1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/COFF.h" 22 #include "llvm/BinaryFormat/ELF.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 27 #include "llvm/MC/MCELFStreamer.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 36 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 37 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSubtargetInfo.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/Support/ARMBuildAttributes.h" 44 #include "llvm/Support/ARMEHABI.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/SourceMgr.h" 49 #include "llvm/Support/TargetParser.h" 50 #include "llvm/Support/TargetRegistry.h" 51 #include "llvm/Support/raw_ostream.h" 52 53 using namespace llvm; 54 55 namespace { 56 57 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 58 59 static cl::opt<ImplicitItModeTy> ImplicitItMode( 60 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 61 cl::desc("Allow conditional instructions outdside of an IT block"), 62 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 63 "Accept in both ISAs, emit implicit ITs in Thumb"), 64 clEnumValN(ImplicitItModeTy::Never, "never", 65 "Warn in ARM, reject in Thumb"), 66 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 67 "Accept in ARM, reject in Thumb"), 68 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 69 "Warn in ARM, emit implicit ITs in Thumb"))); 70 71 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 72 cl::init(false)); 73 74 class ARMOperand; 75 76 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 77 78 class UnwindContext { 79 MCAsmParser &Parser; 80 81 typedef SmallVector<SMLoc, 4> Locs; 82 83 Locs FnStartLocs; 84 Locs CantUnwindLocs; 85 Locs PersonalityLocs; 86 Locs PersonalityIndexLocs; 87 Locs HandlerDataLocs; 88 int FPReg; 89 90 public: 91 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 92 93 bool hasFnStart() const { return !FnStartLocs.empty(); } 94 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 95 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 96 bool hasPersonality() const { 97 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 98 } 99 100 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 101 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 102 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 103 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 104 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 105 106 void saveFPReg(int Reg) { FPReg = Reg; } 107 int getFPReg() const { return FPReg; } 108 109 void emitFnStartLocNotes() const { 110 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 111 FI != FE; ++FI) 112 Parser.Note(*FI, ".fnstart was specified here"); 113 } 114 void emitCantUnwindLocNotes() const { 115 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 116 UE = CantUnwindLocs.end(); UI != UE; ++UI) 117 Parser.Note(*UI, ".cantunwind was specified here"); 118 } 119 void emitHandlerDataLocNotes() const { 120 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 121 HE = HandlerDataLocs.end(); HI != HE; ++HI) 122 Parser.Note(*HI, ".handlerdata was specified here"); 123 } 124 void emitPersonalityLocNotes() const { 125 for (Locs::const_iterator PI = PersonalityLocs.begin(), 126 PE = PersonalityLocs.end(), 127 PII = PersonalityIndexLocs.begin(), 128 PIE = PersonalityIndexLocs.end(); 129 PI != PE || PII != PIE;) { 130 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 131 Parser.Note(*PI++, ".personality was specified here"); 132 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 133 Parser.Note(*PII++, ".personalityindex was specified here"); 134 else 135 llvm_unreachable(".personality and .personalityindex cannot be " 136 "at the same location"); 137 } 138 } 139 140 void reset() { 141 FnStartLocs = Locs(); 142 CantUnwindLocs = Locs(); 143 PersonalityLocs = Locs(); 144 HandlerDataLocs = Locs(); 145 PersonalityIndexLocs = Locs(); 146 FPReg = ARM::SP; 147 } 148 }; 149 150 class ARMAsmParser : public MCTargetAsmParser { 151 const MCInstrInfo &MII; 152 const MCRegisterInfo *MRI; 153 UnwindContext UC; 154 155 ARMTargetStreamer &getTargetStreamer() { 156 assert(getParser().getStreamer().getTargetStreamer() && 157 "do not have a target streamer"); 158 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 159 return static_cast<ARMTargetStreamer &>(TS); 160 } 161 162 // Map of register aliases registers via the .req directive. 163 StringMap<unsigned> RegisterReqs; 164 165 bool NextSymbolIsThumb; 166 167 bool useImplicitITThumb() const { 168 return ImplicitItMode == ImplicitItModeTy::Always || 169 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 170 } 171 172 bool useImplicitITARM() const { 173 return ImplicitItMode == ImplicitItModeTy::Always || 174 ImplicitItMode == ImplicitItModeTy::ARMOnly; 175 } 176 177 struct { 178 ARMCC::CondCodes Cond; // Condition for IT block. 179 unsigned Mask:4; // Condition mask for instructions. 180 // Starting at first 1 (from lsb). 181 // '1' condition as indicated in IT. 182 // '0' inverse of condition (else). 183 // Count of instructions in IT block is 184 // 4 - trailingzeroes(mask) 185 // Note that this does not have the same encoding 186 // as in the IT instruction, which also depends 187 // on the low bit of the condition code. 188 189 unsigned CurPosition; // Current position in parsing of IT 190 // block. In range [0,4], with 0 being the IT 191 // instruction itself. Initialized according to 192 // count of instructions in block. ~0U if no 193 // active IT block. 194 195 bool IsExplicit; // true - The IT instruction was present in the 196 // input, we should not modify it. 197 // false - The IT instruction was added 198 // implicitly, we can extend it if that 199 // would be legal. 200 } ITState; 201 202 llvm::SmallVector<MCInst, 4> PendingConditionalInsts; 203 204 void flushPendingInstructions(MCStreamer &Out) override { 205 if (!inImplicitITBlock()) { 206 assert(PendingConditionalInsts.size() == 0); 207 return; 208 } 209 210 // Emit the IT instruction 211 unsigned Mask = getITMaskEncoding(); 212 MCInst ITInst; 213 ITInst.setOpcode(ARM::t2IT); 214 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 215 ITInst.addOperand(MCOperand::createImm(Mask)); 216 Out.EmitInstruction(ITInst, getSTI()); 217 218 // Emit the conditonal instructions 219 assert(PendingConditionalInsts.size() <= 4); 220 for (const MCInst &Inst : PendingConditionalInsts) { 221 Out.EmitInstruction(Inst, getSTI()); 222 } 223 PendingConditionalInsts.clear(); 224 225 // Clear the IT state 226 ITState.Mask = 0; 227 ITState.CurPosition = ~0U; 228 } 229 230 bool inITBlock() { return ITState.CurPosition != ~0U; } 231 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 232 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 233 bool lastInITBlock() { 234 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 235 } 236 void forwardITPosition() { 237 if (!inITBlock()) return; 238 // Move to the next instruction in the IT block, if there is one. If not, 239 // mark the block as done, except for implicit IT blocks, which we leave 240 // open until we find an instruction that can't be added to it. 241 unsigned TZ = countTrailingZeros(ITState.Mask); 242 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 243 ITState.CurPosition = ~0U; // Done with the IT block after this. 244 } 245 246 // Rewind the state of the current IT block, removing the last slot from it. 247 void rewindImplicitITPosition() { 248 assert(inImplicitITBlock()); 249 assert(ITState.CurPosition > 1); 250 ITState.CurPosition--; 251 unsigned TZ = countTrailingZeros(ITState.Mask); 252 unsigned NewMask = 0; 253 NewMask |= ITState.Mask & (0xC << TZ); 254 NewMask |= 0x2 << TZ; 255 ITState.Mask = NewMask; 256 } 257 258 // Rewind the state of the current IT block, removing the last slot from it. 259 // If we were at the first slot, this closes the IT block. 260 void discardImplicitITBlock() { 261 assert(inImplicitITBlock()); 262 assert(ITState.CurPosition == 1); 263 ITState.CurPosition = ~0U; 264 return; 265 } 266 267 // Get the encoding of the IT mask, as it will appear in an IT instruction. 268 unsigned getITMaskEncoding() { 269 assert(inITBlock()); 270 unsigned Mask = ITState.Mask; 271 unsigned TZ = countTrailingZeros(Mask); 272 if ((ITState.Cond & 1) == 0) { 273 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 274 Mask ^= (0xE << TZ) & 0xF; 275 } 276 return Mask; 277 } 278 279 // Get the condition code corresponding to the current IT block slot. 280 ARMCC::CondCodes currentITCond() { 281 unsigned MaskBit; 282 if (ITState.CurPosition == 1) 283 MaskBit = 1; 284 else 285 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 286 287 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 288 } 289 290 // Invert the condition of the current IT block slot without changing any 291 // other slots in the same block. 292 void invertCurrentITCondition() { 293 if (ITState.CurPosition == 1) { 294 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 295 } else { 296 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 297 } 298 } 299 300 // Returns true if the current IT block is full (all 4 slots used). 301 bool isITBlockFull() { 302 return inITBlock() && (ITState.Mask & 1); 303 } 304 305 // Extend the current implicit IT block to have one more slot with the given 306 // condition code. 307 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 308 assert(inImplicitITBlock()); 309 assert(!isITBlockFull()); 310 assert(Cond == ITState.Cond || 311 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 312 unsigned TZ = countTrailingZeros(ITState.Mask); 313 unsigned NewMask = 0; 314 // Keep any existing condition bits. 315 NewMask |= ITState.Mask & (0xE << TZ); 316 // Insert the new condition bit. 317 NewMask |= (Cond == ITState.Cond) << TZ; 318 // Move the trailing 1 down one bit. 319 NewMask |= 1 << (TZ - 1); 320 ITState.Mask = NewMask; 321 } 322 323 // Create a new implicit IT block with a dummy condition code. 324 void startImplicitITBlock() { 325 assert(!inITBlock()); 326 ITState.Cond = ARMCC::AL; 327 ITState.Mask = 8; 328 ITState.CurPosition = 1; 329 ITState.IsExplicit = false; 330 return; 331 } 332 333 // Create a new explicit IT block with the given condition and mask. The mask 334 // should be in the parsed format, with a 1 implying 't', regardless of the 335 // low bit of the condition. 336 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 337 assert(!inITBlock()); 338 ITState.Cond = Cond; 339 ITState.Mask = Mask; 340 ITState.CurPosition = 0; 341 ITState.IsExplicit = true; 342 return; 343 } 344 345 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 346 return getParser().Note(L, Msg, Range); 347 } 348 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 349 return getParser().Warning(L, Msg, Range); 350 } 351 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 352 return getParser().Error(L, Msg, Range); 353 } 354 355 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 356 unsigned ListNo, bool IsARPop = false); 357 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 358 unsigned ListNo); 359 360 int tryParseRegister(); 361 bool tryParseRegisterWithWriteBack(OperandVector &); 362 int tryParseShiftRegister(OperandVector &); 363 bool parseRegisterList(OperandVector &); 364 bool parseMemory(OperandVector &); 365 bool parseOperand(OperandVector &, StringRef Mnemonic); 366 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 367 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 368 unsigned &ShiftAmount); 369 bool parseLiteralValues(unsigned Size, SMLoc L); 370 bool parseDirectiveThumb(SMLoc L); 371 bool parseDirectiveARM(SMLoc L); 372 bool parseDirectiveThumbFunc(SMLoc L); 373 bool parseDirectiveCode(SMLoc L); 374 bool parseDirectiveSyntax(SMLoc L); 375 bool parseDirectiveReq(StringRef Name, SMLoc L); 376 bool parseDirectiveUnreq(SMLoc L); 377 bool parseDirectiveArch(SMLoc L); 378 bool parseDirectiveEabiAttr(SMLoc L); 379 bool parseDirectiveCPU(SMLoc L); 380 bool parseDirectiveFPU(SMLoc L); 381 bool parseDirectiveFnStart(SMLoc L); 382 bool parseDirectiveFnEnd(SMLoc L); 383 bool parseDirectiveCantUnwind(SMLoc L); 384 bool parseDirectivePersonality(SMLoc L); 385 bool parseDirectiveHandlerData(SMLoc L); 386 bool parseDirectiveSetFP(SMLoc L); 387 bool parseDirectivePad(SMLoc L); 388 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 389 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 390 bool parseDirectiveLtorg(SMLoc L); 391 bool parseDirectiveEven(SMLoc L); 392 bool parseDirectivePersonalityIndex(SMLoc L); 393 bool parseDirectiveUnwindRaw(SMLoc L); 394 bool parseDirectiveTLSDescSeq(SMLoc L); 395 bool parseDirectiveMovSP(SMLoc L); 396 bool parseDirectiveObjectArch(SMLoc L); 397 bool parseDirectiveArchExtension(SMLoc L); 398 bool parseDirectiveAlign(SMLoc L); 399 bool parseDirectiveThumbSet(SMLoc L); 400 401 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 402 bool &CarrySetting, unsigned &ProcessorIMod, 403 StringRef &ITMask); 404 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 405 bool &CanAcceptCarrySet, 406 bool &CanAcceptPredicationCode); 407 408 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 409 OperandVector &Operands); 410 bool isThumb() const { 411 // FIXME: Can tablegen auto-generate this? 412 return getSTI().getFeatureBits()[ARM::ModeThumb]; 413 } 414 bool isThumbOne() const { 415 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 416 } 417 bool isThumbTwo() const { 418 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 419 } 420 bool hasThumb() const { 421 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 422 } 423 bool hasThumb2() const { 424 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 425 } 426 bool hasV6Ops() const { 427 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 428 } 429 bool hasV6T2Ops() const { 430 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 431 } 432 bool hasV6MOps() const { 433 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 434 } 435 bool hasV7Ops() const { 436 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 437 } 438 bool hasV8Ops() const { 439 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 440 } 441 bool hasV8MBaseline() const { 442 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 443 } 444 bool hasV8MMainline() const { 445 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 446 } 447 bool has8MSecExt() const { 448 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 449 } 450 bool hasARM() const { 451 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 452 } 453 bool hasDSP() const { 454 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 455 } 456 bool hasD16() const { 457 return getSTI().getFeatureBits()[ARM::FeatureD16]; 458 } 459 bool hasV8_1aOps() const { 460 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 461 } 462 bool hasRAS() const { 463 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 464 } 465 466 void SwitchMode() { 467 MCSubtargetInfo &STI = copySTI(); 468 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 469 setAvailableFeatures(FB); 470 } 471 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 472 bool isMClass() const { 473 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 474 } 475 476 /// @name Auto-generated Match Functions 477 /// { 478 479 #define GET_ASSEMBLER_HEADER 480 #include "ARMGenAsmMatcher.inc" 481 482 /// } 483 484 OperandMatchResultTy parseITCondCode(OperandVector &); 485 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 486 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 487 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 488 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 489 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 490 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 491 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 492 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 493 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 494 int High); 495 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 496 return parsePKHImm(O, "lsl", 0, 31); 497 } 498 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 499 return parsePKHImm(O, "asr", 1, 32); 500 } 501 OperandMatchResultTy parseSetEndImm(OperandVector &); 502 OperandMatchResultTy parseShifterImm(OperandVector &); 503 OperandMatchResultTy parseRotImm(OperandVector &); 504 OperandMatchResultTy parseModImm(OperandVector &); 505 OperandMatchResultTy parseBitfield(OperandVector &); 506 OperandMatchResultTy parsePostIdxReg(OperandVector &); 507 OperandMatchResultTy parseAM3Offset(OperandVector &); 508 OperandMatchResultTy parseFPImm(OperandVector &); 509 OperandMatchResultTy parseVectorList(OperandVector &); 510 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 511 SMLoc &EndLoc); 512 513 // Asm Match Converter Methods 514 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 515 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 516 517 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 518 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 519 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 520 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 521 bool isITBlockTerminator(MCInst &Inst) const; 522 523 public: 524 enum ARMMatchResultTy { 525 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 526 Match_RequiresNotITBlock, 527 Match_RequiresV6, 528 Match_RequiresThumb2, 529 Match_RequiresV8, 530 Match_RequiresFlagSetting, 531 #define GET_OPERAND_DIAGNOSTIC_TYPES 532 #include "ARMGenAsmMatcher.inc" 533 534 }; 535 536 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 537 const MCInstrInfo &MII, const MCTargetOptions &Options) 538 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 539 MCAsmParserExtension::Initialize(Parser); 540 541 // Cache the MCRegisterInfo. 542 MRI = getContext().getRegisterInfo(); 543 544 // Initialize the set of available features. 545 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 546 547 // Add build attributes based on the selected target. 548 if (AddBuildAttributes) 549 getTargetStreamer().emitTargetAttributes(STI); 550 551 // Not in an ITBlock to start with. 552 ITState.CurPosition = ~0U; 553 554 NextSymbolIsThumb = false; 555 } 556 557 // Implementation of the MCTargetAsmParser interface: 558 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 559 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 560 SMLoc NameLoc, OperandVector &Operands) override; 561 bool ParseDirective(AsmToken DirectiveID) override; 562 563 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 564 unsigned Kind) override; 565 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 566 567 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 568 OperandVector &Operands, MCStreamer &Out, 569 uint64_t &ErrorInfo, 570 bool MatchingInlineAsm) override; 571 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 572 uint64_t &ErrorInfo, bool MatchingInlineAsm, 573 bool &EmitInITBlock, MCStreamer &Out); 574 void onLabelParsed(MCSymbol *Symbol) override; 575 }; 576 } // end anonymous namespace 577 578 namespace { 579 580 /// ARMOperand - Instances of this class represent a parsed ARM machine 581 /// operand. 582 class ARMOperand : public MCParsedAsmOperand { 583 enum KindTy { 584 k_CondCode, 585 k_CCOut, 586 k_ITCondMask, 587 k_CoprocNum, 588 k_CoprocReg, 589 k_CoprocOption, 590 k_Immediate, 591 k_MemBarrierOpt, 592 k_InstSyncBarrierOpt, 593 k_Memory, 594 k_PostIndexRegister, 595 k_MSRMask, 596 k_BankedReg, 597 k_ProcIFlags, 598 k_VectorIndex, 599 k_Register, 600 k_RegisterList, 601 k_DPRRegisterList, 602 k_SPRRegisterList, 603 k_VectorList, 604 k_VectorListAllLanes, 605 k_VectorListIndexed, 606 k_ShiftedRegister, 607 k_ShiftedImmediate, 608 k_ShifterImmediate, 609 k_RotateImmediate, 610 k_ModifiedImmediate, 611 k_ConstantPoolImmediate, 612 k_BitfieldDescriptor, 613 k_Token, 614 } Kind; 615 616 SMLoc StartLoc, EndLoc, AlignmentLoc; 617 SmallVector<unsigned, 8> Registers; 618 619 struct CCOp { 620 ARMCC::CondCodes Val; 621 }; 622 623 struct CopOp { 624 unsigned Val; 625 }; 626 627 struct CoprocOptionOp { 628 unsigned Val; 629 }; 630 631 struct ITMaskOp { 632 unsigned Mask:4; 633 }; 634 635 struct MBOptOp { 636 ARM_MB::MemBOpt Val; 637 }; 638 639 struct ISBOptOp { 640 ARM_ISB::InstSyncBOpt Val; 641 }; 642 643 struct IFlagsOp { 644 ARM_PROC::IFlags Val; 645 }; 646 647 struct MMaskOp { 648 unsigned Val; 649 }; 650 651 struct BankedRegOp { 652 unsigned Val; 653 }; 654 655 struct TokOp { 656 const char *Data; 657 unsigned Length; 658 }; 659 660 struct RegOp { 661 unsigned RegNum; 662 }; 663 664 // A vector register list is a sequential list of 1 to 4 registers. 665 struct VectorListOp { 666 unsigned RegNum; 667 unsigned Count; 668 unsigned LaneIndex; 669 bool isDoubleSpaced; 670 }; 671 672 struct VectorIndexOp { 673 unsigned Val; 674 }; 675 676 struct ImmOp { 677 const MCExpr *Val; 678 }; 679 680 /// Combined record for all forms of ARM address expressions. 681 struct MemoryOp { 682 unsigned BaseRegNum; 683 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 684 // was specified. 685 const MCConstantExpr *OffsetImm; // Offset immediate value 686 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 687 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 688 unsigned ShiftImm; // shift for OffsetReg. 689 unsigned Alignment; // 0 = no alignment specified 690 // n = alignment in bytes (2, 4, 8, 16, or 32) 691 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 692 }; 693 694 struct PostIdxRegOp { 695 unsigned RegNum; 696 bool isAdd; 697 ARM_AM::ShiftOpc ShiftTy; 698 unsigned ShiftImm; 699 }; 700 701 struct ShifterImmOp { 702 bool isASR; 703 unsigned Imm; 704 }; 705 706 struct RegShiftedRegOp { 707 ARM_AM::ShiftOpc ShiftTy; 708 unsigned SrcReg; 709 unsigned ShiftReg; 710 unsigned ShiftImm; 711 }; 712 713 struct RegShiftedImmOp { 714 ARM_AM::ShiftOpc ShiftTy; 715 unsigned SrcReg; 716 unsigned ShiftImm; 717 }; 718 719 struct RotImmOp { 720 unsigned Imm; 721 }; 722 723 struct ModImmOp { 724 unsigned Bits; 725 unsigned Rot; 726 }; 727 728 struct BitfieldOp { 729 unsigned LSB; 730 unsigned Width; 731 }; 732 733 union { 734 struct CCOp CC; 735 struct CopOp Cop; 736 struct CoprocOptionOp CoprocOption; 737 struct MBOptOp MBOpt; 738 struct ISBOptOp ISBOpt; 739 struct ITMaskOp ITMask; 740 struct IFlagsOp IFlags; 741 struct MMaskOp MMask; 742 struct BankedRegOp BankedReg; 743 struct TokOp Tok; 744 struct RegOp Reg; 745 struct VectorListOp VectorList; 746 struct VectorIndexOp VectorIndex; 747 struct ImmOp Imm; 748 struct MemoryOp Memory; 749 struct PostIdxRegOp PostIdxReg; 750 struct ShifterImmOp ShifterImm; 751 struct RegShiftedRegOp RegShiftedReg; 752 struct RegShiftedImmOp RegShiftedImm; 753 struct RotImmOp RotImm; 754 struct ModImmOp ModImm; 755 struct BitfieldOp Bitfield; 756 }; 757 758 public: 759 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 760 761 /// getStartLoc - Get the location of the first token of this operand. 762 SMLoc getStartLoc() const override { return StartLoc; } 763 /// getEndLoc - Get the location of the last token of this operand. 764 SMLoc getEndLoc() const override { return EndLoc; } 765 /// getLocRange - Get the range between the first and last token of this 766 /// operand. 767 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 768 769 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 770 SMLoc getAlignmentLoc() const { 771 assert(Kind == k_Memory && "Invalid access!"); 772 return AlignmentLoc; 773 } 774 775 ARMCC::CondCodes getCondCode() const { 776 assert(Kind == k_CondCode && "Invalid access!"); 777 return CC.Val; 778 } 779 780 unsigned getCoproc() const { 781 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 782 return Cop.Val; 783 } 784 785 StringRef getToken() const { 786 assert(Kind == k_Token && "Invalid access!"); 787 return StringRef(Tok.Data, Tok.Length); 788 } 789 790 unsigned getReg() const override { 791 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 792 return Reg.RegNum; 793 } 794 795 const SmallVectorImpl<unsigned> &getRegList() const { 796 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 797 Kind == k_SPRRegisterList) && "Invalid access!"); 798 return Registers; 799 } 800 801 const MCExpr *getImm() const { 802 assert(isImm() && "Invalid access!"); 803 return Imm.Val; 804 } 805 806 const MCExpr *getConstantPoolImm() const { 807 assert(isConstantPoolImm() && "Invalid access!"); 808 return Imm.Val; 809 } 810 811 unsigned getVectorIndex() const { 812 assert(Kind == k_VectorIndex && "Invalid access!"); 813 return VectorIndex.Val; 814 } 815 816 ARM_MB::MemBOpt getMemBarrierOpt() const { 817 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 818 return MBOpt.Val; 819 } 820 821 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 822 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 823 return ISBOpt.Val; 824 } 825 826 ARM_PROC::IFlags getProcIFlags() const { 827 assert(Kind == k_ProcIFlags && "Invalid access!"); 828 return IFlags.Val; 829 } 830 831 unsigned getMSRMask() const { 832 assert(Kind == k_MSRMask && "Invalid access!"); 833 return MMask.Val; 834 } 835 836 unsigned getBankedReg() const { 837 assert(Kind == k_BankedReg && "Invalid access!"); 838 return BankedReg.Val; 839 } 840 841 bool isCoprocNum() const { return Kind == k_CoprocNum; } 842 bool isCoprocReg() const { return Kind == k_CoprocReg; } 843 bool isCoprocOption() const { return Kind == k_CoprocOption; } 844 bool isCondCode() const { return Kind == k_CondCode; } 845 bool isCCOut() const { return Kind == k_CCOut; } 846 bool isITMask() const { return Kind == k_ITCondMask; } 847 bool isITCondCode() const { return Kind == k_CondCode; } 848 bool isImm() const override { 849 return Kind == k_Immediate; 850 } 851 852 bool isARMBranchTarget() const { 853 if (!isImm()) return false; 854 855 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 856 return CE->getValue() % 4 == 0; 857 return true; 858 } 859 860 861 bool isThumbBranchTarget() const { 862 if (!isImm()) return false; 863 864 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 865 return CE->getValue() % 2 == 0; 866 return true; 867 } 868 869 // checks whether this operand is an unsigned offset which fits is a field 870 // of specified width and scaled by a specific number of bits 871 template<unsigned width, unsigned scale> 872 bool isUnsignedOffset() const { 873 if (!isImm()) return false; 874 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 875 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 876 int64_t Val = CE->getValue(); 877 int64_t Align = 1LL << scale; 878 int64_t Max = Align * ((1LL << width) - 1); 879 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 880 } 881 return false; 882 } 883 // checks whether this operand is an signed offset which fits is a field 884 // of specified width and scaled by a specific number of bits 885 template<unsigned width, unsigned scale> 886 bool isSignedOffset() const { 887 if (!isImm()) return false; 888 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 889 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 890 int64_t Val = CE->getValue(); 891 int64_t Align = 1LL << scale; 892 int64_t Max = Align * ((1LL << (width-1)) - 1); 893 int64_t Min = -Align * (1LL << (width-1)); 894 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 895 } 896 return false; 897 } 898 899 // checks whether this operand is a memory operand computed as an offset 900 // applied to PC. the offset may have 8 bits of magnitude and is represented 901 // with two bits of shift. textually it may be either [pc, #imm], #imm or 902 // relocable expression... 903 bool isThumbMemPC() const { 904 int64_t Val = 0; 905 if (isImm()) { 906 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 907 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 908 if (!CE) return false; 909 Val = CE->getValue(); 910 } 911 else if (isMem()) { 912 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 913 if(Memory.BaseRegNum != ARM::PC) return false; 914 Val = Memory.OffsetImm->getValue(); 915 } 916 else return false; 917 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 918 } 919 bool isFPImm() const { 920 if (!isImm()) return false; 921 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 922 if (!CE) return false; 923 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 924 return Val != -1; 925 } 926 927 template<int64_t N, int64_t M> 928 bool isImmediate() const { 929 if (!isImm()) return false; 930 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 931 if (!CE) return false; 932 int64_t Value = CE->getValue(); 933 return Value >= N && Value <= M; 934 } 935 template<int64_t N, int64_t M> 936 bool isImmediateS4() const { 937 if (!isImm()) return false; 938 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 939 if (!CE) return false; 940 int64_t Value = CE->getValue(); 941 return ((Value & 3) == 0) && Value >= N && Value <= M; 942 } 943 bool isFBits16() const { 944 return isImmediate<0, 17>(); 945 } 946 bool isFBits32() const { 947 return isImmediate<1, 33>(); 948 } 949 bool isImm8s4() const { 950 return isImmediateS4<-1020, 1020>(); 951 } 952 bool isImm0_1020s4() const { 953 return isImmediateS4<0, 1020>(); 954 } 955 bool isImm0_508s4() const { 956 return isImmediateS4<0, 508>(); 957 } 958 bool isImm0_508s4Neg() const { 959 if (!isImm()) return false; 960 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 961 if (!CE) return false; 962 int64_t Value = -CE->getValue(); 963 // explicitly exclude zero. we want that to use the normal 0_508 version. 964 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 965 } 966 bool isImm0_4095Neg() const { 967 if (!isImm()) return false; 968 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 969 if (!CE) return false; 970 int64_t Value = -CE->getValue(); 971 return Value > 0 && Value < 4096; 972 } 973 bool isImm0_7() const { 974 return isImmediate<0, 7>(); 975 } 976 bool isImm1_16() const { 977 return isImmediate<1, 16>(); 978 } 979 bool isImm1_32() const { 980 return isImmediate<1, 32>(); 981 } 982 bool isImm8_255() const { 983 return isImmediate<8, 255>(); 984 } 985 bool isImm256_65535Expr() const { 986 if (!isImm()) return false; 987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 988 // If it's not a constant expression, it'll generate a fixup and be 989 // handled later. 990 if (!CE) return true; 991 int64_t Value = CE->getValue(); 992 return Value >= 256 && Value < 65536; 993 } 994 bool isImm0_65535Expr() const { 995 if (!isImm()) return false; 996 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 997 // If it's not a constant expression, it'll generate a fixup and be 998 // handled later. 999 if (!CE) return true; 1000 int64_t Value = CE->getValue(); 1001 return Value >= 0 && Value < 65536; 1002 } 1003 bool isImm24bit() const { 1004 return isImmediate<0, 0xffffff + 1>(); 1005 } 1006 bool isImmThumbSR() const { 1007 return isImmediate<1, 33>(); 1008 } 1009 bool isPKHLSLImm() const { 1010 return isImmediate<0, 32>(); 1011 } 1012 bool isPKHASRImm() const { 1013 return isImmediate<0, 33>(); 1014 } 1015 bool isAdrLabel() const { 1016 // If we have an immediate that's not a constant, treat it as a label 1017 // reference needing a fixup. 1018 if (isImm() && !isa<MCConstantExpr>(getImm())) 1019 return true; 1020 1021 // If it is a constant, it must fit into a modified immediate encoding. 1022 if (!isImm()) return false; 1023 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1024 if (!CE) return false; 1025 int64_t Value = CE->getValue(); 1026 return (ARM_AM::getSOImmVal(Value) != -1 || 1027 ARM_AM::getSOImmVal(-Value) != -1); 1028 } 1029 bool isT2SOImm() const { 1030 // If we have an immediate that's not a constant, treat it as an expression 1031 // needing a fixup. 1032 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1033 // We want to avoid matching :upper16: and :lower16: as we want these 1034 // expressions to match in isImm0_65535Expr() 1035 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1036 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1037 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1038 } 1039 if (!isImm()) return false; 1040 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1041 if (!CE) return false; 1042 int64_t Value = CE->getValue(); 1043 return ARM_AM::getT2SOImmVal(Value) != -1; 1044 } 1045 bool isT2SOImmNot() const { 1046 if (!isImm()) return false; 1047 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1048 if (!CE) return false; 1049 int64_t Value = CE->getValue(); 1050 return ARM_AM::getT2SOImmVal(Value) == -1 && 1051 ARM_AM::getT2SOImmVal(~Value) != -1; 1052 } 1053 bool isT2SOImmNeg() const { 1054 if (!isImm()) return false; 1055 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1056 if (!CE) return false; 1057 int64_t Value = CE->getValue(); 1058 // Only use this when not representable as a plain so_imm. 1059 return ARM_AM::getT2SOImmVal(Value) == -1 && 1060 ARM_AM::getT2SOImmVal(-Value) != -1; 1061 } 1062 bool isSetEndImm() const { 1063 if (!isImm()) return false; 1064 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1065 if (!CE) return false; 1066 int64_t Value = CE->getValue(); 1067 return Value == 1 || Value == 0; 1068 } 1069 bool isReg() const override { return Kind == k_Register; } 1070 bool isRegList() const { return Kind == k_RegisterList; } 1071 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1072 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1073 bool isToken() const override { return Kind == k_Token; } 1074 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1075 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1076 bool isMem() const override { return Kind == k_Memory; } 1077 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1078 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1079 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1080 bool isRotImm() const { return Kind == k_RotateImmediate; } 1081 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1082 bool isModImmNot() const { 1083 if (!isImm()) return false; 1084 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1085 if (!CE) return false; 1086 int64_t Value = CE->getValue(); 1087 return ARM_AM::getSOImmVal(~Value) != -1; 1088 } 1089 bool isModImmNeg() const { 1090 if (!isImm()) return false; 1091 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1092 if (!CE) return false; 1093 int64_t Value = CE->getValue(); 1094 return ARM_AM::getSOImmVal(Value) == -1 && 1095 ARM_AM::getSOImmVal(-Value) != -1; 1096 } 1097 bool isThumbModImmNeg1_7() const { 1098 if (!isImm()) return false; 1099 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1100 if (!CE) return false; 1101 int32_t Value = -(int32_t)CE->getValue(); 1102 return 0 < Value && Value < 8; 1103 } 1104 bool isThumbModImmNeg8_255() const { 1105 if (!isImm()) return false; 1106 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1107 if (!CE) return false; 1108 int32_t Value = -(int32_t)CE->getValue(); 1109 return 7 < Value && Value < 256; 1110 } 1111 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1112 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1113 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1114 bool isPostIdxReg() const { 1115 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1116 } 1117 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1118 if (!isMem()) 1119 return false; 1120 // No offset of any kind. 1121 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1122 (alignOK || Memory.Alignment == Alignment); 1123 } 1124 bool isMemPCRelImm12() const { 1125 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1126 return false; 1127 // Base register must be PC. 1128 if (Memory.BaseRegNum != ARM::PC) 1129 return false; 1130 // Immediate offset in range [-4095, 4095]. 1131 if (!Memory.OffsetImm) return true; 1132 int64_t Val = Memory.OffsetImm->getValue(); 1133 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1134 } 1135 bool isAlignedMemory() const { 1136 return isMemNoOffset(true); 1137 } 1138 bool isAlignedMemoryNone() const { 1139 return isMemNoOffset(false, 0); 1140 } 1141 bool isDupAlignedMemoryNone() const { 1142 return isMemNoOffset(false, 0); 1143 } 1144 bool isAlignedMemory16() const { 1145 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1146 return true; 1147 return isMemNoOffset(false, 0); 1148 } 1149 bool isDupAlignedMemory16() const { 1150 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1151 return true; 1152 return isMemNoOffset(false, 0); 1153 } 1154 bool isAlignedMemory32() const { 1155 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1156 return true; 1157 return isMemNoOffset(false, 0); 1158 } 1159 bool isDupAlignedMemory32() const { 1160 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1161 return true; 1162 return isMemNoOffset(false, 0); 1163 } 1164 bool isAlignedMemory64() const { 1165 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1166 return true; 1167 return isMemNoOffset(false, 0); 1168 } 1169 bool isDupAlignedMemory64() const { 1170 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1171 return true; 1172 return isMemNoOffset(false, 0); 1173 } 1174 bool isAlignedMemory64or128() const { 1175 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1176 return true; 1177 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1178 return true; 1179 return isMemNoOffset(false, 0); 1180 } 1181 bool isDupAlignedMemory64or128() const { 1182 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1183 return true; 1184 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1185 return true; 1186 return isMemNoOffset(false, 0); 1187 } 1188 bool isAlignedMemory64or128or256() const { 1189 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1190 return true; 1191 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1192 return true; 1193 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1194 return true; 1195 return isMemNoOffset(false, 0); 1196 } 1197 bool isAddrMode2() const { 1198 if (!isMem() || Memory.Alignment != 0) return false; 1199 // Check for register offset. 1200 if (Memory.OffsetRegNum) return true; 1201 // Immediate offset in range [-4095, 4095]. 1202 if (!Memory.OffsetImm) return true; 1203 int64_t Val = Memory.OffsetImm->getValue(); 1204 return Val > -4096 && Val < 4096; 1205 } 1206 bool isAM2OffsetImm() const { 1207 if (!isImm()) return false; 1208 // Immediate offset in range [-4095, 4095]. 1209 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1210 if (!CE) return false; 1211 int64_t Val = CE->getValue(); 1212 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1213 } 1214 bool isAddrMode3() const { 1215 // If we have an immediate that's not a constant, treat it as a label 1216 // reference needing a fixup. If it is a constant, it's something else 1217 // and we reject it. 1218 if (isImm() && !isa<MCConstantExpr>(getImm())) 1219 return true; 1220 if (!isMem() || Memory.Alignment != 0) return false; 1221 // No shifts are legal for AM3. 1222 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1223 // Check for register offset. 1224 if (Memory.OffsetRegNum) return true; 1225 // Immediate offset in range [-255, 255]. 1226 if (!Memory.OffsetImm) return true; 1227 int64_t Val = Memory.OffsetImm->getValue(); 1228 // The #-0 offset is encoded as INT32_MIN, and we have to check 1229 // for this too. 1230 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1231 } 1232 bool isAM3Offset() const { 1233 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1234 return false; 1235 if (Kind == k_PostIndexRegister) 1236 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1237 // Immediate offset in range [-255, 255]. 1238 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1239 if (!CE) return false; 1240 int64_t Val = CE->getValue(); 1241 // Special case, #-0 is INT32_MIN. 1242 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1243 } 1244 bool isAddrMode5() const { 1245 // If we have an immediate that's not a constant, treat it as a label 1246 // reference needing a fixup. If it is a constant, it's something else 1247 // and we reject it. 1248 if (isImm() && !isa<MCConstantExpr>(getImm())) 1249 return true; 1250 if (!isMem() || Memory.Alignment != 0) return false; 1251 // Check for register offset. 1252 if (Memory.OffsetRegNum) return false; 1253 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1254 if (!Memory.OffsetImm) return true; 1255 int64_t Val = Memory.OffsetImm->getValue(); 1256 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1257 Val == INT32_MIN; 1258 } 1259 bool isAddrMode5FP16() const { 1260 // If we have an immediate that's not a constant, treat it as a label 1261 // reference needing a fixup. If it is a constant, it's something else 1262 // and we reject it. 1263 if (isImm() && !isa<MCConstantExpr>(getImm())) 1264 return true; 1265 if (!isMem() || Memory.Alignment != 0) return false; 1266 // Check for register offset. 1267 if (Memory.OffsetRegNum) return false; 1268 // Immediate offset in range [-510, 510] and a multiple of 2. 1269 if (!Memory.OffsetImm) return true; 1270 int64_t Val = Memory.OffsetImm->getValue(); 1271 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1272 } 1273 bool isMemTBB() const { 1274 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1275 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1276 return false; 1277 return true; 1278 } 1279 bool isMemTBH() const { 1280 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1281 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1282 Memory.Alignment != 0 ) 1283 return false; 1284 return true; 1285 } 1286 bool isMemRegOffset() const { 1287 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1288 return false; 1289 return true; 1290 } 1291 bool isT2MemRegOffset() const { 1292 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1293 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1294 return false; 1295 // Only lsl #{0, 1, 2, 3} allowed. 1296 if (Memory.ShiftType == ARM_AM::no_shift) 1297 return true; 1298 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1299 return false; 1300 return true; 1301 } 1302 bool isMemThumbRR() const { 1303 // Thumb reg+reg addressing is simple. Just two registers, a base and 1304 // an offset. No shifts, negations or any other complicating factors. 1305 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1306 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1307 return false; 1308 return isARMLowRegister(Memory.BaseRegNum) && 1309 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1310 } 1311 bool isMemThumbRIs4() const { 1312 if (!isMem() || Memory.OffsetRegNum != 0 || 1313 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1314 return false; 1315 // Immediate offset, multiple of 4 in range [0, 124]. 1316 if (!Memory.OffsetImm) return true; 1317 int64_t Val = Memory.OffsetImm->getValue(); 1318 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1319 } 1320 bool isMemThumbRIs2() const { 1321 if (!isMem() || Memory.OffsetRegNum != 0 || 1322 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1323 return false; 1324 // Immediate offset, multiple of 4 in range [0, 62]. 1325 if (!Memory.OffsetImm) return true; 1326 int64_t Val = Memory.OffsetImm->getValue(); 1327 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1328 } 1329 bool isMemThumbRIs1() const { 1330 if (!isMem() || Memory.OffsetRegNum != 0 || 1331 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1332 return false; 1333 // Immediate offset in range [0, 31]. 1334 if (!Memory.OffsetImm) return true; 1335 int64_t Val = Memory.OffsetImm->getValue(); 1336 return Val >= 0 && Val <= 31; 1337 } 1338 bool isMemThumbSPI() const { 1339 if (!isMem() || Memory.OffsetRegNum != 0 || 1340 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1341 return false; 1342 // Immediate offset, multiple of 4 in range [0, 1020]. 1343 if (!Memory.OffsetImm) return true; 1344 int64_t Val = Memory.OffsetImm->getValue(); 1345 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1346 } 1347 bool isMemImm8s4Offset() const { 1348 // If we have an immediate that's not a constant, treat it as a label 1349 // reference needing a fixup. If it is a constant, it's something else 1350 // and we reject it. 1351 if (isImm() && !isa<MCConstantExpr>(getImm())) 1352 return true; 1353 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1354 return false; 1355 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1356 if (!Memory.OffsetImm) return true; 1357 int64_t Val = Memory.OffsetImm->getValue(); 1358 // Special case, #-0 is INT32_MIN. 1359 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1360 } 1361 bool isMemImm0_1020s4Offset() const { 1362 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1363 return false; 1364 // Immediate offset a multiple of 4 in range [0, 1020]. 1365 if (!Memory.OffsetImm) return true; 1366 int64_t Val = Memory.OffsetImm->getValue(); 1367 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1368 } 1369 bool isMemImm8Offset() const { 1370 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1371 return false; 1372 // Base reg of PC isn't allowed for these encodings. 1373 if (Memory.BaseRegNum == ARM::PC) return false; 1374 // Immediate offset in range [-255, 255]. 1375 if (!Memory.OffsetImm) return true; 1376 int64_t Val = Memory.OffsetImm->getValue(); 1377 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1378 } 1379 bool isMemPosImm8Offset() const { 1380 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1381 return false; 1382 // Immediate offset in range [0, 255]. 1383 if (!Memory.OffsetImm) return true; 1384 int64_t Val = Memory.OffsetImm->getValue(); 1385 return Val >= 0 && Val < 256; 1386 } 1387 bool isMemNegImm8Offset() const { 1388 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1389 return false; 1390 // Base reg of PC isn't allowed for these encodings. 1391 if (Memory.BaseRegNum == ARM::PC) return false; 1392 // Immediate offset in range [-255, -1]. 1393 if (!Memory.OffsetImm) return false; 1394 int64_t Val = Memory.OffsetImm->getValue(); 1395 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1396 } 1397 bool isMemUImm12Offset() const { 1398 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1399 return false; 1400 // Immediate offset in range [0, 4095]. 1401 if (!Memory.OffsetImm) return true; 1402 int64_t Val = Memory.OffsetImm->getValue(); 1403 return (Val >= 0 && Val < 4096); 1404 } 1405 bool isMemImm12Offset() const { 1406 // If we have an immediate that's not a constant, treat it as a label 1407 // reference needing a fixup. If it is a constant, it's something else 1408 // and we reject it. 1409 1410 if (isImm() && !isa<MCConstantExpr>(getImm())) 1411 return true; 1412 1413 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1414 return false; 1415 // Immediate offset in range [-4095, 4095]. 1416 if (!Memory.OffsetImm) return true; 1417 int64_t Val = Memory.OffsetImm->getValue(); 1418 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1419 } 1420 bool isConstPoolAsmImm() const { 1421 // Delay processing of Constant Pool Immediate, this will turn into 1422 // a constant. Match no other operand 1423 return (isConstantPoolImm()); 1424 } 1425 bool isPostIdxImm8() const { 1426 if (!isImm()) return false; 1427 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1428 if (!CE) return false; 1429 int64_t Val = CE->getValue(); 1430 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1431 } 1432 bool isPostIdxImm8s4() const { 1433 if (!isImm()) return false; 1434 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1435 if (!CE) return false; 1436 int64_t Val = CE->getValue(); 1437 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1438 (Val == INT32_MIN); 1439 } 1440 1441 bool isMSRMask() const { return Kind == k_MSRMask; } 1442 bool isBankedReg() const { return Kind == k_BankedReg; } 1443 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1444 1445 // NEON operands. 1446 bool isSingleSpacedVectorList() const { 1447 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1448 } 1449 bool isDoubleSpacedVectorList() const { 1450 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1451 } 1452 bool isVecListOneD() const { 1453 if (!isSingleSpacedVectorList()) return false; 1454 return VectorList.Count == 1; 1455 } 1456 1457 bool isVecListDPair() const { 1458 if (!isSingleSpacedVectorList()) return false; 1459 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1460 .contains(VectorList.RegNum)); 1461 } 1462 1463 bool isVecListThreeD() const { 1464 if (!isSingleSpacedVectorList()) return false; 1465 return VectorList.Count == 3; 1466 } 1467 1468 bool isVecListFourD() const { 1469 if (!isSingleSpacedVectorList()) return false; 1470 return VectorList.Count == 4; 1471 } 1472 1473 bool isVecListDPairSpaced() const { 1474 if (Kind != k_VectorList) return false; 1475 if (isSingleSpacedVectorList()) return false; 1476 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1477 .contains(VectorList.RegNum)); 1478 } 1479 1480 bool isVecListThreeQ() const { 1481 if (!isDoubleSpacedVectorList()) return false; 1482 return VectorList.Count == 3; 1483 } 1484 1485 bool isVecListFourQ() const { 1486 if (!isDoubleSpacedVectorList()) return false; 1487 return VectorList.Count == 4; 1488 } 1489 1490 bool isSingleSpacedVectorAllLanes() const { 1491 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1492 } 1493 bool isDoubleSpacedVectorAllLanes() const { 1494 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1495 } 1496 bool isVecListOneDAllLanes() const { 1497 if (!isSingleSpacedVectorAllLanes()) return false; 1498 return VectorList.Count == 1; 1499 } 1500 1501 bool isVecListDPairAllLanes() const { 1502 if (!isSingleSpacedVectorAllLanes()) return false; 1503 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1504 .contains(VectorList.RegNum)); 1505 } 1506 1507 bool isVecListDPairSpacedAllLanes() const { 1508 if (!isDoubleSpacedVectorAllLanes()) return false; 1509 return VectorList.Count == 2; 1510 } 1511 1512 bool isVecListThreeDAllLanes() const { 1513 if (!isSingleSpacedVectorAllLanes()) return false; 1514 return VectorList.Count == 3; 1515 } 1516 1517 bool isVecListThreeQAllLanes() const { 1518 if (!isDoubleSpacedVectorAllLanes()) return false; 1519 return VectorList.Count == 3; 1520 } 1521 1522 bool isVecListFourDAllLanes() const { 1523 if (!isSingleSpacedVectorAllLanes()) return false; 1524 return VectorList.Count == 4; 1525 } 1526 1527 bool isVecListFourQAllLanes() const { 1528 if (!isDoubleSpacedVectorAllLanes()) return false; 1529 return VectorList.Count == 4; 1530 } 1531 1532 bool isSingleSpacedVectorIndexed() const { 1533 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1534 } 1535 bool isDoubleSpacedVectorIndexed() const { 1536 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1537 } 1538 bool isVecListOneDByteIndexed() const { 1539 if (!isSingleSpacedVectorIndexed()) return false; 1540 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1541 } 1542 1543 bool isVecListOneDHWordIndexed() const { 1544 if (!isSingleSpacedVectorIndexed()) return false; 1545 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1546 } 1547 1548 bool isVecListOneDWordIndexed() const { 1549 if (!isSingleSpacedVectorIndexed()) return false; 1550 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1551 } 1552 1553 bool isVecListTwoDByteIndexed() const { 1554 if (!isSingleSpacedVectorIndexed()) return false; 1555 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1556 } 1557 1558 bool isVecListTwoDHWordIndexed() const { 1559 if (!isSingleSpacedVectorIndexed()) return false; 1560 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1561 } 1562 1563 bool isVecListTwoQWordIndexed() const { 1564 if (!isDoubleSpacedVectorIndexed()) return false; 1565 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1566 } 1567 1568 bool isVecListTwoQHWordIndexed() const { 1569 if (!isDoubleSpacedVectorIndexed()) return false; 1570 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1571 } 1572 1573 bool isVecListTwoDWordIndexed() const { 1574 if (!isSingleSpacedVectorIndexed()) return false; 1575 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1576 } 1577 1578 bool isVecListThreeDByteIndexed() const { 1579 if (!isSingleSpacedVectorIndexed()) return false; 1580 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1581 } 1582 1583 bool isVecListThreeDHWordIndexed() const { 1584 if (!isSingleSpacedVectorIndexed()) return false; 1585 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1586 } 1587 1588 bool isVecListThreeQWordIndexed() const { 1589 if (!isDoubleSpacedVectorIndexed()) return false; 1590 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1591 } 1592 1593 bool isVecListThreeQHWordIndexed() const { 1594 if (!isDoubleSpacedVectorIndexed()) return false; 1595 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1596 } 1597 1598 bool isVecListThreeDWordIndexed() const { 1599 if (!isSingleSpacedVectorIndexed()) return false; 1600 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1601 } 1602 1603 bool isVecListFourDByteIndexed() const { 1604 if (!isSingleSpacedVectorIndexed()) return false; 1605 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1606 } 1607 1608 bool isVecListFourDHWordIndexed() const { 1609 if (!isSingleSpacedVectorIndexed()) return false; 1610 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1611 } 1612 1613 bool isVecListFourQWordIndexed() const { 1614 if (!isDoubleSpacedVectorIndexed()) return false; 1615 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1616 } 1617 1618 bool isVecListFourQHWordIndexed() const { 1619 if (!isDoubleSpacedVectorIndexed()) return false; 1620 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1621 } 1622 1623 bool isVecListFourDWordIndexed() const { 1624 if (!isSingleSpacedVectorIndexed()) return false; 1625 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1626 } 1627 1628 bool isVectorIndex8() const { 1629 if (Kind != k_VectorIndex) return false; 1630 return VectorIndex.Val < 8; 1631 } 1632 bool isVectorIndex16() const { 1633 if (Kind != k_VectorIndex) return false; 1634 return VectorIndex.Val < 4; 1635 } 1636 bool isVectorIndex32() const { 1637 if (Kind != k_VectorIndex) return false; 1638 return VectorIndex.Val < 2; 1639 } 1640 1641 bool isNEONi8splat() const { 1642 if (!isImm()) return false; 1643 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1644 // Must be a constant. 1645 if (!CE) return false; 1646 int64_t Value = CE->getValue(); 1647 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1648 // value. 1649 return Value >= 0 && Value < 256; 1650 } 1651 1652 bool isNEONi16splat() const { 1653 if (isNEONByteReplicate(2)) 1654 return false; // Leave that for bytes replication and forbid by default. 1655 if (!isImm()) 1656 return false; 1657 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1658 // Must be a constant. 1659 if (!CE) return false; 1660 unsigned Value = CE->getValue(); 1661 return ARM_AM::isNEONi16splat(Value); 1662 } 1663 1664 bool isNEONi16splatNot() const { 1665 if (!isImm()) 1666 return false; 1667 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1668 // Must be a constant. 1669 if (!CE) return false; 1670 unsigned Value = CE->getValue(); 1671 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1672 } 1673 1674 bool isNEONi32splat() const { 1675 if (isNEONByteReplicate(4)) 1676 return false; // Leave that for bytes replication and forbid by default. 1677 if (!isImm()) 1678 return false; 1679 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1680 // Must be a constant. 1681 if (!CE) return false; 1682 unsigned Value = CE->getValue(); 1683 return ARM_AM::isNEONi32splat(Value); 1684 } 1685 1686 bool isNEONi32splatNot() const { 1687 if (!isImm()) 1688 return false; 1689 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1690 // Must be a constant. 1691 if (!CE) return false; 1692 unsigned Value = CE->getValue(); 1693 return ARM_AM::isNEONi32splat(~Value); 1694 } 1695 1696 bool isNEONByteReplicate(unsigned NumBytes) const { 1697 if (!isImm()) 1698 return false; 1699 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1700 // Must be a constant. 1701 if (!CE) 1702 return false; 1703 int64_t Value = CE->getValue(); 1704 if (!Value) 1705 return false; // Don't bother with zero. 1706 1707 unsigned char B = Value & 0xff; 1708 for (unsigned i = 1; i < NumBytes; ++i) { 1709 Value >>= 8; 1710 if ((Value & 0xff) != B) 1711 return false; 1712 } 1713 return true; 1714 } 1715 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1716 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1717 bool isNEONi32vmov() const { 1718 if (isNEONByteReplicate(4)) 1719 return false; // Let it to be classified as byte-replicate case. 1720 if (!isImm()) 1721 return false; 1722 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1723 // Must be a constant. 1724 if (!CE) 1725 return false; 1726 int64_t Value = CE->getValue(); 1727 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1728 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1729 // FIXME: This is probably wrong and a copy and paste from previous example 1730 return (Value >= 0 && Value < 256) || 1731 (Value >= 0x0100 && Value <= 0xff00) || 1732 (Value >= 0x010000 && Value <= 0xff0000) || 1733 (Value >= 0x01000000 && Value <= 0xff000000) || 1734 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1735 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1736 } 1737 bool isNEONi32vmovNeg() const { 1738 if (!isImm()) return false; 1739 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1740 // Must be a constant. 1741 if (!CE) return false; 1742 int64_t Value = ~CE->getValue(); 1743 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1744 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1745 // FIXME: This is probably wrong and a copy and paste from previous example 1746 return (Value >= 0 && Value < 256) || 1747 (Value >= 0x0100 && Value <= 0xff00) || 1748 (Value >= 0x010000 && Value <= 0xff0000) || 1749 (Value >= 0x01000000 && Value <= 0xff000000) || 1750 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1751 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1752 } 1753 1754 bool isNEONi64splat() const { 1755 if (!isImm()) return false; 1756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1757 // Must be a constant. 1758 if (!CE) return false; 1759 uint64_t Value = CE->getValue(); 1760 // i64 value with each byte being either 0 or 0xff. 1761 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1762 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1763 return true; 1764 } 1765 1766 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1767 // Add as immediates when possible. Null MCExpr = 0. 1768 if (!Expr) 1769 Inst.addOperand(MCOperand::createImm(0)); 1770 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1771 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1772 else 1773 Inst.addOperand(MCOperand::createExpr(Expr)); 1774 } 1775 1776 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1777 assert(N == 1 && "Invalid number of operands!"); 1778 addExpr(Inst, getImm()); 1779 } 1780 1781 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1782 assert(N == 1 && "Invalid number of operands!"); 1783 addExpr(Inst, getImm()); 1784 } 1785 1786 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1787 assert(N == 2 && "Invalid number of operands!"); 1788 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1789 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1790 Inst.addOperand(MCOperand::createReg(RegNum)); 1791 } 1792 1793 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1794 assert(N == 1 && "Invalid number of operands!"); 1795 Inst.addOperand(MCOperand::createImm(getCoproc())); 1796 } 1797 1798 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1799 assert(N == 1 && "Invalid number of operands!"); 1800 Inst.addOperand(MCOperand::createImm(getCoproc())); 1801 } 1802 1803 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1804 assert(N == 1 && "Invalid number of operands!"); 1805 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1806 } 1807 1808 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1809 assert(N == 1 && "Invalid number of operands!"); 1810 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1811 } 1812 1813 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1814 assert(N == 1 && "Invalid number of operands!"); 1815 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1816 } 1817 1818 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1819 assert(N == 1 && "Invalid number of operands!"); 1820 Inst.addOperand(MCOperand::createReg(getReg())); 1821 } 1822 1823 void addRegOperands(MCInst &Inst, unsigned N) const { 1824 assert(N == 1 && "Invalid number of operands!"); 1825 Inst.addOperand(MCOperand::createReg(getReg())); 1826 } 1827 1828 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1829 assert(N == 3 && "Invalid number of operands!"); 1830 assert(isRegShiftedReg() && 1831 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1832 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1833 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1834 Inst.addOperand(MCOperand::createImm( 1835 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1836 } 1837 1838 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1839 assert(N == 2 && "Invalid number of operands!"); 1840 assert(isRegShiftedImm() && 1841 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1842 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1843 // Shift of #32 is encoded as 0 where permitted 1844 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1845 Inst.addOperand(MCOperand::createImm( 1846 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1847 } 1848 1849 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1850 assert(N == 1 && "Invalid number of operands!"); 1851 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1852 ShifterImm.Imm)); 1853 } 1854 1855 void addRegListOperands(MCInst &Inst, unsigned N) const { 1856 assert(N == 1 && "Invalid number of operands!"); 1857 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1858 for (SmallVectorImpl<unsigned>::const_iterator 1859 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1860 Inst.addOperand(MCOperand::createReg(*I)); 1861 } 1862 1863 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1864 addRegListOperands(Inst, N); 1865 } 1866 1867 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1868 addRegListOperands(Inst, N); 1869 } 1870 1871 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1872 assert(N == 1 && "Invalid number of operands!"); 1873 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1874 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1875 } 1876 1877 void addModImmOperands(MCInst &Inst, unsigned N) const { 1878 assert(N == 1 && "Invalid number of operands!"); 1879 1880 // Support for fixups (MCFixup) 1881 if (isImm()) 1882 return addImmOperands(Inst, N); 1883 1884 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1885 } 1886 1887 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1888 assert(N == 1 && "Invalid number of operands!"); 1889 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1890 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1891 Inst.addOperand(MCOperand::createImm(Enc)); 1892 } 1893 1894 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1895 assert(N == 1 && "Invalid number of operands!"); 1896 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1897 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1898 Inst.addOperand(MCOperand::createImm(Enc)); 1899 } 1900 1901 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 1902 assert(N == 1 && "Invalid number of operands!"); 1903 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1904 uint32_t Val = -CE->getValue(); 1905 Inst.addOperand(MCOperand::createImm(Val)); 1906 } 1907 1908 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 1909 assert(N == 1 && "Invalid number of operands!"); 1910 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1911 uint32_t Val = -CE->getValue(); 1912 Inst.addOperand(MCOperand::createImm(Val)); 1913 } 1914 1915 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1916 assert(N == 1 && "Invalid number of operands!"); 1917 // Munge the lsb/width into a bitfield mask. 1918 unsigned lsb = Bitfield.LSB; 1919 unsigned width = Bitfield.Width; 1920 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1921 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1922 (32 - (lsb + width))); 1923 Inst.addOperand(MCOperand::createImm(Mask)); 1924 } 1925 1926 void addImmOperands(MCInst &Inst, unsigned N) const { 1927 assert(N == 1 && "Invalid number of operands!"); 1928 addExpr(Inst, getImm()); 1929 } 1930 1931 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1932 assert(N == 1 && "Invalid number of operands!"); 1933 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1934 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1935 } 1936 1937 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1938 assert(N == 1 && "Invalid number of operands!"); 1939 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1940 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1941 } 1942 1943 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1944 assert(N == 1 && "Invalid number of operands!"); 1945 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1946 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1947 Inst.addOperand(MCOperand::createImm(Val)); 1948 } 1949 1950 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1951 assert(N == 1 && "Invalid number of operands!"); 1952 // FIXME: We really want to scale the value here, but the LDRD/STRD 1953 // instruction don't encode operands that way yet. 1954 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1955 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1956 } 1957 1958 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1959 assert(N == 1 && "Invalid number of operands!"); 1960 // The immediate is scaled by four in the encoding and is stored 1961 // in the MCInst as such. Lop off the low two bits here. 1962 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1963 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1964 } 1965 1966 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1967 assert(N == 1 && "Invalid number of operands!"); 1968 // The immediate is scaled by four in the encoding and is stored 1969 // in the MCInst as such. Lop off the low two bits here. 1970 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1971 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1972 } 1973 1974 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1975 assert(N == 1 && "Invalid number of operands!"); 1976 // The immediate is scaled by four in the encoding and is stored 1977 // in the MCInst as such. Lop off the low two bits here. 1978 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1979 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1980 } 1981 1982 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1983 assert(N == 1 && "Invalid number of operands!"); 1984 // The constant encodes as the immediate-1, and we store in the instruction 1985 // the bits as encoded, so subtract off one here. 1986 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1987 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1988 } 1989 1990 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1991 assert(N == 1 && "Invalid number of operands!"); 1992 // The constant encodes as the immediate-1, and we store in the instruction 1993 // the bits as encoded, so subtract off one here. 1994 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1995 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1996 } 1997 1998 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1999 assert(N == 1 && "Invalid number of operands!"); 2000 // The constant encodes as the immediate, except for 32, which encodes as 2001 // zero. 2002 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2003 unsigned Imm = CE->getValue(); 2004 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2005 } 2006 2007 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2008 assert(N == 1 && "Invalid number of operands!"); 2009 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2010 // the instruction as well. 2011 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2012 int Val = CE->getValue(); 2013 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2014 } 2015 2016 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2017 assert(N == 1 && "Invalid number of operands!"); 2018 // The operand is actually a t2_so_imm, but we have its bitwise 2019 // negation in the assembly source, so twiddle it here. 2020 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2021 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2022 } 2023 2024 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2025 assert(N == 1 && "Invalid number of operands!"); 2026 // The operand is actually a t2_so_imm, but we have its 2027 // negation in the assembly source, so twiddle it here. 2028 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2029 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2030 } 2031 2032 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2033 assert(N == 1 && "Invalid number of operands!"); 2034 // The operand is actually an imm0_4095, but we have its 2035 // negation in the assembly source, so twiddle it here. 2036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2037 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2038 } 2039 2040 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2041 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2042 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2043 return; 2044 } 2045 2046 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2047 assert(SR && "Unknown value type!"); 2048 Inst.addOperand(MCOperand::createExpr(SR)); 2049 } 2050 2051 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2052 assert(N == 1 && "Invalid number of operands!"); 2053 if (isImm()) { 2054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2055 if (CE) { 2056 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2057 return; 2058 } 2059 2060 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2061 2062 assert(SR && "Unknown value type!"); 2063 Inst.addOperand(MCOperand::createExpr(SR)); 2064 return; 2065 } 2066 2067 assert(isMem() && "Unknown value type!"); 2068 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2069 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2070 } 2071 2072 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2073 assert(N == 1 && "Invalid number of operands!"); 2074 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2075 } 2076 2077 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2078 assert(N == 1 && "Invalid number of operands!"); 2079 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2080 } 2081 2082 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2083 assert(N == 1 && "Invalid number of operands!"); 2084 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2085 } 2086 2087 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2088 assert(N == 1 && "Invalid number of operands!"); 2089 int32_t Imm = Memory.OffsetImm->getValue(); 2090 Inst.addOperand(MCOperand::createImm(Imm)); 2091 } 2092 2093 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2094 assert(N == 1 && "Invalid number of operands!"); 2095 assert(isImm() && "Not an immediate!"); 2096 2097 // If we have an immediate that's not a constant, treat it as a label 2098 // reference needing a fixup. 2099 if (!isa<MCConstantExpr>(getImm())) { 2100 Inst.addOperand(MCOperand::createExpr(getImm())); 2101 return; 2102 } 2103 2104 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2105 int Val = CE->getValue(); 2106 Inst.addOperand(MCOperand::createImm(Val)); 2107 } 2108 2109 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2110 assert(N == 2 && "Invalid number of operands!"); 2111 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2112 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2113 } 2114 2115 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2116 addAlignedMemoryOperands(Inst, N); 2117 } 2118 2119 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2120 addAlignedMemoryOperands(Inst, N); 2121 } 2122 2123 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2124 addAlignedMemoryOperands(Inst, N); 2125 } 2126 2127 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2128 addAlignedMemoryOperands(Inst, N); 2129 } 2130 2131 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2132 addAlignedMemoryOperands(Inst, N); 2133 } 2134 2135 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2136 addAlignedMemoryOperands(Inst, N); 2137 } 2138 2139 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2140 addAlignedMemoryOperands(Inst, N); 2141 } 2142 2143 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2144 addAlignedMemoryOperands(Inst, N); 2145 } 2146 2147 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2148 addAlignedMemoryOperands(Inst, N); 2149 } 2150 2151 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2152 addAlignedMemoryOperands(Inst, N); 2153 } 2154 2155 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2156 addAlignedMemoryOperands(Inst, N); 2157 } 2158 2159 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2160 assert(N == 3 && "Invalid number of operands!"); 2161 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2162 if (!Memory.OffsetRegNum) { 2163 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2164 // Special case for #-0 2165 if (Val == INT32_MIN) Val = 0; 2166 if (Val < 0) Val = -Val; 2167 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2168 } else { 2169 // For register offset, we encode the shift type and negation flag 2170 // here. 2171 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2172 Memory.ShiftImm, Memory.ShiftType); 2173 } 2174 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2175 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2176 Inst.addOperand(MCOperand::createImm(Val)); 2177 } 2178 2179 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2180 assert(N == 2 && "Invalid number of operands!"); 2181 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2182 assert(CE && "non-constant AM2OffsetImm operand!"); 2183 int32_t Val = CE->getValue(); 2184 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2185 // Special case for #-0 2186 if (Val == INT32_MIN) Val = 0; 2187 if (Val < 0) Val = -Val; 2188 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2189 Inst.addOperand(MCOperand::createReg(0)); 2190 Inst.addOperand(MCOperand::createImm(Val)); 2191 } 2192 2193 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2194 assert(N == 3 && "Invalid number of operands!"); 2195 // If we have an immediate that's not a constant, treat it as a label 2196 // reference needing a fixup. If it is a constant, it's something else 2197 // and we reject it. 2198 if (isImm()) { 2199 Inst.addOperand(MCOperand::createExpr(getImm())); 2200 Inst.addOperand(MCOperand::createReg(0)); 2201 Inst.addOperand(MCOperand::createImm(0)); 2202 return; 2203 } 2204 2205 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2206 if (!Memory.OffsetRegNum) { 2207 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2208 // Special case for #-0 2209 if (Val == INT32_MIN) Val = 0; 2210 if (Val < 0) Val = -Val; 2211 Val = ARM_AM::getAM3Opc(AddSub, Val); 2212 } else { 2213 // For register offset, we encode the shift type and negation flag 2214 // here. 2215 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2216 } 2217 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2218 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2219 Inst.addOperand(MCOperand::createImm(Val)); 2220 } 2221 2222 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2223 assert(N == 2 && "Invalid number of operands!"); 2224 if (Kind == k_PostIndexRegister) { 2225 int32_t Val = 2226 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2227 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2228 Inst.addOperand(MCOperand::createImm(Val)); 2229 return; 2230 } 2231 2232 // Constant offset. 2233 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2234 int32_t Val = CE->getValue(); 2235 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2236 // Special case for #-0 2237 if (Val == INT32_MIN) Val = 0; 2238 if (Val < 0) Val = -Val; 2239 Val = ARM_AM::getAM3Opc(AddSub, Val); 2240 Inst.addOperand(MCOperand::createReg(0)); 2241 Inst.addOperand(MCOperand::createImm(Val)); 2242 } 2243 2244 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2245 assert(N == 2 && "Invalid number of operands!"); 2246 // If we have an immediate that's not a constant, treat it as a label 2247 // reference needing a fixup. If it is a constant, it's something else 2248 // and we reject it. 2249 if (isImm()) { 2250 Inst.addOperand(MCOperand::createExpr(getImm())); 2251 Inst.addOperand(MCOperand::createImm(0)); 2252 return; 2253 } 2254 2255 // The lower two bits are always zero and as such are not encoded. 2256 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2257 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2258 // Special case for #-0 2259 if (Val == INT32_MIN) Val = 0; 2260 if (Val < 0) Val = -Val; 2261 Val = ARM_AM::getAM5Opc(AddSub, Val); 2262 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2263 Inst.addOperand(MCOperand::createImm(Val)); 2264 } 2265 2266 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2267 assert(N == 2 && "Invalid number of operands!"); 2268 // If we have an immediate that's not a constant, treat it as a label 2269 // reference needing a fixup. If it is a constant, it's something else 2270 // and we reject it. 2271 if (isImm()) { 2272 Inst.addOperand(MCOperand::createExpr(getImm())); 2273 Inst.addOperand(MCOperand::createImm(0)); 2274 return; 2275 } 2276 2277 // The lower bit is always zero and as such is not encoded. 2278 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2279 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2280 // Special case for #-0 2281 if (Val == INT32_MIN) Val = 0; 2282 if (Val < 0) Val = -Val; 2283 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2284 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2285 Inst.addOperand(MCOperand::createImm(Val)); 2286 } 2287 2288 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2289 assert(N == 2 && "Invalid number of operands!"); 2290 // If we have an immediate that's not a constant, treat it as a label 2291 // reference needing a fixup. If it is a constant, it's something else 2292 // and we reject it. 2293 if (isImm()) { 2294 Inst.addOperand(MCOperand::createExpr(getImm())); 2295 Inst.addOperand(MCOperand::createImm(0)); 2296 return; 2297 } 2298 2299 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2300 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2301 Inst.addOperand(MCOperand::createImm(Val)); 2302 } 2303 2304 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2305 assert(N == 2 && "Invalid number of operands!"); 2306 // The lower two bits are always zero and as such are not encoded. 2307 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2308 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2309 Inst.addOperand(MCOperand::createImm(Val)); 2310 } 2311 2312 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2313 assert(N == 2 && "Invalid number of operands!"); 2314 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2315 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2316 Inst.addOperand(MCOperand::createImm(Val)); 2317 } 2318 2319 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2320 addMemImm8OffsetOperands(Inst, N); 2321 } 2322 2323 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2324 addMemImm8OffsetOperands(Inst, N); 2325 } 2326 2327 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2328 assert(N == 2 && "Invalid number of operands!"); 2329 // If this is an immediate, it's a label reference. 2330 if (isImm()) { 2331 addExpr(Inst, getImm()); 2332 Inst.addOperand(MCOperand::createImm(0)); 2333 return; 2334 } 2335 2336 // Otherwise, it's a normal memory reg+offset. 2337 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2338 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2339 Inst.addOperand(MCOperand::createImm(Val)); 2340 } 2341 2342 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 // If this is an immediate, it's a label reference. 2345 if (isImm()) { 2346 addExpr(Inst, getImm()); 2347 Inst.addOperand(MCOperand::createImm(0)); 2348 return; 2349 } 2350 2351 // Otherwise, it's a normal memory reg+offset. 2352 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2353 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2354 Inst.addOperand(MCOperand::createImm(Val)); 2355 } 2356 2357 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2358 assert(N == 1 && "Invalid number of operands!"); 2359 // This is container for the immediate that we will create the constant 2360 // pool from 2361 addExpr(Inst, getConstantPoolImm()); 2362 return; 2363 } 2364 2365 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2366 assert(N == 2 && "Invalid number of operands!"); 2367 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2368 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2369 } 2370 2371 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2372 assert(N == 2 && "Invalid number of operands!"); 2373 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2374 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2375 } 2376 2377 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2378 assert(N == 3 && "Invalid number of operands!"); 2379 unsigned Val = 2380 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2381 Memory.ShiftImm, Memory.ShiftType); 2382 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2383 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2384 Inst.addOperand(MCOperand::createImm(Val)); 2385 } 2386 2387 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2388 assert(N == 3 && "Invalid number of operands!"); 2389 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2390 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2391 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2392 } 2393 2394 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2395 assert(N == 2 && "Invalid number of operands!"); 2396 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2397 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2398 } 2399 2400 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2401 assert(N == 2 && "Invalid number of operands!"); 2402 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2403 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2404 Inst.addOperand(MCOperand::createImm(Val)); 2405 } 2406 2407 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2408 assert(N == 2 && "Invalid number of operands!"); 2409 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2410 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2411 Inst.addOperand(MCOperand::createImm(Val)); 2412 } 2413 2414 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2415 assert(N == 2 && "Invalid number of operands!"); 2416 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2417 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2418 Inst.addOperand(MCOperand::createImm(Val)); 2419 } 2420 2421 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2422 assert(N == 2 && "Invalid number of operands!"); 2423 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2424 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2425 Inst.addOperand(MCOperand::createImm(Val)); 2426 } 2427 2428 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2429 assert(N == 1 && "Invalid number of operands!"); 2430 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2431 assert(CE && "non-constant post-idx-imm8 operand!"); 2432 int Imm = CE->getValue(); 2433 bool isAdd = Imm >= 0; 2434 if (Imm == INT32_MIN) Imm = 0; 2435 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2436 Inst.addOperand(MCOperand::createImm(Imm)); 2437 } 2438 2439 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2440 assert(N == 1 && "Invalid number of operands!"); 2441 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2442 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2443 int Imm = CE->getValue(); 2444 bool isAdd = Imm >= 0; 2445 if (Imm == INT32_MIN) Imm = 0; 2446 // Immediate is scaled by 4. 2447 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2448 Inst.addOperand(MCOperand::createImm(Imm)); 2449 } 2450 2451 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2452 assert(N == 2 && "Invalid number of operands!"); 2453 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2454 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2455 } 2456 2457 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2458 assert(N == 2 && "Invalid number of operands!"); 2459 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2460 // The sign, shift type, and shift amount are encoded in a single operand 2461 // using the AM2 encoding helpers. 2462 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2463 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2464 PostIdxReg.ShiftTy); 2465 Inst.addOperand(MCOperand::createImm(Imm)); 2466 } 2467 2468 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2469 assert(N == 1 && "Invalid number of operands!"); 2470 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2471 } 2472 2473 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2474 assert(N == 1 && "Invalid number of operands!"); 2475 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2476 } 2477 2478 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 1 && "Invalid number of operands!"); 2480 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2481 } 2482 2483 void addVecListOperands(MCInst &Inst, unsigned N) const { 2484 assert(N == 1 && "Invalid number of operands!"); 2485 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2486 } 2487 2488 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 2 && "Invalid number of operands!"); 2490 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2491 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2492 } 2493 2494 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2495 assert(N == 1 && "Invalid number of operands!"); 2496 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2497 } 2498 2499 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2500 assert(N == 1 && "Invalid number of operands!"); 2501 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2502 } 2503 2504 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2505 assert(N == 1 && "Invalid number of operands!"); 2506 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2507 } 2508 2509 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2510 assert(N == 1 && "Invalid number of operands!"); 2511 // The immediate encodes the type of constant as well as the value. 2512 // Mask in that this is an i8 splat. 2513 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2514 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2515 } 2516 2517 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2518 assert(N == 1 && "Invalid number of operands!"); 2519 // The immediate encodes the type of constant as well as the value. 2520 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2521 unsigned Value = CE->getValue(); 2522 Value = ARM_AM::encodeNEONi16splat(Value); 2523 Inst.addOperand(MCOperand::createImm(Value)); 2524 } 2525 2526 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2527 assert(N == 1 && "Invalid number of operands!"); 2528 // The immediate encodes the type of constant as well as the value. 2529 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2530 unsigned Value = CE->getValue(); 2531 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2532 Inst.addOperand(MCOperand::createImm(Value)); 2533 } 2534 2535 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2536 assert(N == 1 && "Invalid number of operands!"); 2537 // The immediate encodes the type of constant as well as the value. 2538 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2539 unsigned Value = CE->getValue(); 2540 Value = ARM_AM::encodeNEONi32splat(Value); 2541 Inst.addOperand(MCOperand::createImm(Value)); 2542 } 2543 2544 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 1 && "Invalid number of operands!"); 2546 // The immediate encodes the type of constant as well as the value. 2547 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2548 unsigned Value = CE->getValue(); 2549 Value = ARM_AM::encodeNEONi32splat(~Value); 2550 Inst.addOperand(MCOperand::createImm(Value)); 2551 } 2552 2553 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2554 assert(N == 1 && "Invalid number of operands!"); 2555 // The immediate encodes the type of constant as well as the value. 2556 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2557 unsigned Value = CE->getValue(); 2558 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2559 Inst.getOpcode() == ARM::VMOVv16i8) && 2560 "All vmvn instructions that wants to replicate non-zero byte " 2561 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2562 unsigned B = ((~Value) & 0xff); 2563 B |= 0xe00; // cmode = 0b1110 2564 Inst.addOperand(MCOperand::createImm(B)); 2565 } 2566 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2567 assert(N == 1 && "Invalid number of operands!"); 2568 // The immediate encodes the type of constant as well as the value. 2569 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2570 unsigned Value = CE->getValue(); 2571 if (Value >= 256 && Value <= 0xffff) 2572 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2573 else if (Value > 0xffff && Value <= 0xffffff) 2574 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2575 else if (Value > 0xffffff) 2576 Value = (Value >> 24) | 0x600; 2577 Inst.addOperand(MCOperand::createImm(Value)); 2578 } 2579 2580 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2581 assert(N == 1 && "Invalid number of operands!"); 2582 // The immediate encodes the type of constant as well as the value. 2583 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2584 unsigned Value = CE->getValue(); 2585 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2586 Inst.getOpcode() == ARM::VMOVv16i8) && 2587 "All instructions that wants to replicate non-zero byte " 2588 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2589 unsigned B = Value & 0xff; 2590 B |= 0xe00; // cmode = 0b1110 2591 Inst.addOperand(MCOperand::createImm(B)); 2592 } 2593 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2594 assert(N == 1 && "Invalid number of operands!"); 2595 // The immediate encodes the type of constant as well as the value. 2596 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2597 unsigned Value = ~CE->getValue(); 2598 if (Value >= 256 && Value <= 0xffff) 2599 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2600 else if (Value > 0xffff && Value <= 0xffffff) 2601 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2602 else if (Value > 0xffffff) 2603 Value = (Value >> 24) | 0x600; 2604 Inst.addOperand(MCOperand::createImm(Value)); 2605 } 2606 2607 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2608 assert(N == 1 && "Invalid number of operands!"); 2609 // The immediate encodes the type of constant as well as the value. 2610 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2611 uint64_t Value = CE->getValue(); 2612 unsigned Imm = 0; 2613 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2614 Imm |= (Value & 1) << i; 2615 } 2616 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2617 } 2618 2619 void print(raw_ostream &OS) const override; 2620 2621 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2622 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2623 Op->ITMask.Mask = Mask; 2624 Op->StartLoc = S; 2625 Op->EndLoc = S; 2626 return Op; 2627 } 2628 2629 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2630 SMLoc S) { 2631 auto Op = make_unique<ARMOperand>(k_CondCode); 2632 Op->CC.Val = CC; 2633 Op->StartLoc = S; 2634 Op->EndLoc = S; 2635 return Op; 2636 } 2637 2638 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2639 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2640 Op->Cop.Val = CopVal; 2641 Op->StartLoc = S; 2642 Op->EndLoc = S; 2643 return Op; 2644 } 2645 2646 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2647 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2648 Op->Cop.Val = CopVal; 2649 Op->StartLoc = S; 2650 Op->EndLoc = S; 2651 return Op; 2652 } 2653 2654 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2655 SMLoc E) { 2656 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2657 Op->Cop.Val = Val; 2658 Op->StartLoc = S; 2659 Op->EndLoc = E; 2660 return Op; 2661 } 2662 2663 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2664 auto Op = make_unique<ARMOperand>(k_CCOut); 2665 Op->Reg.RegNum = RegNum; 2666 Op->StartLoc = S; 2667 Op->EndLoc = S; 2668 return Op; 2669 } 2670 2671 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2672 auto Op = make_unique<ARMOperand>(k_Token); 2673 Op->Tok.Data = Str.data(); 2674 Op->Tok.Length = Str.size(); 2675 Op->StartLoc = S; 2676 Op->EndLoc = S; 2677 return Op; 2678 } 2679 2680 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2681 SMLoc E) { 2682 auto Op = make_unique<ARMOperand>(k_Register); 2683 Op->Reg.RegNum = RegNum; 2684 Op->StartLoc = S; 2685 Op->EndLoc = E; 2686 return Op; 2687 } 2688 2689 static std::unique_ptr<ARMOperand> 2690 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2691 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2692 SMLoc E) { 2693 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2694 Op->RegShiftedReg.ShiftTy = ShTy; 2695 Op->RegShiftedReg.SrcReg = SrcReg; 2696 Op->RegShiftedReg.ShiftReg = ShiftReg; 2697 Op->RegShiftedReg.ShiftImm = ShiftImm; 2698 Op->StartLoc = S; 2699 Op->EndLoc = E; 2700 return Op; 2701 } 2702 2703 static std::unique_ptr<ARMOperand> 2704 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2705 unsigned ShiftImm, SMLoc S, SMLoc E) { 2706 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2707 Op->RegShiftedImm.ShiftTy = ShTy; 2708 Op->RegShiftedImm.SrcReg = SrcReg; 2709 Op->RegShiftedImm.ShiftImm = ShiftImm; 2710 Op->StartLoc = S; 2711 Op->EndLoc = E; 2712 return Op; 2713 } 2714 2715 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2716 SMLoc S, SMLoc E) { 2717 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2718 Op->ShifterImm.isASR = isASR; 2719 Op->ShifterImm.Imm = Imm; 2720 Op->StartLoc = S; 2721 Op->EndLoc = E; 2722 return Op; 2723 } 2724 2725 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2726 SMLoc E) { 2727 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2728 Op->RotImm.Imm = Imm; 2729 Op->StartLoc = S; 2730 Op->EndLoc = E; 2731 return Op; 2732 } 2733 2734 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2735 SMLoc S, SMLoc E) { 2736 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2737 Op->ModImm.Bits = Bits; 2738 Op->ModImm.Rot = Rot; 2739 Op->StartLoc = S; 2740 Op->EndLoc = E; 2741 return Op; 2742 } 2743 2744 static std::unique_ptr<ARMOperand> 2745 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2746 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2747 Op->Imm.Val = Val; 2748 Op->StartLoc = S; 2749 Op->EndLoc = E; 2750 return Op; 2751 } 2752 2753 static std::unique_ptr<ARMOperand> 2754 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2755 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2756 Op->Bitfield.LSB = LSB; 2757 Op->Bitfield.Width = Width; 2758 Op->StartLoc = S; 2759 Op->EndLoc = E; 2760 return Op; 2761 } 2762 2763 static std::unique_ptr<ARMOperand> 2764 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2765 SMLoc StartLoc, SMLoc EndLoc) { 2766 assert (Regs.size() > 0 && "RegList contains no registers?"); 2767 KindTy Kind = k_RegisterList; 2768 2769 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2770 Kind = k_DPRRegisterList; 2771 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2772 contains(Regs.front().second)) 2773 Kind = k_SPRRegisterList; 2774 2775 // Sort based on the register encoding values. 2776 array_pod_sort(Regs.begin(), Regs.end()); 2777 2778 auto Op = make_unique<ARMOperand>(Kind); 2779 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2780 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2781 Op->Registers.push_back(I->second); 2782 Op->StartLoc = StartLoc; 2783 Op->EndLoc = EndLoc; 2784 return Op; 2785 } 2786 2787 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2788 unsigned Count, 2789 bool isDoubleSpaced, 2790 SMLoc S, SMLoc E) { 2791 auto Op = make_unique<ARMOperand>(k_VectorList); 2792 Op->VectorList.RegNum = RegNum; 2793 Op->VectorList.Count = Count; 2794 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2795 Op->StartLoc = S; 2796 Op->EndLoc = E; 2797 return Op; 2798 } 2799 2800 static std::unique_ptr<ARMOperand> 2801 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2802 SMLoc S, SMLoc E) { 2803 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2804 Op->VectorList.RegNum = RegNum; 2805 Op->VectorList.Count = Count; 2806 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2807 Op->StartLoc = S; 2808 Op->EndLoc = E; 2809 return Op; 2810 } 2811 2812 static std::unique_ptr<ARMOperand> 2813 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2814 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2815 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2816 Op->VectorList.RegNum = RegNum; 2817 Op->VectorList.Count = Count; 2818 Op->VectorList.LaneIndex = Index; 2819 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2820 Op->StartLoc = S; 2821 Op->EndLoc = E; 2822 return Op; 2823 } 2824 2825 static std::unique_ptr<ARMOperand> 2826 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2827 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2828 Op->VectorIndex.Val = Idx; 2829 Op->StartLoc = S; 2830 Op->EndLoc = E; 2831 return Op; 2832 } 2833 2834 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2835 SMLoc E) { 2836 auto Op = make_unique<ARMOperand>(k_Immediate); 2837 Op->Imm.Val = Val; 2838 Op->StartLoc = S; 2839 Op->EndLoc = E; 2840 return Op; 2841 } 2842 2843 static std::unique_ptr<ARMOperand> 2844 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2845 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2846 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2847 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2848 auto Op = make_unique<ARMOperand>(k_Memory); 2849 Op->Memory.BaseRegNum = BaseRegNum; 2850 Op->Memory.OffsetImm = OffsetImm; 2851 Op->Memory.OffsetRegNum = OffsetRegNum; 2852 Op->Memory.ShiftType = ShiftType; 2853 Op->Memory.ShiftImm = ShiftImm; 2854 Op->Memory.Alignment = Alignment; 2855 Op->Memory.isNegative = isNegative; 2856 Op->StartLoc = S; 2857 Op->EndLoc = E; 2858 Op->AlignmentLoc = AlignmentLoc; 2859 return Op; 2860 } 2861 2862 static std::unique_ptr<ARMOperand> 2863 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2864 unsigned ShiftImm, SMLoc S, SMLoc E) { 2865 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2866 Op->PostIdxReg.RegNum = RegNum; 2867 Op->PostIdxReg.isAdd = isAdd; 2868 Op->PostIdxReg.ShiftTy = ShiftTy; 2869 Op->PostIdxReg.ShiftImm = ShiftImm; 2870 Op->StartLoc = S; 2871 Op->EndLoc = E; 2872 return Op; 2873 } 2874 2875 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2876 SMLoc S) { 2877 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2878 Op->MBOpt.Val = Opt; 2879 Op->StartLoc = S; 2880 Op->EndLoc = S; 2881 return Op; 2882 } 2883 2884 static std::unique_ptr<ARMOperand> 2885 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2886 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2887 Op->ISBOpt.Val = Opt; 2888 Op->StartLoc = S; 2889 Op->EndLoc = S; 2890 return Op; 2891 } 2892 2893 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2894 SMLoc S) { 2895 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2896 Op->IFlags.Val = IFlags; 2897 Op->StartLoc = S; 2898 Op->EndLoc = S; 2899 return Op; 2900 } 2901 2902 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2903 auto Op = make_unique<ARMOperand>(k_MSRMask); 2904 Op->MMask.Val = MMask; 2905 Op->StartLoc = S; 2906 Op->EndLoc = S; 2907 return Op; 2908 } 2909 2910 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2911 auto Op = make_unique<ARMOperand>(k_BankedReg); 2912 Op->BankedReg.Val = Reg; 2913 Op->StartLoc = S; 2914 Op->EndLoc = S; 2915 return Op; 2916 } 2917 }; 2918 2919 } // end anonymous namespace. 2920 2921 void ARMOperand::print(raw_ostream &OS) const { 2922 switch (Kind) { 2923 case k_CondCode: 2924 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2925 break; 2926 case k_CCOut: 2927 OS << "<ccout " << getReg() << ">"; 2928 break; 2929 case k_ITCondMask: { 2930 static const char *const MaskStr[] = { 2931 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2932 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2933 }; 2934 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2935 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2936 break; 2937 } 2938 case k_CoprocNum: 2939 OS << "<coprocessor number: " << getCoproc() << ">"; 2940 break; 2941 case k_CoprocReg: 2942 OS << "<coprocessor register: " << getCoproc() << ">"; 2943 break; 2944 case k_CoprocOption: 2945 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2946 break; 2947 case k_MSRMask: 2948 OS << "<mask: " << getMSRMask() << ">"; 2949 break; 2950 case k_BankedReg: 2951 OS << "<banked reg: " << getBankedReg() << ">"; 2952 break; 2953 case k_Immediate: 2954 OS << *getImm(); 2955 break; 2956 case k_MemBarrierOpt: 2957 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2958 break; 2959 case k_InstSyncBarrierOpt: 2960 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2961 break; 2962 case k_Memory: 2963 OS << "<memory " 2964 << " base:" << Memory.BaseRegNum; 2965 OS << ">"; 2966 break; 2967 case k_PostIndexRegister: 2968 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2969 << PostIdxReg.RegNum; 2970 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2971 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2972 << PostIdxReg.ShiftImm; 2973 OS << ">"; 2974 break; 2975 case k_ProcIFlags: { 2976 OS << "<ARM_PROC::"; 2977 unsigned IFlags = getProcIFlags(); 2978 for (int i=2; i >= 0; --i) 2979 if (IFlags & (1 << i)) 2980 OS << ARM_PROC::IFlagsToString(1 << i); 2981 OS << ">"; 2982 break; 2983 } 2984 case k_Register: 2985 OS << "<register " << getReg() << ">"; 2986 break; 2987 case k_ShifterImmediate: 2988 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2989 << " #" << ShifterImm.Imm << ">"; 2990 break; 2991 case k_ShiftedRegister: 2992 OS << "<so_reg_reg " 2993 << RegShiftedReg.SrcReg << " " 2994 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2995 << " " << RegShiftedReg.ShiftReg << ">"; 2996 break; 2997 case k_ShiftedImmediate: 2998 OS << "<so_reg_imm " 2999 << RegShiftedImm.SrcReg << " " 3000 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3001 << " #" << RegShiftedImm.ShiftImm << ">"; 3002 break; 3003 case k_RotateImmediate: 3004 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3005 break; 3006 case k_ModifiedImmediate: 3007 OS << "<mod_imm #" << ModImm.Bits << ", #" 3008 << ModImm.Rot << ")>"; 3009 break; 3010 case k_ConstantPoolImmediate: 3011 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3012 break; 3013 case k_BitfieldDescriptor: 3014 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3015 << ", width: " << Bitfield.Width << ">"; 3016 break; 3017 case k_RegisterList: 3018 case k_DPRRegisterList: 3019 case k_SPRRegisterList: { 3020 OS << "<register_list "; 3021 3022 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3023 for (SmallVectorImpl<unsigned>::const_iterator 3024 I = RegList.begin(), E = RegList.end(); I != E; ) { 3025 OS << *I; 3026 if (++I < E) OS << ", "; 3027 } 3028 3029 OS << ">"; 3030 break; 3031 } 3032 case k_VectorList: 3033 OS << "<vector_list " << VectorList.Count << " * " 3034 << VectorList.RegNum << ">"; 3035 break; 3036 case k_VectorListAllLanes: 3037 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3038 << VectorList.RegNum << ">"; 3039 break; 3040 case k_VectorListIndexed: 3041 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3042 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3043 break; 3044 case k_Token: 3045 OS << "'" << getToken() << "'"; 3046 break; 3047 case k_VectorIndex: 3048 OS << "<vectorindex " << getVectorIndex() << ">"; 3049 break; 3050 } 3051 } 3052 3053 /// @name Auto-generated Match Functions 3054 /// { 3055 3056 static unsigned MatchRegisterName(StringRef Name); 3057 3058 /// } 3059 3060 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3061 SMLoc &StartLoc, SMLoc &EndLoc) { 3062 const AsmToken &Tok = getParser().getTok(); 3063 StartLoc = Tok.getLoc(); 3064 EndLoc = Tok.getEndLoc(); 3065 RegNo = tryParseRegister(); 3066 3067 return (RegNo == (unsigned)-1); 3068 } 3069 3070 /// Try to parse a register name. The token must be an Identifier when called, 3071 /// and if it is a register name the token is eaten and the register number is 3072 /// returned. Otherwise return -1. 3073 /// 3074 int ARMAsmParser::tryParseRegister() { 3075 MCAsmParser &Parser = getParser(); 3076 const AsmToken &Tok = Parser.getTok(); 3077 if (Tok.isNot(AsmToken::Identifier)) return -1; 3078 3079 std::string lowerCase = Tok.getString().lower(); 3080 unsigned RegNum = MatchRegisterName(lowerCase); 3081 if (!RegNum) { 3082 RegNum = StringSwitch<unsigned>(lowerCase) 3083 .Case("r13", ARM::SP) 3084 .Case("r14", ARM::LR) 3085 .Case("r15", ARM::PC) 3086 .Case("ip", ARM::R12) 3087 // Additional register name aliases for 'gas' compatibility. 3088 .Case("a1", ARM::R0) 3089 .Case("a2", ARM::R1) 3090 .Case("a3", ARM::R2) 3091 .Case("a4", ARM::R3) 3092 .Case("v1", ARM::R4) 3093 .Case("v2", ARM::R5) 3094 .Case("v3", ARM::R6) 3095 .Case("v4", ARM::R7) 3096 .Case("v5", ARM::R8) 3097 .Case("v6", ARM::R9) 3098 .Case("v7", ARM::R10) 3099 .Case("v8", ARM::R11) 3100 .Case("sb", ARM::R9) 3101 .Case("sl", ARM::R10) 3102 .Case("fp", ARM::R11) 3103 .Default(0); 3104 } 3105 if (!RegNum) { 3106 // Check for aliases registered via .req. Canonicalize to lower case. 3107 // That's more consistent since register names are case insensitive, and 3108 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3109 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3110 // If no match, return failure. 3111 if (Entry == RegisterReqs.end()) 3112 return -1; 3113 Parser.Lex(); // Eat identifier token. 3114 return Entry->getValue(); 3115 } 3116 3117 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3118 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3119 return -1; 3120 3121 Parser.Lex(); // Eat identifier token. 3122 3123 return RegNum; 3124 } 3125 3126 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3127 // If a recoverable error occurs, return 1. If an irrecoverable error 3128 // occurs, return -1. An irrecoverable error is one where tokens have been 3129 // consumed in the process of trying to parse the shifter (i.e., when it is 3130 // indeed a shifter operand, but malformed). 3131 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3132 MCAsmParser &Parser = getParser(); 3133 SMLoc S = Parser.getTok().getLoc(); 3134 const AsmToken &Tok = Parser.getTok(); 3135 if (Tok.isNot(AsmToken::Identifier)) 3136 return -1; 3137 3138 std::string lowerCase = Tok.getString().lower(); 3139 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3140 .Case("asl", ARM_AM::lsl) 3141 .Case("lsl", ARM_AM::lsl) 3142 .Case("lsr", ARM_AM::lsr) 3143 .Case("asr", ARM_AM::asr) 3144 .Case("ror", ARM_AM::ror) 3145 .Case("rrx", ARM_AM::rrx) 3146 .Default(ARM_AM::no_shift); 3147 3148 if (ShiftTy == ARM_AM::no_shift) 3149 return 1; 3150 3151 Parser.Lex(); // Eat the operator. 3152 3153 // The source register for the shift has already been added to the 3154 // operand list, so we need to pop it off and combine it into the shifted 3155 // register operand instead. 3156 std::unique_ptr<ARMOperand> PrevOp( 3157 (ARMOperand *)Operands.pop_back_val().release()); 3158 if (!PrevOp->isReg()) 3159 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3160 int SrcReg = PrevOp->getReg(); 3161 3162 SMLoc EndLoc; 3163 int64_t Imm = 0; 3164 int ShiftReg = 0; 3165 if (ShiftTy == ARM_AM::rrx) { 3166 // RRX Doesn't have an explicit shift amount. The encoder expects 3167 // the shift register to be the same as the source register. Seems odd, 3168 // but OK. 3169 ShiftReg = SrcReg; 3170 } else { 3171 // Figure out if this is shifted by a constant or a register (for non-RRX). 3172 if (Parser.getTok().is(AsmToken::Hash) || 3173 Parser.getTok().is(AsmToken::Dollar)) { 3174 Parser.Lex(); // Eat hash. 3175 SMLoc ImmLoc = Parser.getTok().getLoc(); 3176 const MCExpr *ShiftExpr = nullptr; 3177 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3178 Error(ImmLoc, "invalid immediate shift value"); 3179 return -1; 3180 } 3181 // The expression must be evaluatable as an immediate. 3182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3183 if (!CE) { 3184 Error(ImmLoc, "invalid immediate shift value"); 3185 return -1; 3186 } 3187 // Range check the immediate. 3188 // lsl, ror: 0 <= imm <= 31 3189 // lsr, asr: 0 <= imm <= 32 3190 Imm = CE->getValue(); 3191 if (Imm < 0 || 3192 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3193 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3194 Error(ImmLoc, "immediate shift value out of range"); 3195 return -1; 3196 } 3197 // shift by zero is a nop. Always send it through as lsl. 3198 // ('as' compatibility) 3199 if (Imm == 0) 3200 ShiftTy = ARM_AM::lsl; 3201 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3202 SMLoc L = Parser.getTok().getLoc(); 3203 EndLoc = Parser.getTok().getEndLoc(); 3204 ShiftReg = tryParseRegister(); 3205 if (ShiftReg == -1) { 3206 Error(L, "expected immediate or register in shift operand"); 3207 return -1; 3208 } 3209 } else { 3210 Error(Parser.getTok().getLoc(), 3211 "expected immediate or register in shift operand"); 3212 return -1; 3213 } 3214 } 3215 3216 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3217 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3218 ShiftReg, Imm, 3219 S, EndLoc)); 3220 else 3221 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3222 S, EndLoc)); 3223 3224 return 0; 3225 } 3226 3227 3228 /// Try to parse a register name. The token must be an Identifier when called. 3229 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3230 /// if there is a "writeback". 'true' if it's not a register. 3231 /// 3232 /// TODO this is likely to change to allow different register types and or to 3233 /// parse for a specific register type. 3234 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3235 MCAsmParser &Parser = getParser(); 3236 const AsmToken &RegTok = Parser.getTok(); 3237 int RegNo = tryParseRegister(); 3238 if (RegNo == -1) 3239 return true; 3240 3241 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3242 RegTok.getEndLoc())); 3243 3244 const AsmToken &ExclaimTok = Parser.getTok(); 3245 if (ExclaimTok.is(AsmToken::Exclaim)) { 3246 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3247 ExclaimTok.getLoc())); 3248 Parser.Lex(); // Eat exclaim token 3249 return false; 3250 } 3251 3252 // Also check for an index operand. This is only legal for vector registers, 3253 // but that'll get caught OK in operand matching, so we don't need to 3254 // explicitly filter everything else out here. 3255 if (Parser.getTok().is(AsmToken::LBrac)) { 3256 SMLoc SIdx = Parser.getTok().getLoc(); 3257 Parser.Lex(); // Eat left bracket token. 3258 3259 const MCExpr *ImmVal; 3260 if (getParser().parseExpression(ImmVal)) 3261 return true; 3262 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3263 if (!MCE) 3264 return TokError("immediate value expected for vector index"); 3265 3266 if (Parser.getTok().isNot(AsmToken::RBrac)) 3267 return Error(Parser.getTok().getLoc(), "']' expected"); 3268 3269 SMLoc E = Parser.getTok().getEndLoc(); 3270 Parser.Lex(); // Eat right bracket token. 3271 3272 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3273 SIdx, E, 3274 getContext())); 3275 } 3276 3277 return false; 3278 } 3279 3280 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3281 /// instruction with a symbolic operand name. 3282 /// We accept "crN" syntax for GAS compatibility. 3283 /// <operand-name> ::= <prefix><number> 3284 /// If CoprocOp is 'c', then: 3285 /// <prefix> ::= c | cr 3286 /// If CoprocOp is 'p', then : 3287 /// <prefix> ::= p 3288 /// <number> ::= integer in range [0, 15] 3289 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3290 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3291 // but efficient. 3292 if (Name.size() < 2 || Name[0] != CoprocOp) 3293 return -1; 3294 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3295 3296 switch (Name.size()) { 3297 default: return -1; 3298 case 1: 3299 switch (Name[0]) { 3300 default: return -1; 3301 case '0': return 0; 3302 case '1': return 1; 3303 case '2': return 2; 3304 case '3': return 3; 3305 case '4': return 4; 3306 case '5': return 5; 3307 case '6': return 6; 3308 case '7': return 7; 3309 case '8': return 8; 3310 case '9': return 9; 3311 } 3312 case 2: 3313 if (Name[0] != '1') 3314 return -1; 3315 switch (Name[1]) { 3316 default: return -1; 3317 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3318 // However, old cores (v5/v6) did use them in that way. 3319 case '0': return 10; 3320 case '1': return 11; 3321 case '2': return 12; 3322 case '3': return 13; 3323 case '4': return 14; 3324 case '5': return 15; 3325 } 3326 } 3327 } 3328 3329 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3330 OperandMatchResultTy 3331 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3332 MCAsmParser &Parser = getParser(); 3333 SMLoc S = Parser.getTok().getLoc(); 3334 const AsmToken &Tok = Parser.getTok(); 3335 if (!Tok.is(AsmToken::Identifier)) 3336 return MatchOperand_NoMatch; 3337 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3338 .Case("eq", ARMCC::EQ) 3339 .Case("ne", ARMCC::NE) 3340 .Case("hs", ARMCC::HS) 3341 .Case("cs", ARMCC::HS) 3342 .Case("lo", ARMCC::LO) 3343 .Case("cc", ARMCC::LO) 3344 .Case("mi", ARMCC::MI) 3345 .Case("pl", ARMCC::PL) 3346 .Case("vs", ARMCC::VS) 3347 .Case("vc", ARMCC::VC) 3348 .Case("hi", ARMCC::HI) 3349 .Case("ls", ARMCC::LS) 3350 .Case("ge", ARMCC::GE) 3351 .Case("lt", ARMCC::LT) 3352 .Case("gt", ARMCC::GT) 3353 .Case("le", ARMCC::LE) 3354 .Case("al", ARMCC::AL) 3355 .Default(~0U); 3356 if (CC == ~0U) 3357 return MatchOperand_NoMatch; 3358 Parser.Lex(); // Eat the token. 3359 3360 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3361 3362 return MatchOperand_Success; 3363 } 3364 3365 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3366 /// token must be an Identifier when called, and if it is a coprocessor 3367 /// number, the token is eaten and the operand is added to the operand list. 3368 OperandMatchResultTy 3369 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3370 MCAsmParser &Parser = getParser(); 3371 SMLoc S = Parser.getTok().getLoc(); 3372 const AsmToken &Tok = Parser.getTok(); 3373 if (Tok.isNot(AsmToken::Identifier)) 3374 return MatchOperand_NoMatch; 3375 3376 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3377 if (Num == -1) 3378 return MatchOperand_NoMatch; 3379 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3380 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3381 return MatchOperand_NoMatch; 3382 3383 Parser.Lex(); // Eat identifier token. 3384 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3385 return MatchOperand_Success; 3386 } 3387 3388 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3389 /// token must be an Identifier when called, and if it is a coprocessor 3390 /// number, the token is eaten and the operand is added to the operand list. 3391 OperandMatchResultTy 3392 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3393 MCAsmParser &Parser = getParser(); 3394 SMLoc S = Parser.getTok().getLoc(); 3395 const AsmToken &Tok = Parser.getTok(); 3396 if (Tok.isNot(AsmToken::Identifier)) 3397 return MatchOperand_NoMatch; 3398 3399 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3400 if (Reg == -1) 3401 return MatchOperand_NoMatch; 3402 3403 Parser.Lex(); // Eat identifier token. 3404 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3405 return MatchOperand_Success; 3406 } 3407 3408 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3409 /// coproc_option : '{' imm0_255 '}' 3410 OperandMatchResultTy 3411 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3412 MCAsmParser &Parser = getParser(); 3413 SMLoc S = Parser.getTok().getLoc(); 3414 3415 // If this isn't a '{', this isn't a coprocessor immediate operand. 3416 if (Parser.getTok().isNot(AsmToken::LCurly)) 3417 return MatchOperand_NoMatch; 3418 Parser.Lex(); // Eat the '{' 3419 3420 const MCExpr *Expr; 3421 SMLoc Loc = Parser.getTok().getLoc(); 3422 if (getParser().parseExpression(Expr)) { 3423 Error(Loc, "illegal expression"); 3424 return MatchOperand_ParseFail; 3425 } 3426 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3427 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3428 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3429 return MatchOperand_ParseFail; 3430 } 3431 int Val = CE->getValue(); 3432 3433 // Check for and consume the closing '}' 3434 if (Parser.getTok().isNot(AsmToken::RCurly)) 3435 return MatchOperand_ParseFail; 3436 SMLoc E = Parser.getTok().getEndLoc(); 3437 Parser.Lex(); // Eat the '}' 3438 3439 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3440 return MatchOperand_Success; 3441 } 3442 3443 // For register list parsing, we need to map from raw GPR register numbering 3444 // to the enumeration values. The enumeration values aren't sorted by 3445 // register number due to our using "sp", "lr" and "pc" as canonical names. 3446 static unsigned getNextRegister(unsigned Reg) { 3447 // If this is a GPR, we need to do it manually, otherwise we can rely 3448 // on the sort ordering of the enumeration since the other reg-classes 3449 // are sane. 3450 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3451 return Reg + 1; 3452 switch(Reg) { 3453 default: llvm_unreachable("Invalid GPR number!"); 3454 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3455 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3456 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3457 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3458 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3459 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3460 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3461 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3462 } 3463 } 3464 3465 // Return the low-subreg of a given Q register. 3466 static unsigned getDRegFromQReg(unsigned QReg) { 3467 switch (QReg) { 3468 default: llvm_unreachable("expected a Q register!"); 3469 case ARM::Q0: return ARM::D0; 3470 case ARM::Q1: return ARM::D2; 3471 case ARM::Q2: return ARM::D4; 3472 case ARM::Q3: return ARM::D6; 3473 case ARM::Q4: return ARM::D8; 3474 case ARM::Q5: return ARM::D10; 3475 case ARM::Q6: return ARM::D12; 3476 case ARM::Q7: return ARM::D14; 3477 case ARM::Q8: return ARM::D16; 3478 case ARM::Q9: return ARM::D18; 3479 case ARM::Q10: return ARM::D20; 3480 case ARM::Q11: return ARM::D22; 3481 case ARM::Q12: return ARM::D24; 3482 case ARM::Q13: return ARM::D26; 3483 case ARM::Q14: return ARM::D28; 3484 case ARM::Q15: return ARM::D30; 3485 } 3486 } 3487 3488 /// Parse a register list. 3489 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3490 MCAsmParser &Parser = getParser(); 3491 if (Parser.getTok().isNot(AsmToken::LCurly)) 3492 return TokError("Token is not a Left Curly Brace"); 3493 SMLoc S = Parser.getTok().getLoc(); 3494 Parser.Lex(); // Eat '{' token. 3495 SMLoc RegLoc = Parser.getTok().getLoc(); 3496 3497 // Check the first register in the list to see what register class 3498 // this is a list of. 3499 int Reg = tryParseRegister(); 3500 if (Reg == -1) 3501 return Error(RegLoc, "register expected"); 3502 3503 // The reglist instructions have at most 16 registers, so reserve 3504 // space for that many. 3505 int EReg = 0; 3506 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3507 3508 // Allow Q regs and just interpret them as the two D sub-registers. 3509 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3510 Reg = getDRegFromQReg(Reg); 3511 EReg = MRI->getEncodingValue(Reg); 3512 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3513 ++Reg; 3514 } 3515 const MCRegisterClass *RC; 3516 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3517 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3518 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3519 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3520 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3521 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3522 else 3523 return Error(RegLoc, "invalid register in register list"); 3524 3525 // Store the register. 3526 EReg = MRI->getEncodingValue(Reg); 3527 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3528 3529 // This starts immediately after the first register token in the list, 3530 // so we can see either a comma or a minus (range separator) as a legal 3531 // next token. 3532 while (Parser.getTok().is(AsmToken::Comma) || 3533 Parser.getTok().is(AsmToken::Minus)) { 3534 if (Parser.getTok().is(AsmToken::Minus)) { 3535 Parser.Lex(); // Eat the minus. 3536 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3537 int EndReg = tryParseRegister(); 3538 if (EndReg == -1) 3539 return Error(AfterMinusLoc, "register expected"); 3540 // Allow Q regs and just interpret them as the two D sub-registers. 3541 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3542 EndReg = getDRegFromQReg(EndReg) + 1; 3543 // If the register is the same as the start reg, there's nothing 3544 // more to do. 3545 if (Reg == EndReg) 3546 continue; 3547 // The register must be in the same register class as the first. 3548 if (!RC->contains(EndReg)) 3549 return Error(AfterMinusLoc, "invalid register in register list"); 3550 // Ranges must go from low to high. 3551 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3552 return Error(AfterMinusLoc, "bad range in register list"); 3553 3554 // Add all the registers in the range to the register list. 3555 while (Reg != EndReg) { 3556 Reg = getNextRegister(Reg); 3557 EReg = MRI->getEncodingValue(Reg); 3558 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3559 } 3560 continue; 3561 } 3562 Parser.Lex(); // Eat the comma. 3563 RegLoc = Parser.getTok().getLoc(); 3564 int OldReg = Reg; 3565 const AsmToken RegTok = Parser.getTok(); 3566 Reg = tryParseRegister(); 3567 if (Reg == -1) 3568 return Error(RegLoc, "register expected"); 3569 // Allow Q regs and just interpret them as the two D sub-registers. 3570 bool isQReg = false; 3571 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3572 Reg = getDRegFromQReg(Reg); 3573 isQReg = true; 3574 } 3575 // The register must be in the same register class as the first. 3576 if (!RC->contains(Reg)) 3577 return Error(RegLoc, "invalid register in register list"); 3578 // List must be monotonically increasing. 3579 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3580 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3581 Warning(RegLoc, "register list not in ascending order"); 3582 else 3583 return Error(RegLoc, "register list not in ascending order"); 3584 } 3585 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3586 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3587 ") in register list"); 3588 continue; 3589 } 3590 // VFP register lists must also be contiguous. 3591 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3592 Reg != OldReg + 1) 3593 return Error(RegLoc, "non-contiguous register range"); 3594 EReg = MRI->getEncodingValue(Reg); 3595 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3596 if (isQReg) { 3597 EReg = MRI->getEncodingValue(++Reg); 3598 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3599 } 3600 } 3601 3602 if (Parser.getTok().isNot(AsmToken::RCurly)) 3603 return Error(Parser.getTok().getLoc(), "'}' expected"); 3604 SMLoc E = Parser.getTok().getEndLoc(); 3605 Parser.Lex(); // Eat '}' token. 3606 3607 // Push the register list operand. 3608 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3609 3610 // The ARM system instruction variants for LDM/STM have a '^' token here. 3611 if (Parser.getTok().is(AsmToken::Caret)) { 3612 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3613 Parser.Lex(); // Eat '^' token. 3614 } 3615 3616 return false; 3617 } 3618 3619 // Helper function to parse the lane index for vector lists. 3620 OperandMatchResultTy ARMAsmParser:: 3621 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3622 MCAsmParser &Parser = getParser(); 3623 Index = 0; // Always return a defined index value. 3624 if (Parser.getTok().is(AsmToken::LBrac)) { 3625 Parser.Lex(); // Eat the '['. 3626 if (Parser.getTok().is(AsmToken::RBrac)) { 3627 // "Dn[]" is the 'all lanes' syntax. 3628 LaneKind = AllLanes; 3629 EndLoc = Parser.getTok().getEndLoc(); 3630 Parser.Lex(); // Eat the ']'. 3631 return MatchOperand_Success; 3632 } 3633 3634 // There's an optional '#' token here. Normally there wouldn't be, but 3635 // inline assemble puts one in, and it's friendly to accept that. 3636 if (Parser.getTok().is(AsmToken::Hash)) 3637 Parser.Lex(); // Eat '#' or '$'. 3638 3639 const MCExpr *LaneIndex; 3640 SMLoc Loc = Parser.getTok().getLoc(); 3641 if (getParser().parseExpression(LaneIndex)) { 3642 Error(Loc, "illegal expression"); 3643 return MatchOperand_ParseFail; 3644 } 3645 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3646 if (!CE) { 3647 Error(Loc, "lane index must be empty or an integer"); 3648 return MatchOperand_ParseFail; 3649 } 3650 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3651 Error(Parser.getTok().getLoc(), "']' expected"); 3652 return MatchOperand_ParseFail; 3653 } 3654 EndLoc = Parser.getTok().getEndLoc(); 3655 Parser.Lex(); // Eat the ']'. 3656 int64_t Val = CE->getValue(); 3657 3658 // FIXME: Make this range check context sensitive for .8, .16, .32. 3659 if (Val < 0 || Val > 7) { 3660 Error(Parser.getTok().getLoc(), "lane index out of range"); 3661 return MatchOperand_ParseFail; 3662 } 3663 Index = Val; 3664 LaneKind = IndexedLane; 3665 return MatchOperand_Success; 3666 } 3667 LaneKind = NoLanes; 3668 return MatchOperand_Success; 3669 } 3670 3671 // parse a vector register list 3672 OperandMatchResultTy 3673 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3674 MCAsmParser &Parser = getParser(); 3675 VectorLaneTy LaneKind; 3676 unsigned LaneIndex; 3677 SMLoc S = Parser.getTok().getLoc(); 3678 // As an extension (to match gas), support a plain D register or Q register 3679 // (without encosing curly braces) as a single or double entry list, 3680 // respectively. 3681 if (Parser.getTok().is(AsmToken::Identifier)) { 3682 SMLoc E = Parser.getTok().getEndLoc(); 3683 int Reg = tryParseRegister(); 3684 if (Reg == -1) 3685 return MatchOperand_NoMatch; 3686 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3687 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3688 if (Res != MatchOperand_Success) 3689 return Res; 3690 switch (LaneKind) { 3691 case NoLanes: 3692 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3693 break; 3694 case AllLanes: 3695 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3696 S, E)); 3697 break; 3698 case IndexedLane: 3699 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3700 LaneIndex, 3701 false, S, E)); 3702 break; 3703 } 3704 return MatchOperand_Success; 3705 } 3706 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3707 Reg = getDRegFromQReg(Reg); 3708 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3709 if (Res != MatchOperand_Success) 3710 return Res; 3711 switch (LaneKind) { 3712 case NoLanes: 3713 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3714 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3715 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3716 break; 3717 case AllLanes: 3718 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3719 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3720 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3721 S, E)); 3722 break; 3723 case IndexedLane: 3724 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3725 LaneIndex, 3726 false, S, E)); 3727 break; 3728 } 3729 return MatchOperand_Success; 3730 } 3731 Error(S, "vector register expected"); 3732 return MatchOperand_ParseFail; 3733 } 3734 3735 if (Parser.getTok().isNot(AsmToken::LCurly)) 3736 return MatchOperand_NoMatch; 3737 3738 Parser.Lex(); // Eat '{' token. 3739 SMLoc RegLoc = Parser.getTok().getLoc(); 3740 3741 int Reg = tryParseRegister(); 3742 if (Reg == -1) { 3743 Error(RegLoc, "register expected"); 3744 return MatchOperand_ParseFail; 3745 } 3746 unsigned Count = 1; 3747 int Spacing = 0; 3748 unsigned FirstReg = Reg; 3749 // The list is of D registers, but we also allow Q regs and just interpret 3750 // them as the two D sub-registers. 3751 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3752 FirstReg = Reg = getDRegFromQReg(Reg); 3753 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3754 // it's ambiguous with four-register single spaced. 3755 ++Reg; 3756 ++Count; 3757 } 3758 3759 SMLoc E; 3760 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3761 return MatchOperand_ParseFail; 3762 3763 while (Parser.getTok().is(AsmToken::Comma) || 3764 Parser.getTok().is(AsmToken::Minus)) { 3765 if (Parser.getTok().is(AsmToken::Minus)) { 3766 if (!Spacing) 3767 Spacing = 1; // Register range implies a single spaced list. 3768 else if (Spacing == 2) { 3769 Error(Parser.getTok().getLoc(), 3770 "sequential registers in double spaced list"); 3771 return MatchOperand_ParseFail; 3772 } 3773 Parser.Lex(); // Eat the minus. 3774 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3775 int EndReg = tryParseRegister(); 3776 if (EndReg == -1) { 3777 Error(AfterMinusLoc, "register expected"); 3778 return MatchOperand_ParseFail; 3779 } 3780 // Allow Q regs and just interpret them as the two D sub-registers. 3781 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3782 EndReg = getDRegFromQReg(EndReg) + 1; 3783 // If the register is the same as the start reg, there's nothing 3784 // more to do. 3785 if (Reg == EndReg) 3786 continue; 3787 // The register must be in the same register class as the first. 3788 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3789 Error(AfterMinusLoc, "invalid register in register list"); 3790 return MatchOperand_ParseFail; 3791 } 3792 // Ranges must go from low to high. 3793 if (Reg > EndReg) { 3794 Error(AfterMinusLoc, "bad range in register list"); 3795 return MatchOperand_ParseFail; 3796 } 3797 // Parse the lane specifier if present. 3798 VectorLaneTy NextLaneKind; 3799 unsigned NextLaneIndex; 3800 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3801 MatchOperand_Success) 3802 return MatchOperand_ParseFail; 3803 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3804 Error(AfterMinusLoc, "mismatched lane index in register list"); 3805 return MatchOperand_ParseFail; 3806 } 3807 3808 // Add all the registers in the range to the register list. 3809 Count += EndReg - Reg; 3810 Reg = EndReg; 3811 continue; 3812 } 3813 Parser.Lex(); // Eat the comma. 3814 RegLoc = Parser.getTok().getLoc(); 3815 int OldReg = Reg; 3816 Reg = tryParseRegister(); 3817 if (Reg == -1) { 3818 Error(RegLoc, "register expected"); 3819 return MatchOperand_ParseFail; 3820 } 3821 // vector register lists must be contiguous. 3822 // It's OK to use the enumeration values directly here rather, as the 3823 // VFP register classes have the enum sorted properly. 3824 // 3825 // The list is of D registers, but we also allow Q regs and just interpret 3826 // them as the two D sub-registers. 3827 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3828 if (!Spacing) 3829 Spacing = 1; // Register range implies a single spaced list. 3830 else if (Spacing == 2) { 3831 Error(RegLoc, 3832 "invalid register in double-spaced list (must be 'D' register')"); 3833 return MatchOperand_ParseFail; 3834 } 3835 Reg = getDRegFromQReg(Reg); 3836 if (Reg != OldReg + 1) { 3837 Error(RegLoc, "non-contiguous register range"); 3838 return MatchOperand_ParseFail; 3839 } 3840 ++Reg; 3841 Count += 2; 3842 // Parse the lane specifier if present. 3843 VectorLaneTy NextLaneKind; 3844 unsigned NextLaneIndex; 3845 SMLoc LaneLoc = Parser.getTok().getLoc(); 3846 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3847 MatchOperand_Success) 3848 return MatchOperand_ParseFail; 3849 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3850 Error(LaneLoc, "mismatched lane index in register list"); 3851 return MatchOperand_ParseFail; 3852 } 3853 continue; 3854 } 3855 // Normal D register. 3856 // Figure out the register spacing (single or double) of the list if 3857 // we don't know it already. 3858 if (!Spacing) 3859 Spacing = 1 + (Reg == OldReg + 2); 3860 3861 // Just check that it's contiguous and keep going. 3862 if (Reg != OldReg + Spacing) { 3863 Error(RegLoc, "non-contiguous register range"); 3864 return MatchOperand_ParseFail; 3865 } 3866 ++Count; 3867 // Parse the lane specifier if present. 3868 VectorLaneTy NextLaneKind; 3869 unsigned NextLaneIndex; 3870 SMLoc EndLoc = Parser.getTok().getLoc(); 3871 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3872 return MatchOperand_ParseFail; 3873 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3874 Error(EndLoc, "mismatched lane index in register list"); 3875 return MatchOperand_ParseFail; 3876 } 3877 } 3878 3879 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3880 Error(Parser.getTok().getLoc(), "'}' expected"); 3881 return MatchOperand_ParseFail; 3882 } 3883 E = Parser.getTok().getEndLoc(); 3884 Parser.Lex(); // Eat '}' token. 3885 3886 switch (LaneKind) { 3887 case NoLanes: 3888 // Two-register operands have been converted to the 3889 // composite register classes. 3890 if (Count == 2) { 3891 const MCRegisterClass *RC = (Spacing == 1) ? 3892 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3893 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3894 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3895 } 3896 3897 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3898 (Spacing == 2), S, E)); 3899 break; 3900 case AllLanes: 3901 // Two-register operands have been converted to the 3902 // composite register classes. 3903 if (Count == 2) { 3904 const MCRegisterClass *RC = (Spacing == 1) ? 3905 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3906 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3907 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3908 } 3909 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3910 (Spacing == 2), 3911 S, E)); 3912 break; 3913 case IndexedLane: 3914 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3915 LaneIndex, 3916 (Spacing == 2), 3917 S, E)); 3918 break; 3919 } 3920 return MatchOperand_Success; 3921 } 3922 3923 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3924 OperandMatchResultTy 3925 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3926 MCAsmParser &Parser = getParser(); 3927 SMLoc S = Parser.getTok().getLoc(); 3928 const AsmToken &Tok = Parser.getTok(); 3929 unsigned Opt; 3930 3931 if (Tok.is(AsmToken::Identifier)) { 3932 StringRef OptStr = Tok.getString(); 3933 3934 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3935 .Case("sy", ARM_MB::SY) 3936 .Case("st", ARM_MB::ST) 3937 .Case("ld", ARM_MB::LD) 3938 .Case("sh", ARM_MB::ISH) 3939 .Case("ish", ARM_MB::ISH) 3940 .Case("shst", ARM_MB::ISHST) 3941 .Case("ishst", ARM_MB::ISHST) 3942 .Case("ishld", ARM_MB::ISHLD) 3943 .Case("nsh", ARM_MB::NSH) 3944 .Case("un", ARM_MB::NSH) 3945 .Case("nshst", ARM_MB::NSHST) 3946 .Case("nshld", ARM_MB::NSHLD) 3947 .Case("unst", ARM_MB::NSHST) 3948 .Case("osh", ARM_MB::OSH) 3949 .Case("oshst", ARM_MB::OSHST) 3950 .Case("oshld", ARM_MB::OSHLD) 3951 .Default(~0U); 3952 3953 // ishld, oshld, nshld and ld are only available from ARMv8. 3954 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3955 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3956 Opt = ~0U; 3957 3958 if (Opt == ~0U) 3959 return MatchOperand_NoMatch; 3960 3961 Parser.Lex(); // Eat identifier token. 3962 } else if (Tok.is(AsmToken::Hash) || 3963 Tok.is(AsmToken::Dollar) || 3964 Tok.is(AsmToken::Integer)) { 3965 if (Parser.getTok().isNot(AsmToken::Integer)) 3966 Parser.Lex(); // Eat '#' or '$'. 3967 SMLoc Loc = Parser.getTok().getLoc(); 3968 3969 const MCExpr *MemBarrierID; 3970 if (getParser().parseExpression(MemBarrierID)) { 3971 Error(Loc, "illegal expression"); 3972 return MatchOperand_ParseFail; 3973 } 3974 3975 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3976 if (!CE) { 3977 Error(Loc, "constant expression expected"); 3978 return MatchOperand_ParseFail; 3979 } 3980 3981 int Val = CE->getValue(); 3982 if (Val & ~0xf) { 3983 Error(Loc, "immediate value out of range"); 3984 return MatchOperand_ParseFail; 3985 } 3986 3987 Opt = ARM_MB::RESERVED_0 + Val; 3988 } else 3989 return MatchOperand_ParseFail; 3990 3991 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3992 return MatchOperand_Success; 3993 } 3994 3995 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3996 OperandMatchResultTy 3997 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3998 MCAsmParser &Parser = getParser(); 3999 SMLoc S = Parser.getTok().getLoc(); 4000 const AsmToken &Tok = Parser.getTok(); 4001 unsigned Opt; 4002 4003 if (Tok.is(AsmToken::Identifier)) { 4004 StringRef OptStr = Tok.getString(); 4005 4006 if (OptStr.equals_lower("sy")) 4007 Opt = ARM_ISB::SY; 4008 else 4009 return MatchOperand_NoMatch; 4010 4011 Parser.Lex(); // Eat identifier token. 4012 } else if (Tok.is(AsmToken::Hash) || 4013 Tok.is(AsmToken::Dollar) || 4014 Tok.is(AsmToken::Integer)) { 4015 if (Parser.getTok().isNot(AsmToken::Integer)) 4016 Parser.Lex(); // Eat '#' or '$'. 4017 SMLoc Loc = Parser.getTok().getLoc(); 4018 4019 const MCExpr *ISBarrierID; 4020 if (getParser().parseExpression(ISBarrierID)) { 4021 Error(Loc, "illegal expression"); 4022 return MatchOperand_ParseFail; 4023 } 4024 4025 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4026 if (!CE) { 4027 Error(Loc, "constant expression expected"); 4028 return MatchOperand_ParseFail; 4029 } 4030 4031 int Val = CE->getValue(); 4032 if (Val & ~0xf) { 4033 Error(Loc, "immediate value out of range"); 4034 return MatchOperand_ParseFail; 4035 } 4036 4037 Opt = ARM_ISB::RESERVED_0 + Val; 4038 } else 4039 return MatchOperand_ParseFail; 4040 4041 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4042 (ARM_ISB::InstSyncBOpt)Opt, S)); 4043 return MatchOperand_Success; 4044 } 4045 4046 4047 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4048 OperandMatchResultTy 4049 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4050 MCAsmParser &Parser = getParser(); 4051 SMLoc S = Parser.getTok().getLoc(); 4052 const AsmToken &Tok = Parser.getTok(); 4053 if (!Tok.is(AsmToken::Identifier)) 4054 return MatchOperand_NoMatch; 4055 StringRef IFlagsStr = Tok.getString(); 4056 4057 // An iflags string of "none" is interpreted to mean that none of the AIF 4058 // bits are set. Not a terribly useful instruction, but a valid encoding. 4059 unsigned IFlags = 0; 4060 if (IFlagsStr != "none") { 4061 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4062 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4063 .Case("a", ARM_PROC::A) 4064 .Case("i", ARM_PROC::I) 4065 .Case("f", ARM_PROC::F) 4066 .Default(~0U); 4067 4068 // If some specific iflag is already set, it means that some letter is 4069 // present more than once, this is not acceptable. 4070 if (Flag == ~0U || (IFlags & Flag)) 4071 return MatchOperand_NoMatch; 4072 4073 IFlags |= Flag; 4074 } 4075 } 4076 4077 Parser.Lex(); // Eat identifier token. 4078 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4079 return MatchOperand_Success; 4080 } 4081 4082 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4083 OperandMatchResultTy 4084 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4085 MCAsmParser &Parser = getParser(); 4086 SMLoc S = Parser.getTok().getLoc(); 4087 const AsmToken &Tok = Parser.getTok(); 4088 if (!Tok.is(AsmToken::Identifier)) 4089 return MatchOperand_NoMatch; 4090 StringRef Mask = Tok.getString(); 4091 4092 if (isMClass()) { 4093 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4094 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4095 return MatchOperand_NoMatch; 4096 4097 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4098 4099 Parser.Lex(); // Eat identifier token. 4100 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4101 return MatchOperand_Success; 4102 } 4103 4104 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4105 size_t Start = 0, Next = Mask.find('_'); 4106 StringRef Flags = ""; 4107 std::string SpecReg = Mask.slice(Start, Next).lower(); 4108 if (Next != StringRef::npos) 4109 Flags = Mask.slice(Next+1, Mask.size()); 4110 4111 // FlagsVal contains the complete mask: 4112 // 3-0: Mask 4113 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4114 unsigned FlagsVal = 0; 4115 4116 if (SpecReg == "apsr") { 4117 FlagsVal = StringSwitch<unsigned>(Flags) 4118 .Case("nzcvq", 0x8) // same as CPSR_f 4119 .Case("g", 0x4) // same as CPSR_s 4120 .Case("nzcvqg", 0xc) // same as CPSR_fs 4121 .Default(~0U); 4122 4123 if (FlagsVal == ~0U) { 4124 if (!Flags.empty()) 4125 return MatchOperand_NoMatch; 4126 else 4127 FlagsVal = 8; // No flag 4128 } 4129 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4130 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4131 if (Flags == "all" || Flags == "") 4132 Flags = "fc"; 4133 for (int i = 0, e = Flags.size(); i != e; ++i) { 4134 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4135 .Case("c", 1) 4136 .Case("x", 2) 4137 .Case("s", 4) 4138 .Case("f", 8) 4139 .Default(~0U); 4140 4141 // If some specific flag is already set, it means that some letter is 4142 // present more than once, this is not acceptable. 4143 if (Flag == ~0U || (FlagsVal & Flag)) 4144 return MatchOperand_NoMatch; 4145 FlagsVal |= Flag; 4146 } 4147 } else // No match for special register. 4148 return MatchOperand_NoMatch; 4149 4150 // Special register without flags is NOT equivalent to "fc" flags. 4151 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4152 // two lines would enable gas compatibility at the expense of breaking 4153 // round-tripping. 4154 // 4155 // if (!FlagsVal) 4156 // FlagsVal = 0x9; 4157 4158 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4159 if (SpecReg == "spsr") 4160 FlagsVal |= 16; 4161 4162 Parser.Lex(); // Eat identifier token. 4163 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4164 return MatchOperand_Success; 4165 } 4166 4167 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4168 /// use in the MRS/MSR instructions added to support virtualization. 4169 OperandMatchResultTy 4170 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4171 MCAsmParser &Parser = getParser(); 4172 SMLoc S = Parser.getTok().getLoc(); 4173 const AsmToken &Tok = Parser.getTok(); 4174 if (!Tok.is(AsmToken::Identifier)) 4175 return MatchOperand_NoMatch; 4176 StringRef RegName = Tok.getString(); 4177 4178 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4179 // and bit 5 is R. 4180 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4181 .Case("r8_usr", 0x00) 4182 .Case("r9_usr", 0x01) 4183 .Case("r10_usr", 0x02) 4184 .Case("r11_usr", 0x03) 4185 .Case("r12_usr", 0x04) 4186 .Case("sp_usr", 0x05) 4187 .Case("lr_usr", 0x06) 4188 .Case("r8_fiq", 0x08) 4189 .Case("r9_fiq", 0x09) 4190 .Case("r10_fiq", 0x0a) 4191 .Case("r11_fiq", 0x0b) 4192 .Case("r12_fiq", 0x0c) 4193 .Case("sp_fiq", 0x0d) 4194 .Case("lr_fiq", 0x0e) 4195 .Case("lr_irq", 0x10) 4196 .Case("sp_irq", 0x11) 4197 .Case("lr_svc", 0x12) 4198 .Case("sp_svc", 0x13) 4199 .Case("lr_abt", 0x14) 4200 .Case("sp_abt", 0x15) 4201 .Case("lr_und", 0x16) 4202 .Case("sp_und", 0x17) 4203 .Case("lr_mon", 0x1c) 4204 .Case("sp_mon", 0x1d) 4205 .Case("elr_hyp", 0x1e) 4206 .Case("sp_hyp", 0x1f) 4207 .Case("spsr_fiq", 0x2e) 4208 .Case("spsr_irq", 0x30) 4209 .Case("spsr_svc", 0x32) 4210 .Case("spsr_abt", 0x34) 4211 .Case("spsr_und", 0x36) 4212 .Case("spsr_mon", 0x3c) 4213 .Case("spsr_hyp", 0x3e) 4214 .Default(~0U); 4215 4216 if (Encoding == ~0U) 4217 return MatchOperand_NoMatch; 4218 4219 Parser.Lex(); // Eat identifier token. 4220 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4221 return MatchOperand_Success; 4222 } 4223 4224 OperandMatchResultTy 4225 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4226 int High) { 4227 MCAsmParser &Parser = getParser(); 4228 const AsmToken &Tok = Parser.getTok(); 4229 if (Tok.isNot(AsmToken::Identifier)) { 4230 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4231 return MatchOperand_ParseFail; 4232 } 4233 StringRef ShiftName = Tok.getString(); 4234 std::string LowerOp = Op.lower(); 4235 std::string UpperOp = Op.upper(); 4236 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4237 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4238 return MatchOperand_ParseFail; 4239 } 4240 Parser.Lex(); // Eat shift type token. 4241 4242 // There must be a '#' and a shift amount. 4243 if (Parser.getTok().isNot(AsmToken::Hash) && 4244 Parser.getTok().isNot(AsmToken::Dollar)) { 4245 Error(Parser.getTok().getLoc(), "'#' expected"); 4246 return MatchOperand_ParseFail; 4247 } 4248 Parser.Lex(); // Eat hash token. 4249 4250 const MCExpr *ShiftAmount; 4251 SMLoc Loc = Parser.getTok().getLoc(); 4252 SMLoc EndLoc; 4253 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4254 Error(Loc, "illegal expression"); 4255 return MatchOperand_ParseFail; 4256 } 4257 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4258 if (!CE) { 4259 Error(Loc, "constant expression expected"); 4260 return MatchOperand_ParseFail; 4261 } 4262 int Val = CE->getValue(); 4263 if (Val < Low || Val > High) { 4264 Error(Loc, "immediate value out of range"); 4265 return MatchOperand_ParseFail; 4266 } 4267 4268 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4269 4270 return MatchOperand_Success; 4271 } 4272 4273 OperandMatchResultTy 4274 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4275 MCAsmParser &Parser = getParser(); 4276 const AsmToken &Tok = Parser.getTok(); 4277 SMLoc S = Tok.getLoc(); 4278 if (Tok.isNot(AsmToken::Identifier)) { 4279 Error(S, "'be' or 'le' operand expected"); 4280 return MatchOperand_ParseFail; 4281 } 4282 int Val = StringSwitch<int>(Tok.getString().lower()) 4283 .Case("be", 1) 4284 .Case("le", 0) 4285 .Default(-1); 4286 Parser.Lex(); // Eat the token. 4287 4288 if (Val == -1) { 4289 Error(S, "'be' or 'le' operand expected"); 4290 return MatchOperand_ParseFail; 4291 } 4292 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4293 getContext()), 4294 S, Tok.getEndLoc())); 4295 return MatchOperand_Success; 4296 } 4297 4298 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4299 /// instructions. Legal values are: 4300 /// lsl #n 'n' in [0,31] 4301 /// asr #n 'n' in [1,32] 4302 /// n == 32 encoded as n == 0. 4303 OperandMatchResultTy 4304 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4305 MCAsmParser &Parser = getParser(); 4306 const AsmToken &Tok = Parser.getTok(); 4307 SMLoc S = Tok.getLoc(); 4308 if (Tok.isNot(AsmToken::Identifier)) { 4309 Error(S, "shift operator 'asr' or 'lsl' expected"); 4310 return MatchOperand_ParseFail; 4311 } 4312 StringRef ShiftName = Tok.getString(); 4313 bool isASR; 4314 if (ShiftName == "lsl" || ShiftName == "LSL") 4315 isASR = false; 4316 else if (ShiftName == "asr" || ShiftName == "ASR") 4317 isASR = true; 4318 else { 4319 Error(S, "shift operator 'asr' or 'lsl' expected"); 4320 return MatchOperand_ParseFail; 4321 } 4322 Parser.Lex(); // Eat the operator. 4323 4324 // A '#' and a shift amount. 4325 if (Parser.getTok().isNot(AsmToken::Hash) && 4326 Parser.getTok().isNot(AsmToken::Dollar)) { 4327 Error(Parser.getTok().getLoc(), "'#' expected"); 4328 return MatchOperand_ParseFail; 4329 } 4330 Parser.Lex(); // Eat hash token. 4331 SMLoc ExLoc = Parser.getTok().getLoc(); 4332 4333 const MCExpr *ShiftAmount; 4334 SMLoc EndLoc; 4335 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4336 Error(ExLoc, "malformed shift expression"); 4337 return MatchOperand_ParseFail; 4338 } 4339 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4340 if (!CE) { 4341 Error(ExLoc, "shift amount must be an immediate"); 4342 return MatchOperand_ParseFail; 4343 } 4344 4345 int64_t Val = CE->getValue(); 4346 if (isASR) { 4347 // Shift amount must be in [1,32] 4348 if (Val < 1 || Val > 32) { 4349 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4350 return MatchOperand_ParseFail; 4351 } 4352 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4353 if (isThumb() && Val == 32) { 4354 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4355 return MatchOperand_ParseFail; 4356 } 4357 if (Val == 32) Val = 0; 4358 } else { 4359 // Shift amount must be in [1,32] 4360 if (Val < 0 || Val > 31) { 4361 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4362 return MatchOperand_ParseFail; 4363 } 4364 } 4365 4366 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4367 4368 return MatchOperand_Success; 4369 } 4370 4371 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4372 /// of instructions. Legal values are: 4373 /// ror #n 'n' in {0, 8, 16, 24} 4374 OperandMatchResultTy 4375 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4376 MCAsmParser &Parser = getParser(); 4377 const AsmToken &Tok = Parser.getTok(); 4378 SMLoc S = Tok.getLoc(); 4379 if (Tok.isNot(AsmToken::Identifier)) 4380 return MatchOperand_NoMatch; 4381 StringRef ShiftName = Tok.getString(); 4382 if (ShiftName != "ror" && ShiftName != "ROR") 4383 return MatchOperand_NoMatch; 4384 Parser.Lex(); // Eat the operator. 4385 4386 // A '#' and a rotate amount. 4387 if (Parser.getTok().isNot(AsmToken::Hash) && 4388 Parser.getTok().isNot(AsmToken::Dollar)) { 4389 Error(Parser.getTok().getLoc(), "'#' expected"); 4390 return MatchOperand_ParseFail; 4391 } 4392 Parser.Lex(); // Eat hash token. 4393 SMLoc ExLoc = Parser.getTok().getLoc(); 4394 4395 const MCExpr *ShiftAmount; 4396 SMLoc EndLoc; 4397 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4398 Error(ExLoc, "malformed rotate expression"); 4399 return MatchOperand_ParseFail; 4400 } 4401 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4402 if (!CE) { 4403 Error(ExLoc, "rotate amount must be an immediate"); 4404 return MatchOperand_ParseFail; 4405 } 4406 4407 int64_t Val = CE->getValue(); 4408 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4409 // normally, zero is represented in asm by omitting the rotate operand 4410 // entirely. 4411 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4412 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4413 return MatchOperand_ParseFail; 4414 } 4415 4416 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4417 4418 return MatchOperand_Success; 4419 } 4420 4421 OperandMatchResultTy 4422 ARMAsmParser::parseModImm(OperandVector &Operands) { 4423 MCAsmParser &Parser = getParser(); 4424 MCAsmLexer &Lexer = getLexer(); 4425 int64_t Imm1, Imm2; 4426 4427 SMLoc S = Parser.getTok().getLoc(); 4428 4429 // 1) A mod_imm operand can appear in the place of a register name: 4430 // add r0, #mod_imm 4431 // add r0, r0, #mod_imm 4432 // to correctly handle the latter, we bail out as soon as we see an 4433 // identifier. 4434 // 4435 // 2) Similarly, we do not want to parse into complex operands: 4436 // mov r0, #mod_imm 4437 // mov r0, :lower16:(_foo) 4438 if (Parser.getTok().is(AsmToken::Identifier) || 4439 Parser.getTok().is(AsmToken::Colon)) 4440 return MatchOperand_NoMatch; 4441 4442 // Hash (dollar) is optional as per the ARMARM 4443 if (Parser.getTok().is(AsmToken::Hash) || 4444 Parser.getTok().is(AsmToken::Dollar)) { 4445 // Avoid parsing into complex operands (#:) 4446 if (Lexer.peekTok().is(AsmToken::Colon)) 4447 return MatchOperand_NoMatch; 4448 4449 // Eat the hash (dollar) 4450 Parser.Lex(); 4451 } 4452 4453 SMLoc Sx1, Ex1; 4454 Sx1 = Parser.getTok().getLoc(); 4455 const MCExpr *Imm1Exp; 4456 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4457 Error(Sx1, "malformed expression"); 4458 return MatchOperand_ParseFail; 4459 } 4460 4461 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4462 4463 if (CE) { 4464 // Immediate must fit within 32-bits 4465 Imm1 = CE->getValue(); 4466 int Enc = ARM_AM::getSOImmVal(Imm1); 4467 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4468 // We have a match! 4469 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4470 (Enc & 0xF00) >> 7, 4471 Sx1, Ex1)); 4472 return MatchOperand_Success; 4473 } 4474 4475 // We have parsed an immediate which is not for us, fallback to a plain 4476 // immediate. This can happen for instruction aliases. For an example, 4477 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4478 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4479 // instruction with a mod_imm operand. The alias is defined such that the 4480 // parser method is shared, that's why we have to do this here. 4481 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4482 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4483 return MatchOperand_Success; 4484 } 4485 } else { 4486 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4487 // MCFixup). Fallback to a plain immediate. 4488 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4489 return MatchOperand_Success; 4490 } 4491 4492 // From this point onward, we expect the input to be a (#bits, #rot) pair 4493 if (Parser.getTok().isNot(AsmToken::Comma)) { 4494 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4495 return MatchOperand_ParseFail; 4496 } 4497 4498 if (Imm1 & ~0xFF) { 4499 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4500 return MatchOperand_ParseFail; 4501 } 4502 4503 // Eat the comma 4504 Parser.Lex(); 4505 4506 // Repeat for #rot 4507 SMLoc Sx2, Ex2; 4508 Sx2 = Parser.getTok().getLoc(); 4509 4510 // Eat the optional hash (dollar) 4511 if (Parser.getTok().is(AsmToken::Hash) || 4512 Parser.getTok().is(AsmToken::Dollar)) 4513 Parser.Lex(); 4514 4515 const MCExpr *Imm2Exp; 4516 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4517 Error(Sx2, "malformed expression"); 4518 return MatchOperand_ParseFail; 4519 } 4520 4521 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4522 4523 if (CE) { 4524 Imm2 = CE->getValue(); 4525 if (!(Imm2 & ~0x1E)) { 4526 // We have a match! 4527 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4528 return MatchOperand_Success; 4529 } 4530 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4531 return MatchOperand_ParseFail; 4532 } else { 4533 Error(Sx2, "constant expression expected"); 4534 return MatchOperand_ParseFail; 4535 } 4536 } 4537 4538 OperandMatchResultTy 4539 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4540 MCAsmParser &Parser = getParser(); 4541 SMLoc S = Parser.getTok().getLoc(); 4542 // The bitfield descriptor is really two operands, the LSB and the width. 4543 if (Parser.getTok().isNot(AsmToken::Hash) && 4544 Parser.getTok().isNot(AsmToken::Dollar)) { 4545 Error(Parser.getTok().getLoc(), "'#' expected"); 4546 return MatchOperand_ParseFail; 4547 } 4548 Parser.Lex(); // Eat hash token. 4549 4550 const MCExpr *LSBExpr; 4551 SMLoc E = Parser.getTok().getLoc(); 4552 if (getParser().parseExpression(LSBExpr)) { 4553 Error(E, "malformed immediate expression"); 4554 return MatchOperand_ParseFail; 4555 } 4556 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4557 if (!CE) { 4558 Error(E, "'lsb' operand must be an immediate"); 4559 return MatchOperand_ParseFail; 4560 } 4561 4562 int64_t LSB = CE->getValue(); 4563 // The LSB must be in the range [0,31] 4564 if (LSB < 0 || LSB > 31) { 4565 Error(E, "'lsb' operand must be in the range [0,31]"); 4566 return MatchOperand_ParseFail; 4567 } 4568 E = Parser.getTok().getLoc(); 4569 4570 // Expect another immediate operand. 4571 if (Parser.getTok().isNot(AsmToken::Comma)) { 4572 Error(Parser.getTok().getLoc(), "too few operands"); 4573 return MatchOperand_ParseFail; 4574 } 4575 Parser.Lex(); // Eat hash token. 4576 if (Parser.getTok().isNot(AsmToken::Hash) && 4577 Parser.getTok().isNot(AsmToken::Dollar)) { 4578 Error(Parser.getTok().getLoc(), "'#' expected"); 4579 return MatchOperand_ParseFail; 4580 } 4581 Parser.Lex(); // Eat hash token. 4582 4583 const MCExpr *WidthExpr; 4584 SMLoc EndLoc; 4585 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4586 Error(E, "malformed immediate expression"); 4587 return MatchOperand_ParseFail; 4588 } 4589 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4590 if (!CE) { 4591 Error(E, "'width' operand must be an immediate"); 4592 return MatchOperand_ParseFail; 4593 } 4594 4595 int64_t Width = CE->getValue(); 4596 // The LSB must be in the range [1,32-lsb] 4597 if (Width < 1 || Width > 32 - LSB) { 4598 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4599 return MatchOperand_ParseFail; 4600 } 4601 4602 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4603 4604 return MatchOperand_Success; 4605 } 4606 4607 OperandMatchResultTy 4608 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4609 // Check for a post-index addressing register operand. Specifically: 4610 // postidx_reg := '+' register {, shift} 4611 // | '-' register {, shift} 4612 // | register {, shift} 4613 4614 // This method must return MatchOperand_NoMatch without consuming any tokens 4615 // in the case where there is no match, as other alternatives take other 4616 // parse methods. 4617 MCAsmParser &Parser = getParser(); 4618 AsmToken Tok = Parser.getTok(); 4619 SMLoc S = Tok.getLoc(); 4620 bool haveEaten = false; 4621 bool isAdd = true; 4622 if (Tok.is(AsmToken::Plus)) { 4623 Parser.Lex(); // Eat the '+' token. 4624 haveEaten = true; 4625 } else if (Tok.is(AsmToken::Minus)) { 4626 Parser.Lex(); // Eat the '-' token. 4627 isAdd = false; 4628 haveEaten = true; 4629 } 4630 4631 SMLoc E = Parser.getTok().getEndLoc(); 4632 int Reg = tryParseRegister(); 4633 if (Reg == -1) { 4634 if (!haveEaten) 4635 return MatchOperand_NoMatch; 4636 Error(Parser.getTok().getLoc(), "register expected"); 4637 return MatchOperand_ParseFail; 4638 } 4639 4640 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4641 unsigned ShiftImm = 0; 4642 if (Parser.getTok().is(AsmToken::Comma)) { 4643 Parser.Lex(); // Eat the ','. 4644 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4645 return MatchOperand_ParseFail; 4646 4647 // FIXME: Only approximates end...may include intervening whitespace. 4648 E = Parser.getTok().getLoc(); 4649 } 4650 4651 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4652 ShiftImm, S, E)); 4653 4654 return MatchOperand_Success; 4655 } 4656 4657 OperandMatchResultTy 4658 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4659 // Check for a post-index addressing register operand. Specifically: 4660 // am3offset := '+' register 4661 // | '-' register 4662 // | register 4663 // | # imm 4664 // | # + imm 4665 // | # - imm 4666 4667 // This method must return MatchOperand_NoMatch without consuming any tokens 4668 // in the case where there is no match, as other alternatives take other 4669 // parse methods. 4670 MCAsmParser &Parser = getParser(); 4671 AsmToken Tok = Parser.getTok(); 4672 SMLoc S = Tok.getLoc(); 4673 4674 // Do immediates first, as we always parse those if we have a '#'. 4675 if (Parser.getTok().is(AsmToken::Hash) || 4676 Parser.getTok().is(AsmToken::Dollar)) { 4677 Parser.Lex(); // Eat '#' or '$'. 4678 // Explicitly look for a '-', as we need to encode negative zero 4679 // differently. 4680 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4681 const MCExpr *Offset; 4682 SMLoc E; 4683 if (getParser().parseExpression(Offset, E)) 4684 return MatchOperand_ParseFail; 4685 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4686 if (!CE) { 4687 Error(S, "constant expression expected"); 4688 return MatchOperand_ParseFail; 4689 } 4690 // Negative zero is encoded as the flag value INT32_MIN. 4691 int32_t Val = CE->getValue(); 4692 if (isNegative && Val == 0) 4693 Val = INT32_MIN; 4694 4695 Operands.push_back( 4696 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4697 4698 return MatchOperand_Success; 4699 } 4700 4701 4702 bool haveEaten = false; 4703 bool isAdd = true; 4704 if (Tok.is(AsmToken::Plus)) { 4705 Parser.Lex(); // Eat the '+' token. 4706 haveEaten = true; 4707 } else if (Tok.is(AsmToken::Minus)) { 4708 Parser.Lex(); // Eat the '-' token. 4709 isAdd = false; 4710 haveEaten = true; 4711 } 4712 4713 Tok = Parser.getTok(); 4714 int Reg = tryParseRegister(); 4715 if (Reg == -1) { 4716 if (!haveEaten) 4717 return MatchOperand_NoMatch; 4718 Error(Tok.getLoc(), "register expected"); 4719 return MatchOperand_ParseFail; 4720 } 4721 4722 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4723 0, S, Tok.getEndLoc())); 4724 4725 return MatchOperand_Success; 4726 } 4727 4728 /// Convert parsed operands to MCInst. Needed here because this instruction 4729 /// only has two register operands, but multiplication is commutative so 4730 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4731 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4732 const OperandVector &Operands) { 4733 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4734 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4735 // If we have a three-operand form, make sure to set Rn to be the operand 4736 // that isn't the same as Rd. 4737 unsigned RegOp = 4; 4738 if (Operands.size() == 6 && 4739 ((ARMOperand &)*Operands[4]).getReg() == 4740 ((ARMOperand &)*Operands[3]).getReg()) 4741 RegOp = 5; 4742 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4743 Inst.addOperand(Inst.getOperand(0)); 4744 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4745 } 4746 4747 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4748 const OperandVector &Operands) { 4749 int CondOp = -1, ImmOp = -1; 4750 switch(Inst.getOpcode()) { 4751 case ARM::tB: 4752 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4753 4754 case ARM::t2B: 4755 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4756 4757 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4758 } 4759 // first decide whether or not the branch should be conditional 4760 // by looking at it's location relative to an IT block 4761 if(inITBlock()) { 4762 // inside an IT block we cannot have any conditional branches. any 4763 // such instructions needs to be converted to unconditional form 4764 switch(Inst.getOpcode()) { 4765 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4766 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4767 } 4768 } else { 4769 // outside IT blocks we can only have unconditional branches with AL 4770 // condition code or conditional branches with non-AL condition code 4771 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4772 switch(Inst.getOpcode()) { 4773 case ARM::tB: 4774 case ARM::tBcc: 4775 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4776 break; 4777 case ARM::t2B: 4778 case ARM::t2Bcc: 4779 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4780 break; 4781 } 4782 } 4783 4784 // now decide on encoding size based on branch target range 4785 switch(Inst.getOpcode()) { 4786 // classify tB as either t2B or t1B based on range of immediate operand 4787 case ARM::tB: { 4788 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4789 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4790 Inst.setOpcode(ARM::t2B); 4791 break; 4792 } 4793 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4794 case ARM::tBcc: { 4795 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4796 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4797 Inst.setOpcode(ARM::t2Bcc); 4798 break; 4799 } 4800 } 4801 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4802 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4803 } 4804 4805 /// Parse an ARM memory expression, return false if successful else return true 4806 /// or an error. The first token must be a '[' when called. 4807 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4808 MCAsmParser &Parser = getParser(); 4809 SMLoc S, E; 4810 if (Parser.getTok().isNot(AsmToken::LBrac)) 4811 return TokError("Token is not a Left Bracket"); 4812 S = Parser.getTok().getLoc(); 4813 Parser.Lex(); // Eat left bracket token. 4814 4815 const AsmToken &BaseRegTok = Parser.getTok(); 4816 int BaseRegNum = tryParseRegister(); 4817 if (BaseRegNum == -1) 4818 return Error(BaseRegTok.getLoc(), "register expected"); 4819 4820 // The next token must either be a comma, a colon or a closing bracket. 4821 const AsmToken &Tok = Parser.getTok(); 4822 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4823 !Tok.is(AsmToken::RBrac)) 4824 return Error(Tok.getLoc(), "malformed memory operand"); 4825 4826 if (Tok.is(AsmToken::RBrac)) { 4827 E = Tok.getEndLoc(); 4828 Parser.Lex(); // Eat right bracket token. 4829 4830 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4831 ARM_AM::no_shift, 0, 0, false, 4832 S, E)); 4833 4834 // If there's a pre-indexing writeback marker, '!', just add it as a token 4835 // operand. It's rather odd, but syntactically valid. 4836 if (Parser.getTok().is(AsmToken::Exclaim)) { 4837 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4838 Parser.Lex(); // Eat the '!'. 4839 } 4840 4841 return false; 4842 } 4843 4844 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4845 "Lost colon or comma in memory operand?!"); 4846 if (Tok.is(AsmToken::Comma)) { 4847 Parser.Lex(); // Eat the comma. 4848 } 4849 4850 // If we have a ':', it's an alignment specifier. 4851 if (Parser.getTok().is(AsmToken::Colon)) { 4852 Parser.Lex(); // Eat the ':'. 4853 E = Parser.getTok().getLoc(); 4854 SMLoc AlignmentLoc = Tok.getLoc(); 4855 4856 const MCExpr *Expr; 4857 if (getParser().parseExpression(Expr)) 4858 return true; 4859 4860 // The expression has to be a constant. Memory references with relocations 4861 // don't come through here, as they use the <label> forms of the relevant 4862 // instructions. 4863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4864 if (!CE) 4865 return Error (E, "constant expression expected"); 4866 4867 unsigned Align = 0; 4868 switch (CE->getValue()) { 4869 default: 4870 return Error(E, 4871 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4872 case 16: Align = 2; break; 4873 case 32: Align = 4; break; 4874 case 64: Align = 8; break; 4875 case 128: Align = 16; break; 4876 case 256: Align = 32; break; 4877 } 4878 4879 // Now we should have the closing ']' 4880 if (Parser.getTok().isNot(AsmToken::RBrac)) 4881 return Error(Parser.getTok().getLoc(), "']' expected"); 4882 E = Parser.getTok().getEndLoc(); 4883 Parser.Lex(); // Eat right bracket token. 4884 4885 // Don't worry about range checking the value here. That's handled by 4886 // the is*() predicates. 4887 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4888 ARM_AM::no_shift, 0, Align, 4889 false, S, E, AlignmentLoc)); 4890 4891 // If there's a pre-indexing writeback marker, '!', just add it as a token 4892 // operand. 4893 if (Parser.getTok().is(AsmToken::Exclaim)) { 4894 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4895 Parser.Lex(); // Eat the '!'. 4896 } 4897 4898 return false; 4899 } 4900 4901 // If we have a '#', it's an immediate offset, else assume it's a register 4902 // offset. Be friendly and also accept a plain integer (without a leading 4903 // hash) for gas compatibility. 4904 if (Parser.getTok().is(AsmToken::Hash) || 4905 Parser.getTok().is(AsmToken::Dollar) || 4906 Parser.getTok().is(AsmToken::Integer)) { 4907 if (Parser.getTok().isNot(AsmToken::Integer)) 4908 Parser.Lex(); // Eat '#' or '$'. 4909 E = Parser.getTok().getLoc(); 4910 4911 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4912 const MCExpr *Offset; 4913 if (getParser().parseExpression(Offset)) 4914 return true; 4915 4916 // The expression has to be a constant. Memory references with relocations 4917 // don't come through here, as they use the <label> forms of the relevant 4918 // instructions. 4919 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4920 if (!CE) 4921 return Error (E, "constant expression expected"); 4922 4923 // If the constant was #-0, represent it as INT32_MIN. 4924 int32_t Val = CE->getValue(); 4925 if (isNegative && Val == 0) 4926 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4927 4928 // Now we should have the closing ']' 4929 if (Parser.getTok().isNot(AsmToken::RBrac)) 4930 return Error(Parser.getTok().getLoc(), "']' expected"); 4931 E = Parser.getTok().getEndLoc(); 4932 Parser.Lex(); // Eat right bracket token. 4933 4934 // Don't worry about range checking the value here. That's handled by 4935 // the is*() predicates. 4936 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4937 ARM_AM::no_shift, 0, 0, 4938 false, S, E)); 4939 4940 // If there's a pre-indexing writeback marker, '!', just add it as a token 4941 // operand. 4942 if (Parser.getTok().is(AsmToken::Exclaim)) { 4943 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4944 Parser.Lex(); // Eat the '!'. 4945 } 4946 4947 return false; 4948 } 4949 4950 // The register offset is optionally preceded by a '+' or '-' 4951 bool isNegative = false; 4952 if (Parser.getTok().is(AsmToken::Minus)) { 4953 isNegative = true; 4954 Parser.Lex(); // Eat the '-'. 4955 } else if (Parser.getTok().is(AsmToken::Plus)) { 4956 // Nothing to do. 4957 Parser.Lex(); // Eat the '+'. 4958 } 4959 4960 E = Parser.getTok().getLoc(); 4961 int OffsetRegNum = tryParseRegister(); 4962 if (OffsetRegNum == -1) 4963 return Error(E, "register expected"); 4964 4965 // If there's a shift operator, handle it. 4966 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4967 unsigned ShiftImm = 0; 4968 if (Parser.getTok().is(AsmToken::Comma)) { 4969 Parser.Lex(); // Eat the ','. 4970 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4971 return true; 4972 } 4973 4974 // Now we should have the closing ']' 4975 if (Parser.getTok().isNot(AsmToken::RBrac)) 4976 return Error(Parser.getTok().getLoc(), "']' expected"); 4977 E = Parser.getTok().getEndLoc(); 4978 Parser.Lex(); // Eat right bracket token. 4979 4980 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4981 ShiftType, ShiftImm, 0, isNegative, 4982 S, E)); 4983 4984 // If there's a pre-indexing writeback marker, '!', just add it as a token 4985 // operand. 4986 if (Parser.getTok().is(AsmToken::Exclaim)) { 4987 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4988 Parser.Lex(); // Eat the '!'. 4989 } 4990 4991 return false; 4992 } 4993 4994 /// parseMemRegOffsetShift - one of these two: 4995 /// ( lsl | lsr | asr | ror ) , # shift_amount 4996 /// rrx 4997 /// return true if it parses a shift otherwise it returns false. 4998 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4999 unsigned &Amount) { 5000 MCAsmParser &Parser = getParser(); 5001 SMLoc Loc = Parser.getTok().getLoc(); 5002 const AsmToken &Tok = Parser.getTok(); 5003 if (Tok.isNot(AsmToken::Identifier)) 5004 return true; 5005 StringRef ShiftName = Tok.getString(); 5006 if (ShiftName == "lsl" || ShiftName == "LSL" || 5007 ShiftName == "asl" || ShiftName == "ASL") 5008 St = ARM_AM::lsl; 5009 else if (ShiftName == "lsr" || ShiftName == "LSR") 5010 St = ARM_AM::lsr; 5011 else if (ShiftName == "asr" || ShiftName == "ASR") 5012 St = ARM_AM::asr; 5013 else if (ShiftName == "ror" || ShiftName == "ROR") 5014 St = ARM_AM::ror; 5015 else if (ShiftName == "rrx" || ShiftName == "RRX") 5016 St = ARM_AM::rrx; 5017 else 5018 return Error(Loc, "illegal shift operator"); 5019 Parser.Lex(); // Eat shift type token. 5020 5021 // rrx stands alone. 5022 Amount = 0; 5023 if (St != ARM_AM::rrx) { 5024 Loc = Parser.getTok().getLoc(); 5025 // A '#' and a shift amount. 5026 const AsmToken &HashTok = Parser.getTok(); 5027 if (HashTok.isNot(AsmToken::Hash) && 5028 HashTok.isNot(AsmToken::Dollar)) 5029 return Error(HashTok.getLoc(), "'#' expected"); 5030 Parser.Lex(); // Eat hash token. 5031 5032 const MCExpr *Expr; 5033 if (getParser().parseExpression(Expr)) 5034 return true; 5035 // Range check the immediate. 5036 // lsl, ror: 0 <= imm <= 31 5037 // lsr, asr: 0 <= imm <= 32 5038 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5039 if (!CE) 5040 return Error(Loc, "shift amount must be an immediate"); 5041 int64_t Imm = CE->getValue(); 5042 if (Imm < 0 || 5043 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5044 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5045 return Error(Loc, "immediate shift value out of range"); 5046 // If <ShiftTy> #0, turn it into a no_shift. 5047 if (Imm == 0) 5048 St = ARM_AM::lsl; 5049 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5050 if (Imm == 32) 5051 Imm = 0; 5052 Amount = Imm; 5053 } 5054 5055 return false; 5056 } 5057 5058 /// parseFPImm - A floating point immediate expression operand. 5059 OperandMatchResultTy 5060 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5061 MCAsmParser &Parser = getParser(); 5062 // Anything that can accept a floating point constant as an operand 5063 // needs to go through here, as the regular parseExpression is 5064 // integer only. 5065 // 5066 // This routine still creates a generic Immediate operand, containing 5067 // a bitcast of the 64-bit floating point value. The various operands 5068 // that accept floats can check whether the value is valid for them 5069 // via the standard is*() predicates. 5070 5071 SMLoc S = Parser.getTok().getLoc(); 5072 5073 if (Parser.getTok().isNot(AsmToken::Hash) && 5074 Parser.getTok().isNot(AsmToken::Dollar)) 5075 return MatchOperand_NoMatch; 5076 5077 // Disambiguate the VMOV forms that can accept an FP immediate. 5078 // vmov.f32 <sreg>, #imm 5079 // vmov.f64 <dreg>, #imm 5080 // vmov.f32 <dreg>, #imm @ vector f32x2 5081 // vmov.f32 <qreg>, #imm @ vector f32x4 5082 // 5083 // There are also the NEON VMOV instructions which expect an 5084 // integer constant. Make sure we don't try to parse an FPImm 5085 // for these: 5086 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5087 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5088 bool isVmovf = TyOp.isToken() && 5089 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5090 TyOp.getToken() == ".f16"); 5091 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5092 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5093 Mnemonic.getToken() == "fconsts"); 5094 if (!(isVmovf || isFconst)) 5095 return MatchOperand_NoMatch; 5096 5097 Parser.Lex(); // Eat '#' or '$'. 5098 5099 // Handle negation, as that still comes through as a separate token. 5100 bool isNegative = false; 5101 if (Parser.getTok().is(AsmToken::Minus)) { 5102 isNegative = true; 5103 Parser.Lex(); 5104 } 5105 const AsmToken &Tok = Parser.getTok(); 5106 SMLoc Loc = Tok.getLoc(); 5107 if (Tok.is(AsmToken::Real) && isVmovf) { 5108 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5109 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5110 // If we had a '-' in front, toggle the sign bit. 5111 IntVal ^= (uint64_t)isNegative << 31; 5112 Parser.Lex(); // Eat the token. 5113 Operands.push_back(ARMOperand::CreateImm( 5114 MCConstantExpr::create(IntVal, getContext()), 5115 S, Parser.getTok().getLoc())); 5116 return MatchOperand_Success; 5117 } 5118 // Also handle plain integers. Instructions which allow floating point 5119 // immediates also allow a raw encoded 8-bit value. 5120 if (Tok.is(AsmToken::Integer) && isFconst) { 5121 int64_t Val = Tok.getIntVal(); 5122 Parser.Lex(); // Eat the token. 5123 if (Val > 255 || Val < 0) { 5124 Error(Loc, "encoded floating point value out of range"); 5125 return MatchOperand_ParseFail; 5126 } 5127 float RealVal = ARM_AM::getFPImmFloat(Val); 5128 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5129 5130 Operands.push_back(ARMOperand::CreateImm( 5131 MCConstantExpr::create(Val, getContext()), S, 5132 Parser.getTok().getLoc())); 5133 return MatchOperand_Success; 5134 } 5135 5136 Error(Loc, "invalid floating point immediate"); 5137 return MatchOperand_ParseFail; 5138 } 5139 5140 /// Parse a arm instruction operand. For now this parses the operand regardless 5141 /// of the mnemonic. 5142 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5143 MCAsmParser &Parser = getParser(); 5144 SMLoc S, E; 5145 5146 // Check if the current operand has a custom associated parser, if so, try to 5147 // custom parse the operand, or fallback to the general approach. 5148 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5149 if (ResTy == MatchOperand_Success) 5150 return false; 5151 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5152 // there was a match, but an error occurred, in which case, just return that 5153 // the operand parsing failed. 5154 if (ResTy == MatchOperand_ParseFail) 5155 return true; 5156 5157 switch (getLexer().getKind()) { 5158 default: 5159 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5160 return true; 5161 case AsmToken::Identifier: { 5162 // If we've seen a branch mnemonic, the next operand must be a label. This 5163 // is true even if the label is a register name. So "br r1" means branch to 5164 // label "r1". 5165 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5166 if (!ExpectLabel) { 5167 if (!tryParseRegisterWithWriteBack(Operands)) 5168 return false; 5169 int Res = tryParseShiftRegister(Operands); 5170 if (Res == 0) // success 5171 return false; 5172 else if (Res == -1) // irrecoverable error 5173 return true; 5174 // If this is VMRS, check for the apsr_nzcv operand. 5175 if (Mnemonic == "vmrs" && 5176 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5177 S = Parser.getTok().getLoc(); 5178 Parser.Lex(); 5179 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5180 return false; 5181 } 5182 } 5183 5184 // Fall though for the Identifier case that is not a register or a 5185 // special name. 5186 LLVM_FALLTHROUGH; 5187 } 5188 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5189 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5190 case AsmToken::String: // quoted label names. 5191 case AsmToken::Dot: { // . as a branch target 5192 // This was not a register so parse other operands that start with an 5193 // identifier (like labels) as expressions and create them as immediates. 5194 const MCExpr *IdVal; 5195 S = Parser.getTok().getLoc(); 5196 if (getParser().parseExpression(IdVal)) 5197 return true; 5198 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5199 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5200 return false; 5201 } 5202 case AsmToken::LBrac: 5203 return parseMemory(Operands); 5204 case AsmToken::LCurly: 5205 return parseRegisterList(Operands); 5206 case AsmToken::Dollar: 5207 case AsmToken::Hash: { 5208 // #42 -> immediate. 5209 S = Parser.getTok().getLoc(); 5210 Parser.Lex(); 5211 5212 if (Parser.getTok().isNot(AsmToken::Colon)) { 5213 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5214 const MCExpr *ImmVal; 5215 if (getParser().parseExpression(ImmVal)) 5216 return true; 5217 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5218 if (CE) { 5219 int32_t Val = CE->getValue(); 5220 if (isNegative && Val == 0) 5221 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5222 } 5223 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5224 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5225 5226 // There can be a trailing '!' on operands that we want as a separate 5227 // '!' Token operand. Handle that here. For example, the compatibility 5228 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5229 if (Parser.getTok().is(AsmToken::Exclaim)) { 5230 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5231 Parser.getTok().getLoc())); 5232 Parser.Lex(); // Eat exclaim token 5233 } 5234 return false; 5235 } 5236 // w/ a ':' after the '#', it's just like a plain ':'. 5237 LLVM_FALLTHROUGH; 5238 } 5239 case AsmToken::Colon: { 5240 S = Parser.getTok().getLoc(); 5241 // ":lower16:" and ":upper16:" expression prefixes 5242 // FIXME: Check it's an expression prefix, 5243 // e.g. (FOO - :lower16:BAR) isn't legal. 5244 ARMMCExpr::VariantKind RefKind; 5245 if (parsePrefix(RefKind)) 5246 return true; 5247 5248 const MCExpr *SubExprVal; 5249 if (getParser().parseExpression(SubExprVal)) 5250 return true; 5251 5252 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5253 getContext()); 5254 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5255 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5256 return false; 5257 } 5258 case AsmToken::Equal: { 5259 S = Parser.getTok().getLoc(); 5260 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5261 return Error(S, "unexpected token in operand"); 5262 Parser.Lex(); // Eat '=' 5263 const MCExpr *SubExprVal; 5264 if (getParser().parseExpression(SubExprVal)) 5265 return true; 5266 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5267 5268 // execute-only: we assume that assembly programmers know what they are 5269 // doing and allow literal pool creation here 5270 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5271 return false; 5272 } 5273 } 5274 } 5275 5276 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5277 // :lower16: and :upper16:. 5278 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5279 MCAsmParser &Parser = getParser(); 5280 RefKind = ARMMCExpr::VK_ARM_None; 5281 5282 // consume an optional '#' (GNU compatibility) 5283 if (getLexer().is(AsmToken::Hash)) 5284 Parser.Lex(); 5285 5286 // :lower16: and :upper16: modifiers 5287 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5288 Parser.Lex(); // Eat ':' 5289 5290 if (getLexer().isNot(AsmToken::Identifier)) { 5291 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5292 return true; 5293 } 5294 5295 enum { 5296 COFF = (1 << MCObjectFileInfo::IsCOFF), 5297 ELF = (1 << MCObjectFileInfo::IsELF), 5298 MACHO = (1 << MCObjectFileInfo::IsMachO), 5299 WASM = (1 << MCObjectFileInfo::IsWasm), 5300 }; 5301 static const struct PrefixEntry { 5302 const char *Spelling; 5303 ARMMCExpr::VariantKind VariantKind; 5304 uint8_t SupportedFormats; 5305 } PrefixEntries[] = { 5306 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5307 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5308 }; 5309 5310 StringRef IDVal = Parser.getTok().getIdentifier(); 5311 5312 const auto &Prefix = 5313 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5314 [&IDVal](const PrefixEntry &PE) { 5315 return PE.Spelling == IDVal; 5316 }); 5317 if (Prefix == std::end(PrefixEntries)) { 5318 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5319 return true; 5320 } 5321 5322 uint8_t CurrentFormat; 5323 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5324 case MCObjectFileInfo::IsMachO: 5325 CurrentFormat = MACHO; 5326 break; 5327 case MCObjectFileInfo::IsELF: 5328 CurrentFormat = ELF; 5329 break; 5330 case MCObjectFileInfo::IsCOFF: 5331 CurrentFormat = COFF; 5332 break; 5333 case MCObjectFileInfo::IsWasm: 5334 CurrentFormat = WASM; 5335 break; 5336 } 5337 5338 if (~Prefix->SupportedFormats & CurrentFormat) { 5339 Error(Parser.getTok().getLoc(), 5340 "cannot represent relocation in the current file format"); 5341 return true; 5342 } 5343 5344 RefKind = Prefix->VariantKind; 5345 Parser.Lex(); 5346 5347 if (getLexer().isNot(AsmToken::Colon)) { 5348 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5349 return true; 5350 } 5351 Parser.Lex(); // Eat the last ':' 5352 5353 return false; 5354 } 5355 5356 /// \brief Given a mnemonic, split out possible predication code and carry 5357 /// setting letters to form a canonical mnemonic and flags. 5358 // 5359 // FIXME: Would be nice to autogen this. 5360 // FIXME: This is a bit of a maze of special cases. 5361 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5362 unsigned &PredicationCode, 5363 bool &CarrySetting, 5364 unsigned &ProcessorIMod, 5365 StringRef &ITMask) { 5366 PredicationCode = ARMCC::AL; 5367 CarrySetting = false; 5368 ProcessorIMod = 0; 5369 5370 // Ignore some mnemonics we know aren't predicated forms. 5371 // 5372 // FIXME: Would be nice to autogen this. 5373 if ((Mnemonic == "movs" && isThumb()) || 5374 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5375 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5376 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5377 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5378 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5379 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5380 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5381 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5382 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5383 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5384 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5385 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5386 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5387 Mnemonic == "bxns" || Mnemonic == "blxns") 5388 return Mnemonic; 5389 5390 // First, split out any predication code. Ignore mnemonics we know aren't 5391 // predicated but do have a carry-set and so weren't caught above. 5392 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5393 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5394 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5395 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5396 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5397 .Case("eq", ARMCC::EQ) 5398 .Case("ne", ARMCC::NE) 5399 .Case("hs", ARMCC::HS) 5400 .Case("cs", ARMCC::HS) 5401 .Case("lo", ARMCC::LO) 5402 .Case("cc", ARMCC::LO) 5403 .Case("mi", ARMCC::MI) 5404 .Case("pl", ARMCC::PL) 5405 .Case("vs", ARMCC::VS) 5406 .Case("vc", ARMCC::VC) 5407 .Case("hi", ARMCC::HI) 5408 .Case("ls", ARMCC::LS) 5409 .Case("ge", ARMCC::GE) 5410 .Case("lt", ARMCC::LT) 5411 .Case("gt", ARMCC::GT) 5412 .Case("le", ARMCC::LE) 5413 .Case("al", ARMCC::AL) 5414 .Default(~0U); 5415 if (CC != ~0U) { 5416 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5417 PredicationCode = CC; 5418 } 5419 } 5420 5421 // Next, determine if we have a carry setting bit. We explicitly ignore all 5422 // the instructions we know end in 's'. 5423 if (Mnemonic.endswith("s") && 5424 !(Mnemonic == "cps" || Mnemonic == "mls" || 5425 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5426 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5427 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5428 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5429 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5430 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5431 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5432 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5433 Mnemonic == "bxns" || Mnemonic == "blxns" || 5434 (Mnemonic == "movs" && isThumb()))) { 5435 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5436 CarrySetting = true; 5437 } 5438 5439 // The "cps" instruction can have a interrupt mode operand which is glued into 5440 // the mnemonic. Check if this is the case, split it and parse the imod op 5441 if (Mnemonic.startswith("cps")) { 5442 // Split out any imod code. 5443 unsigned IMod = 5444 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5445 .Case("ie", ARM_PROC::IE) 5446 .Case("id", ARM_PROC::ID) 5447 .Default(~0U); 5448 if (IMod != ~0U) { 5449 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5450 ProcessorIMod = IMod; 5451 } 5452 } 5453 5454 // The "it" instruction has the condition mask on the end of the mnemonic. 5455 if (Mnemonic.startswith("it")) { 5456 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5457 Mnemonic = Mnemonic.slice(0, 2); 5458 } 5459 5460 return Mnemonic; 5461 } 5462 5463 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5464 /// inclusion of carry set or predication code operands. 5465 // 5466 // FIXME: It would be nice to autogen this. 5467 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5468 bool &CanAcceptCarrySet, 5469 bool &CanAcceptPredicationCode) { 5470 CanAcceptCarrySet = 5471 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5472 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5473 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5474 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5475 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5476 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5477 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5478 (!isThumb() && 5479 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5480 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5481 5482 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5483 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5484 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5485 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5486 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5487 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5488 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5489 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5490 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5491 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5492 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5493 Mnemonic == "vmovx" || Mnemonic == "vins") { 5494 // These mnemonics are never predicable 5495 CanAcceptPredicationCode = false; 5496 } else if (!isThumb()) { 5497 // Some instructions are only predicable in Thumb mode 5498 CanAcceptPredicationCode = 5499 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5500 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5501 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5502 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5503 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5504 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5505 !Mnemonic.startswith("srs"); 5506 } else if (isThumbOne()) { 5507 if (hasV6MOps()) 5508 CanAcceptPredicationCode = Mnemonic != "movs"; 5509 else 5510 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5511 } else 5512 CanAcceptPredicationCode = true; 5513 } 5514 5515 // \brief Some Thumb instructions have two operand forms that are not 5516 // available as three operand, convert to two operand form if possible. 5517 // 5518 // FIXME: We would really like to be able to tablegen'erate this. 5519 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5520 bool CarrySetting, 5521 OperandVector &Operands) { 5522 if (Operands.size() != 6) 5523 return; 5524 5525 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5526 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5527 if (!Op3.isReg() || !Op4.isReg()) 5528 return; 5529 5530 auto Op3Reg = Op3.getReg(); 5531 auto Op4Reg = Op4.getReg(); 5532 5533 // For most Thumb2 cases we just generate the 3 operand form and reduce 5534 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5535 // won't accept SP or PC so we do the transformation here taking care 5536 // with immediate range in the 'add sp, sp #imm' case. 5537 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5538 if (isThumbTwo()) { 5539 if (Mnemonic != "add") 5540 return; 5541 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5542 (Op5.isReg() && Op5.getReg() == ARM::PC); 5543 if (!TryTransform) { 5544 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5545 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5546 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5547 Op5.isImm() && !Op5.isImm0_508s4()); 5548 } 5549 if (!TryTransform) 5550 return; 5551 } else if (!isThumbOne()) 5552 return; 5553 5554 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5555 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5556 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5557 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5558 return; 5559 5560 // If first 2 operands of a 3 operand instruction are the same 5561 // then transform to 2 operand version of the same instruction 5562 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5563 bool Transform = Op3Reg == Op4Reg; 5564 5565 // For communtative operations, we might be able to transform if we swap 5566 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5567 // as tADDrsp. 5568 const ARMOperand *LastOp = &Op5; 5569 bool Swap = false; 5570 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5571 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5572 Mnemonic == "and" || Mnemonic == "eor" || 5573 Mnemonic == "adc" || Mnemonic == "orr")) { 5574 Swap = true; 5575 LastOp = &Op4; 5576 Transform = true; 5577 } 5578 5579 // If both registers are the same then remove one of them from 5580 // the operand list, with certain exceptions. 5581 if (Transform) { 5582 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5583 // 2 operand forms don't exist. 5584 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5585 LastOp->isReg()) 5586 Transform = false; 5587 5588 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5589 // 3-bits because the ARMARM says not to. 5590 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5591 Transform = false; 5592 } 5593 5594 if (Transform) { 5595 if (Swap) 5596 std::swap(Op4, Op5); 5597 Operands.erase(Operands.begin() + 3); 5598 } 5599 } 5600 5601 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5602 OperandVector &Operands) { 5603 // FIXME: This is all horribly hacky. We really need a better way to deal 5604 // with optional operands like this in the matcher table. 5605 5606 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5607 // another does not. Specifically, the MOVW instruction does not. So we 5608 // special case it here and remove the defaulted (non-setting) cc_out 5609 // operand if that's the instruction we're trying to match. 5610 // 5611 // We do this as post-processing of the explicit operands rather than just 5612 // conditionally adding the cc_out in the first place because we need 5613 // to check the type of the parsed immediate operand. 5614 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5615 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5616 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5617 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5618 return true; 5619 5620 // Register-register 'add' for thumb does not have a cc_out operand 5621 // when there are only two register operands. 5622 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5623 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5624 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5625 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5626 return true; 5627 // Register-register 'add' for thumb does not have a cc_out operand 5628 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5629 // have to check the immediate range here since Thumb2 has a variant 5630 // that can handle a different range and has a cc_out operand. 5631 if (((isThumb() && Mnemonic == "add") || 5632 (isThumbTwo() && Mnemonic == "sub")) && 5633 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5634 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5635 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5636 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5637 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5638 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5639 return true; 5640 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5641 // imm0_4095 variant. That's the least-preferred variant when 5642 // selecting via the generic "add" mnemonic, so to know that we 5643 // should remove the cc_out operand, we have to explicitly check that 5644 // it's not one of the other variants. Ugh. 5645 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5646 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5647 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5648 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5649 // Nest conditions rather than one big 'if' statement for readability. 5650 // 5651 // If both registers are low, we're in an IT block, and the immediate is 5652 // in range, we should use encoding T1 instead, which has a cc_out. 5653 if (inITBlock() && 5654 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5655 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5656 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5657 return false; 5658 // Check against T3. If the second register is the PC, this is an 5659 // alternate form of ADR, which uses encoding T4, so check for that too. 5660 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5661 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5662 return false; 5663 5664 // Otherwise, we use encoding T4, which does not have a cc_out 5665 // operand. 5666 return true; 5667 } 5668 5669 // The thumb2 multiply instruction doesn't have a CCOut register, so 5670 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5671 // use the 16-bit encoding or not. 5672 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5673 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5674 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5675 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5676 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5677 // If the registers aren't low regs, the destination reg isn't the 5678 // same as one of the source regs, or the cc_out operand is zero 5679 // outside of an IT block, we have to use the 32-bit encoding, so 5680 // remove the cc_out operand. 5681 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5682 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5683 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5684 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5685 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5686 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5687 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5688 return true; 5689 5690 // Also check the 'mul' syntax variant that doesn't specify an explicit 5691 // destination register. 5692 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5693 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5694 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5695 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5696 // If the registers aren't low regs or the cc_out operand is zero 5697 // outside of an IT block, we have to use the 32-bit encoding, so 5698 // remove the cc_out operand. 5699 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5700 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5701 !inITBlock())) 5702 return true; 5703 5704 5705 5706 // Register-register 'add/sub' for thumb does not have a cc_out operand 5707 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5708 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5709 // right, this will result in better diagnostics (which operand is off) 5710 // anyway. 5711 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5712 (Operands.size() == 5 || Operands.size() == 6) && 5713 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5714 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5715 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5716 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5717 (Operands.size() == 6 && 5718 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5719 return true; 5720 5721 return false; 5722 } 5723 5724 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5725 OperandVector &Operands) { 5726 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5727 unsigned RegIdx = 3; 5728 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5729 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5730 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5731 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5732 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5733 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5734 RegIdx = 4; 5735 5736 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5737 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5738 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5739 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5740 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5741 return true; 5742 } 5743 return false; 5744 } 5745 5746 static bool isDataTypeToken(StringRef Tok) { 5747 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5748 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5749 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5750 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5751 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5752 Tok == ".f" || Tok == ".d"; 5753 } 5754 5755 // FIXME: This bit should probably be handled via an explicit match class 5756 // in the .td files that matches the suffix instead of having it be 5757 // a literal string token the way it is now. 5758 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5759 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5760 } 5761 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5762 unsigned VariantID); 5763 5764 static bool RequiresVFPRegListValidation(StringRef Inst, 5765 bool &AcceptSinglePrecisionOnly, 5766 bool &AcceptDoublePrecisionOnly) { 5767 if (Inst.size() < 7) 5768 return false; 5769 5770 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5771 StringRef AddressingMode = Inst.substr(4, 2); 5772 if (AddressingMode == "ia" || AddressingMode == "db" || 5773 AddressingMode == "ea" || AddressingMode == "fd") { 5774 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5775 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5776 return true; 5777 } 5778 } 5779 5780 return false; 5781 } 5782 5783 /// Parse an arm instruction mnemonic followed by its operands. 5784 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5785 SMLoc NameLoc, OperandVector &Operands) { 5786 MCAsmParser &Parser = getParser(); 5787 // FIXME: Can this be done via tablegen in some fashion? 5788 bool RequireVFPRegisterListCheck; 5789 bool AcceptSinglePrecisionOnly; 5790 bool AcceptDoublePrecisionOnly; 5791 RequireVFPRegisterListCheck = 5792 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5793 AcceptDoublePrecisionOnly); 5794 5795 // Apply mnemonic aliases before doing anything else, as the destination 5796 // mnemonic may include suffices and we want to handle them normally. 5797 // The generic tblgen'erated code does this later, at the start of 5798 // MatchInstructionImpl(), but that's too late for aliases that include 5799 // any sort of suffix. 5800 uint64_t AvailableFeatures = getAvailableFeatures(); 5801 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5802 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5803 5804 // First check for the ARM-specific .req directive. 5805 if (Parser.getTok().is(AsmToken::Identifier) && 5806 Parser.getTok().getIdentifier() == ".req") { 5807 parseDirectiveReq(Name, NameLoc); 5808 // We always return 'error' for this, as we're done with this 5809 // statement and don't need to match the 'instruction." 5810 return true; 5811 } 5812 5813 // Create the leading tokens for the mnemonic, split by '.' characters. 5814 size_t Start = 0, Next = Name.find('.'); 5815 StringRef Mnemonic = Name.slice(Start, Next); 5816 5817 // Split out the predication code and carry setting flag from the mnemonic. 5818 unsigned PredicationCode; 5819 unsigned ProcessorIMod; 5820 bool CarrySetting; 5821 StringRef ITMask; 5822 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5823 ProcessorIMod, ITMask); 5824 5825 // In Thumb1, only the branch (B) instruction can be predicated. 5826 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5827 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5828 } 5829 5830 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5831 5832 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5833 // is the mask as it will be for the IT encoding if the conditional 5834 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5835 // where the conditional bit0 is zero, the instruction post-processing 5836 // will adjust the mask accordingly. 5837 if (Mnemonic == "it") { 5838 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5839 if (ITMask.size() > 3) { 5840 return Error(Loc, "too many conditions on IT instruction"); 5841 } 5842 unsigned Mask = 8; 5843 for (unsigned i = ITMask.size(); i != 0; --i) { 5844 char pos = ITMask[i - 1]; 5845 if (pos != 't' && pos != 'e') { 5846 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5847 } 5848 Mask >>= 1; 5849 if (ITMask[i - 1] == 't') 5850 Mask |= 8; 5851 } 5852 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5853 } 5854 5855 // FIXME: This is all a pretty gross hack. We should automatically handle 5856 // optional operands like this via tblgen. 5857 5858 // Next, add the CCOut and ConditionCode operands, if needed. 5859 // 5860 // For mnemonics which can ever incorporate a carry setting bit or predication 5861 // code, our matching model involves us always generating CCOut and 5862 // ConditionCode operands to match the mnemonic "as written" and then we let 5863 // the matcher deal with finding the right instruction or generating an 5864 // appropriate error. 5865 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5866 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5867 5868 // If we had a carry-set on an instruction that can't do that, issue an 5869 // error. 5870 if (!CanAcceptCarrySet && CarrySetting) { 5871 return Error(NameLoc, "instruction '" + Mnemonic + 5872 "' can not set flags, but 's' suffix specified"); 5873 } 5874 // If we had a predication code on an instruction that can't do that, issue an 5875 // error. 5876 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5877 return Error(NameLoc, "instruction '" + Mnemonic + 5878 "' is not predicable, but condition code specified"); 5879 } 5880 5881 // Add the carry setting operand, if necessary. 5882 if (CanAcceptCarrySet) { 5883 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5884 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5885 Loc)); 5886 } 5887 5888 // Add the predication code operand, if necessary. 5889 if (CanAcceptPredicationCode) { 5890 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5891 CarrySetting); 5892 Operands.push_back(ARMOperand::CreateCondCode( 5893 ARMCC::CondCodes(PredicationCode), Loc)); 5894 } 5895 5896 // Add the processor imod operand, if necessary. 5897 if (ProcessorIMod) { 5898 Operands.push_back(ARMOperand::CreateImm( 5899 MCConstantExpr::create(ProcessorIMod, getContext()), 5900 NameLoc, NameLoc)); 5901 } else if (Mnemonic == "cps" && isMClass()) { 5902 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5903 } 5904 5905 // Add the remaining tokens in the mnemonic. 5906 while (Next != StringRef::npos) { 5907 Start = Next; 5908 Next = Name.find('.', Start + 1); 5909 StringRef ExtraToken = Name.slice(Start, Next); 5910 5911 // Some NEON instructions have an optional datatype suffix that is 5912 // completely ignored. Check for that. 5913 if (isDataTypeToken(ExtraToken) && 5914 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5915 continue; 5916 5917 // For for ARM mode generate an error if the .n qualifier is used. 5918 if (ExtraToken == ".n" && !isThumb()) { 5919 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5920 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5921 "arm mode"); 5922 } 5923 5924 // The .n qualifier is always discarded as that is what the tables 5925 // and matcher expect. In ARM mode the .w qualifier has no effect, 5926 // so discard it to avoid errors that can be caused by the matcher. 5927 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5928 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5929 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5930 } 5931 } 5932 5933 // Read the remaining operands. 5934 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5935 // Read the first operand. 5936 if (parseOperand(Operands, Mnemonic)) { 5937 return true; 5938 } 5939 5940 while (parseOptionalToken(AsmToken::Comma)) { 5941 // Parse and remember the operand. 5942 if (parseOperand(Operands, Mnemonic)) { 5943 return true; 5944 } 5945 } 5946 } 5947 5948 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 5949 return true; 5950 5951 if (RequireVFPRegisterListCheck) { 5952 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5953 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5954 return Error(Op.getStartLoc(), 5955 "VFP/Neon single precision register expected"); 5956 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5957 return Error(Op.getStartLoc(), 5958 "VFP/Neon double precision register expected"); 5959 } 5960 5961 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5962 5963 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5964 // do and don't have a cc_out optional-def operand. With some spot-checks 5965 // of the operand list, we can figure out which variant we're trying to 5966 // parse and adjust accordingly before actually matching. We shouldn't ever 5967 // try to remove a cc_out operand that was explicitly set on the 5968 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5969 // table driven matcher doesn't fit well with the ARM instruction set. 5970 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5971 Operands.erase(Operands.begin() + 1); 5972 5973 // Some instructions have the same mnemonic, but don't always 5974 // have a predicate. Distinguish them here and delete the 5975 // predicate if needed. 5976 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5977 Operands.erase(Operands.begin() + 1); 5978 5979 // ARM mode 'blx' need special handling, as the register operand version 5980 // is predicable, but the label operand version is not. So, we can't rely 5981 // on the Mnemonic based checking to correctly figure out when to put 5982 // a k_CondCode operand in the list. If we're trying to match the label 5983 // version, remove the k_CondCode operand here. 5984 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5985 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5986 Operands.erase(Operands.begin() + 1); 5987 5988 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5989 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5990 // a single GPRPair reg operand is used in the .td file to replace the two 5991 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5992 // expressed as a GPRPair, so we have to manually merge them. 5993 // FIXME: We would really like to be able to tablegen'erate this. 5994 if (!isThumb() && Operands.size() > 4 && 5995 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5996 Mnemonic == "stlexd")) { 5997 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5998 unsigned Idx = isLoad ? 2 : 3; 5999 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6000 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6001 6002 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6003 // Adjust only if Op1 and Op2 are GPRs. 6004 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6005 MRC.contains(Op2.getReg())) { 6006 unsigned Reg1 = Op1.getReg(); 6007 unsigned Reg2 = Op2.getReg(); 6008 unsigned Rt = MRI->getEncodingValue(Reg1); 6009 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6010 6011 // Rt2 must be Rt + 1 and Rt must be even. 6012 if (Rt + 1 != Rt2 || (Rt & 1)) { 6013 return Error(Op2.getStartLoc(), 6014 isLoad ? "destination operands must be sequential" 6015 : "source operands must be sequential"); 6016 } 6017 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6018 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6019 Operands[Idx] = 6020 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6021 Operands.erase(Operands.begin() + Idx + 1); 6022 } 6023 } 6024 6025 // GNU Assembler extension (compatibility) 6026 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6027 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6028 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6029 if (Op3.isMem()) { 6030 assert(Op2.isReg() && "expected register argument"); 6031 6032 unsigned SuperReg = MRI->getMatchingSuperReg( 6033 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6034 6035 assert(SuperReg && "expected register pair"); 6036 6037 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6038 6039 Operands.insert( 6040 Operands.begin() + 3, 6041 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6042 } 6043 } 6044 6045 // FIXME: As said above, this is all a pretty gross hack. This instruction 6046 // does not fit with other "subs" and tblgen. 6047 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6048 // so the Mnemonic is the original name "subs" and delete the predicate 6049 // operand so it will match the table entry. 6050 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6051 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6052 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6053 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6054 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6055 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6056 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6057 Operands.erase(Operands.begin() + 1); 6058 } 6059 return false; 6060 } 6061 6062 // Validate context-sensitive operand constraints. 6063 6064 // return 'true' if register list contains non-low GPR registers, 6065 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6066 // 'containsReg' to true. 6067 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6068 unsigned Reg, unsigned HiReg, 6069 bool &containsReg) { 6070 containsReg = false; 6071 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6072 unsigned OpReg = Inst.getOperand(i).getReg(); 6073 if (OpReg == Reg) 6074 containsReg = true; 6075 // Anything other than a low register isn't legal here. 6076 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6077 return true; 6078 } 6079 return false; 6080 } 6081 6082 // Check if the specified regisgter is in the register list of the inst, 6083 // starting at the indicated operand number. 6084 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6085 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6086 unsigned OpReg = Inst.getOperand(i).getReg(); 6087 if (OpReg == Reg) 6088 return true; 6089 } 6090 return false; 6091 } 6092 6093 // Return true if instruction has the interesting property of being 6094 // allowed in IT blocks, but not being predicable. 6095 static bool instIsBreakpoint(const MCInst &Inst) { 6096 return Inst.getOpcode() == ARM::tBKPT || 6097 Inst.getOpcode() == ARM::BKPT || 6098 Inst.getOpcode() == ARM::tHLT || 6099 Inst.getOpcode() == ARM::HLT; 6100 6101 } 6102 6103 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6104 const OperandVector &Operands, 6105 unsigned ListNo, bool IsARPop) { 6106 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6107 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6108 6109 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6110 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6111 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6112 6113 if (!IsARPop && ListContainsSP) 6114 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6115 "SP may not be in the register list"); 6116 else if (ListContainsPC && ListContainsLR) 6117 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6118 "PC and LR may not be in the register list simultaneously"); 6119 return false; 6120 } 6121 6122 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6123 const OperandVector &Operands, 6124 unsigned ListNo) { 6125 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6126 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6127 6128 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6129 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6130 6131 if (ListContainsSP && ListContainsPC) 6132 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6133 "SP and PC may not be in the register list"); 6134 else if (ListContainsSP) 6135 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6136 "SP may not be in the register list"); 6137 else if (ListContainsPC) 6138 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6139 "PC may not be in the register list"); 6140 return false; 6141 } 6142 6143 // FIXME: We would really like to be able to tablegen'erate this. 6144 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6145 const OperandVector &Operands) { 6146 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6147 SMLoc Loc = Operands[0]->getStartLoc(); 6148 6149 // Check the IT block state first. 6150 // NOTE: BKPT and HLT instructions have the interesting property of being 6151 // allowed in IT blocks, but not being predicable. They just always execute. 6152 if (inITBlock() && !instIsBreakpoint(Inst)) { 6153 // The instruction must be predicable. 6154 if (!MCID.isPredicable()) 6155 return Error(Loc, "instructions in IT block must be predicable"); 6156 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6157 if (Cond != currentITCond()) { 6158 // Find the condition code Operand to get its SMLoc information. 6159 SMLoc CondLoc; 6160 for (unsigned I = 1; I < Operands.size(); ++I) 6161 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6162 CondLoc = Operands[I]->getStartLoc(); 6163 return Error(CondLoc, "incorrect condition in IT block; got '" + 6164 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6165 "', but expected '" + 6166 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6167 } 6168 // Check for non-'al' condition codes outside of the IT block. 6169 } else if (isThumbTwo() && MCID.isPredicable() && 6170 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6171 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6172 Inst.getOpcode() != ARM::t2Bcc) { 6173 return Error(Loc, "predicated instructions must be in IT block"); 6174 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6175 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6176 ARMCC::AL) { 6177 return Warning(Loc, "predicated instructions should be in IT block"); 6178 } 6179 6180 // PC-setting instructions in an IT block, but not the last instruction of 6181 // the block, are UNPREDICTABLE. 6182 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6183 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6184 } 6185 6186 const unsigned Opcode = Inst.getOpcode(); 6187 switch (Opcode) { 6188 case ARM::LDRD: 6189 case ARM::LDRD_PRE: 6190 case ARM::LDRD_POST: { 6191 const unsigned RtReg = Inst.getOperand(0).getReg(); 6192 6193 // Rt can't be R14. 6194 if (RtReg == ARM::LR) 6195 return Error(Operands[3]->getStartLoc(), 6196 "Rt can't be R14"); 6197 6198 const unsigned Rt = MRI->getEncodingValue(RtReg); 6199 // Rt must be even-numbered. 6200 if ((Rt & 1) == 1) 6201 return Error(Operands[3]->getStartLoc(), 6202 "Rt must be even-numbered"); 6203 6204 // Rt2 must be Rt + 1. 6205 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6206 if (Rt2 != Rt + 1) 6207 return Error(Operands[3]->getStartLoc(), 6208 "destination operands must be sequential"); 6209 6210 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6211 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6212 // For addressing modes with writeback, the base register needs to be 6213 // different from the destination registers. 6214 if (Rn == Rt || Rn == Rt2) 6215 return Error(Operands[3]->getStartLoc(), 6216 "base register needs to be different from destination " 6217 "registers"); 6218 } 6219 6220 return false; 6221 } 6222 case ARM::t2LDRDi8: 6223 case ARM::t2LDRD_PRE: 6224 case ARM::t2LDRD_POST: { 6225 // Rt2 must be different from Rt. 6226 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6227 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6228 if (Rt2 == Rt) 6229 return Error(Operands[3]->getStartLoc(), 6230 "destination operands can't be identical"); 6231 return false; 6232 } 6233 case ARM::t2BXJ: { 6234 const unsigned RmReg = Inst.getOperand(0).getReg(); 6235 // Rm = SP is no longer unpredictable in v8-A 6236 if (RmReg == ARM::SP && !hasV8Ops()) 6237 return Error(Operands[2]->getStartLoc(), 6238 "r13 (SP) is an unpredictable operand to BXJ"); 6239 return false; 6240 } 6241 case ARM::STRD: { 6242 // Rt2 must be Rt + 1. 6243 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6244 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6245 if (Rt2 != Rt + 1) 6246 return Error(Operands[3]->getStartLoc(), 6247 "source operands must be sequential"); 6248 return false; 6249 } 6250 case ARM::STRD_PRE: 6251 case ARM::STRD_POST: { 6252 // Rt2 must be Rt + 1. 6253 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6254 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6255 if (Rt2 != Rt + 1) 6256 return Error(Operands[3]->getStartLoc(), 6257 "source operands must be sequential"); 6258 return false; 6259 } 6260 case ARM::STR_PRE_IMM: 6261 case ARM::STR_PRE_REG: 6262 case ARM::STR_POST_IMM: 6263 case ARM::STR_POST_REG: 6264 case ARM::STRH_PRE: 6265 case ARM::STRH_POST: 6266 case ARM::STRB_PRE_IMM: 6267 case ARM::STRB_PRE_REG: 6268 case ARM::STRB_POST_IMM: 6269 case ARM::STRB_POST_REG: { 6270 // Rt must be different from Rn. 6271 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6272 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6273 6274 if (Rt == Rn) 6275 return Error(Operands[3]->getStartLoc(), 6276 "source register and base register can't be identical"); 6277 return false; 6278 } 6279 case ARM::LDR_PRE_IMM: 6280 case ARM::LDR_PRE_REG: 6281 case ARM::LDR_POST_IMM: 6282 case ARM::LDR_POST_REG: 6283 case ARM::LDRH_PRE: 6284 case ARM::LDRH_POST: 6285 case ARM::LDRSH_PRE: 6286 case ARM::LDRSH_POST: 6287 case ARM::LDRB_PRE_IMM: 6288 case ARM::LDRB_PRE_REG: 6289 case ARM::LDRB_POST_IMM: 6290 case ARM::LDRB_POST_REG: 6291 case ARM::LDRSB_PRE: 6292 case ARM::LDRSB_POST: { 6293 // Rt must be different from Rn. 6294 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6295 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6296 6297 if (Rt == Rn) 6298 return Error(Operands[3]->getStartLoc(), 6299 "destination register and base register can't be identical"); 6300 return false; 6301 } 6302 case ARM::SBFX: 6303 case ARM::UBFX: { 6304 // Width must be in range [1, 32-lsb]. 6305 unsigned LSB = Inst.getOperand(2).getImm(); 6306 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6307 if (Widthm1 >= 32 - LSB) 6308 return Error(Operands[5]->getStartLoc(), 6309 "bitfield width must be in range [1,32-lsb]"); 6310 return false; 6311 } 6312 // Notionally handles ARM::tLDMIA_UPD too. 6313 case ARM::tLDMIA: { 6314 // If we're parsing Thumb2, the .w variant is available and handles 6315 // most cases that are normally illegal for a Thumb1 LDM instruction. 6316 // We'll make the transformation in processInstruction() if necessary. 6317 // 6318 // Thumb LDM instructions are writeback iff the base register is not 6319 // in the register list. 6320 unsigned Rn = Inst.getOperand(0).getReg(); 6321 bool HasWritebackToken = 6322 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6323 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6324 bool ListContainsBase; 6325 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6326 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6327 "registers must be in range r0-r7"); 6328 // If we should have writeback, then there should be a '!' token. 6329 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6330 return Error(Operands[2]->getStartLoc(), 6331 "writeback operator '!' expected"); 6332 // If we should not have writeback, there must not be a '!'. This is 6333 // true even for the 32-bit wide encodings. 6334 if (ListContainsBase && HasWritebackToken) 6335 return Error(Operands[3]->getStartLoc(), 6336 "writeback operator '!' not allowed when base register " 6337 "in register list"); 6338 6339 if (validatetLDMRegList(Inst, Operands, 3)) 6340 return true; 6341 break; 6342 } 6343 case ARM::LDMIA_UPD: 6344 case ARM::LDMDB_UPD: 6345 case ARM::LDMIB_UPD: 6346 case ARM::LDMDA_UPD: 6347 // ARM variants loading and updating the same register are only officially 6348 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6349 if (!hasV7Ops()) 6350 break; 6351 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6352 return Error(Operands.back()->getStartLoc(), 6353 "writeback register not allowed in register list"); 6354 break; 6355 case ARM::t2LDMIA: 6356 case ARM::t2LDMDB: 6357 if (validatetLDMRegList(Inst, Operands, 3)) 6358 return true; 6359 break; 6360 case ARM::t2STMIA: 6361 case ARM::t2STMDB: 6362 if (validatetSTMRegList(Inst, Operands, 3)) 6363 return true; 6364 break; 6365 case ARM::t2LDMIA_UPD: 6366 case ARM::t2LDMDB_UPD: 6367 case ARM::t2STMIA_UPD: 6368 case ARM::t2STMDB_UPD: { 6369 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6370 return Error(Operands.back()->getStartLoc(), 6371 "writeback register not allowed in register list"); 6372 6373 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6374 if (validatetLDMRegList(Inst, Operands, 3)) 6375 return true; 6376 } else { 6377 if (validatetSTMRegList(Inst, Operands, 3)) 6378 return true; 6379 } 6380 break; 6381 } 6382 case ARM::sysLDMIA_UPD: 6383 case ARM::sysLDMDA_UPD: 6384 case ARM::sysLDMDB_UPD: 6385 case ARM::sysLDMIB_UPD: 6386 if (!listContainsReg(Inst, 3, ARM::PC)) 6387 return Error(Operands[4]->getStartLoc(), 6388 "writeback register only allowed on system LDM " 6389 "if PC in register-list"); 6390 break; 6391 case ARM::sysSTMIA_UPD: 6392 case ARM::sysSTMDA_UPD: 6393 case ARM::sysSTMDB_UPD: 6394 case ARM::sysSTMIB_UPD: 6395 return Error(Operands[2]->getStartLoc(), 6396 "system STM cannot have writeback register"); 6397 case ARM::tMUL: { 6398 // The second source operand must be the same register as the destination 6399 // operand. 6400 // 6401 // In this case, we must directly check the parsed operands because the 6402 // cvtThumbMultiply() function is written in such a way that it guarantees 6403 // this first statement is always true for the new Inst. Essentially, the 6404 // destination is unconditionally copied into the second source operand 6405 // without checking to see if it matches what we actually parsed. 6406 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6407 ((ARMOperand &)*Operands[5]).getReg()) && 6408 (((ARMOperand &)*Operands[3]).getReg() != 6409 ((ARMOperand &)*Operands[4]).getReg())) { 6410 return Error(Operands[3]->getStartLoc(), 6411 "destination register must match source register"); 6412 } 6413 break; 6414 } 6415 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6416 // so only issue a diagnostic for thumb1. The instructions will be 6417 // switched to the t2 encodings in processInstruction() if necessary. 6418 case ARM::tPOP: { 6419 bool ListContainsBase; 6420 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6421 !isThumbTwo()) 6422 return Error(Operands[2]->getStartLoc(), 6423 "registers must be in range r0-r7 or pc"); 6424 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6425 return true; 6426 break; 6427 } 6428 case ARM::tPUSH: { 6429 bool ListContainsBase; 6430 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6431 !isThumbTwo()) 6432 return Error(Operands[2]->getStartLoc(), 6433 "registers must be in range r0-r7 or lr"); 6434 if (validatetSTMRegList(Inst, Operands, 2)) 6435 return true; 6436 break; 6437 } 6438 case ARM::tSTMIA_UPD: { 6439 bool ListContainsBase, InvalidLowList; 6440 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6441 0, ListContainsBase); 6442 if (InvalidLowList && !isThumbTwo()) 6443 return Error(Operands[4]->getStartLoc(), 6444 "registers must be in range r0-r7"); 6445 6446 // This would be converted to a 32-bit stm, but that's not valid if the 6447 // writeback register is in the list. 6448 if (InvalidLowList && ListContainsBase) 6449 return Error(Operands[4]->getStartLoc(), 6450 "writeback operator '!' not allowed when base register " 6451 "in register list"); 6452 6453 if (validatetSTMRegList(Inst, Operands, 4)) 6454 return true; 6455 break; 6456 } 6457 case ARM::tADDrSP: { 6458 // If the non-SP source operand and the destination operand are not the 6459 // same, we need thumb2 (for the wide encoding), or we have an error. 6460 if (!isThumbTwo() && 6461 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6462 return Error(Operands[4]->getStartLoc(), 6463 "source register must be the same as destination"); 6464 } 6465 break; 6466 } 6467 // Final range checking for Thumb unconditional branch instructions. 6468 case ARM::tB: 6469 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6470 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6471 break; 6472 case ARM::t2B: { 6473 int op = (Operands[2]->isImm()) ? 2 : 3; 6474 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6475 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6476 break; 6477 } 6478 // Final range checking for Thumb conditional branch instructions. 6479 case ARM::tBcc: 6480 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6481 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6482 break; 6483 case ARM::t2Bcc: { 6484 int Op = (Operands[2]->isImm()) ? 2 : 3; 6485 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6486 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6487 break; 6488 } 6489 case ARM::tCBZ: 6490 case ARM::tCBNZ: { 6491 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6492 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6493 break; 6494 } 6495 case ARM::MOVi16: 6496 case ARM::MOVTi16: 6497 case ARM::t2MOVi16: 6498 case ARM::t2MOVTi16: 6499 { 6500 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6501 // especially when we turn it into a movw and the expression <symbol> does 6502 // not have a :lower16: or :upper16 as part of the expression. We don't 6503 // want the behavior of silently truncating, which can be unexpected and 6504 // lead to bugs that are difficult to find since this is an easy mistake 6505 // to make. 6506 int i = (Operands[3]->isImm()) ? 3 : 4; 6507 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6508 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6509 if (CE) break; 6510 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6511 if (!E) break; 6512 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6513 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6514 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6515 return Error( 6516 Op.getStartLoc(), 6517 "immediate expression for mov requires :lower16: or :upper16"); 6518 break; 6519 } 6520 case ARM::HINT: 6521 case ARM::t2HINT: { 6522 if (hasRAS()) { 6523 // ESB is not predicable (pred must be AL) 6524 unsigned Imm8 = Inst.getOperand(0).getImm(); 6525 unsigned Pred = Inst.getOperand(1).getImm(); 6526 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6527 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6528 "predicable, but condition " 6529 "code specified"); 6530 } 6531 // Without the RAS extension, this behaves as any other unallocated hint. 6532 break; 6533 } 6534 } 6535 6536 return false; 6537 } 6538 6539 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6540 switch(Opc) { 6541 default: llvm_unreachable("unexpected opcode!"); 6542 // VST1LN 6543 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6544 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6545 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6546 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6547 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6548 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6549 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6550 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6551 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6552 6553 // VST2LN 6554 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6555 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6556 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6557 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6558 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6559 6560 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6561 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6562 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6563 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6564 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6565 6566 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6567 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6568 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6569 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6570 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6571 6572 // VST3LN 6573 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6574 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6575 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6576 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6577 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6578 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6579 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6580 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6581 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6582 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6583 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6584 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6585 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6586 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6587 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6588 6589 // VST3 6590 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6591 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6592 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6593 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6594 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6595 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6596 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6597 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6598 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6599 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6600 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6601 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6602 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6603 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6604 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6605 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6606 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6607 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6608 6609 // VST4LN 6610 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6611 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6612 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6613 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6614 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6615 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6616 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6617 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6618 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6619 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6620 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6621 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6622 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6623 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6624 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6625 6626 // VST4 6627 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6628 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6629 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6630 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6631 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6632 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6633 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6634 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6635 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6636 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6637 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6638 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6639 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6640 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6641 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6642 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6643 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6644 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6645 } 6646 } 6647 6648 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6649 switch(Opc) { 6650 default: llvm_unreachable("unexpected opcode!"); 6651 // VLD1LN 6652 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6653 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6654 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6655 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6656 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6657 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6658 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6659 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6660 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6661 6662 // VLD2LN 6663 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6664 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6665 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6666 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6667 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6668 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6669 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6670 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6671 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6672 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6673 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6674 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6675 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6676 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6677 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6678 6679 // VLD3DUP 6680 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6681 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6682 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6683 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6684 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6685 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6686 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6687 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6688 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6689 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6690 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6691 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6692 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6693 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6694 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6695 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6696 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6697 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6698 6699 // VLD3LN 6700 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6701 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6702 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6703 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6704 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6705 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6706 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6707 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6708 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6709 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6710 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6711 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6712 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6713 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6714 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6715 6716 // VLD3 6717 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6718 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6719 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6720 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6721 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6722 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6723 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6724 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6725 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6726 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6727 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6728 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6729 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6730 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6731 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6732 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6733 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6734 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6735 6736 // VLD4LN 6737 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6738 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6739 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6740 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6741 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6742 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6743 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6744 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6745 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6746 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6747 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6748 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6749 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6750 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6751 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6752 6753 // VLD4DUP 6754 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6755 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6756 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6757 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6758 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6759 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6760 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6761 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6762 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6763 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6764 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6765 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6766 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6767 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6768 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6769 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6770 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6771 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6772 6773 // VLD4 6774 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6775 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6776 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6777 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6778 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6779 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6780 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6781 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6782 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6783 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6784 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6785 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6786 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6787 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6788 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6789 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6790 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6791 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6792 } 6793 } 6794 6795 bool ARMAsmParser::processInstruction(MCInst &Inst, 6796 const OperandVector &Operands, 6797 MCStreamer &Out) { 6798 // Check if we have the wide qualifier, because if it's present we 6799 // must avoid selecting a 16-bit thumb instruction. 6800 bool HasWideQualifier = false; 6801 for (auto &Op : Operands) { 6802 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 6803 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 6804 HasWideQualifier = true; 6805 break; 6806 } 6807 } 6808 6809 switch (Inst.getOpcode()) { 6810 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6811 case ARM::LDRT_POST: 6812 case ARM::LDRBT_POST: { 6813 const unsigned Opcode = 6814 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6815 : ARM::LDRBT_POST_IMM; 6816 MCInst TmpInst; 6817 TmpInst.setOpcode(Opcode); 6818 TmpInst.addOperand(Inst.getOperand(0)); 6819 TmpInst.addOperand(Inst.getOperand(1)); 6820 TmpInst.addOperand(Inst.getOperand(1)); 6821 TmpInst.addOperand(MCOperand::createReg(0)); 6822 TmpInst.addOperand(MCOperand::createImm(0)); 6823 TmpInst.addOperand(Inst.getOperand(2)); 6824 TmpInst.addOperand(Inst.getOperand(3)); 6825 Inst = TmpInst; 6826 return true; 6827 } 6828 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6829 case ARM::STRT_POST: 6830 case ARM::STRBT_POST: { 6831 const unsigned Opcode = 6832 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6833 : ARM::STRBT_POST_IMM; 6834 MCInst TmpInst; 6835 TmpInst.setOpcode(Opcode); 6836 TmpInst.addOperand(Inst.getOperand(1)); 6837 TmpInst.addOperand(Inst.getOperand(0)); 6838 TmpInst.addOperand(Inst.getOperand(1)); 6839 TmpInst.addOperand(MCOperand::createReg(0)); 6840 TmpInst.addOperand(MCOperand::createImm(0)); 6841 TmpInst.addOperand(Inst.getOperand(2)); 6842 TmpInst.addOperand(Inst.getOperand(3)); 6843 Inst = TmpInst; 6844 return true; 6845 } 6846 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6847 case ARM::ADDri: { 6848 if (Inst.getOperand(1).getReg() != ARM::PC || 6849 Inst.getOperand(5).getReg() != 0 || 6850 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6851 return false; 6852 MCInst TmpInst; 6853 TmpInst.setOpcode(ARM::ADR); 6854 TmpInst.addOperand(Inst.getOperand(0)); 6855 if (Inst.getOperand(2).isImm()) { 6856 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6857 // before passing it to the ADR instruction. 6858 unsigned Enc = Inst.getOperand(2).getImm(); 6859 TmpInst.addOperand(MCOperand::createImm( 6860 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6861 } else { 6862 // Turn PC-relative expression into absolute expression. 6863 // Reading PC provides the start of the current instruction + 8 and 6864 // the transform to adr is biased by that. 6865 MCSymbol *Dot = getContext().createTempSymbol(); 6866 Out.EmitLabel(Dot); 6867 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6868 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6869 MCSymbolRefExpr::VK_None, 6870 getContext()); 6871 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6872 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6873 getContext()); 6874 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6875 getContext()); 6876 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6877 } 6878 TmpInst.addOperand(Inst.getOperand(3)); 6879 TmpInst.addOperand(Inst.getOperand(4)); 6880 Inst = TmpInst; 6881 return true; 6882 } 6883 // Aliases for alternate PC+imm syntax of LDR instructions. 6884 case ARM::t2LDRpcrel: 6885 // Select the narrow version if the immediate will fit. 6886 if (Inst.getOperand(1).getImm() > 0 && 6887 Inst.getOperand(1).getImm() <= 0xff && 6888 !HasWideQualifier) 6889 Inst.setOpcode(ARM::tLDRpci); 6890 else 6891 Inst.setOpcode(ARM::t2LDRpci); 6892 return true; 6893 case ARM::t2LDRBpcrel: 6894 Inst.setOpcode(ARM::t2LDRBpci); 6895 return true; 6896 case ARM::t2LDRHpcrel: 6897 Inst.setOpcode(ARM::t2LDRHpci); 6898 return true; 6899 case ARM::t2LDRSBpcrel: 6900 Inst.setOpcode(ARM::t2LDRSBpci); 6901 return true; 6902 case ARM::t2LDRSHpcrel: 6903 Inst.setOpcode(ARM::t2LDRSHpci); 6904 return true; 6905 case ARM::LDRConstPool: 6906 case ARM::tLDRConstPool: 6907 case ARM::t2LDRConstPool: { 6908 // Pseudo instruction ldr rt, =immediate is converted to a 6909 // MOV rt, immediate if immediate is known and representable 6910 // otherwise we create a constant pool entry that we load from. 6911 MCInst TmpInst; 6912 if (Inst.getOpcode() == ARM::LDRConstPool) 6913 TmpInst.setOpcode(ARM::LDRi12); 6914 else if (Inst.getOpcode() == ARM::tLDRConstPool) 6915 TmpInst.setOpcode(ARM::tLDRpci); 6916 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 6917 TmpInst.setOpcode(ARM::t2LDRpci); 6918 const ARMOperand &PoolOperand = 6919 (HasWideQualifier ? 6920 static_cast<ARMOperand &>(*Operands[4]) : 6921 static_cast<ARMOperand &>(*Operands[3])); 6922 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 6923 // If SubExprVal is a constant we may be able to use a MOV 6924 if (isa<MCConstantExpr>(SubExprVal) && 6925 Inst.getOperand(0).getReg() != ARM::PC && 6926 Inst.getOperand(0).getReg() != ARM::SP) { 6927 int64_t Value = 6928 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 6929 bool UseMov = true; 6930 bool MovHasS = true; 6931 if (Inst.getOpcode() == ARM::LDRConstPool) { 6932 // ARM Constant 6933 if (ARM_AM::getSOImmVal(Value) != -1) { 6934 Value = ARM_AM::getSOImmVal(Value); 6935 TmpInst.setOpcode(ARM::MOVi); 6936 } 6937 else if (ARM_AM::getSOImmVal(~Value) != -1) { 6938 Value = ARM_AM::getSOImmVal(~Value); 6939 TmpInst.setOpcode(ARM::MVNi); 6940 } 6941 else if (hasV6T2Ops() && 6942 Value >=0 && Value < 65536) { 6943 TmpInst.setOpcode(ARM::MOVi16); 6944 MovHasS = false; 6945 } 6946 else 6947 UseMov = false; 6948 } 6949 else { 6950 // Thumb/Thumb2 Constant 6951 if (hasThumb2() && 6952 ARM_AM::getT2SOImmVal(Value) != -1) 6953 TmpInst.setOpcode(ARM::t2MOVi); 6954 else if (hasThumb2() && 6955 ARM_AM::getT2SOImmVal(~Value) != -1) { 6956 TmpInst.setOpcode(ARM::t2MVNi); 6957 Value = ~Value; 6958 } 6959 else if (hasV8MBaseline() && 6960 Value >=0 && Value < 65536) { 6961 TmpInst.setOpcode(ARM::t2MOVi16); 6962 MovHasS = false; 6963 } 6964 else 6965 UseMov = false; 6966 } 6967 if (UseMov) { 6968 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6969 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 6970 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6971 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6972 if (MovHasS) 6973 TmpInst.addOperand(MCOperand::createReg(0)); // S 6974 Inst = TmpInst; 6975 return true; 6976 } 6977 } 6978 // No opportunity to use MOV/MVN create constant pool 6979 const MCExpr *CPLoc = 6980 getTargetStreamer().addConstantPoolEntry(SubExprVal, 6981 PoolOperand.getStartLoc()); 6982 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6983 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 6984 if (TmpInst.getOpcode() == ARM::LDRi12) 6985 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 6986 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6987 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6988 Inst = TmpInst; 6989 return true; 6990 } 6991 // Handle NEON VST complex aliases. 6992 case ARM::VST1LNdWB_register_Asm_8: 6993 case ARM::VST1LNdWB_register_Asm_16: 6994 case ARM::VST1LNdWB_register_Asm_32: { 6995 MCInst TmpInst; 6996 // Shuffle the operands around so the lane index operand is in the 6997 // right place. 6998 unsigned Spacing; 6999 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7000 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7001 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7002 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7003 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7004 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7005 TmpInst.addOperand(Inst.getOperand(1)); // lane 7006 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7007 TmpInst.addOperand(Inst.getOperand(6)); 7008 Inst = TmpInst; 7009 return true; 7010 } 7011 7012 case ARM::VST2LNdWB_register_Asm_8: 7013 case ARM::VST2LNdWB_register_Asm_16: 7014 case ARM::VST2LNdWB_register_Asm_32: 7015 case ARM::VST2LNqWB_register_Asm_16: 7016 case ARM::VST2LNqWB_register_Asm_32: { 7017 MCInst TmpInst; 7018 // Shuffle the operands around so the lane index operand is in the 7019 // right place. 7020 unsigned Spacing; 7021 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7022 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7023 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7024 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7025 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7026 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7027 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7028 Spacing)); 7029 TmpInst.addOperand(Inst.getOperand(1)); // lane 7030 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7031 TmpInst.addOperand(Inst.getOperand(6)); 7032 Inst = TmpInst; 7033 return true; 7034 } 7035 7036 case ARM::VST3LNdWB_register_Asm_8: 7037 case ARM::VST3LNdWB_register_Asm_16: 7038 case ARM::VST3LNdWB_register_Asm_32: 7039 case ARM::VST3LNqWB_register_Asm_16: 7040 case ARM::VST3LNqWB_register_Asm_32: { 7041 MCInst TmpInst; 7042 // Shuffle the operands around so the lane index operand is in the 7043 // right place. 7044 unsigned Spacing; 7045 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7046 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7047 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7048 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7049 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7050 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7051 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7052 Spacing)); 7053 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7054 Spacing * 2)); 7055 TmpInst.addOperand(Inst.getOperand(1)); // lane 7056 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7057 TmpInst.addOperand(Inst.getOperand(6)); 7058 Inst = TmpInst; 7059 return true; 7060 } 7061 7062 case ARM::VST4LNdWB_register_Asm_8: 7063 case ARM::VST4LNdWB_register_Asm_16: 7064 case ARM::VST4LNdWB_register_Asm_32: 7065 case ARM::VST4LNqWB_register_Asm_16: 7066 case ARM::VST4LNqWB_register_Asm_32: { 7067 MCInst TmpInst; 7068 // Shuffle the operands around so the lane index operand is in the 7069 // right place. 7070 unsigned Spacing; 7071 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7072 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7073 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7074 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7075 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7076 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7077 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7078 Spacing)); 7079 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7080 Spacing * 2)); 7081 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7082 Spacing * 3)); 7083 TmpInst.addOperand(Inst.getOperand(1)); // lane 7084 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7085 TmpInst.addOperand(Inst.getOperand(6)); 7086 Inst = TmpInst; 7087 return true; 7088 } 7089 7090 case ARM::VST1LNdWB_fixed_Asm_8: 7091 case ARM::VST1LNdWB_fixed_Asm_16: 7092 case ARM::VST1LNdWB_fixed_Asm_32: { 7093 MCInst TmpInst; 7094 // Shuffle the operands around so the lane index operand is in the 7095 // right place. 7096 unsigned Spacing; 7097 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7098 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7099 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7100 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7101 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7102 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7103 TmpInst.addOperand(Inst.getOperand(1)); // lane 7104 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7105 TmpInst.addOperand(Inst.getOperand(5)); 7106 Inst = TmpInst; 7107 return true; 7108 } 7109 7110 case ARM::VST2LNdWB_fixed_Asm_8: 7111 case ARM::VST2LNdWB_fixed_Asm_16: 7112 case ARM::VST2LNdWB_fixed_Asm_32: 7113 case ARM::VST2LNqWB_fixed_Asm_16: 7114 case ARM::VST2LNqWB_fixed_Asm_32: { 7115 MCInst TmpInst; 7116 // Shuffle the operands around so the lane index operand is in the 7117 // right place. 7118 unsigned Spacing; 7119 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7120 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7121 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7122 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7123 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7124 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7125 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7126 Spacing)); 7127 TmpInst.addOperand(Inst.getOperand(1)); // lane 7128 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7129 TmpInst.addOperand(Inst.getOperand(5)); 7130 Inst = TmpInst; 7131 return true; 7132 } 7133 7134 case ARM::VST3LNdWB_fixed_Asm_8: 7135 case ARM::VST3LNdWB_fixed_Asm_16: 7136 case ARM::VST3LNdWB_fixed_Asm_32: 7137 case ARM::VST3LNqWB_fixed_Asm_16: 7138 case ARM::VST3LNqWB_fixed_Asm_32: { 7139 MCInst TmpInst; 7140 // Shuffle the operands around so the lane index operand is in the 7141 // right place. 7142 unsigned Spacing; 7143 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7144 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7145 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7146 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7147 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7148 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7149 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7150 Spacing)); 7151 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7152 Spacing * 2)); 7153 TmpInst.addOperand(Inst.getOperand(1)); // lane 7154 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7155 TmpInst.addOperand(Inst.getOperand(5)); 7156 Inst = TmpInst; 7157 return true; 7158 } 7159 7160 case ARM::VST4LNdWB_fixed_Asm_8: 7161 case ARM::VST4LNdWB_fixed_Asm_16: 7162 case ARM::VST4LNdWB_fixed_Asm_32: 7163 case ARM::VST4LNqWB_fixed_Asm_16: 7164 case ARM::VST4LNqWB_fixed_Asm_32: { 7165 MCInst TmpInst; 7166 // Shuffle the operands around so the lane index operand is in the 7167 // right place. 7168 unsigned Spacing; 7169 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7170 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7171 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7172 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7173 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7174 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7175 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7176 Spacing)); 7177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7178 Spacing * 2)); 7179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7180 Spacing * 3)); 7181 TmpInst.addOperand(Inst.getOperand(1)); // lane 7182 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7183 TmpInst.addOperand(Inst.getOperand(5)); 7184 Inst = TmpInst; 7185 return true; 7186 } 7187 7188 case ARM::VST1LNdAsm_8: 7189 case ARM::VST1LNdAsm_16: 7190 case ARM::VST1LNdAsm_32: { 7191 MCInst TmpInst; 7192 // Shuffle the operands around so the lane index operand is in the 7193 // right place. 7194 unsigned Spacing; 7195 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7196 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7197 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7198 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7199 TmpInst.addOperand(Inst.getOperand(1)); // lane 7200 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7201 TmpInst.addOperand(Inst.getOperand(5)); 7202 Inst = TmpInst; 7203 return true; 7204 } 7205 7206 case ARM::VST2LNdAsm_8: 7207 case ARM::VST2LNdAsm_16: 7208 case ARM::VST2LNdAsm_32: 7209 case ARM::VST2LNqAsm_16: 7210 case ARM::VST2LNqAsm_32: { 7211 MCInst TmpInst; 7212 // Shuffle the operands around so the lane index operand is in the 7213 // right place. 7214 unsigned Spacing; 7215 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7216 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7217 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7218 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7219 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7220 Spacing)); 7221 TmpInst.addOperand(Inst.getOperand(1)); // lane 7222 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7223 TmpInst.addOperand(Inst.getOperand(5)); 7224 Inst = TmpInst; 7225 return true; 7226 } 7227 7228 case ARM::VST3LNdAsm_8: 7229 case ARM::VST3LNdAsm_16: 7230 case ARM::VST3LNdAsm_32: 7231 case ARM::VST3LNqAsm_16: 7232 case ARM::VST3LNqAsm_32: { 7233 MCInst TmpInst; 7234 // Shuffle the operands around so the lane index operand is in the 7235 // right place. 7236 unsigned Spacing; 7237 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7238 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7239 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7240 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7241 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7242 Spacing)); 7243 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7244 Spacing * 2)); 7245 TmpInst.addOperand(Inst.getOperand(1)); // lane 7246 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7247 TmpInst.addOperand(Inst.getOperand(5)); 7248 Inst = TmpInst; 7249 return true; 7250 } 7251 7252 case ARM::VST4LNdAsm_8: 7253 case ARM::VST4LNdAsm_16: 7254 case ARM::VST4LNdAsm_32: 7255 case ARM::VST4LNqAsm_16: 7256 case ARM::VST4LNqAsm_32: { 7257 MCInst TmpInst; 7258 // Shuffle the operands around so the lane index operand is in the 7259 // right place. 7260 unsigned Spacing; 7261 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7262 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7263 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7264 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7265 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7266 Spacing)); 7267 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7268 Spacing * 2)); 7269 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7270 Spacing * 3)); 7271 TmpInst.addOperand(Inst.getOperand(1)); // lane 7272 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7273 TmpInst.addOperand(Inst.getOperand(5)); 7274 Inst = TmpInst; 7275 return true; 7276 } 7277 7278 // Handle NEON VLD complex aliases. 7279 case ARM::VLD1LNdWB_register_Asm_8: 7280 case ARM::VLD1LNdWB_register_Asm_16: 7281 case ARM::VLD1LNdWB_register_Asm_32: { 7282 MCInst TmpInst; 7283 // Shuffle the operands around so the lane index operand is in the 7284 // right place. 7285 unsigned Spacing; 7286 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7287 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7288 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7289 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7290 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7291 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7292 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7293 TmpInst.addOperand(Inst.getOperand(1)); // lane 7294 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7295 TmpInst.addOperand(Inst.getOperand(6)); 7296 Inst = TmpInst; 7297 return true; 7298 } 7299 7300 case ARM::VLD2LNdWB_register_Asm_8: 7301 case ARM::VLD2LNdWB_register_Asm_16: 7302 case ARM::VLD2LNdWB_register_Asm_32: 7303 case ARM::VLD2LNqWB_register_Asm_16: 7304 case ARM::VLD2LNqWB_register_Asm_32: { 7305 MCInst TmpInst; 7306 // Shuffle the operands around so the lane index operand is in the 7307 // right place. 7308 unsigned Spacing; 7309 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7310 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7311 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7312 Spacing)); 7313 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7314 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7315 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7316 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7317 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7318 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7319 Spacing)); 7320 TmpInst.addOperand(Inst.getOperand(1)); // lane 7321 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7322 TmpInst.addOperand(Inst.getOperand(6)); 7323 Inst = TmpInst; 7324 return true; 7325 } 7326 7327 case ARM::VLD3LNdWB_register_Asm_8: 7328 case ARM::VLD3LNdWB_register_Asm_16: 7329 case ARM::VLD3LNdWB_register_Asm_32: 7330 case ARM::VLD3LNqWB_register_Asm_16: 7331 case ARM::VLD3LNqWB_register_Asm_32: { 7332 MCInst TmpInst; 7333 // Shuffle the operands around so the lane index operand is in the 7334 // right place. 7335 unsigned Spacing; 7336 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7339 Spacing)); 7340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7341 Spacing * 2)); 7342 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7343 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7344 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7345 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7346 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7347 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7348 Spacing)); 7349 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7350 Spacing * 2)); 7351 TmpInst.addOperand(Inst.getOperand(1)); // lane 7352 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7353 TmpInst.addOperand(Inst.getOperand(6)); 7354 Inst = TmpInst; 7355 return true; 7356 } 7357 7358 case ARM::VLD4LNdWB_register_Asm_8: 7359 case ARM::VLD4LNdWB_register_Asm_16: 7360 case ARM::VLD4LNdWB_register_Asm_32: 7361 case ARM::VLD4LNqWB_register_Asm_16: 7362 case ARM::VLD4LNqWB_register_Asm_32: { 7363 MCInst TmpInst; 7364 // Shuffle the operands around so the lane index operand is in the 7365 // right place. 7366 unsigned Spacing; 7367 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7368 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7369 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7370 Spacing)); 7371 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7372 Spacing * 2)); 7373 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7374 Spacing * 3)); 7375 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7376 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7377 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7378 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7379 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7380 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7381 Spacing)); 7382 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7383 Spacing * 2)); 7384 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7385 Spacing * 3)); 7386 TmpInst.addOperand(Inst.getOperand(1)); // lane 7387 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7388 TmpInst.addOperand(Inst.getOperand(6)); 7389 Inst = TmpInst; 7390 return true; 7391 } 7392 7393 case ARM::VLD1LNdWB_fixed_Asm_8: 7394 case ARM::VLD1LNdWB_fixed_Asm_16: 7395 case ARM::VLD1LNdWB_fixed_Asm_32: { 7396 MCInst TmpInst; 7397 // Shuffle the operands around so the lane index operand is in the 7398 // right place. 7399 unsigned Spacing; 7400 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7401 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7402 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7403 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7404 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7405 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7406 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7407 TmpInst.addOperand(Inst.getOperand(1)); // lane 7408 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7409 TmpInst.addOperand(Inst.getOperand(5)); 7410 Inst = TmpInst; 7411 return true; 7412 } 7413 7414 case ARM::VLD2LNdWB_fixed_Asm_8: 7415 case ARM::VLD2LNdWB_fixed_Asm_16: 7416 case ARM::VLD2LNdWB_fixed_Asm_32: 7417 case ARM::VLD2LNqWB_fixed_Asm_16: 7418 case ARM::VLD2LNqWB_fixed_Asm_32: { 7419 MCInst TmpInst; 7420 // Shuffle the operands around so the lane index operand is in the 7421 // right place. 7422 unsigned Spacing; 7423 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7424 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7425 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7426 Spacing)); 7427 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7428 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7429 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7430 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7431 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7432 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7433 Spacing)); 7434 TmpInst.addOperand(Inst.getOperand(1)); // lane 7435 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7436 TmpInst.addOperand(Inst.getOperand(5)); 7437 Inst = TmpInst; 7438 return true; 7439 } 7440 7441 case ARM::VLD3LNdWB_fixed_Asm_8: 7442 case ARM::VLD3LNdWB_fixed_Asm_16: 7443 case ARM::VLD3LNdWB_fixed_Asm_32: 7444 case ARM::VLD3LNqWB_fixed_Asm_16: 7445 case ARM::VLD3LNqWB_fixed_Asm_32: { 7446 MCInst TmpInst; 7447 // Shuffle the operands around so the lane index operand is in the 7448 // right place. 7449 unsigned Spacing; 7450 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7451 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7452 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7453 Spacing)); 7454 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7455 Spacing * 2)); 7456 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7457 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7458 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7459 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7460 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7461 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7462 Spacing)); 7463 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7464 Spacing * 2)); 7465 TmpInst.addOperand(Inst.getOperand(1)); // lane 7466 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7467 TmpInst.addOperand(Inst.getOperand(5)); 7468 Inst = TmpInst; 7469 return true; 7470 } 7471 7472 case ARM::VLD4LNdWB_fixed_Asm_8: 7473 case ARM::VLD4LNdWB_fixed_Asm_16: 7474 case ARM::VLD4LNdWB_fixed_Asm_32: 7475 case ARM::VLD4LNqWB_fixed_Asm_16: 7476 case ARM::VLD4LNqWB_fixed_Asm_32: { 7477 MCInst TmpInst; 7478 // Shuffle the operands around so the lane index operand is in the 7479 // right place. 7480 unsigned Spacing; 7481 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7482 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7483 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7484 Spacing)); 7485 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7486 Spacing * 2)); 7487 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7488 Spacing * 3)); 7489 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7490 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7491 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7492 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7493 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7494 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7495 Spacing)); 7496 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7497 Spacing * 2)); 7498 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7499 Spacing * 3)); 7500 TmpInst.addOperand(Inst.getOperand(1)); // lane 7501 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7502 TmpInst.addOperand(Inst.getOperand(5)); 7503 Inst = TmpInst; 7504 return true; 7505 } 7506 7507 case ARM::VLD1LNdAsm_8: 7508 case ARM::VLD1LNdAsm_16: 7509 case ARM::VLD1LNdAsm_32: { 7510 MCInst TmpInst; 7511 // Shuffle the operands around so the lane index operand is in the 7512 // right place. 7513 unsigned Spacing; 7514 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7515 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7516 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7517 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7518 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7519 TmpInst.addOperand(Inst.getOperand(1)); // lane 7520 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7521 TmpInst.addOperand(Inst.getOperand(5)); 7522 Inst = TmpInst; 7523 return true; 7524 } 7525 7526 case ARM::VLD2LNdAsm_8: 7527 case ARM::VLD2LNdAsm_16: 7528 case ARM::VLD2LNdAsm_32: 7529 case ARM::VLD2LNqAsm_16: 7530 case ARM::VLD2LNqAsm_32: { 7531 MCInst TmpInst; 7532 // Shuffle the operands around so the lane index operand is in the 7533 // right place. 7534 unsigned Spacing; 7535 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7536 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7538 Spacing)); 7539 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7540 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7541 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7542 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7543 Spacing)); 7544 TmpInst.addOperand(Inst.getOperand(1)); // lane 7545 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7546 TmpInst.addOperand(Inst.getOperand(5)); 7547 Inst = TmpInst; 7548 return true; 7549 } 7550 7551 case ARM::VLD3LNdAsm_8: 7552 case ARM::VLD3LNdAsm_16: 7553 case ARM::VLD3LNdAsm_32: 7554 case ARM::VLD3LNqAsm_16: 7555 case ARM::VLD3LNqAsm_32: { 7556 MCInst TmpInst; 7557 // Shuffle the operands around so the lane index operand is in the 7558 // right place. 7559 unsigned Spacing; 7560 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7561 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7562 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7563 Spacing)); 7564 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7565 Spacing * 2)); 7566 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7567 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7568 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7569 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7570 Spacing)); 7571 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7572 Spacing * 2)); 7573 TmpInst.addOperand(Inst.getOperand(1)); // lane 7574 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7575 TmpInst.addOperand(Inst.getOperand(5)); 7576 Inst = TmpInst; 7577 return true; 7578 } 7579 7580 case ARM::VLD4LNdAsm_8: 7581 case ARM::VLD4LNdAsm_16: 7582 case ARM::VLD4LNdAsm_32: 7583 case ARM::VLD4LNqAsm_16: 7584 case ARM::VLD4LNqAsm_32: { 7585 MCInst TmpInst; 7586 // Shuffle the operands around so the lane index operand is in the 7587 // right place. 7588 unsigned Spacing; 7589 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7590 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7591 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7592 Spacing)); 7593 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7594 Spacing * 2)); 7595 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7596 Spacing * 3)); 7597 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7598 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7599 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7600 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7601 Spacing)); 7602 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7603 Spacing * 2)); 7604 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7605 Spacing * 3)); 7606 TmpInst.addOperand(Inst.getOperand(1)); // lane 7607 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7608 TmpInst.addOperand(Inst.getOperand(5)); 7609 Inst = TmpInst; 7610 return true; 7611 } 7612 7613 // VLD3DUP single 3-element structure to all lanes instructions. 7614 case ARM::VLD3DUPdAsm_8: 7615 case ARM::VLD3DUPdAsm_16: 7616 case ARM::VLD3DUPdAsm_32: 7617 case ARM::VLD3DUPqAsm_8: 7618 case ARM::VLD3DUPqAsm_16: 7619 case ARM::VLD3DUPqAsm_32: { 7620 MCInst TmpInst; 7621 unsigned Spacing; 7622 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7623 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7624 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7625 Spacing)); 7626 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7627 Spacing * 2)); 7628 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7629 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7630 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7631 TmpInst.addOperand(Inst.getOperand(4)); 7632 Inst = TmpInst; 7633 return true; 7634 } 7635 7636 case ARM::VLD3DUPdWB_fixed_Asm_8: 7637 case ARM::VLD3DUPdWB_fixed_Asm_16: 7638 case ARM::VLD3DUPdWB_fixed_Asm_32: 7639 case ARM::VLD3DUPqWB_fixed_Asm_8: 7640 case ARM::VLD3DUPqWB_fixed_Asm_16: 7641 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7642 MCInst TmpInst; 7643 unsigned Spacing; 7644 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7645 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7646 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7647 Spacing)); 7648 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7649 Spacing * 2)); 7650 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7651 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7652 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7653 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7654 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7655 TmpInst.addOperand(Inst.getOperand(4)); 7656 Inst = TmpInst; 7657 return true; 7658 } 7659 7660 case ARM::VLD3DUPdWB_register_Asm_8: 7661 case ARM::VLD3DUPdWB_register_Asm_16: 7662 case ARM::VLD3DUPdWB_register_Asm_32: 7663 case ARM::VLD3DUPqWB_register_Asm_8: 7664 case ARM::VLD3DUPqWB_register_Asm_16: 7665 case ARM::VLD3DUPqWB_register_Asm_32: { 7666 MCInst TmpInst; 7667 unsigned Spacing; 7668 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7669 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7670 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7671 Spacing)); 7672 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7673 Spacing * 2)); 7674 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7675 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7676 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7677 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7678 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7679 TmpInst.addOperand(Inst.getOperand(5)); 7680 Inst = TmpInst; 7681 return true; 7682 } 7683 7684 // VLD3 multiple 3-element structure instructions. 7685 case ARM::VLD3dAsm_8: 7686 case ARM::VLD3dAsm_16: 7687 case ARM::VLD3dAsm_32: 7688 case ARM::VLD3qAsm_8: 7689 case ARM::VLD3qAsm_16: 7690 case ARM::VLD3qAsm_32: { 7691 MCInst TmpInst; 7692 unsigned Spacing; 7693 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7694 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7695 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7696 Spacing)); 7697 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7698 Spacing * 2)); 7699 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7700 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7701 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7702 TmpInst.addOperand(Inst.getOperand(4)); 7703 Inst = TmpInst; 7704 return true; 7705 } 7706 7707 case ARM::VLD3dWB_fixed_Asm_8: 7708 case ARM::VLD3dWB_fixed_Asm_16: 7709 case ARM::VLD3dWB_fixed_Asm_32: 7710 case ARM::VLD3qWB_fixed_Asm_8: 7711 case ARM::VLD3qWB_fixed_Asm_16: 7712 case ARM::VLD3qWB_fixed_Asm_32: { 7713 MCInst TmpInst; 7714 unsigned Spacing; 7715 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7716 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7717 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7718 Spacing)); 7719 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7720 Spacing * 2)); 7721 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7722 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7723 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7724 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7725 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7726 TmpInst.addOperand(Inst.getOperand(4)); 7727 Inst = TmpInst; 7728 return true; 7729 } 7730 7731 case ARM::VLD3dWB_register_Asm_8: 7732 case ARM::VLD3dWB_register_Asm_16: 7733 case ARM::VLD3dWB_register_Asm_32: 7734 case ARM::VLD3qWB_register_Asm_8: 7735 case ARM::VLD3qWB_register_Asm_16: 7736 case ARM::VLD3qWB_register_Asm_32: { 7737 MCInst TmpInst; 7738 unsigned Spacing; 7739 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7740 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7741 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7742 Spacing)); 7743 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7744 Spacing * 2)); 7745 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7746 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7747 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7748 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7749 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7750 TmpInst.addOperand(Inst.getOperand(5)); 7751 Inst = TmpInst; 7752 return true; 7753 } 7754 7755 // VLD4DUP single 3-element structure to all lanes instructions. 7756 case ARM::VLD4DUPdAsm_8: 7757 case ARM::VLD4DUPdAsm_16: 7758 case ARM::VLD4DUPdAsm_32: 7759 case ARM::VLD4DUPqAsm_8: 7760 case ARM::VLD4DUPqAsm_16: 7761 case ARM::VLD4DUPqAsm_32: { 7762 MCInst TmpInst; 7763 unsigned Spacing; 7764 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7765 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7766 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7767 Spacing)); 7768 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7769 Spacing * 2)); 7770 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7771 Spacing * 3)); 7772 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7773 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7774 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7775 TmpInst.addOperand(Inst.getOperand(4)); 7776 Inst = TmpInst; 7777 return true; 7778 } 7779 7780 case ARM::VLD4DUPdWB_fixed_Asm_8: 7781 case ARM::VLD4DUPdWB_fixed_Asm_16: 7782 case ARM::VLD4DUPdWB_fixed_Asm_32: 7783 case ARM::VLD4DUPqWB_fixed_Asm_8: 7784 case ARM::VLD4DUPqWB_fixed_Asm_16: 7785 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7786 MCInst TmpInst; 7787 unsigned Spacing; 7788 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7789 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7790 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7791 Spacing)); 7792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7793 Spacing * 2)); 7794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7795 Spacing * 3)); 7796 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7797 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7798 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7799 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7800 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7801 TmpInst.addOperand(Inst.getOperand(4)); 7802 Inst = TmpInst; 7803 return true; 7804 } 7805 7806 case ARM::VLD4DUPdWB_register_Asm_8: 7807 case ARM::VLD4DUPdWB_register_Asm_16: 7808 case ARM::VLD4DUPdWB_register_Asm_32: 7809 case ARM::VLD4DUPqWB_register_Asm_8: 7810 case ARM::VLD4DUPqWB_register_Asm_16: 7811 case ARM::VLD4DUPqWB_register_Asm_32: { 7812 MCInst TmpInst; 7813 unsigned Spacing; 7814 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7815 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7817 Spacing)); 7818 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7819 Spacing * 2)); 7820 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7821 Spacing * 3)); 7822 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7823 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7824 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7825 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7826 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7827 TmpInst.addOperand(Inst.getOperand(5)); 7828 Inst = TmpInst; 7829 return true; 7830 } 7831 7832 // VLD4 multiple 4-element structure instructions. 7833 case ARM::VLD4dAsm_8: 7834 case ARM::VLD4dAsm_16: 7835 case ARM::VLD4dAsm_32: 7836 case ARM::VLD4qAsm_8: 7837 case ARM::VLD4qAsm_16: 7838 case ARM::VLD4qAsm_32: { 7839 MCInst TmpInst; 7840 unsigned Spacing; 7841 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7842 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7843 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7844 Spacing)); 7845 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7846 Spacing * 2)); 7847 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7848 Spacing * 3)); 7849 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7850 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7851 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7852 TmpInst.addOperand(Inst.getOperand(4)); 7853 Inst = TmpInst; 7854 return true; 7855 } 7856 7857 case ARM::VLD4dWB_fixed_Asm_8: 7858 case ARM::VLD4dWB_fixed_Asm_16: 7859 case ARM::VLD4dWB_fixed_Asm_32: 7860 case ARM::VLD4qWB_fixed_Asm_8: 7861 case ARM::VLD4qWB_fixed_Asm_16: 7862 case ARM::VLD4qWB_fixed_Asm_32: { 7863 MCInst TmpInst; 7864 unsigned Spacing; 7865 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7866 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7867 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7868 Spacing)); 7869 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7870 Spacing * 2)); 7871 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7872 Spacing * 3)); 7873 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7874 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7875 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7876 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7877 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7878 TmpInst.addOperand(Inst.getOperand(4)); 7879 Inst = TmpInst; 7880 return true; 7881 } 7882 7883 case ARM::VLD4dWB_register_Asm_8: 7884 case ARM::VLD4dWB_register_Asm_16: 7885 case ARM::VLD4dWB_register_Asm_32: 7886 case ARM::VLD4qWB_register_Asm_8: 7887 case ARM::VLD4qWB_register_Asm_16: 7888 case ARM::VLD4qWB_register_Asm_32: { 7889 MCInst TmpInst; 7890 unsigned Spacing; 7891 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7892 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7893 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7894 Spacing)); 7895 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7896 Spacing * 2)); 7897 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7898 Spacing * 3)); 7899 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7900 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7901 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7902 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7903 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7904 TmpInst.addOperand(Inst.getOperand(5)); 7905 Inst = TmpInst; 7906 return true; 7907 } 7908 7909 // VST3 multiple 3-element structure instructions. 7910 case ARM::VST3dAsm_8: 7911 case ARM::VST3dAsm_16: 7912 case ARM::VST3dAsm_32: 7913 case ARM::VST3qAsm_8: 7914 case ARM::VST3qAsm_16: 7915 case ARM::VST3qAsm_32: { 7916 MCInst TmpInst; 7917 unsigned Spacing; 7918 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7919 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7920 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7921 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7922 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7923 Spacing)); 7924 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7925 Spacing * 2)); 7926 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7927 TmpInst.addOperand(Inst.getOperand(4)); 7928 Inst = TmpInst; 7929 return true; 7930 } 7931 7932 case ARM::VST3dWB_fixed_Asm_8: 7933 case ARM::VST3dWB_fixed_Asm_16: 7934 case ARM::VST3dWB_fixed_Asm_32: 7935 case ARM::VST3qWB_fixed_Asm_8: 7936 case ARM::VST3qWB_fixed_Asm_16: 7937 case ARM::VST3qWB_fixed_Asm_32: { 7938 MCInst TmpInst; 7939 unsigned Spacing; 7940 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7941 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7942 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7943 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7944 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7945 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7946 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7947 Spacing)); 7948 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7949 Spacing * 2)); 7950 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7951 TmpInst.addOperand(Inst.getOperand(4)); 7952 Inst = TmpInst; 7953 return true; 7954 } 7955 7956 case ARM::VST3dWB_register_Asm_8: 7957 case ARM::VST3dWB_register_Asm_16: 7958 case ARM::VST3dWB_register_Asm_32: 7959 case ARM::VST3qWB_register_Asm_8: 7960 case ARM::VST3qWB_register_Asm_16: 7961 case ARM::VST3qWB_register_Asm_32: { 7962 MCInst TmpInst; 7963 unsigned Spacing; 7964 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7965 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7966 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7967 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7968 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7969 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7970 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7971 Spacing)); 7972 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7973 Spacing * 2)); 7974 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7975 TmpInst.addOperand(Inst.getOperand(5)); 7976 Inst = TmpInst; 7977 return true; 7978 } 7979 7980 // VST4 multiple 3-element structure instructions. 7981 case ARM::VST4dAsm_8: 7982 case ARM::VST4dAsm_16: 7983 case ARM::VST4dAsm_32: 7984 case ARM::VST4qAsm_8: 7985 case ARM::VST4qAsm_16: 7986 case ARM::VST4qAsm_32: { 7987 MCInst TmpInst; 7988 unsigned Spacing; 7989 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7990 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7991 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7992 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7993 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7994 Spacing)); 7995 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7996 Spacing * 2)); 7997 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7998 Spacing * 3)); 7999 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8000 TmpInst.addOperand(Inst.getOperand(4)); 8001 Inst = TmpInst; 8002 return true; 8003 } 8004 8005 case ARM::VST4dWB_fixed_Asm_8: 8006 case ARM::VST4dWB_fixed_Asm_16: 8007 case ARM::VST4dWB_fixed_Asm_32: 8008 case ARM::VST4qWB_fixed_Asm_8: 8009 case ARM::VST4qWB_fixed_Asm_16: 8010 case ARM::VST4qWB_fixed_Asm_32: { 8011 MCInst TmpInst; 8012 unsigned Spacing; 8013 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8014 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8015 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8016 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8017 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8018 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8019 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8020 Spacing)); 8021 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8022 Spacing * 2)); 8023 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8024 Spacing * 3)); 8025 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8026 TmpInst.addOperand(Inst.getOperand(4)); 8027 Inst = TmpInst; 8028 return true; 8029 } 8030 8031 case ARM::VST4dWB_register_Asm_8: 8032 case ARM::VST4dWB_register_Asm_16: 8033 case ARM::VST4dWB_register_Asm_32: 8034 case ARM::VST4qWB_register_Asm_8: 8035 case ARM::VST4qWB_register_Asm_16: 8036 case ARM::VST4qWB_register_Asm_32: { 8037 MCInst TmpInst; 8038 unsigned Spacing; 8039 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8040 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8041 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8042 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8043 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8044 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8045 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8046 Spacing)); 8047 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8048 Spacing * 2)); 8049 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8050 Spacing * 3)); 8051 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8052 TmpInst.addOperand(Inst.getOperand(5)); 8053 Inst = TmpInst; 8054 return true; 8055 } 8056 8057 // Handle encoding choice for the shift-immediate instructions. 8058 case ARM::t2LSLri: 8059 case ARM::t2LSRri: 8060 case ARM::t2ASRri: { 8061 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8062 isARMLowRegister(Inst.getOperand(1).getReg()) && 8063 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8064 !HasWideQualifier) { 8065 unsigned NewOpc; 8066 switch (Inst.getOpcode()) { 8067 default: llvm_unreachable("unexpected opcode"); 8068 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8069 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8070 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8071 } 8072 // The Thumb1 operands aren't in the same order. Awesome, eh? 8073 MCInst TmpInst; 8074 TmpInst.setOpcode(NewOpc); 8075 TmpInst.addOperand(Inst.getOperand(0)); 8076 TmpInst.addOperand(Inst.getOperand(5)); 8077 TmpInst.addOperand(Inst.getOperand(1)); 8078 TmpInst.addOperand(Inst.getOperand(2)); 8079 TmpInst.addOperand(Inst.getOperand(3)); 8080 TmpInst.addOperand(Inst.getOperand(4)); 8081 Inst = TmpInst; 8082 return true; 8083 } 8084 return false; 8085 } 8086 8087 // Handle the Thumb2 mode MOV complex aliases. 8088 case ARM::t2MOVsr: 8089 case ARM::t2MOVSsr: { 8090 // Which instruction to expand to depends on the CCOut operand and 8091 // whether we're in an IT block if the register operands are low 8092 // registers. 8093 bool isNarrow = false; 8094 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8095 isARMLowRegister(Inst.getOperand(1).getReg()) && 8096 isARMLowRegister(Inst.getOperand(2).getReg()) && 8097 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8098 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8099 !HasWideQualifier) 8100 isNarrow = true; 8101 MCInst TmpInst; 8102 unsigned newOpc; 8103 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8104 default: llvm_unreachable("unexpected opcode!"); 8105 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8106 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8107 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8108 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8109 } 8110 TmpInst.setOpcode(newOpc); 8111 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8112 if (isNarrow) 8113 TmpInst.addOperand(MCOperand::createReg( 8114 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8115 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8116 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8117 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8118 TmpInst.addOperand(Inst.getOperand(5)); 8119 if (!isNarrow) 8120 TmpInst.addOperand(MCOperand::createReg( 8121 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8122 Inst = TmpInst; 8123 return true; 8124 } 8125 case ARM::t2MOVsi: 8126 case ARM::t2MOVSsi: { 8127 // Which instruction to expand to depends on the CCOut operand and 8128 // whether we're in an IT block if the register operands are low 8129 // registers. 8130 bool isNarrow = false; 8131 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8132 isARMLowRegister(Inst.getOperand(1).getReg()) && 8133 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8134 !HasWideQualifier) 8135 isNarrow = true; 8136 MCInst TmpInst; 8137 unsigned newOpc; 8138 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8139 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8140 bool isMov = false; 8141 // MOV rd, rm, LSL #0 is actually a MOV instruction 8142 if (Shift == ARM_AM::lsl && Amount == 0) { 8143 isMov = true; 8144 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8145 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8146 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8147 // instead. 8148 if (inITBlock()) { 8149 isNarrow = false; 8150 } 8151 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8152 } else { 8153 switch(Shift) { 8154 default: llvm_unreachable("unexpected opcode!"); 8155 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8156 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8157 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8158 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8159 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8160 } 8161 } 8162 if (Amount == 32) Amount = 0; 8163 TmpInst.setOpcode(newOpc); 8164 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8165 if (isNarrow && !isMov) 8166 TmpInst.addOperand(MCOperand::createReg( 8167 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8168 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8169 if (newOpc != ARM::t2RRX && !isMov) 8170 TmpInst.addOperand(MCOperand::createImm(Amount)); 8171 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8172 TmpInst.addOperand(Inst.getOperand(4)); 8173 if (!isNarrow) 8174 TmpInst.addOperand(MCOperand::createReg( 8175 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8176 Inst = TmpInst; 8177 return true; 8178 } 8179 // Handle the ARM mode MOV complex aliases. 8180 case ARM::ASRr: 8181 case ARM::LSRr: 8182 case ARM::LSLr: 8183 case ARM::RORr: { 8184 ARM_AM::ShiftOpc ShiftTy; 8185 switch(Inst.getOpcode()) { 8186 default: llvm_unreachable("unexpected opcode!"); 8187 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8188 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8189 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8190 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8191 } 8192 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8193 MCInst TmpInst; 8194 TmpInst.setOpcode(ARM::MOVsr); 8195 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8196 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8197 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8198 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8199 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8200 TmpInst.addOperand(Inst.getOperand(4)); 8201 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8202 Inst = TmpInst; 8203 return true; 8204 } 8205 case ARM::ASRi: 8206 case ARM::LSRi: 8207 case ARM::LSLi: 8208 case ARM::RORi: { 8209 ARM_AM::ShiftOpc ShiftTy; 8210 switch(Inst.getOpcode()) { 8211 default: llvm_unreachable("unexpected opcode!"); 8212 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8213 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8214 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8215 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8216 } 8217 // A shift by zero is a plain MOVr, not a MOVsi. 8218 unsigned Amt = Inst.getOperand(2).getImm(); 8219 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8220 // A shift by 32 should be encoded as 0 when permitted 8221 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8222 Amt = 0; 8223 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8224 MCInst TmpInst; 8225 TmpInst.setOpcode(Opc); 8226 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8227 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8228 if (Opc == ARM::MOVsi) 8229 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8230 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8231 TmpInst.addOperand(Inst.getOperand(4)); 8232 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8233 Inst = TmpInst; 8234 return true; 8235 } 8236 case ARM::RRXi: { 8237 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8238 MCInst TmpInst; 8239 TmpInst.setOpcode(ARM::MOVsi); 8240 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8241 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8242 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8243 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8244 TmpInst.addOperand(Inst.getOperand(3)); 8245 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8246 Inst = TmpInst; 8247 return true; 8248 } 8249 case ARM::t2LDMIA_UPD: { 8250 // If this is a load of a single register, then we should use 8251 // a post-indexed LDR instruction instead, per the ARM ARM. 8252 if (Inst.getNumOperands() != 5) 8253 return false; 8254 MCInst TmpInst; 8255 TmpInst.setOpcode(ARM::t2LDR_POST); 8256 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8257 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8258 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8259 TmpInst.addOperand(MCOperand::createImm(4)); 8260 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8261 TmpInst.addOperand(Inst.getOperand(3)); 8262 Inst = TmpInst; 8263 return true; 8264 } 8265 case ARM::t2STMDB_UPD: { 8266 // If this is a store of a single register, then we should use 8267 // a pre-indexed STR instruction instead, per the ARM ARM. 8268 if (Inst.getNumOperands() != 5) 8269 return false; 8270 MCInst TmpInst; 8271 TmpInst.setOpcode(ARM::t2STR_PRE); 8272 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8273 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8274 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8275 TmpInst.addOperand(MCOperand::createImm(-4)); 8276 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8277 TmpInst.addOperand(Inst.getOperand(3)); 8278 Inst = TmpInst; 8279 return true; 8280 } 8281 case ARM::LDMIA_UPD: 8282 // If this is a load of a single register via a 'pop', then we should use 8283 // a post-indexed LDR instruction instead, per the ARM ARM. 8284 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8285 Inst.getNumOperands() == 5) { 8286 MCInst TmpInst; 8287 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8288 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8289 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8290 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8291 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8292 TmpInst.addOperand(MCOperand::createImm(4)); 8293 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8294 TmpInst.addOperand(Inst.getOperand(3)); 8295 Inst = TmpInst; 8296 return true; 8297 } 8298 break; 8299 case ARM::STMDB_UPD: 8300 // If this is a store of a single register via a 'push', then we should use 8301 // a pre-indexed STR instruction instead, per the ARM ARM. 8302 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8303 Inst.getNumOperands() == 5) { 8304 MCInst TmpInst; 8305 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8306 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8307 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8308 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8309 TmpInst.addOperand(MCOperand::createImm(-4)); 8310 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8311 TmpInst.addOperand(Inst.getOperand(3)); 8312 Inst = TmpInst; 8313 } 8314 break; 8315 case ARM::t2ADDri12: 8316 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8317 // mnemonic was used (not "addw"), encoding T3 is preferred. 8318 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8319 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8320 break; 8321 Inst.setOpcode(ARM::t2ADDri); 8322 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8323 break; 8324 case ARM::t2SUBri12: 8325 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8326 // mnemonic was used (not "subw"), encoding T3 is preferred. 8327 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8328 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8329 break; 8330 Inst.setOpcode(ARM::t2SUBri); 8331 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8332 break; 8333 case ARM::tADDi8: 8334 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8335 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8336 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8337 // to encoding T1 if <Rd> is omitted." 8338 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8339 Inst.setOpcode(ARM::tADDi3); 8340 return true; 8341 } 8342 break; 8343 case ARM::tSUBi8: 8344 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8345 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8346 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8347 // to encoding T1 if <Rd> is omitted." 8348 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8349 Inst.setOpcode(ARM::tSUBi3); 8350 return true; 8351 } 8352 break; 8353 case ARM::t2ADDri: 8354 case ARM::t2SUBri: { 8355 // If the destination and first source operand are the same, and 8356 // the flags are compatible with the current IT status, use encoding T2 8357 // instead of T3. For compatibility with the system 'as'. Make sure the 8358 // wide encoding wasn't explicit. 8359 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8360 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8361 (Inst.getOperand(2).isImm() && 8362 (unsigned)Inst.getOperand(2).getImm() > 255) || 8363 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8364 HasWideQualifier) 8365 break; 8366 MCInst TmpInst; 8367 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8368 ARM::tADDi8 : ARM::tSUBi8); 8369 TmpInst.addOperand(Inst.getOperand(0)); 8370 TmpInst.addOperand(Inst.getOperand(5)); 8371 TmpInst.addOperand(Inst.getOperand(0)); 8372 TmpInst.addOperand(Inst.getOperand(2)); 8373 TmpInst.addOperand(Inst.getOperand(3)); 8374 TmpInst.addOperand(Inst.getOperand(4)); 8375 Inst = TmpInst; 8376 return true; 8377 } 8378 case ARM::t2ADDrr: { 8379 // If the destination and first source operand are the same, and 8380 // there's no setting of the flags, use encoding T2 instead of T3. 8381 // Note that this is only for ADD, not SUB. This mirrors the system 8382 // 'as' behaviour. Also take advantage of ADD being commutative. 8383 // Make sure the wide encoding wasn't explicit. 8384 bool Swap = false; 8385 auto DestReg = Inst.getOperand(0).getReg(); 8386 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8387 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8388 Transform = true; 8389 Swap = true; 8390 } 8391 if (!Transform || 8392 Inst.getOperand(5).getReg() != 0 || 8393 HasWideQualifier) 8394 break; 8395 MCInst TmpInst; 8396 TmpInst.setOpcode(ARM::tADDhirr); 8397 TmpInst.addOperand(Inst.getOperand(0)); 8398 TmpInst.addOperand(Inst.getOperand(0)); 8399 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8400 TmpInst.addOperand(Inst.getOperand(3)); 8401 TmpInst.addOperand(Inst.getOperand(4)); 8402 Inst = TmpInst; 8403 return true; 8404 } 8405 case ARM::tADDrSP: { 8406 // If the non-SP source operand and the destination operand are not the 8407 // same, we need to use the 32-bit encoding if it's available. 8408 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8409 Inst.setOpcode(ARM::t2ADDrr); 8410 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8411 return true; 8412 } 8413 break; 8414 } 8415 case ARM::tB: 8416 // A Thumb conditional branch outside of an IT block is a tBcc. 8417 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8418 Inst.setOpcode(ARM::tBcc); 8419 return true; 8420 } 8421 break; 8422 case ARM::t2B: 8423 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8424 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8425 Inst.setOpcode(ARM::t2Bcc); 8426 return true; 8427 } 8428 break; 8429 case ARM::t2Bcc: 8430 // If the conditional is AL or we're in an IT block, we really want t2B. 8431 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8432 Inst.setOpcode(ARM::t2B); 8433 return true; 8434 } 8435 break; 8436 case ARM::tBcc: 8437 // If the conditional is AL, we really want tB. 8438 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8439 Inst.setOpcode(ARM::tB); 8440 return true; 8441 } 8442 break; 8443 case ARM::tLDMIA: { 8444 // If the register list contains any high registers, or if the writeback 8445 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8446 // instead if we're in Thumb2. Otherwise, this should have generated 8447 // an error in validateInstruction(). 8448 unsigned Rn = Inst.getOperand(0).getReg(); 8449 bool hasWritebackToken = 8450 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8451 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8452 bool listContainsBase; 8453 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8454 (!listContainsBase && !hasWritebackToken) || 8455 (listContainsBase && hasWritebackToken)) { 8456 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8457 assert (isThumbTwo()); 8458 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8459 // If we're switching to the updating version, we need to insert 8460 // the writeback tied operand. 8461 if (hasWritebackToken) 8462 Inst.insert(Inst.begin(), 8463 MCOperand::createReg(Inst.getOperand(0).getReg())); 8464 return true; 8465 } 8466 break; 8467 } 8468 case ARM::tSTMIA_UPD: { 8469 // If the register list contains any high registers, we need to use 8470 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8471 // should have generated an error in validateInstruction(). 8472 unsigned Rn = Inst.getOperand(0).getReg(); 8473 bool listContainsBase; 8474 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8475 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8476 assert (isThumbTwo()); 8477 Inst.setOpcode(ARM::t2STMIA_UPD); 8478 return true; 8479 } 8480 break; 8481 } 8482 case ARM::tPOP: { 8483 bool listContainsBase; 8484 // If the register list contains any high registers, we need to use 8485 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8486 // should have generated an error in validateInstruction(). 8487 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8488 return false; 8489 assert (isThumbTwo()); 8490 Inst.setOpcode(ARM::t2LDMIA_UPD); 8491 // Add the base register and writeback operands. 8492 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8493 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8494 return true; 8495 } 8496 case ARM::tPUSH: { 8497 bool listContainsBase; 8498 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8499 return false; 8500 assert (isThumbTwo()); 8501 Inst.setOpcode(ARM::t2STMDB_UPD); 8502 // Add the base register and writeback operands. 8503 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8504 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8505 return true; 8506 } 8507 case ARM::t2MOVi: { 8508 // If we can use the 16-bit encoding and the user didn't explicitly 8509 // request the 32-bit variant, transform it here. 8510 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8511 (Inst.getOperand(1).isImm() && 8512 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8513 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8514 !HasWideQualifier) { 8515 // The operands aren't in the same order for tMOVi8... 8516 MCInst TmpInst; 8517 TmpInst.setOpcode(ARM::tMOVi8); 8518 TmpInst.addOperand(Inst.getOperand(0)); 8519 TmpInst.addOperand(Inst.getOperand(4)); 8520 TmpInst.addOperand(Inst.getOperand(1)); 8521 TmpInst.addOperand(Inst.getOperand(2)); 8522 TmpInst.addOperand(Inst.getOperand(3)); 8523 Inst = TmpInst; 8524 return true; 8525 } 8526 break; 8527 } 8528 case ARM::t2MOVr: { 8529 // If we can use the 16-bit encoding and the user didn't explicitly 8530 // request the 32-bit variant, transform it here. 8531 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8532 isARMLowRegister(Inst.getOperand(1).getReg()) && 8533 Inst.getOperand(2).getImm() == ARMCC::AL && 8534 Inst.getOperand(4).getReg() == ARM::CPSR && 8535 !HasWideQualifier) { 8536 // The operands aren't the same for tMOV[S]r... (no cc_out) 8537 MCInst TmpInst; 8538 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8539 TmpInst.addOperand(Inst.getOperand(0)); 8540 TmpInst.addOperand(Inst.getOperand(1)); 8541 TmpInst.addOperand(Inst.getOperand(2)); 8542 TmpInst.addOperand(Inst.getOperand(3)); 8543 Inst = TmpInst; 8544 return true; 8545 } 8546 break; 8547 } 8548 case ARM::t2SXTH: 8549 case ARM::t2SXTB: 8550 case ARM::t2UXTH: 8551 case ARM::t2UXTB: { 8552 // If we can use the 16-bit encoding and the user didn't explicitly 8553 // request the 32-bit variant, transform it here. 8554 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8555 isARMLowRegister(Inst.getOperand(1).getReg()) && 8556 Inst.getOperand(2).getImm() == 0 && 8557 !HasWideQualifier) { 8558 unsigned NewOpc; 8559 switch (Inst.getOpcode()) { 8560 default: llvm_unreachable("Illegal opcode!"); 8561 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8562 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8563 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8564 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8565 } 8566 // The operands aren't the same for thumb1 (no rotate operand). 8567 MCInst TmpInst; 8568 TmpInst.setOpcode(NewOpc); 8569 TmpInst.addOperand(Inst.getOperand(0)); 8570 TmpInst.addOperand(Inst.getOperand(1)); 8571 TmpInst.addOperand(Inst.getOperand(3)); 8572 TmpInst.addOperand(Inst.getOperand(4)); 8573 Inst = TmpInst; 8574 return true; 8575 } 8576 break; 8577 } 8578 case ARM::MOVsi: { 8579 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8580 // rrx shifts and asr/lsr of #32 is encoded as 0 8581 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8582 return false; 8583 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8584 // Shifting by zero is accepted as a vanilla 'MOVr' 8585 MCInst TmpInst; 8586 TmpInst.setOpcode(ARM::MOVr); 8587 TmpInst.addOperand(Inst.getOperand(0)); 8588 TmpInst.addOperand(Inst.getOperand(1)); 8589 TmpInst.addOperand(Inst.getOperand(3)); 8590 TmpInst.addOperand(Inst.getOperand(4)); 8591 TmpInst.addOperand(Inst.getOperand(5)); 8592 Inst = TmpInst; 8593 return true; 8594 } 8595 return false; 8596 } 8597 case ARM::ANDrsi: 8598 case ARM::ORRrsi: 8599 case ARM::EORrsi: 8600 case ARM::BICrsi: 8601 case ARM::SUBrsi: 8602 case ARM::ADDrsi: { 8603 unsigned newOpc; 8604 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8605 if (SOpc == ARM_AM::rrx) return false; 8606 switch (Inst.getOpcode()) { 8607 default: llvm_unreachable("unexpected opcode!"); 8608 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8609 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8610 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8611 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8612 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8613 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8614 } 8615 // If the shift is by zero, use the non-shifted instruction definition. 8616 // The exception is for right shifts, where 0 == 32 8617 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8618 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8619 MCInst TmpInst; 8620 TmpInst.setOpcode(newOpc); 8621 TmpInst.addOperand(Inst.getOperand(0)); 8622 TmpInst.addOperand(Inst.getOperand(1)); 8623 TmpInst.addOperand(Inst.getOperand(2)); 8624 TmpInst.addOperand(Inst.getOperand(4)); 8625 TmpInst.addOperand(Inst.getOperand(5)); 8626 TmpInst.addOperand(Inst.getOperand(6)); 8627 Inst = TmpInst; 8628 return true; 8629 } 8630 return false; 8631 } 8632 case ARM::ITasm: 8633 case ARM::t2IT: { 8634 MCOperand &MO = Inst.getOperand(1); 8635 unsigned Mask = MO.getImm(); 8636 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8637 8638 // Set up the IT block state according to the IT instruction we just 8639 // matched. 8640 assert(!inITBlock() && "nested IT blocks?!"); 8641 startExplicitITBlock(Cond, Mask); 8642 MO.setImm(getITMaskEncoding()); 8643 break; 8644 } 8645 case ARM::t2LSLrr: 8646 case ARM::t2LSRrr: 8647 case ARM::t2ASRrr: 8648 case ARM::t2SBCrr: 8649 case ARM::t2RORrr: 8650 case ARM::t2BICrr: 8651 { 8652 // Assemblers should use the narrow encodings of these instructions when permissible. 8653 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8654 isARMLowRegister(Inst.getOperand(2).getReg())) && 8655 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8656 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8657 !HasWideQualifier) { 8658 unsigned NewOpc; 8659 switch (Inst.getOpcode()) { 8660 default: llvm_unreachable("unexpected opcode"); 8661 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8662 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8663 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8664 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8665 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8666 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8667 } 8668 MCInst TmpInst; 8669 TmpInst.setOpcode(NewOpc); 8670 TmpInst.addOperand(Inst.getOperand(0)); 8671 TmpInst.addOperand(Inst.getOperand(5)); 8672 TmpInst.addOperand(Inst.getOperand(1)); 8673 TmpInst.addOperand(Inst.getOperand(2)); 8674 TmpInst.addOperand(Inst.getOperand(3)); 8675 TmpInst.addOperand(Inst.getOperand(4)); 8676 Inst = TmpInst; 8677 return true; 8678 } 8679 return false; 8680 } 8681 case ARM::t2ANDrr: 8682 case ARM::t2EORrr: 8683 case ARM::t2ADCrr: 8684 case ARM::t2ORRrr: 8685 { 8686 // Assemblers should use the narrow encodings of these instructions when permissible. 8687 // These instructions are special in that they are commutable, so shorter encodings 8688 // are available more often. 8689 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8690 isARMLowRegister(Inst.getOperand(2).getReg())) && 8691 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8692 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8693 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8694 !HasWideQualifier) { 8695 unsigned NewOpc; 8696 switch (Inst.getOpcode()) { 8697 default: llvm_unreachable("unexpected opcode"); 8698 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8699 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8700 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8701 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8702 } 8703 MCInst TmpInst; 8704 TmpInst.setOpcode(NewOpc); 8705 TmpInst.addOperand(Inst.getOperand(0)); 8706 TmpInst.addOperand(Inst.getOperand(5)); 8707 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8708 TmpInst.addOperand(Inst.getOperand(1)); 8709 TmpInst.addOperand(Inst.getOperand(2)); 8710 } else { 8711 TmpInst.addOperand(Inst.getOperand(2)); 8712 TmpInst.addOperand(Inst.getOperand(1)); 8713 } 8714 TmpInst.addOperand(Inst.getOperand(3)); 8715 TmpInst.addOperand(Inst.getOperand(4)); 8716 Inst = TmpInst; 8717 return true; 8718 } 8719 return false; 8720 } 8721 } 8722 return false; 8723 } 8724 8725 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8726 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8727 // suffix depending on whether they're in an IT block or not. 8728 unsigned Opc = Inst.getOpcode(); 8729 const MCInstrDesc &MCID = MII.get(Opc); 8730 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8731 assert(MCID.hasOptionalDef() && 8732 "optionally flag setting instruction missing optional def operand"); 8733 assert(MCID.NumOperands == Inst.getNumOperands() && 8734 "operand count mismatch!"); 8735 // Find the optional-def operand (cc_out). 8736 unsigned OpNo; 8737 for (OpNo = 0; 8738 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8739 ++OpNo) 8740 ; 8741 // If we're parsing Thumb1, reject it completely. 8742 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8743 return Match_RequiresFlagSetting; 8744 // If we're parsing Thumb2, which form is legal depends on whether we're 8745 // in an IT block. 8746 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8747 !inITBlock()) 8748 return Match_RequiresITBlock; 8749 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8750 inITBlock()) 8751 return Match_RequiresNotITBlock; 8752 // LSL with zero immediate is not allowed in an IT block 8753 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 8754 return Match_RequiresNotITBlock; 8755 } else if (isThumbOne()) { 8756 // Some high-register supporting Thumb1 encodings only allow both registers 8757 // to be from r0-r7 when in Thumb2. 8758 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8759 isARMLowRegister(Inst.getOperand(1).getReg()) && 8760 isARMLowRegister(Inst.getOperand(2).getReg())) 8761 return Match_RequiresThumb2; 8762 // Others only require ARMv6 or later. 8763 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8764 isARMLowRegister(Inst.getOperand(0).getReg()) && 8765 isARMLowRegister(Inst.getOperand(1).getReg())) 8766 return Match_RequiresV6; 8767 } 8768 8769 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 8770 // than the loop below can handle, so it uses the GPRnopc register class and 8771 // we do SP handling here. 8772 if (Opc == ARM::t2MOVr && !hasV8Ops()) 8773 { 8774 // SP as both source and destination is not allowed 8775 if (Inst.getOperand(0).getReg() == ARM::SP && 8776 Inst.getOperand(1).getReg() == ARM::SP) 8777 return Match_RequiresV8; 8778 // When flags-setting SP as either source or destination is not allowed 8779 if (Inst.getOperand(4).getReg() == ARM::CPSR && 8780 (Inst.getOperand(0).getReg() == ARM::SP || 8781 Inst.getOperand(1).getReg() == ARM::SP)) 8782 return Match_RequiresV8; 8783 } 8784 8785 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8786 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8787 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8788 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8789 return Match_RequiresV8; 8790 else if (Inst.getOperand(I).getReg() == ARM::PC) 8791 return Match_InvalidOperand; 8792 } 8793 8794 return Match_Success; 8795 } 8796 8797 namespace llvm { 8798 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 8799 return true; // In an assembly source, no need to second-guess 8800 } 8801 } 8802 8803 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8804 // the last instruction in the block. 8805 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8806 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8807 8808 // All branch & call instructions terminate IT blocks. 8809 if (MCID.isTerminator() || MCID.isCall() || MCID.isReturn() || 8810 MCID.isBranch() || MCID.isIndirectBranch()) 8811 return true; 8812 8813 // Any arithmetic instruction which writes to the PC also terminates the IT 8814 // block. 8815 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 8816 MCOperand &Op = Inst.getOperand(OpIdx); 8817 if (Op.isReg() && Op.getReg() == ARM::PC) 8818 return true; 8819 } 8820 8821 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 8822 return true; 8823 8824 // Instructions with variable operand lists, which write to the variable 8825 // operands. We only care about Thumb instructions here, as ARM instructions 8826 // obviously can't be in an IT block. 8827 switch (Inst.getOpcode()) { 8828 case ARM::tLDMIA: 8829 case ARM::t2LDMIA: 8830 case ARM::t2LDMIA_UPD: 8831 case ARM::t2LDMDB: 8832 case ARM::t2LDMDB_UPD: 8833 if (listContainsReg(Inst, 3, ARM::PC)) 8834 return true; 8835 break; 8836 case ARM::tPOP: 8837 if (listContainsReg(Inst, 2, ARM::PC)) 8838 return true; 8839 break; 8840 } 8841 8842 return false; 8843 } 8844 8845 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 8846 uint64_t &ErrorInfo, 8847 bool MatchingInlineAsm, 8848 bool &EmitInITBlock, 8849 MCStreamer &Out) { 8850 // If we can't use an implicit IT block here, just match as normal. 8851 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 8852 return MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 8853 8854 // Try to match the instruction in an extension of the current IT block (if 8855 // there is one). 8856 if (inImplicitITBlock()) { 8857 extendImplicitITBlock(ITState.Cond); 8858 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 8859 Match_Success) { 8860 // The match succeded, but we still have to check that the instruction is 8861 // valid in this implicit IT block. 8862 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8863 if (MCID.isPredicable()) { 8864 ARMCC::CondCodes InstCond = 8865 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8866 .getImm(); 8867 ARMCC::CondCodes ITCond = currentITCond(); 8868 if (InstCond == ITCond) { 8869 EmitInITBlock = true; 8870 return Match_Success; 8871 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 8872 invertCurrentITCondition(); 8873 EmitInITBlock = true; 8874 return Match_Success; 8875 } 8876 } 8877 } 8878 rewindImplicitITPosition(); 8879 } 8880 8881 // Finish the current IT block, and try to match outside any IT block. 8882 flushPendingInstructions(Out); 8883 unsigned PlainMatchResult = 8884 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 8885 if (PlainMatchResult == Match_Success) { 8886 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8887 if (MCID.isPredicable()) { 8888 ARMCC::CondCodes InstCond = 8889 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8890 .getImm(); 8891 // Some forms of the branch instruction have their own condition code 8892 // fields, so can be conditionally executed without an IT block. 8893 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 8894 EmitInITBlock = false; 8895 return Match_Success; 8896 } 8897 if (InstCond == ARMCC::AL) { 8898 EmitInITBlock = false; 8899 return Match_Success; 8900 } 8901 } else { 8902 EmitInITBlock = false; 8903 return Match_Success; 8904 } 8905 } 8906 8907 // Try to match in a new IT block. The matcher doesn't check the actual 8908 // condition, so we create an IT block with a dummy condition, and fix it up 8909 // once we know the actual condition. 8910 startImplicitITBlock(); 8911 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 8912 Match_Success) { 8913 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8914 if (MCID.isPredicable()) { 8915 ITState.Cond = 8916 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8917 .getImm(); 8918 EmitInITBlock = true; 8919 return Match_Success; 8920 } 8921 } 8922 discardImplicitITBlock(); 8923 8924 // If none of these succeed, return the error we got when trying to match 8925 // outside any IT blocks. 8926 EmitInITBlock = false; 8927 return PlainMatchResult; 8928 } 8929 8930 std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS); 8931 8932 static const char *getSubtargetFeatureName(uint64_t Val); 8933 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8934 OperandVector &Operands, 8935 MCStreamer &Out, uint64_t &ErrorInfo, 8936 bool MatchingInlineAsm) { 8937 MCInst Inst; 8938 unsigned MatchResult; 8939 bool PendConditionalInstruction = false; 8940 8941 MatchResult = MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm, 8942 PendConditionalInstruction, Out); 8943 8944 SMLoc ErrorLoc; 8945 if (ErrorInfo < Operands.size()) { 8946 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8947 if (ErrorLoc == SMLoc()) 8948 ErrorLoc = IDLoc; 8949 } 8950 8951 switch (MatchResult) { 8952 case Match_Success: 8953 // Context sensitive operand constraints aren't handled by the matcher, 8954 // so check them here. 8955 if (validateInstruction(Inst, Operands)) { 8956 // Still progress the IT block, otherwise one wrong condition causes 8957 // nasty cascading errors. 8958 forwardITPosition(); 8959 return true; 8960 } 8961 8962 { // processInstruction() updates inITBlock state, we need to save it away 8963 bool wasInITBlock = inITBlock(); 8964 8965 // Some instructions need post-processing to, for example, tweak which 8966 // encoding is selected. Loop on it while changes happen so the 8967 // individual transformations can chain off each other. E.g., 8968 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8969 while (processInstruction(Inst, Operands, Out)) 8970 ; 8971 8972 // Only after the instruction is fully processed, we can validate it 8973 if (wasInITBlock && hasV8Ops() && isThumb() && 8974 !isV8EligibleForIT(&Inst)) { 8975 Warning(IDLoc, "deprecated instruction in IT block"); 8976 } 8977 } 8978 8979 // Only move forward at the very end so that everything in validate 8980 // and process gets a consistent answer about whether we're in an IT 8981 // block. 8982 forwardITPosition(); 8983 8984 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8985 // doesn't actually encode. 8986 if (Inst.getOpcode() == ARM::ITasm) 8987 return false; 8988 8989 Inst.setLoc(IDLoc); 8990 if (PendConditionalInstruction) { 8991 PendingConditionalInsts.push_back(Inst); 8992 if (isITBlockFull() || isITBlockTerminator(Inst)) 8993 flushPendingInstructions(Out); 8994 } else { 8995 Out.EmitInstruction(Inst, getSTI()); 8996 } 8997 return false; 8998 case Match_MissingFeature: { 8999 assert(ErrorInfo && "Unknown missing feature!"); 9000 // Special case the error message for the very common case where only 9001 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 9002 std::string Msg = "instruction requires:"; 9003 uint64_t Mask = 1; 9004 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 9005 if (ErrorInfo & Mask) { 9006 Msg += " "; 9007 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 9008 } 9009 Mask <<= 1; 9010 } 9011 return Error(IDLoc, Msg); 9012 } 9013 case Match_InvalidOperand: { 9014 SMLoc ErrorLoc = IDLoc; 9015 if (ErrorInfo != ~0ULL) { 9016 if (ErrorInfo >= Operands.size()) 9017 return Error(IDLoc, "too few operands for instruction"); 9018 9019 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9020 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9021 } 9022 9023 return Error(ErrorLoc, "invalid operand for instruction"); 9024 } 9025 case Match_MnemonicFail: { 9026 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9027 std::string Suggestion = ARMMnemonicSpellCheck( 9028 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9029 return Error(IDLoc, "invalid instruction" + Suggestion, 9030 ((ARMOperand &)*Operands[0]).getLocRange()); 9031 } 9032 case Match_RequiresNotITBlock: 9033 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 9034 case Match_RequiresITBlock: 9035 return Error(IDLoc, "instruction only valid inside IT block"); 9036 case Match_RequiresV6: 9037 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 9038 case Match_RequiresThumb2: 9039 return Error(IDLoc, "instruction variant requires Thumb2"); 9040 case Match_RequiresV8: 9041 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 9042 case Match_RequiresFlagSetting: 9043 return Error(IDLoc, "no flag-preserving variant of this instruction available"); 9044 case Match_ImmRange0_1: 9045 return Error(ErrorLoc, "immediate operand must be in the range [0,1]"); 9046 case Match_ImmRange0_3: 9047 return Error(ErrorLoc, "immediate operand must be in the range [0,3]"); 9048 case Match_ImmRange0_7: 9049 return Error(ErrorLoc, "immediate operand must be in the range [0,7]"); 9050 case Match_ImmRange0_15: 9051 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 9052 case Match_ImmRange0_31: 9053 return Error(ErrorLoc, "immediate operand must be in the range [0,31]"); 9054 case Match_ImmRange0_32: 9055 return Error(ErrorLoc, "immediate operand must be in the range [0,32]"); 9056 case Match_ImmRange0_63: 9057 return Error(ErrorLoc, "immediate operand must be in the range [0,63]"); 9058 case Match_ImmRange0_239: 9059 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 9060 case Match_ImmRange0_255: 9061 return Error(ErrorLoc, "immediate operand must be in the range [0,255]"); 9062 case Match_ImmRange0_4095: 9063 return Error(ErrorLoc, "immediate operand must be in the range [0,4095]"); 9064 case Match_ImmRange0_65535: 9065 return Error(ErrorLoc, "immediate operand must be in the range [0,65535]"); 9066 case Match_ImmRange1_7: 9067 return Error(ErrorLoc, "immediate operand must be in the range [1,7]"); 9068 case Match_ImmRange1_8: 9069 return Error(ErrorLoc, "immediate operand must be in the range [1,8]"); 9070 case Match_ImmRange1_15: 9071 return Error(ErrorLoc, "immediate operand must be in the range [1,15]"); 9072 case Match_ImmRange1_16: 9073 return Error(ErrorLoc, "immediate operand must be in the range [1,16]"); 9074 case Match_ImmRange1_31: 9075 return Error(ErrorLoc, "immediate operand must be in the range [1,31]"); 9076 case Match_ImmRange1_32: 9077 return Error(ErrorLoc, "immediate operand must be in the range [1,32]"); 9078 case Match_ImmRange1_64: 9079 return Error(ErrorLoc, "immediate operand must be in the range [1,64]"); 9080 case Match_ImmRange8_8: 9081 return Error(ErrorLoc, "immediate operand must be 8."); 9082 case Match_ImmRange16_16: 9083 return Error(ErrorLoc, "immediate operand must be 16."); 9084 case Match_ImmRange32_32: 9085 return Error(ErrorLoc, "immediate operand must be 32."); 9086 case Match_ImmRange256_65535: 9087 return Error(ErrorLoc, "immediate operand must be in the range [255,65535]"); 9088 case Match_ImmRange0_16777215: 9089 return Error(ErrorLoc, "immediate operand must be in the range [0,0xffffff]"); 9090 case Match_AlignedMemoryRequiresNone: 9091 case Match_DupAlignedMemoryRequiresNone: 9092 case Match_AlignedMemoryRequires16: 9093 case Match_DupAlignedMemoryRequires16: 9094 case Match_AlignedMemoryRequires32: 9095 case Match_DupAlignedMemoryRequires32: 9096 case Match_AlignedMemoryRequires64: 9097 case Match_DupAlignedMemoryRequires64: 9098 case Match_AlignedMemoryRequires64or128: 9099 case Match_DupAlignedMemoryRequires64or128: 9100 case Match_AlignedMemoryRequires64or128or256: 9101 { 9102 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 9103 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9104 switch (MatchResult) { 9105 default: 9106 llvm_unreachable("Missing Match_Aligned type"); 9107 case Match_AlignedMemoryRequiresNone: 9108 case Match_DupAlignedMemoryRequiresNone: 9109 return Error(ErrorLoc, "alignment must be omitted"); 9110 case Match_AlignedMemoryRequires16: 9111 case Match_DupAlignedMemoryRequires16: 9112 return Error(ErrorLoc, "alignment must be 16 or omitted"); 9113 case Match_AlignedMemoryRequires32: 9114 case Match_DupAlignedMemoryRequires32: 9115 return Error(ErrorLoc, "alignment must be 32 or omitted"); 9116 case Match_AlignedMemoryRequires64: 9117 case Match_DupAlignedMemoryRequires64: 9118 return Error(ErrorLoc, "alignment must be 64 or omitted"); 9119 case Match_AlignedMemoryRequires64or128: 9120 case Match_DupAlignedMemoryRequires64or128: 9121 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 9122 case Match_AlignedMemoryRequires64or128or256: 9123 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 9124 } 9125 } 9126 } 9127 9128 llvm_unreachable("Implement any new match types added!"); 9129 } 9130 9131 /// parseDirective parses the arm specific directives 9132 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9133 const MCObjectFileInfo::Environment Format = 9134 getContext().getObjectFileInfo()->getObjectFileType(); 9135 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9136 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9137 9138 StringRef IDVal = DirectiveID.getIdentifier(); 9139 if (IDVal == ".word") 9140 parseLiteralValues(4, DirectiveID.getLoc()); 9141 else if (IDVal == ".short" || IDVal == ".hword") 9142 parseLiteralValues(2, DirectiveID.getLoc()); 9143 else if (IDVal == ".thumb") 9144 parseDirectiveThumb(DirectiveID.getLoc()); 9145 else if (IDVal == ".arm") 9146 parseDirectiveARM(DirectiveID.getLoc()); 9147 else if (IDVal == ".thumb_func") 9148 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9149 else if (IDVal == ".code") 9150 parseDirectiveCode(DirectiveID.getLoc()); 9151 else if (IDVal == ".syntax") 9152 parseDirectiveSyntax(DirectiveID.getLoc()); 9153 else if (IDVal == ".unreq") 9154 parseDirectiveUnreq(DirectiveID.getLoc()); 9155 else if (IDVal == ".fnend") 9156 parseDirectiveFnEnd(DirectiveID.getLoc()); 9157 else if (IDVal == ".cantunwind") 9158 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9159 else if (IDVal == ".personality") 9160 parseDirectivePersonality(DirectiveID.getLoc()); 9161 else if (IDVal == ".handlerdata") 9162 parseDirectiveHandlerData(DirectiveID.getLoc()); 9163 else if (IDVal == ".setfp") 9164 parseDirectiveSetFP(DirectiveID.getLoc()); 9165 else if (IDVal == ".pad") 9166 parseDirectivePad(DirectiveID.getLoc()); 9167 else if (IDVal == ".save") 9168 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9169 else if (IDVal == ".vsave") 9170 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9171 else if (IDVal == ".ltorg" || IDVal == ".pool") 9172 parseDirectiveLtorg(DirectiveID.getLoc()); 9173 else if (IDVal == ".even") 9174 parseDirectiveEven(DirectiveID.getLoc()); 9175 else if (IDVal == ".personalityindex") 9176 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9177 else if (IDVal == ".unwind_raw") 9178 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9179 else if (IDVal == ".movsp") 9180 parseDirectiveMovSP(DirectiveID.getLoc()); 9181 else if (IDVal == ".arch_extension") 9182 parseDirectiveArchExtension(DirectiveID.getLoc()); 9183 else if (IDVal == ".align") 9184 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9185 else if (IDVal == ".thumb_set") 9186 parseDirectiveThumbSet(DirectiveID.getLoc()); 9187 else if (!IsMachO && !IsCOFF) { 9188 if (IDVal == ".arch") 9189 parseDirectiveArch(DirectiveID.getLoc()); 9190 else if (IDVal == ".cpu") 9191 parseDirectiveCPU(DirectiveID.getLoc()); 9192 else if (IDVal == ".eabi_attribute") 9193 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9194 else if (IDVal == ".fpu") 9195 parseDirectiveFPU(DirectiveID.getLoc()); 9196 else if (IDVal == ".fnstart") 9197 parseDirectiveFnStart(DirectiveID.getLoc()); 9198 else if (IDVal == ".inst") 9199 parseDirectiveInst(DirectiveID.getLoc()); 9200 else if (IDVal == ".inst.n") 9201 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9202 else if (IDVal == ".inst.w") 9203 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9204 else if (IDVal == ".object_arch") 9205 parseDirectiveObjectArch(DirectiveID.getLoc()); 9206 else if (IDVal == ".tlsdescseq") 9207 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9208 else 9209 return true; 9210 } else 9211 return true; 9212 return false; 9213 } 9214 9215 /// parseLiteralValues 9216 /// ::= .hword expression [, expression]* 9217 /// ::= .short expression [, expression]* 9218 /// ::= .word expression [, expression]* 9219 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9220 auto parseOne = [&]() -> bool { 9221 const MCExpr *Value; 9222 if (getParser().parseExpression(Value)) 9223 return true; 9224 getParser().getStreamer().EmitValue(Value, Size, L); 9225 return false; 9226 }; 9227 return (parseMany(parseOne)); 9228 } 9229 9230 /// parseDirectiveThumb 9231 /// ::= .thumb 9232 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9233 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9234 check(!hasThumb(), L, "target does not support Thumb mode")) 9235 return true; 9236 9237 if (!isThumb()) 9238 SwitchMode(); 9239 9240 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9241 return false; 9242 } 9243 9244 /// parseDirectiveARM 9245 /// ::= .arm 9246 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9247 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9248 check(!hasARM(), L, "target does not support ARM mode")) 9249 return true; 9250 9251 if (isThumb()) 9252 SwitchMode(); 9253 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9254 return false; 9255 } 9256 9257 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9258 // We need to flush the current implicit IT block on a label, because it is 9259 // not legal to branch into an IT block. 9260 flushPendingInstructions(getStreamer()); 9261 if (NextSymbolIsThumb) { 9262 getParser().getStreamer().EmitThumbFunc(Symbol); 9263 NextSymbolIsThumb = false; 9264 } 9265 } 9266 9267 /// parseDirectiveThumbFunc 9268 /// ::= .thumbfunc symbol_name 9269 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9270 MCAsmParser &Parser = getParser(); 9271 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9272 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9273 9274 // Darwin asm has (optionally) function name after .thumb_func direction 9275 // ELF doesn't 9276 9277 if (IsMachO) { 9278 if (Parser.getTok().is(AsmToken::Identifier) || 9279 Parser.getTok().is(AsmToken::String)) { 9280 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9281 Parser.getTok().getIdentifier()); 9282 getParser().getStreamer().EmitThumbFunc(Func); 9283 Parser.Lex(); 9284 if (parseToken(AsmToken::EndOfStatement, 9285 "unexpected token in '.thumb_func' directive")) 9286 return true; 9287 return false; 9288 } 9289 } 9290 9291 if (parseToken(AsmToken::EndOfStatement, 9292 "unexpected token in '.thumb_func' directive")) 9293 return true; 9294 9295 NextSymbolIsThumb = true; 9296 return false; 9297 } 9298 9299 /// parseDirectiveSyntax 9300 /// ::= .syntax unified | divided 9301 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9302 MCAsmParser &Parser = getParser(); 9303 const AsmToken &Tok = Parser.getTok(); 9304 if (Tok.isNot(AsmToken::Identifier)) { 9305 Error(L, "unexpected token in .syntax directive"); 9306 return false; 9307 } 9308 9309 StringRef Mode = Tok.getString(); 9310 Parser.Lex(); 9311 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9312 "'.syntax divided' arm assembly not supported") || 9313 check(Mode != "unified" && Mode != "UNIFIED", L, 9314 "unrecognized syntax mode in .syntax directive") || 9315 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9316 return true; 9317 9318 // TODO tell the MC streamer the mode 9319 // getParser().getStreamer().Emit???(); 9320 return false; 9321 } 9322 9323 /// parseDirectiveCode 9324 /// ::= .code 16 | 32 9325 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9326 MCAsmParser &Parser = getParser(); 9327 const AsmToken &Tok = Parser.getTok(); 9328 if (Tok.isNot(AsmToken::Integer)) 9329 return Error(L, "unexpected token in .code directive"); 9330 int64_t Val = Parser.getTok().getIntVal(); 9331 if (Val != 16 && Val != 32) { 9332 Error(L, "invalid operand to .code directive"); 9333 return false; 9334 } 9335 Parser.Lex(); 9336 9337 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9338 return true; 9339 9340 if (Val == 16) { 9341 if (!hasThumb()) 9342 return Error(L, "target does not support Thumb mode"); 9343 9344 if (!isThumb()) 9345 SwitchMode(); 9346 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9347 } else { 9348 if (!hasARM()) 9349 return Error(L, "target does not support ARM mode"); 9350 9351 if (isThumb()) 9352 SwitchMode(); 9353 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9354 } 9355 9356 return false; 9357 } 9358 9359 /// parseDirectiveReq 9360 /// ::= name .req registername 9361 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9362 MCAsmParser &Parser = getParser(); 9363 Parser.Lex(); // Eat the '.req' token. 9364 unsigned Reg; 9365 SMLoc SRegLoc, ERegLoc; 9366 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9367 "register name expected") || 9368 parseToken(AsmToken::EndOfStatement, 9369 "unexpected input in .req directive.")) 9370 return true; 9371 9372 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9373 return Error(SRegLoc, 9374 "redefinition of '" + Name + "' does not match original."); 9375 9376 return false; 9377 } 9378 9379 /// parseDirectiveUneq 9380 /// ::= .unreq registername 9381 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9382 MCAsmParser &Parser = getParser(); 9383 if (Parser.getTok().isNot(AsmToken::Identifier)) 9384 return Error(L, "unexpected input in .unreq directive."); 9385 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9386 Parser.Lex(); // Eat the identifier. 9387 if (parseToken(AsmToken::EndOfStatement, 9388 "unexpected input in '.unreq' directive")) 9389 return true; 9390 return false; 9391 } 9392 9393 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9394 // before, if supported by the new target, or emit mapping symbols for the mode 9395 // switch. 9396 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9397 if (WasThumb != isThumb()) { 9398 if (WasThumb && hasThumb()) { 9399 // Stay in Thumb mode 9400 SwitchMode(); 9401 } else if (!WasThumb && hasARM()) { 9402 // Stay in ARM mode 9403 SwitchMode(); 9404 } else { 9405 // Mode switch forced, because the new arch doesn't support the old mode. 9406 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9407 : MCAF_Code32); 9408 // Warn about the implcit mode switch. GAS does not switch modes here, 9409 // but instead stays in the old mode, reporting an error on any following 9410 // instructions as the mode does not exist on the target. 9411 Warning(Loc, Twine("new target does not support ") + 9412 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9413 (!WasThumb ? "thumb" : "arm") + " mode"); 9414 } 9415 } 9416 } 9417 9418 /// parseDirectiveArch 9419 /// ::= .arch token 9420 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9421 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9422 ARM::ArchKind ID = ARM::parseArch(Arch); 9423 9424 if (ID == ARM::ArchKind::INVALID) 9425 return Error(L, "Unknown arch name"); 9426 9427 bool WasThumb = isThumb(); 9428 Triple T; 9429 MCSubtargetInfo &STI = copySTI(); 9430 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9431 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9432 FixModeAfterArchChange(WasThumb, L); 9433 9434 getTargetStreamer().emitArch(ID); 9435 return false; 9436 } 9437 9438 /// parseDirectiveEabiAttr 9439 /// ::= .eabi_attribute int, int [, "str"] 9440 /// ::= .eabi_attribute Tag_name, int [, "str"] 9441 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9442 MCAsmParser &Parser = getParser(); 9443 int64_t Tag; 9444 SMLoc TagLoc; 9445 TagLoc = Parser.getTok().getLoc(); 9446 if (Parser.getTok().is(AsmToken::Identifier)) { 9447 StringRef Name = Parser.getTok().getIdentifier(); 9448 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9449 if (Tag == -1) { 9450 Error(TagLoc, "attribute name not recognised: " + Name); 9451 return false; 9452 } 9453 Parser.Lex(); 9454 } else { 9455 const MCExpr *AttrExpr; 9456 9457 TagLoc = Parser.getTok().getLoc(); 9458 if (Parser.parseExpression(AttrExpr)) 9459 return true; 9460 9461 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9462 if (check(!CE, TagLoc, "expected numeric constant")) 9463 return true; 9464 9465 Tag = CE->getValue(); 9466 } 9467 9468 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9469 return true; 9470 9471 StringRef StringValue = ""; 9472 bool IsStringValue = false; 9473 9474 int64_t IntegerValue = 0; 9475 bool IsIntegerValue = false; 9476 9477 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9478 IsStringValue = true; 9479 else if (Tag == ARMBuildAttrs::compatibility) { 9480 IsStringValue = true; 9481 IsIntegerValue = true; 9482 } else if (Tag < 32 || Tag % 2 == 0) 9483 IsIntegerValue = true; 9484 else if (Tag % 2 == 1) 9485 IsStringValue = true; 9486 else 9487 llvm_unreachable("invalid tag type"); 9488 9489 if (IsIntegerValue) { 9490 const MCExpr *ValueExpr; 9491 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9492 if (Parser.parseExpression(ValueExpr)) 9493 return true; 9494 9495 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9496 if (!CE) 9497 return Error(ValueExprLoc, "expected numeric constant"); 9498 IntegerValue = CE->getValue(); 9499 } 9500 9501 if (Tag == ARMBuildAttrs::compatibility) { 9502 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9503 return true; 9504 } 9505 9506 if (IsStringValue) { 9507 if (Parser.getTok().isNot(AsmToken::String)) 9508 return Error(Parser.getTok().getLoc(), "bad string constant"); 9509 9510 StringValue = Parser.getTok().getStringContents(); 9511 Parser.Lex(); 9512 } 9513 9514 if (Parser.parseToken(AsmToken::EndOfStatement, 9515 "unexpected token in '.eabi_attribute' directive")) 9516 return true; 9517 9518 if (IsIntegerValue && IsStringValue) { 9519 assert(Tag == ARMBuildAttrs::compatibility); 9520 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9521 } else if (IsIntegerValue) 9522 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9523 else if (IsStringValue) 9524 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9525 return false; 9526 } 9527 9528 /// parseDirectiveCPU 9529 /// ::= .cpu str 9530 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9531 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9532 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9533 9534 // FIXME: This is using table-gen data, but should be moved to 9535 // ARMTargetParser once that is table-gen'd. 9536 if (!getSTI().isCPUStringValid(CPU)) 9537 return Error(L, "Unknown CPU name"); 9538 9539 bool WasThumb = isThumb(); 9540 MCSubtargetInfo &STI = copySTI(); 9541 STI.setDefaultFeatures(CPU, ""); 9542 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9543 FixModeAfterArchChange(WasThumb, L); 9544 9545 return false; 9546 } 9547 /// parseDirectiveFPU 9548 /// ::= .fpu str 9549 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9550 SMLoc FPUNameLoc = getTok().getLoc(); 9551 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9552 9553 unsigned ID = ARM::parseFPU(FPU); 9554 std::vector<StringRef> Features; 9555 if (!ARM::getFPUFeatures(ID, Features)) 9556 return Error(FPUNameLoc, "Unknown FPU name"); 9557 9558 MCSubtargetInfo &STI = copySTI(); 9559 for (auto Feature : Features) 9560 STI.ApplyFeatureFlag(Feature); 9561 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9562 9563 getTargetStreamer().emitFPU(ID); 9564 return false; 9565 } 9566 9567 /// parseDirectiveFnStart 9568 /// ::= .fnstart 9569 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9570 if (parseToken(AsmToken::EndOfStatement, 9571 "unexpected token in '.fnstart' directive")) 9572 return true; 9573 9574 if (UC.hasFnStart()) { 9575 Error(L, ".fnstart starts before the end of previous one"); 9576 UC.emitFnStartLocNotes(); 9577 return true; 9578 } 9579 9580 // Reset the unwind directives parser state 9581 UC.reset(); 9582 9583 getTargetStreamer().emitFnStart(); 9584 9585 UC.recordFnStart(L); 9586 return false; 9587 } 9588 9589 /// parseDirectiveFnEnd 9590 /// ::= .fnend 9591 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9592 if (parseToken(AsmToken::EndOfStatement, 9593 "unexpected token in '.fnend' directive")) 9594 return true; 9595 // Check the ordering of unwind directives 9596 if (!UC.hasFnStart()) 9597 return Error(L, ".fnstart must precede .fnend directive"); 9598 9599 // Reset the unwind directives parser state 9600 getTargetStreamer().emitFnEnd(); 9601 9602 UC.reset(); 9603 return false; 9604 } 9605 9606 /// parseDirectiveCantUnwind 9607 /// ::= .cantunwind 9608 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9609 if (parseToken(AsmToken::EndOfStatement, 9610 "unexpected token in '.cantunwind' directive")) 9611 return true; 9612 9613 UC.recordCantUnwind(L); 9614 // Check the ordering of unwind directives 9615 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9616 return true; 9617 9618 if (UC.hasHandlerData()) { 9619 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9620 UC.emitHandlerDataLocNotes(); 9621 return true; 9622 } 9623 if (UC.hasPersonality()) { 9624 Error(L, ".cantunwind can't be used with .personality directive"); 9625 UC.emitPersonalityLocNotes(); 9626 return true; 9627 } 9628 9629 getTargetStreamer().emitCantUnwind(); 9630 return false; 9631 } 9632 9633 /// parseDirectivePersonality 9634 /// ::= .personality name 9635 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9636 MCAsmParser &Parser = getParser(); 9637 bool HasExistingPersonality = UC.hasPersonality(); 9638 9639 // Parse the name of the personality routine 9640 if (Parser.getTok().isNot(AsmToken::Identifier)) 9641 return Error(L, "unexpected input in .personality directive."); 9642 StringRef Name(Parser.getTok().getIdentifier()); 9643 Parser.Lex(); 9644 9645 if (parseToken(AsmToken::EndOfStatement, 9646 "unexpected token in '.personality' directive")) 9647 return true; 9648 9649 UC.recordPersonality(L); 9650 9651 // Check the ordering of unwind directives 9652 if (!UC.hasFnStart()) 9653 return Error(L, ".fnstart must precede .personality directive"); 9654 if (UC.cantUnwind()) { 9655 Error(L, ".personality can't be used with .cantunwind directive"); 9656 UC.emitCantUnwindLocNotes(); 9657 return true; 9658 } 9659 if (UC.hasHandlerData()) { 9660 Error(L, ".personality must precede .handlerdata directive"); 9661 UC.emitHandlerDataLocNotes(); 9662 return true; 9663 } 9664 if (HasExistingPersonality) { 9665 Error(L, "multiple personality directives"); 9666 UC.emitPersonalityLocNotes(); 9667 return true; 9668 } 9669 9670 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9671 getTargetStreamer().emitPersonality(PR); 9672 return false; 9673 } 9674 9675 /// parseDirectiveHandlerData 9676 /// ::= .handlerdata 9677 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9678 if (parseToken(AsmToken::EndOfStatement, 9679 "unexpected token in '.handlerdata' directive")) 9680 return true; 9681 9682 UC.recordHandlerData(L); 9683 // Check the ordering of unwind directives 9684 if (!UC.hasFnStart()) 9685 return Error(L, ".fnstart must precede .personality directive"); 9686 if (UC.cantUnwind()) { 9687 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9688 UC.emitCantUnwindLocNotes(); 9689 return true; 9690 } 9691 9692 getTargetStreamer().emitHandlerData(); 9693 return false; 9694 } 9695 9696 /// parseDirectiveSetFP 9697 /// ::= .setfp fpreg, spreg [, offset] 9698 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9699 MCAsmParser &Parser = getParser(); 9700 // Check the ordering of unwind directives 9701 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9702 check(UC.hasHandlerData(), L, 9703 ".setfp must precede .handlerdata directive")) 9704 return true; 9705 9706 // Parse fpreg 9707 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9708 int FPReg = tryParseRegister(); 9709 9710 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9711 Parser.parseToken(AsmToken::Comma, "comma expected")) 9712 return true; 9713 9714 // Parse spreg 9715 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9716 int SPReg = tryParseRegister(); 9717 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9718 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9719 "register should be either $sp or the latest fp register")) 9720 return true; 9721 9722 // Update the frame pointer register 9723 UC.saveFPReg(FPReg); 9724 9725 // Parse offset 9726 int64_t Offset = 0; 9727 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9728 if (Parser.getTok().isNot(AsmToken::Hash) && 9729 Parser.getTok().isNot(AsmToken::Dollar)) 9730 return Error(Parser.getTok().getLoc(), "'#' expected"); 9731 Parser.Lex(); // skip hash token. 9732 9733 const MCExpr *OffsetExpr; 9734 SMLoc ExLoc = Parser.getTok().getLoc(); 9735 SMLoc EndLoc; 9736 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9737 return Error(ExLoc, "malformed setfp offset"); 9738 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9739 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9740 return true; 9741 Offset = CE->getValue(); 9742 } 9743 9744 if (Parser.parseToken(AsmToken::EndOfStatement)) 9745 return true; 9746 9747 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9748 static_cast<unsigned>(SPReg), Offset); 9749 return false; 9750 } 9751 9752 /// parseDirective 9753 /// ::= .pad offset 9754 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9755 MCAsmParser &Parser = getParser(); 9756 // Check the ordering of unwind directives 9757 if (!UC.hasFnStart()) 9758 return Error(L, ".fnstart must precede .pad directive"); 9759 if (UC.hasHandlerData()) 9760 return Error(L, ".pad must precede .handlerdata directive"); 9761 9762 // Parse the offset 9763 if (Parser.getTok().isNot(AsmToken::Hash) && 9764 Parser.getTok().isNot(AsmToken::Dollar)) 9765 return Error(Parser.getTok().getLoc(), "'#' expected"); 9766 Parser.Lex(); // skip hash token. 9767 9768 const MCExpr *OffsetExpr; 9769 SMLoc ExLoc = Parser.getTok().getLoc(); 9770 SMLoc EndLoc; 9771 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9772 return Error(ExLoc, "malformed pad offset"); 9773 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9774 if (!CE) 9775 return Error(ExLoc, "pad offset must be an immediate"); 9776 9777 if (parseToken(AsmToken::EndOfStatement, 9778 "unexpected token in '.pad' directive")) 9779 return true; 9780 9781 getTargetStreamer().emitPad(CE->getValue()); 9782 return false; 9783 } 9784 9785 /// parseDirectiveRegSave 9786 /// ::= .save { registers } 9787 /// ::= .vsave { registers } 9788 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9789 // Check the ordering of unwind directives 9790 if (!UC.hasFnStart()) 9791 return Error(L, ".fnstart must precede .save or .vsave directives"); 9792 if (UC.hasHandlerData()) 9793 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9794 9795 // RAII object to make sure parsed operands are deleted. 9796 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9797 9798 // Parse the register list 9799 if (parseRegisterList(Operands) || 9800 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9801 return true; 9802 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9803 if (!IsVector && !Op.isRegList()) 9804 return Error(L, ".save expects GPR registers"); 9805 if (IsVector && !Op.isDPRRegList()) 9806 return Error(L, ".vsave expects DPR registers"); 9807 9808 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9809 return false; 9810 } 9811 9812 /// parseDirectiveInst 9813 /// ::= .inst opcode [, ...] 9814 /// ::= .inst.n opcode [, ...] 9815 /// ::= .inst.w opcode [, ...] 9816 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9817 int Width = 4; 9818 9819 if (isThumb()) { 9820 switch (Suffix) { 9821 case 'n': 9822 Width = 2; 9823 break; 9824 case 'w': 9825 break; 9826 default: 9827 return Error(Loc, "cannot determine Thumb instruction size, " 9828 "use inst.n/inst.w instead"); 9829 } 9830 } else { 9831 if (Suffix) 9832 return Error(Loc, "width suffixes are invalid in ARM mode"); 9833 } 9834 9835 auto parseOne = [&]() -> bool { 9836 const MCExpr *Expr; 9837 if (getParser().parseExpression(Expr)) 9838 return true; 9839 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9840 if (!Value) { 9841 return Error(Loc, "expected constant expression"); 9842 } 9843 9844 switch (Width) { 9845 case 2: 9846 if (Value->getValue() > 0xffff) 9847 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 9848 break; 9849 case 4: 9850 if (Value->getValue() > 0xffffffff) 9851 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 9852 " operand is too big"); 9853 break; 9854 default: 9855 llvm_unreachable("only supported widths are 2 and 4"); 9856 } 9857 9858 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9859 return false; 9860 }; 9861 9862 if (parseOptionalToken(AsmToken::EndOfStatement)) 9863 return Error(Loc, "expected expression following directive"); 9864 if (parseMany(parseOne)) 9865 return true; 9866 return false; 9867 } 9868 9869 /// parseDirectiveLtorg 9870 /// ::= .ltorg | .pool 9871 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9872 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9873 return true; 9874 getTargetStreamer().emitCurrentConstantPool(); 9875 return false; 9876 } 9877 9878 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9879 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 9880 9881 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9882 return true; 9883 9884 if (!Section) { 9885 getStreamer().InitSections(false); 9886 Section = getStreamer().getCurrentSectionOnly(); 9887 } 9888 9889 assert(Section && "must have section to emit alignment"); 9890 if (Section->UseCodeAlign()) 9891 getStreamer().EmitCodeAlignment(2); 9892 else 9893 getStreamer().EmitValueToAlignment(2); 9894 9895 return false; 9896 } 9897 9898 /// parseDirectivePersonalityIndex 9899 /// ::= .personalityindex index 9900 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9901 MCAsmParser &Parser = getParser(); 9902 bool HasExistingPersonality = UC.hasPersonality(); 9903 9904 const MCExpr *IndexExpression; 9905 SMLoc IndexLoc = Parser.getTok().getLoc(); 9906 if (Parser.parseExpression(IndexExpression) || 9907 parseToken(AsmToken::EndOfStatement, 9908 "unexpected token in '.personalityindex' directive")) { 9909 return true; 9910 } 9911 9912 UC.recordPersonalityIndex(L); 9913 9914 if (!UC.hasFnStart()) { 9915 return Error(L, ".fnstart must precede .personalityindex directive"); 9916 } 9917 if (UC.cantUnwind()) { 9918 Error(L, ".personalityindex cannot be used with .cantunwind"); 9919 UC.emitCantUnwindLocNotes(); 9920 return true; 9921 } 9922 if (UC.hasHandlerData()) { 9923 Error(L, ".personalityindex must precede .handlerdata directive"); 9924 UC.emitHandlerDataLocNotes(); 9925 return true; 9926 } 9927 if (HasExistingPersonality) { 9928 Error(L, "multiple personality directives"); 9929 UC.emitPersonalityLocNotes(); 9930 return true; 9931 } 9932 9933 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9934 if (!CE) 9935 return Error(IndexLoc, "index must be a constant number"); 9936 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 9937 return Error(IndexLoc, 9938 "personality routine index should be in range [0-3]"); 9939 9940 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9941 return false; 9942 } 9943 9944 /// parseDirectiveUnwindRaw 9945 /// ::= .unwind_raw offset, opcode [, opcode...] 9946 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9947 MCAsmParser &Parser = getParser(); 9948 int64_t StackOffset; 9949 const MCExpr *OffsetExpr; 9950 SMLoc OffsetLoc = getLexer().getLoc(); 9951 9952 if (!UC.hasFnStart()) 9953 return Error(L, ".fnstart must precede .unwind_raw directives"); 9954 if (getParser().parseExpression(OffsetExpr)) 9955 return Error(OffsetLoc, "expected expression"); 9956 9957 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9958 if (!CE) 9959 return Error(OffsetLoc, "offset must be a constant"); 9960 9961 StackOffset = CE->getValue(); 9962 9963 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 9964 return true; 9965 9966 SmallVector<uint8_t, 16> Opcodes; 9967 9968 auto parseOne = [&]() -> bool { 9969 const MCExpr *OE; 9970 SMLoc OpcodeLoc = getLexer().getLoc(); 9971 if (check(getLexer().is(AsmToken::EndOfStatement) || 9972 Parser.parseExpression(OE), 9973 OpcodeLoc, "expected opcode expression")) 9974 return true; 9975 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9976 if (!OC) 9977 return Error(OpcodeLoc, "opcode value must be a constant"); 9978 const int64_t Opcode = OC->getValue(); 9979 if (Opcode & ~0xff) 9980 return Error(OpcodeLoc, "invalid opcode"); 9981 Opcodes.push_back(uint8_t(Opcode)); 9982 return false; 9983 }; 9984 9985 // Must have at least 1 element 9986 SMLoc OpcodeLoc = getLexer().getLoc(); 9987 if (parseOptionalToken(AsmToken::EndOfStatement)) 9988 return Error(OpcodeLoc, "expected opcode expression"); 9989 if (parseMany(parseOne)) 9990 return true; 9991 9992 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9993 return false; 9994 } 9995 9996 /// parseDirectiveTLSDescSeq 9997 /// ::= .tlsdescseq tls-variable 9998 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9999 MCAsmParser &Parser = getParser(); 10000 10001 if (getLexer().isNot(AsmToken::Identifier)) 10002 return TokError("expected variable after '.tlsdescseq' directive"); 10003 10004 const MCSymbolRefExpr *SRE = 10005 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10006 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10007 Lex(); 10008 10009 if (parseToken(AsmToken::EndOfStatement, 10010 "unexpected token in '.tlsdescseq' directive")) 10011 return true; 10012 10013 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10014 return false; 10015 } 10016 10017 /// parseDirectiveMovSP 10018 /// ::= .movsp reg [, #offset] 10019 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10020 MCAsmParser &Parser = getParser(); 10021 if (!UC.hasFnStart()) 10022 return Error(L, ".fnstart must precede .movsp directives"); 10023 if (UC.getFPReg() != ARM::SP) 10024 return Error(L, "unexpected .movsp directive"); 10025 10026 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10027 int SPReg = tryParseRegister(); 10028 if (SPReg == -1) 10029 return Error(SPRegLoc, "register expected"); 10030 if (SPReg == ARM::SP || SPReg == ARM::PC) 10031 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10032 10033 int64_t Offset = 0; 10034 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10035 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10036 return true; 10037 10038 const MCExpr *OffsetExpr; 10039 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10040 10041 if (Parser.parseExpression(OffsetExpr)) 10042 return Error(OffsetLoc, "malformed offset expression"); 10043 10044 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10045 if (!CE) 10046 return Error(OffsetLoc, "offset must be an immediate constant"); 10047 10048 Offset = CE->getValue(); 10049 } 10050 10051 if (parseToken(AsmToken::EndOfStatement, 10052 "unexpected token in '.movsp' directive")) 10053 return true; 10054 10055 getTargetStreamer().emitMovSP(SPReg, Offset); 10056 UC.saveFPReg(SPReg); 10057 10058 return false; 10059 } 10060 10061 /// parseDirectiveObjectArch 10062 /// ::= .object_arch name 10063 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10064 MCAsmParser &Parser = getParser(); 10065 if (getLexer().isNot(AsmToken::Identifier)) 10066 return Error(getLexer().getLoc(), "unexpected token"); 10067 10068 StringRef Arch = Parser.getTok().getString(); 10069 SMLoc ArchLoc = Parser.getTok().getLoc(); 10070 Lex(); 10071 10072 ARM::ArchKind ID = ARM::parseArch(Arch); 10073 10074 if (ID == ARM::ArchKind::INVALID) 10075 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10076 if (parseToken(AsmToken::EndOfStatement)) 10077 return true; 10078 10079 getTargetStreamer().emitObjectArch(ID); 10080 return false; 10081 } 10082 10083 /// parseDirectiveAlign 10084 /// ::= .align 10085 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10086 // NOTE: if this is not the end of the statement, fall back to the target 10087 // agnostic handling for this directive which will correctly handle this. 10088 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10089 // '.align' is target specifically handled to mean 2**2 byte alignment. 10090 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10091 assert(Section && "must have section to emit alignment"); 10092 if (Section->UseCodeAlign()) 10093 getStreamer().EmitCodeAlignment(4, 0); 10094 else 10095 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10096 return false; 10097 } 10098 return true; 10099 } 10100 10101 /// parseDirectiveThumbSet 10102 /// ::= .thumb_set name, value 10103 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10104 MCAsmParser &Parser = getParser(); 10105 10106 StringRef Name; 10107 if (check(Parser.parseIdentifier(Name), 10108 "expected identifier after '.thumb_set'") || 10109 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10110 return true; 10111 10112 MCSymbol *Sym; 10113 const MCExpr *Value; 10114 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10115 Parser, Sym, Value)) 10116 return true; 10117 10118 getTargetStreamer().emitThumbSet(Sym, Value); 10119 return false; 10120 } 10121 10122 /// Force static initialization. 10123 extern "C" void LLVMInitializeARMAsmParser() { 10124 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10125 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10126 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10127 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10128 } 10129 10130 #define GET_REGISTER_MATCHER 10131 #define GET_SUBTARGET_FEATURE_NAME 10132 #define GET_MATCHER_IMPLEMENTATION 10133 #include "ARMGenAsmMatcher.inc" 10134 10135 // FIXME: This structure should be moved inside ARMTargetParser 10136 // when we start to table-generate them, and we can use the ARM 10137 // flags below, that were generated by table-gen. 10138 static const struct { 10139 const unsigned Kind; 10140 const uint64_t ArchCheck; 10141 const FeatureBitset Features; 10142 } Extensions[] = { 10143 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10144 { ARM::AEK_CRYPTO, Feature_HasV8, 10145 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10146 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10147 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10148 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10149 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10150 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10151 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10152 // FIXME: Only available in A-class, isel not predicated 10153 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10154 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10155 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10156 // FIXME: Unsupported extensions. 10157 { ARM::AEK_OS, Feature_None, {} }, 10158 { ARM::AEK_IWMMXT, Feature_None, {} }, 10159 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10160 { ARM::AEK_MAVERICK, Feature_None, {} }, 10161 { ARM::AEK_XSCALE, Feature_None, {} }, 10162 }; 10163 10164 /// parseDirectiveArchExtension 10165 /// ::= .arch_extension [no]feature 10166 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10167 MCAsmParser &Parser = getParser(); 10168 10169 if (getLexer().isNot(AsmToken::Identifier)) 10170 return Error(getLexer().getLoc(), "expected architecture extension name"); 10171 10172 StringRef Name = Parser.getTok().getString(); 10173 SMLoc ExtLoc = Parser.getTok().getLoc(); 10174 Lex(); 10175 10176 if (parseToken(AsmToken::EndOfStatement, 10177 "unexpected token in '.arch_extension' directive")) 10178 return true; 10179 10180 bool EnableFeature = true; 10181 if (Name.startswith_lower("no")) { 10182 EnableFeature = false; 10183 Name = Name.substr(2); 10184 } 10185 unsigned FeatureKind = ARM::parseArchExt(Name); 10186 if (FeatureKind == ARM::AEK_INVALID) 10187 return Error(ExtLoc, "unknown architectural extension: " + Name); 10188 10189 for (const auto &Extension : Extensions) { 10190 if (Extension.Kind != FeatureKind) 10191 continue; 10192 10193 if (Extension.Features.none()) 10194 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10195 10196 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10197 return Error(ExtLoc, "architectural extension '" + Name + 10198 "' is not " 10199 "allowed for the current base architecture"); 10200 10201 MCSubtargetInfo &STI = copySTI(); 10202 FeatureBitset ToggleFeatures = EnableFeature 10203 ? (~STI.getFeatureBits() & Extension.Features) 10204 : ( STI.getFeatureBits() & Extension.Features); 10205 10206 uint64_t Features = 10207 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10208 setAvailableFeatures(Features); 10209 return false; 10210 } 10211 10212 return Error(ExtLoc, "unknown architectural extension: " + Name); 10213 } 10214 10215 // Define this matcher function after the auto-generated include so we 10216 // have the match class enum definitions. 10217 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10218 unsigned Kind) { 10219 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10220 // If the kind is a token for a literal immediate, check if our asm 10221 // operand matches. This is for InstAliases which have a fixed-value 10222 // immediate in the syntax. 10223 switch (Kind) { 10224 default: break; 10225 case MCK__35_0: 10226 if (Op.isImm()) 10227 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10228 if (CE->getValue() == 0) 10229 return Match_Success; 10230 break; 10231 case MCK_ModImm: 10232 if (Op.isImm()) { 10233 const MCExpr *SOExpr = Op.getImm(); 10234 int64_t Value; 10235 if (!SOExpr->evaluateAsAbsolute(Value)) 10236 return Match_Success; 10237 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10238 "expression value must be representable in 32 bits"); 10239 } 10240 break; 10241 case MCK_rGPR: 10242 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10243 return Match_Success; 10244 break; 10245 case MCK_GPRPair: 10246 if (Op.isReg() && 10247 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10248 return Match_Success; 10249 break; 10250 } 10251 return Match_InvalidOperand; 10252 } 10253