1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetParser.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Support/raw_ostream.h" 51 52 using namespace llvm; 53 54 namespace { 55 56 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 57 58 static cl::opt<ImplicitItModeTy> ImplicitItMode( 59 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 60 cl::desc("Allow conditional instructions outdside of an IT block"), 61 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 62 "Accept in both ISAs, emit implicit ITs in Thumb"), 63 clEnumValN(ImplicitItModeTy::Never, "never", 64 "Warn in ARM, reject in Thumb"), 65 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 66 "Accept in ARM, reject in Thumb"), 67 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 68 "Warn in ARM, emit implicit ITs in Thumb"))); 69 70 class ARMOperand; 71 72 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 73 74 class UnwindContext { 75 MCAsmParser &Parser; 76 77 typedef SmallVector<SMLoc, 4> Locs; 78 79 Locs FnStartLocs; 80 Locs CantUnwindLocs; 81 Locs PersonalityLocs; 82 Locs PersonalityIndexLocs; 83 Locs HandlerDataLocs; 84 int FPReg; 85 86 public: 87 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 88 89 bool hasFnStart() const { return !FnStartLocs.empty(); } 90 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 91 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 92 bool hasPersonality() const { 93 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 94 } 95 96 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 97 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 98 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 99 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 100 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 101 102 void saveFPReg(int Reg) { FPReg = Reg; } 103 int getFPReg() const { return FPReg; } 104 105 void emitFnStartLocNotes() const { 106 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 107 FI != FE; ++FI) 108 Parser.Note(*FI, ".fnstart was specified here"); 109 } 110 void emitCantUnwindLocNotes() const { 111 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 112 UE = CantUnwindLocs.end(); UI != UE; ++UI) 113 Parser.Note(*UI, ".cantunwind was specified here"); 114 } 115 void emitHandlerDataLocNotes() const { 116 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 117 HE = HandlerDataLocs.end(); HI != HE; ++HI) 118 Parser.Note(*HI, ".handlerdata was specified here"); 119 } 120 void emitPersonalityLocNotes() const { 121 for (Locs::const_iterator PI = PersonalityLocs.begin(), 122 PE = PersonalityLocs.end(), 123 PII = PersonalityIndexLocs.begin(), 124 PIE = PersonalityIndexLocs.end(); 125 PI != PE || PII != PIE;) { 126 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 127 Parser.Note(*PI++, ".personality was specified here"); 128 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 129 Parser.Note(*PII++, ".personalityindex was specified here"); 130 else 131 llvm_unreachable(".personality and .personalityindex cannot be " 132 "at the same location"); 133 } 134 } 135 136 void reset() { 137 FnStartLocs = Locs(); 138 CantUnwindLocs = Locs(); 139 PersonalityLocs = Locs(); 140 HandlerDataLocs = Locs(); 141 PersonalityIndexLocs = Locs(); 142 FPReg = ARM::SP; 143 } 144 }; 145 146 class ARMAsmParser : public MCTargetAsmParser { 147 const MCInstrInfo &MII; 148 const MCRegisterInfo *MRI; 149 UnwindContext UC; 150 151 ARMTargetStreamer &getTargetStreamer() { 152 assert(getParser().getStreamer().getTargetStreamer() && 153 "do not have a target streamer"); 154 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 155 return static_cast<ARMTargetStreamer &>(TS); 156 } 157 158 // Map of register aliases registers via the .req directive. 159 StringMap<unsigned> RegisterReqs; 160 161 bool NextSymbolIsThumb; 162 163 bool useImplicitITThumb() const { 164 return ImplicitItMode == ImplicitItModeTy::Always || 165 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 166 } 167 168 bool useImplicitITARM() const { 169 return ImplicitItMode == ImplicitItModeTy::Always || 170 ImplicitItMode == ImplicitItModeTy::ARMOnly; 171 } 172 173 struct { 174 ARMCC::CondCodes Cond; // Condition for IT block. 175 unsigned Mask:4; // Condition mask for instructions. 176 // Starting at first 1 (from lsb). 177 // '1' condition as indicated in IT. 178 // '0' inverse of condition (else). 179 // Count of instructions in IT block is 180 // 4 - trailingzeroes(mask) 181 // Note that this does not have the same encoding 182 // as in the IT instruction, which also depends 183 // on the low bit of the condition code. 184 185 unsigned CurPosition; // Current position in parsing of IT 186 // block. In range [0,4], with 0 being the IT 187 // instruction itself. Initialized according to 188 // count of instructions in block. ~0U if no 189 // active IT block. 190 191 bool IsExplicit; // true - The IT instruction was present in the 192 // input, we should not modify it. 193 // false - The IT instruction was added 194 // implicitly, we can extend it if that 195 // would be legal. 196 } ITState; 197 198 llvm::SmallVector<MCInst, 4> PendingConditionalInsts; 199 200 void flushPendingInstructions(MCStreamer &Out) override { 201 if (!inImplicitITBlock()) { 202 assert(PendingConditionalInsts.size() == 0); 203 return; 204 } 205 206 // Emit the IT instruction 207 unsigned Mask = getITMaskEncoding(); 208 MCInst ITInst; 209 ITInst.setOpcode(ARM::t2IT); 210 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 211 ITInst.addOperand(MCOperand::createImm(Mask)); 212 Out.EmitInstruction(ITInst, getSTI()); 213 214 // Emit the conditonal instructions 215 assert(PendingConditionalInsts.size() <= 4); 216 for (const MCInst &Inst : PendingConditionalInsts) { 217 Out.EmitInstruction(Inst, getSTI()); 218 } 219 PendingConditionalInsts.clear(); 220 221 // Clear the IT state 222 ITState.Mask = 0; 223 ITState.CurPosition = ~0U; 224 } 225 226 bool inITBlock() { return ITState.CurPosition != ~0U; } 227 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 228 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 229 bool lastInITBlock() { 230 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 231 } 232 void forwardITPosition() { 233 if (!inITBlock()) return; 234 // Move to the next instruction in the IT block, if there is one. If not, 235 // mark the block as done, except for implicit IT blocks, which we leave 236 // open until we find an instruction that can't be added to it. 237 unsigned TZ = countTrailingZeros(ITState.Mask); 238 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 239 ITState.CurPosition = ~0U; // Done with the IT block after this. 240 } 241 242 // Rewind the state of the current IT block, removing the last slot from it. 243 void rewindImplicitITPosition() { 244 assert(inImplicitITBlock()); 245 assert(ITState.CurPosition > 1); 246 ITState.CurPosition--; 247 unsigned TZ = countTrailingZeros(ITState.Mask); 248 unsigned NewMask = 0; 249 NewMask |= ITState.Mask & (0xC << TZ); 250 NewMask |= 0x2 << TZ; 251 ITState.Mask = NewMask; 252 } 253 254 // Rewind the state of the current IT block, removing the last slot from it. 255 // If we were at the first slot, this closes the IT block. 256 void discardImplicitITBlock() { 257 assert(inImplicitITBlock()); 258 assert(ITState.CurPosition == 1); 259 ITState.CurPosition = ~0U; 260 return; 261 } 262 263 // Get the encoding of the IT mask, as it will appear in an IT instruction. 264 unsigned getITMaskEncoding() { 265 assert(inITBlock()); 266 unsigned Mask = ITState.Mask; 267 unsigned TZ = countTrailingZeros(Mask); 268 if ((ITState.Cond & 1) == 0) { 269 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 270 Mask ^= (0xE << TZ) & 0xF; 271 } 272 return Mask; 273 } 274 275 // Get the condition code corresponding to the current IT block slot. 276 ARMCC::CondCodes currentITCond() { 277 unsigned MaskBit; 278 if (ITState.CurPosition == 1) 279 MaskBit = 1; 280 else 281 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 282 283 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 284 } 285 286 // Invert the condition of the current IT block slot without changing any 287 // other slots in the same block. 288 void invertCurrentITCondition() { 289 if (ITState.CurPosition == 1) { 290 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 291 } else { 292 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 293 } 294 } 295 296 // Returns true if the current IT block is full (all 4 slots used). 297 bool isITBlockFull() { 298 return inITBlock() && (ITState.Mask & 1); 299 } 300 301 // Extend the current implicit IT block to have one more slot with the given 302 // condition code. 303 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 304 assert(inImplicitITBlock()); 305 assert(!isITBlockFull()); 306 assert(Cond == ITState.Cond || 307 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 308 unsigned TZ = countTrailingZeros(ITState.Mask); 309 unsigned NewMask = 0; 310 // Keep any existing condition bits. 311 NewMask |= ITState.Mask & (0xE << TZ); 312 // Insert the new condition bit. 313 NewMask |= (Cond == ITState.Cond) << TZ; 314 // Move the trailing 1 down one bit. 315 NewMask |= 1 << (TZ - 1); 316 ITState.Mask = NewMask; 317 } 318 319 // Create a new implicit IT block with a dummy condition code. 320 void startImplicitITBlock() { 321 assert(!inITBlock()); 322 ITState.Cond = ARMCC::AL; 323 ITState.Mask = 8; 324 ITState.CurPosition = 1; 325 ITState.IsExplicit = false; 326 return; 327 } 328 329 // Create a new explicit IT block with the given condition and mask. The mask 330 // should be in the parsed format, with a 1 implying 't', regardless of the 331 // low bit of the condition. 332 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 333 assert(!inITBlock()); 334 ITState.Cond = Cond; 335 ITState.Mask = Mask; 336 ITState.CurPosition = 0; 337 ITState.IsExplicit = true; 338 return; 339 } 340 341 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 342 return getParser().Note(L, Msg, Range); 343 } 344 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 345 return getParser().Warning(L, Msg, Range); 346 } 347 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 348 return getParser().Error(L, Msg, Range); 349 } 350 351 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 352 unsigned ListNo, bool IsARPop = false); 353 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 354 unsigned ListNo); 355 356 int tryParseRegister(); 357 bool tryParseRegisterWithWriteBack(OperandVector &); 358 int tryParseShiftRegister(OperandVector &); 359 bool parseRegisterList(OperandVector &); 360 bool parseMemory(OperandVector &); 361 bool parseOperand(OperandVector &, StringRef Mnemonic); 362 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 363 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 364 unsigned &ShiftAmount); 365 bool parseLiteralValues(unsigned Size, SMLoc L); 366 bool parseDirectiveThumb(SMLoc L); 367 bool parseDirectiveARM(SMLoc L); 368 bool parseDirectiveThumbFunc(SMLoc L); 369 bool parseDirectiveCode(SMLoc L); 370 bool parseDirectiveSyntax(SMLoc L); 371 bool parseDirectiveReq(StringRef Name, SMLoc L); 372 bool parseDirectiveUnreq(SMLoc L); 373 bool parseDirectiveArch(SMLoc L); 374 bool parseDirectiveEabiAttr(SMLoc L); 375 bool parseDirectiveCPU(SMLoc L); 376 bool parseDirectiveFPU(SMLoc L); 377 bool parseDirectiveFnStart(SMLoc L); 378 bool parseDirectiveFnEnd(SMLoc L); 379 bool parseDirectiveCantUnwind(SMLoc L); 380 bool parseDirectivePersonality(SMLoc L); 381 bool parseDirectiveHandlerData(SMLoc L); 382 bool parseDirectiveSetFP(SMLoc L); 383 bool parseDirectivePad(SMLoc L); 384 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 385 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 386 bool parseDirectiveLtorg(SMLoc L); 387 bool parseDirectiveEven(SMLoc L); 388 bool parseDirectivePersonalityIndex(SMLoc L); 389 bool parseDirectiveUnwindRaw(SMLoc L); 390 bool parseDirectiveTLSDescSeq(SMLoc L); 391 bool parseDirectiveMovSP(SMLoc L); 392 bool parseDirectiveObjectArch(SMLoc L); 393 bool parseDirectiveArchExtension(SMLoc L); 394 bool parseDirectiveAlign(SMLoc L); 395 bool parseDirectiveThumbSet(SMLoc L); 396 397 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 398 bool &CarrySetting, unsigned &ProcessorIMod, 399 StringRef &ITMask); 400 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 401 bool &CanAcceptCarrySet, 402 bool &CanAcceptPredicationCode); 403 404 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 405 OperandVector &Operands); 406 bool isThumb() const { 407 // FIXME: Can tablegen auto-generate this? 408 return getSTI().getFeatureBits()[ARM::ModeThumb]; 409 } 410 bool isThumbOne() const { 411 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 412 } 413 bool isThumbTwo() const { 414 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 415 } 416 bool hasThumb() const { 417 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 418 } 419 bool hasThumb2() const { 420 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 421 } 422 bool hasV6Ops() const { 423 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 424 } 425 bool hasV6T2Ops() const { 426 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 427 } 428 bool hasV6MOps() const { 429 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 430 } 431 bool hasV7Ops() const { 432 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 433 } 434 bool hasV8Ops() const { 435 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 436 } 437 bool hasV8MBaseline() const { 438 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 439 } 440 bool hasV8MMainline() const { 441 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 442 } 443 bool has8MSecExt() const { 444 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 445 } 446 bool hasARM() const { 447 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 448 } 449 bool hasDSP() const { 450 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 451 } 452 bool hasD16() const { 453 return getSTI().getFeatureBits()[ARM::FeatureD16]; 454 } 455 bool hasV8_1aOps() const { 456 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 457 } 458 bool hasRAS() const { 459 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 460 } 461 462 void SwitchMode() { 463 MCSubtargetInfo &STI = copySTI(); 464 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 465 setAvailableFeatures(FB); 466 } 467 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 468 bool isMClass() const { 469 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 470 } 471 472 /// @name Auto-generated Match Functions 473 /// { 474 475 #define GET_ASSEMBLER_HEADER 476 #include "ARMGenAsmMatcher.inc" 477 478 /// } 479 480 OperandMatchResultTy parseITCondCode(OperandVector &); 481 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 482 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 483 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 484 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 485 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 486 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 487 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 488 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 489 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 490 int High); 491 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 492 return parsePKHImm(O, "lsl", 0, 31); 493 } 494 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 495 return parsePKHImm(O, "asr", 1, 32); 496 } 497 OperandMatchResultTy parseSetEndImm(OperandVector &); 498 OperandMatchResultTy parseShifterImm(OperandVector &); 499 OperandMatchResultTy parseRotImm(OperandVector &); 500 OperandMatchResultTy parseModImm(OperandVector &); 501 OperandMatchResultTy parseBitfield(OperandVector &); 502 OperandMatchResultTy parsePostIdxReg(OperandVector &); 503 OperandMatchResultTy parseAM3Offset(OperandVector &); 504 OperandMatchResultTy parseFPImm(OperandVector &); 505 OperandMatchResultTy parseVectorList(OperandVector &); 506 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 507 SMLoc &EndLoc); 508 509 // Asm Match Converter Methods 510 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 511 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 512 513 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 514 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 515 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 516 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 517 bool isITBlockTerminator(MCInst &Inst) const; 518 519 public: 520 enum ARMMatchResultTy { 521 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 522 Match_RequiresNotITBlock, 523 Match_RequiresV6, 524 Match_RequiresThumb2, 525 Match_RequiresV8, 526 #define GET_OPERAND_DIAGNOSTIC_TYPES 527 #include "ARMGenAsmMatcher.inc" 528 529 }; 530 531 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 532 const MCInstrInfo &MII, const MCTargetOptions &Options) 533 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 534 MCAsmParserExtension::Initialize(Parser); 535 536 // Cache the MCRegisterInfo. 537 MRI = getContext().getRegisterInfo(); 538 539 // Initialize the set of available features. 540 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 541 542 // Not in an ITBlock to start with. 543 ITState.CurPosition = ~0U; 544 545 NextSymbolIsThumb = false; 546 } 547 548 // Implementation of the MCTargetAsmParser interface: 549 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 550 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 551 SMLoc NameLoc, OperandVector &Operands) override; 552 bool ParseDirective(AsmToken DirectiveID) override; 553 554 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 555 unsigned Kind) override; 556 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 557 558 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 559 OperandVector &Operands, MCStreamer &Out, 560 uint64_t &ErrorInfo, 561 bool MatchingInlineAsm) override; 562 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 563 uint64_t &ErrorInfo, bool MatchingInlineAsm, 564 bool &EmitInITBlock, MCStreamer &Out); 565 void onLabelParsed(MCSymbol *Symbol) override; 566 }; 567 } // end anonymous namespace 568 569 namespace { 570 571 /// ARMOperand - Instances of this class represent a parsed ARM machine 572 /// operand. 573 class ARMOperand : public MCParsedAsmOperand { 574 enum KindTy { 575 k_CondCode, 576 k_CCOut, 577 k_ITCondMask, 578 k_CoprocNum, 579 k_CoprocReg, 580 k_CoprocOption, 581 k_Immediate, 582 k_MemBarrierOpt, 583 k_InstSyncBarrierOpt, 584 k_Memory, 585 k_PostIndexRegister, 586 k_MSRMask, 587 k_BankedReg, 588 k_ProcIFlags, 589 k_VectorIndex, 590 k_Register, 591 k_RegisterList, 592 k_DPRRegisterList, 593 k_SPRRegisterList, 594 k_VectorList, 595 k_VectorListAllLanes, 596 k_VectorListIndexed, 597 k_ShiftedRegister, 598 k_ShiftedImmediate, 599 k_ShifterImmediate, 600 k_RotateImmediate, 601 k_ModifiedImmediate, 602 k_ConstantPoolImmediate, 603 k_BitfieldDescriptor, 604 k_Token, 605 } Kind; 606 607 SMLoc StartLoc, EndLoc, AlignmentLoc; 608 SmallVector<unsigned, 8> Registers; 609 610 struct CCOp { 611 ARMCC::CondCodes Val; 612 }; 613 614 struct CopOp { 615 unsigned Val; 616 }; 617 618 struct CoprocOptionOp { 619 unsigned Val; 620 }; 621 622 struct ITMaskOp { 623 unsigned Mask:4; 624 }; 625 626 struct MBOptOp { 627 ARM_MB::MemBOpt Val; 628 }; 629 630 struct ISBOptOp { 631 ARM_ISB::InstSyncBOpt Val; 632 }; 633 634 struct IFlagsOp { 635 ARM_PROC::IFlags Val; 636 }; 637 638 struct MMaskOp { 639 unsigned Val; 640 }; 641 642 struct BankedRegOp { 643 unsigned Val; 644 }; 645 646 struct TokOp { 647 const char *Data; 648 unsigned Length; 649 }; 650 651 struct RegOp { 652 unsigned RegNum; 653 }; 654 655 // A vector register list is a sequential list of 1 to 4 registers. 656 struct VectorListOp { 657 unsigned RegNum; 658 unsigned Count; 659 unsigned LaneIndex; 660 bool isDoubleSpaced; 661 }; 662 663 struct VectorIndexOp { 664 unsigned Val; 665 }; 666 667 struct ImmOp { 668 const MCExpr *Val; 669 }; 670 671 /// Combined record for all forms of ARM address expressions. 672 struct MemoryOp { 673 unsigned BaseRegNum; 674 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 675 // was specified. 676 const MCConstantExpr *OffsetImm; // Offset immediate value 677 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 678 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 679 unsigned ShiftImm; // shift for OffsetReg. 680 unsigned Alignment; // 0 = no alignment specified 681 // n = alignment in bytes (2, 4, 8, 16, or 32) 682 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 683 }; 684 685 struct PostIdxRegOp { 686 unsigned RegNum; 687 bool isAdd; 688 ARM_AM::ShiftOpc ShiftTy; 689 unsigned ShiftImm; 690 }; 691 692 struct ShifterImmOp { 693 bool isASR; 694 unsigned Imm; 695 }; 696 697 struct RegShiftedRegOp { 698 ARM_AM::ShiftOpc ShiftTy; 699 unsigned SrcReg; 700 unsigned ShiftReg; 701 unsigned ShiftImm; 702 }; 703 704 struct RegShiftedImmOp { 705 ARM_AM::ShiftOpc ShiftTy; 706 unsigned SrcReg; 707 unsigned ShiftImm; 708 }; 709 710 struct RotImmOp { 711 unsigned Imm; 712 }; 713 714 struct ModImmOp { 715 unsigned Bits; 716 unsigned Rot; 717 }; 718 719 struct BitfieldOp { 720 unsigned LSB; 721 unsigned Width; 722 }; 723 724 union { 725 struct CCOp CC; 726 struct CopOp Cop; 727 struct CoprocOptionOp CoprocOption; 728 struct MBOptOp MBOpt; 729 struct ISBOptOp ISBOpt; 730 struct ITMaskOp ITMask; 731 struct IFlagsOp IFlags; 732 struct MMaskOp MMask; 733 struct BankedRegOp BankedReg; 734 struct TokOp Tok; 735 struct RegOp Reg; 736 struct VectorListOp VectorList; 737 struct VectorIndexOp VectorIndex; 738 struct ImmOp Imm; 739 struct MemoryOp Memory; 740 struct PostIdxRegOp PostIdxReg; 741 struct ShifterImmOp ShifterImm; 742 struct RegShiftedRegOp RegShiftedReg; 743 struct RegShiftedImmOp RegShiftedImm; 744 struct RotImmOp RotImm; 745 struct ModImmOp ModImm; 746 struct BitfieldOp Bitfield; 747 }; 748 749 public: 750 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 751 752 /// getStartLoc - Get the location of the first token of this operand. 753 SMLoc getStartLoc() const override { return StartLoc; } 754 /// getEndLoc - Get the location of the last token of this operand. 755 SMLoc getEndLoc() const override { return EndLoc; } 756 /// getLocRange - Get the range between the first and last token of this 757 /// operand. 758 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 759 760 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 761 SMLoc getAlignmentLoc() const { 762 assert(Kind == k_Memory && "Invalid access!"); 763 return AlignmentLoc; 764 } 765 766 ARMCC::CondCodes getCondCode() const { 767 assert(Kind == k_CondCode && "Invalid access!"); 768 return CC.Val; 769 } 770 771 unsigned getCoproc() const { 772 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 773 return Cop.Val; 774 } 775 776 StringRef getToken() const { 777 assert(Kind == k_Token && "Invalid access!"); 778 return StringRef(Tok.Data, Tok.Length); 779 } 780 781 unsigned getReg() const override { 782 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 783 return Reg.RegNum; 784 } 785 786 const SmallVectorImpl<unsigned> &getRegList() const { 787 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 788 Kind == k_SPRRegisterList) && "Invalid access!"); 789 return Registers; 790 } 791 792 const MCExpr *getImm() const { 793 assert(isImm() && "Invalid access!"); 794 return Imm.Val; 795 } 796 797 const MCExpr *getConstantPoolImm() const { 798 assert(isConstantPoolImm() && "Invalid access!"); 799 return Imm.Val; 800 } 801 802 unsigned getVectorIndex() const { 803 assert(Kind == k_VectorIndex && "Invalid access!"); 804 return VectorIndex.Val; 805 } 806 807 ARM_MB::MemBOpt getMemBarrierOpt() const { 808 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 809 return MBOpt.Val; 810 } 811 812 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 813 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 814 return ISBOpt.Val; 815 } 816 817 ARM_PROC::IFlags getProcIFlags() const { 818 assert(Kind == k_ProcIFlags && "Invalid access!"); 819 return IFlags.Val; 820 } 821 822 unsigned getMSRMask() const { 823 assert(Kind == k_MSRMask && "Invalid access!"); 824 return MMask.Val; 825 } 826 827 unsigned getBankedReg() const { 828 assert(Kind == k_BankedReg && "Invalid access!"); 829 return BankedReg.Val; 830 } 831 832 bool isCoprocNum() const { return Kind == k_CoprocNum; } 833 bool isCoprocReg() const { return Kind == k_CoprocReg; } 834 bool isCoprocOption() const { return Kind == k_CoprocOption; } 835 bool isCondCode() const { return Kind == k_CondCode; } 836 bool isCCOut() const { return Kind == k_CCOut; } 837 bool isITMask() const { return Kind == k_ITCondMask; } 838 bool isITCondCode() const { return Kind == k_CondCode; } 839 bool isImm() const override { 840 return Kind == k_Immediate; 841 } 842 843 bool isARMBranchTarget() const { 844 if (!isImm()) return false; 845 846 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 847 return CE->getValue() % 4 == 0; 848 return true; 849 } 850 851 852 bool isThumbBranchTarget() const { 853 if (!isImm()) return false; 854 855 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 856 return CE->getValue() % 2 == 0; 857 return true; 858 } 859 860 // checks whether this operand is an unsigned offset which fits is a field 861 // of specified width and scaled by a specific number of bits 862 template<unsigned width, unsigned scale> 863 bool isUnsignedOffset() const { 864 if (!isImm()) return false; 865 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 866 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 867 int64_t Val = CE->getValue(); 868 int64_t Align = 1LL << scale; 869 int64_t Max = Align * ((1LL << width) - 1); 870 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 871 } 872 return false; 873 } 874 // checks whether this operand is an signed offset which fits is a field 875 // of specified width and scaled by a specific number of bits 876 template<unsigned width, unsigned scale> 877 bool isSignedOffset() const { 878 if (!isImm()) return false; 879 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 880 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 881 int64_t Val = CE->getValue(); 882 int64_t Align = 1LL << scale; 883 int64_t Max = Align * ((1LL << (width-1)) - 1); 884 int64_t Min = -Align * (1LL << (width-1)); 885 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 886 } 887 return false; 888 } 889 890 // checks whether this operand is a memory operand computed as an offset 891 // applied to PC. the offset may have 8 bits of magnitude and is represented 892 // with two bits of shift. textually it may be either [pc, #imm], #imm or 893 // relocable expression... 894 bool isThumbMemPC() const { 895 int64_t Val = 0; 896 if (isImm()) { 897 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 898 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 899 if (!CE) return false; 900 Val = CE->getValue(); 901 } 902 else if (isMem()) { 903 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 904 if(Memory.BaseRegNum != ARM::PC) return false; 905 Val = Memory.OffsetImm->getValue(); 906 } 907 else return false; 908 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 909 } 910 bool isFPImm() const { 911 if (!isImm()) return false; 912 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 913 if (!CE) return false; 914 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 915 return Val != -1; 916 } 917 bool isFBits16() const { 918 if (!isImm()) return false; 919 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 920 if (!CE) return false; 921 int64_t Value = CE->getValue(); 922 return Value >= 0 && Value <= 16; 923 } 924 bool isFBits32() const { 925 if (!isImm()) return false; 926 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 927 if (!CE) return false; 928 int64_t Value = CE->getValue(); 929 return Value >= 1 && Value <= 32; 930 } 931 bool isImm8s4() const { 932 if (!isImm()) return false; 933 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 934 if (!CE) return false; 935 int64_t Value = CE->getValue(); 936 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 937 } 938 bool isImm0_1020s4() const { 939 if (!isImm()) return false; 940 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 941 if (!CE) return false; 942 int64_t Value = CE->getValue(); 943 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 944 } 945 bool isImm0_508s4() const { 946 if (!isImm()) return false; 947 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 948 if (!CE) return false; 949 int64_t Value = CE->getValue(); 950 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 951 } 952 bool isImm0_508s4Neg() const { 953 if (!isImm()) return false; 954 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 955 if (!CE) return false; 956 int64_t Value = -CE->getValue(); 957 // explicitly exclude zero. we want that to use the normal 0_508 version. 958 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 959 } 960 bool isImm0_239() const { 961 if (!isImm()) return false; 962 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 963 if (!CE) return false; 964 int64_t Value = CE->getValue(); 965 return Value >= 0 && Value < 240; 966 } 967 bool isImm0_255() const { 968 if (!isImm()) return false; 969 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 970 if (!CE) return false; 971 int64_t Value = CE->getValue(); 972 return Value >= 0 && Value < 256; 973 } 974 bool isImm0_4095() const { 975 if (!isImm()) return false; 976 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 977 if (!CE) return false; 978 int64_t Value = CE->getValue(); 979 return Value >= 0 && Value < 4096; 980 } 981 bool isImm0_4095Neg() const { 982 if (!isImm()) return false; 983 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 984 if (!CE) return false; 985 int64_t Value = -CE->getValue(); 986 return Value > 0 && Value < 4096; 987 } 988 bool isImm0_1() const { 989 if (!isImm()) return false; 990 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 991 if (!CE) return false; 992 int64_t Value = CE->getValue(); 993 return Value >= 0 && Value < 2; 994 } 995 bool isImm0_3() const { 996 if (!isImm()) return false; 997 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 998 if (!CE) return false; 999 int64_t Value = CE->getValue(); 1000 return Value >= 0 && Value < 4; 1001 } 1002 bool isImm0_7() const { 1003 if (!isImm()) return false; 1004 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1005 if (!CE) return false; 1006 int64_t Value = CE->getValue(); 1007 return Value >= 0 && Value < 8; 1008 } 1009 bool isImm0_15() const { 1010 if (!isImm()) return false; 1011 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1012 if (!CE) return false; 1013 int64_t Value = CE->getValue(); 1014 return Value >= 0 && Value < 16; 1015 } 1016 bool isImm0_31() const { 1017 if (!isImm()) return false; 1018 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1019 if (!CE) return false; 1020 int64_t Value = CE->getValue(); 1021 return Value >= 0 && Value < 32; 1022 } 1023 bool isImm0_63() const { 1024 if (!isImm()) return false; 1025 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1026 if (!CE) return false; 1027 int64_t Value = CE->getValue(); 1028 return Value >= 0 && Value < 64; 1029 } 1030 bool isImm8() const { 1031 if (!isImm()) return false; 1032 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1033 if (!CE) return false; 1034 int64_t Value = CE->getValue(); 1035 return Value == 8; 1036 } 1037 bool isImm16() const { 1038 if (!isImm()) return false; 1039 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1040 if (!CE) return false; 1041 int64_t Value = CE->getValue(); 1042 return Value == 16; 1043 } 1044 bool isImm32() const { 1045 if (!isImm()) return false; 1046 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1047 if (!CE) return false; 1048 int64_t Value = CE->getValue(); 1049 return Value == 32; 1050 } 1051 bool isShrImm8() const { 1052 if (!isImm()) return false; 1053 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1054 if (!CE) return false; 1055 int64_t Value = CE->getValue(); 1056 return Value > 0 && Value <= 8; 1057 } 1058 bool isShrImm16() const { 1059 if (!isImm()) return false; 1060 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1061 if (!CE) return false; 1062 int64_t Value = CE->getValue(); 1063 return Value > 0 && Value <= 16; 1064 } 1065 bool isShrImm32() const { 1066 if (!isImm()) return false; 1067 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1068 if (!CE) return false; 1069 int64_t Value = CE->getValue(); 1070 return Value > 0 && Value <= 32; 1071 } 1072 bool isShrImm64() const { 1073 if (!isImm()) return false; 1074 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1075 if (!CE) return false; 1076 int64_t Value = CE->getValue(); 1077 return Value > 0 && Value <= 64; 1078 } 1079 bool isImm1_7() const { 1080 if (!isImm()) return false; 1081 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1082 if (!CE) return false; 1083 int64_t Value = CE->getValue(); 1084 return Value > 0 && Value < 8; 1085 } 1086 bool isImm1_15() const { 1087 if (!isImm()) return false; 1088 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1089 if (!CE) return false; 1090 int64_t Value = CE->getValue(); 1091 return Value > 0 && Value < 16; 1092 } 1093 bool isImm1_31() const { 1094 if (!isImm()) return false; 1095 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1096 if (!CE) return false; 1097 int64_t Value = CE->getValue(); 1098 return Value > 0 && Value < 32; 1099 } 1100 bool isImm1_16() const { 1101 if (!isImm()) return false; 1102 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1103 if (!CE) return false; 1104 int64_t Value = CE->getValue(); 1105 return Value > 0 && Value < 17; 1106 } 1107 bool isImm1_32() const { 1108 if (!isImm()) return false; 1109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1110 if (!CE) return false; 1111 int64_t Value = CE->getValue(); 1112 return Value > 0 && Value < 33; 1113 } 1114 bool isImm0_32() const { 1115 if (!isImm()) return false; 1116 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1117 if (!CE) return false; 1118 int64_t Value = CE->getValue(); 1119 return Value >= 0 && Value < 33; 1120 } 1121 bool isImm0_65535() const { 1122 if (!isImm()) return false; 1123 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1124 if (!CE) return false; 1125 int64_t Value = CE->getValue(); 1126 return Value >= 0 && Value < 65536; 1127 } 1128 bool isImm256_65535Expr() const { 1129 if (!isImm()) return false; 1130 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1131 // If it's not a constant expression, it'll generate a fixup and be 1132 // handled later. 1133 if (!CE) return true; 1134 int64_t Value = CE->getValue(); 1135 return Value >= 256 && Value < 65536; 1136 } 1137 bool isImm0_65535Expr() const { 1138 if (!isImm()) return false; 1139 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1140 // If it's not a constant expression, it'll generate a fixup and be 1141 // handled later. 1142 if (!CE) return true; 1143 int64_t Value = CE->getValue(); 1144 return Value >= 0 && Value < 65536; 1145 } 1146 bool isImm24bit() const { 1147 if (!isImm()) return false; 1148 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1149 if (!CE) return false; 1150 int64_t Value = CE->getValue(); 1151 return Value >= 0 && Value <= 0xffffff; 1152 } 1153 bool isImmThumbSR() const { 1154 if (!isImm()) return false; 1155 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1156 if (!CE) return false; 1157 int64_t Value = CE->getValue(); 1158 return Value > 0 && Value < 33; 1159 } 1160 bool isPKHLSLImm() const { 1161 if (!isImm()) return false; 1162 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1163 if (!CE) return false; 1164 int64_t Value = CE->getValue(); 1165 return Value >= 0 && Value < 32; 1166 } 1167 bool isPKHASRImm() const { 1168 if (!isImm()) return false; 1169 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1170 if (!CE) return false; 1171 int64_t Value = CE->getValue(); 1172 return Value > 0 && Value <= 32; 1173 } 1174 bool isAdrLabel() const { 1175 // If we have an immediate that's not a constant, treat it as a label 1176 // reference needing a fixup. 1177 if (isImm() && !isa<MCConstantExpr>(getImm())) 1178 return true; 1179 1180 // If it is a constant, it must fit into a modified immediate encoding. 1181 if (!isImm()) return false; 1182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1183 if (!CE) return false; 1184 int64_t Value = CE->getValue(); 1185 return (ARM_AM::getSOImmVal(Value) != -1 || 1186 ARM_AM::getSOImmVal(-Value) != -1); 1187 } 1188 bool isT2SOImm() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 int64_t Value = CE->getValue(); 1193 return ARM_AM::getT2SOImmVal(Value) != -1; 1194 } 1195 bool isT2SOImmNot() const { 1196 if (!isImm()) return false; 1197 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1198 if (!CE) return false; 1199 int64_t Value = CE->getValue(); 1200 return ARM_AM::getT2SOImmVal(Value) == -1 && 1201 ARM_AM::getT2SOImmVal(~Value) != -1; 1202 } 1203 bool isT2SOImmNeg() const { 1204 if (!isImm()) return false; 1205 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1206 if (!CE) return false; 1207 int64_t Value = CE->getValue(); 1208 // Only use this when not representable as a plain so_imm. 1209 return ARM_AM::getT2SOImmVal(Value) == -1 && 1210 ARM_AM::getT2SOImmVal(-Value) != -1; 1211 } 1212 bool isSetEndImm() const { 1213 if (!isImm()) return false; 1214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1215 if (!CE) return false; 1216 int64_t Value = CE->getValue(); 1217 return Value == 1 || Value == 0; 1218 } 1219 bool isReg() const override { return Kind == k_Register; } 1220 bool isRegList() const { return Kind == k_RegisterList; } 1221 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1222 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1223 bool isToken() const override { return Kind == k_Token; } 1224 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1225 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1226 bool isMem() const override { return Kind == k_Memory; } 1227 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1228 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1229 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1230 bool isRotImm() const { return Kind == k_RotateImmediate; } 1231 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1232 bool isModImmNot() const { 1233 if (!isImm()) return false; 1234 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1235 if (!CE) return false; 1236 int64_t Value = CE->getValue(); 1237 return ARM_AM::getSOImmVal(~Value) != -1; 1238 } 1239 bool isModImmNeg() const { 1240 if (!isImm()) return false; 1241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1242 if (!CE) return false; 1243 int64_t Value = CE->getValue(); 1244 return ARM_AM::getSOImmVal(Value) == -1 && 1245 ARM_AM::getSOImmVal(-Value) != -1; 1246 } 1247 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1248 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1249 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1250 bool isPostIdxReg() const { 1251 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1252 } 1253 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1254 if (!isMem()) 1255 return false; 1256 // No offset of any kind. 1257 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1258 (alignOK || Memory.Alignment == Alignment); 1259 } 1260 bool isMemPCRelImm12() const { 1261 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1262 return false; 1263 // Base register must be PC. 1264 if (Memory.BaseRegNum != ARM::PC) 1265 return false; 1266 // Immediate offset in range [-4095, 4095]. 1267 if (!Memory.OffsetImm) return true; 1268 int64_t Val = Memory.OffsetImm->getValue(); 1269 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1270 } 1271 bool isAlignedMemory() const { 1272 return isMemNoOffset(true); 1273 } 1274 bool isAlignedMemoryNone() const { 1275 return isMemNoOffset(false, 0); 1276 } 1277 bool isDupAlignedMemoryNone() const { 1278 return isMemNoOffset(false, 0); 1279 } 1280 bool isAlignedMemory16() const { 1281 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1282 return true; 1283 return isMemNoOffset(false, 0); 1284 } 1285 bool isDupAlignedMemory16() const { 1286 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1287 return true; 1288 return isMemNoOffset(false, 0); 1289 } 1290 bool isAlignedMemory32() const { 1291 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1292 return true; 1293 return isMemNoOffset(false, 0); 1294 } 1295 bool isDupAlignedMemory32() const { 1296 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1297 return true; 1298 return isMemNoOffset(false, 0); 1299 } 1300 bool isAlignedMemory64() const { 1301 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1302 return true; 1303 return isMemNoOffset(false, 0); 1304 } 1305 bool isDupAlignedMemory64() const { 1306 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1307 return true; 1308 return isMemNoOffset(false, 0); 1309 } 1310 bool isAlignedMemory64or128() const { 1311 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1312 return true; 1313 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1314 return true; 1315 return isMemNoOffset(false, 0); 1316 } 1317 bool isDupAlignedMemory64or128() const { 1318 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1319 return true; 1320 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1321 return true; 1322 return isMemNoOffset(false, 0); 1323 } 1324 bool isAlignedMemory64or128or256() const { 1325 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1326 return true; 1327 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1328 return true; 1329 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1330 return true; 1331 return isMemNoOffset(false, 0); 1332 } 1333 bool isAddrMode2() const { 1334 if (!isMem() || Memory.Alignment != 0) return false; 1335 // Check for register offset. 1336 if (Memory.OffsetRegNum) return true; 1337 // Immediate offset in range [-4095, 4095]. 1338 if (!Memory.OffsetImm) return true; 1339 int64_t Val = Memory.OffsetImm->getValue(); 1340 return Val > -4096 && Val < 4096; 1341 } 1342 bool isAM2OffsetImm() const { 1343 if (!isImm()) return false; 1344 // Immediate offset in range [-4095, 4095]. 1345 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1346 if (!CE) return false; 1347 int64_t Val = CE->getValue(); 1348 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1349 } 1350 bool isAddrMode3() const { 1351 // If we have an immediate that's not a constant, treat it as a label 1352 // reference needing a fixup. If it is a constant, it's something else 1353 // and we reject it. 1354 if (isImm() && !isa<MCConstantExpr>(getImm())) 1355 return true; 1356 if (!isMem() || Memory.Alignment != 0) return false; 1357 // No shifts are legal for AM3. 1358 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1359 // Check for register offset. 1360 if (Memory.OffsetRegNum) return true; 1361 // Immediate offset in range [-255, 255]. 1362 if (!Memory.OffsetImm) return true; 1363 int64_t Val = Memory.OffsetImm->getValue(); 1364 // The #-0 offset is encoded as INT32_MIN, and we have to check 1365 // for this too. 1366 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1367 } 1368 bool isAM3Offset() const { 1369 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1370 return false; 1371 if (Kind == k_PostIndexRegister) 1372 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1373 // Immediate offset in range [-255, 255]. 1374 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1375 if (!CE) return false; 1376 int64_t Val = CE->getValue(); 1377 // Special case, #-0 is INT32_MIN. 1378 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1379 } 1380 bool isAddrMode5() const { 1381 // If we have an immediate that's not a constant, treat it as a label 1382 // reference needing a fixup. If it is a constant, it's something else 1383 // and we reject it. 1384 if (isImm() && !isa<MCConstantExpr>(getImm())) 1385 return true; 1386 if (!isMem() || Memory.Alignment != 0) return false; 1387 // Check for register offset. 1388 if (Memory.OffsetRegNum) return false; 1389 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1390 if (!Memory.OffsetImm) return true; 1391 int64_t Val = Memory.OffsetImm->getValue(); 1392 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1393 Val == INT32_MIN; 1394 } 1395 bool isAddrMode5FP16() const { 1396 // If we have an immediate that's not a constant, treat it as a label 1397 // reference needing a fixup. If it is a constant, it's something else 1398 // and we reject it. 1399 if (isImm() && !isa<MCConstantExpr>(getImm())) 1400 return true; 1401 if (!isMem() || Memory.Alignment != 0) return false; 1402 // Check for register offset. 1403 if (Memory.OffsetRegNum) return false; 1404 // Immediate offset in range [-510, 510] and a multiple of 2. 1405 if (!Memory.OffsetImm) return true; 1406 int64_t Val = Memory.OffsetImm->getValue(); 1407 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1408 } 1409 bool isMemTBB() const { 1410 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1411 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1412 return false; 1413 return true; 1414 } 1415 bool isMemTBH() const { 1416 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1417 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1418 Memory.Alignment != 0 ) 1419 return false; 1420 return true; 1421 } 1422 bool isMemRegOffset() const { 1423 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1424 return false; 1425 return true; 1426 } 1427 bool isT2MemRegOffset() const { 1428 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1429 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1430 return false; 1431 // Only lsl #{0, 1, 2, 3} allowed. 1432 if (Memory.ShiftType == ARM_AM::no_shift) 1433 return true; 1434 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1435 return false; 1436 return true; 1437 } 1438 bool isMemThumbRR() const { 1439 // Thumb reg+reg addressing is simple. Just two registers, a base and 1440 // an offset. No shifts, negations or any other complicating factors. 1441 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1442 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1443 return false; 1444 return isARMLowRegister(Memory.BaseRegNum) && 1445 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1446 } 1447 bool isMemThumbRIs4() const { 1448 if (!isMem() || Memory.OffsetRegNum != 0 || 1449 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1450 return false; 1451 // Immediate offset, multiple of 4 in range [0, 124]. 1452 if (!Memory.OffsetImm) return true; 1453 int64_t Val = Memory.OffsetImm->getValue(); 1454 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1455 } 1456 bool isMemThumbRIs2() const { 1457 if (!isMem() || Memory.OffsetRegNum != 0 || 1458 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1459 return false; 1460 // Immediate offset, multiple of 4 in range [0, 62]. 1461 if (!Memory.OffsetImm) return true; 1462 int64_t Val = Memory.OffsetImm->getValue(); 1463 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1464 } 1465 bool isMemThumbRIs1() const { 1466 if (!isMem() || Memory.OffsetRegNum != 0 || 1467 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1468 return false; 1469 // Immediate offset in range [0, 31]. 1470 if (!Memory.OffsetImm) return true; 1471 int64_t Val = Memory.OffsetImm->getValue(); 1472 return Val >= 0 && Val <= 31; 1473 } 1474 bool isMemThumbSPI() const { 1475 if (!isMem() || Memory.OffsetRegNum != 0 || 1476 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1477 return false; 1478 // Immediate offset, multiple of 4 in range [0, 1020]. 1479 if (!Memory.OffsetImm) return true; 1480 int64_t Val = Memory.OffsetImm->getValue(); 1481 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1482 } 1483 bool isMemImm8s4Offset() const { 1484 // If we have an immediate that's not a constant, treat it as a label 1485 // reference needing a fixup. If it is a constant, it's something else 1486 // and we reject it. 1487 if (isImm() && !isa<MCConstantExpr>(getImm())) 1488 return true; 1489 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1490 return false; 1491 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1492 if (!Memory.OffsetImm) return true; 1493 int64_t Val = Memory.OffsetImm->getValue(); 1494 // Special case, #-0 is INT32_MIN. 1495 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1496 } 1497 bool isMemImm0_1020s4Offset() const { 1498 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1499 return false; 1500 // Immediate offset a multiple of 4 in range [0, 1020]. 1501 if (!Memory.OffsetImm) return true; 1502 int64_t Val = Memory.OffsetImm->getValue(); 1503 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1504 } 1505 bool isMemImm8Offset() const { 1506 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1507 return false; 1508 // Base reg of PC isn't allowed for these encodings. 1509 if (Memory.BaseRegNum == ARM::PC) return false; 1510 // Immediate offset in range [-255, 255]. 1511 if (!Memory.OffsetImm) return true; 1512 int64_t Val = Memory.OffsetImm->getValue(); 1513 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1514 } 1515 bool isMemPosImm8Offset() const { 1516 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1517 return false; 1518 // Immediate offset in range [0, 255]. 1519 if (!Memory.OffsetImm) return true; 1520 int64_t Val = Memory.OffsetImm->getValue(); 1521 return Val >= 0 && Val < 256; 1522 } 1523 bool isMemNegImm8Offset() const { 1524 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1525 return false; 1526 // Base reg of PC isn't allowed for these encodings. 1527 if (Memory.BaseRegNum == ARM::PC) return false; 1528 // Immediate offset in range [-255, -1]. 1529 if (!Memory.OffsetImm) return false; 1530 int64_t Val = Memory.OffsetImm->getValue(); 1531 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1532 } 1533 bool isMemUImm12Offset() const { 1534 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1535 return false; 1536 // Immediate offset in range [0, 4095]. 1537 if (!Memory.OffsetImm) return true; 1538 int64_t Val = Memory.OffsetImm->getValue(); 1539 return (Val >= 0 && Val < 4096); 1540 } 1541 bool isMemImm12Offset() const { 1542 // If we have an immediate that's not a constant, treat it as a label 1543 // reference needing a fixup. If it is a constant, it's something else 1544 // and we reject it. 1545 1546 if (isImm() && !isa<MCConstantExpr>(getImm())) 1547 return true; 1548 1549 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1550 return false; 1551 // Immediate offset in range [-4095, 4095]. 1552 if (!Memory.OffsetImm) return true; 1553 int64_t Val = Memory.OffsetImm->getValue(); 1554 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1555 } 1556 bool isConstPoolAsmImm() const { 1557 // Delay processing of Constant Pool Immediate, this will turn into 1558 // a constant. Match no other operand 1559 return (isConstantPoolImm()); 1560 } 1561 bool isPostIdxImm8() const { 1562 if (!isImm()) return false; 1563 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1564 if (!CE) return false; 1565 int64_t Val = CE->getValue(); 1566 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1567 } 1568 bool isPostIdxImm8s4() const { 1569 if (!isImm()) return false; 1570 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1571 if (!CE) return false; 1572 int64_t Val = CE->getValue(); 1573 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1574 (Val == INT32_MIN); 1575 } 1576 1577 bool isMSRMask() const { return Kind == k_MSRMask; } 1578 bool isBankedReg() const { return Kind == k_BankedReg; } 1579 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1580 1581 // NEON operands. 1582 bool isSingleSpacedVectorList() const { 1583 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1584 } 1585 bool isDoubleSpacedVectorList() const { 1586 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1587 } 1588 bool isVecListOneD() const { 1589 if (!isSingleSpacedVectorList()) return false; 1590 return VectorList.Count == 1; 1591 } 1592 1593 bool isVecListDPair() const { 1594 if (!isSingleSpacedVectorList()) return false; 1595 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1596 .contains(VectorList.RegNum)); 1597 } 1598 1599 bool isVecListThreeD() const { 1600 if (!isSingleSpacedVectorList()) return false; 1601 return VectorList.Count == 3; 1602 } 1603 1604 bool isVecListFourD() const { 1605 if (!isSingleSpacedVectorList()) return false; 1606 return VectorList.Count == 4; 1607 } 1608 1609 bool isVecListDPairSpaced() const { 1610 if (Kind != k_VectorList) return false; 1611 if (isSingleSpacedVectorList()) return false; 1612 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1613 .contains(VectorList.RegNum)); 1614 } 1615 1616 bool isVecListThreeQ() const { 1617 if (!isDoubleSpacedVectorList()) return false; 1618 return VectorList.Count == 3; 1619 } 1620 1621 bool isVecListFourQ() const { 1622 if (!isDoubleSpacedVectorList()) return false; 1623 return VectorList.Count == 4; 1624 } 1625 1626 bool isSingleSpacedVectorAllLanes() const { 1627 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1628 } 1629 bool isDoubleSpacedVectorAllLanes() const { 1630 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1631 } 1632 bool isVecListOneDAllLanes() const { 1633 if (!isSingleSpacedVectorAllLanes()) return false; 1634 return VectorList.Count == 1; 1635 } 1636 1637 bool isVecListDPairAllLanes() const { 1638 if (!isSingleSpacedVectorAllLanes()) return false; 1639 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1640 .contains(VectorList.RegNum)); 1641 } 1642 1643 bool isVecListDPairSpacedAllLanes() const { 1644 if (!isDoubleSpacedVectorAllLanes()) return false; 1645 return VectorList.Count == 2; 1646 } 1647 1648 bool isVecListThreeDAllLanes() const { 1649 if (!isSingleSpacedVectorAllLanes()) return false; 1650 return VectorList.Count == 3; 1651 } 1652 1653 bool isVecListThreeQAllLanes() const { 1654 if (!isDoubleSpacedVectorAllLanes()) return false; 1655 return VectorList.Count == 3; 1656 } 1657 1658 bool isVecListFourDAllLanes() const { 1659 if (!isSingleSpacedVectorAllLanes()) return false; 1660 return VectorList.Count == 4; 1661 } 1662 1663 bool isVecListFourQAllLanes() const { 1664 if (!isDoubleSpacedVectorAllLanes()) return false; 1665 return VectorList.Count == 4; 1666 } 1667 1668 bool isSingleSpacedVectorIndexed() const { 1669 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1670 } 1671 bool isDoubleSpacedVectorIndexed() const { 1672 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1673 } 1674 bool isVecListOneDByteIndexed() const { 1675 if (!isSingleSpacedVectorIndexed()) return false; 1676 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1677 } 1678 1679 bool isVecListOneDHWordIndexed() const { 1680 if (!isSingleSpacedVectorIndexed()) return false; 1681 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1682 } 1683 1684 bool isVecListOneDWordIndexed() const { 1685 if (!isSingleSpacedVectorIndexed()) return false; 1686 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1687 } 1688 1689 bool isVecListTwoDByteIndexed() const { 1690 if (!isSingleSpacedVectorIndexed()) return false; 1691 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1692 } 1693 1694 bool isVecListTwoDHWordIndexed() const { 1695 if (!isSingleSpacedVectorIndexed()) return false; 1696 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1697 } 1698 1699 bool isVecListTwoQWordIndexed() const { 1700 if (!isDoubleSpacedVectorIndexed()) return false; 1701 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1702 } 1703 1704 bool isVecListTwoQHWordIndexed() const { 1705 if (!isDoubleSpacedVectorIndexed()) return false; 1706 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1707 } 1708 1709 bool isVecListTwoDWordIndexed() const { 1710 if (!isSingleSpacedVectorIndexed()) return false; 1711 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1712 } 1713 1714 bool isVecListThreeDByteIndexed() const { 1715 if (!isSingleSpacedVectorIndexed()) return false; 1716 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1717 } 1718 1719 bool isVecListThreeDHWordIndexed() const { 1720 if (!isSingleSpacedVectorIndexed()) return false; 1721 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1722 } 1723 1724 bool isVecListThreeQWordIndexed() const { 1725 if (!isDoubleSpacedVectorIndexed()) return false; 1726 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1727 } 1728 1729 bool isVecListThreeQHWordIndexed() const { 1730 if (!isDoubleSpacedVectorIndexed()) return false; 1731 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1732 } 1733 1734 bool isVecListThreeDWordIndexed() const { 1735 if (!isSingleSpacedVectorIndexed()) return false; 1736 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1737 } 1738 1739 bool isVecListFourDByteIndexed() const { 1740 if (!isSingleSpacedVectorIndexed()) return false; 1741 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1742 } 1743 1744 bool isVecListFourDHWordIndexed() const { 1745 if (!isSingleSpacedVectorIndexed()) return false; 1746 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1747 } 1748 1749 bool isVecListFourQWordIndexed() const { 1750 if (!isDoubleSpacedVectorIndexed()) return false; 1751 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1752 } 1753 1754 bool isVecListFourQHWordIndexed() const { 1755 if (!isDoubleSpacedVectorIndexed()) return false; 1756 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1757 } 1758 1759 bool isVecListFourDWordIndexed() const { 1760 if (!isSingleSpacedVectorIndexed()) return false; 1761 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1762 } 1763 1764 bool isVectorIndex8() const { 1765 if (Kind != k_VectorIndex) return false; 1766 return VectorIndex.Val < 8; 1767 } 1768 bool isVectorIndex16() const { 1769 if (Kind != k_VectorIndex) return false; 1770 return VectorIndex.Val < 4; 1771 } 1772 bool isVectorIndex32() const { 1773 if (Kind != k_VectorIndex) return false; 1774 return VectorIndex.Val < 2; 1775 } 1776 1777 bool isNEONi8splat() const { 1778 if (!isImm()) return false; 1779 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1780 // Must be a constant. 1781 if (!CE) return false; 1782 int64_t Value = CE->getValue(); 1783 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1784 // value. 1785 return Value >= 0 && Value < 256; 1786 } 1787 1788 bool isNEONi16splat() const { 1789 if (isNEONByteReplicate(2)) 1790 return false; // Leave that for bytes replication and forbid by default. 1791 if (!isImm()) 1792 return false; 1793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1794 // Must be a constant. 1795 if (!CE) return false; 1796 unsigned Value = CE->getValue(); 1797 return ARM_AM::isNEONi16splat(Value); 1798 } 1799 1800 bool isNEONi16splatNot() const { 1801 if (!isImm()) 1802 return false; 1803 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1804 // Must be a constant. 1805 if (!CE) return false; 1806 unsigned Value = CE->getValue(); 1807 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1808 } 1809 1810 bool isNEONi32splat() const { 1811 if (isNEONByteReplicate(4)) 1812 return false; // Leave that for bytes replication and forbid by default. 1813 if (!isImm()) 1814 return false; 1815 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1816 // Must be a constant. 1817 if (!CE) return false; 1818 unsigned Value = CE->getValue(); 1819 return ARM_AM::isNEONi32splat(Value); 1820 } 1821 1822 bool isNEONi32splatNot() const { 1823 if (!isImm()) 1824 return false; 1825 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1826 // Must be a constant. 1827 if (!CE) return false; 1828 unsigned Value = CE->getValue(); 1829 return ARM_AM::isNEONi32splat(~Value); 1830 } 1831 1832 bool isNEONByteReplicate(unsigned NumBytes) const { 1833 if (!isImm()) 1834 return false; 1835 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1836 // Must be a constant. 1837 if (!CE) 1838 return false; 1839 int64_t Value = CE->getValue(); 1840 if (!Value) 1841 return false; // Don't bother with zero. 1842 1843 unsigned char B = Value & 0xff; 1844 for (unsigned i = 1; i < NumBytes; ++i) { 1845 Value >>= 8; 1846 if ((Value & 0xff) != B) 1847 return false; 1848 } 1849 return true; 1850 } 1851 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1852 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1853 bool isNEONi32vmov() const { 1854 if (isNEONByteReplicate(4)) 1855 return false; // Let it to be classified as byte-replicate case. 1856 if (!isImm()) 1857 return false; 1858 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1859 // Must be a constant. 1860 if (!CE) 1861 return false; 1862 int64_t Value = CE->getValue(); 1863 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1864 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1865 // FIXME: This is probably wrong and a copy and paste from previous example 1866 return (Value >= 0 && Value < 256) || 1867 (Value >= 0x0100 && Value <= 0xff00) || 1868 (Value >= 0x010000 && Value <= 0xff0000) || 1869 (Value >= 0x01000000 && Value <= 0xff000000) || 1870 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1871 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1872 } 1873 bool isNEONi32vmovNeg() const { 1874 if (!isImm()) return false; 1875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1876 // Must be a constant. 1877 if (!CE) return false; 1878 int64_t Value = ~CE->getValue(); 1879 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1880 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1881 // FIXME: This is probably wrong and a copy and paste from previous example 1882 return (Value >= 0 && Value < 256) || 1883 (Value >= 0x0100 && Value <= 0xff00) || 1884 (Value >= 0x010000 && Value <= 0xff0000) || 1885 (Value >= 0x01000000 && Value <= 0xff000000) || 1886 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1887 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1888 } 1889 1890 bool isNEONi64splat() const { 1891 if (!isImm()) return false; 1892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1893 // Must be a constant. 1894 if (!CE) return false; 1895 uint64_t Value = CE->getValue(); 1896 // i64 value with each byte being either 0 or 0xff. 1897 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1898 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1899 return true; 1900 } 1901 1902 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1903 // Add as immediates when possible. Null MCExpr = 0. 1904 if (!Expr) 1905 Inst.addOperand(MCOperand::createImm(0)); 1906 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1907 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1908 else 1909 Inst.addOperand(MCOperand::createExpr(Expr)); 1910 } 1911 1912 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1913 assert(N == 1 && "Invalid number of operands!"); 1914 addExpr(Inst, getImm()); 1915 } 1916 1917 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1918 assert(N == 1 && "Invalid number of operands!"); 1919 addExpr(Inst, getImm()); 1920 } 1921 1922 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1923 assert(N == 2 && "Invalid number of operands!"); 1924 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1925 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1926 Inst.addOperand(MCOperand::createReg(RegNum)); 1927 } 1928 1929 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1930 assert(N == 1 && "Invalid number of operands!"); 1931 Inst.addOperand(MCOperand::createImm(getCoproc())); 1932 } 1933 1934 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1935 assert(N == 1 && "Invalid number of operands!"); 1936 Inst.addOperand(MCOperand::createImm(getCoproc())); 1937 } 1938 1939 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1940 assert(N == 1 && "Invalid number of operands!"); 1941 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1942 } 1943 1944 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1945 assert(N == 1 && "Invalid number of operands!"); 1946 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1947 } 1948 1949 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1950 assert(N == 1 && "Invalid number of operands!"); 1951 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1952 } 1953 1954 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1955 assert(N == 1 && "Invalid number of operands!"); 1956 Inst.addOperand(MCOperand::createReg(getReg())); 1957 } 1958 1959 void addRegOperands(MCInst &Inst, unsigned N) const { 1960 assert(N == 1 && "Invalid number of operands!"); 1961 Inst.addOperand(MCOperand::createReg(getReg())); 1962 } 1963 1964 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1965 assert(N == 3 && "Invalid number of operands!"); 1966 assert(isRegShiftedReg() && 1967 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1968 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1969 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1970 Inst.addOperand(MCOperand::createImm( 1971 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1972 } 1973 1974 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1975 assert(N == 2 && "Invalid number of operands!"); 1976 assert(isRegShiftedImm() && 1977 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1978 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1979 // Shift of #32 is encoded as 0 where permitted 1980 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1981 Inst.addOperand(MCOperand::createImm( 1982 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1983 } 1984 1985 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1986 assert(N == 1 && "Invalid number of operands!"); 1987 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1988 ShifterImm.Imm)); 1989 } 1990 1991 void addRegListOperands(MCInst &Inst, unsigned N) const { 1992 assert(N == 1 && "Invalid number of operands!"); 1993 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1994 for (SmallVectorImpl<unsigned>::const_iterator 1995 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1996 Inst.addOperand(MCOperand::createReg(*I)); 1997 } 1998 1999 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2000 addRegListOperands(Inst, N); 2001 } 2002 2003 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2004 addRegListOperands(Inst, N); 2005 } 2006 2007 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2008 assert(N == 1 && "Invalid number of operands!"); 2009 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2010 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2011 } 2012 2013 void addModImmOperands(MCInst &Inst, unsigned N) const { 2014 assert(N == 1 && "Invalid number of operands!"); 2015 2016 // Support for fixups (MCFixup) 2017 if (isImm()) 2018 return addImmOperands(Inst, N); 2019 2020 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2021 } 2022 2023 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2024 assert(N == 1 && "Invalid number of operands!"); 2025 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2026 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2027 Inst.addOperand(MCOperand::createImm(Enc)); 2028 } 2029 2030 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2031 assert(N == 1 && "Invalid number of operands!"); 2032 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2033 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2034 Inst.addOperand(MCOperand::createImm(Enc)); 2035 } 2036 2037 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2038 assert(N == 1 && "Invalid number of operands!"); 2039 // Munge the lsb/width into a bitfield mask. 2040 unsigned lsb = Bitfield.LSB; 2041 unsigned width = Bitfield.Width; 2042 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2043 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2044 (32 - (lsb + width))); 2045 Inst.addOperand(MCOperand::createImm(Mask)); 2046 } 2047 2048 void addImmOperands(MCInst &Inst, unsigned N) const { 2049 assert(N == 1 && "Invalid number of operands!"); 2050 addExpr(Inst, getImm()); 2051 } 2052 2053 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2054 assert(N == 1 && "Invalid number of operands!"); 2055 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2056 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2057 } 2058 2059 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2060 assert(N == 1 && "Invalid number of operands!"); 2061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2062 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2063 } 2064 2065 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2066 assert(N == 1 && "Invalid number of operands!"); 2067 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2068 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2069 Inst.addOperand(MCOperand::createImm(Val)); 2070 } 2071 2072 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2073 assert(N == 1 && "Invalid number of operands!"); 2074 // FIXME: We really want to scale the value here, but the LDRD/STRD 2075 // instruction don't encode operands that way yet. 2076 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2077 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2078 } 2079 2080 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2081 assert(N == 1 && "Invalid number of operands!"); 2082 // The immediate is scaled by four in the encoding and is stored 2083 // in the MCInst as such. Lop off the low two bits here. 2084 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2085 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2086 } 2087 2088 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2089 assert(N == 1 && "Invalid number of operands!"); 2090 // The immediate is scaled by four in the encoding and is stored 2091 // in the MCInst as such. Lop off the low two bits here. 2092 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2093 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2094 } 2095 2096 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2097 assert(N == 1 && "Invalid number of operands!"); 2098 // The immediate is scaled by four in the encoding and is stored 2099 // in the MCInst as such. Lop off the low two bits here. 2100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2101 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2102 } 2103 2104 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2105 assert(N == 1 && "Invalid number of operands!"); 2106 // The constant encodes as the immediate-1, and we store in the instruction 2107 // the bits as encoded, so subtract off one here. 2108 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2109 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2110 } 2111 2112 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2113 assert(N == 1 && "Invalid number of operands!"); 2114 // The constant encodes as the immediate-1, and we store in the instruction 2115 // the bits as encoded, so subtract off one here. 2116 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2117 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2118 } 2119 2120 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2121 assert(N == 1 && "Invalid number of operands!"); 2122 // The constant encodes as the immediate, except for 32, which encodes as 2123 // zero. 2124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2125 unsigned Imm = CE->getValue(); 2126 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2127 } 2128 2129 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2130 assert(N == 1 && "Invalid number of operands!"); 2131 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2132 // the instruction as well. 2133 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2134 int Val = CE->getValue(); 2135 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2136 } 2137 2138 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2139 assert(N == 1 && "Invalid number of operands!"); 2140 // The operand is actually a t2_so_imm, but we have its bitwise 2141 // negation in the assembly source, so twiddle it here. 2142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2143 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 2144 } 2145 2146 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2147 assert(N == 1 && "Invalid number of operands!"); 2148 // The operand is actually a t2_so_imm, but we have its 2149 // negation in the assembly source, so twiddle it here. 2150 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2151 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2152 } 2153 2154 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2155 assert(N == 1 && "Invalid number of operands!"); 2156 // The operand is actually an imm0_4095, but we have its 2157 // negation in the assembly source, so twiddle it here. 2158 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2159 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2160 } 2161 2162 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2163 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2164 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2165 return; 2166 } 2167 2168 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2169 assert(SR && "Unknown value type!"); 2170 Inst.addOperand(MCOperand::createExpr(SR)); 2171 } 2172 2173 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2174 assert(N == 1 && "Invalid number of operands!"); 2175 if (isImm()) { 2176 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2177 if (CE) { 2178 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2179 return; 2180 } 2181 2182 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2183 2184 assert(SR && "Unknown value type!"); 2185 Inst.addOperand(MCOperand::createExpr(SR)); 2186 return; 2187 } 2188 2189 assert(isMem() && "Unknown value type!"); 2190 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2191 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2192 } 2193 2194 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2195 assert(N == 1 && "Invalid number of operands!"); 2196 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2197 } 2198 2199 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2200 assert(N == 1 && "Invalid number of operands!"); 2201 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2202 } 2203 2204 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2205 assert(N == 1 && "Invalid number of operands!"); 2206 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2207 } 2208 2209 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2210 assert(N == 1 && "Invalid number of operands!"); 2211 int32_t Imm = Memory.OffsetImm->getValue(); 2212 Inst.addOperand(MCOperand::createImm(Imm)); 2213 } 2214 2215 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2216 assert(N == 1 && "Invalid number of operands!"); 2217 assert(isImm() && "Not an immediate!"); 2218 2219 // If we have an immediate that's not a constant, treat it as a label 2220 // reference needing a fixup. 2221 if (!isa<MCConstantExpr>(getImm())) { 2222 Inst.addOperand(MCOperand::createExpr(getImm())); 2223 return; 2224 } 2225 2226 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2227 int Val = CE->getValue(); 2228 Inst.addOperand(MCOperand::createImm(Val)); 2229 } 2230 2231 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2232 assert(N == 2 && "Invalid number of operands!"); 2233 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2234 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2235 } 2236 2237 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2238 addAlignedMemoryOperands(Inst, N); 2239 } 2240 2241 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2242 addAlignedMemoryOperands(Inst, N); 2243 } 2244 2245 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2246 addAlignedMemoryOperands(Inst, N); 2247 } 2248 2249 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2250 addAlignedMemoryOperands(Inst, N); 2251 } 2252 2253 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2254 addAlignedMemoryOperands(Inst, N); 2255 } 2256 2257 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2258 addAlignedMemoryOperands(Inst, N); 2259 } 2260 2261 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2262 addAlignedMemoryOperands(Inst, N); 2263 } 2264 2265 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2266 addAlignedMemoryOperands(Inst, N); 2267 } 2268 2269 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2270 addAlignedMemoryOperands(Inst, N); 2271 } 2272 2273 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2274 addAlignedMemoryOperands(Inst, N); 2275 } 2276 2277 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2278 addAlignedMemoryOperands(Inst, N); 2279 } 2280 2281 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2282 assert(N == 3 && "Invalid number of operands!"); 2283 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2284 if (!Memory.OffsetRegNum) { 2285 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2286 // Special case for #-0 2287 if (Val == INT32_MIN) Val = 0; 2288 if (Val < 0) Val = -Val; 2289 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2290 } else { 2291 // For register offset, we encode the shift type and negation flag 2292 // here. 2293 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2294 Memory.ShiftImm, Memory.ShiftType); 2295 } 2296 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2297 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2298 Inst.addOperand(MCOperand::createImm(Val)); 2299 } 2300 2301 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2302 assert(N == 2 && "Invalid number of operands!"); 2303 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2304 assert(CE && "non-constant AM2OffsetImm operand!"); 2305 int32_t Val = CE->getValue(); 2306 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2307 // Special case for #-0 2308 if (Val == INT32_MIN) Val = 0; 2309 if (Val < 0) Val = -Val; 2310 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2311 Inst.addOperand(MCOperand::createReg(0)); 2312 Inst.addOperand(MCOperand::createImm(Val)); 2313 } 2314 2315 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2316 assert(N == 3 && "Invalid number of operands!"); 2317 // If we have an immediate that's not a constant, treat it as a label 2318 // reference needing a fixup. If it is a constant, it's something else 2319 // and we reject it. 2320 if (isImm()) { 2321 Inst.addOperand(MCOperand::createExpr(getImm())); 2322 Inst.addOperand(MCOperand::createReg(0)); 2323 Inst.addOperand(MCOperand::createImm(0)); 2324 return; 2325 } 2326 2327 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2328 if (!Memory.OffsetRegNum) { 2329 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2330 // Special case for #-0 2331 if (Val == INT32_MIN) Val = 0; 2332 if (Val < 0) Val = -Val; 2333 Val = ARM_AM::getAM3Opc(AddSub, Val); 2334 } else { 2335 // For register offset, we encode the shift type and negation flag 2336 // here. 2337 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2338 } 2339 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2340 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2341 Inst.addOperand(MCOperand::createImm(Val)); 2342 } 2343 2344 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2345 assert(N == 2 && "Invalid number of operands!"); 2346 if (Kind == k_PostIndexRegister) { 2347 int32_t Val = 2348 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2349 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2350 Inst.addOperand(MCOperand::createImm(Val)); 2351 return; 2352 } 2353 2354 // Constant offset. 2355 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2356 int32_t Val = CE->getValue(); 2357 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2358 // Special case for #-0 2359 if (Val == INT32_MIN) Val = 0; 2360 if (Val < 0) Val = -Val; 2361 Val = ARM_AM::getAM3Opc(AddSub, Val); 2362 Inst.addOperand(MCOperand::createReg(0)); 2363 Inst.addOperand(MCOperand::createImm(Val)); 2364 } 2365 2366 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2367 assert(N == 2 && "Invalid number of operands!"); 2368 // If we have an immediate that's not a constant, treat it as a label 2369 // reference needing a fixup. If it is a constant, it's something else 2370 // and we reject it. 2371 if (isImm()) { 2372 Inst.addOperand(MCOperand::createExpr(getImm())); 2373 Inst.addOperand(MCOperand::createImm(0)); 2374 return; 2375 } 2376 2377 // The lower two bits are always zero and as such are not encoded. 2378 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2379 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2380 // Special case for #-0 2381 if (Val == INT32_MIN) Val = 0; 2382 if (Val < 0) Val = -Val; 2383 Val = ARM_AM::getAM5Opc(AddSub, Val); 2384 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2385 Inst.addOperand(MCOperand::createImm(Val)); 2386 } 2387 2388 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2389 assert(N == 2 && "Invalid number of operands!"); 2390 // If we have an immediate that's not a constant, treat it as a label 2391 // reference needing a fixup. If it is a constant, it's something else 2392 // and we reject it. 2393 if (isImm()) { 2394 Inst.addOperand(MCOperand::createExpr(getImm())); 2395 Inst.addOperand(MCOperand::createImm(0)); 2396 return; 2397 } 2398 2399 // The lower bit is always zero and as such is not encoded. 2400 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2401 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2402 // Special case for #-0 2403 if (Val == INT32_MIN) Val = 0; 2404 if (Val < 0) Val = -Val; 2405 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2406 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2407 Inst.addOperand(MCOperand::createImm(Val)); 2408 } 2409 2410 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2411 assert(N == 2 && "Invalid number of operands!"); 2412 // If we have an immediate that's not a constant, treat it as a label 2413 // reference needing a fixup. If it is a constant, it's something else 2414 // and we reject it. 2415 if (isImm()) { 2416 Inst.addOperand(MCOperand::createExpr(getImm())); 2417 Inst.addOperand(MCOperand::createImm(0)); 2418 return; 2419 } 2420 2421 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2422 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2423 Inst.addOperand(MCOperand::createImm(Val)); 2424 } 2425 2426 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2427 assert(N == 2 && "Invalid number of operands!"); 2428 // The lower two bits are always zero and as such are not encoded. 2429 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2430 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2431 Inst.addOperand(MCOperand::createImm(Val)); 2432 } 2433 2434 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2435 assert(N == 2 && "Invalid number of operands!"); 2436 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2437 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2438 Inst.addOperand(MCOperand::createImm(Val)); 2439 } 2440 2441 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2442 addMemImm8OffsetOperands(Inst, N); 2443 } 2444 2445 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2446 addMemImm8OffsetOperands(Inst, N); 2447 } 2448 2449 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2450 assert(N == 2 && "Invalid number of operands!"); 2451 // If this is an immediate, it's a label reference. 2452 if (isImm()) { 2453 addExpr(Inst, getImm()); 2454 Inst.addOperand(MCOperand::createImm(0)); 2455 return; 2456 } 2457 2458 // Otherwise, it's a normal memory reg+offset. 2459 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2460 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2461 Inst.addOperand(MCOperand::createImm(Val)); 2462 } 2463 2464 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2465 assert(N == 2 && "Invalid number of operands!"); 2466 // If this is an immediate, it's a label reference. 2467 if (isImm()) { 2468 addExpr(Inst, getImm()); 2469 Inst.addOperand(MCOperand::createImm(0)); 2470 return; 2471 } 2472 2473 // Otherwise, it's a normal memory reg+offset. 2474 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2475 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2476 Inst.addOperand(MCOperand::createImm(Val)); 2477 } 2478 2479 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2480 assert(N == 1 && "Invalid number of operands!"); 2481 // This is container for the immediate that we will create the constant 2482 // pool from 2483 addExpr(Inst, getConstantPoolImm()); 2484 return; 2485 } 2486 2487 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2488 assert(N == 2 && "Invalid number of operands!"); 2489 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2490 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2491 } 2492 2493 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2494 assert(N == 2 && "Invalid number of operands!"); 2495 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2496 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2497 } 2498 2499 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2500 assert(N == 3 && "Invalid number of operands!"); 2501 unsigned Val = 2502 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2503 Memory.ShiftImm, Memory.ShiftType); 2504 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2505 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2506 Inst.addOperand(MCOperand::createImm(Val)); 2507 } 2508 2509 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2510 assert(N == 3 && "Invalid number of operands!"); 2511 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2512 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2513 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2514 } 2515 2516 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2517 assert(N == 2 && "Invalid number of operands!"); 2518 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2519 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2520 } 2521 2522 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2523 assert(N == 2 && "Invalid number of operands!"); 2524 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2525 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2526 Inst.addOperand(MCOperand::createImm(Val)); 2527 } 2528 2529 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2530 assert(N == 2 && "Invalid number of operands!"); 2531 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2532 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2533 Inst.addOperand(MCOperand::createImm(Val)); 2534 } 2535 2536 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2537 assert(N == 2 && "Invalid number of operands!"); 2538 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2539 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2540 Inst.addOperand(MCOperand::createImm(Val)); 2541 } 2542 2543 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2544 assert(N == 2 && "Invalid number of operands!"); 2545 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2546 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2547 Inst.addOperand(MCOperand::createImm(Val)); 2548 } 2549 2550 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2551 assert(N == 1 && "Invalid number of operands!"); 2552 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2553 assert(CE && "non-constant post-idx-imm8 operand!"); 2554 int Imm = CE->getValue(); 2555 bool isAdd = Imm >= 0; 2556 if (Imm == INT32_MIN) Imm = 0; 2557 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2558 Inst.addOperand(MCOperand::createImm(Imm)); 2559 } 2560 2561 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2562 assert(N == 1 && "Invalid number of operands!"); 2563 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2564 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2565 int Imm = CE->getValue(); 2566 bool isAdd = Imm >= 0; 2567 if (Imm == INT32_MIN) Imm = 0; 2568 // Immediate is scaled by 4. 2569 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2570 Inst.addOperand(MCOperand::createImm(Imm)); 2571 } 2572 2573 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2574 assert(N == 2 && "Invalid number of operands!"); 2575 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2576 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2577 } 2578 2579 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2580 assert(N == 2 && "Invalid number of operands!"); 2581 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2582 // The sign, shift type, and shift amount are encoded in a single operand 2583 // using the AM2 encoding helpers. 2584 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2585 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2586 PostIdxReg.ShiftTy); 2587 Inst.addOperand(MCOperand::createImm(Imm)); 2588 } 2589 2590 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2591 assert(N == 1 && "Invalid number of operands!"); 2592 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2593 } 2594 2595 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2596 assert(N == 1 && "Invalid number of operands!"); 2597 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2598 } 2599 2600 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2601 assert(N == 1 && "Invalid number of operands!"); 2602 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2603 } 2604 2605 void addVecListOperands(MCInst &Inst, unsigned N) const { 2606 assert(N == 1 && "Invalid number of operands!"); 2607 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2608 } 2609 2610 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2611 assert(N == 2 && "Invalid number of operands!"); 2612 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2613 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2614 } 2615 2616 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2617 assert(N == 1 && "Invalid number of operands!"); 2618 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2619 } 2620 2621 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2622 assert(N == 1 && "Invalid number of operands!"); 2623 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2624 } 2625 2626 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2627 assert(N == 1 && "Invalid number of operands!"); 2628 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2629 } 2630 2631 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2632 assert(N == 1 && "Invalid number of operands!"); 2633 // The immediate encodes the type of constant as well as the value. 2634 // Mask in that this is an i8 splat. 2635 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2636 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2637 } 2638 2639 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2640 assert(N == 1 && "Invalid number of operands!"); 2641 // The immediate encodes the type of constant as well as the value. 2642 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2643 unsigned Value = CE->getValue(); 2644 Value = ARM_AM::encodeNEONi16splat(Value); 2645 Inst.addOperand(MCOperand::createImm(Value)); 2646 } 2647 2648 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2649 assert(N == 1 && "Invalid number of operands!"); 2650 // The immediate encodes the type of constant as well as the value. 2651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2652 unsigned Value = CE->getValue(); 2653 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2654 Inst.addOperand(MCOperand::createImm(Value)); 2655 } 2656 2657 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2658 assert(N == 1 && "Invalid number of operands!"); 2659 // The immediate encodes the type of constant as well as the value. 2660 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2661 unsigned Value = CE->getValue(); 2662 Value = ARM_AM::encodeNEONi32splat(Value); 2663 Inst.addOperand(MCOperand::createImm(Value)); 2664 } 2665 2666 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2667 assert(N == 1 && "Invalid number of operands!"); 2668 // The immediate encodes the type of constant as well as the value. 2669 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2670 unsigned Value = CE->getValue(); 2671 Value = ARM_AM::encodeNEONi32splat(~Value); 2672 Inst.addOperand(MCOperand::createImm(Value)); 2673 } 2674 2675 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2676 assert(N == 1 && "Invalid number of operands!"); 2677 // The immediate encodes the type of constant as well as the value. 2678 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2679 unsigned Value = CE->getValue(); 2680 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2681 Inst.getOpcode() == ARM::VMOVv16i8) && 2682 "All vmvn instructions that wants to replicate non-zero byte " 2683 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2684 unsigned B = ((~Value) & 0xff); 2685 B |= 0xe00; // cmode = 0b1110 2686 Inst.addOperand(MCOperand::createImm(B)); 2687 } 2688 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2689 assert(N == 1 && "Invalid number of operands!"); 2690 // The immediate encodes the type of constant as well as the value. 2691 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2692 unsigned Value = CE->getValue(); 2693 if (Value >= 256 && Value <= 0xffff) 2694 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2695 else if (Value > 0xffff && Value <= 0xffffff) 2696 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2697 else if (Value > 0xffffff) 2698 Value = (Value >> 24) | 0x600; 2699 Inst.addOperand(MCOperand::createImm(Value)); 2700 } 2701 2702 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2703 assert(N == 1 && "Invalid number of operands!"); 2704 // The immediate encodes the type of constant as well as the value. 2705 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2706 unsigned Value = CE->getValue(); 2707 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2708 Inst.getOpcode() == ARM::VMOVv16i8) && 2709 "All instructions that wants to replicate non-zero byte " 2710 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2711 unsigned B = Value & 0xff; 2712 B |= 0xe00; // cmode = 0b1110 2713 Inst.addOperand(MCOperand::createImm(B)); 2714 } 2715 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2716 assert(N == 1 && "Invalid number of operands!"); 2717 // The immediate encodes the type of constant as well as the value. 2718 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2719 unsigned Value = ~CE->getValue(); 2720 if (Value >= 256 && Value <= 0xffff) 2721 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2722 else if (Value > 0xffff && Value <= 0xffffff) 2723 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2724 else if (Value > 0xffffff) 2725 Value = (Value >> 24) | 0x600; 2726 Inst.addOperand(MCOperand::createImm(Value)); 2727 } 2728 2729 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2730 assert(N == 1 && "Invalid number of operands!"); 2731 // The immediate encodes the type of constant as well as the value. 2732 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2733 uint64_t Value = CE->getValue(); 2734 unsigned Imm = 0; 2735 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2736 Imm |= (Value & 1) << i; 2737 } 2738 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2739 } 2740 2741 void print(raw_ostream &OS) const override; 2742 2743 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2744 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2745 Op->ITMask.Mask = Mask; 2746 Op->StartLoc = S; 2747 Op->EndLoc = S; 2748 return Op; 2749 } 2750 2751 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2752 SMLoc S) { 2753 auto Op = make_unique<ARMOperand>(k_CondCode); 2754 Op->CC.Val = CC; 2755 Op->StartLoc = S; 2756 Op->EndLoc = S; 2757 return Op; 2758 } 2759 2760 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2761 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2762 Op->Cop.Val = CopVal; 2763 Op->StartLoc = S; 2764 Op->EndLoc = S; 2765 return Op; 2766 } 2767 2768 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2769 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2770 Op->Cop.Val = CopVal; 2771 Op->StartLoc = S; 2772 Op->EndLoc = S; 2773 return Op; 2774 } 2775 2776 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2777 SMLoc E) { 2778 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2779 Op->Cop.Val = Val; 2780 Op->StartLoc = S; 2781 Op->EndLoc = E; 2782 return Op; 2783 } 2784 2785 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2786 auto Op = make_unique<ARMOperand>(k_CCOut); 2787 Op->Reg.RegNum = RegNum; 2788 Op->StartLoc = S; 2789 Op->EndLoc = S; 2790 return Op; 2791 } 2792 2793 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2794 auto Op = make_unique<ARMOperand>(k_Token); 2795 Op->Tok.Data = Str.data(); 2796 Op->Tok.Length = Str.size(); 2797 Op->StartLoc = S; 2798 Op->EndLoc = S; 2799 return Op; 2800 } 2801 2802 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2803 SMLoc E) { 2804 auto Op = make_unique<ARMOperand>(k_Register); 2805 Op->Reg.RegNum = RegNum; 2806 Op->StartLoc = S; 2807 Op->EndLoc = E; 2808 return Op; 2809 } 2810 2811 static std::unique_ptr<ARMOperand> 2812 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2813 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2814 SMLoc E) { 2815 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2816 Op->RegShiftedReg.ShiftTy = ShTy; 2817 Op->RegShiftedReg.SrcReg = SrcReg; 2818 Op->RegShiftedReg.ShiftReg = ShiftReg; 2819 Op->RegShiftedReg.ShiftImm = ShiftImm; 2820 Op->StartLoc = S; 2821 Op->EndLoc = E; 2822 return Op; 2823 } 2824 2825 static std::unique_ptr<ARMOperand> 2826 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2827 unsigned ShiftImm, SMLoc S, SMLoc E) { 2828 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2829 Op->RegShiftedImm.ShiftTy = ShTy; 2830 Op->RegShiftedImm.SrcReg = SrcReg; 2831 Op->RegShiftedImm.ShiftImm = ShiftImm; 2832 Op->StartLoc = S; 2833 Op->EndLoc = E; 2834 return Op; 2835 } 2836 2837 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2838 SMLoc S, SMLoc E) { 2839 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2840 Op->ShifterImm.isASR = isASR; 2841 Op->ShifterImm.Imm = Imm; 2842 Op->StartLoc = S; 2843 Op->EndLoc = E; 2844 return Op; 2845 } 2846 2847 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2848 SMLoc E) { 2849 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2850 Op->RotImm.Imm = Imm; 2851 Op->StartLoc = S; 2852 Op->EndLoc = E; 2853 return Op; 2854 } 2855 2856 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2857 SMLoc S, SMLoc E) { 2858 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2859 Op->ModImm.Bits = Bits; 2860 Op->ModImm.Rot = Rot; 2861 Op->StartLoc = S; 2862 Op->EndLoc = E; 2863 return Op; 2864 } 2865 2866 static std::unique_ptr<ARMOperand> 2867 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2868 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2869 Op->Imm.Val = Val; 2870 Op->StartLoc = S; 2871 Op->EndLoc = E; 2872 return Op; 2873 } 2874 2875 static std::unique_ptr<ARMOperand> 2876 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2877 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2878 Op->Bitfield.LSB = LSB; 2879 Op->Bitfield.Width = Width; 2880 Op->StartLoc = S; 2881 Op->EndLoc = E; 2882 return Op; 2883 } 2884 2885 static std::unique_ptr<ARMOperand> 2886 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2887 SMLoc StartLoc, SMLoc EndLoc) { 2888 assert (Regs.size() > 0 && "RegList contains no registers?"); 2889 KindTy Kind = k_RegisterList; 2890 2891 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2892 Kind = k_DPRRegisterList; 2893 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2894 contains(Regs.front().second)) 2895 Kind = k_SPRRegisterList; 2896 2897 // Sort based on the register encoding values. 2898 array_pod_sort(Regs.begin(), Regs.end()); 2899 2900 auto Op = make_unique<ARMOperand>(Kind); 2901 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2902 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2903 Op->Registers.push_back(I->second); 2904 Op->StartLoc = StartLoc; 2905 Op->EndLoc = EndLoc; 2906 return Op; 2907 } 2908 2909 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2910 unsigned Count, 2911 bool isDoubleSpaced, 2912 SMLoc S, SMLoc E) { 2913 auto Op = make_unique<ARMOperand>(k_VectorList); 2914 Op->VectorList.RegNum = RegNum; 2915 Op->VectorList.Count = Count; 2916 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2917 Op->StartLoc = S; 2918 Op->EndLoc = E; 2919 return Op; 2920 } 2921 2922 static std::unique_ptr<ARMOperand> 2923 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2924 SMLoc S, SMLoc E) { 2925 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2926 Op->VectorList.RegNum = RegNum; 2927 Op->VectorList.Count = Count; 2928 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2929 Op->StartLoc = S; 2930 Op->EndLoc = E; 2931 return Op; 2932 } 2933 2934 static std::unique_ptr<ARMOperand> 2935 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2936 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2937 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2938 Op->VectorList.RegNum = RegNum; 2939 Op->VectorList.Count = Count; 2940 Op->VectorList.LaneIndex = Index; 2941 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2942 Op->StartLoc = S; 2943 Op->EndLoc = E; 2944 return Op; 2945 } 2946 2947 static std::unique_ptr<ARMOperand> 2948 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2949 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2950 Op->VectorIndex.Val = Idx; 2951 Op->StartLoc = S; 2952 Op->EndLoc = E; 2953 return Op; 2954 } 2955 2956 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2957 SMLoc E) { 2958 auto Op = make_unique<ARMOperand>(k_Immediate); 2959 Op->Imm.Val = Val; 2960 Op->StartLoc = S; 2961 Op->EndLoc = E; 2962 return Op; 2963 } 2964 2965 static std::unique_ptr<ARMOperand> 2966 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2967 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2968 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2969 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2970 auto Op = make_unique<ARMOperand>(k_Memory); 2971 Op->Memory.BaseRegNum = BaseRegNum; 2972 Op->Memory.OffsetImm = OffsetImm; 2973 Op->Memory.OffsetRegNum = OffsetRegNum; 2974 Op->Memory.ShiftType = ShiftType; 2975 Op->Memory.ShiftImm = ShiftImm; 2976 Op->Memory.Alignment = Alignment; 2977 Op->Memory.isNegative = isNegative; 2978 Op->StartLoc = S; 2979 Op->EndLoc = E; 2980 Op->AlignmentLoc = AlignmentLoc; 2981 return Op; 2982 } 2983 2984 static std::unique_ptr<ARMOperand> 2985 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2986 unsigned ShiftImm, SMLoc S, SMLoc E) { 2987 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2988 Op->PostIdxReg.RegNum = RegNum; 2989 Op->PostIdxReg.isAdd = isAdd; 2990 Op->PostIdxReg.ShiftTy = ShiftTy; 2991 Op->PostIdxReg.ShiftImm = ShiftImm; 2992 Op->StartLoc = S; 2993 Op->EndLoc = E; 2994 return Op; 2995 } 2996 2997 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2998 SMLoc S) { 2999 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3000 Op->MBOpt.Val = Opt; 3001 Op->StartLoc = S; 3002 Op->EndLoc = S; 3003 return Op; 3004 } 3005 3006 static std::unique_ptr<ARMOperand> 3007 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3008 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3009 Op->ISBOpt.Val = Opt; 3010 Op->StartLoc = S; 3011 Op->EndLoc = S; 3012 return Op; 3013 } 3014 3015 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3016 SMLoc S) { 3017 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3018 Op->IFlags.Val = IFlags; 3019 Op->StartLoc = S; 3020 Op->EndLoc = S; 3021 return Op; 3022 } 3023 3024 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3025 auto Op = make_unique<ARMOperand>(k_MSRMask); 3026 Op->MMask.Val = MMask; 3027 Op->StartLoc = S; 3028 Op->EndLoc = S; 3029 return Op; 3030 } 3031 3032 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3033 auto Op = make_unique<ARMOperand>(k_BankedReg); 3034 Op->BankedReg.Val = Reg; 3035 Op->StartLoc = S; 3036 Op->EndLoc = S; 3037 return Op; 3038 } 3039 }; 3040 3041 } // end anonymous namespace. 3042 3043 void ARMOperand::print(raw_ostream &OS) const { 3044 switch (Kind) { 3045 case k_CondCode: 3046 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3047 break; 3048 case k_CCOut: 3049 OS << "<ccout " << getReg() << ">"; 3050 break; 3051 case k_ITCondMask: { 3052 static const char *const MaskStr[] = { 3053 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3054 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3055 }; 3056 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3057 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3058 break; 3059 } 3060 case k_CoprocNum: 3061 OS << "<coprocessor number: " << getCoproc() << ">"; 3062 break; 3063 case k_CoprocReg: 3064 OS << "<coprocessor register: " << getCoproc() << ">"; 3065 break; 3066 case k_CoprocOption: 3067 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3068 break; 3069 case k_MSRMask: 3070 OS << "<mask: " << getMSRMask() << ">"; 3071 break; 3072 case k_BankedReg: 3073 OS << "<banked reg: " << getBankedReg() << ">"; 3074 break; 3075 case k_Immediate: 3076 OS << *getImm(); 3077 break; 3078 case k_MemBarrierOpt: 3079 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3080 break; 3081 case k_InstSyncBarrierOpt: 3082 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3083 break; 3084 case k_Memory: 3085 OS << "<memory " 3086 << " base:" << Memory.BaseRegNum; 3087 OS << ">"; 3088 break; 3089 case k_PostIndexRegister: 3090 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3091 << PostIdxReg.RegNum; 3092 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3093 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3094 << PostIdxReg.ShiftImm; 3095 OS << ">"; 3096 break; 3097 case k_ProcIFlags: { 3098 OS << "<ARM_PROC::"; 3099 unsigned IFlags = getProcIFlags(); 3100 for (int i=2; i >= 0; --i) 3101 if (IFlags & (1 << i)) 3102 OS << ARM_PROC::IFlagsToString(1 << i); 3103 OS << ">"; 3104 break; 3105 } 3106 case k_Register: 3107 OS << "<register " << getReg() << ">"; 3108 break; 3109 case k_ShifterImmediate: 3110 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3111 << " #" << ShifterImm.Imm << ">"; 3112 break; 3113 case k_ShiftedRegister: 3114 OS << "<so_reg_reg " 3115 << RegShiftedReg.SrcReg << " " 3116 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3117 << " " << RegShiftedReg.ShiftReg << ">"; 3118 break; 3119 case k_ShiftedImmediate: 3120 OS << "<so_reg_imm " 3121 << RegShiftedImm.SrcReg << " " 3122 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3123 << " #" << RegShiftedImm.ShiftImm << ">"; 3124 break; 3125 case k_RotateImmediate: 3126 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3127 break; 3128 case k_ModifiedImmediate: 3129 OS << "<mod_imm #" << ModImm.Bits << ", #" 3130 << ModImm.Rot << ")>"; 3131 break; 3132 case k_ConstantPoolImmediate: 3133 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3134 break; 3135 case k_BitfieldDescriptor: 3136 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3137 << ", width: " << Bitfield.Width << ">"; 3138 break; 3139 case k_RegisterList: 3140 case k_DPRRegisterList: 3141 case k_SPRRegisterList: { 3142 OS << "<register_list "; 3143 3144 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3145 for (SmallVectorImpl<unsigned>::const_iterator 3146 I = RegList.begin(), E = RegList.end(); I != E; ) { 3147 OS << *I; 3148 if (++I < E) OS << ", "; 3149 } 3150 3151 OS << ">"; 3152 break; 3153 } 3154 case k_VectorList: 3155 OS << "<vector_list " << VectorList.Count << " * " 3156 << VectorList.RegNum << ">"; 3157 break; 3158 case k_VectorListAllLanes: 3159 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3160 << VectorList.RegNum << ">"; 3161 break; 3162 case k_VectorListIndexed: 3163 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3164 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3165 break; 3166 case k_Token: 3167 OS << "'" << getToken() << "'"; 3168 break; 3169 case k_VectorIndex: 3170 OS << "<vectorindex " << getVectorIndex() << ">"; 3171 break; 3172 } 3173 } 3174 3175 /// @name Auto-generated Match Functions 3176 /// { 3177 3178 static unsigned MatchRegisterName(StringRef Name); 3179 3180 /// } 3181 3182 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3183 SMLoc &StartLoc, SMLoc &EndLoc) { 3184 const AsmToken &Tok = getParser().getTok(); 3185 StartLoc = Tok.getLoc(); 3186 EndLoc = Tok.getEndLoc(); 3187 RegNo = tryParseRegister(); 3188 3189 return (RegNo == (unsigned)-1); 3190 } 3191 3192 /// Try to parse a register name. The token must be an Identifier when called, 3193 /// and if it is a register name the token is eaten and the register number is 3194 /// returned. Otherwise return -1. 3195 /// 3196 int ARMAsmParser::tryParseRegister() { 3197 MCAsmParser &Parser = getParser(); 3198 const AsmToken &Tok = Parser.getTok(); 3199 if (Tok.isNot(AsmToken::Identifier)) return -1; 3200 3201 std::string lowerCase = Tok.getString().lower(); 3202 unsigned RegNum = MatchRegisterName(lowerCase); 3203 if (!RegNum) { 3204 RegNum = StringSwitch<unsigned>(lowerCase) 3205 .Case("r13", ARM::SP) 3206 .Case("r14", ARM::LR) 3207 .Case("r15", ARM::PC) 3208 .Case("ip", ARM::R12) 3209 // Additional register name aliases for 'gas' compatibility. 3210 .Case("a1", ARM::R0) 3211 .Case("a2", ARM::R1) 3212 .Case("a3", ARM::R2) 3213 .Case("a4", ARM::R3) 3214 .Case("v1", ARM::R4) 3215 .Case("v2", ARM::R5) 3216 .Case("v3", ARM::R6) 3217 .Case("v4", ARM::R7) 3218 .Case("v5", ARM::R8) 3219 .Case("v6", ARM::R9) 3220 .Case("v7", ARM::R10) 3221 .Case("v8", ARM::R11) 3222 .Case("sb", ARM::R9) 3223 .Case("sl", ARM::R10) 3224 .Case("fp", ARM::R11) 3225 .Default(0); 3226 } 3227 if (!RegNum) { 3228 // Check for aliases registered via .req. Canonicalize to lower case. 3229 // That's more consistent since register names are case insensitive, and 3230 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3231 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3232 // If no match, return failure. 3233 if (Entry == RegisterReqs.end()) 3234 return -1; 3235 Parser.Lex(); // Eat identifier token. 3236 return Entry->getValue(); 3237 } 3238 3239 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3240 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3241 return -1; 3242 3243 Parser.Lex(); // Eat identifier token. 3244 3245 return RegNum; 3246 } 3247 3248 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3249 // If a recoverable error occurs, return 1. If an irrecoverable error 3250 // occurs, return -1. An irrecoverable error is one where tokens have been 3251 // consumed in the process of trying to parse the shifter (i.e., when it is 3252 // indeed a shifter operand, but malformed). 3253 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3254 MCAsmParser &Parser = getParser(); 3255 SMLoc S = Parser.getTok().getLoc(); 3256 const AsmToken &Tok = Parser.getTok(); 3257 if (Tok.isNot(AsmToken::Identifier)) 3258 return -1; 3259 3260 std::string lowerCase = Tok.getString().lower(); 3261 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3262 .Case("asl", ARM_AM::lsl) 3263 .Case("lsl", ARM_AM::lsl) 3264 .Case("lsr", ARM_AM::lsr) 3265 .Case("asr", ARM_AM::asr) 3266 .Case("ror", ARM_AM::ror) 3267 .Case("rrx", ARM_AM::rrx) 3268 .Default(ARM_AM::no_shift); 3269 3270 if (ShiftTy == ARM_AM::no_shift) 3271 return 1; 3272 3273 Parser.Lex(); // Eat the operator. 3274 3275 // The source register for the shift has already been added to the 3276 // operand list, so we need to pop it off and combine it into the shifted 3277 // register operand instead. 3278 std::unique_ptr<ARMOperand> PrevOp( 3279 (ARMOperand *)Operands.pop_back_val().release()); 3280 if (!PrevOp->isReg()) 3281 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3282 int SrcReg = PrevOp->getReg(); 3283 3284 SMLoc EndLoc; 3285 int64_t Imm = 0; 3286 int ShiftReg = 0; 3287 if (ShiftTy == ARM_AM::rrx) { 3288 // RRX Doesn't have an explicit shift amount. The encoder expects 3289 // the shift register to be the same as the source register. Seems odd, 3290 // but OK. 3291 ShiftReg = SrcReg; 3292 } else { 3293 // Figure out if this is shifted by a constant or a register (for non-RRX). 3294 if (Parser.getTok().is(AsmToken::Hash) || 3295 Parser.getTok().is(AsmToken::Dollar)) { 3296 Parser.Lex(); // Eat hash. 3297 SMLoc ImmLoc = Parser.getTok().getLoc(); 3298 const MCExpr *ShiftExpr = nullptr; 3299 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3300 Error(ImmLoc, "invalid immediate shift value"); 3301 return -1; 3302 } 3303 // The expression must be evaluatable as an immediate. 3304 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3305 if (!CE) { 3306 Error(ImmLoc, "invalid immediate shift value"); 3307 return -1; 3308 } 3309 // Range check the immediate. 3310 // lsl, ror: 0 <= imm <= 31 3311 // lsr, asr: 0 <= imm <= 32 3312 Imm = CE->getValue(); 3313 if (Imm < 0 || 3314 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3315 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3316 Error(ImmLoc, "immediate shift value out of range"); 3317 return -1; 3318 } 3319 // shift by zero is a nop. Always send it through as lsl. 3320 // ('as' compatibility) 3321 if (Imm == 0) 3322 ShiftTy = ARM_AM::lsl; 3323 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3324 SMLoc L = Parser.getTok().getLoc(); 3325 EndLoc = Parser.getTok().getEndLoc(); 3326 ShiftReg = tryParseRegister(); 3327 if (ShiftReg == -1) { 3328 Error(L, "expected immediate or register in shift operand"); 3329 return -1; 3330 } 3331 } else { 3332 Error(Parser.getTok().getLoc(), 3333 "expected immediate or register in shift operand"); 3334 return -1; 3335 } 3336 } 3337 3338 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3339 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3340 ShiftReg, Imm, 3341 S, EndLoc)); 3342 else 3343 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3344 S, EndLoc)); 3345 3346 return 0; 3347 } 3348 3349 3350 /// Try to parse a register name. The token must be an Identifier when called. 3351 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3352 /// if there is a "writeback". 'true' if it's not a register. 3353 /// 3354 /// TODO this is likely to change to allow different register types and or to 3355 /// parse for a specific register type. 3356 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3357 MCAsmParser &Parser = getParser(); 3358 const AsmToken &RegTok = Parser.getTok(); 3359 int RegNo = tryParseRegister(); 3360 if (RegNo == -1) 3361 return true; 3362 3363 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3364 RegTok.getEndLoc())); 3365 3366 const AsmToken &ExclaimTok = Parser.getTok(); 3367 if (ExclaimTok.is(AsmToken::Exclaim)) { 3368 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3369 ExclaimTok.getLoc())); 3370 Parser.Lex(); // Eat exclaim token 3371 return false; 3372 } 3373 3374 // Also check for an index operand. This is only legal for vector registers, 3375 // but that'll get caught OK in operand matching, so we don't need to 3376 // explicitly filter everything else out here. 3377 if (Parser.getTok().is(AsmToken::LBrac)) { 3378 SMLoc SIdx = Parser.getTok().getLoc(); 3379 Parser.Lex(); // Eat left bracket token. 3380 3381 const MCExpr *ImmVal; 3382 if (getParser().parseExpression(ImmVal)) 3383 return true; 3384 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3385 if (!MCE) 3386 return TokError("immediate value expected for vector index"); 3387 3388 if (Parser.getTok().isNot(AsmToken::RBrac)) 3389 return Error(Parser.getTok().getLoc(), "']' expected"); 3390 3391 SMLoc E = Parser.getTok().getEndLoc(); 3392 Parser.Lex(); // Eat right bracket token. 3393 3394 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3395 SIdx, E, 3396 getContext())); 3397 } 3398 3399 return false; 3400 } 3401 3402 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3403 /// instruction with a symbolic operand name. 3404 /// We accept "crN" syntax for GAS compatibility. 3405 /// <operand-name> ::= <prefix><number> 3406 /// If CoprocOp is 'c', then: 3407 /// <prefix> ::= c | cr 3408 /// If CoprocOp is 'p', then : 3409 /// <prefix> ::= p 3410 /// <number> ::= integer in range [0, 15] 3411 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3412 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3413 // but efficient. 3414 if (Name.size() < 2 || Name[0] != CoprocOp) 3415 return -1; 3416 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3417 3418 switch (Name.size()) { 3419 default: return -1; 3420 case 1: 3421 switch (Name[0]) { 3422 default: return -1; 3423 case '0': return 0; 3424 case '1': return 1; 3425 case '2': return 2; 3426 case '3': return 3; 3427 case '4': return 4; 3428 case '5': return 5; 3429 case '6': return 6; 3430 case '7': return 7; 3431 case '8': return 8; 3432 case '9': return 9; 3433 } 3434 case 2: 3435 if (Name[0] != '1') 3436 return -1; 3437 switch (Name[1]) { 3438 default: return -1; 3439 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3440 // However, old cores (v5/v6) did use them in that way. 3441 case '0': return 10; 3442 case '1': return 11; 3443 case '2': return 12; 3444 case '3': return 13; 3445 case '4': return 14; 3446 case '5': return 15; 3447 } 3448 } 3449 } 3450 3451 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3452 ARMAsmParser::OperandMatchResultTy 3453 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3454 MCAsmParser &Parser = getParser(); 3455 SMLoc S = Parser.getTok().getLoc(); 3456 const AsmToken &Tok = Parser.getTok(); 3457 if (!Tok.is(AsmToken::Identifier)) 3458 return MatchOperand_NoMatch; 3459 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3460 .Case("eq", ARMCC::EQ) 3461 .Case("ne", ARMCC::NE) 3462 .Case("hs", ARMCC::HS) 3463 .Case("cs", ARMCC::HS) 3464 .Case("lo", ARMCC::LO) 3465 .Case("cc", ARMCC::LO) 3466 .Case("mi", ARMCC::MI) 3467 .Case("pl", ARMCC::PL) 3468 .Case("vs", ARMCC::VS) 3469 .Case("vc", ARMCC::VC) 3470 .Case("hi", ARMCC::HI) 3471 .Case("ls", ARMCC::LS) 3472 .Case("ge", ARMCC::GE) 3473 .Case("lt", ARMCC::LT) 3474 .Case("gt", ARMCC::GT) 3475 .Case("le", ARMCC::LE) 3476 .Case("al", ARMCC::AL) 3477 .Default(~0U); 3478 if (CC == ~0U) 3479 return MatchOperand_NoMatch; 3480 Parser.Lex(); // Eat the token. 3481 3482 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3483 3484 return MatchOperand_Success; 3485 } 3486 3487 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3488 /// token must be an Identifier when called, and if it is a coprocessor 3489 /// number, the token is eaten and the operand is added to the operand list. 3490 ARMAsmParser::OperandMatchResultTy 3491 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3492 MCAsmParser &Parser = getParser(); 3493 SMLoc S = Parser.getTok().getLoc(); 3494 const AsmToken &Tok = Parser.getTok(); 3495 if (Tok.isNot(AsmToken::Identifier)) 3496 return MatchOperand_NoMatch; 3497 3498 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3499 if (Num == -1) 3500 return MatchOperand_NoMatch; 3501 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3502 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3503 return MatchOperand_NoMatch; 3504 3505 Parser.Lex(); // Eat identifier token. 3506 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3507 return MatchOperand_Success; 3508 } 3509 3510 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3511 /// token must be an Identifier when called, and if it is a coprocessor 3512 /// number, the token is eaten and the operand is added to the operand list. 3513 ARMAsmParser::OperandMatchResultTy 3514 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3515 MCAsmParser &Parser = getParser(); 3516 SMLoc S = Parser.getTok().getLoc(); 3517 const AsmToken &Tok = Parser.getTok(); 3518 if (Tok.isNot(AsmToken::Identifier)) 3519 return MatchOperand_NoMatch; 3520 3521 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3522 if (Reg == -1) 3523 return MatchOperand_NoMatch; 3524 3525 Parser.Lex(); // Eat identifier token. 3526 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3527 return MatchOperand_Success; 3528 } 3529 3530 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3531 /// coproc_option : '{' imm0_255 '}' 3532 ARMAsmParser::OperandMatchResultTy 3533 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3534 MCAsmParser &Parser = getParser(); 3535 SMLoc S = Parser.getTok().getLoc(); 3536 3537 // If this isn't a '{', this isn't a coprocessor immediate operand. 3538 if (Parser.getTok().isNot(AsmToken::LCurly)) 3539 return MatchOperand_NoMatch; 3540 Parser.Lex(); // Eat the '{' 3541 3542 const MCExpr *Expr; 3543 SMLoc Loc = Parser.getTok().getLoc(); 3544 if (getParser().parseExpression(Expr)) { 3545 Error(Loc, "illegal expression"); 3546 return MatchOperand_ParseFail; 3547 } 3548 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3549 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3550 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3551 return MatchOperand_ParseFail; 3552 } 3553 int Val = CE->getValue(); 3554 3555 // Check for and consume the closing '}' 3556 if (Parser.getTok().isNot(AsmToken::RCurly)) 3557 return MatchOperand_ParseFail; 3558 SMLoc E = Parser.getTok().getEndLoc(); 3559 Parser.Lex(); // Eat the '}' 3560 3561 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3562 return MatchOperand_Success; 3563 } 3564 3565 // For register list parsing, we need to map from raw GPR register numbering 3566 // to the enumeration values. The enumeration values aren't sorted by 3567 // register number due to our using "sp", "lr" and "pc" as canonical names. 3568 static unsigned getNextRegister(unsigned Reg) { 3569 // If this is a GPR, we need to do it manually, otherwise we can rely 3570 // on the sort ordering of the enumeration since the other reg-classes 3571 // are sane. 3572 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3573 return Reg + 1; 3574 switch(Reg) { 3575 default: llvm_unreachable("Invalid GPR number!"); 3576 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3577 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3578 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3579 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3580 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3581 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3582 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3583 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3584 } 3585 } 3586 3587 // Return the low-subreg of a given Q register. 3588 static unsigned getDRegFromQReg(unsigned QReg) { 3589 switch (QReg) { 3590 default: llvm_unreachable("expected a Q register!"); 3591 case ARM::Q0: return ARM::D0; 3592 case ARM::Q1: return ARM::D2; 3593 case ARM::Q2: return ARM::D4; 3594 case ARM::Q3: return ARM::D6; 3595 case ARM::Q4: return ARM::D8; 3596 case ARM::Q5: return ARM::D10; 3597 case ARM::Q6: return ARM::D12; 3598 case ARM::Q7: return ARM::D14; 3599 case ARM::Q8: return ARM::D16; 3600 case ARM::Q9: return ARM::D18; 3601 case ARM::Q10: return ARM::D20; 3602 case ARM::Q11: return ARM::D22; 3603 case ARM::Q12: return ARM::D24; 3604 case ARM::Q13: return ARM::D26; 3605 case ARM::Q14: return ARM::D28; 3606 case ARM::Q15: return ARM::D30; 3607 } 3608 } 3609 3610 /// Parse a register list. 3611 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3612 MCAsmParser &Parser = getParser(); 3613 assert(Parser.getTok().is(AsmToken::LCurly) && 3614 "Token is not a Left Curly Brace"); 3615 SMLoc S = Parser.getTok().getLoc(); 3616 Parser.Lex(); // Eat '{' token. 3617 SMLoc RegLoc = Parser.getTok().getLoc(); 3618 3619 // Check the first register in the list to see what register class 3620 // this is a list of. 3621 int Reg = tryParseRegister(); 3622 if (Reg == -1) 3623 return Error(RegLoc, "register expected"); 3624 3625 // The reglist instructions have at most 16 registers, so reserve 3626 // space for that many. 3627 int EReg = 0; 3628 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3629 3630 // Allow Q regs and just interpret them as the two D sub-registers. 3631 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3632 Reg = getDRegFromQReg(Reg); 3633 EReg = MRI->getEncodingValue(Reg); 3634 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3635 ++Reg; 3636 } 3637 const MCRegisterClass *RC; 3638 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3639 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3640 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3641 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3642 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3643 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3644 else 3645 return Error(RegLoc, "invalid register in register list"); 3646 3647 // Store the register. 3648 EReg = MRI->getEncodingValue(Reg); 3649 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3650 3651 // This starts immediately after the first register token in the list, 3652 // so we can see either a comma or a minus (range separator) as a legal 3653 // next token. 3654 while (Parser.getTok().is(AsmToken::Comma) || 3655 Parser.getTok().is(AsmToken::Minus)) { 3656 if (Parser.getTok().is(AsmToken::Minus)) { 3657 Parser.Lex(); // Eat the minus. 3658 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3659 int EndReg = tryParseRegister(); 3660 if (EndReg == -1) 3661 return Error(AfterMinusLoc, "register expected"); 3662 // Allow Q regs and just interpret them as the two D sub-registers. 3663 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3664 EndReg = getDRegFromQReg(EndReg) + 1; 3665 // If the register is the same as the start reg, there's nothing 3666 // more to do. 3667 if (Reg == EndReg) 3668 continue; 3669 // The register must be in the same register class as the first. 3670 if (!RC->contains(EndReg)) 3671 return Error(AfterMinusLoc, "invalid register in register list"); 3672 // Ranges must go from low to high. 3673 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3674 return Error(AfterMinusLoc, "bad range in register list"); 3675 3676 // Add all the registers in the range to the register list. 3677 while (Reg != EndReg) { 3678 Reg = getNextRegister(Reg); 3679 EReg = MRI->getEncodingValue(Reg); 3680 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3681 } 3682 continue; 3683 } 3684 Parser.Lex(); // Eat the comma. 3685 RegLoc = Parser.getTok().getLoc(); 3686 int OldReg = Reg; 3687 const AsmToken RegTok = Parser.getTok(); 3688 Reg = tryParseRegister(); 3689 if (Reg == -1) 3690 return Error(RegLoc, "register expected"); 3691 // Allow Q regs and just interpret them as the two D sub-registers. 3692 bool isQReg = false; 3693 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3694 Reg = getDRegFromQReg(Reg); 3695 isQReg = true; 3696 } 3697 // The register must be in the same register class as the first. 3698 if (!RC->contains(Reg)) 3699 return Error(RegLoc, "invalid register in register list"); 3700 // List must be monotonically increasing. 3701 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3702 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3703 Warning(RegLoc, "register list not in ascending order"); 3704 else 3705 return Error(RegLoc, "register list not in ascending order"); 3706 } 3707 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3708 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3709 ") in register list"); 3710 continue; 3711 } 3712 // VFP register lists must also be contiguous. 3713 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3714 Reg != OldReg + 1) 3715 return Error(RegLoc, "non-contiguous register range"); 3716 EReg = MRI->getEncodingValue(Reg); 3717 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3718 if (isQReg) { 3719 EReg = MRI->getEncodingValue(++Reg); 3720 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3721 } 3722 } 3723 3724 if (Parser.getTok().isNot(AsmToken::RCurly)) 3725 return Error(Parser.getTok().getLoc(), "'}' expected"); 3726 SMLoc E = Parser.getTok().getEndLoc(); 3727 Parser.Lex(); // Eat '}' token. 3728 3729 // Push the register list operand. 3730 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3731 3732 // The ARM system instruction variants for LDM/STM have a '^' token here. 3733 if (Parser.getTok().is(AsmToken::Caret)) { 3734 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3735 Parser.Lex(); // Eat '^' token. 3736 } 3737 3738 return false; 3739 } 3740 3741 // Helper function to parse the lane index for vector lists. 3742 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3743 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3744 MCAsmParser &Parser = getParser(); 3745 Index = 0; // Always return a defined index value. 3746 if (Parser.getTok().is(AsmToken::LBrac)) { 3747 Parser.Lex(); // Eat the '['. 3748 if (Parser.getTok().is(AsmToken::RBrac)) { 3749 // "Dn[]" is the 'all lanes' syntax. 3750 LaneKind = AllLanes; 3751 EndLoc = Parser.getTok().getEndLoc(); 3752 Parser.Lex(); // Eat the ']'. 3753 return MatchOperand_Success; 3754 } 3755 3756 // There's an optional '#' token here. Normally there wouldn't be, but 3757 // inline assemble puts one in, and it's friendly to accept that. 3758 if (Parser.getTok().is(AsmToken::Hash)) 3759 Parser.Lex(); // Eat '#' or '$'. 3760 3761 const MCExpr *LaneIndex; 3762 SMLoc Loc = Parser.getTok().getLoc(); 3763 if (getParser().parseExpression(LaneIndex)) { 3764 Error(Loc, "illegal expression"); 3765 return MatchOperand_ParseFail; 3766 } 3767 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3768 if (!CE) { 3769 Error(Loc, "lane index must be empty or an integer"); 3770 return MatchOperand_ParseFail; 3771 } 3772 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3773 Error(Parser.getTok().getLoc(), "']' expected"); 3774 return MatchOperand_ParseFail; 3775 } 3776 EndLoc = Parser.getTok().getEndLoc(); 3777 Parser.Lex(); // Eat the ']'. 3778 int64_t Val = CE->getValue(); 3779 3780 // FIXME: Make this range check context sensitive for .8, .16, .32. 3781 if (Val < 0 || Val > 7) { 3782 Error(Parser.getTok().getLoc(), "lane index out of range"); 3783 return MatchOperand_ParseFail; 3784 } 3785 Index = Val; 3786 LaneKind = IndexedLane; 3787 return MatchOperand_Success; 3788 } 3789 LaneKind = NoLanes; 3790 return MatchOperand_Success; 3791 } 3792 3793 // parse a vector register list 3794 ARMAsmParser::OperandMatchResultTy 3795 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3796 MCAsmParser &Parser = getParser(); 3797 VectorLaneTy LaneKind; 3798 unsigned LaneIndex; 3799 SMLoc S = Parser.getTok().getLoc(); 3800 // As an extension (to match gas), support a plain D register or Q register 3801 // (without encosing curly braces) as a single or double entry list, 3802 // respectively. 3803 if (Parser.getTok().is(AsmToken::Identifier)) { 3804 SMLoc E = Parser.getTok().getEndLoc(); 3805 int Reg = tryParseRegister(); 3806 if (Reg == -1) 3807 return MatchOperand_NoMatch; 3808 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3809 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3810 if (Res != MatchOperand_Success) 3811 return Res; 3812 switch (LaneKind) { 3813 case NoLanes: 3814 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3815 break; 3816 case AllLanes: 3817 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3818 S, E)); 3819 break; 3820 case IndexedLane: 3821 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3822 LaneIndex, 3823 false, S, E)); 3824 break; 3825 } 3826 return MatchOperand_Success; 3827 } 3828 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3829 Reg = getDRegFromQReg(Reg); 3830 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3831 if (Res != MatchOperand_Success) 3832 return Res; 3833 switch (LaneKind) { 3834 case NoLanes: 3835 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3836 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3837 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3838 break; 3839 case AllLanes: 3840 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3841 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3842 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3843 S, E)); 3844 break; 3845 case IndexedLane: 3846 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3847 LaneIndex, 3848 false, S, E)); 3849 break; 3850 } 3851 return MatchOperand_Success; 3852 } 3853 Error(S, "vector register expected"); 3854 return MatchOperand_ParseFail; 3855 } 3856 3857 if (Parser.getTok().isNot(AsmToken::LCurly)) 3858 return MatchOperand_NoMatch; 3859 3860 Parser.Lex(); // Eat '{' token. 3861 SMLoc RegLoc = Parser.getTok().getLoc(); 3862 3863 int Reg = tryParseRegister(); 3864 if (Reg == -1) { 3865 Error(RegLoc, "register expected"); 3866 return MatchOperand_ParseFail; 3867 } 3868 unsigned Count = 1; 3869 int Spacing = 0; 3870 unsigned FirstReg = Reg; 3871 // The list is of D registers, but we also allow Q regs and just interpret 3872 // them as the two D sub-registers. 3873 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3874 FirstReg = Reg = getDRegFromQReg(Reg); 3875 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3876 // it's ambiguous with four-register single spaced. 3877 ++Reg; 3878 ++Count; 3879 } 3880 3881 SMLoc E; 3882 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3883 return MatchOperand_ParseFail; 3884 3885 while (Parser.getTok().is(AsmToken::Comma) || 3886 Parser.getTok().is(AsmToken::Minus)) { 3887 if (Parser.getTok().is(AsmToken::Minus)) { 3888 if (!Spacing) 3889 Spacing = 1; // Register range implies a single spaced list. 3890 else if (Spacing == 2) { 3891 Error(Parser.getTok().getLoc(), 3892 "sequential registers in double spaced list"); 3893 return MatchOperand_ParseFail; 3894 } 3895 Parser.Lex(); // Eat the minus. 3896 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3897 int EndReg = tryParseRegister(); 3898 if (EndReg == -1) { 3899 Error(AfterMinusLoc, "register expected"); 3900 return MatchOperand_ParseFail; 3901 } 3902 // Allow Q regs and just interpret them as the two D sub-registers. 3903 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3904 EndReg = getDRegFromQReg(EndReg) + 1; 3905 // If the register is the same as the start reg, there's nothing 3906 // more to do. 3907 if (Reg == EndReg) 3908 continue; 3909 // The register must be in the same register class as the first. 3910 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3911 Error(AfterMinusLoc, "invalid register in register list"); 3912 return MatchOperand_ParseFail; 3913 } 3914 // Ranges must go from low to high. 3915 if (Reg > EndReg) { 3916 Error(AfterMinusLoc, "bad range in register list"); 3917 return MatchOperand_ParseFail; 3918 } 3919 // Parse the lane specifier if present. 3920 VectorLaneTy NextLaneKind; 3921 unsigned NextLaneIndex; 3922 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3923 MatchOperand_Success) 3924 return MatchOperand_ParseFail; 3925 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3926 Error(AfterMinusLoc, "mismatched lane index in register list"); 3927 return MatchOperand_ParseFail; 3928 } 3929 3930 // Add all the registers in the range to the register list. 3931 Count += EndReg - Reg; 3932 Reg = EndReg; 3933 continue; 3934 } 3935 Parser.Lex(); // Eat the comma. 3936 RegLoc = Parser.getTok().getLoc(); 3937 int OldReg = Reg; 3938 Reg = tryParseRegister(); 3939 if (Reg == -1) { 3940 Error(RegLoc, "register expected"); 3941 return MatchOperand_ParseFail; 3942 } 3943 // vector register lists must be contiguous. 3944 // It's OK to use the enumeration values directly here rather, as the 3945 // VFP register classes have the enum sorted properly. 3946 // 3947 // The list is of D registers, but we also allow Q regs and just interpret 3948 // them as the two D sub-registers. 3949 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3950 if (!Spacing) 3951 Spacing = 1; // Register range implies a single spaced list. 3952 else if (Spacing == 2) { 3953 Error(RegLoc, 3954 "invalid register in double-spaced list (must be 'D' register')"); 3955 return MatchOperand_ParseFail; 3956 } 3957 Reg = getDRegFromQReg(Reg); 3958 if (Reg != OldReg + 1) { 3959 Error(RegLoc, "non-contiguous register range"); 3960 return MatchOperand_ParseFail; 3961 } 3962 ++Reg; 3963 Count += 2; 3964 // Parse the lane specifier if present. 3965 VectorLaneTy NextLaneKind; 3966 unsigned NextLaneIndex; 3967 SMLoc LaneLoc = Parser.getTok().getLoc(); 3968 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3969 MatchOperand_Success) 3970 return MatchOperand_ParseFail; 3971 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3972 Error(LaneLoc, "mismatched lane index in register list"); 3973 return MatchOperand_ParseFail; 3974 } 3975 continue; 3976 } 3977 // Normal D register. 3978 // Figure out the register spacing (single or double) of the list if 3979 // we don't know it already. 3980 if (!Spacing) 3981 Spacing = 1 + (Reg == OldReg + 2); 3982 3983 // Just check that it's contiguous and keep going. 3984 if (Reg != OldReg + Spacing) { 3985 Error(RegLoc, "non-contiguous register range"); 3986 return MatchOperand_ParseFail; 3987 } 3988 ++Count; 3989 // Parse the lane specifier if present. 3990 VectorLaneTy NextLaneKind; 3991 unsigned NextLaneIndex; 3992 SMLoc EndLoc = Parser.getTok().getLoc(); 3993 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3994 return MatchOperand_ParseFail; 3995 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3996 Error(EndLoc, "mismatched lane index in register list"); 3997 return MatchOperand_ParseFail; 3998 } 3999 } 4000 4001 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4002 Error(Parser.getTok().getLoc(), "'}' expected"); 4003 return MatchOperand_ParseFail; 4004 } 4005 E = Parser.getTok().getEndLoc(); 4006 Parser.Lex(); // Eat '}' token. 4007 4008 switch (LaneKind) { 4009 case NoLanes: 4010 // Two-register operands have been converted to the 4011 // composite register classes. 4012 if (Count == 2) { 4013 const MCRegisterClass *RC = (Spacing == 1) ? 4014 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4015 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4016 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4017 } 4018 4019 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4020 (Spacing == 2), S, E)); 4021 break; 4022 case AllLanes: 4023 // Two-register operands have been converted to the 4024 // composite register classes. 4025 if (Count == 2) { 4026 const MCRegisterClass *RC = (Spacing == 1) ? 4027 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4028 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4029 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4030 } 4031 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4032 (Spacing == 2), 4033 S, E)); 4034 break; 4035 case IndexedLane: 4036 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4037 LaneIndex, 4038 (Spacing == 2), 4039 S, E)); 4040 break; 4041 } 4042 return MatchOperand_Success; 4043 } 4044 4045 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4046 ARMAsmParser::OperandMatchResultTy 4047 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4048 MCAsmParser &Parser = getParser(); 4049 SMLoc S = Parser.getTok().getLoc(); 4050 const AsmToken &Tok = Parser.getTok(); 4051 unsigned Opt; 4052 4053 if (Tok.is(AsmToken::Identifier)) { 4054 StringRef OptStr = Tok.getString(); 4055 4056 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4057 .Case("sy", ARM_MB::SY) 4058 .Case("st", ARM_MB::ST) 4059 .Case("ld", ARM_MB::LD) 4060 .Case("sh", ARM_MB::ISH) 4061 .Case("ish", ARM_MB::ISH) 4062 .Case("shst", ARM_MB::ISHST) 4063 .Case("ishst", ARM_MB::ISHST) 4064 .Case("ishld", ARM_MB::ISHLD) 4065 .Case("nsh", ARM_MB::NSH) 4066 .Case("un", ARM_MB::NSH) 4067 .Case("nshst", ARM_MB::NSHST) 4068 .Case("nshld", ARM_MB::NSHLD) 4069 .Case("unst", ARM_MB::NSHST) 4070 .Case("osh", ARM_MB::OSH) 4071 .Case("oshst", ARM_MB::OSHST) 4072 .Case("oshld", ARM_MB::OSHLD) 4073 .Default(~0U); 4074 4075 // ishld, oshld, nshld and ld are only available from ARMv8. 4076 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4077 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4078 Opt = ~0U; 4079 4080 if (Opt == ~0U) 4081 return MatchOperand_NoMatch; 4082 4083 Parser.Lex(); // Eat identifier token. 4084 } else if (Tok.is(AsmToken::Hash) || 4085 Tok.is(AsmToken::Dollar) || 4086 Tok.is(AsmToken::Integer)) { 4087 if (Parser.getTok().isNot(AsmToken::Integer)) 4088 Parser.Lex(); // Eat '#' or '$'. 4089 SMLoc Loc = Parser.getTok().getLoc(); 4090 4091 const MCExpr *MemBarrierID; 4092 if (getParser().parseExpression(MemBarrierID)) { 4093 Error(Loc, "illegal expression"); 4094 return MatchOperand_ParseFail; 4095 } 4096 4097 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4098 if (!CE) { 4099 Error(Loc, "constant expression expected"); 4100 return MatchOperand_ParseFail; 4101 } 4102 4103 int Val = CE->getValue(); 4104 if (Val & ~0xf) { 4105 Error(Loc, "immediate value out of range"); 4106 return MatchOperand_ParseFail; 4107 } 4108 4109 Opt = ARM_MB::RESERVED_0 + Val; 4110 } else 4111 return MatchOperand_ParseFail; 4112 4113 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4114 return MatchOperand_Success; 4115 } 4116 4117 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4118 ARMAsmParser::OperandMatchResultTy 4119 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4120 MCAsmParser &Parser = getParser(); 4121 SMLoc S = Parser.getTok().getLoc(); 4122 const AsmToken &Tok = Parser.getTok(); 4123 unsigned Opt; 4124 4125 if (Tok.is(AsmToken::Identifier)) { 4126 StringRef OptStr = Tok.getString(); 4127 4128 if (OptStr.equals_lower("sy")) 4129 Opt = ARM_ISB::SY; 4130 else 4131 return MatchOperand_NoMatch; 4132 4133 Parser.Lex(); // Eat identifier token. 4134 } else if (Tok.is(AsmToken::Hash) || 4135 Tok.is(AsmToken::Dollar) || 4136 Tok.is(AsmToken::Integer)) { 4137 if (Parser.getTok().isNot(AsmToken::Integer)) 4138 Parser.Lex(); // Eat '#' or '$'. 4139 SMLoc Loc = Parser.getTok().getLoc(); 4140 4141 const MCExpr *ISBarrierID; 4142 if (getParser().parseExpression(ISBarrierID)) { 4143 Error(Loc, "illegal expression"); 4144 return MatchOperand_ParseFail; 4145 } 4146 4147 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4148 if (!CE) { 4149 Error(Loc, "constant expression expected"); 4150 return MatchOperand_ParseFail; 4151 } 4152 4153 int Val = CE->getValue(); 4154 if (Val & ~0xf) { 4155 Error(Loc, "immediate value out of range"); 4156 return MatchOperand_ParseFail; 4157 } 4158 4159 Opt = ARM_ISB::RESERVED_0 + Val; 4160 } else 4161 return MatchOperand_ParseFail; 4162 4163 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4164 (ARM_ISB::InstSyncBOpt)Opt, S)); 4165 return MatchOperand_Success; 4166 } 4167 4168 4169 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4170 ARMAsmParser::OperandMatchResultTy 4171 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4172 MCAsmParser &Parser = getParser(); 4173 SMLoc S = Parser.getTok().getLoc(); 4174 const AsmToken &Tok = Parser.getTok(); 4175 if (!Tok.is(AsmToken::Identifier)) 4176 return MatchOperand_NoMatch; 4177 StringRef IFlagsStr = Tok.getString(); 4178 4179 // An iflags string of "none" is interpreted to mean that none of the AIF 4180 // bits are set. Not a terribly useful instruction, but a valid encoding. 4181 unsigned IFlags = 0; 4182 if (IFlagsStr != "none") { 4183 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4184 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4185 .Case("a", ARM_PROC::A) 4186 .Case("i", ARM_PROC::I) 4187 .Case("f", ARM_PROC::F) 4188 .Default(~0U); 4189 4190 // If some specific iflag is already set, it means that some letter is 4191 // present more than once, this is not acceptable. 4192 if (Flag == ~0U || (IFlags & Flag)) 4193 return MatchOperand_NoMatch; 4194 4195 IFlags |= Flag; 4196 } 4197 } 4198 4199 Parser.Lex(); // Eat identifier token. 4200 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4201 return MatchOperand_Success; 4202 } 4203 4204 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4205 ARMAsmParser::OperandMatchResultTy 4206 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4207 MCAsmParser &Parser = getParser(); 4208 SMLoc S = Parser.getTok().getLoc(); 4209 const AsmToken &Tok = Parser.getTok(); 4210 if (!Tok.is(AsmToken::Identifier)) 4211 return MatchOperand_NoMatch; 4212 StringRef Mask = Tok.getString(); 4213 4214 if (isMClass()) { 4215 // See ARMv6-M 10.1.1 4216 std::string Name = Mask.lower(); 4217 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4218 // Note: in the documentation: 4219 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4220 // for MSR APSR_nzcvq. 4221 // but we do make it an alias here. This is so to get the "mask encoding" 4222 // bits correct on MSR APSR writes. 4223 // 4224 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4225 // should really only be allowed when writing a special register. Note 4226 // they get dropped in the MRS instruction reading a special register as 4227 // the SYSm field is only 8 bits. 4228 .Case("apsr", 0x800) 4229 .Case("apsr_nzcvq", 0x800) 4230 .Case("apsr_g", 0x400) 4231 .Case("apsr_nzcvqg", 0xc00) 4232 .Case("iapsr", 0x801) 4233 .Case("iapsr_nzcvq", 0x801) 4234 .Case("iapsr_g", 0x401) 4235 .Case("iapsr_nzcvqg", 0xc01) 4236 .Case("eapsr", 0x802) 4237 .Case("eapsr_nzcvq", 0x802) 4238 .Case("eapsr_g", 0x402) 4239 .Case("eapsr_nzcvqg", 0xc02) 4240 .Case("xpsr", 0x803) 4241 .Case("xpsr_nzcvq", 0x803) 4242 .Case("xpsr_g", 0x403) 4243 .Case("xpsr_nzcvqg", 0xc03) 4244 .Case("ipsr", 0x805) 4245 .Case("epsr", 0x806) 4246 .Case("iepsr", 0x807) 4247 .Case("msp", 0x808) 4248 .Case("psp", 0x809) 4249 .Case("primask", 0x810) 4250 .Case("basepri", 0x811) 4251 .Case("basepri_max", 0x812) 4252 .Case("faultmask", 0x813) 4253 .Case("control", 0x814) 4254 .Case("msplim", 0x80a) 4255 .Case("psplim", 0x80b) 4256 .Case("msp_ns", 0x888) 4257 .Case("psp_ns", 0x889) 4258 .Case("msplim_ns", 0x88a) 4259 .Case("psplim_ns", 0x88b) 4260 .Case("primask_ns", 0x890) 4261 .Case("basepri_ns", 0x891) 4262 .Case("basepri_max_ns", 0x892) 4263 .Case("faultmask_ns", 0x893) 4264 .Case("control_ns", 0x894) 4265 .Case("sp_ns", 0x898) 4266 .Default(~0U); 4267 4268 if (FlagsVal == ~0U) 4269 return MatchOperand_NoMatch; 4270 4271 if (!hasDSP() && (FlagsVal & 0x400)) 4272 // The _g and _nzcvqg versions are only valid if the DSP extension is 4273 // available. 4274 return MatchOperand_NoMatch; 4275 4276 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4277 // basepri, basepri_max and faultmask only valid for V7m. 4278 return MatchOperand_NoMatch; 4279 4280 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4281 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4282 return MatchOperand_NoMatch; 4283 4284 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4285 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4286 return MatchOperand_NoMatch; 4287 4288 Parser.Lex(); // Eat identifier token. 4289 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4290 return MatchOperand_Success; 4291 } 4292 4293 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4294 size_t Start = 0, Next = Mask.find('_'); 4295 StringRef Flags = ""; 4296 std::string SpecReg = Mask.slice(Start, Next).lower(); 4297 if (Next != StringRef::npos) 4298 Flags = Mask.slice(Next+1, Mask.size()); 4299 4300 // FlagsVal contains the complete mask: 4301 // 3-0: Mask 4302 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4303 unsigned FlagsVal = 0; 4304 4305 if (SpecReg == "apsr") { 4306 FlagsVal = StringSwitch<unsigned>(Flags) 4307 .Case("nzcvq", 0x8) // same as CPSR_f 4308 .Case("g", 0x4) // same as CPSR_s 4309 .Case("nzcvqg", 0xc) // same as CPSR_fs 4310 .Default(~0U); 4311 4312 if (FlagsVal == ~0U) { 4313 if (!Flags.empty()) 4314 return MatchOperand_NoMatch; 4315 else 4316 FlagsVal = 8; // No flag 4317 } 4318 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4319 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4320 if (Flags == "all" || Flags == "") 4321 Flags = "fc"; 4322 for (int i = 0, e = Flags.size(); i != e; ++i) { 4323 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4324 .Case("c", 1) 4325 .Case("x", 2) 4326 .Case("s", 4) 4327 .Case("f", 8) 4328 .Default(~0U); 4329 4330 // If some specific flag is already set, it means that some letter is 4331 // present more than once, this is not acceptable. 4332 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4333 return MatchOperand_NoMatch; 4334 FlagsVal |= Flag; 4335 } 4336 } else // No match for special register. 4337 return MatchOperand_NoMatch; 4338 4339 // Special register without flags is NOT equivalent to "fc" flags. 4340 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4341 // two lines would enable gas compatibility at the expense of breaking 4342 // round-tripping. 4343 // 4344 // if (!FlagsVal) 4345 // FlagsVal = 0x9; 4346 4347 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4348 if (SpecReg == "spsr") 4349 FlagsVal |= 16; 4350 4351 Parser.Lex(); // Eat identifier token. 4352 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4353 return MatchOperand_Success; 4354 } 4355 4356 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4357 /// use in the MRS/MSR instructions added to support virtualization. 4358 ARMAsmParser::OperandMatchResultTy 4359 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4360 MCAsmParser &Parser = getParser(); 4361 SMLoc S = Parser.getTok().getLoc(); 4362 const AsmToken &Tok = Parser.getTok(); 4363 if (!Tok.is(AsmToken::Identifier)) 4364 return MatchOperand_NoMatch; 4365 StringRef RegName = Tok.getString(); 4366 4367 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4368 // and bit 5 is R. 4369 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4370 .Case("r8_usr", 0x00) 4371 .Case("r9_usr", 0x01) 4372 .Case("r10_usr", 0x02) 4373 .Case("r11_usr", 0x03) 4374 .Case("r12_usr", 0x04) 4375 .Case("sp_usr", 0x05) 4376 .Case("lr_usr", 0x06) 4377 .Case("r8_fiq", 0x08) 4378 .Case("r9_fiq", 0x09) 4379 .Case("r10_fiq", 0x0a) 4380 .Case("r11_fiq", 0x0b) 4381 .Case("r12_fiq", 0x0c) 4382 .Case("sp_fiq", 0x0d) 4383 .Case("lr_fiq", 0x0e) 4384 .Case("lr_irq", 0x10) 4385 .Case("sp_irq", 0x11) 4386 .Case("lr_svc", 0x12) 4387 .Case("sp_svc", 0x13) 4388 .Case("lr_abt", 0x14) 4389 .Case("sp_abt", 0x15) 4390 .Case("lr_und", 0x16) 4391 .Case("sp_und", 0x17) 4392 .Case("lr_mon", 0x1c) 4393 .Case("sp_mon", 0x1d) 4394 .Case("elr_hyp", 0x1e) 4395 .Case("sp_hyp", 0x1f) 4396 .Case("spsr_fiq", 0x2e) 4397 .Case("spsr_irq", 0x30) 4398 .Case("spsr_svc", 0x32) 4399 .Case("spsr_abt", 0x34) 4400 .Case("spsr_und", 0x36) 4401 .Case("spsr_mon", 0x3c) 4402 .Case("spsr_hyp", 0x3e) 4403 .Default(~0U); 4404 4405 if (Encoding == ~0U) 4406 return MatchOperand_NoMatch; 4407 4408 Parser.Lex(); // Eat identifier token. 4409 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4410 return MatchOperand_Success; 4411 } 4412 4413 ARMAsmParser::OperandMatchResultTy 4414 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4415 int High) { 4416 MCAsmParser &Parser = getParser(); 4417 const AsmToken &Tok = Parser.getTok(); 4418 if (Tok.isNot(AsmToken::Identifier)) { 4419 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4420 return MatchOperand_ParseFail; 4421 } 4422 StringRef ShiftName = Tok.getString(); 4423 std::string LowerOp = Op.lower(); 4424 std::string UpperOp = Op.upper(); 4425 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4426 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4427 return MatchOperand_ParseFail; 4428 } 4429 Parser.Lex(); // Eat shift type token. 4430 4431 // There must be a '#' and a shift amount. 4432 if (Parser.getTok().isNot(AsmToken::Hash) && 4433 Parser.getTok().isNot(AsmToken::Dollar)) { 4434 Error(Parser.getTok().getLoc(), "'#' expected"); 4435 return MatchOperand_ParseFail; 4436 } 4437 Parser.Lex(); // Eat hash token. 4438 4439 const MCExpr *ShiftAmount; 4440 SMLoc Loc = Parser.getTok().getLoc(); 4441 SMLoc EndLoc; 4442 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4443 Error(Loc, "illegal expression"); 4444 return MatchOperand_ParseFail; 4445 } 4446 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4447 if (!CE) { 4448 Error(Loc, "constant expression expected"); 4449 return MatchOperand_ParseFail; 4450 } 4451 int Val = CE->getValue(); 4452 if (Val < Low || Val > High) { 4453 Error(Loc, "immediate value out of range"); 4454 return MatchOperand_ParseFail; 4455 } 4456 4457 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4458 4459 return MatchOperand_Success; 4460 } 4461 4462 ARMAsmParser::OperandMatchResultTy 4463 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4464 MCAsmParser &Parser = getParser(); 4465 const AsmToken &Tok = Parser.getTok(); 4466 SMLoc S = Tok.getLoc(); 4467 if (Tok.isNot(AsmToken::Identifier)) { 4468 Error(S, "'be' or 'le' operand expected"); 4469 return MatchOperand_ParseFail; 4470 } 4471 int Val = StringSwitch<int>(Tok.getString().lower()) 4472 .Case("be", 1) 4473 .Case("le", 0) 4474 .Default(-1); 4475 Parser.Lex(); // Eat the token. 4476 4477 if (Val == -1) { 4478 Error(S, "'be' or 'le' operand expected"); 4479 return MatchOperand_ParseFail; 4480 } 4481 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4482 getContext()), 4483 S, Tok.getEndLoc())); 4484 return MatchOperand_Success; 4485 } 4486 4487 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4488 /// instructions. Legal values are: 4489 /// lsl #n 'n' in [0,31] 4490 /// asr #n 'n' in [1,32] 4491 /// n == 32 encoded as n == 0. 4492 ARMAsmParser::OperandMatchResultTy 4493 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4494 MCAsmParser &Parser = getParser(); 4495 const AsmToken &Tok = Parser.getTok(); 4496 SMLoc S = Tok.getLoc(); 4497 if (Tok.isNot(AsmToken::Identifier)) { 4498 Error(S, "shift operator 'asr' or 'lsl' expected"); 4499 return MatchOperand_ParseFail; 4500 } 4501 StringRef ShiftName = Tok.getString(); 4502 bool isASR; 4503 if (ShiftName == "lsl" || ShiftName == "LSL") 4504 isASR = false; 4505 else if (ShiftName == "asr" || ShiftName == "ASR") 4506 isASR = true; 4507 else { 4508 Error(S, "shift operator 'asr' or 'lsl' expected"); 4509 return MatchOperand_ParseFail; 4510 } 4511 Parser.Lex(); // Eat the operator. 4512 4513 // A '#' and a shift amount. 4514 if (Parser.getTok().isNot(AsmToken::Hash) && 4515 Parser.getTok().isNot(AsmToken::Dollar)) { 4516 Error(Parser.getTok().getLoc(), "'#' expected"); 4517 return MatchOperand_ParseFail; 4518 } 4519 Parser.Lex(); // Eat hash token. 4520 SMLoc ExLoc = Parser.getTok().getLoc(); 4521 4522 const MCExpr *ShiftAmount; 4523 SMLoc EndLoc; 4524 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4525 Error(ExLoc, "malformed shift expression"); 4526 return MatchOperand_ParseFail; 4527 } 4528 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4529 if (!CE) { 4530 Error(ExLoc, "shift amount must be an immediate"); 4531 return MatchOperand_ParseFail; 4532 } 4533 4534 int64_t Val = CE->getValue(); 4535 if (isASR) { 4536 // Shift amount must be in [1,32] 4537 if (Val < 1 || Val > 32) { 4538 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4539 return MatchOperand_ParseFail; 4540 } 4541 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4542 if (isThumb() && Val == 32) { 4543 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4544 return MatchOperand_ParseFail; 4545 } 4546 if (Val == 32) Val = 0; 4547 } else { 4548 // Shift amount must be in [1,32] 4549 if (Val < 0 || Val > 31) { 4550 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4551 return MatchOperand_ParseFail; 4552 } 4553 } 4554 4555 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4556 4557 return MatchOperand_Success; 4558 } 4559 4560 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4561 /// of instructions. Legal values are: 4562 /// ror #n 'n' in {0, 8, 16, 24} 4563 ARMAsmParser::OperandMatchResultTy 4564 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4565 MCAsmParser &Parser = getParser(); 4566 const AsmToken &Tok = Parser.getTok(); 4567 SMLoc S = Tok.getLoc(); 4568 if (Tok.isNot(AsmToken::Identifier)) 4569 return MatchOperand_NoMatch; 4570 StringRef ShiftName = Tok.getString(); 4571 if (ShiftName != "ror" && ShiftName != "ROR") 4572 return MatchOperand_NoMatch; 4573 Parser.Lex(); // Eat the operator. 4574 4575 // A '#' and a rotate amount. 4576 if (Parser.getTok().isNot(AsmToken::Hash) && 4577 Parser.getTok().isNot(AsmToken::Dollar)) { 4578 Error(Parser.getTok().getLoc(), "'#' expected"); 4579 return MatchOperand_ParseFail; 4580 } 4581 Parser.Lex(); // Eat hash token. 4582 SMLoc ExLoc = Parser.getTok().getLoc(); 4583 4584 const MCExpr *ShiftAmount; 4585 SMLoc EndLoc; 4586 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4587 Error(ExLoc, "malformed rotate expression"); 4588 return MatchOperand_ParseFail; 4589 } 4590 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4591 if (!CE) { 4592 Error(ExLoc, "rotate amount must be an immediate"); 4593 return MatchOperand_ParseFail; 4594 } 4595 4596 int64_t Val = CE->getValue(); 4597 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4598 // normally, zero is represented in asm by omitting the rotate operand 4599 // entirely. 4600 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4601 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4602 return MatchOperand_ParseFail; 4603 } 4604 4605 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4606 4607 return MatchOperand_Success; 4608 } 4609 4610 ARMAsmParser::OperandMatchResultTy 4611 ARMAsmParser::parseModImm(OperandVector &Operands) { 4612 MCAsmParser &Parser = getParser(); 4613 MCAsmLexer &Lexer = getLexer(); 4614 int64_t Imm1, Imm2; 4615 4616 SMLoc S = Parser.getTok().getLoc(); 4617 4618 // 1) A mod_imm operand can appear in the place of a register name: 4619 // add r0, #mod_imm 4620 // add r0, r0, #mod_imm 4621 // to correctly handle the latter, we bail out as soon as we see an 4622 // identifier. 4623 // 4624 // 2) Similarly, we do not want to parse into complex operands: 4625 // mov r0, #mod_imm 4626 // mov r0, :lower16:(_foo) 4627 if (Parser.getTok().is(AsmToken::Identifier) || 4628 Parser.getTok().is(AsmToken::Colon)) 4629 return MatchOperand_NoMatch; 4630 4631 // Hash (dollar) is optional as per the ARMARM 4632 if (Parser.getTok().is(AsmToken::Hash) || 4633 Parser.getTok().is(AsmToken::Dollar)) { 4634 // Avoid parsing into complex operands (#:) 4635 if (Lexer.peekTok().is(AsmToken::Colon)) 4636 return MatchOperand_NoMatch; 4637 4638 // Eat the hash (dollar) 4639 Parser.Lex(); 4640 } 4641 4642 SMLoc Sx1, Ex1; 4643 Sx1 = Parser.getTok().getLoc(); 4644 const MCExpr *Imm1Exp; 4645 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4646 Error(Sx1, "malformed expression"); 4647 return MatchOperand_ParseFail; 4648 } 4649 4650 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4651 4652 if (CE) { 4653 // Immediate must fit within 32-bits 4654 Imm1 = CE->getValue(); 4655 int Enc = ARM_AM::getSOImmVal(Imm1); 4656 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4657 // We have a match! 4658 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4659 (Enc & 0xF00) >> 7, 4660 Sx1, Ex1)); 4661 return MatchOperand_Success; 4662 } 4663 4664 // We have parsed an immediate which is not for us, fallback to a plain 4665 // immediate. This can happen for instruction aliases. For an example, 4666 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4667 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4668 // instruction with a mod_imm operand. The alias is defined such that the 4669 // parser method is shared, that's why we have to do this here. 4670 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4671 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4672 return MatchOperand_Success; 4673 } 4674 } else { 4675 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4676 // MCFixup). Fallback to a plain immediate. 4677 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4678 return MatchOperand_Success; 4679 } 4680 4681 // From this point onward, we expect the input to be a (#bits, #rot) pair 4682 if (Parser.getTok().isNot(AsmToken::Comma)) { 4683 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4684 return MatchOperand_ParseFail; 4685 } 4686 4687 if (Imm1 & ~0xFF) { 4688 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4689 return MatchOperand_ParseFail; 4690 } 4691 4692 // Eat the comma 4693 Parser.Lex(); 4694 4695 // Repeat for #rot 4696 SMLoc Sx2, Ex2; 4697 Sx2 = Parser.getTok().getLoc(); 4698 4699 // Eat the optional hash (dollar) 4700 if (Parser.getTok().is(AsmToken::Hash) || 4701 Parser.getTok().is(AsmToken::Dollar)) 4702 Parser.Lex(); 4703 4704 const MCExpr *Imm2Exp; 4705 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4706 Error(Sx2, "malformed expression"); 4707 return MatchOperand_ParseFail; 4708 } 4709 4710 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4711 4712 if (CE) { 4713 Imm2 = CE->getValue(); 4714 if (!(Imm2 & ~0x1E)) { 4715 // We have a match! 4716 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4717 return MatchOperand_Success; 4718 } 4719 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4720 return MatchOperand_ParseFail; 4721 } else { 4722 Error(Sx2, "constant expression expected"); 4723 return MatchOperand_ParseFail; 4724 } 4725 } 4726 4727 ARMAsmParser::OperandMatchResultTy 4728 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4729 MCAsmParser &Parser = getParser(); 4730 SMLoc S = Parser.getTok().getLoc(); 4731 // The bitfield descriptor is really two operands, the LSB and the width. 4732 if (Parser.getTok().isNot(AsmToken::Hash) && 4733 Parser.getTok().isNot(AsmToken::Dollar)) { 4734 Error(Parser.getTok().getLoc(), "'#' expected"); 4735 return MatchOperand_ParseFail; 4736 } 4737 Parser.Lex(); // Eat hash token. 4738 4739 const MCExpr *LSBExpr; 4740 SMLoc E = Parser.getTok().getLoc(); 4741 if (getParser().parseExpression(LSBExpr)) { 4742 Error(E, "malformed immediate expression"); 4743 return MatchOperand_ParseFail; 4744 } 4745 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4746 if (!CE) { 4747 Error(E, "'lsb' operand must be an immediate"); 4748 return MatchOperand_ParseFail; 4749 } 4750 4751 int64_t LSB = CE->getValue(); 4752 // The LSB must be in the range [0,31] 4753 if (LSB < 0 || LSB > 31) { 4754 Error(E, "'lsb' operand must be in the range [0,31]"); 4755 return MatchOperand_ParseFail; 4756 } 4757 E = Parser.getTok().getLoc(); 4758 4759 // Expect another immediate operand. 4760 if (Parser.getTok().isNot(AsmToken::Comma)) { 4761 Error(Parser.getTok().getLoc(), "too few operands"); 4762 return MatchOperand_ParseFail; 4763 } 4764 Parser.Lex(); // Eat hash token. 4765 if (Parser.getTok().isNot(AsmToken::Hash) && 4766 Parser.getTok().isNot(AsmToken::Dollar)) { 4767 Error(Parser.getTok().getLoc(), "'#' expected"); 4768 return MatchOperand_ParseFail; 4769 } 4770 Parser.Lex(); // Eat hash token. 4771 4772 const MCExpr *WidthExpr; 4773 SMLoc EndLoc; 4774 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4775 Error(E, "malformed immediate expression"); 4776 return MatchOperand_ParseFail; 4777 } 4778 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4779 if (!CE) { 4780 Error(E, "'width' operand must be an immediate"); 4781 return MatchOperand_ParseFail; 4782 } 4783 4784 int64_t Width = CE->getValue(); 4785 // The LSB must be in the range [1,32-lsb] 4786 if (Width < 1 || Width > 32 - LSB) { 4787 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4788 return MatchOperand_ParseFail; 4789 } 4790 4791 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4792 4793 return MatchOperand_Success; 4794 } 4795 4796 ARMAsmParser::OperandMatchResultTy 4797 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4798 // Check for a post-index addressing register operand. Specifically: 4799 // postidx_reg := '+' register {, shift} 4800 // | '-' register {, shift} 4801 // | register {, shift} 4802 4803 // This method must return MatchOperand_NoMatch without consuming any tokens 4804 // in the case where there is no match, as other alternatives take other 4805 // parse methods. 4806 MCAsmParser &Parser = getParser(); 4807 AsmToken Tok = Parser.getTok(); 4808 SMLoc S = Tok.getLoc(); 4809 bool haveEaten = false; 4810 bool isAdd = true; 4811 if (Tok.is(AsmToken::Plus)) { 4812 Parser.Lex(); // Eat the '+' token. 4813 haveEaten = true; 4814 } else if (Tok.is(AsmToken::Minus)) { 4815 Parser.Lex(); // Eat the '-' token. 4816 isAdd = false; 4817 haveEaten = true; 4818 } 4819 4820 SMLoc E = Parser.getTok().getEndLoc(); 4821 int Reg = tryParseRegister(); 4822 if (Reg == -1) { 4823 if (!haveEaten) 4824 return MatchOperand_NoMatch; 4825 Error(Parser.getTok().getLoc(), "register expected"); 4826 return MatchOperand_ParseFail; 4827 } 4828 4829 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4830 unsigned ShiftImm = 0; 4831 if (Parser.getTok().is(AsmToken::Comma)) { 4832 Parser.Lex(); // Eat the ','. 4833 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4834 return MatchOperand_ParseFail; 4835 4836 // FIXME: Only approximates end...may include intervening whitespace. 4837 E = Parser.getTok().getLoc(); 4838 } 4839 4840 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4841 ShiftImm, S, E)); 4842 4843 return MatchOperand_Success; 4844 } 4845 4846 ARMAsmParser::OperandMatchResultTy 4847 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4848 // Check for a post-index addressing register operand. Specifically: 4849 // am3offset := '+' register 4850 // | '-' register 4851 // | register 4852 // | # imm 4853 // | # + imm 4854 // | # - imm 4855 4856 // This method must return MatchOperand_NoMatch without consuming any tokens 4857 // in the case where there is no match, as other alternatives take other 4858 // parse methods. 4859 MCAsmParser &Parser = getParser(); 4860 AsmToken Tok = Parser.getTok(); 4861 SMLoc S = Tok.getLoc(); 4862 4863 // Do immediates first, as we always parse those if we have a '#'. 4864 if (Parser.getTok().is(AsmToken::Hash) || 4865 Parser.getTok().is(AsmToken::Dollar)) { 4866 Parser.Lex(); // Eat '#' or '$'. 4867 // Explicitly look for a '-', as we need to encode negative zero 4868 // differently. 4869 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4870 const MCExpr *Offset; 4871 SMLoc E; 4872 if (getParser().parseExpression(Offset, E)) 4873 return MatchOperand_ParseFail; 4874 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4875 if (!CE) { 4876 Error(S, "constant expression expected"); 4877 return MatchOperand_ParseFail; 4878 } 4879 // Negative zero is encoded as the flag value INT32_MIN. 4880 int32_t Val = CE->getValue(); 4881 if (isNegative && Val == 0) 4882 Val = INT32_MIN; 4883 4884 Operands.push_back( 4885 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4886 4887 return MatchOperand_Success; 4888 } 4889 4890 4891 bool haveEaten = false; 4892 bool isAdd = true; 4893 if (Tok.is(AsmToken::Plus)) { 4894 Parser.Lex(); // Eat the '+' token. 4895 haveEaten = true; 4896 } else if (Tok.is(AsmToken::Minus)) { 4897 Parser.Lex(); // Eat the '-' token. 4898 isAdd = false; 4899 haveEaten = true; 4900 } 4901 4902 Tok = Parser.getTok(); 4903 int Reg = tryParseRegister(); 4904 if (Reg == -1) { 4905 if (!haveEaten) 4906 return MatchOperand_NoMatch; 4907 Error(Tok.getLoc(), "register expected"); 4908 return MatchOperand_ParseFail; 4909 } 4910 4911 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4912 0, S, Tok.getEndLoc())); 4913 4914 return MatchOperand_Success; 4915 } 4916 4917 /// Convert parsed operands to MCInst. Needed here because this instruction 4918 /// only has two register operands, but multiplication is commutative so 4919 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4920 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4921 const OperandVector &Operands) { 4922 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4923 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4924 // If we have a three-operand form, make sure to set Rn to be the operand 4925 // that isn't the same as Rd. 4926 unsigned RegOp = 4; 4927 if (Operands.size() == 6 && 4928 ((ARMOperand &)*Operands[4]).getReg() == 4929 ((ARMOperand &)*Operands[3]).getReg()) 4930 RegOp = 5; 4931 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4932 Inst.addOperand(Inst.getOperand(0)); 4933 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4934 } 4935 4936 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4937 const OperandVector &Operands) { 4938 int CondOp = -1, ImmOp = -1; 4939 switch(Inst.getOpcode()) { 4940 case ARM::tB: 4941 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4942 4943 case ARM::t2B: 4944 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4945 4946 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4947 } 4948 // first decide whether or not the branch should be conditional 4949 // by looking at it's location relative to an IT block 4950 if(inITBlock()) { 4951 // inside an IT block we cannot have any conditional branches. any 4952 // such instructions needs to be converted to unconditional form 4953 switch(Inst.getOpcode()) { 4954 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4955 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4956 } 4957 } else { 4958 // outside IT blocks we can only have unconditional branches with AL 4959 // condition code or conditional branches with non-AL condition code 4960 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4961 switch(Inst.getOpcode()) { 4962 case ARM::tB: 4963 case ARM::tBcc: 4964 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4965 break; 4966 case ARM::t2B: 4967 case ARM::t2Bcc: 4968 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4969 break; 4970 } 4971 } 4972 4973 // now decide on encoding size based on branch target range 4974 switch(Inst.getOpcode()) { 4975 // classify tB as either t2B or t1B based on range of immediate operand 4976 case ARM::tB: { 4977 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4978 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4979 Inst.setOpcode(ARM::t2B); 4980 break; 4981 } 4982 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4983 case ARM::tBcc: { 4984 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4985 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4986 Inst.setOpcode(ARM::t2Bcc); 4987 break; 4988 } 4989 } 4990 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4991 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4992 } 4993 4994 /// Parse an ARM memory expression, return false if successful else return true 4995 /// or an error. The first token must be a '[' when called. 4996 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4997 MCAsmParser &Parser = getParser(); 4998 SMLoc S, E; 4999 assert(Parser.getTok().is(AsmToken::LBrac) && 5000 "Token is not a Left Bracket"); 5001 S = Parser.getTok().getLoc(); 5002 Parser.Lex(); // Eat left bracket token. 5003 5004 const AsmToken &BaseRegTok = Parser.getTok(); 5005 int BaseRegNum = tryParseRegister(); 5006 if (BaseRegNum == -1) 5007 return Error(BaseRegTok.getLoc(), "register expected"); 5008 5009 // The next token must either be a comma, a colon or a closing bracket. 5010 const AsmToken &Tok = Parser.getTok(); 5011 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5012 !Tok.is(AsmToken::RBrac)) 5013 return Error(Tok.getLoc(), "malformed memory operand"); 5014 5015 if (Tok.is(AsmToken::RBrac)) { 5016 E = Tok.getEndLoc(); 5017 Parser.Lex(); // Eat right bracket token. 5018 5019 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5020 ARM_AM::no_shift, 0, 0, false, 5021 S, E)); 5022 5023 // If there's a pre-indexing writeback marker, '!', just add it as a token 5024 // operand. It's rather odd, but syntactically valid. 5025 if (Parser.getTok().is(AsmToken::Exclaim)) { 5026 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5027 Parser.Lex(); // Eat the '!'. 5028 } 5029 5030 return false; 5031 } 5032 5033 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5034 "Lost colon or comma in memory operand?!"); 5035 if (Tok.is(AsmToken::Comma)) { 5036 Parser.Lex(); // Eat the comma. 5037 } 5038 5039 // If we have a ':', it's an alignment specifier. 5040 if (Parser.getTok().is(AsmToken::Colon)) { 5041 Parser.Lex(); // Eat the ':'. 5042 E = Parser.getTok().getLoc(); 5043 SMLoc AlignmentLoc = Tok.getLoc(); 5044 5045 const MCExpr *Expr; 5046 if (getParser().parseExpression(Expr)) 5047 return true; 5048 5049 // The expression has to be a constant. Memory references with relocations 5050 // don't come through here, as they use the <label> forms of the relevant 5051 // instructions. 5052 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5053 if (!CE) 5054 return Error (E, "constant expression expected"); 5055 5056 unsigned Align = 0; 5057 switch (CE->getValue()) { 5058 default: 5059 return Error(E, 5060 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5061 case 16: Align = 2; break; 5062 case 32: Align = 4; break; 5063 case 64: Align = 8; break; 5064 case 128: Align = 16; break; 5065 case 256: Align = 32; break; 5066 } 5067 5068 // Now we should have the closing ']' 5069 if (Parser.getTok().isNot(AsmToken::RBrac)) 5070 return Error(Parser.getTok().getLoc(), "']' expected"); 5071 E = Parser.getTok().getEndLoc(); 5072 Parser.Lex(); // Eat right bracket token. 5073 5074 // Don't worry about range checking the value here. That's handled by 5075 // the is*() predicates. 5076 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5077 ARM_AM::no_shift, 0, Align, 5078 false, S, E, AlignmentLoc)); 5079 5080 // If there's a pre-indexing writeback marker, '!', just add it as a token 5081 // operand. 5082 if (Parser.getTok().is(AsmToken::Exclaim)) { 5083 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5084 Parser.Lex(); // Eat the '!'. 5085 } 5086 5087 return false; 5088 } 5089 5090 // If we have a '#', it's an immediate offset, else assume it's a register 5091 // offset. Be friendly and also accept a plain integer (without a leading 5092 // hash) for gas compatibility. 5093 if (Parser.getTok().is(AsmToken::Hash) || 5094 Parser.getTok().is(AsmToken::Dollar) || 5095 Parser.getTok().is(AsmToken::Integer)) { 5096 if (Parser.getTok().isNot(AsmToken::Integer)) 5097 Parser.Lex(); // Eat '#' or '$'. 5098 E = Parser.getTok().getLoc(); 5099 5100 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5101 const MCExpr *Offset; 5102 if (getParser().parseExpression(Offset)) 5103 return true; 5104 5105 // The expression has to be a constant. Memory references with relocations 5106 // don't come through here, as they use the <label> forms of the relevant 5107 // instructions. 5108 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5109 if (!CE) 5110 return Error (E, "constant expression expected"); 5111 5112 // If the constant was #-0, represent it as INT32_MIN. 5113 int32_t Val = CE->getValue(); 5114 if (isNegative && Val == 0) 5115 CE = MCConstantExpr::create(INT32_MIN, getContext()); 5116 5117 // Now we should have the closing ']' 5118 if (Parser.getTok().isNot(AsmToken::RBrac)) 5119 return Error(Parser.getTok().getLoc(), "']' expected"); 5120 E = Parser.getTok().getEndLoc(); 5121 Parser.Lex(); // Eat right bracket token. 5122 5123 // Don't worry about range checking the value here. That's handled by 5124 // the is*() predicates. 5125 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5126 ARM_AM::no_shift, 0, 0, 5127 false, S, E)); 5128 5129 // If there's a pre-indexing writeback marker, '!', just add it as a token 5130 // operand. 5131 if (Parser.getTok().is(AsmToken::Exclaim)) { 5132 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5133 Parser.Lex(); // Eat the '!'. 5134 } 5135 5136 return false; 5137 } 5138 5139 // The register offset is optionally preceded by a '+' or '-' 5140 bool isNegative = false; 5141 if (Parser.getTok().is(AsmToken::Minus)) { 5142 isNegative = true; 5143 Parser.Lex(); // Eat the '-'. 5144 } else if (Parser.getTok().is(AsmToken::Plus)) { 5145 // Nothing to do. 5146 Parser.Lex(); // Eat the '+'. 5147 } 5148 5149 E = Parser.getTok().getLoc(); 5150 int OffsetRegNum = tryParseRegister(); 5151 if (OffsetRegNum == -1) 5152 return Error(E, "register expected"); 5153 5154 // If there's a shift operator, handle it. 5155 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5156 unsigned ShiftImm = 0; 5157 if (Parser.getTok().is(AsmToken::Comma)) { 5158 Parser.Lex(); // Eat the ','. 5159 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5160 return true; 5161 } 5162 5163 // Now we should have the closing ']' 5164 if (Parser.getTok().isNot(AsmToken::RBrac)) 5165 return Error(Parser.getTok().getLoc(), "']' expected"); 5166 E = Parser.getTok().getEndLoc(); 5167 Parser.Lex(); // Eat right bracket token. 5168 5169 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5170 ShiftType, ShiftImm, 0, isNegative, 5171 S, E)); 5172 5173 // If there's a pre-indexing writeback marker, '!', just add it as a token 5174 // operand. 5175 if (Parser.getTok().is(AsmToken::Exclaim)) { 5176 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5177 Parser.Lex(); // Eat the '!'. 5178 } 5179 5180 return false; 5181 } 5182 5183 /// parseMemRegOffsetShift - one of these two: 5184 /// ( lsl | lsr | asr | ror ) , # shift_amount 5185 /// rrx 5186 /// return true if it parses a shift otherwise it returns false. 5187 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5188 unsigned &Amount) { 5189 MCAsmParser &Parser = getParser(); 5190 SMLoc Loc = Parser.getTok().getLoc(); 5191 const AsmToken &Tok = Parser.getTok(); 5192 if (Tok.isNot(AsmToken::Identifier)) 5193 return true; 5194 StringRef ShiftName = Tok.getString(); 5195 if (ShiftName == "lsl" || ShiftName == "LSL" || 5196 ShiftName == "asl" || ShiftName == "ASL") 5197 St = ARM_AM::lsl; 5198 else if (ShiftName == "lsr" || ShiftName == "LSR") 5199 St = ARM_AM::lsr; 5200 else if (ShiftName == "asr" || ShiftName == "ASR") 5201 St = ARM_AM::asr; 5202 else if (ShiftName == "ror" || ShiftName == "ROR") 5203 St = ARM_AM::ror; 5204 else if (ShiftName == "rrx" || ShiftName == "RRX") 5205 St = ARM_AM::rrx; 5206 else 5207 return Error(Loc, "illegal shift operator"); 5208 Parser.Lex(); // Eat shift type token. 5209 5210 // rrx stands alone. 5211 Amount = 0; 5212 if (St != ARM_AM::rrx) { 5213 Loc = Parser.getTok().getLoc(); 5214 // A '#' and a shift amount. 5215 const AsmToken &HashTok = Parser.getTok(); 5216 if (HashTok.isNot(AsmToken::Hash) && 5217 HashTok.isNot(AsmToken::Dollar)) 5218 return Error(HashTok.getLoc(), "'#' expected"); 5219 Parser.Lex(); // Eat hash token. 5220 5221 const MCExpr *Expr; 5222 if (getParser().parseExpression(Expr)) 5223 return true; 5224 // Range check the immediate. 5225 // lsl, ror: 0 <= imm <= 31 5226 // lsr, asr: 0 <= imm <= 32 5227 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5228 if (!CE) 5229 return Error(Loc, "shift amount must be an immediate"); 5230 int64_t Imm = CE->getValue(); 5231 if (Imm < 0 || 5232 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5233 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5234 return Error(Loc, "immediate shift value out of range"); 5235 // If <ShiftTy> #0, turn it into a no_shift. 5236 if (Imm == 0) 5237 St = ARM_AM::lsl; 5238 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5239 if (Imm == 32) 5240 Imm = 0; 5241 Amount = Imm; 5242 } 5243 5244 return false; 5245 } 5246 5247 /// parseFPImm - A floating point immediate expression operand. 5248 ARMAsmParser::OperandMatchResultTy 5249 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5250 MCAsmParser &Parser = getParser(); 5251 // Anything that can accept a floating point constant as an operand 5252 // needs to go through here, as the regular parseExpression is 5253 // integer only. 5254 // 5255 // This routine still creates a generic Immediate operand, containing 5256 // a bitcast of the 64-bit floating point value. The various operands 5257 // that accept floats can check whether the value is valid for them 5258 // via the standard is*() predicates. 5259 5260 SMLoc S = Parser.getTok().getLoc(); 5261 5262 if (Parser.getTok().isNot(AsmToken::Hash) && 5263 Parser.getTok().isNot(AsmToken::Dollar)) 5264 return MatchOperand_NoMatch; 5265 5266 // Disambiguate the VMOV forms that can accept an FP immediate. 5267 // vmov.f32 <sreg>, #imm 5268 // vmov.f64 <dreg>, #imm 5269 // vmov.f32 <dreg>, #imm @ vector f32x2 5270 // vmov.f32 <qreg>, #imm @ vector f32x4 5271 // 5272 // There are also the NEON VMOV instructions which expect an 5273 // integer constant. Make sure we don't try to parse an FPImm 5274 // for these: 5275 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5276 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5277 bool isVmovf = TyOp.isToken() && 5278 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5279 TyOp.getToken() == ".f16"); 5280 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5281 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5282 Mnemonic.getToken() == "fconsts"); 5283 if (!(isVmovf || isFconst)) 5284 return MatchOperand_NoMatch; 5285 5286 Parser.Lex(); // Eat '#' or '$'. 5287 5288 // Handle negation, as that still comes through as a separate token. 5289 bool isNegative = false; 5290 if (Parser.getTok().is(AsmToken::Minus)) { 5291 isNegative = true; 5292 Parser.Lex(); 5293 } 5294 const AsmToken &Tok = Parser.getTok(); 5295 SMLoc Loc = Tok.getLoc(); 5296 if (Tok.is(AsmToken::Real) && isVmovf) { 5297 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 5298 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5299 // If we had a '-' in front, toggle the sign bit. 5300 IntVal ^= (uint64_t)isNegative << 31; 5301 Parser.Lex(); // Eat the token. 5302 Operands.push_back(ARMOperand::CreateImm( 5303 MCConstantExpr::create(IntVal, getContext()), 5304 S, Parser.getTok().getLoc())); 5305 return MatchOperand_Success; 5306 } 5307 // Also handle plain integers. Instructions which allow floating point 5308 // immediates also allow a raw encoded 8-bit value. 5309 if (Tok.is(AsmToken::Integer) && isFconst) { 5310 int64_t Val = Tok.getIntVal(); 5311 Parser.Lex(); // Eat the token. 5312 if (Val > 255 || Val < 0) { 5313 Error(Loc, "encoded floating point value out of range"); 5314 return MatchOperand_ParseFail; 5315 } 5316 float RealVal = ARM_AM::getFPImmFloat(Val); 5317 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5318 5319 Operands.push_back(ARMOperand::CreateImm( 5320 MCConstantExpr::create(Val, getContext()), S, 5321 Parser.getTok().getLoc())); 5322 return MatchOperand_Success; 5323 } 5324 5325 Error(Loc, "invalid floating point immediate"); 5326 return MatchOperand_ParseFail; 5327 } 5328 5329 /// Parse a arm instruction operand. For now this parses the operand regardless 5330 /// of the mnemonic. 5331 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5332 MCAsmParser &Parser = getParser(); 5333 SMLoc S, E; 5334 5335 // Check if the current operand has a custom associated parser, if so, try to 5336 // custom parse the operand, or fallback to the general approach. 5337 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5338 if (ResTy == MatchOperand_Success) 5339 return false; 5340 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5341 // there was a match, but an error occurred, in which case, just return that 5342 // the operand parsing failed. 5343 if (ResTy == MatchOperand_ParseFail) 5344 return true; 5345 5346 switch (getLexer().getKind()) { 5347 default: 5348 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5349 return true; 5350 case AsmToken::Identifier: { 5351 // If we've seen a branch mnemonic, the next operand must be a label. This 5352 // is true even if the label is a register name. So "br r1" means branch to 5353 // label "r1". 5354 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5355 if (!ExpectLabel) { 5356 if (!tryParseRegisterWithWriteBack(Operands)) 5357 return false; 5358 int Res = tryParseShiftRegister(Operands); 5359 if (Res == 0) // success 5360 return false; 5361 else if (Res == -1) // irrecoverable error 5362 return true; 5363 // If this is VMRS, check for the apsr_nzcv operand. 5364 if (Mnemonic == "vmrs" && 5365 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5366 S = Parser.getTok().getLoc(); 5367 Parser.Lex(); 5368 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5369 return false; 5370 } 5371 } 5372 5373 // Fall though for the Identifier case that is not a register or a 5374 // special name. 5375 } 5376 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5377 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5378 case AsmToken::String: // quoted label names. 5379 case AsmToken::Dot: { // . as a branch target 5380 // This was not a register so parse other operands that start with an 5381 // identifier (like labels) as expressions and create them as immediates. 5382 const MCExpr *IdVal; 5383 S = Parser.getTok().getLoc(); 5384 if (getParser().parseExpression(IdVal)) 5385 return true; 5386 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5387 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5388 return false; 5389 } 5390 case AsmToken::LBrac: 5391 return parseMemory(Operands); 5392 case AsmToken::LCurly: 5393 return parseRegisterList(Operands); 5394 case AsmToken::Dollar: 5395 case AsmToken::Hash: { 5396 // #42 -> immediate. 5397 S = Parser.getTok().getLoc(); 5398 Parser.Lex(); 5399 5400 if (Parser.getTok().isNot(AsmToken::Colon)) { 5401 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5402 const MCExpr *ImmVal; 5403 if (getParser().parseExpression(ImmVal)) 5404 return true; 5405 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5406 if (CE) { 5407 int32_t Val = CE->getValue(); 5408 if (isNegative && Val == 0) 5409 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5410 } 5411 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5412 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5413 5414 // There can be a trailing '!' on operands that we want as a separate 5415 // '!' Token operand. Handle that here. For example, the compatibility 5416 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5417 if (Parser.getTok().is(AsmToken::Exclaim)) { 5418 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5419 Parser.getTok().getLoc())); 5420 Parser.Lex(); // Eat exclaim token 5421 } 5422 return false; 5423 } 5424 // w/ a ':' after the '#', it's just like a plain ':'. 5425 LLVM_FALLTHROUGH; 5426 } 5427 case AsmToken::Colon: { 5428 S = Parser.getTok().getLoc(); 5429 // ":lower16:" and ":upper16:" expression prefixes 5430 // FIXME: Check it's an expression prefix, 5431 // e.g. (FOO - :lower16:BAR) isn't legal. 5432 ARMMCExpr::VariantKind RefKind; 5433 if (parsePrefix(RefKind)) 5434 return true; 5435 5436 const MCExpr *SubExprVal; 5437 if (getParser().parseExpression(SubExprVal)) 5438 return true; 5439 5440 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5441 getContext()); 5442 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5443 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5444 return false; 5445 } 5446 case AsmToken::Equal: { 5447 S = Parser.getTok().getLoc(); 5448 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5449 return Error(S, "unexpected token in operand"); 5450 Parser.Lex(); // Eat '=' 5451 const MCExpr *SubExprVal; 5452 if (getParser().parseExpression(SubExprVal)) 5453 return true; 5454 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5455 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5456 return false; 5457 } 5458 } 5459 } 5460 5461 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5462 // :lower16: and :upper16:. 5463 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5464 MCAsmParser &Parser = getParser(); 5465 RefKind = ARMMCExpr::VK_ARM_None; 5466 5467 // consume an optional '#' (GNU compatibility) 5468 if (getLexer().is(AsmToken::Hash)) 5469 Parser.Lex(); 5470 5471 // :lower16: and :upper16: modifiers 5472 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5473 Parser.Lex(); // Eat ':' 5474 5475 if (getLexer().isNot(AsmToken::Identifier)) { 5476 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5477 return true; 5478 } 5479 5480 enum { 5481 COFF = (1 << MCObjectFileInfo::IsCOFF), 5482 ELF = (1 << MCObjectFileInfo::IsELF), 5483 MACHO = (1 << MCObjectFileInfo::IsMachO) 5484 }; 5485 static const struct PrefixEntry { 5486 const char *Spelling; 5487 ARMMCExpr::VariantKind VariantKind; 5488 uint8_t SupportedFormats; 5489 } PrefixEntries[] = { 5490 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5491 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5492 }; 5493 5494 StringRef IDVal = Parser.getTok().getIdentifier(); 5495 5496 const auto &Prefix = 5497 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5498 [&IDVal](const PrefixEntry &PE) { 5499 return PE.Spelling == IDVal; 5500 }); 5501 if (Prefix == std::end(PrefixEntries)) { 5502 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5503 return true; 5504 } 5505 5506 uint8_t CurrentFormat; 5507 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5508 case MCObjectFileInfo::IsMachO: 5509 CurrentFormat = MACHO; 5510 break; 5511 case MCObjectFileInfo::IsELF: 5512 CurrentFormat = ELF; 5513 break; 5514 case MCObjectFileInfo::IsCOFF: 5515 CurrentFormat = COFF; 5516 break; 5517 } 5518 5519 if (~Prefix->SupportedFormats & CurrentFormat) { 5520 Error(Parser.getTok().getLoc(), 5521 "cannot represent relocation in the current file format"); 5522 return true; 5523 } 5524 5525 RefKind = Prefix->VariantKind; 5526 Parser.Lex(); 5527 5528 if (getLexer().isNot(AsmToken::Colon)) { 5529 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5530 return true; 5531 } 5532 Parser.Lex(); // Eat the last ':' 5533 5534 return false; 5535 } 5536 5537 /// \brief Given a mnemonic, split out possible predication code and carry 5538 /// setting letters to form a canonical mnemonic and flags. 5539 // 5540 // FIXME: Would be nice to autogen this. 5541 // FIXME: This is a bit of a maze of special cases. 5542 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5543 unsigned &PredicationCode, 5544 bool &CarrySetting, 5545 unsigned &ProcessorIMod, 5546 StringRef &ITMask) { 5547 PredicationCode = ARMCC::AL; 5548 CarrySetting = false; 5549 ProcessorIMod = 0; 5550 5551 // Ignore some mnemonics we know aren't predicated forms. 5552 // 5553 // FIXME: Would be nice to autogen this. 5554 if ((Mnemonic == "movs" && isThumb()) || 5555 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5556 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5557 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5558 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5559 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5560 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5561 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5562 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5563 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5564 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5565 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5566 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5567 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5568 Mnemonic == "bxns" || Mnemonic == "blxns") 5569 return Mnemonic; 5570 5571 // First, split out any predication code. Ignore mnemonics we know aren't 5572 // predicated but do have a carry-set and so weren't caught above. 5573 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5574 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5575 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5576 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5577 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5578 .Case("eq", ARMCC::EQ) 5579 .Case("ne", ARMCC::NE) 5580 .Case("hs", ARMCC::HS) 5581 .Case("cs", ARMCC::HS) 5582 .Case("lo", ARMCC::LO) 5583 .Case("cc", ARMCC::LO) 5584 .Case("mi", ARMCC::MI) 5585 .Case("pl", ARMCC::PL) 5586 .Case("vs", ARMCC::VS) 5587 .Case("vc", ARMCC::VC) 5588 .Case("hi", ARMCC::HI) 5589 .Case("ls", ARMCC::LS) 5590 .Case("ge", ARMCC::GE) 5591 .Case("lt", ARMCC::LT) 5592 .Case("gt", ARMCC::GT) 5593 .Case("le", ARMCC::LE) 5594 .Case("al", ARMCC::AL) 5595 .Default(~0U); 5596 if (CC != ~0U) { 5597 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5598 PredicationCode = CC; 5599 } 5600 } 5601 5602 // Next, determine if we have a carry setting bit. We explicitly ignore all 5603 // the instructions we know end in 's'. 5604 if (Mnemonic.endswith("s") && 5605 !(Mnemonic == "cps" || Mnemonic == "mls" || 5606 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5607 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5608 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5609 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5610 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5611 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5612 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5613 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5614 Mnemonic == "bxns" || Mnemonic == "blxns" || 5615 (Mnemonic == "movs" && isThumb()))) { 5616 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5617 CarrySetting = true; 5618 } 5619 5620 // The "cps" instruction can have a interrupt mode operand which is glued into 5621 // the mnemonic. Check if this is the case, split it and parse the imod op 5622 if (Mnemonic.startswith("cps")) { 5623 // Split out any imod code. 5624 unsigned IMod = 5625 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5626 .Case("ie", ARM_PROC::IE) 5627 .Case("id", ARM_PROC::ID) 5628 .Default(~0U); 5629 if (IMod != ~0U) { 5630 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5631 ProcessorIMod = IMod; 5632 } 5633 } 5634 5635 // The "it" instruction has the condition mask on the end of the mnemonic. 5636 if (Mnemonic.startswith("it")) { 5637 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5638 Mnemonic = Mnemonic.slice(0, 2); 5639 } 5640 5641 return Mnemonic; 5642 } 5643 5644 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5645 /// inclusion of carry set or predication code operands. 5646 // 5647 // FIXME: It would be nice to autogen this. 5648 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5649 bool &CanAcceptCarrySet, 5650 bool &CanAcceptPredicationCode) { 5651 CanAcceptCarrySet = 5652 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5653 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5654 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5655 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5656 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5657 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5658 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5659 (!isThumb() && 5660 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5661 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5662 5663 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5664 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5665 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5666 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5667 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5668 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5669 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5670 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5671 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5672 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5673 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5674 Mnemonic == "vmovx" || Mnemonic == "vins") { 5675 // These mnemonics are never predicable 5676 CanAcceptPredicationCode = false; 5677 } else if (!isThumb()) { 5678 // Some instructions are only predicable in Thumb mode 5679 CanAcceptPredicationCode = 5680 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5681 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5682 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5683 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5684 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5685 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5686 !Mnemonic.startswith("srs"); 5687 } else if (isThumbOne()) { 5688 if (hasV6MOps()) 5689 CanAcceptPredicationCode = Mnemonic != "movs"; 5690 else 5691 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5692 } else 5693 CanAcceptPredicationCode = true; 5694 } 5695 5696 // \brief Some Thumb instructions have two operand forms that are not 5697 // available as three operand, convert to two operand form if possible. 5698 // 5699 // FIXME: We would really like to be able to tablegen'erate this. 5700 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5701 bool CarrySetting, 5702 OperandVector &Operands) { 5703 if (Operands.size() != 6) 5704 return; 5705 5706 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5707 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5708 if (!Op3.isReg() || !Op4.isReg()) 5709 return; 5710 5711 auto Op3Reg = Op3.getReg(); 5712 auto Op4Reg = Op4.getReg(); 5713 5714 // For most Thumb2 cases we just generate the 3 operand form and reduce 5715 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5716 // won't accept SP or PC so we do the transformation here taking care 5717 // with immediate range in the 'add sp, sp #imm' case. 5718 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5719 if (isThumbTwo()) { 5720 if (Mnemonic != "add") 5721 return; 5722 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5723 (Op5.isReg() && Op5.getReg() == ARM::PC); 5724 if (!TryTransform) { 5725 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5726 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5727 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5728 Op5.isImm() && !Op5.isImm0_508s4()); 5729 } 5730 if (!TryTransform) 5731 return; 5732 } else if (!isThumbOne()) 5733 return; 5734 5735 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5736 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5737 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5738 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5739 return; 5740 5741 // If first 2 operands of a 3 operand instruction are the same 5742 // then transform to 2 operand version of the same instruction 5743 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5744 bool Transform = Op3Reg == Op4Reg; 5745 5746 // For communtative operations, we might be able to transform if we swap 5747 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5748 // as tADDrsp. 5749 const ARMOperand *LastOp = &Op5; 5750 bool Swap = false; 5751 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5752 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5753 Mnemonic == "and" || Mnemonic == "eor" || 5754 Mnemonic == "adc" || Mnemonic == "orr")) { 5755 Swap = true; 5756 LastOp = &Op4; 5757 Transform = true; 5758 } 5759 5760 // If both registers are the same then remove one of them from 5761 // the operand list, with certain exceptions. 5762 if (Transform) { 5763 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5764 // 2 operand forms don't exist. 5765 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5766 LastOp->isReg()) 5767 Transform = false; 5768 5769 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5770 // 3-bits because the ARMARM says not to. 5771 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5772 Transform = false; 5773 } 5774 5775 if (Transform) { 5776 if (Swap) 5777 std::swap(Op4, Op5); 5778 Operands.erase(Operands.begin() + 3); 5779 } 5780 } 5781 5782 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5783 OperandVector &Operands) { 5784 // FIXME: This is all horribly hacky. We really need a better way to deal 5785 // with optional operands like this in the matcher table. 5786 5787 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5788 // another does not. Specifically, the MOVW instruction does not. So we 5789 // special case it here and remove the defaulted (non-setting) cc_out 5790 // operand if that's the instruction we're trying to match. 5791 // 5792 // We do this as post-processing of the explicit operands rather than just 5793 // conditionally adding the cc_out in the first place because we need 5794 // to check the type of the parsed immediate operand. 5795 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5796 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5797 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5798 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5799 return true; 5800 5801 // Register-register 'add' for thumb does not have a cc_out operand 5802 // when there are only two register operands. 5803 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5804 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5805 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5806 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5807 return true; 5808 // Register-register 'add' for thumb does not have a cc_out operand 5809 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5810 // have to check the immediate range here since Thumb2 has a variant 5811 // that can handle a different range and has a cc_out operand. 5812 if (((isThumb() && Mnemonic == "add") || 5813 (isThumbTwo() && Mnemonic == "sub")) && 5814 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5815 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5816 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5817 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5818 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5819 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5820 return true; 5821 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5822 // imm0_4095 variant. That's the least-preferred variant when 5823 // selecting via the generic "add" mnemonic, so to know that we 5824 // should remove the cc_out operand, we have to explicitly check that 5825 // it's not one of the other variants. Ugh. 5826 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5827 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5828 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5829 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5830 // Nest conditions rather than one big 'if' statement for readability. 5831 // 5832 // If both registers are low, we're in an IT block, and the immediate is 5833 // in range, we should use encoding T1 instead, which has a cc_out. 5834 if (inITBlock() && 5835 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5836 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5837 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5838 return false; 5839 // Check against T3. If the second register is the PC, this is an 5840 // alternate form of ADR, which uses encoding T4, so check for that too. 5841 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5842 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5843 return false; 5844 5845 // Otherwise, we use encoding T4, which does not have a cc_out 5846 // operand. 5847 return true; 5848 } 5849 5850 // The thumb2 multiply instruction doesn't have a CCOut register, so 5851 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5852 // use the 16-bit encoding or not. 5853 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5854 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5855 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5856 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5857 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5858 // If the registers aren't low regs, the destination reg isn't the 5859 // same as one of the source regs, or the cc_out operand is zero 5860 // outside of an IT block, we have to use the 32-bit encoding, so 5861 // remove the cc_out operand. 5862 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5863 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5864 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5865 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5866 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5867 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5868 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5869 return true; 5870 5871 // Also check the 'mul' syntax variant that doesn't specify an explicit 5872 // destination register. 5873 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5874 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5875 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5876 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5877 // If the registers aren't low regs or the cc_out operand is zero 5878 // outside of an IT block, we have to use the 32-bit encoding, so 5879 // remove the cc_out operand. 5880 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5881 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5882 !inITBlock())) 5883 return true; 5884 5885 5886 5887 // Register-register 'add/sub' for thumb does not have a cc_out operand 5888 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5889 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5890 // right, this will result in better diagnostics (which operand is off) 5891 // anyway. 5892 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5893 (Operands.size() == 5 || Operands.size() == 6) && 5894 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5895 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5896 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5897 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5898 (Operands.size() == 6 && 5899 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5900 return true; 5901 5902 return false; 5903 } 5904 5905 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5906 OperandVector &Operands) { 5907 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5908 unsigned RegIdx = 3; 5909 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5910 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5911 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5912 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5913 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5914 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5915 RegIdx = 4; 5916 5917 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5918 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5919 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5920 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5921 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5922 return true; 5923 } 5924 return false; 5925 } 5926 5927 static bool isDataTypeToken(StringRef Tok) { 5928 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5929 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5930 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5931 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5932 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5933 Tok == ".f" || Tok == ".d"; 5934 } 5935 5936 // FIXME: This bit should probably be handled via an explicit match class 5937 // in the .td files that matches the suffix instead of having it be 5938 // a literal string token the way it is now. 5939 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5940 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5941 } 5942 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5943 unsigned VariantID); 5944 5945 static bool RequiresVFPRegListValidation(StringRef Inst, 5946 bool &AcceptSinglePrecisionOnly, 5947 bool &AcceptDoublePrecisionOnly) { 5948 if (Inst.size() < 7) 5949 return false; 5950 5951 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5952 StringRef AddressingMode = Inst.substr(4, 2); 5953 if (AddressingMode == "ia" || AddressingMode == "db" || 5954 AddressingMode == "ea" || AddressingMode == "fd") { 5955 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5956 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5957 return true; 5958 } 5959 } 5960 5961 return false; 5962 } 5963 5964 /// Parse an arm instruction mnemonic followed by its operands. 5965 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5966 SMLoc NameLoc, OperandVector &Operands) { 5967 MCAsmParser &Parser = getParser(); 5968 // FIXME: Can this be done via tablegen in some fashion? 5969 bool RequireVFPRegisterListCheck; 5970 bool AcceptSinglePrecisionOnly; 5971 bool AcceptDoublePrecisionOnly; 5972 RequireVFPRegisterListCheck = 5973 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5974 AcceptDoublePrecisionOnly); 5975 5976 // Apply mnemonic aliases before doing anything else, as the destination 5977 // mnemonic may include suffices and we want to handle them normally. 5978 // The generic tblgen'erated code does this later, at the start of 5979 // MatchInstructionImpl(), but that's too late for aliases that include 5980 // any sort of suffix. 5981 uint64_t AvailableFeatures = getAvailableFeatures(); 5982 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5983 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5984 5985 // First check for the ARM-specific .req directive. 5986 if (Parser.getTok().is(AsmToken::Identifier) && 5987 Parser.getTok().getIdentifier() == ".req") { 5988 parseDirectiveReq(Name, NameLoc); 5989 // We always return 'error' for this, as we're done with this 5990 // statement and don't need to match the 'instruction." 5991 return true; 5992 } 5993 5994 // Create the leading tokens for the mnemonic, split by '.' characters. 5995 size_t Start = 0, Next = Name.find('.'); 5996 StringRef Mnemonic = Name.slice(Start, Next); 5997 5998 // Split out the predication code and carry setting flag from the mnemonic. 5999 unsigned PredicationCode; 6000 unsigned ProcessorIMod; 6001 bool CarrySetting; 6002 StringRef ITMask; 6003 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6004 ProcessorIMod, ITMask); 6005 6006 // In Thumb1, only the branch (B) instruction can be predicated. 6007 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6008 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6009 } 6010 6011 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6012 6013 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6014 // is the mask as it will be for the IT encoding if the conditional 6015 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6016 // where the conditional bit0 is zero, the instruction post-processing 6017 // will adjust the mask accordingly. 6018 if (Mnemonic == "it") { 6019 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6020 if (ITMask.size() > 3) { 6021 return Error(Loc, "too many conditions on IT instruction"); 6022 } 6023 unsigned Mask = 8; 6024 for (unsigned i = ITMask.size(); i != 0; --i) { 6025 char pos = ITMask[i - 1]; 6026 if (pos != 't' && pos != 'e') { 6027 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6028 } 6029 Mask >>= 1; 6030 if (ITMask[i - 1] == 't') 6031 Mask |= 8; 6032 } 6033 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6034 } 6035 6036 // FIXME: This is all a pretty gross hack. We should automatically handle 6037 // optional operands like this via tblgen. 6038 6039 // Next, add the CCOut and ConditionCode operands, if needed. 6040 // 6041 // For mnemonics which can ever incorporate a carry setting bit or predication 6042 // code, our matching model involves us always generating CCOut and 6043 // ConditionCode operands to match the mnemonic "as written" and then we let 6044 // the matcher deal with finding the right instruction or generating an 6045 // appropriate error. 6046 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6047 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6048 6049 // If we had a carry-set on an instruction that can't do that, issue an 6050 // error. 6051 if (!CanAcceptCarrySet && CarrySetting) { 6052 return Error(NameLoc, "instruction '" + Mnemonic + 6053 "' can not set flags, but 's' suffix specified"); 6054 } 6055 // If we had a predication code on an instruction that can't do that, issue an 6056 // error. 6057 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6058 return Error(NameLoc, "instruction '" + Mnemonic + 6059 "' is not predicable, but condition code specified"); 6060 } 6061 6062 // Add the carry setting operand, if necessary. 6063 if (CanAcceptCarrySet) { 6064 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6065 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6066 Loc)); 6067 } 6068 6069 // Add the predication code operand, if necessary. 6070 if (CanAcceptPredicationCode) { 6071 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6072 CarrySetting); 6073 Operands.push_back(ARMOperand::CreateCondCode( 6074 ARMCC::CondCodes(PredicationCode), Loc)); 6075 } 6076 6077 // Add the processor imod operand, if necessary. 6078 if (ProcessorIMod) { 6079 Operands.push_back(ARMOperand::CreateImm( 6080 MCConstantExpr::create(ProcessorIMod, getContext()), 6081 NameLoc, NameLoc)); 6082 } else if (Mnemonic == "cps" && isMClass()) { 6083 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6084 } 6085 6086 // Add the remaining tokens in the mnemonic. 6087 while (Next != StringRef::npos) { 6088 Start = Next; 6089 Next = Name.find('.', Start + 1); 6090 StringRef ExtraToken = Name.slice(Start, Next); 6091 6092 // Some NEON instructions have an optional datatype suffix that is 6093 // completely ignored. Check for that. 6094 if (isDataTypeToken(ExtraToken) && 6095 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6096 continue; 6097 6098 // For for ARM mode generate an error if the .n qualifier is used. 6099 if (ExtraToken == ".n" && !isThumb()) { 6100 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6101 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6102 "arm mode"); 6103 } 6104 6105 // The .n qualifier is always discarded as that is what the tables 6106 // and matcher expect. In ARM mode the .w qualifier has no effect, 6107 // so discard it to avoid errors that can be caused by the matcher. 6108 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6109 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6110 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6111 } 6112 } 6113 6114 // Read the remaining operands. 6115 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6116 // Read the first operand. 6117 if (parseOperand(Operands, Mnemonic)) { 6118 return true; 6119 } 6120 6121 while (getLexer().is(AsmToken::Comma)) { 6122 Parser.Lex(); // Eat the comma. 6123 6124 // Parse and remember the operand. 6125 if (parseOperand(Operands, Mnemonic)) { 6126 return true; 6127 } 6128 } 6129 } 6130 6131 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6132 return TokError("unexpected token in argument list"); 6133 } 6134 6135 Parser.Lex(); // Consume the EndOfStatement 6136 6137 if (RequireVFPRegisterListCheck) { 6138 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 6139 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 6140 return Error(Op.getStartLoc(), 6141 "VFP/Neon single precision register expected"); 6142 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 6143 return Error(Op.getStartLoc(), 6144 "VFP/Neon double precision register expected"); 6145 } 6146 6147 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6148 6149 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6150 // do and don't have a cc_out optional-def operand. With some spot-checks 6151 // of the operand list, we can figure out which variant we're trying to 6152 // parse and adjust accordingly before actually matching. We shouldn't ever 6153 // try to remove a cc_out operand that was explicitly set on the 6154 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6155 // table driven matcher doesn't fit well with the ARM instruction set. 6156 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6157 Operands.erase(Operands.begin() + 1); 6158 6159 // Some instructions have the same mnemonic, but don't always 6160 // have a predicate. Distinguish them here and delete the 6161 // predicate if needed. 6162 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 6163 Operands.erase(Operands.begin() + 1); 6164 6165 // ARM mode 'blx' need special handling, as the register operand version 6166 // is predicable, but the label operand version is not. So, we can't rely 6167 // on the Mnemonic based checking to correctly figure out when to put 6168 // a k_CondCode operand in the list. If we're trying to match the label 6169 // version, remove the k_CondCode operand here. 6170 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6171 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6172 Operands.erase(Operands.begin() + 1); 6173 6174 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6175 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6176 // a single GPRPair reg operand is used in the .td file to replace the two 6177 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6178 // expressed as a GPRPair, so we have to manually merge them. 6179 // FIXME: We would really like to be able to tablegen'erate this. 6180 if (!isThumb() && Operands.size() > 4 && 6181 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6182 Mnemonic == "stlexd")) { 6183 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6184 unsigned Idx = isLoad ? 2 : 3; 6185 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6186 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6187 6188 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6189 // Adjust only if Op1 and Op2 are GPRs. 6190 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6191 MRC.contains(Op2.getReg())) { 6192 unsigned Reg1 = Op1.getReg(); 6193 unsigned Reg2 = Op2.getReg(); 6194 unsigned Rt = MRI->getEncodingValue(Reg1); 6195 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6196 6197 // Rt2 must be Rt + 1 and Rt must be even. 6198 if (Rt + 1 != Rt2 || (Rt & 1)) { 6199 Error(Op2.getStartLoc(), isLoad 6200 ? "destination operands must be sequential" 6201 : "source operands must be sequential"); 6202 return true; 6203 } 6204 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6205 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6206 Operands[Idx] = 6207 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6208 Operands.erase(Operands.begin() + Idx + 1); 6209 } 6210 } 6211 6212 // GNU Assembler extension (compatibility) 6213 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6214 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6215 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6216 if (Op3.isMem()) { 6217 assert(Op2.isReg() && "expected register argument"); 6218 6219 unsigned SuperReg = MRI->getMatchingSuperReg( 6220 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6221 6222 assert(SuperReg && "expected register pair"); 6223 6224 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6225 6226 Operands.insert( 6227 Operands.begin() + 3, 6228 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6229 } 6230 } 6231 6232 // FIXME: As said above, this is all a pretty gross hack. This instruction 6233 // does not fit with other "subs" and tblgen. 6234 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6235 // so the Mnemonic is the original name "subs" and delete the predicate 6236 // operand so it will match the table entry. 6237 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6238 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6239 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6240 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6241 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6242 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6243 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6244 Operands.erase(Operands.begin() + 1); 6245 } 6246 return false; 6247 } 6248 6249 // Validate context-sensitive operand constraints. 6250 6251 // return 'true' if register list contains non-low GPR registers, 6252 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6253 // 'containsReg' to true. 6254 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6255 unsigned Reg, unsigned HiReg, 6256 bool &containsReg) { 6257 containsReg = false; 6258 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6259 unsigned OpReg = Inst.getOperand(i).getReg(); 6260 if (OpReg == Reg) 6261 containsReg = true; 6262 // Anything other than a low register isn't legal here. 6263 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6264 return true; 6265 } 6266 return false; 6267 } 6268 6269 // Check if the specified regisgter is in the register list of the inst, 6270 // starting at the indicated operand number. 6271 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6272 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6273 unsigned OpReg = Inst.getOperand(i).getReg(); 6274 if (OpReg == Reg) 6275 return true; 6276 } 6277 return false; 6278 } 6279 6280 // Return true if instruction has the interesting property of being 6281 // allowed in IT blocks, but not being predicable. 6282 static bool instIsBreakpoint(const MCInst &Inst) { 6283 return Inst.getOpcode() == ARM::tBKPT || 6284 Inst.getOpcode() == ARM::BKPT || 6285 Inst.getOpcode() == ARM::tHLT || 6286 Inst.getOpcode() == ARM::HLT; 6287 6288 } 6289 6290 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6291 const OperandVector &Operands, 6292 unsigned ListNo, bool IsARPop) { 6293 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6294 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6295 6296 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6297 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6298 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6299 6300 if (!IsARPop && ListContainsSP) 6301 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6302 "SP may not be in the register list"); 6303 else if (ListContainsPC && ListContainsLR) 6304 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6305 "PC and LR may not be in the register list simultaneously"); 6306 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6307 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6308 "instruction must be outside of IT block or the last " 6309 "instruction in an IT block"); 6310 return false; 6311 } 6312 6313 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6314 const OperandVector &Operands, 6315 unsigned ListNo) { 6316 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6317 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6318 6319 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6320 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6321 6322 if (ListContainsSP && ListContainsPC) 6323 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6324 "SP and PC may not be in the register list"); 6325 else if (ListContainsSP) 6326 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6327 "SP may not be in the register list"); 6328 else if (ListContainsPC) 6329 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6330 "PC may not be in the register list"); 6331 return false; 6332 } 6333 6334 // FIXME: We would really like to be able to tablegen'erate this. 6335 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6336 const OperandVector &Operands) { 6337 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6338 SMLoc Loc = Operands[0]->getStartLoc(); 6339 6340 // Check the IT block state first. 6341 // NOTE: BKPT and HLT instructions have the interesting property of being 6342 // allowed in IT blocks, but not being predicable. They just always execute. 6343 if (inITBlock() && !instIsBreakpoint(Inst)) { 6344 // The instruction must be predicable. 6345 if (!MCID.isPredicable()) 6346 return Error(Loc, "instructions in IT block must be predicable"); 6347 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6348 if (Cond != currentITCond()) { 6349 // Find the condition code Operand to get its SMLoc information. 6350 SMLoc CondLoc; 6351 for (unsigned I = 1; I < Operands.size(); ++I) 6352 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6353 CondLoc = Operands[I]->getStartLoc(); 6354 return Error(CondLoc, "incorrect condition in IT block; got '" + 6355 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6356 "', but expected '" + 6357 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6358 } 6359 // Check for non-'al' condition codes outside of the IT block. 6360 } else if (isThumbTwo() && MCID.isPredicable() && 6361 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6362 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6363 Inst.getOpcode() != ARM::t2Bcc) { 6364 return Error(Loc, "predicated instructions must be in IT block"); 6365 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6366 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6367 ARMCC::AL) { 6368 return Warning(Loc, "predicated instructions should be in IT block"); 6369 } 6370 6371 const unsigned Opcode = Inst.getOpcode(); 6372 switch (Opcode) { 6373 case ARM::LDRD: 6374 case ARM::LDRD_PRE: 6375 case ARM::LDRD_POST: { 6376 const unsigned RtReg = Inst.getOperand(0).getReg(); 6377 6378 // Rt can't be R14. 6379 if (RtReg == ARM::LR) 6380 return Error(Operands[3]->getStartLoc(), 6381 "Rt can't be R14"); 6382 6383 const unsigned Rt = MRI->getEncodingValue(RtReg); 6384 // Rt must be even-numbered. 6385 if ((Rt & 1) == 1) 6386 return Error(Operands[3]->getStartLoc(), 6387 "Rt must be even-numbered"); 6388 6389 // Rt2 must be Rt + 1. 6390 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6391 if (Rt2 != Rt + 1) 6392 return Error(Operands[3]->getStartLoc(), 6393 "destination operands must be sequential"); 6394 6395 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6396 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6397 // For addressing modes with writeback, the base register needs to be 6398 // different from the destination registers. 6399 if (Rn == Rt || Rn == Rt2) 6400 return Error(Operands[3]->getStartLoc(), 6401 "base register needs to be different from destination " 6402 "registers"); 6403 } 6404 6405 return false; 6406 } 6407 case ARM::t2LDRDi8: 6408 case ARM::t2LDRD_PRE: 6409 case ARM::t2LDRD_POST: { 6410 // Rt2 must be different from Rt. 6411 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6412 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6413 if (Rt2 == Rt) 6414 return Error(Operands[3]->getStartLoc(), 6415 "destination operands can't be identical"); 6416 return false; 6417 } 6418 case ARM::t2BXJ: { 6419 const unsigned RmReg = Inst.getOperand(0).getReg(); 6420 // Rm = SP is no longer unpredictable in v8-A 6421 if (RmReg == ARM::SP && !hasV8Ops()) 6422 return Error(Operands[2]->getStartLoc(), 6423 "r13 (SP) is an unpredictable operand to BXJ"); 6424 return false; 6425 } 6426 case ARM::STRD: { 6427 // Rt2 must be Rt + 1. 6428 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6429 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6430 if (Rt2 != Rt + 1) 6431 return Error(Operands[3]->getStartLoc(), 6432 "source operands must be sequential"); 6433 return false; 6434 } 6435 case ARM::STRD_PRE: 6436 case ARM::STRD_POST: { 6437 // Rt2 must be Rt + 1. 6438 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6439 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6440 if (Rt2 != Rt + 1) 6441 return Error(Operands[3]->getStartLoc(), 6442 "source operands must be sequential"); 6443 return false; 6444 } 6445 case ARM::STR_PRE_IMM: 6446 case ARM::STR_PRE_REG: 6447 case ARM::STR_POST_IMM: 6448 case ARM::STR_POST_REG: 6449 case ARM::STRH_PRE: 6450 case ARM::STRH_POST: 6451 case ARM::STRB_PRE_IMM: 6452 case ARM::STRB_PRE_REG: 6453 case ARM::STRB_POST_IMM: 6454 case ARM::STRB_POST_REG: { 6455 // Rt must be different from Rn. 6456 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6457 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6458 6459 if (Rt == Rn) 6460 return Error(Operands[3]->getStartLoc(), 6461 "source register and base register can't be identical"); 6462 return false; 6463 } 6464 case ARM::LDR_PRE_IMM: 6465 case ARM::LDR_PRE_REG: 6466 case ARM::LDR_POST_IMM: 6467 case ARM::LDR_POST_REG: 6468 case ARM::LDRH_PRE: 6469 case ARM::LDRH_POST: 6470 case ARM::LDRSH_PRE: 6471 case ARM::LDRSH_POST: 6472 case ARM::LDRB_PRE_IMM: 6473 case ARM::LDRB_PRE_REG: 6474 case ARM::LDRB_POST_IMM: 6475 case ARM::LDRB_POST_REG: 6476 case ARM::LDRSB_PRE: 6477 case ARM::LDRSB_POST: { 6478 // Rt must be different from Rn. 6479 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6480 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6481 6482 if (Rt == Rn) 6483 return Error(Operands[3]->getStartLoc(), 6484 "destination register and base register can't be identical"); 6485 return false; 6486 } 6487 case ARM::SBFX: 6488 case ARM::UBFX: { 6489 // Width must be in range [1, 32-lsb]. 6490 unsigned LSB = Inst.getOperand(2).getImm(); 6491 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6492 if (Widthm1 >= 32 - LSB) 6493 return Error(Operands[5]->getStartLoc(), 6494 "bitfield width must be in range [1,32-lsb]"); 6495 return false; 6496 } 6497 // Notionally handles ARM::tLDMIA_UPD too. 6498 case ARM::tLDMIA: { 6499 // If we're parsing Thumb2, the .w variant is available and handles 6500 // most cases that are normally illegal for a Thumb1 LDM instruction. 6501 // We'll make the transformation in processInstruction() if necessary. 6502 // 6503 // Thumb LDM instructions are writeback iff the base register is not 6504 // in the register list. 6505 unsigned Rn = Inst.getOperand(0).getReg(); 6506 bool HasWritebackToken = 6507 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6508 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6509 bool ListContainsBase; 6510 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6511 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6512 "registers must be in range r0-r7"); 6513 // If we should have writeback, then there should be a '!' token. 6514 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6515 return Error(Operands[2]->getStartLoc(), 6516 "writeback operator '!' expected"); 6517 // If we should not have writeback, there must not be a '!'. This is 6518 // true even for the 32-bit wide encodings. 6519 if (ListContainsBase && HasWritebackToken) 6520 return Error(Operands[3]->getStartLoc(), 6521 "writeback operator '!' not allowed when base register " 6522 "in register list"); 6523 6524 if (validatetLDMRegList(Inst, Operands, 3)) 6525 return true; 6526 break; 6527 } 6528 case ARM::LDMIA_UPD: 6529 case ARM::LDMDB_UPD: 6530 case ARM::LDMIB_UPD: 6531 case ARM::LDMDA_UPD: 6532 // ARM variants loading and updating the same register are only officially 6533 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6534 if (!hasV7Ops()) 6535 break; 6536 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6537 return Error(Operands.back()->getStartLoc(), 6538 "writeback register not allowed in register list"); 6539 break; 6540 case ARM::t2LDMIA: 6541 case ARM::t2LDMDB: 6542 if (validatetLDMRegList(Inst, Operands, 3)) 6543 return true; 6544 break; 6545 case ARM::t2STMIA: 6546 case ARM::t2STMDB: 6547 if (validatetSTMRegList(Inst, Operands, 3)) 6548 return true; 6549 break; 6550 case ARM::t2LDMIA_UPD: 6551 case ARM::t2LDMDB_UPD: 6552 case ARM::t2STMIA_UPD: 6553 case ARM::t2STMDB_UPD: { 6554 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6555 return Error(Operands.back()->getStartLoc(), 6556 "writeback register not allowed in register list"); 6557 6558 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6559 if (validatetLDMRegList(Inst, Operands, 3)) 6560 return true; 6561 } else { 6562 if (validatetSTMRegList(Inst, Operands, 3)) 6563 return true; 6564 } 6565 break; 6566 } 6567 case ARM::sysLDMIA_UPD: 6568 case ARM::sysLDMDA_UPD: 6569 case ARM::sysLDMDB_UPD: 6570 case ARM::sysLDMIB_UPD: 6571 if (!listContainsReg(Inst, 3, ARM::PC)) 6572 return Error(Operands[4]->getStartLoc(), 6573 "writeback register only allowed on system LDM " 6574 "if PC in register-list"); 6575 break; 6576 case ARM::sysSTMIA_UPD: 6577 case ARM::sysSTMDA_UPD: 6578 case ARM::sysSTMDB_UPD: 6579 case ARM::sysSTMIB_UPD: 6580 return Error(Operands[2]->getStartLoc(), 6581 "system STM cannot have writeback register"); 6582 case ARM::tMUL: { 6583 // The second source operand must be the same register as the destination 6584 // operand. 6585 // 6586 // In this case, we must directly check the parsed operands because the 6587 // cvtThumbMultiply() function is written in such a way that it guarantees 6588 // this first statement is always true for the new Inst. Essentially, the 6589 // destination is unconditionally copied into the second source operand 6590 // without checking to see if it matches what we actually parsed. 6591 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6592 ((ARMOperand &)*Operands[5]).getReg()) && 6593 (((ARMOperand &)*Operands[3]).getReg() != 6594 ((ARMOperand &)*Operands[4]).getReg())) { 6595 return Error(Operands[3]->getStartLoc(), 6596 "destination register must match source register"); 6597 } 6598 break; 6599 } 6600 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6601 // so only issue a diagnostic for thumb1. The instructions will be 6602 // switched to the t2 encodings in processInstruction() if necessary. 6603 case ARM::tPOP: { 6604 bool ListContainsBase; 6605 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6606 !isThumbTwo()) 6607 return Error(Operands[2]->getStartLoc(), 6608 "registers must be in range r0-r7 or pc"); 6609 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6610 return true; 6611 break; 6612 } 6613 case ARM::tPUSH: { 6614 bool ListContainsBase; 6615 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6616 !isThumbTwo()) 6617 return Error(Operands[2]->getStartLoc(), 6618 "registers must be in range r0-r7 or lr"); 6619 if (validatetSTMRegList(Inst, Operands, 2)) 6620 return true; 6621 break; 6622 } 6623 case ARM::tSTMIA_UPD: { 6624 bool ListContainsBase, InvalidLowList; 6625 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6626 0, ListContainsBase); 6627 if (InvalidLowList && !isThumbTwo()) 6628 return Error(Operands[4]->getStartLoc(), 6629 "registers must be in range r0-r7"); 6630 6631 // This would be converted to a 32-bit stm, but that's not valid if the 6632 // writeback register is in the list. 6633 if (InvalidLowList && ListContainsBase) 6634 return Error(Operands[4]->getStartLoc(), 6635 "writeback operator '!' not allowed when base register " 6636 "in register list"); 6637 6638 if (validatetSTMRegList(Inst, Operands, 4)) 6639 return true; 6640 break; 6641 } 6642 case ARM::tADDrSP: { 6643 // If the non-SP source operand and the destination operand are not the 6644 // same, we need thumb2 (for the wide encoding), or we have an error. 6645 if (!isThumbTwo() && 6646 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6647 return Error(Operands[4]->getStartLoc(), 6648 "source register must be the same as destination"); 6649 } 6650 break; 6651 } 6652 // Final range checking for Thumb unconditional branch instructions. 6653 case ARM::tB: 6654 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6655 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6656 break; 6657 case ARM::t2B: { 6658 int op = (Operands[2]->isImm()) ? 2 : 3; 6659 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6660 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6661 break; 6662 } 6663 // Final range checking for Thumb conditional branch instructions. 6664 case ARM::tBcc: 6665 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6666 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6667 break; 6668 case ARM::t2Bcc: { 6669 int Op = (Operands[2]->isImm()) ? 2 : 3; 6670 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6671 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6672 break; 6673 } 6674 case ARM::tCBZ: 6675 case ARM::tCBNZ: { 6676 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6677 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6678 break; 6679 } 6680 case ARM::MOVi16: 6681 case ARM::t2MOVi16: 6682 case ARM::t2MOVTi16: 6683 { 6684 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6685 // especially when we turn it into a movw and the expression <symbol> does 6686 // not have a :lower16: or :upper16 as part of the expression. We don't 6687 // want the behavior of silently truncating, which can be unexpected and 6688 // lead to bugs that are difficult to find since this is an easy mistake 6689 // to make. 6690 int i = (Operands[3]->isImm()) ? 3 : 4; 6691 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6692 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6693 if (CE) break; 6694 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6695 if (!E) break; 6696 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6697 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6698 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6699 return Error( 6700 Op.getStartLoc(), 6701 "immediate expression for mov requires :lower16: or :upper16"); 6702 break; 6703 } 6704 case ARM::HINT: 6705 case ARM::t2HINT: { 6706 if (hasRAS()) { 6707 // ESB is not predicable (pred must be AL) 6708 unsigned Imm8 = Inst.getOperand(0).getImm(); 6709 unsigned Pred = Inst.getOperand(1).getImm(); 6710 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6711 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6712 "predicable, but condition " 6713 "code specified"); 6714 } 6715 // Without the RAS extension, this behaves as any other unallocated hint. 6716 break; 6717 } 6718 } 6719 6720 return false; 6721 } 6722 6723 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6724 switch(Opc) { 6725 default: llvm_unreachable("unexpected opcode!"); 6726 // VST1LN 6727 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6728 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6729 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6730 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6731 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6732 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6733 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6734 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6735 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6736 6737 // VST2LN 6738 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6739 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6740 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6741 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6742 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6743 6744 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6745 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6746 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6747 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6748 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6749 6750 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6751 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6752 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6753 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6754 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6755 6756 // VST3LN 6757 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6758 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6759 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6760 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6761 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6762 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6763 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6764 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6765 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6766 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6767 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6768 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6769 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6770 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6771 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6772 6773 // VST3 6774 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6775 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6776 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6777 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6778 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6779 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6780 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6781 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6782 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6783 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6784 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6785 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6786 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6787 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6788 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6789 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6790 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6791 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6792 6793 // VST4LN 6794 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6795 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6796 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6797 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6798 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6799 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6800 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6801 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6802 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6803 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6804 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6805 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6806 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6807 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6808 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6809 6810 // VST4 6811 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6812 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6813 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6814 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6815 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6816 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6817 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6818 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6819 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6820 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6821 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6822 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6823 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6824 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6825 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6826 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6827 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6828 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6829 } 6830 } 6831 6832 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6833 switch(Opc) { 6834 default: llvm_unreachable("unexpected opcode!"); 6835 // VLD1LN 6836 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6837 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6838 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6839 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6840 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6841 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6842 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6843 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6844 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6845 6846 // VLD2LN 6847 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6848 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6849 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6850 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6851 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6852 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6853 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6854 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6855 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6856 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6857 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6858 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6859 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6860 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6861 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6862 6863 // VLD3DUP 6864 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6865 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6866 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6867 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6868 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6869 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6870 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6871 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6872 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6873 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6874 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6875 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6876 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6877 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6878 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6879 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6880 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6881 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6882 6883 // VLD3LN 6884 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6885 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6886 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6887 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6888 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6889 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6890 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6891 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6892 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6893 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6894 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6895 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6896 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6897 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6898 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6899 6900 // VLD3 6901 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6902 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6903 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6904 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6905 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6906 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6907 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6908 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6909 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6910 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6911 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6912 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6913 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6914 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6915 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6916 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6917 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6918 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6919 6920 // VLD4LN 6921 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6922 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6923 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6924 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6925 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6926 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6927 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6928 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6929 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6930 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6931 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6932 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6933 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6934 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6935 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6936 6937 // VLD4DUP 6938 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6939 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6940 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6941 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6942 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6943 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6944 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6945 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6946 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6947 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6948 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6949 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6950 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6951 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6952 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6953 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6954 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6955 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6956 6957 // VLD4 6958 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6959 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6960 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6961 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6962 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6963 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6964 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6965 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6966 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6967 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6968 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6969 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6970 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6971 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6972 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6973 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6974 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6975 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6976 } 6977 } 6978 6979 bool ARMAsmParser::processInstruction(MCInst &Inst, 6980 const OperandVector &Operands, 6981 MCStreamer &Out) { 6982 switch (Inst.getOpcode()) { 6983 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6984 case ARM::LDRT_POST: 6985 case ARM::LDRBT_POST: { 6986 const unsigned Opcode = 6987 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6988 : ARM::LDRBT_POST_IMM; 6989 MCInst TmpInst; 6990 TmpInst.setOpcode(Opcode); 6991 TmpInst.addOperand(Inst.getOperand(0)); 6992 TmpInst.addOperand(Inst.getOperand(1)); 6993 TmpInst.addOperand(Inst.getOperand(1)); 6994 TmpInst.addOperand(MCOperand::createReg(0)); 6995 TmpInst.addOperand(MCOperand::createImm(0)); 6996 TmpInst.addOperand(Inst.getOperand(2)); 6997 TmpInst.addOperand(Inst.getOperand(3)); 6998 Inst = TmpInst; 6999 return true; 7000 } 7001 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7002 case ARM::STRT_POST: 7003 case ARM::STRBT_POST: { 7004 const unsigned Opcode = 7005 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7006 : ARM::STRBT_POST_IMM; 7007 MCInst TmpInst; 7008 TmpInst.setOpcode(Opcode); 7009 TmpInst.addOperand(Inst.getOperand(1)); 7010 TmpInst.addOperand(Inst.getOperand(0)); 7011 TmpInst.addOperand(Inst.getOperand(1)); 7012 TmpInst.addOperand(MCOperand::createReg(0)); 7013 TmpInst.addOperand(MCOperand::createImm(0)); 7014 TmpInst.addOperand(Inst.getOperand(2)); 7015 TmpInst.addOperand(Inst.getOperand(3)); 7016 Inst = TmpInst; 7017 return true; 7018 } 7019 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7020 case ARM::ADDri: { 7021 if (Inst.getOperand(1).getReg() != ARM::PC || 7022 Inst.getOperand(5).getReg() != 0 || 7023 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7024 return false; 7025 MCInst TmpInst; 7026 TmpInst.setOpcode(ARM::ADR); 7027 TmpInst.addOperand(Inst.getOperand(0)); 7028 if (Inst.getOperand(2).isImm()) { 7029 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7030 // before passing it to the ADR instruction. 7031 unsigned Enc = Inst.getOperand(2).getImm(); 7032 TmpInst.addOperand(MCOperand::createImm( 7033 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7034 } else { 7035 // Turn PC-relative expression into absolute expression. 7036 // Reading PC provides the start of the current instruction + 8 and 7037 // the transform to adr is biased by that. 7038 MCSymbol *Dot = getContext().createTempSymbol(); 7039 Out.EmitLabel(Dot); 7040 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7041 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7042 MCSymbolRefExpr::VK_None, 7043 getContext()); 7044 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7045 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7046 getContext()); 7047 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7048 getContext()); 7049 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7050 } 7051 TmpInst.addOperand(Inst.getOperand(3)); 7052 TmpInst.addOperand(Inst.getOperand(4)); 7053 Inst = TmpInst; 7054 return true; 7055 } 7056 // Aliases for alternate PC+imm syntax of LDR instructions. 7057 case ARM::t2LDRpcrel: 7058 // Select the narrow version if the immediate will fit. 7059 if (Inst.getOperand(1).getImm() > 0 && 7060 Inst.getOperand(1).getImm() <= 0xff && 7061 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 7062 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 7063 Inst.setOpcode(ARM::tLDRpci); 7064 else 7065 Inst.setOpcode(ARM::t2LDRpci); 7066 return true; 7067 case ARM::t2LDRBpcrel: 7068 Inst.setOpcode(ARM::t2LDRBpci); 7069 return true; 7070 case ARM::t2LDRHpcrel: 7071 Inst.setOpcode(ARM::t2LDRHpci); 7072 return true; 7073 case ARM::t2LDRSBpcrel: 7074 Inst.setOpcode(ARM::t2LDRSBpci); 7075 return true; 7076 case ARM::t2LDRSHpcrel: 7077 Inst.setOpcode(ARM::t2LDRSHpci); 7078 return true; 7079 case ARM::LDRConstPool: 7080 case ARM::tLDRConstPool: 7081 case ARM::t2LDRConstPool: { 7082 // Pseudo instruction ldr rt, =immediate is converted to a 7083 // MOV rt, immediate if immediate is known and representable 7084 // otherwise we create a constant pool entry that we load from. 7085 MCInst TmpInst; 7086 if (Inst.getOpcode() == ARM::LDRConstPool) 7087 TmpInst.setOpcode(ARM::LDRi12); 7088 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7089 TmpInst.setOpcode(ARM::tLDRpci); 7090 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7091 TmpInst.setOpcode(ARM::t2LDRpci); 7092 const ARMOperand &PoolOperand = 7093 (static_cast<ARMOperand &>(*Operands[2]).isToken() && 7094 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w") ? 7095 static_cast<ARMOperand &>(*Operands[4]) : 7096 static_cast<ARMOperand &>(*Operands[3]); 7097 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7098 // If SubExprVal is a constant we may be able to use a MOV 7099 if (isa<MCConstantExpr>(SubExprVal) && 7100 Inst.getOperand(0).getReg() != ARM::PC && 7101 Inst.getOperand(0).getReg() != ARM::SP) { 7102 int64_t Value = 7103 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7104 bool UseMov = true; 7105 bool MovHasS = true; 7106 if (Inst.getOpcode() == ARM::LDRConstPool) { 7107 // ARM Constant 7108 if (ARM_AM::getSOImmVal(Value) != -1) { 7109 Value = ARM_AM::getSOImmVal(Value); 7110 TmpInst.setOpcode(ARM::MOVi); 7111 } 7112 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7113 Value = ARM_AM::getSOImmVal(~Value); 7114 TmpInst.setOpcode(ARM::MVNi); 7115 } 7116 else if (hasV6T2Ops() && 7117 Value >=0 && Value < 65536) { 7118 TmpInst.setOpcode(ARM::MOVi16); 7119 MovHasS = false; 7120 } 7121 else 7122 UseMov = false; 7123 } 7124 else { 7125 // Thumb/Thumb2 Constant 7126 if (hasThumb2() && 7127 ARM_AM::getT2SOImmVal(Value) != -1) 7128 TmpInst.setOpcode(ARM::t2MOVi); 7129 else if (hasThumb2() && 7130 ARM_AM::getT2SOImmVal(~Value) != -1) { 7131 TmpInst.setOpcode(ARM::t2MVNi); 7132 Value = ~Value; 7133 } 7134 else if (hasV8MBaseline() && 7135 Value >=0 && Value < 65536) { 7136 TmpInst.setOpcode(ARM::t2MOVi16); 7137 MovHasS = false; 7138 } 7139 else 7140 UseMov = false; 7141 } 7142 if (UseMov) { 7143 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7144 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7145 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7146 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7147 if (MovHasS) 7148 TmpInst.addOperand(MCOperand::createReg(0)); // S 7149 Inst = TmpInst; 7150 return true; 7151 } 7152 } 7153 // No opportunity to use MOV/MVN create constant pool 7154 const MCExpr *CPLoc = 7155 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7156 PoolOperand.getStartLoc()); 7157 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7158 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7159 if (TmpInst.getOpcode() == ARM::LDRi12) 7160 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7161 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7162 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7163 Inst = TmpInst; 7164 return true; 7165 } 7166 // Handle NEON VST complex aliases. 7167 case ARM::VST1LNdWB_register_Asm_8: 7168 case ARM::VST1LNdWB_register_Asm_16: 7169 case ARM::VST1LNdWB_register_Asm_32: { 7170 MCInst TmpInst; 7171 // Shuffle the operands around so the lane index operand is in the 7172 // right place. 7173 unsigned Spacing; 7174 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7175 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7176 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7177 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7178 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7179 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7180 TmpInst.addOperand(Inst.getOperand(1)); // lane 7181 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7182 TmpInst.addOperand(Inst.getOperand(6)); 7183 Inst = TmpInst; 7184 return true; 7185 } 7186 7187 case ARM::VST2LNdWB_register_Asm_8: 7188 case ARM::VST2LNdWB_register_Asm_16: 7189 case ARM::VST2LNdWB_register_Asm_32: 7190 case ARM::VST2LNqWB_register_Asm_16: 7191 case ARM::VST2LNqWB_register_Asm_32: { 7192 MCInst TmpInst; 7193 // Shuffle the operands around so the lane index operand is in the 7194 // right place. 7195 unsigned Spacing; 7196 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7197 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7198 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7199 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7200 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7201 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7202 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7203 Spacing)); 7204 TmpInst.addOperand(Inst.getOperand(1)); // lane 7205 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7206 TmpInst.addOperand(Inst.getOperand(6)); 7207 Inst = TmpInst; 7208 return true; 7209 } 7210 7211 case ARM::VST3LNdWB_register_Asm_8: 7212 case ARM::VST3LNdWB_register_Asm_16: 7213 case ARM::VST3LNdWB_register_Asm_32: 7214 case ARM::VST3LNqWB_register_Asm_16: 7215 case ARM::VST3LNqWB_register_Asm_32: { 7216 MCInst TmpInst; 7217 // Shuffle the operands around so the lane index operand is in the 7218 // right place. 7219 unsigned Spacing; 7220 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7221 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7222 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7223 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7224 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7225 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7226 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7227 Spacing)); 7228 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7229 Spacing * 2)); 7230 TmpInst.addOperand(Inst.getOperand(1)); // lane 7231 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7232 TmpInst.addOperand(Inst.getOperand(6)); 7233 Inst = TmpInst; 7234 return true; 7235 } 7236 7237 case ARM::VST4LNdWB_register_Asm_8: 7238 case ARM::VST4LNdWB_register_Asm_16: 7239 case ARM::VST4LNdWB_register_Asm_32: 7240 case ARM::VST4LNqWB_register_Asm_16: 7241 case ARM::VST4LNqWB_register_Asm_32: { 7242 MCInst TmpInst; 7243 // Shuffle the operands around so the lane index operand is in the 7244 // right place. 7245 unsigned Spacing; 7246 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7247 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7248 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7249 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7250 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7251 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7252 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7253 Spacing)); 7254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7255 Spacing * 2)); 7256 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7257 Spacing * 3)); 7258 TmpInst.addOperand(Inst.getOperand(1)); // lane 7259 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7260 TmpInst.addOperand(Inst.getOperand(6)); 7261 Inst = TmpInst; 7262 return true; 7263 } 7264 7265 case ARM::VST1LNdWB_fixed_Asm_8: 7266 case ARM::VST1LNdWB_fixed_Asm_16: 7267 case ARM::VST1LNdWB_fixed_Asm_32: { 7268 MCInst TmpInst; 7269 // Shuffle the operands around so the lane index operand is in the 7270 // right place. 7271 unsigned Spacing; 7272 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7273 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7274 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7275 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7276 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7277 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7278 TmpInst.addOperand(Inst.getOperand(1)); // lane 7279 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7280 TmpInst.addOperand(Inst.getOperand(5)); 7281 Inst = TmpInst; 7282 return true; 7283 } 7284 7285 case ARM::VST2LNdWB_fixed_Asm_8: 7286 case ARM::VST2LNdWB_fixed_Asm_16: 7287 case ARM::VST2LNdWB_fixed_Asm_32: 7288 case ARM::VST2LNqWB_fixed_Asm_16: 7289 case ARM::VST2LNqWB_fixed_Asm_32: { 7290 MCInst TmpInst; 7291 // Shuffle the operands around so the lane index operand is in the 7292 // right place. 7293 unsigned Spacing; 7294 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7295 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7296 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7297 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7298 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7299 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7300 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7301 Spacing)); 7302 TmpInst.addOperand(Inst.getOperand(1)); // lane 7303 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7304 TmpInst.addOperand(Inst.getOperand(5)); 7305 Inst = TmpInst; 7306 return true; 7307 } 7308 7309 case ARM::VST3LNdWB_fixed_Asm_8: 7310 case ARM::VST3LNdWB_fixed_Asm_16: 7311 case ARM::VST3LNdWB_fixed_Asm_32: 7312 case ARM::VST3LNqWB_fixed_Asm_16: 7313 case ARM::VST3LNqWB_fixed_Asm_32: { 7314 MCInst TmpInst; 7315 // Shuffle the operands around so the lane index operand is in the 7316 // right place. 7317 unsigned Spacing; 7318 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7319 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7320 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7321 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7322 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7323 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7324 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7325 Spacing)); 7326 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7327 Spacing * 2)); 7328 TmpInst.addOperand(Inst.getOperand(1)); // lane 7329 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7330 TmpInst.addOperand(Inst.getOperand(5)); 7331 Inst = TmpInst; 7332 return true; 7333 } 7334 7335 case ARM::VST4LNdWB_fixed_Asm_8: 7336 case ARM::VST4LNdWB_fixed_Asm_16: 7337 case ARM::VST4LNdWB_fixed_Asm_32: 7338 case ARM::VST4LNqWB_fixed_Asm_16: 7339 case ARM::VST4LNqWB_fixed_Asm_32: { 7340 MCInst TmpInst; 7341 // Shuffle the operands around so the lane index operand is in the 7342 // right place. 7343 unsigned Spacing; 7344 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7345 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7346 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7347 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7348 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7349 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7350 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7351 Spacing)); 7352 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7353 Spacing * 2)); 7354 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7355 Spacing * 3)); 7356 TmpInst.addOperand(Inst.getOperand(1)); // lane 7357 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7358 TmpInst.addOperand(Inst.getOperand(5)); 7359 Inst = TmpInst; 7360 return true; 7361 } 7362 7363 case ARM::VST1LNdAsm_8: 7364 case ARM::VST1LNdAsm_16: 7365 case ARM::VST1LNdAsm_32: { 7366 MCInst TmpInst; 7367 // Shuffle the operands around so the lane index operand is in the 7368 // right place. 7369 unsigned Spacing; 7370 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7371 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7372 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7373 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7374 TmpInst.addOperand(Inst.getOperand(1)); // lane 7375 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7376 TmpInst.addOperand(Inst.getOperand(5)); 7377 Inst = TmpInst; 7378 return true; 7379 } 7380 7381 case ARM::VST2LNdAsm_8: 7382 case ARM::VST2LNdAsm_16: 7383 case ARM::VST2LNdAsm_32: 7384 case ARM::VST2LNqAsm_16: 7385 case ARM::VST2LNqAsm_32: { 7386 MCInst TmpInst; 7387 // Shuffle the operands around so the lane index operand is in the 7388 // right place. 7389 unsigned Spacing; 7390 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7391 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7392 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7393 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7394 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7395 Spacing)); 7396 TmpInst.addOperand(Inst.getOperand(1)); // lane 7397 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7398 TmpInst.addOperand(Inst.getOperand(5)); 7399 Inst = TmpInst; 7400 return true; 7401 } 7402 7403 case ARM::VST3LNdAsm_8: 7404 case ARM::VST3LNdAsm_16: 7405 case ARM::VST3LNdAsm_32: 7406 case ARM::VST3LNqAsm_16: 7407 case ARM::VST3LNqAsm_32: { 7408 MCInst TmpInst; 7409 // Shuffle the operands around so the lane index operand is in the 7410 // right place. 7411 unsigned Spacing; 7412 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7413 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7414 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7415 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7416 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7417 Spacing)); 7418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7419 Spacing * 2)); 7420 TmpInst.addOperand(Inst.getOperand(1)); // lane 7421 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7422 TmpInst.addOperand(Inst.getOperand(5)); 7423 Inst = TmpInst; 7424 return true; 7425 } 7426 7427 case ARM::VST4LNdAsm_8: 7428 case ARM::VST4LNdAsm_16: 7429 case ARM::VST4LNdAsm_32: 7430 case ARM::VST4LNqAsm_16: 7431 case ARM::VST4LNqAsm_32: { 7432 MCInst TmpInst; 7433 // Shuffle the operands around so the lane index operand is in the 7434 // right place. 7435 unsigned Spacing; 7436 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7437 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7438 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7439 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7441 Spacing)); 7442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7443 Spacing * 2)); 7444 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7445 Spacing * 3)); 7446 TmpInst.addOperand(Inst.getOperand(1)); // lane 7447 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7448 TmpInst.addOperand(Inst.getOperand(5)); 7449 Inst = TmpInst; 7450 return true; 7451 } 7452 7453 // Handle NEON VLD complex aliases. 7454 case ARM::VLD1LNdWB_register_Asm_8: 7455 case ARM::VLD1LNdWB_register_Asm_16: 7456 case ARM::VLD1LNdWB_register_Asm_32: { 7457 MCInst TmpInst; 7458 // Shuffle the operands around so the lane index operand is in the 7459 // right place. 7460 unsigned Spacing; 7461 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7462 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7463 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7464 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7465 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7466 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7467 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7468 TmpInst.addOperand(Inst.getOperand(1)); // lane 7469 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7470 TmpInst.addOperand(Inst.getOperand(6)); 7471 Inst = TmpInst; 7472 return true; 7473 } 7474 7475 case ARM::VLD2LNdWB_register_Asm_8: 7476 case ARM::VLD2LNdWB_register_Asm_16: 7477 case ARM::VLD2LNdWB_register_Asm_32: 7478 case ARM::VLD2LNqWB_register_Asm_16: 7479 case ARM::VLD2LNqWB_register_Asm_32: { 7480 MCInst TmpInst; 7481 // Shuffle the operands around so the lane index operand is in the 7482 // right place. 7483 unsigned Spacing; 7484 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7485 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7486 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7487 Spacing)); 7488 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7489 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7490 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7491 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7492 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7493 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7494 Spacing)); 7495 TmpInst.addOperand(Inst.getOperand(1)); // lane 7496 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7497 TmpInst.addOperand(Inst.getOperand(6)); 7498 Inst = TmpInst; 7499 return true; 7500 } 7501 7502 case ARM::VLD3LNdWB_register_Asm_8: 7503 case ARM::VLD3LNdWB_register_Asm_16: 7504 case ARM::VLD3LNdWB_register_Asm_32: 7505 case ARM::VLD3LNqWB_register_Asm_16: 7506 case ARM::VLD3LNqWB_register_Asm_32: { 7507 MCInst TmpInst; 7508 // Shuffle the operands around so the lane index operand is in the 7509 // right place. 7510 unsigned Spacing; 7511 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7512 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7514 Spacing)); 7515 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7516 Spacing * 2)); 7517 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7518 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7519 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7520 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7521 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7522 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7523 Spacing)); 7524 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7525 Spacing * 2)); 7526 TmpInst.addOperand(Inst.getOperand(1)); // lane 7527 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7528 TmpInst.addOperand(Inst.getOperand(6)); 7529 Inst = TmpInst; 7530 return true; 7531 } 7532 7533 case ARM::VLD4LNdWB_register_Asm_8: 7534 case ARM::VLD4LNdWB_register_Asm_16: 7535 case ARM::VLD4LNdWB_register_Asm_32: 7536 case ARM::VLD4LNqWB_register_Asm_16: 7537 case ARM::VLD4LNqWB_register_Asm_32: { 7538 MCInst TmpInst; 7539 // Shuffle the operands around so the lane index operand is in the 7540 // right place. 7541 unsigned Spacing; 7542 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7543 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7544 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7545 Spacing)); 7546 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7547 Spacing * 2)); 7548 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7549 Spacing * 3)); 7550 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7551 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7552 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7553 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7554 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7555 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7556 Spacing)); 7557 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7558 Spacing * 2)); 7559 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7560 Spacing * 3)); 7561 TmpInst.addOperand(Inst.getOperand(1)); // lane 7562 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7563 TmpInst.addOperand(Inst.getOperand(6)); 7564 Inst = TmpInst; 7565 return true; 7566 } 7567 7568 case ARM::VLD1LNdWB_fixed_Asm_8: 7569 case ARM::VLD1LNdWB_fixed_Asm_16: 7570 case ARM::VLD1LNdWB_fixed_Asm_32: { 7571 MCInst TmpInst; 7572 // Shuffle the operands around so the lane index operand is in the 7573 // right place. 7574 unsigned Spacing; 7575 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7576 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7577 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7578 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7579 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7580 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7581 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7582 TmpInst.addOperand(Inst.getOperand(1)); // lane 7583 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7584 TmpInst.addOperand(Inst.getOperand(5)); 7585 Inst = TmpInst; 7586 return true; 7587 } 7588 7589 case ARM::VLD2LNdWB_fixed_Asm_8: 7590 case ARM::VLD2LNdWB_fixed_Asm_16: 7591 case ARM::VLD2LNdWB_fixed_Asm_32: 7592 case ARM::VLD2LNqWB_fixed_Asm_16: 7593 case ARM::VLD2LNqWB_fixed_Asm_32: { 7594 MCInst TmpInst; 7595 // Shuffle the operands around so the lane index operand is in the 7596 // right place. 7597 unsigned Spacing; 7598 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7599 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7600 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7601 Spacing)); 7602 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7603 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7604 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7605 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7606 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7607 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7608 Spacing)); 7609 TmpInst.addOperand(Inst.getOperand(1)); // lane 7610 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7611 TmpInst.addOperand(Inst.getOperand(5)); 7612 Inst = TmpInst; 7613 return true; 7614 } 7615 7616 case ARM::VLD3LNdWB_fixed_Asm_8: 7617 case ARM::VLD3LNdWB_fixed_Asm_16: 7618 case ARM::VLD3LNdWB_fixed_Asm_32: 7619 case ARM::VLD3LNqWB_fixed_Asm_16: 7620 case ARM::VLD3LNqWB_fixed_Asm_32: { 7621 MCInst TmpInst; 7622 // Shuffle the operands around so the lane index operand is in the 7623 // right place. 7624 unsigned Spacing; 7625 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7626 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7627 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7628 Spacing)); 7629 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7630 Spacing * 2)); 7631 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7632 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7633 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7634 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7635 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7636 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7637 Spacing)); 7638 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7639 Spacing * 2)); 7640 TmpInst.addOperand(Inst.getOperand(1)); // lane 7641 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7642 TmpInst.addOperand(Inst.getOperand(5)); 7643 Inst = TmpInst; 7644 return true; 7645 } 7646 7647 case ARM::VLD4LNdWB_fixed_Asm_8: 7648 case ARM::VLD4LNdWB_fixed_Asm_16: 7649 case ARM::VLD4LNdWB_fixed_Asm_32: 7650 case ARM::VLD4LNqWB_fixed_Asm_16: 7651 case ARM::VLD4LNqWB_fixed_Asm_32: { 7652 MCInst TmpInst; 7653 // Shuffle the operands around so the lane index operand is in the 7654 // right place. 7655 unsigned Spacing; 7656 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7657 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7658 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7659 Spacing)); 7660 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7661 Spacing * 2)); 7662 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7663 Spacing * 3)); 7664 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7665 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7666 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7667 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7668 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7669 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7670 Spacing)); 7671 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7672 Spacing * 2)); 7673 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7674 Spacing * 3)); 7675 TmpInst.addOperand(Inst.getOperand(1)); // lane 7676 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7677 TmpInst.addOperand(Inst.getOperand(5)); 7678 Inst = TmpInst; 7679 return true; 7680 } 7681 7682 case ARM::VLD1LNdAsm_8: 7683 case ARM::VLD1LNdAsm_16: 7684 case ARM::VLD1LNdAsm_32: { 7685 MCInst TmpInst; 7686 // Shuffle the operands around so the lane index operand is in the 7687 // right place. 7688 unsigned Spacing; 7689 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7690 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7691 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7692 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7693 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7694 TmpInst.addOperand(Inst.getOperand(1)); // lane 7695 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7696 TmpInst.addOperand(Inst.getOperand(5)); 7697 Inst = TmpInst; 7698 return true; 7699 } 7700 7701 case ARM::VLD2LNdAsm_8: 7702 case ARM::VLD2LNdAsm_16: 7703 case ARM::VLD2LNdAsm_32: 7704 case ARM::VLD2LNqAsm_16: 7705 case ARM::VLD2LNqAsm_32: { 7706 MCInst TmpInst; 7707 // Shuffle the operands around so the lane index operand is in the 7708 // right place. 7709 unsigned Spacing; 7710 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7711 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7712 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7713 Spacing)); 7714 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7715 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7716 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7717 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7718 Spacing)); 7719 TmpInst.addOperand(Inst.getOperand(1)); // lane 7720 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7721 TmpInst.addOperand(Inst.getOperand(5)); 7722 Inst = TmpInst; 7723 return true; 7724 } 7725 7726 case ARM::VLD3LNdAsm_8: 7727 case ARM::VLD3LNdAsm_16: 7728 case ARM::VLD3LNdAsm_32: 7729 case ARM::VLD3LNqAsm_16: 7730 case ARM::VLD3LNqAsm_32: { 7731 MCInst TmpInst; 7732 // Shuffle the operands around so the lane index operand is in the 7733 // right place. 7734 unsigned Spacing; 7735 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7736 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7737 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7738 Spacing)); 7739 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7740 Spacing * 2)); 7741 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7742 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7743 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7745 Spacing)); 7746 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7747 Spacing * 2)); 7748 TmpInst.addOperand(Inst.getOperand(1)); // lane 7749 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7750 TmpInst.addOperand(Inst.getOperand(5)); 7751 Inst = TmpInst; 7752 return true; 7753 } 7754 7755 case ARM::VLD4LNdAsm_8: 7756 case ARM::VLD4LNdAsm_16: 7757 case ARM::VLD4LNdAsm_32: 7758 case ARM::VLD4LNqAsm_16: 7759 case ARM::VLD4LNqAsm_32: { 7760 MCInst TmpInst; 7761 // Shuffle the operands around so the lane index operand is in the 7762 // right place. 7763 unsigned Spacing; 7764 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7765 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7766 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7767 Spacing)); 7768 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7769 Spacing * 2)); 7770 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7771 Spacing * 3)); 7772 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7773 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7774 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7775 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7776 Spacing)); 7777 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7778 Spacing * 2)); 7779 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7780 Spacing * 3)); 7781 TmpInst.addOperand(Inst.getOperand(1)); // lane 7782 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7783 TmpInst.addOperand(Inst.getOperand(5)); 7784 Inst = TmpInst; 7785 return true; 7786 } 7787 7788 // VLD3DUP single 3-element structure to all lanes instructions. 7789 case ARM::VLD3DUPdAsm_8: 7790 case ARM::VLD3DUPdAsm_16: 7791 case ARM::VLD3DUPdAsm_32: 7792 case ARM::VLD3DUPqAsm_8: 7793 case ARM::VLD3DUPqAsm_16: 7794 case ARM::VLD3DUPqAsm_32: { 7795 MCInst TmpInst; 7796 unsigned Spacing; 7797 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7798 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7799 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7800 Spacing)); 7801 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7802 Spacing * 2)); 7803 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7804 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7805 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7806 TmpInst.addOperand(Inst.getOperand(4)); 7807 Inst = TmpInst; 7808 return true; 7809 } 7810 7811 case ARM::VLD3DUPdWB_fixed_Asm_8: 7812 case ARM::VLD3DUPdWB_fixed_Asm_16: 7813 case ARM::VLD3DUPdWB_fixed_Asm_32: 7814 case ARM::VLD3DUPqWB_fixed_Asm_8: 7815 case ARM::VLD3DUPqWB_fixed_Asm_16: 7816 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7817 MCInst TmpInst; 7818 unsigned Spacing; 7819 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7820 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7821 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7822 Spacing)); 7823 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7824 Spacing * 2)); 7825 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7826 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7827 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7828 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7829 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7830 TmpInst.addOperand(Inst.getOperand(4)); 7831 Inst = TmpInst; 7832 return true; 7833 } 7834 7835 case ARM::VLD3DUPdWB_register_Asm_8: 7836 case ARM::VLD3DUPdWB_register_Asm_16: 7837 case ARM::VLD3DUPdWB_register_Asm_32: 7838 case ARM::VLD3DUPqWB_register_Asm_8: 7839 case ARM::VLD3DUPqWB_register_Asm_16: 7840 case ARM::VLD3DUPqWB_register_Asm_32: { 7841 MCInst TmpInst; 7842 unsigned Spacing; 7843 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7844 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7845 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7846 Spacing)); 7847 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7848 Spacing * 2)); 7849 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7850 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7851 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7852 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7853 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7854 TmpInst.addOperand(Inst.getOperand(5)); 7855 Inst = TmpInst; 7856 return true; 7857 } 7858 7859 // VLD3 multiple 3-element structure instructions. 7860 case ARM::VLD3dAsm_8: 7861 case ARM::VLD3dAsm_16: 7862 case ARM::VLD3dAsm_32: 7863 case ARM::VLD3qAsm_8: 7864 case ARM::VLD3qAsm_16: 7865 case ARM::VLD3qAsm_32: { 7866 MCInst TmpInst; 7867 unsigned Spacing; 7868 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7869 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7871 Spacing)); 7872 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7873 Spacing * 2)); 7874 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7875 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7876 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7877 TmpInst.addOperand(Inst.getOperand(4)); 7878 Inst = TmpInst; 7879 return true; 7880 } 7881 7882 case ARM::VLD3dWB_fixed_Asm_8: 7883 case ARM::VLD3dWB_fixed_Asm_16: 7884 case ARM::VLD3dWB_fixed_Asm_32: 7885 case ARM::VLD3qWB_fixed_Asm_8: 7886 case ARM::VLD3qWB_fixed_Asm_16: 7887 case ARM::VLD3qWB_fixed_Asm_32: { 7888 MCInst TmpInst; 7889 unsigned Spacing; 7890 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7891 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7892 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7893 Spacing)); 7894 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7895 Spacing * 2)); 7896 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7897 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7898 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7899 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7900 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7901 TmpInst.addOperand(Inst.getOperand(4)); 7902 Inst = TmpInst; 7903 return true; 7904 } 7905 7906 case ARM::VLD3dWB_register_Asm_8: 7907 case ARM::VLD3dWB_register_Asm_16: 7908 case ARM::VLD3dWB_register_Asm_32: 7909 case ARM::VLD3qWB_register_Asm_8: 7910 case ARM::VLD3qWB_register_Asm_16: 7911 case ARM::VLD3qWB_register_Asm_32: { 7912 MCInst TmpInst; 7913 unsigned Spacing; 7914 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7915 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7916 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7917 Spacing)); 7918 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7919 Spacing * 2)); 7920 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7921 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7922 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7923 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7924 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7925 TmpInst.addOperand(Inst.getOperand(5)); 7926 Inst = TmpInst; 7927 return true; 7928 } 7929 7930 // VLD4DUP single 3-element structure to all lanes instructions. 7931 case ARM::VLD4DUPdAsm_8: 7932 case ARM::VLD4DUPdAsm_16: 7933 case ARM::VLD4DUPdAsm_32: 7934 case ARM::VLD4DUPqAsm_8: 7935 case ARM::VLD4DUPqAsm_16: 7936 case ARM::VLD4DUPqAsm_32: { 7937 MCInst TmpInst; 7938 unsigned Spacing; 7939 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7940 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7941 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7942 Spacing)); 7943 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7944 Spacing * 2)); 7945 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7946 Spacing * 3)); 7947 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7948 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7949 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7950 TmpInst.addOperand(Inst.getOperand(4)); 7951 Inst = TmpInst; 7952 return true; 7953 } 7954 7955 case ARM::VLD4DUPdWB_fixed_Asm_8: 7956 case ARM::VLD4DUPdWB_fixed_Asm_16: 7957 case ARM::VLD4DUPdWB_fixed_Asm_32: 7958 case ARM::VLD4DUPqWB_fixed_Asm_8: 7959 case ARM::VLD4DUPqWB_fixed_Asm_16: 7960 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7961 MCInst TmpInst; 7962 unsigned Spacing; 7963 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7964 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7965 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7966 Spacing)); 7967 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7968 Spacing * 2)); 7969 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7970 Spacing * 3)); 7971 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7972 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7973 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7974 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7975 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7976 TmpInst.addOperand(Inst.getOperand(4)); 7977 Inst = TmpInst; 7978 return true; 7979 } 7980 7981 case ARM::VLD4DUPdWB_register_Asm_8: 7982 case ARM::VLD4DUPdWB_register_Asm_16: 7983 case ARM::VLD4DUPdWB_register_Asm_32: 7984 case ARM::VLD4DUPqWB_register_Asm_8: 7985 case ARM::VLD4DUPqWB_register_Asm_16: 7986 case ARM::VLD4DUPqWB_register_Asm_32: { 7987 MCInst TmpInst; 7988 unsigned Spacing; 7989 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7990 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7991 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7992 Spacing)); 7993 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7994 Spacing * 2)); 7995 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7996 Spacing * 3)); 7997 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7998 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7999 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8000 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8001 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8002 TmpInst.addOperand(Inst.getOperand(5)); 8003 Inst = TmpInst; 8004 return true; 8005 } 8006 8007 // VLD4 multiple 4-element structure instructions. 8008 case ARM::VLD4dAsm_8: 8009 case ARM::VLD4dAsm_16: 8010 case ARM::VLD4dAsm_32: 8011 case ARM::VLD4qAsm_8: 8012 case ARM::VLD4qAsm_16: 8013 case ARM::VLD4qAsm_32: { 8014 MCInst TmpInst; 8015 unsigned Spacing; 8016 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8017 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8018 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8019 Spacing)); 8020 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8021 Spacing * 2)); 8022 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8023 Spacing * 3)); 8024 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8025 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8026 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8027 TmpInst.addOperand(Inst.getOperand(4)); 8028 Inst = TmpInst; 8029 return true; 8030 } 8031 8032 case ARM::VLD4dWB_fixed_Asm_8: 8033 case ARM::VLD4dWB_fixed_Asm_16: 8034 case ARM::VLD4dWB_fixed_Asm_32: 8035 case ARM::VLD4qWB_fixed_Asm_8: 8036 case ARM::VLD4qWB_fixed_Asm_16: 8037 case ARM::VLD4qWB_fixed_Asm_32: { 8038 MCInst TmpInst; 8039 unsigned Spacing; 8040 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8041 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8042 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8043 Spacing)); 8044 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8045 Spacing * 2)); 8046 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8047 Spacing * 3)); 8048 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8049 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8050 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8051 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8052 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8053 TmpInst.addOperand(Inst.getOperand(4)); 8054 Inst = TmpInst; 8055 return true; 8056 } 8057 8058 case ARM::VLD4dWB_register_Asm_8: 8059 case ARM::VLD4dWB_register_Asm_16: 8060 case ARM::VLD4dWB_register_Asm_32: 8061 case ARM::VLD4qWB_register_Asm_8: 8062 case ARM::VLD4qWB_register_Asm_16: 8063 case ARM::VLD4qWB_register_Asm_32: { 8064 MCInst TmpInst; 8065 unsigned Spacing; 8066 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8067 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8068 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8069 Spacing)); 8070 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8071 Spacing * 2)); 8072 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8073 Spacing * 3)); 8074 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8075 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8076 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8077 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8078 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8079 TmpInst.addOperand(Inst.getOperand(5)); 8080 Inst = TmpInst; 8081 return true; 8082 } 8083 8084 // VST3 multiple 3-element structure instructions. 8085 case ARM::VST3dAsm_8: 8086 case ARM::VST3dAsm_16: 8087 case ARM::VST3dAsm_32: 8088 case ARM::VST3qAsm_8: 8089 case ARM::VST3qAsm_16: 8090 case ARM::VST3qAsm_32: { 8091 MCInst TmpInst; 8092 unsigned Spacing; 8093 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8094 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8095 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8096 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8097 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8098 Spacing)); 8099 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8100 Spacing * 2)); 8101 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8102 TmpInst.addOperand(Inst.getOperand(4)); 8103 Inst = TmpInst; 8104 return true; 8105 } 8106 8107 case ARM::VST3dWB_fixed_Asm_8: 8108 case ARM::VST3dWB_fixed_Asm_16: 8109 case ARM::VST3dWB_fixed_Asm_32: 8110 case ARM::VST3qWB_fixed_Asm_8: 8111 case ARM::VST3qWB_fixed_Asm_16: 8112 case ARM::VST3qWB_fixed_Asm_32: { 8113 MCInst TmpInst; 8114 unsigned Spacing; 8115 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8116 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8117 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8118 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8119 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8120 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8121 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8122 Spacing)); 8123 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8124 Spacing * 2)); 8125 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8126 TmpInst.addOperand(Inst.getOperand(4)); 8127 Inst = TmpInst; 8128 return true; 8129 } 8130 8131 case ARM::VST3dWB_register_Asm_8: 8132 case ARM::VST3dWB_register_Asm_16: 8133 case ARM::VST3dWB_register_Asm_32: 8134 case ARM::VST3qWB_register_Asm_8: 8135 case ARM::VST3qWB_register_Asm_16: 8136 case ARM::VST3qWB_register_Asm_32: { 8137 MCInst TmpInst; 8138 unsigned Spacing; 8139 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8140 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8141 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8142 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8143 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8144 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8145 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8146 Spacing)); 8147 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8148 Spacing * 2)); 8149 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8150 TmpInst.addOperand(Inst.getOperand(5)); 8151 Inst = TmpInst; 8152 return true; 8153 } 8154 8155 // VST4 multiple 3-element structure instructions. 8156 case ARM::VST4dAsm_8: 8157 case ARM::VST4dAsm_16: 8158 case ARM::VST4dAsm_32: 8159 case ARM::VST4qAsm_8: 8160 case ARM::VST4qAsm_16: 8161 case ARM::VST4qAsm_32: { 8162 MCInst TmpInst; 8163 unsigned Spacing; 8164 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8165 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8166 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8167 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8168 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8169 Spacing)); 8170 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8171 Spacing * 2)); 8172 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8173 Spacing * 3)); 8174 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8175 TmpInst.addOperand(Inst.getOperand(4)); 8176 Inst = TmpInst; 8177 return true; 8178 } 8179 8180 case ARM::VST4dWB_fixed_Asm_8: 8181 case ARM::VST4dWB_fixed_Asm_16: 8182 case ARM::VST4dWB_fixed_Asm_32: 8183 case ARM::VST4qWB_fixed_Asm_8: 8184 case ARM::VST4qWB_fixed_Asm_16: 8185 case ARM::VST4qWB_fixed_Asm_32: { 8186 MCInst TmpInst; 8187 unsigned Spacing; 8188 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8189 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8190 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8191 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8192 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8193 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8194 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8195 Spacing)); 8196 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8197 Spacing * 2)); 8198 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8199 Spacing * 3)); 8200 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8201 TmpInst.addOperand(Inst.getOperand(4)); 8202 Inst = TmpInst; 8203 return true; 8204 } 8205 8206 case ARM::VST4dWB_register_Asm_8: 8207 case ARM::VST4dWB_register_Asm_16: 8208 case ARM::VST4dWB_register_Asm_32: 8209 case ARM::VST4qWB_register_Asm_8: 8210 case ARM::VST4qWB_register_Asm_16: 8211 case ARM::VST4qWB_register_Asm_32: { 8212 MCInst TmpInst; 8213 unsigned Spacing; 8214 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8215 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8216 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8217 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8218 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8219 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8220 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8221 Spacing)); 8222 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8223 Spacing * 2)); 8224 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8225 Spacing * 3)); 8226 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8227 TmpInst.addOperand(Inst.getOperand(5)); 8228 Inst = TmpInst; 8229 return true; 8230 } 8231 8232 // Handle encoding choice for the shift-immediate instructions. 8233 case ARM::t2LSLri: 8234 case ARM::t2LSRri: 8235 case ARM::t2ASRri: { 8236 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8237 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8238 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8239 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8240 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8241 unsigned NewOpc; 8242 switch (Inst.getOpcode()) { 8243 default: llvm_unreachable("unexpected opcode"); 8244 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8245 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8246 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8247 } 8248 // The Thumb1 operands aren't in the same order. Awesome, eh? 8249 MCInst TmpInst; 8250 TmpInst.setOpcode(NewOpc); 8251 TmpInst.addOperand(Inst.getOperand(0)); 8252 TmpInst.addOperand(Inst.getOperand(5)); 8253 TmpInst.addOperand(Inst.getOperand(1)); 8254 TmpInst.addOperand(Inst.getOperand(2)); 8255 TmpInst.addOperand(Inst.getOperand(3)); 8256 TmpInst.addOperand(Inst.getOperand(4)); 8257 Inst = TmpInst; 8258 return true; 8259 } 8260 return false; 8261 } 8262 8263 // Handle the Thumb2 mode MOV complex aliases. 8264 case ARM::t2MOVsr: 8265 case ARM::t2MOVSsr: { 8266 // Which instruction to expand to depends on the CCOut operand and 8267 // whether we're in an IT block if the register operands are low 8268 // registers. 8269 bool isNarrow = false; 8270 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8271 isARMLowRegister(Inst.getOperand(1).getReg()) && 8272 isARMLowRegister(Inst.getOperand(2).getReg()) && 8273 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8274 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8275 isNarrow = true; 8276 MCInst TmpInst; 8277 unsigned newOpc; 8278 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8279 default: llvm_unreachable("unexpected opcode!"); 8280 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8281 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8282 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8283 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8284 } 8285 TmpInst.setOpcode(newOpc); 8286 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8287 if (isNarrow) 8288 TmpInst.addOperand(MCOperand::createReg( 8289 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8290 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8291 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8292 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8293 TmpInst.addOperand(Inst.getOperand(5)); 8294 if (!isNarrow) 8295 TmpInst.addOperand(MCOperand::createReg( 8296 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8297 Inst = TmpInst; 8298 return true; 8299 } 8300 case ARM::t2MOVsi: 8301 case ARM::t2MOVSsi: { 8302 // Which instruction to expand to depends on the CCOut operand and 8303 // whether we're in an IT block if the register operands are low 8304 // registers. 8305 bool isNarrow = false; 8306 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8307 isARMLowRegister(Inst.getOperand(1).getReg()) && 8308 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8309 isNarrow = true; 8310 MCInst TmpInst; 8311 unsigned newOpc; 8312 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 8313 default: llvm_unreachable("unexpected opcode!"); 8314 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8315 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8316 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8317 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8318 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8319 } 8320 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8321 if (Amount == 32) Amount = 0; 8322 TmpInst.setOpcode(newOpc); 8323 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8324 if (isNarrow) 8325 TmpInst.addOperand(MCOperand::createReg( 8326 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8327 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8328 if (newOpc != ARM::t2RRX) 8329 TmpInst.addOperand(MCOperand::createImm(Amount)); 8330 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8331 TmpInst.addOperand(Inst.getOperand(4)); 8332 if (!isNarrow) 8333 TmpInst.addOperand(MCOperand::createReg( 8334 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8335 Inst = TmpInst; 8336 return true; 8337 } 8338 // Handle the ARM mode MOV complex aliases. 8339 case ARM::ASRr: 8340 case ARM::LSRr: 8341 case ARM::LSLr: 8342 case ARM::RORr: { 8343 ARM_AM::ShiftOpc ShiftTy; 8344 switch(Inst.getOpcode()) { 8345 default: llvm_unreachable("unexpected opcode!"); 8346 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8347 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8348 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8349 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8350 } 8351 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8352 MCInst TmpInst; 8353 TmpInst.setOpcode(ARM::MOVsr); 8354 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8355 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8356 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8357 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8358 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8359 TmpInst.addOperand(Inst.getOperand(4)); 8360 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8361 Inst = TmpInst; 8362 return true; 8363 } 8364 case ARM::ASRi: 8365 case ARM::LSRi: 8366 case ARM::LSLi: 8367 case ARM::RORi: { 8368 ARM_AM::ShiftOpc ShiftTy; 8369 switch(Inst.getOpcode()) { 8370 default: llvm_unreachable("unexpected opcode!"); 8371 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8372 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8373 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8374 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8375 } 8376 // A shift by zero is a plain MOVr, not a MOVsi. 8377 unsigned Amt = Inst.getOperand(2).getImm(); 8378 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8379 // A shift by 32 should be encoded as 0 when permitted 8380 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8381 Amt = 0; 8382 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8383 MCInst TmpInst; 8384 TmpInst.setOpcode(Opc); 8385 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8386 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8387 if (Opc == ARM::MOVsi) 8388 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8389 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8390 TmpInst.addOperand(Inst.getOperand(4)); 8391 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8392 Inst = TmpInst; 8393 return true; 8394 } 8395 case ARM::RRXi: { 8396 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8397 MCInst TmpInst; 8398 TmpInst.setOpcode(ARM::MOVsi); 8399 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8400 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8401 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8402 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8403 TmpInst.addOperand(Inst.getOperand(3)); 8404 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8405 Inst = TmpInst; 8406 return true; 8407 } 8408 case ARM::t2LDMIA_UPD: { 8409 // If this is a load of a single register, then we should use 8410 // a post-indexed LDR instruction instead, per the ARM ARM. 8411 if (Inst.getNumOperands() != 5) 8412 return false; 8413 MCInst TmpInst; 8414 TmpInst.setOpcode(ARM::t2LDR_POST); 8415 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8416 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8417 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8418 TmpInst.addOperand(MCOperand::createImm(4)); 8419 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8420 TmpInst.addOperand(Inst.getOperand(3)); 8421 Inst = TmpInst; 8422 return true; 8423 } 8424 case ARM::t2STMDB_UPD: { 8425 // If this is a store of a single register, then we should use 8426 // a pre-indexed STR instruction instead, per the ARM ARM. 8427 if (Inst.getNumOperands() != 5) 8428 return false; 8429 MCInst TmpInst; 8430 TmpInst.setOpcode(ARM::t2STR_PRE); 8431 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8432 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8433 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8434 TmpInst.addOperand(MCOperand::createImm(-4)); 8435 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8436 TmpInst.addOperand(Inst.getOperand(3)); 8437 Inst = TmpInst; 8438 return true; 8439 } 8440 case ARM::LDMIA_UPD: 8441 // If this is a load of a single register via a 'pop', then we should use 8442 // a post-indexed LDR instruction instead, per the ARM ARM. 8443 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8444 Inst.getNumOperands() == 5) { 8445 MCInst TmpInst; 8446 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8447 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8448 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8449 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8450 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8451 TmpInst.addOperand(MCOperand::createImm(4)); 8452 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8453 TmpInst.addOperand(Inst.getOperand(3)); 8454 Inst = TmpInst; 8455 return true; 8456 } 8457 break; 8458 case ARM::STMDB_UPD: 8459 // If this is a store of a single register via a 'push', then we should use 8460 // a pre-indexed STR instruction instead, per the ARM ARM. 8461 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8462 Inst.getNumOperands() == 5) { 8463 MCInst TmpInst; 8464 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8465 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8466 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8467 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8468 TmpInst.addOperand(MCOperand::createImm(-4)); 8469 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8470 TmpInst.addOperand(Inst.getOperand(3)); 8471 Inst = TmpInst; 8472 } 8473 break; 8474 case ARM::t2ADDri12: 8475 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8476 // mnemonic was used (not "addw"), encoding T3 is preferred. 8477 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8478 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8479 break; 8480 Inst.setOpcode(ARM::t2ADDri); 8481 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8482 break; 8483 case ARM::t2SUBri12: 8484 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8485 // mnemonic was used (not "subw"), encoding T3 is preferred. 8486 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8487 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8488 break; 8489 Inst.setOpcode(ARM::t2SUBri); 8490 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8491 break; 8492 case ARM::tADDi8: 8493 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8494 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8495 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8496 // to encoding T1 if <Rd> is omitted." 8497 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8498 Inst.setOpcode(ARM::tADDi3); 8499 return true; 8500 } 8501 break; 8502 case ARM::tSUBi8: 8503 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8504 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8505 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8506 // to encoding T1 if <Rd> is omitted." 8507 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8508 Inst.setOpcode(ARM::tSUBi3); 8509 return true; 8510 } 8511 break; 8512 case ARM::t2ADDri: 8513 case ARM::t2SUBri: { 8514 // If the destination and first source operand are the same, and 8515 // the flags are compatible with the current IT status, use encoding T2 8516 // instead of T3. For compatibility with the system 'as'. Make sure the 8517 // wide encoding wasn't explicit. 8518 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8519 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8520 (unsigned)Inst.getOperand(2).getImm() > 255 || 8521 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8522 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8523 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8524 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8525 break; 8526 MCInst TmpInst; 8527 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8528 ARM::tADDi8 : ARM::tSUBi8); 8529 TmpInst.addOperand(Inst.getOperand(0)); 8530 TmpInst.addOperand(Inst.getOperand(5)); 8531 TmpInst.addOperand(Inst.getOperand(0)); 8532 TmpInst.addOperand(Inst.getOperand(2)); 8533 TmpInst.addOperand(Inst.getOperand(3)); 8534 TmpInst.addOperand(Inst.getOperand(4)); 8535 Inst = TmpInst; 8536 return true; 8537 } 8538 case ARM::t2ADDrr: { 8539 // If the destination and first source operand are the same, and 8540 // there's no setting of the flags, use encoding T2 instead of T3. 8541 // Note that this is only for ADD, not SUB. This mirrors the system 8542 // 'as' behaviour. Also take advantage of ADD being commutative. 8543 // Make sure the wide encoding wasn't explicit. 8544 bool Swap = false; 8545 auto DestReg = Inst.getOperand(0).getReg(); 8546 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8547 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8548 Transform = true; 8549 Swap = true; 8550 } 8551 if (!Transform || 8552 Inst.getOperand(5).getReg() != 0 || 8553 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8554 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8555 break; 8556 MCInst TmpInst; 8557 TmpInst.setOpcode(ARM::tADDhirr); 8558 TmpInst.addOperand(Inst.getOperand(0)); 8559 TmpInst.addOperand(Inst.getOperand(0)); 8560 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8561 TmpInst.addOperand(Inst.getOperand(3)); 8562 TmpInst.addOperand(Inst.getOperand(4)); 8563 Inst = TmpInst; 8564 return true; 8565 } 8566 case ARM::tADDrSP: { 8567 // If the non-SP source operand and the destination operand are not the 8568 // same, we need to use the 32-bit encoding if it's available. 8569 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8570 Inst.setOpcode(ARM::t2ADDrr); 8571 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8572 return true; 8573 } 8574 break; 8575 } 8576 case ARM::tB: 8577 // A Thumb conditional branch outside of an IT block is a tBcc. 8578 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8579 Inst.setOpcode(ARM::tBcc); 8580 return true; 8581 } 8582 break; 8583 case ARM::t2B: 8584 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8585 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8586 Inst.setOpcode(ARM::t2Bcc); 8587 return true; 8588 } 8589 break; 8590 case ARM::t2Bcc: 8591 // If the conditional is AL or we're in an IT block, we really want t2B. 8592 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8593 Inst.setOpcode(ARM::t2B); 8594 return true; 8595 } 8596 break; 8597 case ARM::tBcc: 8598 // If the conditional is AL, we really want tB. 8599 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8600 Inst.setOpcode(ARM::tB); 8601 return true; 8602 } 8603 break; 8604 case ARM::tLDMIA: { 8605 // If the register list contains any high registers, or if the writeback 8606 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8607 // instead if we're in Thumb2. Otherwise, this should have generated 8608 // an error in validateInstruction(). 8609 unsigned Rn = Inst.getOperand(0).getReg(); 8610 bool hasWritebackToken = 8611 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8612 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8613 bool listContainsBase; 8614 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8615 (!listContainsBase && !hasWritebackToken) || 8616 (listContainsBase && hasWritebackToken)) { 8617 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8618 assert (isThumbTwo()); 8619 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8620 // If we're switching to the updating version, we need to insert 8621 // the writeback tied operand. 8622 if (hasWritebackToken) 8623 Inst.insert(Inst.begin(), 8624 MCOperand::createReg(Inst.getOperand(0).getReg())); 8625 return true; 8626 } 8627 break; 8628 } 8629 case ARM::tSTMIA_UPD: { 8630 // If the register list contains any high registers, we need to use 8631 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8632 // should have generated an error in validateInstruction(). 8633 unsigned Rn = Inst.getOperand(0).getReg(); 8634 bool listContainsBase; 8635 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8636 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8637 assert (isThumbTwo()); 8638 Inst.setOpcode(ARM::t2STMIA_UPD); 8639 return true; 8640 } 8641 break; 8642 } 8643 case ARM::tPOP: { 8644 bool listContainsBase; 8645 // If the register list contains any high registers, we need to use 8646 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8647 // should have generated an error in validateInstruction(). 8648 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8649 return false; 8650 assert (isThumbTwo()); 8651 Inst.setOpcode(ARM::t2LDMIA_UPD); 8652 // Add the base register and writeback operands. 8653 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8654 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8655 return true; 8656 } 8657 case ARM::tPUSH: { 8658 bool listContainsBase; 8659 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8660 return false; 8661 assert (isThumbTwo()); 8662 Inst.setOpcode(ARM::t2STMDB_UPD); 8663 // Add the base register and writeback operands. 8664 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8665 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8666 return true; 8667 } 8668 case ARM::t2MOVi: { 8669 // If we can use the 16-bit encoding and the user didn't explicitly 8670 // request the 32-bit variant, transform it here. 8671 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8672 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8673 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8674 Inst.getOperand(4).getReg() == ARM::CPSR) || 8675 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8676 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8677 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8678 // The operands aren't in the same order for tMOVi8... 8679 MCInst TmpInst; 8680 TmpInst.setOpcode(ARM::tMOVi8); 8681 TmpInst.addOperand(Inst.getOperand(0)); 8682 TmpInst.addOperand(Inst.getOperand(4)); 8683 TmpInst.addOperand(Inst.getOperand(1)); 8684 TmpInst.addOperand(Inst.getOperand(2)); 8685 TmpInst.addOperand(Inst.getOperand(3)); 8686 Inst = TmpInst; 8687 return true; 8688 } 8689 break; 8690 } 8691 case ARM::t2MOVr: { 8692 // If we can use the 16-bit encoding and the user didn't explicitly 8693 // request the 32-bit variant, transform it here. 8694 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8695 isARMLowRegister(Inst.getOperand(1).getReg()) && 8696 Inst.getOperand(2).getImm() == ARMCC::AL && 8697 Inst.getOperand(4).getReg() == ARM::CPSR && 8698 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8699 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8700 // The operands aren't the same for tMOV[S]r... (no cc_out) 8701 MCInst TmpInst; 8702 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8703 TmpInst.addOperand(Inst.getOperand(0)); 8704 TmpInst.addOperand(Inst.getOperand(1)); 8705 TmpInst.addOperand(Inst.getOperand(2)); 8706 TmpInst.addOperand(Inst.getOperand(3)); 8707 Inst = TmpInst; 8708 return true; 8709 } 8710 break; 8711 } 8712 case ARM::t2SXTH: 8713 case ARM::t2SXTB: 8714 case ARM::t2UXTH: 8715 case ARM::t2UXTB: { 8716 // If we can use the 16-bit encoding and the user didn't explicitly 8717 // request the 32-bit variant, transform it here. 8718 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8719 isARMLowRegister(Inst.getOperand(1).getReg()) && 8720 Inst.getOperand(2).getImm() == 0 && 8721 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8722 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8723 unsigned NewOpc; 8724 switch (Inst.getOpcode()) { 8725 default: llvm_unreachable("Illegal opcode!"); 8726 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8727 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8728 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8729 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8730 } 8731 // The operands aren't the same for thumb1 (no rotate operand). 8732 MCInst TmpInst; 8733 TmpInst.setOpcode(NewOpc); 8734 TmpInst.addOperand(Inst.getOperand(0)); 8735 TmpInst.addOperand(Inst.getOperand(1)); 8736 TmpInst.addOperand(Inst.getOperand(3)); 8737 TmpInst.addOperand(Inst.getOperand(4)); 8738 Inst = TmpInst; 8739 return true; 8740 } 8741 break; 8742 } 8743 case ARM::MOVsi: { 8744 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8745 // rrx shifts and asr/lsr of #32 is encoded as 0 8746 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8747 return false; 8748 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8749 // Shifting by zero is accepted as a vanilla 'MOVr' 8750 MCInst TmpInst; 8751 TmpInst.setOpcode(ARM::MOVr); 8752 TmpInst.addOperand(Inst.getOperand(0)); 8753 TmpInst.addOperand(Inst.getOperand(1)); 8754 TmpInst.addOperand(Inst.getOperand(3)); 8755 TmpInst.addOperand(Inst.getOperand(4)); 8756 TmpInst.addOperand(Inst.getOperand(5)); 8757 Inst = TmpInst; 8758 return true; 8759 } 8760 return false; 8761 } 8762 case ARM::ANDrsi: 8763 case ARM::ORRrsi: 8764 case ARM::EORrsi: 8765 case ARM::BICrsi: 8766 case ARM::SUBrsi: 8767 case ARM::ADDrsi: { 8768 unsigned newOpc; 8769 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8770 if (SOpc == ARM_AM::rrx) return false; 8771 switch (Inst.getOpcode()) { 8772 default: llvm_unreachable("unexpected opcode!"); 8773 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8774 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8775 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8776 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8777 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8778 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8779 } 8780 // If the shift is by zero, use the non-shifted instruction definition. 8781 // The exception is for right shifts, where 0 == 32 8782 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8783 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8784 MCInst TmpInst; 8785 TmpInst.setOpcode(newOpc); 8786 TmpInst.addOperand(Inst.getOperand(0)); 8787 TmpInst.addOperand(Inst.getOperand(1)); 8788 TmpInst.addOperand(Inst.getOperand(2)); 8789 TmpInst.addOperand(Inst.getOperand(4)); 8790 TmpInst.addOperand(Inst.getOperand(5)); 8791 TmpInst.addOperand(Inst.getOperand(6)); 8792 Inst = TmpInst; 8793 return true; 8794 } 8795 return false; 8796 } 8797 case ARM::ITasm: 8798 case ARM::t2IT: { 8799 MCOperand &MO = Inst.getOperand(1); 8800 unsigned Mask = MO.getImm(); 8801 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8802 8803 // Set up the IT block state according to the IT instruction we just 8804 // matched. 8805 assert(!inITBlock() && "nested IT blocks?!"); 8806 startExplicitITBlock(Cond, Mask); 8807 MO.setImm(getITMaskEncoding()); 8808 break; 8809 } 8810 case ARM::t2LSLrr: 8811 case ARM::t2LSRrr: 8812 case ARM::t2ASRrr: 8813 case ARM::t2SBCrr: 8814 case ARM::t2RORrr: 8815 case ARM::t2BICrr: 8816 { 8817 // Assemblers should use the narrow encodings of these instructions when permissible. 8818 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8819 isARMLowRegister(Inst.getOperand(2).getReg())) && 8820 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8821 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8822 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8823 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8824 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8825 ".w"))) { 8826 unsigned NewOpc; 8827 switch (Inst.getOpcode()) { 8828 default: llvm_unreachable("unexpected opcode"); 8829 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8830 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8831 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8832 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8833 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8834 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8835 } 8836 MCInst TmpInst; 8837 TmpInst.setOpcode(NewOpc); 8838 TmpInst.addOperand(Inst.getOperand(0)); 8839 TmpInst.addOperand(Inst.getOperand(5)); 8840 TmpInst.addOperand(Inst.getOperand(1)); 8841 TmpInst.addOperand(Inst.getOperand(2)); 8842 TmpInst.addOperand(Inst.getOperand(3)); 8843 TmpInst.addOperand(Inst.getOperand(4)); 8844 Inst = TmpInst; 8845 return true; 8846 } 8847 return false; 8848 } 8849 case ARM::t2ANDrr: 8850 case ARM::t2EORrr: 8851 case ARM::t2ADCrr: 8852 case ARM::t2ORRrr: 8853 { 8854 // Assemblers should use the narrow encodings of these instructions when permissible. 8855 // These instructions are special in that they are commutable, so shorter encodings 8856 // are available more often. 8857 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8858 isARMLowRegister(Inst.getOperand(2).getReg())) && 8859 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8860 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8861 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8862 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8863 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8864 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8865 ".w"))) { 8866 unsigned NewOpc; 8867 switch (Inst.getOpcode()) { 8868 default: llvm_unreachable("unexpected opcode"); 8869 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8870 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8871 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8872 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8873 } 8874 MCInst TmpInst; 8875 TmpInst.setOpcode(NewOpc); 8876 TmpInst.addOperand(Inst.getOperand(0)); 8877 TmpInst.addOperand(Inst.getOperand(5)); 8878 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8879 TmpInst.addOperand(Inst.getOperand(1)); 8880 TmpInst.addOperand(Inst.getOperand(2)); 8881 } else { 8882 TmpInst.addOperand(Inst.getOperand(2)); 8883 TmpInst.addOperand(Inst.getOperand(1)); 8884 } 8885 TmpInst.addOperand(Inst.getOperand(3)); 8886 TmpInst.addOperand(Inst.getOperand(4)); 8887 Inst = TmpInst; 8888 return true; 8889 } 8890 return false; 8891 } 8892 } 8893 return false; 8894 } 8895 8896 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8897 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8898 // suffix depending on whether they're in an IT block or not. 8899 unsigned Opc = Inst.getOpcode(); 8900 const MCInstrDesc &MCID = MII.get(Opc); 8901 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8902 assert(MCID.hasOptionalDef() && 8903 "optionally flag setting instruction missing optional def operand"); 8904 assert(MCID.NumOperands == Inst.getNumOperands() && 8905 "operand count mismatch!"); 8906 // Find the optional-def operand (cc_out). 8907 unsigned OpNo; 8908 for (OpNo = 0; 8909 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8910 ++OpNo) 8911 ; 8912 // If we're parsing Thumb1, reject it completely. 8913 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8914 return Match_MnemonicFail; 8915 // If we're parsing Thumb2, which form is legal depends on whether we're 8916 // in an IT block. 8917 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8918 !inITBlock()) 8919 return Match_RequiresITBlock; 8920 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8921 inITBlock()) 8922 return Match_RequiresNotITBlock; 8923 } else if (isThumbOne()) { 8924 // Some high-register supporting Thumb1 encodings only allow both registers 8925 // to be from r0-r7 when in Thumb2. 8926 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8927 isARMLowRegister(Inst.getOperand(1).getReg()) && 8928 isARMLowRegister(Inst.getOperand(2).getReg())) 8929 return Match_RequiresThumb2; 8930 // Others only require ARMv6 or later. 8931 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8932 isARMLowRegister(Inst.getOperand(0).getReg()) && 8933 isARMLowRegister(Inst.getOperand(1).getReg())) 8934 return Match_RequiresV6; 8935 } 8936 8937 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8938 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8939 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8940 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8941 return Match_RequiresV8; 8942 else if (Inst.getOperand(I).getReg() == ARM::PC) 8943 return Match_InvalidOperand; 8944 } 8945 8946 return Match_Success; 8947 } 8948 8949 namespace llvm { 8950 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8951 return true; // In an assembly source, no need to second-guess 8952 } 8953 } 8954 8955 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8956 // the last instruction in the block. 8957 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8958 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8959 8960 // All branch & call instructions terminate IT blocks. 8961 if (MCID.isTerminator() || MCID.isCall() || MCID.isReturn() || 8962 MCID.isBranch() || MCID.isIndirectBranch()) 8963 return true; 8964 8965 // Any arithmetic instruction which writes to the PC also terminates the IT 8966 // block. 8967 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 8968 MCOperand &Op = Inst.getOperand(OpIdx); 8969 if (Op.isReg() && Op.getReg() == ARM::PC) 8970 return true; 8971 } 8972 8973 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 8974 return true; 8975 8976 // Instructions with variable operand lists, which write to the variable 8977 // operands. We only care about Thumb instructions here, as ARM instructions 8978 // obviously can't be in an IT block. 8979 switch (Inst.getOpcode()) { 8980 case ARM::t2LDMIA: 8981 case ARM::t2LDMIA_UPD: 8982 case ARM::t2LDMDB: 8983 case ARM::t2LDMDB_UPD: 8984 if (listContainsReg(Inst, 3, ARM::PC)) 8985 return true; 8986 break; 8987 case ARM::tPOP: 8988 if (listContainsReg(Inst, 2, ARM::PC)) 8989 return true; 8990 break; 8991 } 8992 8993 return false; 8994 } 8995 8996 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 8997 uint64_t &ErrorInfo, 8998 bool MatchingInlineAsm, 8999 bool &EmitInITBlock, 9000 MCStreamer &Out) { 9001 // If we can't use an implicit IT block here, just match as normal. 9002 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9003 return MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9004 9005 // Try to match the instruction in an extension of the current IT block (if 9006 // there is one). 9007 if (inImplicitITBlock()) { 9008 extendImplicitITBlock(ITState.Cond); 9009 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9010 Match_Success) { 9011 // The match succeded, but we still have to check that the instruction is 9012 // valid in this implicit IT block. 9013 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9014 if (MCID.isPredicable()) { 9015 ARMCC::CondCodes InstCond = 9016 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9017 .getImm(); 9018 ARMCC::CondCodes ITCond = currentITCond(); 9019 if (InstCond == ITCond) { 9020 EmitInITBlock = true; 9021 return Match_Success; 9022 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9023 invertCurrentITCondition(); 9024 EmitInITBlock = true; 9025 return Match_Success; 9026 } 9027 } 9028 } 9029 rewindImplicitITPosition(); 9030 } 9031 9032 // Finish the current IT block, and try to match outside any IT block. 9033 flushPendingInstructions(Out); 9034 unsigned PlainMatchResult = 9035 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9036 if (PlainMatchResult == Match_Success) { 9037 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9038 if (MCID.isPredicable()) { 9039 ARMCC::CondCodes InstCond = 9040 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9041 .getImm(); 9042 // Some forms of the branch instruction have their own condition code 9043 // fields, so can be conditionally executed without an IT block. 9044 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9045 EmitInITBlock = false; 9046 return Match_Success; 9047 } 9048 if (InstCond == ARMCC::AL) { 9049 EmitInITBlock = false; 9050 return Match_Success; 9051 } 9052 } else { 9053 EmitInITBlock = false; 9054 return Match_Success; 9055 } 9056 } 9057 9058 // Try to match in a new IT block. The matcher doesn't check the actual 9059 // condition, so we create an IT block with a dummy condition, and fix it up 9060 // once we know the actual condition. 9061 startImplicitITBlock(); 9062 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9063 Match_Success) { 9064 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9065 if (MCID.isPredicable()) { 9066 ITState.Cond = 9067 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9068 .getImm(); 9069 EmitInITBlock = true; 9070 return Match_Success; 9071 } 9072 } 9073 discardImplicitITBlock(); 9074 9075 // If none of these succeed, return the error we got when trying to match 9076 // outside any IT blocks. 9077 EmitInITBlock = false; 9078 return PlainMatchResult; 9079 } 9080 9081 static const char *getSubtargetFeatureName(uint64_t Val); 9082 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9083 OperandVector &Operands, 9084 MCStreamer &Out, uint64_t &ErrorInfo, 9085 bool MatchingInlineAsm) { 9086 MCInst Inst; 9087 unsigned MatchResult; 9088 bool PendConditionalInstruction = false; 9089 9090 MatchResult = MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm, 9091 PendConditionalInstruction, Out); 9092 9093 switch (MatchResult) { 9094 case Match_Success: 9095 // Context sensitive operand constraints aren't handled by the matcher, 9096 // so check them here. 9097 if (validateInstruction(Inst, Operands)) { 9098 // Still progress the IT block, otherwise one wrong condition causes 9099 // nasty cascading errors. 9100 forwardITPosition(); 9101 return true; 9102 } 9103 9104 { // processInstruction() updates inITBlock state, we need to save it away 9105 bool wasInITBlock = inITBlock(); 9106 9107 // Some instructions need post-processing to, for example, tweak which 9108 // encoding is selected. Loop on it while changes happen so the 9109 // individual transformations can chain off each other. E.g., 9110 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9111 while (processInstruction(Inst, Operands, Out)) 9112 ; 9113 9114 // Only after the instruction is fully processed, we can validate it 9115 if (wasInITBlock && hasV8Ops() && isThumb() && 9116 !isV8EligibleForIT(&Inst)) { 9117 Warning(IDLoc, "deprecated instruction in IT block"); 9118 } 9119 } 9120 9121 // Only move forward at the very end so that everything in validate 9122 // and process gets a consistent answer about whether we're in an IT 9123 // block. 9124 forwardITPosition(); 9125 9126 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9127 // doesn't actually encode. 9128 if (Inst.getOpcode() == ARM::ITasm) 9129 return false; 9130 9131 Inst.setLoc(IDLoc); 9132 if (PendConditionalInstruction) { 9133 PendingConditionalInsts.push_back(Inst); 9134 if (isITBlockFull() || isITBlockTerminator(Inst)) 9135 flushPendingInstructions(Out); 9136 } else { 9137 Out.EmitInstruction(Inst, getSTI()); 9138 } 9139 return false; 9140 case Match_MissingFeature: { 9141 assert(ErrorInfo && "Unknown missing feature!"); 9142 // Special case the error message for the very common case where only 9143 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 9144 std::string Msg = "instruction requires:"; 9145 uint64_t Mask = 1; 9146 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 9147 if (ErrorInfo & Mask) { 9148 Msg += " "; 9149 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 9150 } 9151 Mask <<= 1; 9152 } 9153 return Error(IDLoc, Msg); 9154 } 9155 case Match_InvalidOperand: { 9156 SMLoc ErrorLoc = IDLoc; 9157 if (ErrorInfo != ~0ULL) { 9158 if (ErrorInfo >= Operands.size()) 9159 return Error(IDLoc, "too few operands for instruction"); 9160 9161 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9162 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9163 } 9164 9165 return Error(ErrorLoc, "invalid operand for instruction"); 9166 } 9167 case Match_MnemonicFail: 9168 return Error(IDLoc, "invalid instruction", 9169 ((ARMOperand &)*Operands[0]).getLocRange()); 9170 case Match_RequiresNotITBlock: 9171 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 9172 case Match_RequiresITBlock: 9173 return Error(IDLoc, "instruction only valid inside IT block"); 9174 case Match_RequiresV6: 9175 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 9176 case Match_RequiresThumb2: 9177 return Error(IDLoc, "instruction variant requires Thumb2"); 9178 case Match_RequiresV8: 9179 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 9180 case Match_ImmRange0_15: { 9181 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9182 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9183 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 9184 } 9185 case Match_ImmRange0_239: { 9186 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9187 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9188 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 9189 } 9190 case Match_AlignedMemoryRequiresNone: 9191 case Match_DupAlignedMemoryRequiresNone: 9192 case Match_AlignedMemoryRequires16: 9193 case Match_DupAlignedMemoryRequires16: 9194 case Match_AlignedMemoryRequires32: 9195 case Match_DupAlignedMemoryRequires32: 9196 case Match_AlignedMemoryRequires64: 9197 case Match_DupAlignedMemoryRequires64: 9198 case Match_AlignedMemoryRequires64or128: 9199 case Match_DupAlignedMemoryRequires64or128: 9200 case Match_AlignedMemoryRequires64or128or256: 9201 { 9202 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 9203 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9204 switch (MatchResult) { 9205 default: 9206 llvm_unreachable("Missing Match_Aligned type"); 9207 case Match_AlignedMemoryRequiresNone: 9208 case Match_DupAlignedMemoryRequiresNone: 9209 return Error(ErrorLoc, "alignment must be omitted"); 9210 case Match_AlignedMemoryRequires16: 9211 case Match_DupAlignedMemoryRequires16: 9212 return Error(ErrorLoc, "alignment must be 16 or omitted"); 9213 case Match_AlignedMemoryRequires32: 9214 case Match_DupAlignedMemoryRequires32: 9215 return Error(ErrorLoc, "alignment must be 32 or omitted"); 9216 case Match_AlignedMemoryRequires64: 9217 case Match_DupAlignedMemoryRequires64: 9218 return Error(ErrorLoc, "alignment must be 64 or omitted"); 9219 case Match_AlignedMemoryRequires64or128: 9220 case Match_DupAlignedMemoryRequires64or128: 9221 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 9222 case Match_AlignedMemoryRequires64or128or256: 9223 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 9224 } 9225 } 9226 } 9227 9228 llvm_unreachable("Implement any new match types added!"); 9229 } 9230 9231 /// parseDirective parses the arm specific directives 9232 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9233 const MCObjectFileInfo::Environment Format = 9234 getContext().getObjectFileInfo()->getObjectFileType(); 9235 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9236 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9237 9238 StringRef IDVal = DirectiveID.getIdentifier(); 9239 if (IDVal == ".word") 9240 return parseLiteralValues(4, DirectiveID.getLoc()); 9241 else if (IDVal == ".short" || IDVal == ".hword") 9242 return parseLiteralValues(2, DirectiveID.getLoc()); 9243 else if (IDVal == ".thumb") 9244 return parseDirectiveThumb(DirectiveID.getLoc()); 9245 else if (IDVal == ".arm") 9246 return parseDirectiveARM(DirectiveID.getLoc()); 9247 else if (IDVal == ".thumb_func") 9248 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 9249 else if (IDVal == ".code") 9250 return parseDirectiveCode(DirectiveID.getLoc()); 9251 else if (IDVal == ".syntax") 9252 return parseDirectiveSyntax(DirectiveID.getLoc()); 9253 else if (IDVal == ".unreq") 9254 return parseDirectiveUnreq(DirectiveID.getLoc()); 9255 else if (IDVal == ".fnend") 9256 return parseDirectiveFnEnd(DirectiveID.getLoc()); 9257 else if (IDVal == ".cantunwind") 9258 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 9259 else if (IDVal == ".personality") 9260 return parseDirectivePersonality(DirectiveID.getLoc()); 9261 else if (IDVal == ".handlerdata") 9262 return parseDirectiveHandlerData(DirectiveID.getLoc()); 9263 else if (IDVal == ".setfp") 9264 return parseDirectiveSetFP(DirectiveID.getLoc()); 9265 else if (IDVal == ".pad") 9266 return parseDirectivePad(DirectiveID.getLoc()); 9267 else if (IDVal == ".save") 9268 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 9269 else if (IDVal == ".vsave") 9270 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 9271 else if (IDVal == ".ltorg" || IDVal == ".pool") 9272 return parseDirectiveLtorg(DirectiveID.getLoc()); 9273 else if (IDVal == ".even") 9274 return parseDirectiveEven(DirectiveID.getLoc()); 9275 else if (IDVal == ".personalityindex") 9276 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9277 else if (IDVal == ".unwind_raw") 9278 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9279 else if (IDVal == ".movsp") 9280 return parseDirectiveMovSP(DirectiveID.getLoc()); 9281 else if (IDVal == ".arch_extension") 9282 return parseDirectiveArchExtension(DirectiveID.getLoc()); 9283 else if (IDVal == ".align") 9284 return parseDirectiveAlign(DirectiveID.getLoc()); 9285 else if (IDVal == ".thumb_set") 9286 return parseDirectiveThumbSet(DirectiveID.getLoc()); 9287 9288 if (!IsMachO && !IsCOFF) { 9289 if (IDVal == ".arch") 9290 return parseDirectiveArch(DirectiveID.getLoc()); 9291 else if (IDVal == ".cpu") 9292 return parseDirectiveCPU(DirectiveID.getLoc()); 9293 else if (IDVal == ".eabi_attribute") 9294 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 9295 else if (IDVal == ".fpu") 9296 return parseDirectiveFPU(DirectiveID.getLoc()); 9297 else if (IDVal == ".fnstart") 9298 return parseDirectiveFnStart(DirectiveID.getLoc()); 9299 else if (IDVal == ".inst") 9300 return parseDirectiveInst(DirectiveID.getLoc()); 9301 else if (IDVal == ".inst.n") 9302 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9303 else if (IDVal == ".inst.w") 9304 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9305 else if (IDVal == ".object_arch") 9306 return parseDirectiveObjectArch(DirectiveID.getLoc()); 9307 else if (IDVal == ".tlsdescseq") 9308 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9309 } 9310 9311 return true; 9312 } 9313 9314 /// parseLiteralValues 9315 /// ::= .hword expression [, expression]* 9316 /// ::= .short expression [, expression]* 9317 /// ::= .word expression [, expression]* 9318 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9319 MCAsmParser &Parser = getParser(); 9320 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9321 for (;;) { 9322 const MCExpr *Value; 9323 if (getParser().parseExpression(Value)) { 9324 return false; 9325 } 9326 9327 getParser().getStreamer().EmitValue(Value, Size, L); 9328 9329 if (getLexer().is(AsmToken::EndOfStatement)) 9330 break; 9331 9332 // FIXME: Improve diagnostic. 9333 if (getLexer().isNot(AsmToken::Comma)) { 9334 Error(L, "unexpected token in directive"); 9335 return false; 9336 } 9337 Parser.Lex(); 9338 } 9339 } 9340 9341 Parser.Lex(); 9342 return false; 9343 } 9344 9345 /// parseDirectiveThumb 9346 /// ::= .thumb 9347 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9348 MCAsmParser &Parser = getParser(); 9349 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9350 Error(L, "unexpected token in directive"); 9351 return false; 9352 } 9353 Parser.Lex(); 9354 9355 if (!hasThumb()) { 9356 Error(L, "target does not support Thumb mode"); 9357 return false; 9358 } 9359 9360 if (!isThumb()) 9361 SwitchMode(); 9362 9363 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9364 return false; 9365 } 9366 9367 /// parseDirectiveARM 9368 /// ::= .arm 9369 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9370 MCAsmParser &Parser = getParser(); 9371 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9372 Error(L, "unexpected token in directive"); 9373 return false; 9374 } 9375 Parser.Lex(); 9376 9377 if (!hasARM()) { 9378 Error(L, "target does not support ARM mode"); 9379 return false; 9380 } 9381 9382 if (isThumb()) 9383 SwitchMode(); 9384 9385 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9386 return false; 9387 } 9388 9389 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9390 // We need to flush the current implicit IT block on a label, because it is 9391 // not legal to branch into an IT block. 9392 flushPendingInstructions(getStreamer()); 9393 if (NextSymbolIsThumb) { 9394 getParser().getStreamer().EmitThumbFunc(Symbol); 9395 NextSymbolIsThumb = false; 9396 } 9397 } 9398 9399 /// parseDirectiveThumbFunc 9400 /// ::= .thumbfunc symbol_name 9401 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9402 MCAsmParser &Parser = getParser(); 9403 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9404 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9405 9406 // Darwin asm has (optionally) function name after .thumb_func direction 9407 // ELF doesn't 9408 if (IsMachO) { 9409 const AsmToken &Tok = Parser.getTok(); 9410 if (Tok.isNot(AsmToken::EndOfStatement)) { 9411 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 9412 Error(L, "unexpected token in .thumb_func directive"); 9413 return false; 9414 } 9415 9416 MCSymbol *Func = 9417 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 9418 getParser().getStreamer().EmitThumbFunc(Func); 9419 Parser.Lex(); // Consume the identifier token. 9420 return false; 9421 } 9422 } 9423 9424 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9425 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9426 return false; 9427 } 9428 9429 NextSymbolIsThumb = true; 9430 return false; 9431 } 9432 9433 /// parseDirectiveSyntax 9434 /// ::= .syntax unified | divided 9435 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9436 MCAsmParser &Parser = getParser(); 9437 const AsmToken &Tok = Parser.getTok(); 9438 if (Tok.isNot(AsmToken::Identifier)) { 9439 Error(L, "unexpected token in .syntax directive"); 9440 return false; 9441 } 9442 9443 StringRef Mode = Tok.getString(); 9444 if (Mode == "unified" || Mode == "UNIFIED") { 9445 Parser.Lex(); 9446 } else if (Mode == "divided" || Mode == "DIVIDED") { 9447 Error(L, "'.syntax divided' arm asssembly not supported"); 9448 return false; 9449 } else { 9450 Error(L, "unrecognized syntax mode in .syntax directive"); 9451 return false; 9452 } 9453 9454 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9455 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9456 return false; 9457 } 9458 Parser.Lex(); 9459 9460 // TODO tell the MC streamer the mode 9461 // getParser().getStreamer().Emit???(); 9462 return false; 9463 } 9464 9465 /// parseDirectiveCode 9466 /// ::= .code 16 | 32 9467 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9468 MCAsmParser &Parser = getParser(); 9469 const AsmToken &Tok = Parser.getTok(); 9470 if (Tok.isNot(AsmToken::Integer)) { 9471 Error(L, "unexpected token in .code directive"); 9472 return false; 9473 } 9474 int64_t Val = Parser.getTok().getIntVal(); 9475 if (Val != 16 && Val != 32) { 9476 Error(L, "invalid operand to .code directive"); 9477 return false; 9478 } 9479 Parser.Lex(); 9480 9481 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9482 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9483 return false; 9484 } 9485 Parser.Lex(); 9486 9487 if (Val == 16) { 9488 if (!hasThumb()) { 9489 Error(L, "target does not support Thumb mode"); 9490 return false; 9491 } 9492 9493 if (!isThumb()) 9494 SwitchMode(); 9495 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9496 } else { 9497 if (!hasARM()) { 9498 Error(L, "target does not support ARM mode"); 9499 return false; 9500 } 9501 9502 if (isThumb()) 9503 SwitchMode(); 9504 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9505 } 9506 9507 return false; 9508 } 9509 9510 /// parseDirectiveReq 9511 /// ::= name .req registername 9512 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9513 MCAsmParser &Parser = getParser(); 9514 Parser.Lex(); // Eat the '.req' token. 9515 unsigned Reg; 9516 SMLoc SRegLoc, ERegLoc; 9517 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 9518 Error(SRegLoc, "register name expected"); 9519 return false; 9520 } 9521 9522 // Shouldn't be anything else. 9523 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9524 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9525 return false; 9526 } 9527 9528 Parser.Lex(); // Consume the EndOfStatement 9529 9530 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9531 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9532 return false; 9533 } 9534 9535 return false; 9536 } 9537 9538 /// parseDirectiveUneq 9539 /// ::= .unreq registername 9540 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9541 MCAsmParser &Parser = getParser(); 9542 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9543 Error(L, "unexpected input in .unreq directive."); 9544 return false; 9545 } 9546 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9547 Parser.Lex(); // Eat the identifier. 9548 return false; 9549 } 9550 9551 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9552 // before, if supported by the new target, or emit mapping symbols for the mode 9553 // switch. 9554 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9555 if (WasThumb != isThumb()) { 9556 if (WasThumb && hasThumb()) { 9557 // Stay in Thumb mode 9558 SwitchMode(); 9559 } else if (!WasThumb && hasARM()) { 9560 // Stay in ARM mode 9561 SwitchMode(); 9562 } else { 9563 // Mode switch forced, because the new arch doesn't support the old mode. 9564 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9565 : MCAF_Code32); 9566 // Warn about the implcit mode switch. GAS does not switch modes here, 9567 // but instead stays in the old mode, reporting an error on any following 9568 // instructions as the mode does not exist on the target. 9569 Warning(Loc, Twine("new target does not support ") + 9570 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9571 (!WasThumb ? "thumb" : "arm") + " mode"); 9572 } 9573 } 9574 } 9575 9576 /// parseDirectiveArch 9577 /// ::= .arch token 9578 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9579 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9580 9581 unsigned ID = ARM::parseArch(Arch); 9582 9583 if (ID == ARM::AK_INVALID) { 9584 Error(L, "Unknown arch name"); 9585 return false; 9586 } 9587 9588 bool WasThumb = isThumb(); 9589 Triple T; 9590 MCSubtargetInfo &STI = copySTI(); 9591 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9592 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9593 FixModeAfterArchChange(WasThumb, L); 9594 9595 getTargetStreamer().emitArch(ID); 9596 return false; 9597 } 9598 9599 /// parseDirectiveEabiAttr 9600 /// ::= .eabi_attribute int, int [, "str"] 9601 /// ::= .eabi_attribute Tag_name, int [, "str"] 9602 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9603 MCAsmParser &Parser = getParser(); 9604 int64_t Tag; 9605 SMLoc TagLoc; 9606 TagLoc = Parser.getTok().getLoc(); 9607 if (Parser.getTok().is(AsmToken::Identifier)) { 9608 StringRef Name = Parser.getTok().getIdentifier(); 9609 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9610 if (Tag == -1) { 9611 Error(TagLoc, "attribute name not recognised: " + Name); 9612 return false; 9613 } 9614 Parser.Lex(); 9615 } else { 9616 const MCExpr *AttrExpr; 9617 9618 TagLoc = Parser.getTok().getLoc(); 9619 if (Parser.parseExpression(AttrExpr)) { 9620 return false; 9621 } 9622 9623 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9624 if (!CE) { 9625 Error(TagLoc, "expected numeric constant"); 9626 return false; 9627 } 9628 9629 Tag = CE->getValue(); 9630 } 9631 9632 if (Parser.getTok().isNot(AsmToken::Comma)) { 9633 Error(Parser.getTok().getLoc(), "comma expected"); 9634 return false; 9635 } 9636 Parser.Lex(); // skip comma 9637 9638 StringRef StringValue = ""; 9639 bool IsStringValue = false; 9640 9641 int64_t IntegerValue = 0; 9642 bool IsIntegerValue = false; 9643 9644 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9645 IsStringValue = true; 9646 else if (Tag == ARMBuildAttrs::compatibility) { 9647 IsStringValue = true; 9648 IsIntegerValue = true; 9649 } else if (Tag < 32 || Tag % 2 == 0) 9650 IsIntegerValue = true; 9651 else if (Tag % 2 == 1) 9652 IsStringValue = true; 9653 else 9654 llvm_unreachable("invalid tag type"); 9655 9656 if (IsIntegerValue) { 9657 const MCExpr *ValueExpr; 9658 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9659 if (Parser.parseExpression(ValueExpr)) { 9660 return false; 9661 } 9662 9663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9664 if (!CE) { 9665 Error(ValueExprLoc, "expected numeric constant"); 9666 return false; 9667 } 9668 9669 IntegerValue = CE->getValue(); 9670 } 9671 9672 if (Tag == ARMBuildAttrs::compatibility) { 9673 if (Parser.getTok().isNot(AsmToken::Comma)) 9674 IsStringValue = false; 9675 if (Parser.getTok().isNot(AsmToken::Comma)) { 9676 Error(Parser.getTok().getLoc(), "comma expected"); 9677 return false; 9678 } else { 9679 Parser.Lex(); 9680 } 9681 } 9682 9683 if (IsStringValue) { 9684 if (Parser.getTok().isNot(AsmToken::String)) { 9685 Error(Parser.getTok().getLoc(), "bad string constant"); 9686 return false; 9687 } 9688 9689 StringValue = Parser.getTok().getStringContents(); 9690 Parser.Lex(); 9691 } 9692 9693 if (IsIntegerValue && IsStringValue) { 9694 assert(Tag == ARMBuildAttrs::compatibility); 9695 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9696 } else if (IsIntegerValue) 9697 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9698 else if (IsStringValue) 9699 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9700 return false; 9701 } 9702 9703 /// parseDirectiveCPU 9704 /// ::= .cpu str 9705 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9706 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9707 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9708 9709 // FIXME: This is using table-gen data, but should be moved to 9710 // ARMTargetParser once that is table-gen'd. 9711 if (!getSTI().isCPUStringValid(CPU)) { 9712 Error(L, "Unknown CPU name"); 9713 return false; 9714 } 9715 9716 bool WasThumb = isThumb(); 9717 MCSubtargetInfo &STI = copySTI(); 9718 STI.setDefaultFeatures(CPU, ""); 9719 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9720 FixModeAfterArchChange(WasThumb, L); 9721 9722 return false; 9723 } 9724 /// parseDirectiveFPU 9725 /// ::= .fpu str 9726 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9727 SMLoc FPUNameLoc = getTok().getLoc(); 9728 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9729 9730 unsigned ID = ARM::parseFPU(FPU); 9731 std::vector<StringRef> Features; 9732 if (!ARM::getFPUFeatures(ID, Features)) { 9733 Error(FPUNameLoc, "Unknown FPU name"); 9734 return false; 9735 } 9736 9737 MCSubtargetInfo &STI = copySTI(); 9738 for (auto Feature : Features) 9739 STI.ApplyFeatureFlag(Feature); 9740 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9741 9742 getTargetStreamer().emitFPU(ID); 9743 return false; 9744 } 9745 9746 /// parseDirectiveFnStart 9747 /// ::= .fnstart 9748 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9749 if (UC.hasFnStart()) { 9750 Error(L, ".fnstart starts before the end of previous one"); 9751 UC.emitFnStartLocNotes(); 9752 return false; 9753 } 9754 9755 // Reset the unwind directives parser state 9756 UC.reset(); 9757 9758 getTargetStreamer().emitFnStart(); 9759 9760 UC.recordFnStart(L); 9761 return false; 9762 } 9763 9764 /// parseDirectiveFnEnd 9765 /// ::= .fnend 9766 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9767 // Check the ordering of unwind directives 9768 if (!UC.hasFnStart()) { 9769 Error(L, ".fnstart must precede .fnend directive"); 9770 return false; 9771 } 9772 9773 // Reset the unwind directives parser state 9774 getTargetStreamer().emitFnEnd(); 9775 9776 UC.reset(); 9777 return false; 9778 } 9779 9780 /// parseDirectiveCantUnwind 9781 /// ::= .cantunwind 9782 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9783 UC.recordCantUnwind(L); 9784 9785 // Check the ordering of unwind directives 9786 if (!UC.hasFnStart()) { 9787 Error(L, ".fnstart must precede .cantunwind directive"); 9788 return false; 9789 } 9790 if (UC.hasHandlerData()) { 9791 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9792 UC.emitHandlerDataLocNotes(); 9793 return false; 9794 } 9795 if (UC.hasPersonality()) { 9796 Error(L, ".cantunwind can't be used with .personality directive"); 9797 UC.emitPersonalityLocNotes(); 9798 return false; 9799 } 9800 9801 getTargetStreamer().emitCantUnwind(); 9802 return false; 9803 } 9804 9805 /// parseDirectivePersonality 9806 /// ::= .personality name 9807 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9808 MCAsmParser &Parser = getParser(); 9809 bool HasExistingPersonality = UC.hasPersonality(); 9810 9811 UC.recordPersonality(L); 9812 9813 // Check the ordering of unwind directives 9814 if (!UC.hasFnStart()) { 9815 Error(L, ".fnstart must precede .personality directive"); 9816 return false; 9817 } 9818 if (UC.cantUnwind()) { 9819 Error(L, ".personality can't be used with .cantunwind directive"); 9820 UC.emitCantUnwindLocNotes(); 9821 return false; 9822 } 9823 if (UC.hasHandlerData()) { 9824 Error(L, ".personality must precede .handlerdata directive"); 9825 UC.emitHandlerDataLocNotes(); 9826 return false; 9827 } 9828 if (HasExistingPersonality) { 9829 Error(L, "multiple personality directives"); 9830 UC.emitPersonalityLocNotes(); 9831 return false; 9832 } 9833 9834 // Parse the name of the personality routine 9835 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9836 Error(L, "unexpected input in .personality directive."); 9837 return false; 9838 } 9839 StringRef Name(Parser.getTok().getIdentifier()); 9840 Parser.Lex(); 9841 9842 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9843 getTargetStreamer().emitPersonality(PR); 9844 return false; 9845 } 9846 9847 /// parseDirectiveHandlerData 9848 /// ::= .handlerdata 9849 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9850 UC.recordHandlerData(L); 9851 9852 // Check the ordering of unwind directives 9853 if (!UC.hasFnStart()) { 9854 Error(L, ".fnstart must precede .personality directive"); 9855 return false; 9856 } 9857 if (UC.cantUnwind()) { 9858 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9859 UC.emitCantUnwindLocNotes(); 9860 return false; 9861 } 9862 9863 getTargetStreamer().emitHandlerData(); 9864 return false; 9865 } 9866 9867 /// parseDirectiveSetFP 9868 /// ::= .setfp fpreg, spreg [, offset] 9869 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9870 MCAsmParser &Parser = getParser(); 9871 // Check the ordering of unwind directives 9872 if (!UC.hasFnStart()) { 9873 Error(L, ".fnstart must precede .setfp directive"); 9874 return false; 9875 } 9876 if (UC.hasHandlerData()) { 9877 Error(L, ".setfp must precede .handlerdata directive"); 9878 return false; 9879 } 9880 9881 // Parse fpreg 9882 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9883 int FPReg = tryParseRegister(); 9884 if (FPReg == -1) { 9885 Error(FPRegLoc, "frame pointer register expected"); 9886 return false; 9887 } 9888 9889 // Consume comma 9890 if (Parser.getTok().isNot(AsmToken::Comma)) { 9891 Error(Parser.getTok().getLoc(), "comma expected"); 9892 return false; 9893 } 9894 Parser.Lex(); // skip comma 9895 9896 // Parse spreg 9897 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9898 int SPReg = tryParseRegister(); 9899 if (SPReg == -1) { 9900 Error(SPRegLoc, "stack pointer register expected"); 9901 return false; 9902 } 9903 9904 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9905 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9906 return false; 9907 } 9908 9909 // Update the frame pointer register 9910 UC.saveFPReg(FPReg); 9911 9912 // Parse offset 9913 int64_t Offset = 0; 9914 if (Parser.getTok().is(AsmToken::Comma)) { 9915 Parser.Lex(); // skip comma 9916 9917 if (Parser.getTok().isNot(AsmToken::Hash) && 9918 Parser.getTok().isNot(AsmToken::Dollar)) { 9919 Error(Parser.getTok().getLoc(), "'#' expected"); 9920 return false; 9921 } 9922 Parser.Lex(); // skip hash token. 9923 9924 const MCExpr *OffsetExpr; 9925 SMLoc ExLoc = Parser.getTok().getLoc(); 9926 SMLoc EndLoc; 9927 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9928 Error(ExLoc, "malformed setfp offset"); 9929 return false; 9930 } 9931 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9932 if (!CE) { 9933 Error(ExLoc, "setfp offset must be an immediate"); 9934 return false; 9935 } 9936 9937 Offset = CE->getValue(); 9938 } 9939 9940 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9941 static_cast<unsigned>(SPReg), Offset); 9942 return false; 9943 } 9944 9945 /// parseDirective 9946 /// ::= .pad offset 9947 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9948 MCAsmParser &Parser = getParser(); 9949 // Check the ordering of unwind directives 9950 if (!UC.hasFnStart()) { 9951 Error(L, ".fnstart must precede .pad directive"); 9952 return false; 9953 } 9954 if (UC.hasHandlerData()) { 9955 Error(L, ".pad must precede .handlerdata directive"); 9956 return false; 9957 } 9958 9959 // Parse the offset 9960 if (Parser.getTok().isNot(AsmToken::Hash) && 9961 Parser.getTok().isNot(AsmToken::Dollar)) { 9962 Error(Parser.getTok().getLoc(), "'#' expected"); 9963 return false; 9964 } 9965 Parser.Lex(); // skip hash token. 9966 9967 const MCExpr *OffsetExpr; 9968 SMLoc ExLoc = Parser.getTok().getLoc(); 9969 SMLoc EndLoc; 9970 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9971 Error(ExLoc, "malformed pad offset"); 9972 return false; 9973 } 9974 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9975 if (!CE) { 9976 Error(ExLoc, "pad offset must be an immediate"); 9977 return false; 9978 } 9979 9980 getTargetStreamer().emitPad(CE->getValue()); 9981 return false; 9982 } 9983 9984 /// parseDirectiveRegSave 9985 /// ::= .save { registers } 9986 /// ::= .vsave { registers } 9987 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9988 // Check the ordering of unwind directives 9989 if (!UC.hasFnStart()) { 9990 Error(L, ".fnstart must precede .save or .vsave directives"); 9991 return false; 9992 } 9993 if (UC.hasHandlerData()) { 9994 Error(L, ".save or .vsave must precede .handlerdata directive"); 9995 return false; 9996 } 9997 9998 // RAII object to make sure parsed operands are deleted. 9999 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 10000 10001 // Parse the register list 10002 if (parseRegisterList(Operands)) 10003 return false; 10004 ARMOperand &Op = (ARMOperand &)*Operands[0]; 10005 if (!IsVector && !Op.isRegList()) { 10006 Error(L, ".save expects GPR registers"); 10007 return false; 10008 } 10009 if (IsVector && !Op.isDPRRegList()) { 10010 Error(L, ".vsave expects DPR registers"); 10011 return false; 10012 } 10013 10014 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 10015 return false; 10016 } 10017 10018 /// parseDirectiveInst 10019 /// ::= .inst opcode [, ...] 10020 /// ::= .inst.n opcode [, ...] 10021 /// ::= .inst.w opcode [, ...] 10022 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 10023 MCAsmParser &Parser = getParser(); 10024 int Width; 10025 10026 if (isThumb()) { 10027 switch (Suffix) { 10028 case 'n': 10029 Width = 2; 10030 break; 10031 case 'w': 10032 Width = 4; 10033 break; 10034 default: 10035 Error(Loc, "cannot determine Thumb instruction size, " 10036 "use inst.n/inst.w instead"); 10037 return false; 10038 } 10039 } else { 10040 if (Suffix) { 10041 Error(Loc, "width suffixes are invalid in ARM mode"); 10042 return false; 10043 } 10044 Width = 4; 10045 } 10046 10047 if (getLexer().is(AsmToken::EndOfStatement)) { 10048 Error(Loc, "expected expression following directive"); 10049 return false; 10050 } 10051 10052 for (;;) { 10053 const MCExpr *Expr; 10054 10055 if (getParser().parseExpression(Expr)) { 10056 Error(Loc, "expected expression"); 10057 return false; 10058 } 10059 10060 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10061 if (!Value) { 10062 Error(Loc, "expected constant expression"); 10063 return false; 10064 } 10065 10066 switch (Width) { 10067 case 2: 10068 if (Value->getValue() > 0xffff) { 10069 Error(Loc, "inst.n operand is too big, use inst.w instead"); 10070 return false; 10071 } 10072 break; 10073 case 4: 10074 if (Value->getValue() > 0xffffffff) { 10075 Error(Loc, 10076 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 10077 return false; 10078 } 10079 break; 10080 default: 10081 llvm_unreachable("only supported widths are 2 and 4"); 10082 } 10083 10084 getTargetStreamer().emitInst(Value->getValue(), Suffix); 10085 10086 if (getLexer().is(AsmToken::EndOfStatement)) 10087 break; 10088 10089 if (getLexer().isNot(AsmToken::Comma)) { 10090 Error(Loc, "unexpected token in directive"); 10091 return false; 10092 } 10093 10094 Parser.Lex(); 10095 } 10096 10097 Parser.Lex(); 10098 return false; 10099 } 10100 10101 /// parseDirectiveLtorg 10102 /// ::= .ltorg | .pool 10103 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10104 getTargetStreamer().emitCurrentConstantPool(); 10105 return false; 10106 } 10107 10108 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10109 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10110 10111 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10112 TokError("unexpected token in directive"); 10113 return false; 10114 } 10115 10116 if (!Section) { 10117 getStreamer().InitSections(false); 10118 Section = getStreamer().getCurrentSectionOnly(); 10119 } 10120 10121 assert(Section && "must have section to emit alignment"); 10122 if (Section->UseCodeAlign()) 10123 getStreamer().EmitCodeAlignment(2); 10124 else 10125 getStreamer().EmitValueToAlignment(2); 10126 10127 return false; 10128 } 10129 10130 /// parseDirectivePersonalityIndex 10131 /// ::= .personalityindex index 10132 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10133 MCAsmParser &Parser = getParser(); 10134 bool HasExistingPersonality = UC.hasPersonality(); 10135 10136 UC.recordPersonalityIndex(L); 10137 10138 if (!UC.hasFnStart()) { 10139 Error(L, ".fnstart must precede .personalityindex directive"); 10140 return false; 10141 } 10142 if (UC.cantUnwind()) { 10143 Error(L, ".personalityindex cannot be used with .cantunwind"); 10144 UC.emitCantUnwindLocNotes(); 10145 return false; 10146 } 10147 if (UC.hasHandlerData()) { 10148 Error(L, ".personalityindex must precede .handlerdata directive"); 10149 UC.emitHandlerDataLocNotes(); 10150 return false; 10151 } 10152 if (HasExistingPersonality) { 10153 Error(L, "multiple personality directives"); 10154 UC.emitPersonalityLocNotes(); 10155 return false; 10156 } 10157 10158 const MCExpr *IndexExpression; 10159 SMLoc IndexLoc = Parser.getTok().getLoc(); 10160 if (Parser.parseExpression(IndexExpression)) { 10161 return false; 10162 } 10163 10164 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10165 if (!CE) { 10166 Error(IndexLoc, "index must be a constant number"); 10167 return false; 10168 } 10169 if (CE->getValue() < 0 || 10170 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 10171 Error(IndexLoc, "personality routine index should be in range [0-3]"); 10172 return false; 10173 } 10174 10175 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10176 return false; 10177 } 10178 10179 /// parseDirectiveUnwindRaw 10180 /// ::= .unwind_raw offset, opcode [, opcode...] 10181 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10182 MCAsmParser &Parser = getParser(); 10183 if (!UC.hasFnStart()) { 10184 Error(L, ".fnstart must precede .unwind_raw directives"); 10185 return false; 10186 } 10187 10188 int64_t StackOffset; 10189 10190 const MCExpr *OffsetExpr; 10191 SMLoc OffsetLoc = getLexer().getLoc(); 10192 if (getLexer().is(AsmToken::EndOfStatement) || 10193 getParser().parseExpression(OffsetExpr)) { 10194 Error(OffsetLoc, "expected expression"); 10195 return false; 10196 } 10197 10198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10199 if (!CE) { 10200 Error(OffsetLoc, "offset must be a constant"); 10201 return false; 10202 } 10203 10204 StackOffset = CE->getValue(); 10205 10206 if (getLexer().isNot(AsmToken::Comma)) { 10207 Error(getLexer().getLoc(), "expected comma"); 10208 return false; 10209 } 10210 Parser.Lex(); 10211 10212 SmallVector<uint8_t, 16> Opcodes; 10213 for (;;) { 10214 const MCExpr *OE; 10215 10216 SMLoc OpcodeLoc = getLexer().getLoc(); 10217 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 10218 Error(OpcodeLoc, "expected opcode expression"); 10219 return false; 10220 } 10221 10222 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10223 if (!OC) { 10224 Error(OpcodeLoc, "opcode value must be a constant"); 10225 return false; 10226 } 10227 10228 const int64_t Opcode = OC->getValue(); 10229 if (Opcode & ~0xff) { 10230 Error(OpcodeLoc, "invalid opcode"); 10231 return false; 10232 } 10233 10234 Opcodes.push_back(uint8_t(Opcode)); 10235 10236 if (getLexer().is(AsmToken::EndOfStatement)) 10237 break; 10238 10239 if (getLexer().isNot(AsmToken::Comma)) { 10240 Error(getLexer().getLoc(), "unexpected token in directive"); 10241 return false; 10242 } 10243 10244 Parser.Lex(); 10245 } 10246 10247 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10248 10249 Parser.Lex(); 10250 return false; 10251 } 10252 10253 /// parseDirectiveTLSDescSeq 10254 /// ::= .tlsdescseq tls-variable 10255 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10256 MCAsmParser &Parser = getParser(); 10257 10258 if (getLexer().isNot(AsmToken::Identifier)) { 10259 TokError("expected variable after '.tlsdescseq' directive"); 10260 return false; 10261 } 10262 10263 const MCSymbolRefExpr *SRE = 10264 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10265 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10266 Lex(); 10267 10268 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10269 Error(Parser.getTok().getLoc(), "unexpected token"); 10270 return false; 10271 } 10272 10273 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10274 return false; 10275 } 10276 10277 /// parseDirectiveMovSP 10278 /// ::= .movsp reg [, #offset] 10279 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10280 MCAsmParser &Parser = getParser(); 10281 if (!UC.hasFnStart()) { 10282 Error(L, ".fnstart must precede .movsp directives"); 10283 return false; 10284 } 10285 if (UC.getFPReg() != ARM::SP) { 10286 Error(L, "unexpected .movsp directive"); 10287 return false; 10288 } 10289 10290 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10291 int SPReg = tryParseRegister(); 10292 if (SPReg == -1) { 10293 Error(SPRegLoc, "register expected"); 10294 return false; 10295 } 10296 10297 if (SPReg == ARM::SP || SPReg == ARM::PC) { 10298 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10299 return false; 10300 } 10301 10302 int64_t Offset = 0; 10303 if (Parser.getTok().is(AsmToken::Comma)) { 10304 Parser.Lex(); 10305 10306 if (Parser.getTok().isNot(AsmToken::Hash)) { 10307 Error(Parser.getTok().getLoc(), "expected #constant"); 10308 return false; 10309 } 10310 Parser.Lex(); 10311 10312 const MCExpr *OffsetExpr; 10313 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10314 if (Parser.parseExpression(OffsetExpr)) { 10315 Error(OffsetLoc, "malformed offset expression"); 10316 return false; 10317 } 10318 10319 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10320 if (!CE) { 10321 Error(OffsetLoc, "offset must be an immediate constant"); 10322 return false; 10323 } 10324 10325 Offset = CE->getValue(); 10326 } 10327 10328 getTargetStreamer().emitMovSP(SPReg, Offset); 10329 UC.saveFPReg(SPReg); 10330 10331 return false; 10332 } 10333 10334 /// parseDirectiveObjectArch 10335 /// ::= .object_arch name 10336 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10337 MCAsmParser &Parser = getParser(); 10338 if (getLexer().isNot(AsmToken::Identifier)) { 10339 Error(getLexer().getLoc(), "unexpected token"); 10340 return false; 10341 } 10342 10343 StringRef Arch = Parser.getTok().getString(); 10344 SMLoc ArchLoc = Parser.getTok().getLoc(); 10345 Lex(); 10346 10347 unsigned ID = ARM::parseArch(Arch); 10348 10349 if (ID == ARM::AK_INVALID) { 10350 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10351 return false; 10352 } 10353 10354 getTargetStreamer().emitObjectArch(ID); 10355 10356 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10357 Error(getLexer().getLoc(), "unexpected token"); 10358 } 10359 10360 return false; 10361 } 10362 10363 /// parseDirectiveAlign 10364 /// ::= .align 10365 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10366 // NOTE: if this is not the end of the statement, fall back to the target 10367 // agnostic handling for this directive which will correctly handle this. 10368 if (getLexer().isNot(AsmToken::EndOfStatement)) 10369 return true; 10370 10371 // '.align' is target specifically handled to mean 2**2 byte alignment. 10372 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10373 assert(Section && "must have section to emit alignment"); 10374 if (Section->UseCodeAlign()) 10375 getStreamer().EmitCodeAlignment(4, 0); 10376 else 10377 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10378 10379 return false; 10380 } 10381 10382 /// parseDirectiveThumbSet 10383 /// ::= .thumb_set name, value 10384 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10385 MCAsmParser &Parser = getParser(); 10386 10387 StringRef Name; 10388 if (Parser.parseIdentifier(Name)) { 10389 TokError("expected identifier after '.thumb_set'"); 10390 return false; 10391 } 10392 10393 if (getLexer().isNot(AsmToken::Comma)) { 10394 TokError("expected comma after name '" + Name + "'"); 10395 return false; 10396 } 10397 Lex(); 10398 10399 MCSymbol *Sym; 10400 const MCExpr *Value; 10401 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10402 Parser, Sym, Value)) 10403 return true; 10404 10405 getTargetStreamer().emitThumbSet(Sym, Value); 10406 return false; 10407 } 10408 10409 /// Force static initialization. 10410 extern "C" void LLVMInitializeARMAsmParser() { 10411 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10412 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10413 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10414 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10415 } 10416 10417 #define GET_REGISTER_MATCHER 10418 #define GET_SUBTARGET_FEATURE_NAME 10419 #define GET_MATCHER_IMPLEMENTATION 10420 #include "ARMGenAsmMatcher.inc" 10421 10422 // FIXME: This structure should be moved inside ARMTargetParser 10423 // when we start to table-generate them, and we can use the ARM 10424 // flags below, that were generated by table-gen. 10425 static const struct { 10426 const unsigned Kind; 10427 const uint64_t ArchCheck; 10428 const FeatureBitset Features; 10429 } Extensions[] = { 10430 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10431 { ARM::AEK_CRYPTO, Feature_HasV8, 10432 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10433 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10434 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10435 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10436 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10437 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10438 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10439 // FIXME: Only available in A-class, isel not predicated 10440 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10441 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10442 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10443 // FIXME: Unsupported extensions. 10444 { ARM::AEK_OS, Feature_None, {} }, 10445 { ARM::AEK_IWMMXT, Feature_None, {} }, 10446 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10447 { ARM::AEK_MAVERICK, Feature_None, {} }, 10448 { ARM::AEK_XSCALE, Feature_None, {} }, 10449 }; 10450 10451 /// parseDirectiveArchExtension 10452 /// ::= .arch_extension [no]feature 10453 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10454 MCAsmParser &Parser = getParser(); 10455 10456 if (getLexer().isNot(AsmToken::Identifier)) { 10457 Error(getLexer().getLoc(), "expected architecture extension name"); 10458 return false; 10459 } 10460 10461 StringRef Name = Parser.getTok().getString(); 10462 SMLoc ExtLoc = Parser.getTok().getLoc(); 10463 Lex(); 10464 10465 bool EnableFeature = true; 10466 if (Name.startswith_lower("no")) { 10467 EnableFeature = false; 10468 Name = Name.substr(2); 10469 } 10470 unsigned FeatureKind = ARM::parseArchExt(Name); 10471 if (FeatureKind == ARM::AEK_INVALID) { 10472 Error(ExtLoc, "unknown architectural extension: " + Name); 10473 return false; 10474 } 10475 10476 for (const auto &Extension : Extensions) { 10477 if (Extension.Kind != FeatureKind) 10478 continue; 10479 10480 if (Extension.Features.none()) { 10481 Error(ExtLoc, "unsupported architectural extension: " + Name); 10482 return false; 10483 } 10484 10485 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 10486 Error(ExtLoc, "architectural extension '" + Name + "' is not " 10487 "allowed for the current base architecture"); 10488 return false; 10489 } 10490 10491 MCSubtargetInfo &STI = copySTI(); 10492 FeatureBitset ToggleFeatures = EnableFeature 10493 ? (~STI.getFeatureBits() & Extension.Features) 10494 : ( STI.getFeatureBits() & Extension.Features); 10495 10496 uint64_t Features = 10497 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10498 setAvailableFeatures(Features); 10499 return false; 10500 } 10501 10502 Error(ExtLoc, "unknown architectural extension: " + Name); 10503 return false; 10504 } 10505 10506 // Define this matcher function after the auto-generated include so we 10507 // have the match class enum definitions. 10508 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10509 unsigned Kind) { 10510 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10511 // If the kind is a token for a literal immediate, check if our asm 10512 // operand matches. This is for InstAliases which have a fixed-value 10513 // immediate in the syntax. 10514 switch (Kind) { 10515 default: break; 10516 case MCK__35_0: 10517 if (Op.isImm()) 10518 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10519 if (CE->getValue() == 0) 10520 return Match_Success; 10521 break; 10522 case MCK_ModImm: 10523 if (Op.isImm()) { 10524 const MCExpr *SOExpr = Op.getImm(); 10525 int64_t Value; 10526 if (!SOExpr->evaluateAsAbsolute(Value)) 10527 return Match_Success; 10528 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10529 "expression value must be representable in 32 bits"); 10530 } 10531 break; 10532 case MCK_rGPR: 10533 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10534 return Match_Success; 10535 break; 10536 case MCK_GPRPair: 10537 if (Op.isReg() && 10538 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10539 return Match_Success; 10540 break; 10541 } 10542 return Match_InvalidOperand; 10543 } 10544