST4LNdAsm_16:
8699   case ARM::VST4LNdAsm_32:
8700   case ARM::VST4LNqAsm_16:
8701   case ARM::VST4LNqAsm_32: {
8702     MCInst TmpInst;
8703     // Shuffle the operands around so the lane index operand is in the
8704     // right place.
8705     unsigned Spacing;
8706     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8707     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8708     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8709     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8710     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8711                                             Spacing));
8712     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8713                                             Spacing * 2));
8714     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8715                                             Spacing * 3));
8716     TmpInst.addOperand(Inst.getOperand(1)); // lane
8717     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8718     TmpInst.addOperand(Inst.getOperand(5));
8719     Inst = TmpInst;
8720     return true;
8721   }
8722 
8723   // Handle NEON VLD complex aliases.
8724   case ARM::VLD1LNdWB_register_Asm_8:
8725   case ARM::VLD1LNdWB_register_Asm_16:
8726   case ARM::VLD1LNdWB_register_Asm_32: {
8727     MCInst TmpInst;
8728     // Shuffle the operands around so the lane index operand is in the
8729     // right place.
8730     unsigned Spacing;
8731     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8732     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8733     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8734     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8735     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8736     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8737     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8738     TmpInst.addOperand(Inst.getOperand(1)); // lane
8739     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8740     TmpInst.addOperand(Inst.getOperand(6));
8741     Inst = TmpInst;
8742     return true;
8743   }
8744 
8745   case ARM::VLD2LNdWB_register_Asm_8:
8746   case ARM::VLD2LNdWB_register_Asm_16:
8747   case ARM::VLD2LNdWB_register_Asm_32:
8748   case ARM::VLD2LNqWB_register_Asm_16:
8749   case ARM::VLD2LNqWB_register_Asm_32: {
8750     MCInst TmpInst;
8751     // Shuffle the operands around so the lane index operand is in the
8752     // right place.
8753     unsigned Spacing;
8754     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8755     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8756     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8757                                             Spacing));
8758     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8759     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8760     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8761     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8762     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8763     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8764                                             Spacing));
8765     TmpInst.addOperand(Inst.getOperand(1)); // lane
8766     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8767     TmpInst.addOperand(Inst.getOperand(6));
8768     Inst = TmpInst;
8769     return true;
8770   }
8771 
8772   case ARM::VLD3LNdWB_register_Asm_8:
8773   case ARM::VLD3LNdWB_register_Asm_16:
8774   case ARM::VLD3LNdWB_register_Asm_32:
8775   case ARM::VLD3LNqWB_register_Asm_16:
8776   case ARM::VLD3LNqWB_register_Asm_32: {
8777     MCInst TmpInst;
8778     // Shuffle the operands around so the lane index operand is in the
8779     // right place.
8780     unsigned Spacing;
8781     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8782     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8783     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8784                                             Spacing));
8785     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8786                                             Spacing * 2));
8787     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8788     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8789     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8790     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8791     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8792     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8793                                             Spacing));
8794     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8795                                             Spacing * 2));
8796     TmpInst.addOperand(Inst.getOperand(1)); // lane
8797     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8798     TmpInst.addOperand(Inst.getOperand(6));
8799     Inst = TmpInst;
8800     return true;
8801   }
8802 
8803   case ARM::VLD4LNdWB_register_Asm_8:
8804   case ARM::VLD4LNdWB_register_Asm_16:
8805   case ARM::VLD4LNdWB_register_Asm_32:
8806   case ARM::VLD4LNqWB_register_Asm_16:
8807   case ARM::VLD4LNqWB_register_Asm_32: {
8808     MCInst TmpInst;
8809     // Shuffle the operands around so the lane index operand is in the
8810     // right place.
8811     unsigned Spacing;
8812     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8813     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8814     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8815                                             Spacing));
8816     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8817                                             Spacing * 2));
8818     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8819                                             Spacing * 3));
8820     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8821     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8822     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8823     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8824     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8825     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8826                                             Spacing));
8827     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8828                                             Spacing * 2));
8829     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8830                                             Spacing * 3));
8831     TmpInst.addOperand(Inst.getOperand(1)); // lane
8832     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8833     TmpInst.addOperand(Inst.getOperand(6));
8834     Inst = TmpInst;
8835     return true;
8836   }
8837 
8838   case ARM::VLD1LNdWB_fixed_Asm_8:
8839   case ARM::VLD1LNdWB_fixed_Asm_16:
8840   case ARM::VLD1LNdWB_fixed_Asm_32: {
8841     MCInst TmpInst;
8842     // Shuffle the operands around so the lane index operand is in the
8843     // right place.
8844     unsigned Spacing;
8845     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8846     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8847     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8848     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8849     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8850     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8851     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8852     TmpInst.addOperand(Inst.getOperand(1)); // lane
8853     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8854     TmpInst.addOperand(Inst.getOperand(5));
8855     Inst = TmpInst;
8856     return true;
8857   }
8858 
8859   case ARM::VLD2LNdWB_fixed_Asm_8:
8860   case ARM::VLD2LNdWB_fixed_Asm_16:
8861   case ARM::VLD2LNdWB_fixed_Asm_32:
8862   case ARM::VLD2LNqWB_fixed_Asm_16:
8863   case ARM::VLD2LNqWB_fixed_Asm_32: {
8864     MCInst TmpInst;
8865     // Shuffle the operands around so the lane index operand is in the
8866     // right place.
8867     unsigned Spacing;
8868     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8869     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8870     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8871                                             Spacing));
8872     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8873     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8874     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8875     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8876     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8877     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8878                                             Spacing));
8879     TmpInst.addOperand(Inst.getOperand(1)); // lane
8880     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8881     TmpInst.addOperand(Inst.getOperand(5));
8882     Inst = TmpInst;
8883     return true;
8884   }
8885 
8886   case ARM::VLD3LNdWB_fixed_Asm_8:
8887   case ARM::VLD3LNdWB_fixed_Asm_16:
8888   case ARM::VLD3LNdWB_fixed_Asm_32:
8889   case ARM::VLD3LNqWB_fixed_Asm_16:
8890   case ARM::VLD3LNqWB_fixed_Asm_32: {
8891     MCInst TmpInst;
8892     // Shuffle the operands around so the lane index operand is in the
8893     // right place.
8894     unsigned Spacing;
8895     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8896     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8897     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8898                                             Spacing));
8899     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8900                                             Spacing * 2));
8901     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8902     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8903     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8904     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8905     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8906     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8907                                             Spacing));
8908     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8909                                             Spacing * 2));
8910     TmpInst.addOperand(Inst.getOperand(1)); // lane
8911     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8912     TmpInst.addOperand(Inst.getOperand(5));
8913     Inst = TmpInst;
8914     return true;
8915   }
8916 
8917   case ARM::VLD4LNdWB_fixed_Asm_8:
8918   case ARM::VLD4LNdWB_fixed_Asm_16:
8919   case ARM::VLD4LNdWB_fixed_Asm_32:
8920   case ARM::VLD4LNqWB_fixed_Asm_16:
8921   case ARM::VLD4LNqWB_fixed_Asm_32: {
8922     MCInst TmpInst;
8923     // Shuffle the operands around so the lane index operand is in the
8924     // right place.
8925     unsigned Spacing;
8926     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8927     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8928     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8929                                             Spacing));
8930     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8931                                             Spacing * 2));
8932     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8933                                             Spacing * 3));
8934     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8935     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8936     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8937     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8938     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8939     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8940                                             Spacing));
8941     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8942                                             Spacing * 2));
8943     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8944                                             Spacing * 3));
8945     TmpInst.addOperand(Inst.getOperand(1)); // lane
8946     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8947     TmpInst.addOperand(Inst.getOperand(5));
8948     Inst = TmpInst;
8949     return true;
8950   }
8951 
8952   case ARM::VLD1LNdAsm_8:
8953   case ARM::VLD1LNdAsm_16:
8954   case ARM::VLD1LNdAsm_32: {
8955     MCInst TmpInst;
8956     // Shuffle the operands around so the lane index operand is in the
8957     // right place.
8958     unsigned Spacing;
8959     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8960     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8961     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8962     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8963     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8964     TmpInst.addOperand(Inst.getOperand(1)); // lane
8965     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8966     TmpInst.addOperand(Inst.getOperand(5));
8967     Inst = TmpInst;
8968     return true;
8969   }
8970 
8971   case ARM::VLD2LNdAsm_8:
8972   case ARM::VLD2LNdAsm_16:
8973   case ARM::VLD2LNdAsm_32:
8974   case ARM::VLD2LNqAsm_16:
8975   case ARM::VLD2LNqAsm_32: {
8976     MCInst TmpInst;
8977     // Shuffle the operands around so the lane index operand is in the
8978     // right place.
8979     unsigned Spacing;
8980     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8981     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8982     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8983                                             Spacing));
8984     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8985     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8986     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8987     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8988                                             Spacing));
8989     TmpInst.addOperand(Inst.getOperand(1)); // lane
8990     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8991     TmpInst.addOperand(Inst.getOperand(5));
8992     Inst = TmpInst;
8993     return true;
8994   }
8995 
8996   case ARM::VLD3LNdAsm_8:
8997   case ARM::VLD3LNdAsm_16:
8998   case ARM::VLD3LNdAsm_32:
8999   case ARM::VLD3LNqAsm_16:
9000   case ARM::VLD3LNqAsm_32: {
9001     MCInst TmpInst;
9002     // Shuffle the operands around so the lane index operand is in the
9003     // right place.
9004     unsigned Spacing;
9005     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9006     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9007     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9008                                             Spacing));
9009     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9010                                             Spacing * 2));
9011     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9012     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9013     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9014     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9015                                             Spacing));
9016     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9017                                             Spacing * 2));
9018     TmpInst.addOperand(Inst.getOperand(1)); // lane
9019     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9020     TmpInst.addOperand(Inst.getOperand(5));
9021     Inst = TmpInst;
9022     return true;
9023   }
9024 
9025   case ARM::VLD4LNdAsm_8:
9026   case ARM::VLD4LNdAsm_16:
9027   case ARM::VLD4LNdAsm_32:
9028   case ARM::VLD4LNqAsm_16:
9029   case ARM::VLD4LNqAsm_32: {
9030     MCInst TmpInst;
9031     // Shuffle the operands around so the lane index operand is in the
9032     // right place.
9033     unsigned Spacing;
9034     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9035     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9036     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9037                                             Spacing));
9038     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9039                                             Spacing * 2));
9040     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9041                                             Spacing * 3));
9042     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9043     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9044     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9045     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9046                                             Spacing));
9047     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9048                                             Spacing * 2));
9049     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9050                                             Spacing * 3));
9051     TmpInst.addOperand(Inst.getOperand(1)); // lane
9052     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9053     TmpInst.addOperand(Inst.getOperand(5));
9054     Inst = TmpInst;
9055     return true;
9056   }
9057 
9058   // VLD3DUP single 3-element structure to all lanes instructions.
9059   case ARM::VLD3DUPdAsm_8:
9060   case ARM::VLD3DUPdAsm_16:
9061   case ARM::VLD3DUPdAsm_32:
9062   case ARM::VLD3DUPqAsm_8:
9063   case ARM::VLD3DUPqAsm_16:
9064   case ARM::VLD3DUPqAsm_32: {
9065     MCInst TmpInst;
9066     unsigned Spacing;
9067     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9068     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9069     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9070                                             Spacing));
9071     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9072                                             Spacing * 2));
9073     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9074     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9075     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9076     TmpInst.addOperand(Inst.getOperand(4));
9077     Inst = TmpInst;
9078     return true;
9079   }
9080 
9081   case ARM::VLD3DUPdWB_fixed_Asm_8:
9082   case ARM::VLD3DUPdWB_fixed_Asm_16:
9083   case ARM::VLD3DUPdWB_fixed_Asm_32:
9084   case ARM::VLD3DUPqWB_fixed_Asm_8:
9085   case ARM::VLD3DUPqWB_fixed_Asm_16:
9086   case ARM::VLD3DUPqWB_fixed_Asm_32: {
9087     MCInst TmpInst;
9088     unsigned Spacing;
9089     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9090     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9091     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9092                                             Spacing));
9093     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9094                                             Spacing * 2));
9095     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9096     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9097     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9098     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9099     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9100     TmpInst.addOperand(Inst.getOperand(4));
9101     Inst = TmpInst;
9102     return true;
9103   }
9104 
9105   case ARM::VLD3DUPdWB_register_Asm_8:
9106   case ARM::VLD3DUPdWB_register_Asm_16:
9107   case ARM::VLD3DUPdWB_register_Asm_32:
9108   case ARM::VLD3DUPqWB_register_Asm_8:
9109   case ARM::VLD3DUPqWB_register_Asm_16:
9110   case ARM::VLD3DUPqWB_register_Asm_32: {
9111     MCInst TmpInst;
9112     unsigned Spacing;
9113     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9114     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9115     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9116                                             Spacing));
9117     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9118                                             Spacing * 2));
9119     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9120     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9121     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9122     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9123     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9124     TmpInst.addOperand(Inst.getOperand(5));
9125     Inst = TmpInst;
9126     return true;
9127   }
9128 
9129   // VLD3 multiple 3-element structure instructions.
9130   case ARM::VLD3dAsm_8:
9131   case ARM::VLD3dAsm_16:
9132   case ARM::VLD3dAsm_32:
9133   case ARM::VLD3qAsm_8:
9134   case ARM::VLD3qAsm_16:
9135   case ARM::VLD3qAsm_32: {
9136     MCInst TmpInst;
9137     unsigned Spacing;
9138     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9139     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9140     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9141                                             Spacing));
9142     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9143                                             Spacing * 2));
9144     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9145     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9146     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9147     TmpInst.addOperand(Inst.getOperand(4));
9148     Inst = TmpInst;
9149     return true;
9150   }
9151 
9152   case ARM::VLD3dWB_fixed_Asm_8:
9153   case ARM::VLD3dWB_fixed_Asm_16:
9154   case ARM::VLD3dWB_fixed_Asm_32:
9155   case ARM::VLD3qWB_fixed_Asm_8:
9156   case ARM::VLD3qWB_fixed_Asm_16:
9157   case ARM::VLD3qWB_fixed_Asm_32: {
9158     MCInst TmpInst;
9159     unsigned Spacing;
9160     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9161     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9162     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9163                                             Spacing));
9164     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9165                                             Spacing * 2));
9166     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9167     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9168     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9169     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9170     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9171     TmpInst.addOperand(Inst.getOperand(4));
9172     Inst = TmpInst;
9173     return true;
9174   }
9175 
9176   case ARM::VLD3dWB_register_Asm_8:
9177   case ARM::VLD3dWB_register_Asm_16:
9178   case ARM::VLD3dWB_register_Asm_32:
9179   case ARM::VLD3qWB_register_Asm_8:
9180   case ARM::VLD3qWB_register_Asm_16:
9181   case ARM::VLD3qWB_register_Asm_32: {
9182     MCInst TmpInst;
9183     unsigned Spacing;
9184     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9185     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9186     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9187                                             Spacing));
9188     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9189                                             Spacing * 2));
9190     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9191     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9192     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9193     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9194     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9195     TmpInst.addOperand(Inst.getOperand(5));
9196     Inst = TmpInst;
9197     return true;
9198   }
9199 
9200   // VLD4DUP single 3-element structure to all lanes instructions.
9201   case ARM::VLD4DUPdAsm_8:
9202   case ARM::VLD4DUPdAsm_16:
9203   case ARM::VLD4DUPdAsm_32:
9204   case ARM::VLD4DUPqAsm_8:
9205   case ARM::VLD4DUPqAsm_16:
9206   case ARM::VLD4DUPqAsm_32: {
9207     MCInst TmpInst;
9208     unsigned Spacing;
9209     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9210     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9211     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9212                                             Spacing));
9213     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9214                                             Spacing * 2));
9215     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9216                                             Spacing * 3));
9217     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9218     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9219     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9220     TmpInst.addOperand(Inst.getOperand(4));
9221     Inst = TmpInst;
9222     return true;
9223   }
9224 
9225   case ARM::VLD4DUPdWB_fixed_Asm_8:
9226   case ARM::VLD4DUPdWB_fixed_Asm_16:
9227   case ARM::VLD4DUPdWB_fixed_Asm_32:
9228   case ARM::VLD4DUPqWB_fixed_Asm_8:
9229   case ARM::VLD4DUPqWB_fixed_Asm_16:
9230   case ARM::VLD4DUPqWB_fixed_Asm_32: {
9231     MCInst TmpInst;
9232     unsigned Spacing;
9233     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9234     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9235     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9236                                             Spacing));
9237     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9238                                             Spacing * 2));
9239     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9240                                             Spacing * 3));
9241     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9242     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9243     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9244     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9245     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9246     TmpInst.addOperand(Inst.getOperand(4));
9247     Inst = TmpInst;
9248     return true;
9249   }
9250 
9251   case ARM::VLD4DUPdWB_register_Asm_8:
9252   case ARM::VLD4DUPdWB_register_Asm_16:
9253   case ARM::VLD4DUPdWB_register_Asm_32:
9254   case ARM::VLD4DUPqWB_register_Asm_8:
9255   case ARM::VLD4DUPqWB_register_Asm_16:
9256   case ARM::VLD4DUPqWB_register_Asm_32: {
9257     MCInst TmpInst;
9258     unsigned Spacing;
9259     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9260     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9261     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9262                                             Spacing));
9263     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9264                                             Spacing * 2));
9265     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9266                                             Spacing * 3));
9267     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9268     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9269     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9270     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9271     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9272     TmpInst.addOperand(Inst.getOperand(5));
9273     Inst = TmpInst;
9274     return true;
9275   }
9276 
9277   // VLD4 multiple 4-element structure instructions.
9278   case ARM::VLD4dAsm_8:
9279   case ARM::VLD4dAsm_16:
9280   case ARM::VLD4dAsm_32:
9281   case ARM::VLD4qAsm_8:
9282   case ARM::VLD4qAsm_16:
9283   case ARM::VLD4qAsm_32: {
9284     MCInst TmpInst;
9285     unsigned Spacing;
9286     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9287     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9288     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9289                                             Spacing));
9290     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9291                                             Spacing * 2));
9292     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9293                                             Spacing * 3));
9294     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9295     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9296     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9297     TmpInst.addOperand(Inst.getOperand(4));
9298     Inst = TmpInst;
9299     return true;
9300   }
9301 
9302   case ARM::VLD4dWB_fixed_Asm_8:
9303   case ARM::VLD4dWB_fixed_Asm_16:
9304   case ARM::VLD4dWB_fixed_Asm_32:
9305   case ARM::VLD4qWB_fixed_Asm_8:
9306   case ARM::VLD4qWB_fixed_Asm_16:
9307   case ARM::VLD4qWB_fixed_Asm_32: {
9308     MCInst TmpInst;
9309     unsigned Spacing;
9310     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9311     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9312     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9313                                             Spacing));
9314     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9315                                             Spacing * 2));
9316     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9317                                             Spacing * 3));
9318     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9319     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9320     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9321     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9322     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9323     TmpInst.addOperand(Inst.getOperand(4));
9324     Inst = TmpInst;
9325     return true;
9326   }
9327 
9328   case ARM::VLD4dWB_register_Asm_8:
9329   case ARM::VLD4dWB_register_Asm_16:
9330   case ARM::VLD4dWB_register_Asm_32:
9331   case ARM::VLD4qWB_register_Asm_8:
9332   case ARM::VLD4qWB_register_Asm_16:
9333   case ARM::VLD4qWB_register_Asm_32: {
9334     MCInst TmpInst;
9335     unsigned Spacing;
9336     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9337     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9338     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9339                                             Spacing));
9340     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9341                                             Spacing * 2));
9342     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9343                                             Spacing * 3));
9344     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9345     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9346     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9347     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9348     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9349     TmpInst.addOperand(Inst.getOperand(5));
9350     Inst = TmpInst;
9351     return true;
9352   }
9353 
9354   // VST3 multiple 3-element structure instructions.
9355   case ARM::VST3dAsm_8:
9356   case ARM::VST3dAsm_16:
9357   case ARM::VST3dAsm_32:
9358   case ARM::VST3qAsm_8:
9359   case ARM::VST3qAsm_16:
9360   case ARM::VST3qAsm_32: {
9361     MCInst TmpInst;
9362     unsigned Spacing;
9363     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9364     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9365     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9366     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9367     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9368                                             Spacing));
9369     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9370                                             Spacing * 2));
9371     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9372     TmpInst.addOperand(Inst.getOperand(4));
9373     Inst = TmpInst;
9374     return true;
9375   }
9376 
9377   case ARM::VST3dWB_fixed_Asm_8:
9378   case ARM::VST3dWB_fixed_Asm_16:
9379   case ARM::VST3dWB_fixed_Asm_32:
9380   case ARM::VST3qWB_fixed_Asm_8:
9381   case ARM::VST3qWB_fixed_Asm_16:
9382   case ARM::VST3qWB_fixed_Asm_32: {
9383     MCInst TmpInst;
9384     unsigned Spacing;
9385     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9386     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9387     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9388     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9389     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9390     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9391     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9392                                             Spacing));
9393     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9394                                             Spacing * 2));
9395     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9396     TmpInst.addOperand(Inst.getOperand(4));
9397     Inst = TmpInst;
9398     return true;
9399   }
9400 
9401   case ARM::VST3dWB_register_Asm_8:
9402   case ARM::VST3dWB_register_Asm_16:
9403   case ARM::VST3dWB_register_Asm_32:
9404   case ARM::VST3qWB_register_Asm_8:
9405   case ARM::VST3qWB_register_Asm_16:
9406   case ARM::VST3qWB_register_Asm_32: {
9407     MCInst TmpInst;
9408     unsigned Spacing;
9409     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9410     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9411     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9412     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9413     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9414     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9415     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9416                                             Spacing));
9417     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9418                                             Spacing * 2));
9419     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9420     TmpInst.addOperand(Inst.getOperand(5));
9421     Inst = TmpInst;
9422     return true;
9423   }
9424 
9425   // VST4 multiple 3-element structure instructions.
9426   case ARM::VST4dAsm_8:
9427   case ARM::VST4dAsm_16:
9428   case ARM::VST4dAsm_32:
9429   case ARM::VST4qAsm_8:
9430   case ARM::VST4qAsm_16:
9431   case ARM::VST4qAsm_32: {
9432     MCInst TmpInst;
9433     unsigned Spacing;
9434     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9435     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9436     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9437     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9438     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9439                                             Spacing));
9440     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9441                                             Spacing * 2));
9442     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9443                                             Spacing * 3));
9444     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9445     TmpInst.addOperand(Inst.getOperand(4));
9446     Inst = TmpInst;
9447     return true;
9448   }
9449 
9450   case ARM::VST4dWB_fixed_Asm_8:
9451   case ARM::VST4dWB_fixed_Asm_16:
9452   case ARM::VST4dWB_fixed_Asm_32:
9453   case ARM::VST4qWB_fixed_Asm_8:
9454   case ARM::VST4qWB_fixed_Asm_16:
9455   case ARM::VST4qWB_fixed_Asm_32: {
9456     MCInst TmpInst;
9457     unsigned Spacing;
9458     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9459     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9460     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9461     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9462     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9463     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9464     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9465                                             Spacing));
9466     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9467                                             Spacing * 2));
9468     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9469                                             Spacing * 3));
9470     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9471     TmpInst.addOperand(Inst.getOperand(4));
9472     Inst = TmpInst;
9473     return true;
9474   }
9475 
9476   case ARM::VST4dWB_register_Asm_8:
9477   case ARM::VST4dWB_register_Asm_16:
9478   case ARM::VST4dWB_register_Asm_32:
9479   case ARM::VST4qWB_register_Asm_8:
9480   case ARM::VST4qWB_register_Asm_16:
9481   case ARM::VST4qWB_register_Asm_32: {
9482     MCInst TmpInst;
9483     unsigned Spacing;
9484     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9485     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9486     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9487     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9488     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9489     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9490     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9491                                             Spacing));
9492     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9493                                             Spacing * 2));
9494     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9495                                             Spacing * 3));
9496     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9497     TmpInst.addOperand(Inst.getOperand(5));
9498     Inst = TmpInst;
9499     return true;
9500   }
9501 
9502   // Handle encoding choice for the shift-immediate instructions.
9503   case ARM::t2LSLri:
9504   case ARM::t2LSRri:
9505   case ARM::t2ASRri:
9506     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9507         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9508         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9509         !HasWideQualifier) {
9510       unsigned NewOpc;
9511       switch (Inst.getOpcode()) {
9512       default: llvm_unreachable("unexpected opcode");
9513       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
9514       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
9515       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
9516       }
9517       // The Thumb1 operands aren't in the same order. Awesome, eh?
9518       MCInst TmpInst;
9519       TmpInst.setOpcode(NewOpc);
9520       TmpInst.addOperand(Inst.getOperand(0));
9521       TmpInst.addOperand(Inst.getOperand(5));
9522       TmpInst.addOperand(Inst.getOperand(1));
9523       TmpInst.addOperand(Inst.getOperand(2));
9524       TmpInst.addOperand(Inst.getOperand(3));
9525       TmpInst.addOperand(Inst.getOperand(4));
9526       Inst = TmpInst;
9527       return true;
9528     }
9529     return false;
9530 
9531   // Handle the Thumb2 mode MOV complex aliases.
9532   case ARM::t2MOVsr:
9533   case ARM::t2MOVSsr: {
9534     // Which instruction to expand to depends on the CCOut operand and
9535     // whether we're in an IT block if the register operands are low
9536     // registers.
9537     bool isNarrow = false;
9538     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9539         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9540         isARMLowRegister(Inst.getOperand(2).getReg()) &&
9541         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
9542         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
9543         !HasWideQualifier)
9544       isNarrow = true;
9545     MCInst TmpInst;
9546     unsigned newOpc;
9547     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
9548     default: llvm_unreachable("unexpected opcode!");
9549     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
9550     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
9551     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
9552     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
9553     }
9554     TmpInst.setOpcode(newOpc);
9555     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9556     if (isNarrow)
9557       TmpInst.addOperand(MCOperand::createReg(
9558           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
9559     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9560     TmpInst.addOperand(Inst.getOperand(2)); // Rm
9561     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9562     TmpInst.addOperand(Inst.getOperand(5));
9563     if (!isNarrow)
9564       TmpInst.addOperand(MCOperand::createReg(
9565           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
9566     Inst = TmpInst;
9567     return true;
9568   }
9569   case ARM::t2MOVsi:
9570   case ARM::t2MOVSsi: {
9571     // Which instruction to expand to depends on the CCOut operand and
9572     // whether we're in an IT block if the register operands are low
9573     // registers.
9574     bool isNarrow = false;
9575     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9576         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9577         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
9578         !HasWideQualifier)
9579       isNarrow = true;
9580     MCInst TmpInst;
9581     unsigned newOpc;
9582     unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
9583     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
9584     bool isMov = false;
9585     // MOV rd, rm, LSL #0 is actually a MOV instruction
9586     if (Shift == ARM_AM::lsl && Amount == 0) {
9587       isMov = true;
9588       // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
9589       // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
9590       // unpredictable in an IT block so the 32-bit encoding T3 has to be used
9591       // instead.
9592       if (inITBlock()) {
9593         isNarrow = false;
9594       }
9595       newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
9596     } else {
9597       switch(Shift) {
9598       default: llvm_unreachable("unexpected opcode!");
9599       case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
9600       case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
9601       case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
9602       case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
9603       case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
9604       }
9605     }
9606     if (Amount == 32) Amount = 0;
9607     TmpInst.setOpcode(newOpc);
9608     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9609     if (isNarrow && !isMov)
9610       TmpInst.addOperand(MCOperand::createReg(
9611           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
9612     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9613     if (newOpc != ARM::t2RRX && !isMov)
9614       TmpInst.addOperand(MCOperand::createImm(Amount));
9615     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9616     TmpInst.addOperand(Inst.getOperand(4));
9617     if (!isNarrow)
9618       TmpInst.addOperand(MCOperand::createReg(
9619           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
9620     Inst = TmpInst;
9621     return true;
9622   }
9623   // Handle the ARM mode MOV complex aliases.
9624   case ARM::ASRr:
9625   case ARM::LSRr:
9626   case ARM::LSLr:
9627   case ARM::RORr: {
9628     ARM_AM::ShiftOpc ShiftTy;
9629     switch(Inst.getOpcode()) {
9630     default: llvm_unreachable("unexpected opcode!");
9631     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
9632     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
9633     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
9634     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
9635     }
9636     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
9637     MCInst TmpInst;
9638     TmpInst.setOpcode(ARM::MOVsr);
9639     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9640     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9641     TmpInst.addOperand(Inst.getOperand(2)); // Rm
9642     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9643     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9644     TmpInst.addOperand(Inst.getOperand(4));
9645     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
9646     Inst = TmpInst;
9647     return true;
9648   }
9649   case ARM::ASRi:
9650   case ARM::LSRi:
9651   case ARM::LSLi:
9652   case ARM::RORi: {
9653     ARM_AM::ShiftOpc ShiftTy;
9654     switch(Inst.getOpcode()) {
9655     default: llvm_unreachable("unexpected opcode!");
9656     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
9657     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
9658     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
9659     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
9660     }
9661     // A shift by zero is a plain MOVr, not a MOVsi.
9662     unsigned Amt = Inst.getOperand(2).getImm();
9663     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
9664     // A shift by 32 should be encoded as 0 when permitted
9665     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
9666       Amt = 0;
9667     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
9668     MCInst TmpInst;
9669     TmpInst.setOpcode(Opc);
9670     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9671     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9672     if (Opc == ARM::MOVsi)
9673       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9674     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9675     TmpInst.addOperand(Inst.getOperand(4));
9676     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
9677     Inst = TmpInst;
9678     return true;
9679   }
9680   case ARM::RRXi: {
9681     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
9682     MCInst TmpInst;
9683     TmpInst.setOpcode(ARM::MOVsi);
9684     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9685     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9686     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9687     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9688     TmpInst.addOperand(Inst.getOperand(3));
9689     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
9690     Inst = TmpInst;
9691     return true;
9692   }
9693   case ARM::t2LDMIA_UPD: {
9694     // If this is a load of a single register, then we should use
9695     // a post-indexed LDR instruction instead, per the ARM ARM.
9696     if (Inst.getNumOperands() != 5)
9697       return false;
9698     MCInst TmpInst;
9699     TmpInst.setOpcode(ARM::t2LDR_POST);
9700     TmpInst.addOperand(Inst.getOperand(4)); // Rt
9701     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9702     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9703     TmpInst.addOperand(MCOperand::createImm(4));
9704     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9705     TmpInst.addOperand(Inst.getOperand(3));
9706     Inst = TmpInst;
9707     return true;
9708   }
9709   case ARM::t2STMDB_UPD: {
9710     // If this is a store of a single register, then we should use
9711     // a pre-indexed STR instruction instead, per the ARM ARM.
9712     if (Inst.getNumOperands() != 5)
9713       return false;
9714     MCInst TmpInst;
9715     TmpInst.setOpcode(ARM::t2STR_PRE);
9716     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9717     TmpInst.addOperand(Inst.getOperand(4)); // Rt
9718     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9719     TmpInst.addOperand(MCOperand::createImm(-4));
9720     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9721     TmpInst.addOperand(Inst.getOperand(3));
9722     Inst = TmpInst;
9723     return true;
9724   }
9725   case ARM::LDMIA_UPD:
9726     // If this is a load of a single register via a 'pop', then we should use
9727     // a post-indexed LDR instruction instead, per the ARM ARM.
9728     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
9729         Inst.getNumOperands() == 5) {
9730       MCInst TmpInst;
9731       TmpInst.setOpcode(ARM::LDR_POST_IMM);
9732       TmpInst.addOperand(Inst.getOperand(4)); // Rt
9733       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9734       TmpInst.addOperand(Inst.getOperand(1)); // Rn
9735       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
9736       TmpInst.addOperand(MCOperand::createImm(4));
9737       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9738       TmpInst.addOperand(Inst.getOperand(3));
9739       Inst = TmpInst;
9740       return true;
9741     }
9742     break;
9743   case ARM::STMDB_UPD:
9744     // If this is a store of a single register via a 'push', then we should use
9745     // a pre-indexed STR instruction instead, per the ARM ARM.
9746     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
9747         Inst.getNumOperands() == 5) {
9748       MCInst TmpInst;
9749       TmpInst.setOpcode(ARM::STR_PRE_IMM);
9750       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9751       TmpInst.addOperand(Inst.getOperand(4)); // Rt
9752       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
9753       TmpInst.addOperand(MCOperand::createImm(-4));
9754       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9755       TmpInst.addOperand(Inst.getOperand(3));
9756       Inst = TmpInst;
9757     }
9758     break;
9759   case ARM::t2ADDri12:
9760     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
9761     // mnemonic was used (not "addw"), encoding T3 is preferred.
9762     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
9763         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
9764       break;
9765     Inst.setOpcode(ARM::t2ADDri);
9766     Inst.addOperand(MCOperand::createReg(0)); // cc_out
9767     break;
9768   case ARM::t2SUBri12:
9769     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
9770     // mnemonic was used (not "subw"), encoding T3 is preferred.
9771     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
9772         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
9773       break;
9774     Inst.setOpcode(ARM::t2SUBri);
9775     Inst.addOperand(MCOperand::createReg(0)); // cc_out
9776     break;
9777   case ARM::tADDi8:
9778     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
9779     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
9780     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
9781     // to encoding T1 if <Rd> is omitted."
9782     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
9783       Inst.setOpcode(ARM::tADDi3);
9784       return true;
9785     }
9786     break;
9787   case ARM::tSUBi8:
9788     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
9789     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
9790     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
9791     // to encoding T1 if <Rd> is omitted."
9792     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
9793       Inst.setOpcode(ARM::tSUBi3);
9794       return true;
9795     }
9796     break;
9797   case ARM::t2ADDri:
9798   case ARM::t2SUBri: {
9799     // If the destination and first source operand are the same, and
9800     // the flags are compatible with the current IT status, use encoding T2
9801     // instead of T3. For compatibility with the system 'as'. Make sure the
9802     // wide encoding wasn't explicit.
9803     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
9804         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
9805         (Inst.getOperand(2).isImm() &&
9806          (unsigned)Inst.getOperand(2).getImm() > 255) ||
9807         Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
9808         HasWideQualifier)
9809       break;
9810     MCInst TmpInst;
9811     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
9812                       ARM::tADDi8 : ARM::tSUBi8);
9813     TmpInst.addOperand(Inst.getOperand(0));
9814     TmpInst.addOperand(Inst.getOperand(5));
9815     TmpInst.addOperand(Inst.getOperand(0));
9816     TmpInst.addOperand(Inst.getOperand(2));
9817     TmpInst.addOperand(Inst.getOperand(3));
9818     TmpInst.addOperand(Inst.getOperand(4));
9819     Inst = TmpInst;
9820     return true;
9821   }
9822   case ARM::t2ADDrr: {
9823     // If the destination and first source operand are the same, and
9824     // there's no setting of the flags, use encoding T2 instead of T3.
9825     // Note that this is only for ADD, not SUB. This mirrors the system
9826     // 'as' behaviour.  Also take advantage of ADD being commutative.
9827     // Make sure the wide encoding wasn't explicit.
9828     bool Swap = false;
9829     auto DestReg = Inst.getOperand(0).getReg();
9830     bool Transform = DestReg == Inst.getOperand(1).getReg();
9831     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
9832       Transform = true;
9833       Swap = true;
9834     }
9835     if (!Transform ||
9836         Inst.getOperand(5).getReg() != 0 ||
9837         HasWideQualifier)
9838       break;
9839     MCInst TmpInst;
9840     TmpInst.setOpcode(ARM::tADDhirr);
9841     TmpInst.addOperand(Inst.getOperand(0));
9842     TmpInst.addOperand(Inst.getOperand(0));
9843     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
9844     TmpInst.addOperand(Inst.getOperand(3));
9845     TmpInst.addOperand(Inst.getOperand(4));
9846     Inst = TmpInst;
9847     return true;
9848   }
9849   case ARM::tADDrSP:
9850     // If the non-SP source operand and the destination operand are not the
9851     // same, we need to use the 32-bit encoding if it's available.
9852     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
9853       Inst.setOpcode(ARM::t2ADDrr);
9854       Inst.addOperand(MCOperand::createReg(0)); // cc_out
9855       return true;
9856     }
9857     break;
9858   case ARM::tB:
9859     // A Thumb conditional branch outside of an IT block is a tBcc.
9860     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
9861       Inst.setOpcode(ARM::tBcc);
9862       return true;
9863     }
9864     break;
9865   case ARM::t2B:
9866     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
9867     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
9868       Inst.setOpcode(ARM::t2Bcc);
9869       return true;
9870     }
9871     break;
9872   case ARM::t2Bcc:
9873     // If the conditional is AL or we're in an IT block, we really want t2B.
9874     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
9875       Inst.setOpcode(ARM::t2B);
9876       return true;
9877     }
9878     break;
9879   case ARM::tBcc:
9880     // If the conditional is AL, we really want tB.
9881     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
9882       Inst.setOpcode(ARM::tB);
9883       return true;
9884     }
9885     break;
9886   case ARM::tLDMIA: {
9887     // If the register list contains any high registers, or if the writeback
9888     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
9889     // instead if we're in Thumb2. Otherwise, this should have generated
9890     // an error in validateInstruction().
9891     unsigned Rn = Inst.getOperand(0).getReg();
9892     bool hasWritebackToken =
9893         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
9894          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
9895     bool listContainsBase;
9896     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
9897         (!listContainsBase && !hasWritebackToken) ||
9898         (listContainsBase && hasWritebackToken)) {
9899       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
9900       assert(isThumbTwo());
9901       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
9902       // If we're switching to the updating version, we need to insert
9903       // the writeback tied operand.
9904       if (hasWritebackToken)
9905         Inst.insert(Inst.begin(),
9906                     MCOperand::createReg(Inst.getOperand(0).getReg()));
9907       return true;
9908     }
9909     break;
9910   }
9911   case ARM::tSTMIA_UPD: {
9912     // If the register list contains any high registers, we need to use
9913     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
9914     // should have generated an error in validateInstruction().
9915     unsigned Rn = Inst.getOperand(0).getReg();
9916     bool listContainsBase;
9917     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
9918       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
9919       assert(isThumbTwo());
9920       Inst.setOpcode(ARM::t2STMIA_UPD);
9921       return true;
9922     }
9923     break;
9924   }
9925   case ARM::tPOP: {
9926     bool listContainsBase;
9927     // If the register list contains any high registers, we need to use
9928     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
9929     // should have generated an error in validateInstruction().
9930     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
9931       return false;
9932     assert(isThumbTwo());
9933     Inst.setOpcode(ARM::t2LDMIA_UPD);
9934     // Add the base register and writeback operands.
9935     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9936     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9937     return true;
9938   }
9939   case ARM::tPUSH: {
9940     bool listContainsBase;
9941     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
9942       return false;
9943     assert(isThumbTwo());
9944     Inst.setOpcode(ARM::t2STMDB_UPD);
9945     // Add the base register and writeback operands.
9946     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9947     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9948     return true;
9949   }
9950   case ARM::t2MOVi:
9951     // If we can use the 16-bit encoding and the user didn't explicitly
9952     // request the 32-bit variant, transform it here.
9953     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9954         (Inst.getOperand(1).isImm() &&
9955          (unsigned)Inst.getOperand(1).getImm() <= 255) &&
9956         Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9957         !HasWideQualifier) {
9958       // The operands aren't in the same order for tMOVi8...
9959       MCInst TmpInst;
9960       TmpInst.setOpcode(ARM::tMOVi8);
9961       TmpInst.addOperand(Inst.getOperand(0));
9962       TmpInst.addOperand(Inst.getOperand(4));
9963       TmpInst.addOperand(Inst.getOperand(1));
9964       TmpInst.addOperand(Inst.getOperand(2));
9965       TmpInst.addOperand(Inst.getOperand(3));
9966       Inst = TmpInst;
9967       return true;
9968     }
9969     break;
9970 
9971   case ARM::t2MOVr:
9972     // If we can use the 16-bit encoding and the user didn't explicitly
9973     // request the 32-bit variant, transform it here.
9974     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9975         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9976         Inst.getOperand(2).getImm() == ARMCC::AL &&
9977         Inst.getOperand(4).getReg() == ARM::CPSR &&
9978         !HasWideQualifier) {
9979       // The operands aren't the same for tMOV[S]r... (no cc_out)
9980       MCInst TmpInst;
9981       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
9982       TmpInst.addOperand(Inst.getOperand(0));
9983       TmpInst.addOperand(Inst.getOperand(1));
9984       TmpInst.addOperand(Inst.getOperand(2));
9985       TmpInst.addOperand(Inst.getOperand(3));
9986       Inst = TmpInst;
9987       return true;
9988     }
9989     break;
9990 
9991   case ARM::t2SXTH:
9992   case ARM::t2SXTB:
9993   case ARM::t2UXTH:
9994   case ARM::t2UXTB:
9995     // If we can use the 16-bit encoding and the user didn't explicitly
9996     // request the 32-bit variant, transform it here.
9997     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9998         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9999         Inst.getOperand(2).getImm() == 0 &&
10000         !HasWideQualifier) {
10001       unsigned NewOpc;
10002       switch (Inst.getOpcode()) {
10003       default: llvm_unreachable("Illegal opcode!");
10004       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
10005       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
10006       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10007       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10008       }
10009       // The operands aren't the same for thumb1 (no rotate operand).
10010       MCInst TmpInst;
10011       TmpInst.setOpcode(NewOpc);
10012       TmpInst.addOperand(Inst.getOperand(0));
10013       TmpInst.addOperand(Inst.getOperand(1));
10014       TmpInst.addOperand(Inst.getOperand(3));
10015       TmpInst.addOperand(Inst.getOperand(4));
10016       Inst = TmpInst;
10017       return true;
10018     }
10019     break;
10020 
10021   case ARM::MOVsi: {
10022     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10023     // rrx shifts and asr/lsr of #32 is encoded as 0
10024     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10025       return false;
10026     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10027       // Shifting by zero is accepted as a vanilla 'MOVr'
10028       MCInst TmpInst;
10029       TmpInst.setOpcode(ARM::MOVr);
10030       TmpInst.addOperand(Inst.getOperand(0));
10031       TmpInst.addOperand(Inst.getOperand(1));
10032       TmpInst.addOperand(Inst.getOperand(3));
10033       TmpInst.addOperand(Inst.getOperand(4));
10034       TmpInst.addOperand(Inst.getOperand(5));
10035       Inst = TmpInst;
10036       return true;
10037     }
10038     return false;
10039   }
10040   case ARM::ANDrsi:
10041   case ARM::ORRrsi:
10042   case ARM::EORrsi:
10043   case ARM::BICrsi:
10044   case ARM::SUBrsi:
10045   case ARM::ADDrsi: {
10046     unsigned newOpc;
10047     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10048     if (SOpc == ARM_AM::rrx) return false;
10049     switch (Inst.getOpcode()) {
10050     default: llvm_unreachable("unexpected opcode!");
10051     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10052     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10053     case ARM::EORrsi: newOpc = ARM::EORrr; break;
10054     case ARM::BICrsi: newOpc = ARM::BICrr; break;
10055     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10056     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10057     }
10058     // If the shift is by zero, use the non-shifted instruction definition.
10059     // The exception is for right shifts, where 0 == 32
10060     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10061         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10062       MCInst TmpInst;
10063       TmpInst.setOpcode(newOpc);
10064       TmpInst.addOperand(Inst.getOperand(0));
10065       TmpInst.addOperand(Inst.getOperand(1));
10066       TmpInst.addOperand(Inst.getOperand(2));
10067       TmpInst.addOperand(Inst.getOperand(4));
10068       TmpInst.addOperand(Inst.getOperand(5));
10069       TmpInst.addOperand(Inst.getOperand(6));
10070       Inst = TmpInst;
10071       return true;
10072     }
10073     return false;
10074   }
10075   case ARM::ITasm:
10076   case ARM::t2IT: {
10077     // Set up the IT block state according to the IT instruction we just
10078     // matched.
10079     assert(!inITBlock() && "nested IT blocks?!");
10080     startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10081                          Inst.getOperand(1).getImm());
10082     break;
10083   }
10084   case ARM::t2LSLrr:
10085   case ARM::t2LSRrr:
10086   case ARM::t2ASRrr:
10087   case ARM::t2SBCrr:
10088   case ARM::t2RORrr:
10089   case ARM::t2BICrr:
10090     // Assemblers should use the narrow encodings of these instructions when permissible.
10091     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10092          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10093         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10094         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10095         !HasWideQualifier) {
10096       unsigned NewOpc;
10097       switch (Inst.getOpcode()) {
10098         default: llvm_unreachable("unexpected opcode");
10099         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10100         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10101         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10102         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10103         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10104         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10105       }
10106       MCInst TmpInst;
10107       TmpInst.setOpcode(NewOpc);
10108       TmpInst.addOperand(Inst.getOperand(0));
10109       TmpInst.addOperand(Inst.getOperand(5));
10110       TmpInst.addOperand(Inst.getOperand(1));
10111       TmpInst.addOperand(Inst.getOperand(2));
10112       TmpInst.addOperand(Inst.getOperand(3));
10113       TmpInst.addOperand(Inst.getOperand(4));
10114       Inst = TmpInst;
10115       return true;
10116     }
10117     return false;
10118 
10119   case ARM::t2ANDrr:
10120   case ARM::t2EORrr:
10121   case ARM::t2ADCrr:
10122   case ARM::t2ORRrr:
10123     // Assemblers should use the narrow encodings of these instructions when permissible.
10124     // These instructions are special in that they are commutable, so shorter encodings
10125     // are available more often.
10126     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10127          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10128         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10129          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10130         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10131         !HasWideQualifier) {
10132       unsigned NewOpc;
10133       switch (Inst.getOpcode()) {
10134         default: llvm_unreachable("unexpected opcode");
10135         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10136         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10137         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10138         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10139       }
10140       MCInst TmpInst;
10141       TmpInst.setOpcode(NewOpc);
10142       TmpInst.addOperand(Inst.getOperand(0));
10143       TmpInst.addOperand(Inst.getOperand(5));
10144       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10145         TmpInst.addOperand(Inst.getOperand(1));
10146         TmpInst.addOperand(Inst.getOperand(2));
10147       } else {
10148         TmpInst.addOperand(Inst.getOperand(2));
10149         TmpInst.addOperand(Inst.getOperand(1));
10150       }
10151       TmpInst.addOperand(Inst.getOperand(3));
10152       TmpInst.addOperand(Inst.getOperand(4));
10153       Inst = TmpInst;
10154       return true;
10155     }
10156     return false;
10157   case ARM::MVE_VPST:
10158   case ARM::MVE_VPTv16i8:
10159   case ARM::MVE_VPTv8i16:
10160   case ARM::MVE_VPTv4i32:
10161   case ARM::MVE_VPTv16u8:
10162   case ARM::MVE_VPTv8u16:
10163   case ARM::MVE_VPTv4u32:
10164   case ARM::MVE_VPTv16s8:
10165   case ARM::MVE_VPTv8s16:
10166   case ARM::MVE_VPTv4s32:
10167   case ARM::MVE_VPTv4f32:
10168   case ARM::MVE_VPTv8f16:
10169   case ARM::MVE_VPTv16i8r:
10170   case ARM::MVE_VPTv8i16r:
10171   case ARM::MVE_VPTv4i32r:
10172   case ARM::MVE_VPTv16u8r:
10173   case ARM::MVE_VPTv8u16r:
10174   case ARM::MVE_VPTv4u32r:
10175   case ARM::MVE_VPTv16s8r:
10176   case ARM::MVE_VPTv8s16r:
10177   case ARM::MVE_VPTv4s32r:
10178   case ARM::MVE_VPTv4f32r:
10179   case ARM::MVE_VPTv8f16r: {
10180     assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10181     MCOperand &MO = Inst.getOperand(0);
10182     VPTState.Mask = MO.getImm();
10183     VPTState.CurPosition = 0;
10184     break;
10185   }
10186   }
10187   return false;
10188 }
10189 
10190 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10191   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10192   // suffix depending on whether they're in an IT block or not.
10193   unsigned Opc = Inst.getOpcode();
10194   const MCInstrDesc &MCID = MII.get(Opc);
10195   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10196     assert(MCID.hasOptionalDef() &&
10197            "optionally flag setting instruction missing optional def operand");
10198     assert(MCID.NumOperands == Inst.getNumOperands() &&
10199            "operand count mismatch!");
10200     // Find the optional-def operand (cc_out).
10201     unsigned OpNo;
10202     for (OpNo = 0;
10203          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10204          ++OpNo)
10205       ;
10206     // If we're parsing Thumb1, reject it completely.
10207     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10208       return Match_RequiresFlagSetting;
10209     // If we're parsing Thumb2, which form is legal depends on whether we're
10210     // in an IT block.
10211     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10212         !inITBlock())
10213       return Match_RequiresITBlock;
10214     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10215         inITBlock())
10216       return Match_RequiresNotITBlock;
10217     // LSL with zero immediate is not allowed in an IT block
10218     if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10219       return Match_RequiresNotITBlock;
10220   } else if (isThumbOne()) {
10221     // Some high-register supporting Thumb1 encodings only allow both registers
10222     // to be from r0-r7 when in Thumb2.
10223     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10224         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10225         isARMLowRegister(Inst.getOperand(2).getReg()))
10226       return Match_RequiresThumb2;
10227     // Others only require ARMv6 or later.
10228     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10229              isARMLowRegister(Inst.getOperand(0).getReg()) &&
10230              isARMLowRegister(Inst.getOperand(1).getReg()))
10231       return Match_RequiresV6;
10232   }
10233 
10234   // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10235   // than the loop below can handle, so it uses the GPRnopc register class and
10236   // we do SP handling here.
10237   if (Opc == ARM::t2MOVr && !hasV8Ops())
10238   {
10239     // SP as both source and destination is not allowed
10240     if (Inst.getOperand(0).getReg() == ARM::SP &&
10241         Inst.getOperand(1).getReg() == ARM::SP)
10242       return Match_RequiresV8;
10243     // When flags-setting SP as either source or destination is not allowed
10244     if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10245         (Inst.getOperand(0).getReg() == ARM::SP ||
10246          Inst.getOperand(1).getReg() == ARM::SP))
10247       return Match_RequiresV8;
10248   }
10249 
10250   switch (Inst.getOpcode()) {
10251   case ARM::VMRS:
10252   case ARM::VMSR:
10253   case ARM::VMRS_FPCXTS:
10254   case ARM::VMRS_FPCXTNS:
10255   case ARM::VMSR_FPCXTS:
10256   case ARM::VMSR_FPCXTNS:
10257   case ARM::VMRS_FPSCR_NZCVQC:
10258   case ARM::VMSR_FPSCR_NZCVQC:
10259   case ARM::FMSTAT:
10260   case ARM::VMRS_VPR:
10261   case ARM::VMRS_P0:
10262   case ARM::VMSR_VPR:
10263   case ARM::VMSR_P0:
10264     // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10265     // ARMv8-A.
10266     if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10267         (isThumb() && !hasV8Ops()))
10268       return Match_InvalidOperand;
10269     break;
10270   default:
10271     break;
10272   }
10273 
10274   for (unsigned I = 0; I < MCID.NumOperands; ++I)
10275     if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
10276       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10277       const auto &Op = Inst.getOperand(I);
10278       if (!Op.isReg()) {
10279         // This can happen in awkward cases with tied operands, e.g. a
10280         // writeback load/store with a complex addressing mode in
10281         // which there's an output operand corresponding to the
10282         // updated written-back base register: the Tablegen-generated
10283         // AsmMatcher will have written a placeholder operand to that
10284         // slot in the form of an immediate 0, because it can't
10285         // generate the register part of the complex addressing-mode
10286         // operand ahead of time.
10287         continue;
10288       }
10289 
10290       unsigned Reg = Op.getReg();
10291       if ((Reg == ARM::SP) && !hasV8Ops())
10292         return Match_RequiresV8;
10293       else if (Reg == ARM::PC)
10294         return Match_InvalidOperand;
10295     }
10296 
10297   return Match_Success;
10298 }
10299 
10300 namespace llvm {
10301 
10302 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10303   return true; // In an assembly source, no need to second-guess
10304 }
10305 
10306 } // end namespace llvm
10307 
10308 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10309 // the last instruction in the block.
10310 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10311   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10312 
10313   // All branch & call instructions terminate IT blocks with the exception of
10314   // SVC.
10315   if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10316       MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10317     return true;
10318 
10319   // Any arithmetic instruction which writes to the PC also terminates the IT
10320   // block.
10321   if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10322     return true;
10323 
10324   return false;
10325 }
10326 
10327 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10328                                           SmallVectorImpl<NearMissInfo> &NearMisses,
10329                                           bool MatchingInlineAsm,
10330                                           bool &EmitInITBlock,
10331                                           MCStreamer &Out) {
10332   // If we can't use an implicit IT block here, just match as normal.
10333   if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10334     return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10335 
10336   // Try to match the instruction in an extension of the current IT block (if
10337   // there is one).
10338   if (inImplicitITBlock()) {
10339     extendImplicitITBlock(ITState.Cond);
10340     if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10341             Match_Success) {
10342       // The match succeded, but we still have to check that the instruction is
10343       // valid in this implicit IT block.
10344       const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10345       if (MCID.isPredicable()) {
10346         ARMCC::CondCodes InstCond =
10347             (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10348                 .getImm();
10349         ARMCC::CondCodes ITCond = currentITCond();
10350         if (InstCond == ITCond) {
10351           EmitInITBlock = true;
10352           return Match_Success;
10353         } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10354           invertCurrentITCondition();
10355           EmitInITBlock = true;
10356           return Match_Success;
10357         }
10358       }
10359     }
10360     rewindImplicitITPosition();
10361   }
10362 
10363   // Finish the current IT block, and try to match outside any IT block.
10364   flushPendingInstructions(Out);
10365   unsigned PlainMatchResult =
10366       MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10367   if (PlainMatchResult == Match_Success) {
10368     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10369     if (MCID.isPredicable()) {
10370       ARMCC::CondCodes InstCond =
10371           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10372               .getImm();
10373       // Some forms of the branch instruction have their own condition code
10374       // fields, so can be conditionally executed without an IT block.
10375       if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10376         EmitInITBlock = false;
10377         return Match_Success;
10378       }
10379       if (InstCond == ARMCC::AL) {
10380         EmitInITBlock = false;
10381         return Match_Success;
10382       }
10383     } else {
10384       EmitInITBlock = false;
10385       return Match_Success;
10386     }
10387   }
10388 
10389   // Try to match in a new IT block. The matcher doesn't check the actual
10390   // condition, so we create an IT block with a dummy condition, and fix it up
10391   // once we know the actual condition.
10392   startImplicitITBlock();
10393   if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10394       Match_Success) {
10395     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10396     if (MCID.isPredicable()) {
10397       ITState.Cond =
10398           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10399               .getImm();
10400       EmitInITBlock = true;
10401       return Match_Success;
10402     }
10403   }
10404   discardImplicitITBlock();
10405 
10406   // If none of these succeed, return the error we got when trying to match
10407   // outside any IT blocks.
10408   EmitInITBlock = false;
10409   return PlainMatchResult;
10410 }
10411 
10412 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10413                                          unsigned VariantID = 0);
10414 
10415 static const char *getSubtargetFeatureName(uint64_t Val);
10416 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10417                                            OperandVector &Operands,
10418                                            MCStreamer &Out, uint64_t &ErrorInfo,
10419                                            bool MatchingInlineAsm) {
10420   MCInst Inst;
10421   unsigned MatchResult;
10422   bool PendConditionalInstruction = false;
10423 
10424   SmallVector<NearMissInfo, 4> NearMisses;
10425   MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10426                                  PendConditionalInstruction, Out);
10427 
10428   switch (MatchResult) {
10429   case Match_Success:
10430     LLVM_DEBUG(dbgs() << "Parsed as: ";
10431                Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10432                dbgs() << "\n");
10433 
10434     // Context sensitive operand constraints aren't handled by the matcher,
10435     // so check them here.
10436     if (validateInstruction(Inst, Operands)) {
10437       // Still progress the IT block, otherwise one wrong condition causes
10438       // nasty cascading errors.
10439       forwardITPosition();
10440       forwardVPTPosition();
10441       return true;
10442     }
10443 
10444     { // processInstruction() updates inITBlock state, we need to save it away
10445       bool wasInITBlock = inITBlock();
10446 
10447       // Some instructions need post-processing to, for example, tweak which
10448       // encoding is selected. Loop on it while changes happen so the
10449       // individual transformations can chain off each other. E.g.,
10450       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10451       while (processInstruction(Inst, Operands, Out))
10452         LLVM_DEBUG(dbgs() << "Changed to: ";
10453                    Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10454                    dbgs() << "\n");
10455 
10456       // Only after the instruction is fully processed, we can validate it
10457       if (wasInITBlock && hasV8Ops() && isThumb() &&
10458           !isV8EligibleForIT(&Inst)) {
10459         Warning(IDLoc, "deprecated instruction in IT block");
10460       }
10461     }
10462 
10463     // Only move forward at the very end so that everything in validate
10464     // and process gets a consistent answer about whether we're in an IT
10465     // block.
10466     forwardITPosition();
10467     forwardVPTPosition();
10468 
10469     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10470     // doesn't actually encode.
10471     if (Inst.getOpcode() == ARM::ITasm)
10472       return false;
10473 
10474     Inst.setLoc(IDLoc);
10475     if (PendConditionalInstruction) {
10476       PendingConditionalInsts.push_back(Inst);
10477       if (isITBlockFull() || isITBlockTerminator(Inst))
10478         flushPendingInstructions(Out);
10479     } else {
10480       Out.EmitInstruction(Inst, getSTI());
10481     }
10482     return false;
10483   case Match_NearMisses:
10484     ReportNearMisses(NearMisses, IDLoc, Operands);
10485     return true;
10486   case Match_MnemonicFail: {
10487     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
10488     std::string Suggestion = ARMMnemonicSpellCheck(
10489       ((ARMOperand &)*Operands[0]).getToken(), FBS);
10490     return Error(IDLoc, "invalid instruction" + Suggestion,
10491                  ((ARMOperand &)*Operands[0]).getLocRange());
10492   }
10493   }
10494 
10495   llvm_unreachable("Implement any new match types added!");
10496 }
10497 
10498 /// parseDirective parses the arm specific directives
10499 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
10500   const MCObjectFileInfo::Environment Format =
10501     getContext().getObjectFileInfo()->getObjectFileType();
10502   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
10503   bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
10504 
10505   StringRef IDVal = DirectiveID.getIdentifier();
10506   if (IDVal == ".word")
10507     parseLiteralValues(4, DirectiveID.getLoc());
10508   else if (IDVal == ".short" || IDVal == ".hword")
10509     parseLiteralValues(2, DirectiveID.getLoc());
10510   else if (IDVal == ".thumb")
10511     parseDirectiveThumb(DirectiveID.getLoc());
10512   else if (IDVal == ".arm")
10513     parseDirectiveARM(DirectiveID.getLoc());
10514   else if (IDVal == ".thumb_func")
10515     parseDirectiveThumbFunc(DirectiveID.getLoc());
10516   else if (IDVal == ".code")
10517     parseDirectiveCode(DirectiveID.getLoc());
10518   else if (IDVal == ".syntax")
10519     parseDirectiveSyntax(DirectiveID.getLoc());
10520   else if (IDVal == ".unreq")
10521     parseDirectiveUnreq(DirectiveID.getLoc());
10522   else if (IDVal == ".fnend")
10523     parseDirectiveFnEnd(DirectiveID.getLoc());
10524   else if (IDVal == ".cantunwind")
10525     parseDirectiveCantUnwind(DirectiveID.getLoc());
10526   else if (IDVal == ".personality")
10527     parseDirectivePersonality(DirectiveID.getLoc());
10528   else if (IDVal == ".handlerdata")
10529     parseDirectiveHandlerData(DirectiveID.getLoc());
10530   else if (IDVal == ".setfp")
10531     parseDirectiveSetFP(DirectiveID.getLoc());
10532   else if (IDVal == ".pad")
10533     parseDirectivePad(DirectiveID.getLoc());
10534   else if (IDVal == ".save")
10535     parseDirectiveRegSave(DirectiveID.getLoc(), false);
10536   else if (IDVal == ".vsave")
10537     parseDirectiveRegSave(DirectiveID.getLoc(), true);
10538   else if (IDVal == ".ltorg" || IDVal == ".pool")
10539     parseDirectiveLtorg(DirectiveID.getLoc());
10540   else if (IDVal == ".even")
10541     parseDirectiveEven(DirectiveID.getLoc());
10542   else if (IDVal == ".personalityindex")
10543     parseDirectivePersonalityIndex(DirectiveID.getLoc());
10544   else if (IDVal == ".unwind_raw")
10545     parseDirectiveUnwindRaw(DirectiveID.getLoc());
10546   else if (IDVal == ".movsp")
10547     parseDirectiveMovSP(DirectiveID.getLoc());
10548   else if (IDVal == ".arch_extension")
10549     parseDirectiveArchExtension(DirectiveID.getLoc());
10550   else if (IDVal == ".align")
10551     return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
10552   else if (IDVal == ".thumb_set")
10553     parseDirectiveThumbSet(DirectiveID.getLoc());
10554   else if (IDVal == ".inst")
10555     parseDirectiveInst(DirectiveID.getLoc());
10556   else if (IDVal == ".inst.n")
10557     parseDirectiveInst(DirectiveID.getLoc(), 'n');
10558   else if (IDVal == ".inst.w")
10559     parseDirectiveInst(DirectiveID.getLoc(), 'w');
10560   else if (!IsMachO && !IsCOFF) {
10561     if (IDVal == ".arch")
10562       parseDirectiveArch(DirectiveID.getLoc());
10563     else if (IDVal == ".cpu")
10564       parseDirectiveCPU(DirectiveID.getLoc());
10565     else if (IDVal == ".eabi_attribute")
10566       parseDirectiveEabiAttr(DirectiveID.getLoc());
10567     else if (IDVal == ".fpu")
10568       parseDirectiveFPU(DirectiveID.getLoc());
10569     else if (IDVal == ".fnstart")
10570       parseDirectiveFnStart(DirectiveID.getLoc());
10571     else if (IDVal == ".object_arch")
10572       parseDirectiveObjectArch(DirectiveID.getLoc());
10573     else if (IDVal == ".tlsdescseq")
10574       parseDirectiveTLSDescSeq(DirectiveID.getLoc());
10575     else
10576       return true;
10577   } else
10578     return true;
10579   return false;
10580 }
10581 
10582 /// parseLiteralValues
10583 ///  ::= .hword expression [, expression]*
10584 ///  ::= .short expression [, expression]*
10585 ///  ::= .word expression [, expression]*
10586 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
10587   auto parseOne = [&]() -> bool {
10588     const MCExpr *Value;
10589     if (getParser().parseExpression(Value))
10590       return true;
10591     getParser().getStreamer().EmitValue(Value, Size, L);
10592     return false;
10593   };
10594   return (parseMany(parseOne));
10595 }
10596 
10597 /// parseDirectiveThumb
10598 ///  ::= .thumb
10599 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
10600   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
10601       check(!hasThumb(), L, "target does not support Thumb mode"))
10602     return true;
10603 
10604   if (!isThumb())
10605     SwitchMode();
10606 
10607   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
10608   return false;
10609 }
10610 
10611 /// parseDirectiveARM
10612 ///  ::= .arm
10613 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
10614   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
10615       check(!hasARM(), L, "target does not support ARM mode"))
10616     return true;
10617 
10618   if (isThumb())
10619     SwitchMode();
10620   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
10621   return false;
10622 }
10623 
10624 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
10625   // We need to flush the current implicit IT block on a label, because it is
10626   // not legal to branch into an IT block.
10627   flushPendingInstructions(getStreamer());
10628 }
10629 
10630 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
10631   if (NextSymbolIsThumb) {
10632     getParser().getStreamer().EmitThumbFunc(Symbol);
10633     NextSymbolIsThumb = false;
10634   }
10635 }
10636 
10637 /// parseDirectiveThumbFunc
10638 ///  ::= .thumbfunc symbol_name
10639 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
10640   MCAsmParser &Parser = getParser();
10641   const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
10642   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
10643 
10644   // Darwin asm has (optionally) function name after .thumb_func direction
10645   // ELF doesn't
10646 
10647   if (IsMachO) {
10648     if (Parser.getTok().is(AsmToken::Identifier) ||
10649         Parser.getTok().is(AsmToken::String)) {
10650       MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
10651           Parser.getTok().getIdentifier());
10652       getParser().getStreamer().EmitThumbFunc(Func);
10653       Parser.Lex();
10654       if (parseToken(AsmToken::EndOfStatement,
10655                      "unexpected token in '.thumb_func' directive"))
10656         return true;
10657       return false;
10658     }
10659   }
10660 
10661   if (parseToken(AsmToken::EndOfStatement,
10662                  "unexpected token in '.thumb_func' directive"))
10663     return true;
10664 
10665   NextSymbolIsThumb = true;
10666   return false;
10667 }
10668 
10669 /// parseDirectiveSyntax
10670 ///  ::= .syntax unified | divided
10671 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
10672   MCAsmParser &Parser = getParser();
10673   const AsmToken &Tok = Parser.getTok();
10674   if (Tok.isNot(AsmToken::Identifier)) {
10675     Error(L, "unexpected token in .syntax directive");
10676     return false;
10677   }
10678 
10679   StringRef Mode = Tok.getString();
10680   Parser.Lex();
10681   if (check(Mode == "divided" || Mode == "DIVIDED", L,
10682             "'.syntax divided' arm assembly not supported") ||
10683       check(Mode != "unified" && Mode != "UNIFIED", L,
10684             "unrecognized syntax mode in .syntax directive") ||
10685       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10686     return true;
10687 
10688   // TODO tell the MC streamer the mode
10689   // getParser().getStreamer().Emit???();
10690   return false;
10691 }
10692 
10693 /// parseDirectiveCode
10694 ///  ::= .code 16 | 32
10695 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
10696   MCAsmParser &Parser = getParser();
10697   const AsmToken &Tok = Parser.getTok();
10698   if (Tok.isNot(AsmToken::Integer))
10699     return Error(L, "unexpected token in .code directive");
10700   int64_t Val = Parser.getTok().getIntVal();
10701   if (Val != 16 && Val != 32) {
10702     Error(L, "invalid operand to .code directive");
10703     return false;
10704   }
10705   Parser.Lex();
10706 
10707   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10708     return true;
10709 
10710   if (Val == 16) {
10711     if (!hasThumb())
10712       return Error(L, "target does not support Thumb mode");
10713 
10714     if (!isThumb())
10715       SwitchMode();
10716     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
10717   } else {
10718     if (!hasARM())
10719       return Error(L, "target does not support ARM mode");
10720 
10721     if (isThumb())
10722       SwitchMode();
10723     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
10724   }
10725 
10726   return false;
10727 }
10728 
10729 /// parseDirectiveReq
10730 ///  ::= name .req registername
10731 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
10732   MCAsmParser &Parser = getParser();
10733   Parser.Lex(); // Eat the '.req' token.
10734   unsigned Reg;
10735   SMLoc SRegLoc, ERegLoc;
10736   if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
10737             "register name expected") ||
10738       parseToken(AsmToken::EndOfStatement,
10739                  "unexpected input in .req directive."))
10740     return true;
10741 
10742   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
10743     return Error(SRegLoc,
10744                  "redefinition of '" + Name + "' does not match original.");
10745 
10746   return false;
10747 }
10748 
10749 /// parseDirectiveUneq
10750 ///  ::= .unreq registername
10751 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
10752   MCAsmParser &Parser = getParser();
10753   if (Parser.getTok().isNot(AsmToken::Identifier))
10754     return Error(L, "unexpected input in .unreq directive.");
10755   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
10756   Parser.Lex(); // Eat the identifier.
10757   if (parseToken(AsmToken::EndOfStatement,
10758                  "unexpected input in '.unreq' directive"))
10759     return true;
10760   return false;
10761 }
10762 
10763 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
10764 // before, if supported by the new target, or emit mapping symbols for the mode
10765 // switch.
10766 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
10767   if (WasThumb != isThumb()) {
10768     if (WasThumb && hasThumb()) {
10769       // Stay in Thumb mode
10770       SwitchMode();
10771     } else if (!WasThumb && hasARM()) {
10772       // Stay in ARM mode
10773       SwitchMode();
10774     } else {
10775       // Mode switch forced, because the new arch doesn't support the old mode.
10776       getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
10777                                                             : MCAF_Code32);
10778       // Warn about the implcit mode switch. GAS does not switch modes here,
10779       // but instead stays in the old mode, reporting an error on any following
10780       // instructions as the mode does not exist on the target.
10781       Warning(Loc, Twine("new target does not support ") +
10782                        (WasThumb ? "thumb" : "arm") + " mode, switching to " +
10783                        (!WasThumb ? "thumb" : "arm") + " mode");
10784     }
10785   }
10786 }
10787 
10788 /// parseDirectiveArch
10789 ///  ::= .arch token
10790 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
10791   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
10792   ARM::ArchKind ID = ARM::parseArch(Arch);
10793 
10794   if (ID == ARM::ArchKind::INVALID)
10795     return Error(L, "Unknown arch name");
10796 
10797   bool WasThumb = isThumb();
10798   Triple T;
10799   MCSubtargetInfo &STI = copySTI();
10800   STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
10801   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10802   FixModeAfterArchChange(WasThumb, L);
10803 
10804   getTargetStreamer().emitArch(ID);
10805   return false;
10806 }
10807 
10808 /// parseDirectiveEabiAttr
10809 ///  ::= .eabi_attribute int, int [, "str"]
10810 ///  ::= .eabi_attribute Tag_name, int [, "str"]
10811 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
10812   MCAsmParser &Parser = getParser();
10813   int64_t Tag;
10814   SMLoc TagLoc;
10815   TagLoc = Parser.getTok().getLoc();
10816   if (Parser.getTok().is(AsmToken::Identifier)) {
10817     StringRef Name = Parser.getTok().getIdentifier();
10818     Tag = ARMBuildAttrs::AttrTypeFromString(Name);
10819     if (Tag == -1) {
10820       Error(TagLoc, "attribute name not recognised: " + Name);
10821       return false;
10822     }
10823     Parser.Lex();
10824   } else {
10825     const MCExpr *AttrExpr;
10826 
10827     TagLoc = Parser.getTok().getLoc();
10828     if (Parser.parseExpression(AttrExpr))
10829       return true;
10830 
10831     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
10832     if (check(!CE, TagLoc, "expected numeric constant"))
10833       return true;
10834 
10835     Tag = CE->getValue();
10836   }
10837 
10838   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
10839     return true;
10840 
10841   StringRef StringValue = "";
10842   bool IsStringValue = false;
10843 
10844   int64_t IntegerValue = 0;
10845   bool IsIntegerValue = false;
10846 
10847   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
10848     IsStringValue = true;
10849   else if (Tag == ARMBuildAttrs::compatibility) {
10850     IsStringValue = true;
10851     IsIntegerValue = true;
10852   } else if (Tag < 32 || Tag % 2 == 0)
10853     IsIntegerValue = true;
10854   else if (Tag % 2 == 1)
10855     IsStringValue = true;
10856   else
10857     llvm_unreachable("invalid tag type");
10858 
10859   if (IsIntegerValue) {
10860     const MCExpr *ValueExpr;
10861     SMLoc ValueExprLoc = Parser.getTok().getLoc();
10862     if (Parser.parseExpression(ValueExpr))
10863       return true;
10864 
10865     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
10866     if (!CE)
10867       return Error(ValueExprLoc, "expected numeric constant");
10868     IntegerValue = CE->getValue();
10869   }
10870 
10871   if (Tag == ARMBuildAttrs::compatibility) {
10872     if (Parser.parseToken(AsmToken::Comma, "comma expected"))
10873       return true;
10874   }
10875 
10876   if (IsStringValue) {
10877     if (Parser.getTok().isNot(AsmToken::String))
10878       return Error(Parser.getTok().getLoc(), "bad string constant");
10879 
10880     StringValue = Parser.getTok().getStringContents();
10881     Parser.Lex();
10882   }
10883 
10884   if (Parser.parseToken(AsmToken::EndOfStatement,
10885                         "unexpected token in '.eabi_attribute' directive"))
10886     return true;
10887 
10888   if (IsIntegerValue && IsStringValue) {
10889     assert(Tag == ARMBuildAttrs::compatibility);
10890     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
10891   } else if (IsIntegerValue)
10892     getTargetStreamer().emitAttribute(Tag, IntegerValue);
10893   else if (IsStringValue)
10894     getTargetStreamer().emitTextAttribute(Tag, StringValue);
10895   return false;
10896 }
10897 
10898 /// parseDirectiveCPU
10899 ///  ::= .cpu str
10900 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
10901   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
10902   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
10903 
10904   // FIXME: This is using table-gen data, but should be moved to
10905   // ARMTargetParser once that is table-gen'd.
10906   if (!getSTI().isCPUStringValid(CPU))
10907     return Error(L, "Unknown CPU name");
10908 
10909   bool WasThumb = isThumb();
10910   MCSubtargetInfo &STI = copySTI();
10911   STI.setDefaultFeatures(CPU, "");
10912   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10913   FixModeAfterArchChange(WasThumb, L);
10914 
10915   return false;
10916 }
10917 
10918 /// parseDirectiveFPU
10919 ///  ::= .fpu str
10920 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
10921   SMLoc FPUNameLoc = getTok().getLoc();
10922   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
10923 
10924   unsigned ID = ARM::parseFPU(FPU);
10925   std::vector<StringRef> Features;
10926   if (!ARM::getFPUFeatures(ID, Features))
10927     return Error(FPUNameLoc, "Unknown FPU name");
10928 
10929   MCSubtargetInfo &STI = copySTI();
10930   for (auto Feature : Features)
10931     STI.ApplyFeatureFlag(Feature);
10932   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10933 
10934   getTargetStreamer().emitFPU(ID);
10935   return false;
10936 }
10937 
10938 /// parseDirectiveFnStart
10939 ///  ::= .fnstart
10940 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
10941   if (parseToken(AsmToken::EndOfStatement,
10942                  "unexpected token in '.fnstart' directive"))
10943     return true;
10944 
10945   if (UC.hasFnStart()) {
10946     Error(L, ".fnstart starts before the end of previous one");
10947     UC.emitFnStartLocNotes();
10948     return true;
10949   }
10950 
10951   // Reset the unwind directives parser state
10952   UC.reset();
10953 
10954   getTargetStreamer().emitFnStart();
10955 
10956   UC.recordFnStart(L);
10957   return false;
10958 }
10959 
10960 /// parseDirectiveFnEnd
10961 ///  ::= .fnend
10962 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
10963   if (parseToken(AsmToken::EndOfStatement,
10964                  "unexpected token in '.fnend' directive"))
10965     return true;
10966   // Check the ordering of unwind directives
10967   if (!UC.hasFnStart())
10968     return Error(L, ".fnstart must precede .fnend directive");
10969 
10970   // Reset the unwind directives parser state
10971   getTargetStreamer().emitFnEnd();
10972 
10973   UC.reset();
10974   return false;
10975 }
10976 
10977 /// parseDirectiveCantUnwind
10978 ///  ::= .cantunwind
10979 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
10980   if (parseToken(AsmToken::EndOfStatement,
10981                  "unexpected token in '.cantunwind' directive"))
10982     return true;
10983 
10984   UC.recordCantUnwind(L);
10985   // Check the ordering of unwind directives
10986   if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
10987     return true;
10988 
10989   if (UC.hasHandlerData()) {
10990     Error(L, ".cantunwind can't be used with .handlerdata directive");
10991     UC.emitHandlerDataLocNotes();
10992     return true;
10993   }
10994   if (UC.hasPersonality()) {
10995     Error(L, ".cantunwind can't be used with .personality directive");
10996     UC.emitPersonalityLocNotes();
10997     return true;
10998   }
10999 
11000   getTargetStreamer().emitCantUnwind();
11001   return false;
11002 }
11003 
11004 /// parseDirectivePersonality
11005 ///  ::= .personality name
11006 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11007   MCAsmParser &Parser = getParser();
11008   bool HasExistingPersonality = UC.hasPersonality();
11009 
11010   // Parse the name of the personality routine
11011   if (Parser.getTok().isNot(AsmToken::Identifier))
11012     return Error(L, "unexpected input in .personality directive.");
11013   StringRef Name(Parser.getTok().getIdentifier());
11014   Parser.Lex();
11015 
11016   if (parseToken(AsmToken::EndOfStatement,
11017                  "unexpected token in '.personality' directive"))
11018     return true;
11019 
11020   UC.recordPersonality(L);
11021 
11022   // Check the ordering of unwind directives
11023   if (!UC.hasFnStart())
11024     return Error(L, ".fnstart must precede .personality directive");
11025   if (UC.cantUnwind()) {
11026     Error(L, ".personality can't be used with .cantunwind directive");
11027     UC.emitCantUnwindLocNotes();
11028     return true;
11029   }
11030   if (UC.hasHandlerData()) {
11031     Error(L, ".personality must precede .handlerdata directive");
11032     UC.emitHandlerDataLocNotes();
11033     return true;
11034   }
11035   if (HasExistingPersonality) {
11036     Error(L, "multiple personality directives");
11037     UC.emitPersonalityLocNotes();
11038     return true;
11039   }
11040 
11041   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11042   getTargetStreamer().emitPersonality(PR);
11043   return false;
11044 }
11045 
11046 /// parseDirectiveHandlerData
11047 ///  ::= .handlerdata
11048 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11049   if (parseToken(AsmToken::EndOfStatement,
11050                  "unexpected token in '.handlerdata' directive"))
11051     return true;
11052 
11053   UC.recordHandlerData(L);
11054   // Check the ordering of unwind directives
11055   if (!UC.hasFnStart())
11056     return Error(L, ".fnstart must precede .personality directive");
11057   if (UC.cantUnwind()) {
11058     Error(L, ".handlerdata can't be used with .cantunwind directive");
11059     UC.emitCantUnwindLocNotes();
11060     return true;
11061   }
11062 
11063   getTargetStreamer().emitHandlerData();
11064   return false;
11065 }
11066 
11067 /// parseDirectiveSetFP
11068 ///  ::= .setfp fpreg, spreg [, offset]
11069 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11070   MCAsmParser &Parser = getParser();
11071   // Check the ordering of unwind directives
11072   if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11073       check(UC.hasHandlerData(), L,
11074             ".setfp must precede .handlerdata directive"))
11075     return true;
11076 
11077   // Parse fpreg
11078   SMLoc FPRegLoc = Parser.getTok().getLoc();
11079   int FPReg = tryParseRegister();
11080 
11081   if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11082       Parser.parseToken(AsmToken::Comma, "comma expected"))
11083     return true;
11084 
11085   // Parse spreg
11086   SMLoc SPRegLoc = Parser.getTok().getLoc();
11087   int SPReg = tryParseRegister();
11088   if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11089       check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11090             "register should be either $sp or the latest fp register"))
11091     return true;
11092 
11093   // Update the frame pointer register
11094   UC.saveFPReg(FPReg);
11095 
11096   // Parse offset
11097   int64_t Offset = 0;
11098   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11099     if (Parser.getTok().isNot(AsmToken::Hash) &&
11100         Parser.getTok().isNot(AsmToken::Dollar))
11101       return Error(Parser.getTok().getLoc(), "'#' expected");
11102     Parser.Lex(); // skip hash token.
11103 
11104     const MCExpr *OffsetExpr;
11105     SMLoc ExLoc = Parser.getTok().getLoc();
11106     SMLoc EndLoc;
11107     if (getParser().parseExpression(OffsetExpr, EndLoc))
11108       return Error(ExLoc, "malformed setfp offset");
11109     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11110     if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11111       return true;
11112     Offset = CE->getValue();
11113   }
11114 
11115   if (Parser.parseToken(AsmToken::EndOfStatement))
11116     return true;
11117 
11118   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11119                                 static_cast<unsigned>(SPReg), Offset);
11120   return false;
11121 }
11122 
11123 /// parseDirective
11124 ///  ::= .pad offset
11125 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11126   MCAsmParser &Parser = getParser();
11127   // Check the ordering of unwind directives
11128   if (!UC.hasFnStart())
11129     return Error(L, ".fnstart must precede .pad directive");
11130   if (UC.hasHandlerData())
11131     return Error(L, ".pad must precede .handlerdata directive");
11132 
11133   // Parse the offset
11134   if (Parser.getTok().isNot(AsmToken::Hash) &&
11135       Parser.getTok().isNot(AsmToken::Dollar))
11136     return Error(Parser.getTok().getLoc(), "'#' expected");
11137   Parser.Lex(); // skip hash token.
11138 
11139   const MCExpr *OffsetExpr;
11140   SMLoc ExLoc = Parser.getTok().getLoc();
11141   SMLoc EndLoc;
11142   if (getParser().parseExpression(OffsetExpr, EndLoc))
11143     return Error(ExLoc, "malformed pad offset");
11144   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11145   if (!CE)
11146     return Error(ExLoc, "pad offset must be an immediate");
11147 
11148   if (parseToken(AsmToken::EndOfStatement,
11149                  "unexpected token in '.pad' directive"))
11150     return true;
11151 
11152   getTargetStreamer().emitPad(CE->getValue());
11153   return false;
11154 }
11155 
11156 /// parseDirectiveRegSave
11157 ///  ::= .save  { registers }
11158 ///  ::= .vsave { registers }
11159 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11160   // Check the ordering of unwind directives
11161   if (!UC.hasFnStart())
11162     return Error(L, ".fnstart must precede .save or .vsave directives");
11163   if (UC.hasHandlerData())
11164     return Error(L, ".save or .vsave must precede .handlerdata directive");
11165 
11166   // RAII object to make sure parsed operands are deleted.
11167   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11168 
11169   // Parse the register list
11170   if (parseRegisterList(Operands) ||
11171       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11172     return true;
11173   ARMOperand &Op = (ARMOperand &)*Operands[0];
11174   if (!IsVector && !Op.isRegList())
11175     return Error(L, ".save expects GPR registers");
11176   if (IsVector && !Op.isDPRRegList())
11177     return Error(L, ".vsave expects DPR registers");
11178 
11179   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11180   return false;
11181 }
11182 
11183 /// parseDirectiveInst
11184 ///  ::= .inst opcode [, ...]
11185 ///  ::= .inst.n opcode [, ...]
11186 ///  ::= .inst.w opcode [, ...]
11187 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11188   int Width = 4;
11189 
11190   if (isThumb()) {
11191     switch (Suffix) {
11192     case 'n':
11193       Width = 2;
11194       break;
11195     case 'w':
11196       break;
11197     default:
11198       Width = 0;
11199       break;
11200     }
11201   } else {
11202     if (Suffix)
11203       return Error(Loc, "width suffixes are invalid in ARM mode");
11204   }
11205 
11206   auto parseOne = [&]() -> bool {
11207     const MCExpr *Expr;
11208     if (getParser().parseExpression(Expr))
11209       return true;
11210     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11211     if (!Value) {
11212       return Error(Loc, "expected constant expression");
11213     }
11214 
11215     char CurSuffix = Suffix;
11216     switch (Width) {
11217     case 2:
11218       if (Value->getValue() > 0xffff)
11219         return Error(Loc, "inst.n operand is too big, use inst.w instead");
11220       break;
11221     case 4:
11222       if (Value->getValue() > 0xffffffff)
11223         return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11224                               " operand is too big");
11225       break;
11226     case 0:
11227       // Thumb mode, no width indicated. Guess from the opcode, if possible.
11228       if (Value->getValue() < 0xe800)
11229         CurSuffix = 'n';
11230       else if (Value->getValue() >= 0xe8000000)
11231         CurSuffix = 'w';
11232       else
11233         return Error(Loc, "cannot determine Thumb instruction size, "
11234                           "use inst.n/inst.w instead");
11235       break;
11236     default:
11237       llvm_unreachable("only supported widths are 2 and 4");
11238     }
11239 
11240     getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11241     return false;
11242   };
11243 
11244   if (parseOptionalToken(AsmToken::EndOfStatement))
11245     return Error(Loc, "expected expression following directive");
11246   if (parseMany(parseOne))
11247     return true;
11248   return false;
11249 }
11250 
11251 /// parseDirectiveLtorg
11252 ///  ::= .ltorg | .pool
11253 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11254   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11255     return true;
11256   getTargetStreamer().emitCurrentConstantPool();
11257   return false;
11258 }
11259 
11260 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11261   const MCSection *Section = getStreamer().getCurrentSectionOnly();
11262 
11263   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11264     return true;
11265 
11266   if (!Section) {
11267     getStreamer().InitSections(false);
11268     Section = getStreamer().getCurrentSectionOnly();
11269   }
11270 
11271   assert(Section && "must have section to emit alignment");
11272   if (Section->UseCodeAlign())
11273     getStreamer().EmitCodeAlignment(2);
11274   else
11275     getStreamer().EmitValueToAlignment(2);
11276 
11277   return false;
11278 }
11279 
11280 /// parseDirectivePersonalityIndex
11281 ///   ::= .personalityindex index
11282 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11283   MCAsmParser &Parser = getParser();
11284   bool HasExistingPersonality = UC.hasPersonality();
11285 
11286   const MCExpr *IndexExpression;
11287   SMLoc IndexLoc = Parser.getTok().getLoc();
11288   if (Parser.parseExpression(IndexExpression) ||
11289       parseToken(AsmToken::EndOfStatement,
11290                  "unexpected token in '.personalityindex' directive")) {
11291     return true;
11292   }
11293 
11294   UC.recordPersonalityIndex(L);
11295 
11296   if (!UC.hasFnStart()) {
11297     return Error(L, ".fnstart must precede .personalityindex directive");
11298   }
11299   if (UC.cantUnwind()) {
11300     Error(L, ".personalityindex cannot be used with .cantunwind");
11301     UC.emitCantUnwindLocNotes();
11302     return true;
11303   }
11304   if (UC.hasHandlerData()) {
11305     Error(L, ".personalityindex must precede .handlerdata directive");
11306     UC.emitHandlerDataLocNotes();
11307     return true;
11308   }
11309   if (HasExistingPersonality) {
11310     Error(L, "multiple personality directives");
11311     UC.emitPersonalityLocNotes();
11312     return true;
11313   }
11314 
11315   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11316   if (!CE)
11317     return Error(IndexLoc, "index must be a constant number");
11318   if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11319     return Error(IndexLoc,
11320                  "personality routine index should be in range [0-3]");
11321 
11322   getTargetStreamer().emitPersonalityIndex(CE->getValue());
11323   return false;
11324 }
11325 
11326 /// parseDirectiveUnwindRaw
11327 ///   ::= .unwind_raw offset, opcode [, opcode...]
11328 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11329   MCAsmParser &Parser = getParser();
11330   int64_t StackOffset;
11331   const MCExpr *OffsetExpr;
11332   SMLoc OffsetLoc = getLexer().getLoc();
11333 
11334   if (!UC.hasFnStart())
11335     return Error(L, ".fnstart must precede .unwind_raw directives");
11336   if (getParser().parseExpression(OffsetExpr))
11337     return Error(OffsetLoc, "expected expression");
11338 
11339   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11340   if (!CE)
11341     return Error(OffsetLoc, "offset must be a constant");
11342 
11343   StackOffset = CE->getValue();
11344 
11345   if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11346     return true;
11347 
11348   SmallVector<uint8_t, 16> Opcodes;
11349 
11350   auto parseOne = [&]() -> bool {
11351     const MCExpr *OE;
11352     SMLoc OpcodeLoc = getLexer().getLoc();
11353     if (check(getLexer().is(AsmToken::EndOfStatement) ||
11354                   Parser.parseExpression(OE),
11355               OpcodeLoc, "expected opcode expression"))
11356       return true;
11357     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11358     if (!OC)
11359       return Error(OpcodeLoc, "opcode value must be a constant");
11360     const int64_t Opcode = OC->getValue();
11361     if (Opcode & ~0xff)
11362       return Error(OpcodeLoc, "invalid opcode");
11363     Opcodes.push_back(uint8_t(Opcode));
11364     return false;
11365   };
11366 
11367   // Must have at least 1 element
11368   SMLoc OpcodeLoc = getLexer().getLoc();
11369   if (parseOptionalToken(AsmToken::EndOfStatement))
11370     return Error(OpcodeLoc, "expected opcode expression");
11371   if (parseMany(parseOne))
11372     return true;
11373 
11374   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11375   return false;
11376 }
11377 
11378 /// parseDirectiveTLSDescSeq
11379 ///   ::= .tlsdescseq tls-variable
11380 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11381   MCAsmParser &Parser = getParser();
11382 
11383   if (getLexer().isNot(AsmToken::Identifier))
11384     return TokError("expected variable after '.tlsdescseq' directive");
11385 
11386   const MCSymbolRefExpr *SRE =
11387     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11388                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11389   Lex();
11390 
11391   if (parseToken(AsmToken::EndOfStatement,
11392                  "unexpected token in '.tlsdescseq' directive"))
11393     return true;
11394 
11395   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
11396   return false;
11397 }
11398 
11399 /// parseDirectiveMovSP
11400 ///  ::= .movsp reg [, #offset]
11401 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11402   MCAsmParser &Parser = getParser();
11403   if (!UC.hasFnStart())
11404     return Error(L, ".fnstart must precede .movsp directives");
11405   if (UC.getFPReg() != ARM::SP)
11406     return Error(L, "unexpected .movsp directive");
11407 
11408   SMLoc SPRegLoc = Parser.getTok().getLoc();
11409   int SPReg = tryParseRegister();
11410   if (SPReg == -1)
11411     return Error(SPRegLoc, "register expected");
11412   if (SPReg == ARM::SP || SPReg == ARM::PC)
11413     return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11414 
11415   int64_t Offset = 0;
11416   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11417     if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
11418       return true;
11419 
11420     const MCExpr *OffsetExpr;
11421     SMLoc OffsetLoc = Parser.getTok().getLoc();
11422 
11423     if (Parser.parseExpression(OffsetExpr))
11424       return Error(OffsetLoc, "malformed offset expression");
11425 
11426     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11427     if (!CE)
11428       return Error(OffsetLoc, "offset must be an immediate constant");
11429 
11430     Offset = CE->getValue();
11431   }
11432 
11433   if (parseToken(AsmToken::EndOfStatement,
11434                  "unexpected token in '.movsp' directive"))
11435     return true;
11436 
11437   getTargetStreamer().emitMovSP(SPReg, Offset);
11438   UC.saveFPReg(SPReg);
11439 
11440   return false;
11441 }
11442 
11443 /// parseDirectiveObjectArch
11444 ///   ::= .object_arch name
11445 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
11446   MCAsmParser &Parser = getParser();
11447   if (getLexer().isNot(AsmToken::Identifier))
11448     return Error(getLexer().getLoc(), "unexpected token");
11449 
11450   StringRef Arch = Parser.getTok().getString();
11451   SMLoc ArchLoc = Parser.getTok().getLoc();
11452   Lex();
11453 
11454   ARM::ArchKind ID = ARM::parseArch(Arch);
11455 
11456   if (ID == ARM::ArchKind::INVALID)
11457     return Error(ArchLoc, "unknown architecture '" + Arch + "'");
11458   if (parseToken(AsmToken::EndOfStatement))
11459     return true;
11460 
11461   getTargetStreamer().emitObjectArch(ID);
11462   return false;
11463 }
11464 
11465 /// parseDirectiveAlign
11466 ///   ::= .align
11467 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
11468   // NOTE: if this is not the end of the statement, fall back to the target
11469   // agnostic handling for this directive which will correctly handle this.
11470   if (parseOptionalToken(AsmToken::EndOfStatement)) {
11471     // '.align' is target specifically handled to mean 2**2 byte alignment.
11472     const MCSection *Section = getStreamer().getCurrentSectionOnly();
11473     assert(Section && "must have section to emit alignment");
11474     if (Section->UseCodeAlign())
11475       getStreamer().EmitCodeAlignment(4, 0);
11476     else
11477       getStreamer().EmitValueToAlignment(4, 0, 1, 0);
11478     return false;
11479   }
11480   return true;
11481 }
11482 
11483 /// parseDirectiveThumbSet
11484 ///  ::= .thumb_set name, value
11485 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
11486   MCAsmParser &Parser = getParser();
11487 
11488   StringRef Name;
11489   if (check(Parser.parseIdentifier(Name),
11490             "expected identifier after '.thumb_set'") ||
11491       parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
11492     return true;
11493 
11494   MCSymbol *Sym;
11495   const MCExpr *Value;
11496   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
11497                                                Parser, Sym, Value))
11498     return true;
11499 
11500   getTargetStreamer().emitThumbSet(Sym, Value);
11501   return false;
11502 }
11503 
11504 /// Force static initialization.
11505 extern "C" void LLVMInitializeARMAsmParser() {
11506   RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
11507   RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
11508   RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
11509   RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
11510 }
11511 
11512 #define GET_REGISTER_MATCHER
11513 #define GET_SUBTARGET_FEATURE_NAME
11514 #define GET_MATCHER_IMPLEMENTATION
11515 #define GET_MNEMONIC_SPELL_CHECKER
11516 #include "ARMGenAsmMatcher.inc"
11517 
11518 // Some diagnostics need to vary with subtarget features, so they are handled
11519 // here. For example, the DPR class has either 16 or 32 registers, depending
11520 // on the FPU available.
11521 const char *
11522 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
11523   switch (MatchError) {
11524   // rGPR contains sp starting with ARMv8.
11525   case Match_rGPR:
11526     return hasV8Ops() ? "operand must be a register in range [r0, r14]"
11527                       : "operand must be a register in range [r0, r12] or r14";
11528   // DPR contains 16 registers for some FPUs, and 32 for others.
11529   case Match_DPR:
11530     return hasD32() ? "operand must be a register in range [d0, d31]"
11531                     : "operand must be a register in range [d0, d15]";
11532   case Match_DPR_RegList:
11533     return hasD32() ? "operand must be a list of registers in range [d0, d31]"
11534                     : "operand must be a list of registers in range [d0, d15]";
11535 
11536   // For all other diags, use the static string from tablegen.
11537   default:
11538     return getMatchKindDiag(MatchError);
11539   }
11540 }
11541 
11542 // Process the list of near-misses, throwing away ones we don't want to report
11543 // to the user, and converting the rest to a source location and string that
11544 // should be reported.
11545 void
11546 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
11547                                SmallVectorImpl<NearMissMessage> &NearMissesOut,
11548                                SMLoc IDLoc, OperandVector &Operands) {
11549   // TODO: If operand didn't match, sub in a dummy one and run target
11550   // predicate, so that we can avoid reporting near-misses that are invalid?
11551   // TODO: Many operand types dont have SuperClasses set, so we report
11552   // redundant ones.
11553   // TODO: Some operands are superclasses of registers (e.g.
11554   // MCK_RegShiftedImm), we don't have any way to represent that currently.
11555   // TODO: This is not all ARM-specific, can some of it be factored out?
11556 
11557   // Record some information about near-misses that we have already seen, so
11558   // that we can avoid reporting redundant ones. For example, if there are
11559   // variants of an instruction that take 8- and 16-bit immediates, we want
11560   // to only report the widest one.
11561   std::multimap<unsigned, unsigned> OperandMissesSeen;
11562   SmallSet<FeatureBitset, 4> FeatureMissesSeen;
11563   bool ReportedTooFewOperands = false;
11564 
11565   // Process the near-misses in reverse order, so that we see more general ones
11566   // first, and so can avoid emitting more specific ones.
11567   for (NearMissInfo &I : reverse(NearMissesIn)) {
11568     switch (I.getKind()) {
11569     case NearMissInfo::NearMissOperand: {
11570       SMLoc OperandLoc =
11571           ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
11572       const char *OperandDiag =
11573           getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
11574 
11575       // If we have already emitted a message for a superclass, don't also report
11576       // the sub-class. We consider all operand classes that we don't have a
11577       // specialised diagnostic for to be equal for the propose of this check,
11578       // so that we don't report the generic error multiple times on the same
11579       // operand.
11580       unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
11581       auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
11582       if (std::any_of(PrevReports.first, PrevReports.second,
11583                       [DupCheckMatchClass](
11584                           const std::pair<unsigned, unsigned> Pair) {
11585             if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
11586               return Pair.second == DupCheckMatchClass;
11587             else
11588               return isSubclass((MatchClassKind)DupCheckMatchClass,
11589                                 (MatchClassKind)Pair.second);
11590           }))
11591         break;
11592       OperandMissesSeen.insert(
11593           std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
11594 
11595       NearMissMessage Message;
11596       Message.Loc = OperandLoc;
11597       if (OperandDiag) {
11598         Message.Message = OperandDiag;
11599       } else if (I.getOperandClass() == InvalidMatchClass) {
11600         Message.Message = "too many operands for instruction";
11601       } else {
11602         Message.Message = "invalid operand for instruction";
11603         LLVM_DEBUG(
11604             dbgs() << "Missing diagnostic string for operand class "
11605                    << getMatchClassName((MatchClassKind)I.getOperandClass())
11606                    << I.getOperandClass() << ", error " << I.getOperandError()
11607                    << ", opcode " << MII.getName(I.getOpcode()) << "\n");
11608       }
11609       NearMissesOut.emplace_back(Message);
11610       break;
11611     }
11612     case NearMissInfo::NearMissFeature: {
11613       const FeatureBitset &MissingFeatures = I.getFeatures();
11614       // Don't report the same set of features twice.
11615       if (FeatureMissesSeen.count(MissingFeatures))
11616         break;
11617       FeatureMissesSeen.insert(MissingFeatures);
11618 
11619       // Special case: don't report a feature set which includes arm-mode for
11620       // targets that don't have ARM mode.
11621       if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
11622         break;
11623       // Don't report any near-misses that both require switching instruction
11624       // set, and adding other subtarget features.
11625       if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
11626           MissingFeatures.count() > 1)
11627         break;
11628       if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
11629           MissingFeatures.count() > 1)
11630         break;
11631       if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
11632           (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
11633                                              Feature_IsThumbBit})).any())
11634         break;
11635       if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
11636         break;
11637 
11638       NearMissMessage Message;
11639       Message.Loc = IDLoc;
11640       raw_svector_ostream OS(Message.Message);
11641 
11642       OS << "instruction requires:";
11643       for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
11644         if (MissingFeatures.test(i))
11645           OS << ' ' << getSubtargetFeatureName(i);
11646 
11647       NearMissesOut.emplace_back(Message);
11648 
11649       break;
11650     }
11651     case NearMissInfo::NearMissPredicate: {
11652       NearMissMessage Message;
11653       Message.Loc = IDLoc;
11654       switch (I.getPredicateError()) {
11655       case Match_RequiresNotITBlock:
11656         Message.Message = "flag setting instruction only valid outside IT block";
11657         break;
11658       case Match_RequiresITBlock:
11659         Message.Message = "instruction only valid inside IT block";
11660         break;
11661       case Match_RequiresV6:
11662         Message.Message = "instruction variant requires ARMv6 or later";
11663         break;
11664       case Match_RequiresThumb2:
11665         Message.Message = "instruction variant requires Thumb2";
11666         break;
11667       case Match_RequiresV8:
11668         Message.Message = "instruction variant requires ARMv8 or later";
11669         break;
11670       case Match_RequiresFlagSetting:
11671         Message.Message = "no flag-preserving variant of this instruction available";
11672         break;
11673       case Match_InvalidOperand:
11674         Message.Message = "invalid operand for instruction";
11675         break;
11676       default:
11677         llvm_unreachable("Unhandled target predicate error");
11678         break;
11679       }
11680       NearMissesOut.emplace_back(Message);
11681       break;
11682     }
11683     case NearMissInfo::NearMissTooFewOperands: {
11684       if (!ReportedTooFewOperands) {
11685         SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
11686         NearMissesOut.emplace_back(NearMissMessage{
11687             EndLoc, StringRef("too few operands for instruction")});
11688         ReportedTooFewOperands = true;
11689       }
11690       break;
11691     }
11692     case NearMissInfo::NoNearMiss:
11693       // This should never leave the matcher.
11694       llvm_unreachable("not a near-miss");
11695       break;
11696     }
11697   }
11698 }
11699 
11700 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
11701                                     SMLoc IDLoc, OperandVector &Operands) {
11702   SmallVector<NearMissMessage, 4> Messages;
11703   FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
11704 
11705   if (Messages.size() == 0) {
11706     // No near-misses were found, so the best we can do is "invalid
11707     // instruction".
11708     Error(IDLoc, "invalid instruction");
11709   } else if (Messages.size() == 1) {
11710     // One near miss was found, report it as the sole error.
11711     Error(Messages[0].Loc, Messages[0].Message);
11712   } else {
11713     // More than one near miss, so report a generic "invalid instruction"
11714     // error, followed by notes for each of the near-misses.
11715     Error(IDLoc, "invalid instruction, any one of the following would fix this:");
11716     for (auto &M : Messages) {
11717       Note(M.Loc, M.Message);
11718     }
11719   }
11720 }
11721 
11722 /// parseDirectiveArchExtension
11723 ///   ::= .arch_extension [no]feature
11724 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
11725   // FIXME: This structure should be moved inside ARMTargetParser
11726   // when we start to table-generate them, and we can use the ARM
11727   // flags below, that were generated by table-gen.
11728   static const struct {
11729     const unsigned Kind;
11730     const FeatureBitset ArchCheck;
11731     const FeatureBitset Features;
11732   } Extensions[] = {
11733     { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} },
11734     { ARM::AEK_CRYPTO,  {Feature_HasV8Bit},
11735       {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
11736     { ARM::AEK_FP, {Feature_HasV8Bit},
11737       {ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} },
11738     { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
11739       {Feature_HasV7Bit, Feature_IsNotMClassBit},
11740       {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
11741     { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit},
11742       {ARM::FeatureMP} },
11743     { ARM::AEK_SIMD, {Feature_HasV8Bit},
11744       {ARM::FeatureNEON, ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} },
11745     { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} },
11746     // FIXME: Only available in A-class, isel not predicated
11747     { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} },
11748     { ARM::AEK_FP16, {Feature_HasV8_2aBit},
11749       {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
11750     { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} },
11751     { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} },
11752     // FIXME: Unsupported extensions.
11753     { ARM::AEK_OS, {}, {} },
11754     { ARM::AEK_IWMMXT, {}, {} },
11755     { ARM::AEK_IWMMXT2, {}, {} },
11756     { ARM::AEK_MAVERICK, {}, {} },
11757     { ARM::AEK_XSCALE, {}, {} },
11758   };
11759 
11760   MCAsmParser &Parser = getParser();
11761 
11762   if (getLexer().isNot(AsmToken::Identifier))
11763     return Error(getLexer().getLoc(), "expected architecture extension name");
11764 
11765   StringRef Name = Parser.getTok().getString();
11766   SMLoc ExtLoc = Parser.getTok().getLoc();
11767   Lex();
11768 
11769   if (parseToken(AsmToken::EndOfStatement,
11770                  "unexpected token in '.arch_extension' directive"))
11771     return true;
11772 
11773   bool EnableFeature = true;
11774   if (Name.startswith_lower("no")) {
11775     EnableFeature = false;
11776     Name = Name.substr(2);
11777   }
11778   unsigned FeatureKind = ARM::parseArchExt(Name);
11779   if (FeatureKind == ARM::AEK_INVALID)
11780     return Error(ExtLoc, "unknown architectural extension: " + Name);
11781 
11782   for (const auto &Extension : Extensions) {
11783     if (Extension.Kind != FeatureKind)
11784       continue;
11785 
11786     if (Extension.Features.none())
11787       return Error(ExtLoc, "unsupported architectural extension: " + Name);
11788 
11789     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
11790       return Error(ExtLoc, "architectural extension '" + Name +
11791                                "' is not "
11792                                "allowed for the current base architecture");
11793 
11794     MCSubtargetInfo &STI = copySTI();
11795     if (EnableFeature) {
11796       STI.SetFeatureBitsTransitively(Extension.Features);
11797     } else {
11798       STI.ClearFeatureBitsTransitively(Extension.Features);
11799     }
11800     FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
11801     setAvailableFeatures(Features);
11802     return false;
11803   }
11804 
11805   return Error(ExtLoc, "unknown architectural extension: " + Name);
11806 }
11807 
11808 // Define this matcher function after the auto-generated include so we
11809 // have the match class enum definitions.
11810 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
11811                                                   unsigned Kind) {
11812   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
11813   // If the kind is a token for a literal immediate, check if our asm
11814   // operand matches. This is for InstAliases which have a fixed-value
11815   // immediate in the syntax.
11816   switch (Kind) {
11817   default: break;
11818   case MCK__35_0:
11819     if (Op.isImm())
11820       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11821         if (CE->getValue() == 0)
11822           return Match_Success;
11823     break;
11824   case MCK__35_8:
11825     if (Op.isImm())
11826       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11827         if (CE->getValue() == 8)
11828           return Match_Success;
11829     break;
11830   case MCK__35_16:
11831     if (Op.isImm())
11832       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11833         if (CE->getValue() == 16)
11834           return Match_Success;
11835     break;
11836   case MCK_ModImm:
11837     if (Op.isImm()) {
11838       const MCExpr *SOExpr = Op.getImm();
11839       int64_t Value;
11840       if (!SOExpr->evaluateAsAbsolute(Value))
11841         return Match_Success;
11842       assert((Value >= std::numeric_limits<int32_t>::min() &&
11843               Value <= std::numeric_limits<uint32_t>::max()) &&
11844              "expression value must be representable in 32 bits");
11845     }
11846     break;
11847   case MCK_rGPR:
11848     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
11849       return Match_Success;
11850     return Match_rGPR;
11851   case MCK_GPRPair:
11852     if (Op.isReg() &&
11853         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
11854       return Match_Success;
11855     break;
11856   }
11857   return Match_InvalidOperand;
11858 }
11859 
11860 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
11861                                            StringRef ExtraToken) {
11862   if (!hasMVE())
11863     return false;
11864 
11865   return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
11866          Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
11867          Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
11868          Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
11869          Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
11870          Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
11871          Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
11872          Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
11873          Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
11874          Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
11875          Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
11876          Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
11877          Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
11878          Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
11879          Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
11880          Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
11881          Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
11882          Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
11883          Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
11884          Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
11885          Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
11886          Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
11887          Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
11888          Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
11889          Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
11890          Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
11891          Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
11892          Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
11893          Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
11894          Mnemonic.startswith("vqabs") ||
11895          (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
11896          Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
11897          Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
11898          Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
11899          Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
11900          Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
11901          Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
11902          Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
11903          Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
11904          Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
11905          Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
11906          Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
11907          Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
11908          Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
11909          Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
11910          Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
11911          Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
11912          Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
11913          Mnemonic.startswith("vldrb") ||
11914          (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
11915          (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
11916          Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
11917          Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
11918          Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
11919          Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
11920          Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
11921          Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
11922          Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
11923          Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
11924          Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
11925          Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
11926          Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
11927          Mnemonic.startswith("vcvt") ||
11928          (Mnemonic.startswith("vmov") &&
11929           !(ExtraToken == ".f16" || ExtraToken == ".32" ||
11930             ExtraToken == ".16" || ExtraToken == ".8"));
11931 }
11932