1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/MC/MCAsmInfo.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDisassembler.h" 23 #include "llvm/MC/MCELFStreamer.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCInst.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCObjectFileInfo.h" 29 #include "llvm/MC/MCParser/MCAsmLexer.h" 30 #include "llvm/MC/MCParser/MCAsmParser.h" 31 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 32 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/MC/MCSection.h" 35 #include "llvm/MC/MCStreamer.h" 36 #include "llvm/MC/MCSubtargetInfo.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/MC/MCTargetAsmParser.h" 39 #include "llvm/Support/ARMBuildAttributes.h" 40 #include "llvm/Support/ARMEHABI.h" 41 #include "llvm/Support/TargetParser.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ELF.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/raw_ostream.h" 49 50 using namespace llvm; 51 52 namespace { 53 54 class ARMOperand; 55 56 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 57 58 class UnwindContext { 59 MCAsmParser &Parser; 60 61 typedef SmallVector<SMLoc, 4> Locs; 62 63 Locs FnStartLocs; 64 Locs CantUnwindLocs; 65 Locs PersonalityLocs; 66 Locs PersonalityIndexLocs; 67 Locs HandlerDataLocs; 68 int FPReg; 69 70 public: 71 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 72 73 bool hasFnStart() const { return !FnStartLocs.empty(); } 74 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 75 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 76 bool hasPersonality() const { 77 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 78 } 79 80 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 81 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 82 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 83 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 84 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 85 86 void saveFPReg(int Reg) { FPReg = Reg; } 87 int getFPReg() const { return FPReg; } 88 89 void emitFnStartLocNotes() const { 90 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 91 FI != FE; ++FI) 92 Parser.Note(*FI, ".fnstart was specified here"); 93 } 94 void emitCantUnwindLocNotes() const { 95 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 96 UE = CantUnwindLocs.end(); UI != UE; ++UI) 97 Parser.Note(*UI, ".cantunwind was specified here"); 98 } 99 void emitHandlerDataLocNotes() const { 100 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 101 HE = HandlerDataLocs.end(); HI != HE; ++HI) 102 Parser.Note(*HI, ".handlerdata was specified here"); 103 } 104 void emitPersonalityLocNotes() const { 105 for (Locs::const_iterator PI = PersonalityLocs.begin(), 106 PE = PersonalityLocs.end(), 107 PII = PersonalityIndexLocs.begin(), 108 PIE = PersonalityIndexLocs.end(); 109 PI != PE || PII != PIE;) { 110 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 111 Parser.Note(*PI++, ".personality was specified here"); 112 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 113 Parser.Note(*PII++, ".personalityindex was specified here"); 114 else 115 llvm_unreachable(".personality and .personalityindex cannot be " 116 "at the same location"); 117 } 118 } 119 120 void reset() { 121 FnStartLocs = Locs(); 122 CantUnwindLocs = Locs(); 123 PersonalityLocs = Locs(); 124 HandlerDataLocs = Locs(); 125 PersonalityIndexLocs = Locs(); 126 FPReg = ARM::SP; 127 } 128 }; 129 130 class ARMAsmParser : public MCTargetAsmParser { 131 MCSubtargetInfo &STI; 132 const MCInstrInfo &MII; 133 const MCRegisterInfo *MRI; 134 UnwindContext UC; 135 136 ARMTargetStreamer &getTargetStreamer() { 137 assert(getParser().getStreamer().getTargetStreamer() && 138 "do not have a target streamer"); 139 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 140 return static_cast<ARMTargetStreamer &>(TS); 141 } 142 143 // Map of register aliases registers via the .req directive. 144 StringMap<unsigned> RegisterReqs; 145 146 bool NextSymbolIsThumb; 147 148 struct { 149 ARMCC::CondCodes Cond; // Condition for IT block. 150 unsigned Mask:4; // Condition mask for instructions. 151 // Starting at first 1 (from lsb). 152 // '1' condition as indicated in IT. 153 // '0' inverse of condition (else). 154 // Count of instructions in IT block is 155 // 4 - trailingzeroes(mask) 156 157 bool FirstCond; // Explicit flag for when we're parsing the 158 // First instruction in the IT block. It's 159 // implied in the mask, so needs special 160 // handling. 161 162 unsigned CurPosition; // Current position in parsing of IT 163 // block. In range [0,3]. Initialized 164 // according to count of instructions in block. 165 // ~0U if no active IT block. 166 } ITState; 167 bool inITBlock() { return ITState.CurPosition != ~0U; } 168 bool lastInITBlock() { 169 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 170 } 171 void forwardITPosition() { 172 if (!inITBlock()) return; 173 // Move to the next instruction in the IT block, if there is one. If not, 174 // mark the block as done. 175 unsigned TZ = countTrailingZeros(ITState.Mask); 176 if (++ITState.CurPosition == 5 - TZ) 177 ITState.CurPosition = ~0U; // Done with the IT block after this. 178 } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return getParser().Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return getParser().Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return getParser().Error(L, Msg, Ranges); 190 } 191 192 bool validatetLDMRegList(MCInst Inst, const OperandVector &Operands, 193 unsigned ListNo, bool IsARPop = false); 194 bool validatetSTMRegList(MCInst Inst, const OperandVector &Operands, 195 unsigned ListNo); 196 197 int tryParseRegister(); 198 bool tryParseRegisterWithWriteBack(OperandVector &); 199 int tryParseShiftRegister(OperandVector &); 200 bool parseRegisterList(OperandVector &); 201 bool parseMemory(OperandVector &); 202 bool parseOperand(OperandVector &, StringRef Mnemonic); 203 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 204 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 205 unsigned &ShiftAmount); 206 bool parseLiteralValues(unsigned Size, SMLoc L); 207 bool parseDirectiveThumb(SMLoc L); 208 bool parseDirectiveARM(SMLoc L); 209 bool parseDirectiveThumbFunc(SMLoc L); 210 bool parseDirectiveCode(SMLoc L); 211 bool parseDirectiveSyntax(SMLoc L); 212 bool parseDirectiveReq(StringRef Name, SMLoc L); 213 bool parseDirectiveUnreq(SMLoc L); 214 bool parseDirectiveArch(SMLoc L); 215 bool parseDirectiveEabiAttr(SMLoc L); 216 bool parseDirectiveCPU(SMLoc L); 217 bool parseDirectiveFPU(SMLoc L); 218 bool parseDirectiveFnStart(SMLoc L); 219 bool parseDirectiveFnEnd(SMLoc L); 220 bool parseDirectiveCantUnwind(SMLoc L); 221 bool parseDirectivePersonality(SMLoc L); 222 bool parseDirectiveHandlerData(SMLoc L); 223 bool parseDirectiveSetFP(SMLoc L); 224 bool parseDirectivePad(SMLoc L); 225 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 226 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 227 bool parseDirectiveLtorg(SMLoc L); 228 bool parseDirectiveEven(SMLoc L); 229 bool parseDirectivePersonalityIndex(SMLoc L); 230 bool parseDirectiveUnwindRaw(SMLoc L); 231 bool parseDirectiveTLSDescSeq(SMLoc L); 232 bool parseDirectiveMovSP(SMLoc L); 233 bool parseDirectiveObjectArch(SMLoc L); 234 bool parseDirectiveArchExtension(SMLoc L); 235 bool parseDirectiveAlign(SMLoc L); 236 bool parseDirectiveThumbSet(SMLoc L); 237 238 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 239 bool &CarrySetting, unsigned &ProcessorIMod, 240 StringRef &ITMask); 241 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 242 bool &CanAcceptCarrySet, 243 bool &CanAcceptPredicationCode); 244 245 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 246 OperandVector &Operands); 247 bool isThumb() const { 248 // FIXME: Can tablegen auto-generate this? 249 return STI.getFeatureBits()[ARM::ModeThumb]; 250 } 251 bool isThumbOne() const { 252 return isThumb() && !STI.getFeatureBits()[ARM::FeatureThumb2]; 253 } 254 bool isThumbTwo() const { 255 return isThumb() && STI.getFeatureBits()[ARM::FeatureThumb2]; 256 } 257 bool hasThumb() const { 258 return STI.getFeatureBits()[ARM::HasV4TOps]; 259 } 260 bool hasV6Ops() const { 261 return STI.getFeatureBits()[ARM::HasV6Ops]; 262 } 263 bool hasV6MOps() const { 264 return STI.getFeatureBits()[ARM::HasV6MOps]; 265 } 266 bool hasV7Ops() const { 267 return STI.getFeatureBits()[ARM::HasV7Ops]; 268 } 269 bool hasV8Ops() const { 270 return STI.getFeatureBits()[ARM::HasV8Ops]; 271 } 272 bool hasARM() const { 273 return !STI.getFeatureBits()[ARM::FeatureNoARM]; 274 } 275 bool hasThumb2DSP() const { 276 return STI.getFeatureBits()[ARM::FeatureDSPThumb2]; 277 } 278 bool hasD16() const { 279 return STI.getFeatureBits()[ARM::FeatureD16]; 280 } 281 bool hasV8_1aOps() const { 282 return STI.getFeatureBits()[ARM::HasV8_1aOps]; 283 } 284 285 void SwitchMode() { 286 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 287 setAvailableFeatures(FB); 288 } 289 bool isMClass() const { 290 return STI.getFeatureBits()[ARM::FeatureMClass]; 291 } 292 293 /// @name Auto-generated Match Functions 294 /// { 295 296 #define GET_ASSEMBLER_HEADER 297 #include "ARMGenAsmMatcher.inc" 298 299 /// } 300 301 OperandMatchResultTy parseITCondCode(OperandVector &); 302 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 303 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 304 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 305 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 306 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 307 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 308 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 309 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 310 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 311 int High); 312 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 313 return parsePKHImm(O, "lsl", 0, 31); 314 } 315 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 316 return parsePKHImm(O, "asr", 1, 32); 317 } 318 OperandMatchResultTy parseSetEndImm(OperandVector &); 319 OperandMatchResultTy parseShifterImm(OperandVector &); 320 OperandMatchResultTy parseRotImm(OperandVector &); 321 OperandMatchResultTy parseModImm(OperandVector &); 322 OperandMatchResultTy parseBitfield(OperandVector &); 323 OperandMatchResultTy parsePostIdxReg(OperandVector &); 324 OperandMatchResultTy parseAM3Offset(OperandVector &); 325 OperandMatchResultTy parseFPImm(OperandVector &); 326 OperandMatchResultTy parseVectorList(OperandVector &); 327 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 328 SMLoc &EndLoc); 329 330 // Asm Match Converter Methods 331 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 332 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 333 334 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 335 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 336 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 337 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 338 339 public: 340 enum ARMMatchResultTy { 341 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 342 Match_RequiresNotITBlock, 343 Match_RequiresV6, 344 Match_RequiresThumb2, 345 #define GET_OPERAND_DIAGNOSTIC_TYPES 346 #include "ARMGenAsmMatcher.inc" 347 348 }; 349 350 ARMAsmParser(MCSubtargetInfo &STI, MCAsmParser &Parser, 351 const MCInstrInfo &MII, const MCTargetOptions &Options) 352 : STI(STI), MII(MII), UC(Parser) { 353 MCAsmParserExtension::Initialize(Parser); 354 355 // Cache the MCRegisterInfo. 356 MRI = getContext().getRegisterInfo(); 357 358 // Initialize the set of available features. 359 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 360 361 // Not in an ITBlock to start with. 362 ITState.CurPosition = ~0U; 363 364 NextSymbolIsThumb = false; 365 } 366 367 // Implementation of the MCTargetAsmParser interface: 368 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 369 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 370 SMLoc NameLoc, OperandVector &Operands) override; 371 bool ParseDirective(AsmToken DirectiveID) override; 372 373 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 374 unsigned Kind) override; 375 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 376 377 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 378 OperandVector &Operands, MCStreamer &Out, 379 uint64_t &ErrorInfo, 380 bool MatchingInlineAsm) override; 381 void onLabelParsed(MCSymbol *Symbol) override; 382 }; 383 } // end anonymous namespace 384 385 namespace { 386 387 /// ARMOperand - Instances of this class represent a parsed ARM machine 388 /// operand. 389 class ARMOperand : public MCParsedAsmOperand { 390 enum KindTy { 391 k_CondCode, 392 k_CCOut, 393 k_ITCondMask, 394 k_CoprocNum, 395 k_CoprocReg, 396 k_CoprocOption, 397 k_Immediate, 398 k_MemBarrierOpt, 399 k_InstSyncBarrierOpt, 400 k_Memory, 401 k_PostIndexRegister, 402 k_MSRMask, 403 k_BankedReg, 404 k_ProcIFlags, 405 k_VectorIndex, 406 k_Register, 407 k_RegisterList, 408 k_DPRRegisterList, 409 k_SPRRegisterList, 410 k_VectorList, 411 k_VectorListAllLanes, 412 k_VectorListIndexed, 413 k_ShiftedRegister, 414 k_ShiftedImmediate, 415 k_ShifterImmediate, 416 k_RotateImmediate, 417 k_ModifiedImmediate, 418 k_BitfieldDescriptor, 419 k_Token 420 } Kind; 421 422 SMLoc StartLoc, EndLoc, AlignmentLoc; 423 SmallVector<unsigned, 8> Registers; 424 425 struct CCOp { 426 ARMCC::CondCodes Val; 427 }; 428 429 struct CopOp { 430 unsigned Val; 431 }; 432 433 struct CoprocOptionOp { 434 unsigned Val; 435 }; 436 437 struct ITMaskOp { 438 unsigned Mask:4; 439 }; 440 441 struct MBOptOp { 442 ARM_MB::MemBOpt Val; 443 }; 444 445 struct ISBOptOp { 446 ARM_ISB::InstSyncBOpt Val; 447 }; 448 449 struct IFlagsOp { 450 ARM_PROC::IFlags Val; 451 }; 452 453 struct MMaskOp { 454 unsigned Val; 455 }; 456 457 struct BankedRegOp { 458 unsigned Val; 459 }; 460 461 struct TokOp { 462 const char *Data; 463 unsigned Length; 464 }; 465 466 struct RegOp { 467 unsigned RegNum; 468 }; 469 470 // A vector register list is a sequential list of 1 to 4 registers. 471 struct VectorListOp { 472 unsigned RegNum; 473 unsigned Count; 474 unsigned LaneIndex; 475 bool isDoubleSpaced; 476 }; 477 478 struct VectorIndexOp { 479 unsigned Val; 480 }; 481 482 struct ImmOp { 483 const MCExpr *Val; 484 }; 485 486 /// Combined record for all forms of ARM address expressions. 487 struct MemoryOp { 488 unsigned BaseRegNum; 489 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 490 // was specified. 491 const MCConstantExpr *OffsetImm; // Offset immediate value 492 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 493 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 494 unsigned ShiftImm; // shift for OffsetReg. 495 unsigned Alignment; // 0 = no alignment specified 496 // n = alignment in bytes (2, 4, 8, 16, or 32) 497 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 498 }; 499 500 struct PostIdxRegOp { 501 unsigned RegNum; 502 bool isAdd; 503 ARM_AM::ShiftOpc ShiftTy; 504 unsigned ShiftImm; 505 }; 506 507 struct ShifterImmOp { 508 bool isASR; 509 unsigned Imm; 510 }; 511 512 struct RegShiftedRegOp { 513 ARM_AM::ShiftOpc ShiftTy; 514 unsigned SrcReg; 515 unsigned ShiftReg; 516 unsigned ShiftImm; 517 }; 518 519 struct RegShiftedImmOp { 520 ARM_AM::ShiftOpc ShiftTy; 521 unsigned SrcReg; 522 unsigned ShiftImm; 523 }; 524 525 struct RotImmOp { 526 unsigned Imm; 527 }; 528 529 struct ModImmOp { 530 unsigned Bits; 531 unsigned Rot; 532 }; 533 534 struct BitfieldOp { 535 unsigned LSB; 536 unsigned Width; 537 }; 538 539 union { 540 struct CCOp CC; 541 struct CopOp Cop; 542 struct CoprocOptionOp CoprocOption; 543 struct MBOptOp MBOpt; 544 struct ISBOptOp ISBOpt; 545 struct ITMaskOp ITMask; 546 struct IFlagsOp IFlags; 547 struct MMaskOp MMask; 548 struct BankedRegOp BankedReg; 549 struct TokOp Tok; 550 struct RegOp Reg; 551 struct VectorListOp VectorList; 552 struct VectorIndexOp VectorIndex; 553 struct ImmOp Imm; 554 struct MemoryOp Memory; 555 struct PostIdxRegOp PostIdxReg; 556 struct ShifterImmOp ShifterImm; 557 struct RegShiftedRegOp RegShiftedReg; 558 struct RegShiftedImmOp RegShiftedImm; 559 struct RotImmOp RotImm; 560 struct ModImmOp ModImm; 561 struct BitfieldOp Bitfield; 562 }; 563 564 public: 565 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 566 ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() { 567 Kind = o.Kind; 568 StartLoc = o.StartLoc; 569 EndLoc = o.EndLoc; 570 switch (Kind) { 571 case k_CondCode: 572 CC = o.CC; 573 break; 574 case k_ITCondMask: 575 ITMask = o.ITMask; 576 break; 577 case k_Token: 578 Tok = o.Tok; 579 break; 580 case k_CCOut: 581 case k_Register: 582 Reg = o.Reg; 583 break; 584 case k_RegisterList: 585 case k_DPRRegisterList: 586 case k_SPRRegisterList: 587 Registers = o.Registers; 588 break; 589 case k_VectorList: 590 case k_VectorListAllLanes: 591 case k_VectorListIndexed: 592 VectorList = o.VectorList; 593 break; 594 case k_CoprocNum: 595 case k_CoprocReg: 596 Cop = o.Cop; 597 break; 598 case k_CoprocOption: 599 CoprocOption = o.CoprocOption; 600 break; 601 case k_Immediate: 602 Imm = o.Imm; 603 break; 604 case k_MemBarrierOpt: 605 MBOpt = o.MBOpt; 606 break; 607 case k_InstSyncBarrierOpt: 608 ISBOpt = o.ISBOpt; 609 case k_Memory: 610 Memory = o.Memory; 611 break; 612 case k_PostIndexRegister: 613 PostIdxReg = o.PostIdxReg; 614 break; 615 case k_MSRMask: 616 MMask = o.MMask; 617 break; 618 case k_BankedReg: 619 BankedReg = o.BankedReg; 620 break; 621 case k_ProcIFlags: 622 IFlags = o.IFlags; 623 break; 624 case k_ShifterImmediate: 625 ShifterImm = o.ShifterImm; 626 break; 627 case k_ShiftedRegister: 628 RegShiftedReg = o.RegShiftedReg; 629 break; 630 case k_ShiftedImmediate: 631 RegShiftedImm = o.RegShiftedImm; 632 break; 633 case k_RotateImmediate: 634 RotImm = o.RotImm; 635 break; 636 case k_ModifiedImmediate: 637 ModImm = o.ModImm; 638 break; 639 case k_BitfieldDescriptor: 640 Bitfield = o.Bitfield; 641 break; 642 case k_VectorIndex: 643 VectorIndex = o.VectorIndex; 644 break; 645 } 646 } 647 648 /// getStartLoc - Get the location of the first token of this operand. 649 SMLoc getStartLoc() const override { return StartLoc; } 650 /// getEndLoc - Get the location of the last token of this operand. 651 SMLoc getEndLoc() const override { return EndLoc; } 652 /// getLocRange - Get the range between the first and last token of this 653 /// operand. 654 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 655 656 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 657 SMLoc getAlignmentLoc() const { 658 assert(Kind == k_Memory && "Invalid access!"); 659 return AlignmentLoc; 660 } 661 662 ARMCC::CondCodes getCondCode() const { 663 assert(Kind == k_CondCode && "Invalid access!"); 664 return CC.Val; 665 } 666 667 unsigned getCoproc() const { 668 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 669 return Cop.Val; 670 } 671 672 StringRef getToken() const { 673 assert(Kind == k_Token && "Invalid access!"); 674 return StringRef(Tok.Data, Tok.Length); 675 } 676 677 unsigned getReg() const override { 678 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 679 return Reg.RegNum; 680 } 681 682 const SmallVectorImpl<unsigned> &getRegList() const { 683 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 684 Kind == k_SPRRegisterList) && "Invalid access!"); 685 return Registers; 686 } 687 688 const MCExpr *getImm() const { 689 assert(isImm() && "Invalid access!"); 690 return Imm.Val; 691 } 692 693 unsigned getVectorIndex() const { 694 assert(Kind == k_VectorIndex && "Invalid access!"); 695 return VectorIndex.Val; 696 } 697 698 ARM_MB::MemBOpt getMemBarrierOpt() const { 699 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 700 return MBOpt.Val; 701 } 702 703 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 704 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 705 return ISBOpt.Val; 706 } 707 708 ARM_PROC::IFlags getProcIFlags() const { 709 assert(Kind == k_ProcIFlags && "Invalid access!"); 710 return IFlags.Val; 711 } 712 713 unsigned getMSRMask() const { 714 assert(Kind == k_MSRMask && "Invalid access!"); 715 return MMask.Val; 716 } 717 718 unsigned getBankedReg() const { 719 assert(Kind == k_BankedReg && "Invalid access!"); 720 return BankedReg.Val; 721 } 722 723 bool isCoprocNum() const { return Kind == k_CoprocNum; } 724 bool isCoprocReg() const { return Kind == k_CoprocReg; } 725 bool isCoprocOption() const { return Kind == k_CoprocOption; } 726 bool isCondCode() const { return Kind == k_CondCode; } 727 bool isCCOut() const { return Kind == k_CCOut; } 728 bool isITMask() const { return Kind == k_ITCondMask; } 729 bool isITCondCode() const { return Kind == k_CondCode; } 730 bool isImm() const override { return Kind == k_Immediate; } 731 // checks whether this operand is an unsigned offset which fits is a field 732 // of specified width and scaled by a specific number of bits 733 template<unsigned width, unsigned scale> 734 bool isUnsignedOffset() const { 735 if (!isImm()) return false; 736 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 737 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 738 int64_t Val = CE->getValue(); 739 int64_t Align = 1LL << scale; 740 int64_t Max = Align * ((1LL << width) - 1); 741 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 742 } 743 return false; 744 } 745 // checks whether this operand is an signed offset which fits is a field 746 // of specified width and scaled by a specific number of bits 747 template<unsigned width, unsigned scale> 748 bool isSignedOffset() const { 749 if (!isImm()) return false; 750 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 751 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 752 int64_t Val = CE->getValue(); 753 int64_t Align = 1LL << scale; 754 int64_t Max = Align * ((1LL << (width-1)) - 1); 755 int64_t Min = -Align * (1LL << (width-1)); 756 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 757 } 758 return false; 759 } 760 761 // checks whether this operand is a memory operand computed as an offset 762 // applied to PC. the offset may have 8 bits of magnitude and is represented 763 // with two bits of shift. textually it may be either [pc, #imm], #imm or 764 // relocable expression... 765 bool isThumbMemPC() const { 766 int64_t Val = 0; 767 if (isImm()) { 768 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 769 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 770 if (!CE) return false; 771 Val = CE->getValue(); 772 } 773 else if (isMem()) { 774 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 775 if(Memory.BaseRegNum != ARM::PC) return false; 776 Val = Memory.OffsetImm->getValue(); 777 } 778 else return false; 779 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 780 } 781 bool isFPImm() const { 782 if (!isImm()) return false; 783 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 784 if (!CE) return false; 785 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 786 return Val != -1; 787 } 788 bool isFBits16() const { 789 if (!isImm()) return false; 790 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 791 if (!CE) return false; 792 int64_t Value = CE->getValue(); 793 return Value >= 0 && Value <= 16; 794 } 795 bool isFBits32() const { 796 if (!isImm()) return false; 797 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 798 if (!CE) return false; 799 int64_t Value = CE->getValue(); 800 return Value >= 1 && Value <= 32; 801 } 802 bool isImm8s4() const { 803 if (!isImm()) return false; 804 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 805 if (!CE) return false; 806 int64_t Value = CE->getValue(); 807 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 808 } 809 bool isImm0_1020s4() const { 810 if (!isImm()) return false; 811 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 812 if (!CE) return false; 813 int64_t Value = CE->getValue(); 814 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 815 } 816 bool isImm0_508s4() const { 817 if (!isImm()) return false; 818 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 819 if (!CE) return false; 820 int64_t Value = CE->getValue(); 821 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 822 } 823 bool isImm0_508s4Neg() const { 824 if (!isImm()) return false; 825 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 826 if (!CE) return false; 827 int64_t Value = -CE->getValue(); 828 // explicitly exclude zero. we want that to use the normal 0_508 version. 829 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 830 } 831 bool isImm0_239() const { 832 if (!isImm()) return false; 833 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 834 if (!CE) return false; 835 int64_t Value = CE->getValue(); 836 return Value >= 0 && Value < 240; 837 } 838 bool isImm0_255() const { 839 if (!isImm()) return false; 840 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 841 if (!CE) return false; 842 int64_t Value = CE->getValue(); 843 return Value >= 0 && Value < 256; 844 } 845 bool isImm0_4095() const { 846 if (!isImm()) return false; 847 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 848 if (!CE) return false; 849 int64_t Value = CE->getValue(); 850 return Value >= 0 && Value < 4096; 851 } 852 bool isImm0_4095Neg() const { 853 if (!isImm()) return false; 854 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 855 if (!CE) return false; 856 int64_t Value = -CE->getValue(); 857 return Value > 0 && Value < 4096; 858 } 859 bool isImm0_1() const { 860 if (!isImm()) return false; 861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 862 if (!CE) return false; 863 int64_t Value = CE->getValue(); 864 return Value >= 0 && Value < 2; 865 } 866 bool isImm0_3() const { 867 if (!isImm()) return false; 868 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 869 if (!CE) return false; 870 int64_t Value = CE->getValue(); 871 return Value >= 0 && Value < 4; 872 } 873 bool isImm0_7() const { 874 if (!isImm()) return false; 875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 876 if (!CE) return false; 877 int64_t Value = CE->getValue(); 878 return Value >= 0 && Value < 8; 879 } 880 bool isImm0_15() const { 881 if (!isImm()) return false; 882 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 883 if (!CE) return false; 884 int64_t Value = CE->getValue(); 885 return Value >= 0 && Value < 16; 886 } 887 bool isImm0_31() const { 888 if (!isImm()) return false; 889 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 890 if (!CE) return false; 891 int64_t Value = CE->getValue(); 892 return Value >= 0 && Value < 32; 893 } 894 bool isImm0_63() const { 895 if (!isImm()) return false; 896 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 897 if (!CE) return false; 898 int64_t Value = CE->getValue(); 899 return Value >= 0 && Value < 64; 900 } 901 bool isImm8() const { 902 if (!isImm()) return false; 903 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 904 if (!CE) return false; 905 int64_t Value = CE->getValue(); 906 return Value == 8; 907 } 908 bool isImm16() const { 909 if (!isImm()) return false; 910 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 911 if (!CE) return false; 912 int64_t Value = CE->getValue(); 913 return Value == 16; 914 } 915 bool isImm32() const { 916 if (!isImm()) return false; 917 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 918 if (!CE) return false; 919 int64_t Value = CE->getValue(); 920 return Value == 32; 921 } 922 bool isShrImm8() const { 923 if (!isImm()) return false; 924 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 925 if (!CE) return false; 926 int64_t Value = CE->getValue(); 927 return Value > 0 && Value <= 8; 928 } 929 bool isShrImm16() const { 930 if (!isImm()) return false; 931 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 932 if (!CE) return false; 933 int64_t Value = CE->getValue(); 934 return Value > 0 && Value <= 16; 935 } 936 bool isShrImm32() const { 937 if (!isImm()) return false; 938 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 939 if (!CE) return false; 940 int64_t Value = CE->getValue(); 941 return Value > 0 && Value <= 32; 942 } 943 bool isShrImm64() const { 944 if (!isImm()) return false; 945 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 946 if (!CE) return false; 947 int64_t Value = CE->getValue(); 948 return Value > 0 && Value <= 64; 949 } 950 bool isImm1_7() const { 951 if (!isImm()) return false; 952 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 953 if (!CE) return false; 954 int64_t Value = CE->getValue(); 955 return Value > 0 && Value < 8; 956 } 957 bool isImm1_15() const { 958 if (!isImm()) return false; 959 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 960 if (!CE) return false; 961 int64_t Value = CE->getValue(); 962 return Value > 0 && Value < 16; 963 } 964 bool isImm1_31() const { 965 if (!isImm()) return false; 966 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 967 if (!CE) return false; 968 int64_t Value = CE->getValue(); 969 return Value > 0 && Value < 32; 970 } 971 bool isImm1_16() const { 972 if (!isImm()) return false; 973 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 974 if (!CE) return false; 975 int64_t Value = CE->getValue(); 976 return Value > 0 && Value < 17; 977 } 978 bool isImm1_32() const { 979 if (!isImm()) return false; 980 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 981 if (!CE) return false; 982 int64_t Value = CE->getValue(); 983 return Value > 0 && Value < 33; 984 } 985 bool isImm0_32() const { 986 if (!isImm()) return false; 987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 988 if (!CE) return false; 989 int64_t Value = CE->getValue(); 990 return Value >= 0 && Value < 33; 991 } 992 bool isImm0_65535() const { 993 if (!isImm()) return false; 994 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 995 if (!CE) return false; 996 int64_t Value = CE->getValue(); 997 return Value >= 0 && Value < 65536; 998 } 999 bool isImm256_65535Expr() const { 1000 if (!isImm()) return false; 1001 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1002 // If it's not a constant expression, it'll generate a fixup and be 1003 // handled later. 1004 if (!CE) return true; 1005 int64_t Value = CE->getValue(); 1006 return Value >= 256 && Value < 65536; 1007 } 1008 bool isImm0_65535Expr() const { 1009 if (!isImm()) return false; 1010 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1011 // If it's not a constant expression, it'll generate a fixup and be 1012 // handled later. 1013 if (!CE) return true; 1014 int64_t Value = CE->getValue(); 1015 return Value >= 0 && Value < 65536; 1016 } 1017 bool isImm24bit() const { 1018 if (!isImm()) return false; 1019 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1020 if (!CE) return false; 1021 int64_t Value = CE->getValue(); 1022 return Value >= 0 && Value <= 0xffffff; 1023 } 1024 bool isImmThumbSR() const { 1025 if (!isImm()) return false; 1026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1027 if (!CE) return false; 1028 int64_t Value = CE->getValue(); 1029 return Value > 0 && Value < 33; 1030 } 1031 bool isPKHLSLImm() const { 1032 if (!isImm()) return false; 1033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1034 if (!CE) return false; 1035 int64_t Value = CE->getValue(); 1036 return Value >= 0 && Value < 32; 1037 } 1038 bool isPKHASRImm() const { 1039 if (!isImm()) return false; 1040 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1041 if (!CE) return false; 1042 int64_t Value = CE->getValue(); 1043 return Value > 0 && Value <= 32; 1044 } 1045 bool isAdrLabel() const { 1046 // If we have an immediate that's not a constant, treat it as a label 1047 // reference needing a fixup. 1048 if (isImm() && !isa<MCConstantExpr>(getImm())) 1049 return true; 1050 1051 // If it is a constant, it must fit into a modified immediate encoding. 1052 if (!isImm()) return false; 1053 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1054 if (!CE) return false; 1055 int64_t Value = CE->getValue(); 1056 return (ARM_AM::getSOImmVal(Value) != -1 || 1057 ARM_AM::getSOImmVal(-Value) != -1); 1058 } 1059 bool isT2SOImm() const { 1060 if (!isImm()) return false; 1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1062 if (!CE) return false; 1063 int64_t Value = CE->getValue(); 1064 return ARM_AM::getT2SOImmVal(Value) != -1; 1065 } 1066 bool isT2SOImmNot() const { 1067 if (!isImm()) return false; 1068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1069 if (!CE) return false; 1070 int64_t Value = CE->getValue(); 1071 return ARM_AM::getT2SOImmVal(Value) == -1 && 1072 ARM_AM::getT2SOImmVal(~Value) != -1; 1073 } 1074 bool isT2SOImmNeg() const { 1075 if (!isImm()) return false; 1076 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1077 if (!CE) return false; 1078 int64_t Value = CE->getValue(); 1079 // Only use this when not representable as a plain so_imm. 1080 return ARM_AM::getT2SOImmVal(Value) == -1 && 1081 ARM_AM::getT2SOImmVal(-Value) != -1; 1082 } 1083 bool isSetEndImm() const { 1084 if (!isImm()) return false; 1085 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1086 if (!CE) return false; 1087 int64_t Value = CE->getValue(); 1088 return Value == 1 || Value == 0; 1089 } 1090 bool isReg() const override { return Kind == k_Register; } 1091 bool isRegList() const { return Kind == k_RegisterList; } 1092 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1093 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1094 bool isToken() const override { return Kind == k_Token; } 1095 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1096 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1097 bool isMem() const override { return Kind == k_Memory; } 1098 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1099 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1100 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1101 bool isRotImm() const { return Kind == k_RotateImmediate; } 1102 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1103 bool isModImmNot() const { 1104 if (!isImm()) return false; 1105 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1106 if (!CE) return false; 1107 int64_t Value = CE->getValue(); 1108 return ARM_AM::getSOImmVal(~Value) != -1; 1109 } 1110 bool isModImmNeg() const { 1111 if (!isImm()) return false; 1112 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1113 if (!CE) return false; 1114 int64_t Value = CE->getValue(); 1115 return ARM_AM::getSOImmVal(Value) == -1 && 1116 ARM_AM::getSOImmVal(-Value) != -1; 1117 } 1118 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1119 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1120 bool isPostIdxReg() const { 1121 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1122 } 1123 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1124 if (!isMem()) 1125 return false; 1126 // No offset of any kind. 1127 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1128 (alignOK || Memory.Alignment == Alignment); 1129 } 1130 bool isMemPCRelImm12() const { 1131 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1132 return false; 1133 // Base register must be PC. 1134 if (Memory.BaseRegNum != ARM::PC) 1135 return false; 1136 // Immediate offset in range [-4095, 4095]. 1137 if (!Memory.OffsetImm) return true; 1138 int64_t Val = Memory.OffsetImm->getValue(); 1139 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1140 } 1141 bool isAlignedMemory() const { 1142 return isMemNoOffset(true); 1143 } 1144 bool isAlignedMemoryNone() const { 1145 return isMemNoOffset(false, 0); 1146 } 1147 bool isDupAlignedMemoryNone() const { 1148 return isMemNoOffset(false, 0); 1149 } 1150 bool isAlignedMemory16() const { 1151 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1152 return true; 1153 return isMemNoOffset(false, 0); 1154 } 1155 bool isDupAlignedMemory16() const { 1156 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1157 return true; 1158 return isMemNoOffset(false, 0); 1159 } 1160 bool isAlignedMemory32() const { 1161 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1162 return true; 1163 return isMemNoOffset(false, 0); 1164 } 1165 bool isDupAlignedMemory32() const { 1166 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1167 return true; 1168 return isMemNoOffset(false, 0); 1169 } 1170 bool isAlignedMemory64() const { 1171 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1172 return true; 1173 return isMemNoOffset(false, 0); 1174 } 1175 bool isDupAlignedMemory64() const { 1176 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1177 return true; 1178 return isMemNoOffset(false, 0); 1179 } 1180 bool isAlignedMemory64or128() const { 1181 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1182 return true; 1183 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1184 return true; 1185 return isMemNoOffset(false, 0); 1186 } 1187 bool isDupAlignedMemory64or128() const { 1188 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1189 return true; 1190 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1191 return true; 1192 return isMemNoOffset(false, 0); 1193 } 1194 bool isAlignedMemory64or128or256() const { 1195 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1196 return true; 1197 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1198 return true; 1199 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1200 return true; 1201 return isMemNoOffset(false, 0); 1202 } 1203 bool isAddrMode2() const { 1204 if (!isMem() || Memory.Alignment != 0) return false; 1205 // Check for register offset. 1206 if (Memory.OffsetRegNum) return true; 1207 // Immediate offset in range [-4095, 4095]. 1208 if (!Memory.OffsetImm) return true; 1209 int64_t Val = Memory.OffsetImm->getValue(); 1210 return Val > -4096 && Val < 4096; 1211 } 1212 bool isAM2OffsetImm() const { 1213 if (!isImm()) return false; 1214 // Immediate offset in range [-4095, 4095]. 1215 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1216 if (!CE) return false; 1217 int64_t Val = CE->getValue(); 1218 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1219 } 1220 bool isAddrMode3() const { 1221 // If we have an immediate that's not a constant, treat it as a label 1222 // reference needing a fixup. If it is a constant, it's something else 1223 // and we reject it. 1224 if (isImm() && !isa<MCConstantExpr>(getImm())) 1225 return true; 1226 if (!isMem() || Memory.Alignment != 0) return false; 1227 // No shifts are legal for AM3. 1228 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1229 // Check for register offset. 1230 if (Memory.OffsetRegNum) return true; 1231 // Immediate offset in range [-255, 255]. 1232 if (!Memory.OffsetImm) return true; 1233 int64_t Val = Memory.OffsetImm->getValue(); 1234 // The #-0 offset is encoded as INT32_MIN, and we have to check 1235 // for this too. 1236 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1237 } 1238 bool isAM3Offset() const { 1239 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1240 return false; 1241 if (Kind == k_PostIndexRegister) 1242 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1243 // Immediate offset in range [-255, 255]. 1244 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1245 if (!CE) return false; 1246 int64_t Val = CE->getValue(); 1247 // Special case, #-0 is INT32_MIN. 1248 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1249 } 1250 bool isAddrMode5() const { 1251 // If we have an immediate that's not a constant, treat it as a label 1252 // reference needing a fixup. If it is a constant, it's something else 1253 // and we reject it. 1254 if (isImm() && !isa<MCConstantExpr>(getImm())) 1255 return true; 1256 if (!isMem() || Memory.Alignment != 0) return false; 1257 // Check for register offset. 1258 if (Memory.OffsetRegNum) return false; 1259 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1260 if (!Memory.OffsetImm) return true; 1261 int64_t Val = Memory.OffsetImm->getValue(); 1262 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1263 Val == INT32_MIN; 1264 } 1265 bool isMemTBB() const { 1266 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1267 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1268 return false; 1269 return true; 1270 } 1271 bool isMemTBH() const { 1272 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1273 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1274 Memory.Alignment != 0 ) 1275 return false; 1276 return true; 1277 } 1278 bool isMemRegOffset() const { 1279 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1280 return false; 1281 return true; 1282 } 1283 bool isT2MemRegOffset() const { 1284 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1285 Memory.Alignment != 0) 1286 return false; 1287 // Only lsl #{0, 1, 2, 3} allowed. 1288 if (Memory.ShiftType == ARM_AM::no_shift) 1289 return true; 1290 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1291 return false; 1292 return true; 1293 } 1294 bool isMemThumbRR() const { 1295 // Thumb reg+reg addressing is simple. Just two registers, a base and 1296 // an offset. No shifts, negations or any other complicating factors. 1297 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1298 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1299 return false; 1300 return isARMLowRegister(Memory.BaseRegNum) && 1301 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1302 } 1303 bool isMemThumbRIs4() const { 1304 if (!isMem() || Memory.OffsetRegNum != 0 || 1305 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1306 return false; 1307 // Immediate offset, multiple of 4 in range [0, 124]. 1308 if (!Memory.OffsetImm) return true; 1309 int64_t Val = Memory.OffsetImm->getValue(); 1310 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1311 } 1312 bool isMemThumbRIs2() const { 1313 if (!isMem() || Memory.OffsetRegNum != 0 || 1314 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1315 return false; 1316 // Immediate offset, multiple of 4 in range [0, 62]. 1317 if (!Memory.OffsetImm) return true; 1318 int64_t Val = Memory.OffsetImm->getValue(); 1319 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1320 } 1321 bool isMemThumbRIs1() const { 1322 if (!isMem() || Memory.OffsetRegNum != 0 || 1323 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1324 return false; 1325 // Immediate offset in range [0, 31]. 1326 if (!Memory.OffsetImm) return true; 1327 int64_t Val = Memory.OffsetImm->getValue(); 1328 return Val >= 0 && Val <= 31; 1329 } 1330 bool isMemThumbSPI() const { 1331 if (!isMem() || Memory.OffsetRegNum != 0 || 1332 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1333 return false; 1334 // Immediate offset, multiple of 4 in range [0, 1020]. 1335 if (!Memory.OffsetImm) return true; 1336 int64_t Val = Memory.OffsetImm->getValue(); 1337 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1338 } 1339 bool isMemImm8s4Offset() const { 1340 // If we have an immediate that's not a constant, treat it as a label 1341 // reference needing a fixup. If it is a constant, it's something else 1342 // and we reject it. 1343 if (isImm() && !isa<MCConstantExpr>(getImm())) 1344 return true; 1345 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1346 return false; 1347 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1348 if (!Memory.OffsetImm) return true; 1349 int64_t Val = Memory.OffsetImm->getValue(); 1350 // Special case, #-0 is INT32_MIN. 1351 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1352 } 1353 bool isMemImm0_1020s4Offset() const { 1354 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1355 return false; 1356 // Immediate offset a multiple of 4 in range [0, 1020]. 1357 if (!Memory.OffsetImm) return true; 1358 int64_t Val = Memory.OffsetImm->getValue(); 1359 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1360 } 1361 bool isMemImm8Offset() const { 1362 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1363 return false; 1364 // Base reg of PC isn't allowed for these encodings. 1365 if (Memory.BaseRegNum == ARM::PC) return false; 1366 // Immediate offset in range [-255, 255]. 1367 if (!Memory.OffsetImm) return true; 1368 int64_t Val = Memory.OffsetImm->getValue(); 1369 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1370 } 1371 bool isMemPosImm8Offset() const { 1372 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1373 return false; 1374 // Immediate offset in range [0, 255]. 1375 if (!Memory.OffsetImm) return true; 1376 int64_t Val = Memory.OffsetImm->getValue(); 1377 return Val >= 0 && Val < 256; 1378 } 1379 bool isMemNegImm8Offset() const { 1380 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1381 return false; 1382 // Base reg of PC isn't allowed for these encodings. 1383 if (Memory.BaseRegNum == ARM::PC) return false; 1384 // Immediate offset in range [-255, -1]. 1385 if (!Memory.OffsetImm) return false; 1386 int64_t Val = Memory.OffsetImm->getValue(); 1387 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1388 } 1389 bool isMemUImm12Offset() const { 1390 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1391 return false; 1392 // Immediate offset in range [0, 4095]. 1393 if (!Memory.OffsetImm) return true; 1394 int64_t Val = Memory.OffsetImm->getValue(); 1395 return (Val >= 0 && Val < 4096); 1396 } 1397 bool isMemImm12Offset() const { 1398 // If we have an immediate that's not a constant, treat it as a label 1399 // reference needing a fixup. If it is a constant, it's something else 1400 // and we reject it. 1401 if (isImm() && !isa<MCConstantExpr>(getImm())) 1402 return true; 1403 1404 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1405 return false; 1406 // Immediate offset in range [-4095, 4095]. 1407 if (!Memory.OffsetImm) return true; 1408 int64_t Val = Memory.OffsetImm->getValue(); 1409 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1410 } 1411 bool isPostIdxImm8() const { 1412 if (!isImm()) return false; 1413 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1414 if (!CE) return false; 1415 int64_t Val = CE->getValue(); 1416 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1417 } 1418 bool isPostIdxImm8s4() const { 1419 if (!isImm()) return false; 1420 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1421 if (!CE) return false; 1422 int64_t Val = CE->getValue(); 1423 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1424 (Val == INT32_MIN); 1425 } 1426 1427 bool isMSRMask() const { return Kind == k_MSRMask; } 1428 bool isBankedReg() const { return Kind == k_BankedReg; } 1429 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1430 1431 // NEON operands. 1432 bool isSingleSpacedVectorList() const { 1433 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1434 } 1435 bool isDoubleSpacedVectorList() const { 1436 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1437 } 1438 bool isVecListOneD() const { 1439 if (!isSingleSpacedVectorList()) return false; 1440 return VectorList.Count == 1; 1441 } 1442 1443 bool isVecListDPair() const { 1444 if (!isSingleSpacedVectorList()) return false; 1445 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1446 .contains(VectorList.RegNum)); 1447 } 1448 1449 bool isVecListThreeD() const { 1450 if (!isSingleSpacedVectorList()) return false; 1451 return VectorList.Count == 3; 1452 } 1453 1454 bool isVecListFourD() const { 1455 if (!isSingleSpacedVectorList()) return false; 1456 return VectorList.Count == 4; 1457 } 1458 1459 bool isVecListDPairSpaced() const { 1460 if (Kind != k_VectorList) return false; 1461 if (isSingleSpacedVectorList()) return false; 1462 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1463 .contains(VectorList.RegNum)); 1464 } 1465 1466 bool isVecListThreeQ() const { 1467 if (!isDoubleSpacedVectorList()) return false; 1468 return VectorList.Count == 3; 1469 } 1470 1471 bool isVecListFourQ() const { 1472 if (!isDoubleSpacedVectorList()) return false; 1473 return VectorList.Count == 4; 1474 } 1475 1476 bool isSingleSpacedVectorAllLanes() const { 1477 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1478 } 1479 bool isDoubleSpacedVectorAllLanes() const { 1480 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1481 } 1482 bool isVecListOneDAllLanes() const { 1483 if (!isSingleSpacedVectorAllLanes()) return false; 1484 return VectorList.Count == 1; 1485 } 1486 1487 bool isVecListDPairAllLanes() const { 1488 if (!isSingleSpacedVectorAllLanes()) return false; 1489 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1490 .contains(VectorList.RegNum)); 1491 } 1492 1493 bool isVecListDPairSpacedAllLanes() const { 1494 if (!isDoubleSpacedVectorAllLanes()) return false; 1495 return VectorList.Count == 2; 1496 } 1497 1498 bool isVecListThreeDAllLanes() const { 1499 if (!isSingleSpacedVectorAllLanes()) return false; 1500 return VectorList.Count == 3; 1501 } 1502 1503 bool isVecListThreeQAllLanes() const { 1504 if (!isDoubleSpacedVectorAllLanes()) return false; 1505 return VectorList.Count == 3; 1506 } 1507 1508 bool isVecListFourDAllLanes() const { 1509 if (!isSingleSpacedVectorAllLanes()) return false; 1510 return VectorList.Count == 4; 1511 } 1512 1513 bool isVecListFourQAllLanes() const { 1514 if (!isDoubleSpacedVectorAllLanes()) return false; 1515 return VectorList.Count == 4; 1516 } 1517 1518 bool isSingleSpacedVectorIndexed() const { 1519 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1520 } 1521 bool isDoubleSpacedVectorIndexed() const { 1522 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1523 } 1524 bool isVecListOneDByteIndexed() const { 1525 if (!isSingleSpacedVectorIndexed()) return false; 1526 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1527 } 1528 1529 bool isVecListOneDHWordIndexed() const { 1530 if (!isSingleSpacedVectorIndexed()) return false; 1531 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1532 } 1533 1534 bool isVecListOneDWordIndexed() const { 1535 if (!isSingleSpacedVectorIndexed()) return false; 1536 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1537 } 1538 1539 bool isVecListTwoDByteIndexed() const { 1540 if (!isSingleSpacedVectorIndexed()) return false; 1541 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1542 } 1543 1544 bool isVecListTwoDHWordIndexed() const { 1545 if (!isSingleSpacedVectorIndexed()) return false; 1546 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1547 } 1548 1549 bool isVecListTwoQWordIndexed() const { 1550 if (!isDoubleSpacedVectorIndexed()) return false; 1551 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1552 } 1553 1554 bool isVecListTwoQHWordIndexed() const { 1555 if (!isDoubleSpacedVectorIndexed()) return false; 1556 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1557 } 1558 1559 bool isVecListTwoDWordIndexed() const { 1560 if (!isSingleSpacedVectorIndexed()) return false; 1561 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1562 } 1563 1564 bool isVecListThreeDByteIndexed() const { 1565 if (!isSingleSpacedVectorIndexed()) return false; 1566 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1567 } 1568 1569 bool isVecListThreeDHWordIndexed() const { 1570 if (!isSingleSpacedVectorIndexed()) return false; 1571 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1572 } 1573 1574 bool isVecListThreeQWordIndexed() const { 1575 if (!isDoubleSpacedVectorIndexed()) return false; 1576 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1577 } 1578 1579 bool isVecListThreeQHWordIndexed() const { 1580 if (!isDoubleSpacedVectorIndexed()) return false; 1581 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1582 } 1583 1584 bool isVecListThreeDWordIndexed() const { 1585 if (!isSingleSpacedVectorIndexed()) return false; 1586 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1587 } 1588 1589 bool isVecListFourDByteIndexed() const { 1590 if (!isSingleSpacedVectorIndexed()) return false; 1591 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1592 } 1593 1594 bool isVecListFourDHWordIndexed() const { 1595 if (!isSingleSpacedVectorIndexed()) return false; 1596 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1597 } 1598 1599 bool isVecListFourQWordIndexed() const { 1600 if (!isDoubleSpacedVectorIndexed()) return false; 1601 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1602 } 1603 1604 bool isVecListFourQHWordIndexed() const { 1605 if (!isDoubleSpacedVectorIndexed()) return false; 1606 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1607 } 1608 1609 bool isVecListFourDWordIndexed() const { 1610 if (!isSingleSpacedVectorIndexed()) return false; 1611 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1612 } 1613 1614 bool isVectorIndex8() const { 1615 if (Kind != k_VectorIndex) return false; 1616 return VectorIndex.Val < 8; 1617 } 1618 bool isVectorIndex16() const { 1619 if (Kind != k_VectorIndex) return false; 1620 return VectorIndex.Val < 4; 1621 } 1622 bool isVectorIndex32() const { 1623 if (Kind != k_VectorIndex) return false; 1624 return VectorIndex.Val < 2; 1625 } 1626 1627 bool isNEONi8splat() const { 1628 if (!isImm()) return false; 1629 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1630 // Must be a constant. 1631 if (!CE) return false; 1632 int64_t Value = CE->getValue(); 1633 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1634 // value. 1635 return Value >= 0 && Value < 256; 1636 } 1637 1638 bool isNEONi16splat() const { 1639 if (isNEONByteReplicate(2)) 1640 return false; // Leave that for bytes replication and forbid by default. 1641 if (!isImm()) 1642 return false; 1643 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1644 // Must be a constant. 1645 if (!CE) return false; 1646 unsigned Value = CE->getValue(); 1647 return ARM_AM::isNEONi16splat(Value); 1648 } 1649 1650 bool isNEONi16splatNot() const { 1651 if (!isImm()) 1652 return false; 1653 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1654 // Must be a constant. 1655 if (!CE) return false; 1656 unsigned Value = CE->getValue(); 1657 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1658 } 1659 1660 bool isNEONi32splat() const { 1661 if (isNEONByteReplicate(4)) 1662 return false; // Leave that for bytes replication and forbid by default. 1663 if (!isImm()) 1664 return false; 1665 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1666 // Must be a constant. 1667 if (!CE) return false; 1668 unsigned Value = CE->getValue(); 1669 return ARM_AM::isNEONi32splat(Value); 1670 } 1671 1672 bool isNEONi32splatNot() const { 1673 if (!isImm()) 1674 return false; 1675 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1676 // Must be a constant. 1677 if (!CE) return false; 1678 unsigned Value = CE->getValue(); 1679 return ARM_AM::isNEONi32splat(~Value); 1680 } 1681 1682 bool isNEONByteReplicate(unsigned NumBytes) const { 1683 if (!isImm()) 1684 return false; 1685 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1686 // Must be a constant. 1687 if (!CE) 1688 return false; 1689 int64_t Value = CE->getValue(); 1690 if (!Value) 1691 return false; // Don't bother with zero. 1692 1693 unsigned char B = Value & 0xff; 1694 for (unsigned i = 1; i < NumBytes; ++i) { 1695 Value >>= 8; 1696 if ((Value & 0xff) != B) 1697 return false; 1698 } 1699 return true; 1700 } 1701 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1702 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1703 bool isNEONi32vmov() const { 1704 if (isNEONByteReplicate(4)) 1705 return false; // Let it to be classified as byte-replicate case. 1706 if (!isImm()) 1707 return false; 1708 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1709 // Must be a constant. 1710 if (!CE) 1711 return false; 1712 int64_t Value = CE->getValue(); 1713 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1714 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1715 // FIXME: This is probably wrong and a copy and paste from previous example 1716 return (Value >= 0 && Value < 256) || 1717 (Value >= 0x0100 && Value <= 0xff00) || 1718 (Value >= 0x010000 && Value <= 0xff0000) || 1719 (Value >= 0x01000000 && Value <= 0xff000000) || 1720 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1721 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1722 } 1723 bool isNEONi32vmovNeg() const { 1724 if (!isImm()) return false; 1725 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1726 // Must be a constant. 1727 if (!CE) return false; 1728 int64_t Value = ~CE->getValue(); 1729 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1730 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1731 // FIXME: This is probably wrong and a copy and paste from previous example 1732 return (Value >= 0 && Value < 256) || 1733 (Value >= 0x0100 && Value <= 0xff00) || 1734 (Value >= 0x010000 && Value <= 0xff0000) || 1735 (Value >= 0x01000000 && Value <= 0xff000000) || 1736 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1737 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1738 } 1739 1740 bool isNEONi64splat() const { 1741 if (!isImm()) return false; 1742 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1743 // Must be a constant. 1744 if (!CE) return false; 1745 uint64_t Value = CE->getValue(); 1746 // i64 value with each byte being either 0 or 0xff. 1747 for (unsigned i = 0; i < 8; ++i) 1748 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1749 return true; 1750 } 1751 1752 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1753 // Add as immediates when possible. Null MCExpr = 0. 1754 if (!Expr) 1755 Inst.addOperand(MCOperand::createImm(0)); 1756 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1757 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1758 else 1759 Inst.addOperand(MCOperand::createExpr(Expr)); 1760 } 1761 1762 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1763 assert(N == 2 && "Invalid number of operands!"); 1764 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1765 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1766 Inst.addOperand(MCOperand::createReg(RegNum)); 1767 } 1768 1769 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1770 assert(N == 1 && "Invalid number of operands!"); 1771 Inst.addOperand(MCOperand::createImm(getCoproc())); 1772 } 1773 1774 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1775 assert(N == 1 && "Invalid number of operands!"); 1776 Inst.addOperand(MCOperand::createImm(getCoproc())); 1777 } 1778 1779 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1780 assert(N == 1 && "Invalid number of operands!"); 1781 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1782 } 1783 1784 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1785 assert(N == 1 && "Invalid number of operands!"); 1786 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1787 } 1788 1789 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1790 assert(N == 1 && "Invalid number of operands!"); 1791 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1792 } 1793 1794 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1795 assert(N == 1 && "Invalid number of operands!"); 1796 Inst.addOperand(MCOperand::createReg(getReg())); 1797 } 1798 1799 void addRegOperands(MCInst &Inst, unsigned N) const { 1800 assert(N == 1 && "Invalid number of operands!"); 1801 Inst.addOperand(MCOperand::createReg(getReg())); 1802 } 1803 1804 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1805 assert(N == 3 && "Invalid number of operands!"); 1806 assert(isRegShiftedReg() && 1807 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1808 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1809 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1810 Inst.addOperand(MCOperand::createImm( 1811 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1812 } 1813 1814 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1815 assert(N == 2 && "Invalid number of operands!"); 1816 assert(isRegShiftedImm() && 1817 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1818 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1819 // Shift of #32 is encoded as 0 where permitted 1820 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1821 Inst.addOperand(MCOperand::createImm( 1822 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1823 } 1824 1825 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1826 assert(N == 1 && "Invalid number of operands!"); 1827 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1828 ShifterImm.Imm)); 1829 } 1830 1831 void addRegListOperands(MCInst &Inst, unsigned N) const { 1832 assert(N == 1 && "Invalid number of operands!"); 1833 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1834 for (SmallVectorImpl<unsigned>::const_iterator 1835 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1836 Inst.addOperand(MCOperand::createReg(*I)); 1837 } 1838 1839 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1840 addRegListOperands(Inst, N); 1841 } 1842 1843 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1844 addRegListOperands(Inst, N); 1845 } 1846 1847 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1848 assert(N == 1 && "Invalid number of operands!"); 1849 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1850 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1851 } 1852 1853 void addModImmOperands(MCInst &Inst, unsigned N) const { 1854 assert(N == 1 && "Invalid number of operands!"); 1855 1856 // Support for fixups (MCFixup) 1857 if (isImm()) 1858 return addImmOperands(Inst, N); 1859 1860 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1861 } 1862 1863 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1864 assert(N == 1 && "Invalid number of operands!"); 1865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1866 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1867 Inst.addOperand(MCOperand::createImm(Enc)); 1868 } 1869 1870 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1871 assert(N == 1 && "Invalid number of operands!"); 1872 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1873 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1874 Inst.addOperand(MCOperand::createImm(Enc)); 1875 } 1876 1877 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1878 assert(N == 1 && "Invalid number of operands!"); 1879 // Munge the lsb/width into a bitfield mask. 1880 unsigned lsb = Bitfield.LSB; 1881 unsigned width = Bitfield.Width; 1882 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1883 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1884 (32 - (lsb + width))); 1885 Inst.addOperand(MCOperand::createImm(Mask)); 1886 } 1887 1888 void addImmOperands(MCInst &Inst, unsigned N) const { 1889 assert(N == 1 && "Invalid number of operands!"); 1890 addExpr(Inst, getImm()); 1891 } 1892 1893 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1894 assert(N == 1 && "Invalid number of operands!"); 1895 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1896 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1897 } 1898 1899 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1900 assert(N == 1 && "Invalid number of operands!"); 1901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1902 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1903 } 1904 1905 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1906 assert(N == 1 && "Invalid number of operands!"); 1907 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1908 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1909 Inst.addOperand(MCOperand::createImm(Val)); 1910 } 1911 1912 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1913 assert(N == 1 && "Invalid number of operands!"); 1914 // FIXME: We really want to scale the value here, but the LDRD/STRD 1915 // instruction don't encode operands that way yet. 1916 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1917 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1918 } 1919 1920 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1921 assert(N == 1 && "Invalid number of operands!"); 1922 // The immediate is scaled by four in the encoding and is stored 1923 // in the MCInst as such. Lop off the low two bits here. 1924 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1925 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1926 } 1927 1928 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1929 assert(N == 1 && "Invalid number of operands!"); 1930 // The immediate is scaled by four in the encoding and is stored 1931 // in the MCInst as such. Lop off the low two bits here. 1932 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1933 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1934 } 1935 1936 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1937 assert(N == 1 && "Invalid number of operands!"); 1938 // The immediate is scaled by four in the encoding and is stored 1939 // in the MCInst as such. Lop off the low two bits here. 1940 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1941 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1942 } 1943 1944 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1945 assert(N == 1 && "Invalid number of operands!"); 1946 // The constant encodes as the immediate-1, and we store in the instruction 1947 // the bits as encoded, so subtract off one here. 1948 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1949 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1950 } 1951 1952 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1953 assert(N == 1 && "Invalid number of operands!"); 1954 // The constant encodes as the immediate-1, and we store in the instruction 1955 // the bits as encoded, so subtract off one here. 1956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1957 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1958 } 1959 1960 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1961 assert(N == 1 && "Invalid number of operands!"); 1962 // The constant encodes as the immediate, except for 32, which encodes as 1963 // zero. 1964 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1965 unsigned Imm = CE->getValue(); 1966 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1967 } 1968 1969 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1970 assert(N == 1 && "Invalid number of operands!"); 1971 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1972 // the instruction as well. 1973 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1974 int Val = CE->getValue(); 1975 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1976 } 1977 1978 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1979 assert(N == 1 && "Invalid number of operands!"); 1980 // The operand is actually a t2_so_imm, but we have its bitwise 1981 // negation in the assembly source, so twiddle it here. 1982 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1983 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1984 } 1985 1986 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1987 assert(N == 1 && "Invalid number of operands!"); 1988 // The operand is actually a t2_so_imm, but we have its 1989 // negation in the assembly source, so twiddle it here. 1990 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1991 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1992 } 1993 1994 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1995 assert(N == 1 && "Invalid number of operands!"); 1996 // The operand is actually an imm0_4095, but we have its 1997 // negation in the assembly source, so twiddle it here. 1998 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1999 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2000 } 2001 2002 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2003 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2004 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2005 return; 2006 } 2007 2008 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2009 assert(SR && "Unknown value type!"); 2010 Inst.addOperand(MCOperand::createExpr(SR)); 2011 } 2012 2013 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2014 assert(N == 1 && "Invalid number of operands!"); 2015 if (isImm()) { 2016 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2017 if (CE) { 2018 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2019 return; 2020 } 2021 2022 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2023 assert(SR && "Unknown value type!"); 2024 Inst.addOperand(MCOperand::createExpr(SR)); 2025 return; 2026 } 2027 2028 assert(isMem() && "Unknown value type!"); 2029 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2030 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2031 } 2032 2033 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2034 assert(N == 1 && "Invalid number of operands!"); 2035 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2036 } 2037 2038 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2039 assert(N == 1 && "Invalid number of operands!"); 2040 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2041 } 2042 2043 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2044 assert(N == 1 && "Invalid number of operands!"); 2045 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2046 } 2047 2048 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2049 assert(N == 1 && "Invalid number of operands!"); 2050 int32_t Imm = Memory.OffsetImm->getValue(); 2051 Inst.addOperand(MCOperand::createImm(Imm)); 2052 } 2053 2054 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2055 assert(N == 1 && "Invalid number of operands!"); 2056 assert(isImm() && "Not an immediate!"); 2057 2058 // If we have an immediate that's not a constant, treat it as a label 2059 // reference needing a fixup. 2060 if (!isa<MCConstantExpr>(getImm())) { 2061 Inst.addOperand(MCOperand::createExpr(getImm())); 2062 return; 2063 } 2064 2065 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2066 int Val = CE->getValue(); 2067 Inst.addOperand(MCOperand::createImm(Val)); 2068 } 2069 2070 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2071 assert(N == 2 && "Invalid number of operands!"); 2072 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2073 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2074 } 2075 2076 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2077 addAlignedMemoryOperands(Inst, N); 2078 } 2079 2080 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2081 addAlignedMemoryOperands(Inst, N); 2082 } 2083 2084 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2085 addAlignedMemoryOperands(Inst, N); 2086 } 2087 2088 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2089 addAlignedMemoryOperands(Inst, N); 2090 } 2091 2092 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2093 addAlignedMemoryOperands(Inst, N); 2094 } 2095 2096 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2097 addAlignedMemoryOperands(Inst, N); 2098 } 2099 2100 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2101 addAlignedMemoryOperands(Inst, N); 2102 } 2103 2104 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2105 addAlignedMemoryOperands(Inst, N); 2106 } 2107 2108 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2109 addAlignedMemoryOperands(Inst, N); 2110 } 2111 2112 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2113 addAlignedMemoryOperands(Inst, N); 2114 } 2115 2116 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2117 addAlignedMemoryOperands(Inst, N); 2118 } 2119 2120 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2121 assert(N == 3 && "Invalid number of operands!"); 2122 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2123 if (!Memory.OffsetRegNum) { 2124 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2125 // Special case for #-0 2126 if (Val == INT32_MIN) Val = 0; 2127 if (Val < 0) Val = -Val; 2128 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2129 } else { 2130 // For register offset, we encode the shift type and negation flag 2131 // here. 2132 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2133 Memory.ShiftImm, Memory.ShiftType); 2134 } 2135 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2136 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2137 Inst.addOperand(MCOperand::createImm(Val)); 2138 } 2139 2140 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2141 assert(N == 2 && "Invalid number of operands!"); 2142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2143 assert(CE && "non-constant AM2OffsetImm operand!"); 2144 int32_t Val = CE->getValue(); 2145 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2146 // Special case for #-0 2147 if (Val == INT32_MIN) Val = 0; 2148 if (Val < 0) Val = -Val; 2149 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2150 Inst.addOperand(MCOperand::createReg(0)); 2151 Inst.addOperand(MCOperand::createImm(Val)); 2152 } 2153 2154 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2155 assert(N == 3 && "Invalid number of operands!"); 2156 // If we have an immediate that's not a constant, treat it as a label 2157 // reference needing a fixup. If it is a constant, it's something else 2158 // and we reject it. 2159 if (isImm()) { 2160 Inst.addOperand(MCOperand::createExpr(getImm())); 2161 Inst.addOperand(MCOperand::createReg(0)); 2162 Inst.addOperand(MCOperand::createImm(0)); 2163 return; 2164 } 2165 2166 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2167 if (!Memory.OffsetRegNum) { 2168 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2169 // Special case for #-0 2170 if (Val == INT32_MIN) Val = 0; 2171 if (Val < 0) Val = -Val; 2172 Val = ARM_AM::getAM3Opc(AddSub, Val); 2173 } else { 2174 // For register offset, we encode the shift type and negation flag 2175 // here. 2176 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2177 } 2178 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2179 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2180 Inst.addOperand(MCOperand::createImm(Val)); 2181 } 2182 2183 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2184 assert(N == 2 && "Invalid number of operands!"); 2185 if (Kind == k_PostIndexRegister) { 2186 int32_t Val = 2187 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2188 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2189 Inst.addOperand(MCOperand::createImm(Val)); 2190 return; 2191 } 2192 2193 // Constant offset. 2194 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2195 int32_t Val = CE->getValue(); 2196 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2197 // Special case for #-0 2198 if (Val == INT32_MIN) Val = 0; 2199 if (Val < 0) Val = -Val; 2200 Val = ARM_AM::getAM3Opc(AddSub, Val); 2201 Inst.addOperand(MCOperand::createReg(0)); 2202 Inst.addOperand(MCOperand::createImm(Val)); 2203 } 2204 2205 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2206 assert(N == 2 && "Invalid number of operands!"); 2207 // If we have an immediate that's not a constant, treat it as a label 2208 // reference needing a fixup. If it is a constant, it's something else 2209 // and we reject it. 2210 if (isImm()) { 2211 Inst.addOperand(MCOperand::createExpr(getImm())); 2212 Inst.addOperand(MCOperand::createImm(0)); 2213 return; 2214 } 2215 2216 // The lower two bits are always zero and as such are not encoded. 2217 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2218 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2219 // Special case for #-0 2220 if (Val == INT32_MIN) Val = 0; 2221 if (Val < 0) Val = -Val; 2222 Val = ARM_AM::getAM5Opc(AddSub, Val); 2223 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2224 Inst.addOperand(MCOperand::createImm(Val)); 2225 } 2226 2227 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2228 assert(N == 2 && "Invalid number of operands!"); 2229 // If we have an immediate that's not a constant, treat it as a label 2230 // reference needing a fixup. If it is a constant, it's something else 2231 // and we reject it. 2232 if (isImm()) { 2233 Inst.addOperand(MCOperand::createExpr(getImm())); 2234 Inst.addOperand(MCOperand::createImm(0)); 2235 return; 2236 } 2237 2238 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2239 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2240 Inst.addOperand(MCOperand::createImm(Val)); 2241 } 2242 2243 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2244 assert(N == 2 && "Invalid number of operands!"); 2245 // The lower two bits are always zero and as such are not encoded. 2246 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2247 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2248 Inst.addOperand(MCOperand::createImm(Val)); 2249 } 2250 2251 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2252 assert(N == 2 && "Invalid number of operands!"); 2253 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2254 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2255 Inst.addOperand(MCOperand::createImm(Val)); 2256 } 2257 2258 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2259 addMemImm8OffsetOperands(Inst, N); 2260 } 2261 2262 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2263 addMemImm8OffsetOperands(Inst, N); 2264 } 2265 2266 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2267 assert(N == 2 && "Invalid number of operands!"); 2268 // If this is an immediate, it's a label reference. 2269 if (isImm()) { 2270 addExpr(Inst, getImm()); 2271 Inst.addOperand(MCOperand::createImm(0)); 2272 return; 2273 } 2274 2275 // Otherwise, it's a normal memory reg+offset. 2276 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2277 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2278 Inst.addOperand(MCOperand::createImm(Val)); 2279 } 2280 2281 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2282 assert(N == 2 && "Invalid number of operands!"); 2283 // If this is an immediate, it's a label reference. 2284 if (isImm()) { 2285 addExpr(Inst, getImm()); 2286 Inst.addOperand(MCOperand::createImm(0)); 2287 return; 2288 } 2289 2290 // Otherwise, it's a normal memory reg+offset. 2291 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2292 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2293 Inst.addOperand(MCOperand::createImm(Val)); 2294 } 2295 2296 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2297 assert(N == 2 && "Invalid number of operands!"); 2298 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2299 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2300 } 2301 2302 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2303 assert(N == 2 && "Invalid number of operands!"); 2304 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2305 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2306 } 2307 2308 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2309 assert(N == 3 && "Invalid number of operands!"); 2310 unsigned Val = 2311 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2312 Memory.ShiftImm, Memory.ShiftType); 2313 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2314 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2315 Inst.addOperand(MCOperand::createImm(Val)); 2316 } 2317 2318 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2319 assert(N == 3 && "Invalid number of operands!"); 2320 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2321 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2322 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2323 } 2324 2325 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2326 assert(N == 2 && "Invalid number of operands!"); 2327 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2328 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2329 } 2330 2331 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2332 assert(N == 2 && "Invalid number of operands!"); 2333 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2334 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2335 Inst.addOperand(MCOperand::createImm(Val)); 2336 } 2337 2338 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2339 assert(N == 2 && "Invalid number of operands!"); 2340 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2341 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2342 Inst.addOperand(MCOperand::createImm(Val)); 2343 } 2344 2345 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2346 assert(N == 2 && "Invalid number of operands!"); 2347 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2348 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2349 Inst.addOperand(MCOperand::createImm(Val)); 2350 } 2351 2352 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2353 assert(N == 2 && "Invalid number of operands!"); 2354 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2355 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2356 Inst.addOperand(MCOperand::createImm(Val)); 2357 } 2358 2359 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2360 assert(N == 1 && "Invalid number of operands!"); 2361 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2362 assert(CE && "non-constant post-idx-imm8 operand!"); 2363 int Imm = CE->getValue(); 2364 bool isAdd = Imm >= 0; 2365 if (Imm == INT32_MIN) Imm = 0; 2366 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2367 Inst.addOperand(MCOperand::createImm(Imm)); 2368 } 2369 2370 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2371 assert(N == 1 && "Invalid number of operands!"); 2372 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2373 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2374 int Imm = CE->getValue(); 2375 bool isAdd = Imm >= 0; 2376 if (Imm == INT32_MIN) Imm = 0; 2377 // Immediate is scaled by 4. 2378 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2379 Inst.addOperand(MCOperand::createImm(Imm)); 2380 } 2381 2382 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2383 assert(N == 2 && "Invalid number of operands!"); 2384 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2385 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2386 } 2387 2388 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2389 assert(N == 2 && "Invalid number of operands!"); 2390 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2391 // The sign, shift type, and shift amount are encoded in a single operand 2392 // using the AM2 encoding helpers. 2393 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2394 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2395 PostIdxReg.ShiftTy); 2396 Inst.addOperand(MCOperand::createImm(Imm)); 2397 } 2398 2399 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2400 assert(N == 1 && "Invalid number of operands!"); 2401 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2402 } 2403 2404 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2405 assert(N == 1 && "Invalid number of operands!"); 2406 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2407 } 2408 2409 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2410 assert(N == 1 && "Invalid number of operands!"); 2411 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2412 } 2413 2414 void addVecListOperands(MCInst &Inst, unsigned N) const { 2415 assert(N == 1 && "Invalid number of operands!"); 2416 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2417 } 2418 2419 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2420 assert(N == 2 && "Invalid number of operands!"); 2421 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2422 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2423 } 2424 2425 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2426 assert(N == 1 && "Invalid number of operands!"); 2427 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2428 } 2429 2430 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2431 assert(N == 1 && "Invalid number of operands!"); 2432 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2433 } 2434 2435 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2436 assert(N == 1 && "Invalid number of operands!"); 2437 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2438 } 2439 2440 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2441 assert(N == 1 && "Invalid number of operands!"); 2442 // The immediate encodes the type of constant as well as the value. 2443 // Mask in that this is an i8 splat. 2444 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2445 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2446 } 2447 2448 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2449 assert(N == 1 && "Invalid number of operands!"); 2450 // The immediate encodes the type of constant as well as the value. 2451 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2452 unsigned Value = CE->getValue(); 2453 Value = ARM_AM::encodeNEONi16splat(Value); 2454 Inst.addOperand(MCOperand::createImm(Value)); 2455 } 2456 2457 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2458 assert(N == 1 && "Invalid number of operands!"); 2459 // The immediate encodes the type of constant as well as the value. 2460 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2461 unsigned Value = CE->getValue(); 2462 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2463 Inst.addOperand(MCOperand::createImm(Value)); 2464 } 2465 2466 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2467 assert(N == 1 && "Invalid number of operands!"); 2468 // The immediate encodes the type of constant as well as the value. 2469 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2470 unsigned Value = CE->getValue(); 2471 Value = ARM_AM::encodeNEONi32splat(Value); 2472 Inst.addOperand(MCOperand::createImm(Value)); 2473 } 2474 2475 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2476 assert(N == 1 && "Invalid number of operands!"); 2477 // The immediate encodes the type of constant as well as the value. 2478 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2479 unsigned Value = CE->getValue(); 2480 Value = ARM_AM::encodeNEONi32splat(~Value); 2481 Inst.addOperand(MCOperand::createImm(Value)); 2482 } 2483 2484 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2485 assert(N == 1 && "Invalid number of operands!"); 2486 // The immediate encodes the type of constant as well as the value. 2487 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2488 unsigned Value = CE->getValue(); 2489 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2490 Inst.getOpcode() == ARM::VMOVv16i8) && 2491 "All vmvn instructions that wants to replicate non-zero byte " 2492 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2493 unsigned B = ((~Value) & 0xff); 2494 B |= 0xe00; // cmode = 0b1110 2495 Inst.addOperand(MCOperand::createImm(B)); 2496 } 2497 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2498 assert(N == 1 && "Invalid number of operands!"); 2499 // The immediate encodes the type of constant as well as the value. 2500 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2501 unsigned Value = CE->getValue(); 2502 if (Value >= 256 && Value <= 0xffff) 2503 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2504 else if (Value > 0xffff && Value <= 0xffffff) 2505 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2506 else if (Value > 0xffffff) 2507 Value = (Value >> 24) | 0x600; 2508 Inst.addOperand(MCOperand::createImm(Value)); 2509 } 2510 2511 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2512 assert(N == 1 && "Invalid number of operands!"); 2513 // The immediate encodes the type of constant as well as the value. 2514 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2515 unsigned Value = CE->getValue(); 2516 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2517 Inst.getOpcode() == ARM::VMOVv16i8) && 2518 "All instructions that wants to replicate non-zero byte " 2519 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2520 unsigned B = Value & 0xff; 2521 B |= 0xe00; // cmode = 0b1110 2522 Inst.addOperand(MCOperand::createImm(B)); 2523 } 2524 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2525 assert(N == 1 && "Invalid number of operands!"); 2526 // The immediate encodes the type of constant as well as the value. 2527 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2528 unsigned Value = ~CE->getValue(); 2529 if (Value >= 256 && Value <= 0xffff) 2530 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2531 else if (Value > 0xffff && Value <= 0xffffff) 2532 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2533 else if (Value > 0xffffff) 2534 Value = (Value >> 24) | 0x600; 2535 Inst.addOperand(MCOperand::createImm(Value)); 2536 } 2537 2538 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 // The immediate encodes the type of constant as well as the value. 2541 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2542 uint64_t Value = CE->getValue(); 2543 unsigned Imm = 0; 2544 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2545 Imm |= (Value & 1) << i; 2546 } 2547 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2548 } 2549 2550 void print(raw_ostream &OS) const override; 2551 2552 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2553 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2554 Op->ITMask.Mask = Mask; 2555 Op->StartLoc = S; 2556 Op->EndLoc = S; 2557 return Op; 2558 } 2559 2560 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2561 SMLoc S) { 2562 auto Op = make_unique<ARMOperand>(k_CondCode); 2563 Op->CC.Val = CC; 2564 Op->StartLoc = S; 2565 Op->EndLoc = S; 2566 return Op; 2567 } 2568 2569 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2570 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2571 Op->Cop.Val = CopVal; 2572 Op->StartLoc = S; 2573 Op->EndLoc = S; 2574 return Op; 2575 } 2576 2577 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2578 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2579 Op->Cop.Val = CopVal; 2580 Op->StartLoc = S; 2581 Op->EndLoc = S; 2582 return Op; 2583 } 2584 2585 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2586 SMLoc E) { 2587 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2588 Op->Cop.Val = Val; 2589 Op->StartLoc = S; 2590 Op->EndLoc = E; 2591 return Op; 2592 } 2593 2594 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2595 auto Op = make_unique<ARMOperand>(k_CCOut); 2596 Op->Reg.RegNum = RegNum; 2597 Op->StartLoc = S; 2598 Op->EndLoc = S; 2599 return Op; 2600 } 2601 2602 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2603 auto Op = make_unique<ARMOperand>(k_Token); 2604 Op->Tok.Data = Str.data(); 2605 Op->Tok.Length = Str.size(); 2606 Op->StartLoc = S; 2607 Op->EndLoc = S; 2608 return Op; 2609 } 2610 2611 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2612 SMLoc E) { 2613 auto Op = make_unique<ARMOperand>(k_Register); 2614 Op->Reg.RegNum = RegNum; 2615 Op->StartLoc = S; 2616 Op->EndLoc = E; 2617 return Op; 2618 } 2619 2620 static std::unique_ptr<ARMOperand> 2621 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2622 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2623 SMLoc E) { 2624 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2625 Op->RegShiftedReg.ShiftTy = ShTy; 2626 Op->RegShiftedReg.SrcReg = SrcReg; 2627 Op->RegShiftedReg.ShiftReg = ShiftReg; 2628 Op->RegShiftedReg.ShiftImm = ShiftImm; 2629 Op->StartLoc = S; 2630 Op->EndLoc = E; 2631 return Op; 2632 } 2633 2634 static std::unique_ptr<ARMOperand> 2635 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2636 unsigned ShiftImm, SMLoc S, SMLoc E) { 2637 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2638 Op->RegShiftedImm.ShiftTy = ShTy; 2639 Op->RegShiftedImm.SrcReg = SrcReg; 2640 Op->RegShiftedImm.ShiftImm = ShiftImm; 2641 Op->StartLoc = S; 2642 Op->EndLoc = E; 2643 return Op; 2644 } 2645 2646 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2647 SMLoc S, SMLoc E) { 2648 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2649 Op->ShifterImm.isASR = isASR; 2650 Op->ShifterImm.Imm = Imm; 2651 Op->StartLoc = S; 2652 Op->EndLoc = E; 2653 return Op; 2654 } 2655 2656 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2657 SMLoc E) { 2658 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2659 Op->RotImm.Imm = Imm; 2660 Op->StartLoc = S; 2661 Op->EndLoc = E; 2662 return Op; 2663 } 2664 2665 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2666 SMLoc S, SMLoc E) { 2667 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2668 Op->ModImm.Bits = Bits; 2669 Op->ModImm.Rot = Rot; 2670 Op->StartLoc = S; 2671 Op->EndLoc = E; 2672 return Op; 2673 } 2674 2675 static std::unique_ptr<ARMOperand> 2676 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2677 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2678 Op->Bitfield.LSB = LSB; 2679 Op->Bitfield.Width = Width; 2680 Op->StartLoc = S; 2681 Op->EndLoc = E; 2682 return Op; 2683 } 2684 2685 static std::unique_ptr<ARMOperand> 2686 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2687 SMLoc StartLoc, SMLoc EndLoc) { 2688 assert (Regs.size() > 0 && "RegList contains no registers?"); 2689 KindTy Kind = k_RegisterList; 2690 2691 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2692 Kind = k_DPRRegisterList; 2693 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2694 contains(Regs.front().second)) 2695 Kind = k_SPRRegisterList; 2696 2697 // Sort based on the register encoding values. 2698 array_pod_sort(Regs.begin(), Regs.end()); 2699 2700 auto Op = make_unique<ARMOperand>(Kind); 2701 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2702 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2703 Op->Registers.push_back(I->second); 2704 Op->StartLoc = StartLoc; 2705 Op->EndLoc = EndLoc; 2706 return Op; 2707 } 2708 2709 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2710 unsigned Count, 2711 bool isDoubleSpaced, 2712 SMLoc S, SMLoc E) { 2713 auto Op = make_unique<ARMOperand>(k_VectorList); 2714 Op->VectorList.RegNum = RegNum; 2715 Op->VectorList.Count = Count; 2716 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2717 Op->StartLoc = S; 2718 Op->EndLoc = E; 2719 return Op; 2720 } 2721 2722 static std::unique_ptr<ARMOperand> 2723 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2724 SMLoc S, SMLoc E) { 2725 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2726 Op->VectorList.RegNum = RegNum; 2727 Op->VectorList.Count = Count; 2728 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2729 Op->StartLoc = S; 2730 Op->EndLoc = E; 2731 return Op; 2732 } 2733 2734 static std::unique_ptr<ARMOperand> 2735 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2736 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2737 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2738 Op->VectorList.RegNum = RegNum; 2739 Op->VectorList.Count = Count; 2740 Op->VectorList.LaneIndex = Index; 2741 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2742 Op->StartLoc = S; 2743 Op->EndLoc = E; 2744 return Op; 2745 } 2746 2747 static std::unique_ptr<ARMOperand> 2748 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2749 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2750 Op->VectorIndex.Val = Idx; 2751 Op->StartLoc = S; 2752 Op->EndLoc = E; 2753 return Op; 2754 } 2755 2756 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2757 SMLoc E) { 2758 auto Op = make_unique<ARMOperand>(k_Immediate); 2759 Op->Imm.Val = Val; 2760 Op->StartLoc = S; 2761 Op->EndLoc = E; 2762 return Op; 2763 } 2764 2765 static std::unique_ptr<ARMOperand> 2766 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2767 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2768 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2769 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2770 auto Op = make_unique<ARMOperand>(k_Memory); 2771 Op->Memory.BaseRegNum = BaseRegNum; 2772 Op->Memory.OffsetImm = OffsetImm; 2773 Op->Memory.OffsetRegNum = OffsetRegNum; 2774 Op->Memory.ShiftType = ShiftType; 2775 Op->Memory.ShiftImm = ShiftImm; 2776 Op->Memory.Alignment = Alignment; 2777 Op->Memory.isNegative = isNegative; 2778 Op->StartLoc = S; 2779 Op->EndLoc = E; 2780 Op->AlignmentLoc = AlignmentLoc; 2781 return Op; 2782 } 2783 2784 static std::unique_ptr<ARMOperand> 2785 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2786 unsigned ShiftImm, SMLoc S, SMLoc E) { 2787 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2788 Op->PostIdxReg.RegNum = RegNum; 2789 Op->PostIdxReg.isAdd = isAdd; 2790 Op->PostIdxReg.ShiftTy = ShiftTy; 2791 Op->PostIdxReg.ShiftImm = ShiftImm; 2792 Op->StartLoc = S; 2793 Op->EndLoc = E; 2794 return Op; 2795 } 2796 2797 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2798 SMLoc S) { 2799 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2800 Op->MBOpt.Val = Opt; 2801 Op->StartLoc = S; 2802 Op->EndLoc = S; 2803 return Op; 2804 } 2805 2806 static std::unique_ptr<ARMOperand> 2807 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2808 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2809 Op->ISBOpt.Val = Opt; 2810 Op->StartLoc = S; 2811 Op->EndLoc = S; 2812 return Op; 2813 } 2814 2815 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2816 SMLoc S) { 2817 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2818 Op->IFlags.Val = IFlags; 2819 Op->StartLoc = S; 2820 Op->EndLoc = S; 2821 return Op; 2822 } 2823 2824 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2825 auto Op = make_unique<ARMOperand>(k_MSRMask); 2826 Op->MMask.Val = MMask; 2827 Op->StartLoc = S; 2828 Op->EndLoc = S; 2829 return Op; 2830 } 2831 2832 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2833 auto Op = make_unique<ARMOperand>(k_BankedReg); 2834 Op->BankedReg.Val = Reg; 2835 Op->StartLoc = S; 2836 Op->EndLoc = S; 2837 return Op; 2838 } 2839 }; 2840 2841 } // end anonymous namespace. 2842 2843 void ARMOperand::print(raw_ostream &OS) const { 2844 switch (Kind) { 2845 case k_CondCode: 2846 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2847 break; 2848 case k_CCOut: 2849 OS << "<ccout " << getReg() << ">"; 2850 break; 2851 case k_ITCondMask: { 2852 static const char *const MaskStr[] = { 2853 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2854 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2855 }; 2856 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2857 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2858 break; 2859 } 2860 case k_CoprocNum: 2861 OS << "<coprocessor number: " << getCoproc() << ">"; 2862 break; 2863 case k_CoprocReg: 2864 OS << "<coprocessor register: " << getCoproc() << ">"; 2865 break; 2866 case k_CoprocOption: 2867 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2868 break; 2869 case k_MSRMask: 2870 OS << "<mask: " << getMSRMask() << ">"; 2871 break; 2872 case k_BankedReg: 2873 OS << "<banked reg: " << getBankedReg() << ">"; 2874 break; 2875 case k_Immediate: 2876 OS << *getImm(); 2877 break; 2878 case k_MemBarrierOpt: 2879 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2880 break; 2881 case k_InstSyncBarrierOpt: 2882 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2883 break; 2884 case k_Memory: 2885 OS << "<memory " 2886 << " base:" << Memory.BaseRegNum; 2887 OS << ">"; 2888 break; 2889 case k_PostIndexRegister: 2890 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2891 << PostIdxReg.RegNum; 2892 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2893 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2894 << PostIdxReg.ShiftImm; 2895 OS << ">"; 2896 break; 2897 case k_ProcIFlags: { 2898 OS << "<ARM_PROC::"; 2899 unsigned IFlags = getProcIFlags(); 2900 for (int i=2; i >= 0; --i) 2901 if (IFlags & (1 << i)) 2902 OS << ARM_PROC::IFlagsToString(1 << i); 2903 OS << ">"; 2904 break; 2905 } 2906 case k_Register: 2907 OS << "<register " << getReg() << ">"; 2908 break; 2909 case k_ShifterImmediate: 2910 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2911 << " #" << ShifterImm.Imm << ">"; 2912 break; 2913 case k_ShiftedRegister: 2914 OS << "<so_reg_reg " 2915 << RegShiftedReg.SrcReg << " " 2916 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2917 << " " << RegShiftedReg.ShiftReg << ">"; 2918 break; 2919 case k_ShiftedImmediate: 2920 OS << "<so_reg_imm " 2921 << RegShiftedImm.SrcReg << " " 2922 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2923 << " #" << RegShiftedImm.ShiftImm << ">"; 2924 break; 2925 case k_RotateImmediate: 2926 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2927 break; 2928 case k_ModifiedImmediate: 2929 OS << "<mod_imm #" << ModImm.Bits << ", #" 2930 << ModImm.Rot << ")>"; 2931 break; 2932 case k_BitfieldDescriptor: 2933 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2934 << ", width: " << Bitfield.Width << ">"; 2935 break; 2936 case k_RegisterList: 2937 case k_DPRRegisterList: 2938 case k_SPRRegisterList: { 2939 OS << "<register_list "; 2940 2941 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2942 for (SmallVectorImpl<unsigned>::const_iterator 2943 I = RegList.begin(), E = RegList.end(); I != E; ) { 2944 OS << *I; 2945 if (++I < E) OS << ", "; 2946 } 2947 2948 OS << ">"; 2949 break; 2950 } 2951 case k_VectorList: 2952 OS << "<vector_list " << VectorList.Count << " * " 2953 << VectorList.RegNum << ">"; 2954 break; 2955 case k_VectorListAllLanes: 2956 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2957 << VectorList.RegNum << ">"; 2958 break; 2959 case k_VectorListIndexed: 2960 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2961 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2962 break; 2963 case k_Token: 2964 OS << "'" << getToken() << "'"; 2965 break; 2966 case k_VectorIndex: 2967 OS << "<vectorindex " << getVectorIndex() << ">"; 2968 break; 2969 } 2970 } 2971 2972 /// @name Auto-generated Match Functions 2973 /// { 2974 2975 static unsigned MatchRegisterName(StringRef Name); 2976 2977 /// } 2978 2979 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2980 SMLoc &StartLoc, SMLoc &EndLoc) { 2981 const AsmToken &Tok = getParser().getTok(); 2982 StartLoc = Tok.getLoc(); 2983 EndLoc = Tok.getEndLoc(); 2984 RegNo = tryParseRegister(); 2985 2986 return (RegNo == (unsigned)-1); 2987 } 2988 2989 /// Try to parse a register name. The token must be an Identifier when called, 2990 /// and if it is a register name the token is eaten and the register number is 2991 /// returned. Otherwise return -1. 2992 /// 2993 int ARMAsmParser::tryParseRegister() { 2994 MCAsmParser &Parser = getParser(); 2995 const AsmToken &Tok = Parser.getTok(); 2996 if (Tok.isNot(AsmToken::Identifier)) return -1; 2997 2998 std::string lowerCase = Tok.getString().lower(); 2999 unsigned RegNum = MatchRegisterName(lowerCase); 3000 if (!RegNum) { 3001 RegNum = StringSwitch<unsigned>(lowerCase) 3002 .Case("r13", ARM::SP) 3003 .Case("r14", ARM::LR) 3004 .Case("r15", ARM::PC) 3005 .Case("ip", ARM::R12) 3006 // Additional register name aliases for 'gas' compatibility. 3007 .Case("a1", ARM::R0) 3008 .Case("a2", ARM::R1) 3009 .Case("a3", ARM::R2) 3010 .Case("a4", ARM::R3) 3011 .Case("v1", ARM::R4) 3012 .Case("v2", ARM::R5) 3013 .Case("v3", ARM::R6) 3014 .Case("v4", ARM::R7) 3015 .Case("v5", ARM::R8) 3016 .Case("v6", ARM::R9) 3017 .Case("v7", ARM::R10) 3018 .Case("v8", ARM::R11) 3019 .Case("sb", ARM::R9) 3020 .Case("sl", ARM::R10) 3021 .Case("fp", ARM::R11) 3022 .Default(0); 3023 } 3024 if (!RegNum) { 3025 // Check for aliases registered via .req. Canonicalize to lower case. 3026 // That's more consistent since register names are case insensitive, and 3027 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3028 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3029 // If no match, return failure. 3030 if (Entry == RegisterReqs.end()) 3031 return -1; 3032 Parser.Lex(); // Eat identifier token. 3033 return Entry->getValue(); 3034 } 3035 3036 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3037 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3038 return -1; 3039 3040 Parser.Lex(); // Eat identifier token. 3041 3042 return RegNum; 3043 } 3044 3045 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3046 // If a recoverable error occurs, return 1. If an irrecoverable error 3047 // occurs, return -1. An irrecoverable error is one where tokens have been 3048 // consumed in the process of trying to parse the shifter (i.e., when it is 3049 // indeed a shifter operand, but malformed). 3050 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3051 MCAsmParser &Parser = getParser(); 3052 SMLoc S = Parser.getTok().getLoc(); 3053 const AsmToken &Tok = Parser.getTok(); 3054 if (Tok.isNot(AsmToken::Identifier)) 3055 return -1; 3056 3057 std::string lowerCase = Tok.getString().lower(); 3058 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3059 .Case("asl", ARM_AM::lsl) 3060 .Case("lsl", ARM_AM::lsl) 3061 .Case("lsr", ARM_AM::lsr) 3062 .Case("asr", ARM_AM::asr) 3063 .Case("ror", ARM_AM::ror) 3064 .Case("rrx", ARM_AM::rrx) 3065 .Default(ARM_AM::no_shift); 3066 3067 if (ShiftTy == ARM_AM::no_shift) 3068 return 1; 3069 3070 Parser.Lex(); // Eat the operator. 3071 3072 // The source register for the shift has already been added to the 3073 // operand list, so we need to pop it off and combine it into the shifted 3074 // register operand instead. 3075 std::unique_ptr<ARMOperand> PrevOp( 3076 (ARMOperand *)Operands.pop_back_val().release()); 3077 if (!PrevOp->isReg()) 3078 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3079 int SrcReg = PrevOp->getReg(); 3080 3081 SMLoc EndLoc; 3082 int64_t Imm = 0; 3083 int ShiftReg = 0; 3084 if (ShiftTy == ARM_AM::rrx) { 3085 // RRX Doesn't have an explicit shift amount. The encoder expects 3086 // the shift register to be the same as the source register. Seems odd, 3087 // but OK. 3088 ShiftReg = SrcReg; 3089 } else { 3090 // Figure out if this is shifted by a constant or a register (for non-RRX). 3091 if (Parser.getTok().is(AsmToken::Hash) || 3092 Parser.getTok().is(AsmToken::Dollar)) { 3093 Parser.Lex(); // Eat hash. 3094 SMLoc ImmLoc = Parser.getTok().getLoc(); 3095 const MCExpr *ShiftExpr = nullptr; 3096 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3097 Error(ImmLoc, "invalid immediate shift value"); 3098 return -1; 3099 } 3100 // The expression must be evaluatable as an immediate. 3101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3102 if (!CE) { 3103 Error(ImmLoc, "invalid immediate shift value"); 3104 return -1; 3105 } 3106 // Range check the immediate. 3107 // lsl, ror: 0 <= imm <= 31 3108 // lsr, asr: 0 <= imm <= 32 3109 Imm = CE->getValue(); 3110 if (Imm < 0 || 3111 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3112 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3113 Error(ImmLoc, "immediate shift value out of range"); 3114 return -1; 3115 } 3116 // shift by zero is a nop. Always send it through as lsl. 3117 // ('as' compatibility) 3118 if (Imm == 0) 3119 ShiftTy = ARM_AM::lsl; 3120 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3121 SMLoc L = Parser.getTok().getLoc(); 3122 EndLoc = Parser.getTok().getEndLoc(); 3123 ShiftReg = tryParseRegister(); 3124 if (ShiftReg == -1) { 3125 Error(L, "expected immediate or register in shift operand"); 3126 return -1; 3127 } 3128 } else { 3129 Error(Parser.getTok().getLoc(), 3130 "expected immediate or register in shift operand"); 3131 return -1; 3132 } 3133 } 3134 3135 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3136 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3137 ShiftReg, Imm, 3138 S, EndLoc)); 3139 else 3140 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3141 S, EndLoc)); 3142 3143 return 0; 3144 } 3145 3146 3147 /// Try to parse a register name. The token must be an Identifier when called. 3148 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3149 /// if there is a "writeback". 'true' if it's not a register. 3150 /// 3151 /// TODO this is likely to change to allow different register types and or to 3152 /// parse for a specific register type. 3153 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3154 MCAsmParser &Parser = getParser(); 3155 const AsmToken &RegTok = Parser.getTok(); 3156 int RegNo = tryParseRegister(); 3157 if (RegNo == -1) 3158 return true; 3159 3160 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3161 RegTok.getEndLoc())); 3162 3163 const AsmToken &ExclaimTok = Parser.getTok(); 3164 if (ExclaimTok.is(AsmToken::Exclaim)) { 3165 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3166 ExclaimTok.getLoc())); 3167 Parser.Lex(); // Eat exclaim token 3168 return false; 3169 } 3170 3171 // Also check for an index operand. This is only legal for vector registers, 3172 // but that'll get caught OK in operand matching, so we don't need to 3173 // explicitly filter everything else out here. 3174 if (Parser.getTok().is(AsmToken::LBrac)) { 3175 SMLoc SIdx = Parser.getTok().getLoc(); 3176 Parser.Lex(); // Eat left bracket token. 3177 3178 const MCExpr *ImmVal; 3179 if (getParser().parseExpression(ImmVal)) 3180 return true; 3181 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3182 if (!MCE) 3183 return TokError("immediate value expected for vector index"); 3184 3185 if (Parser.getTok().isNot(AsmToken::RBrac)) 3186 return Error(Parser.getTok().getLoc(), "']' expected"); 3187 3188 SMLoc E = Parser.getTok().getEndLoc(); 3189 Parser.Lex(); // Eat right bracket token. 3190 3191 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3192 SIdx, E, 3193 getContext())); 3194 } 3195 3196 return false; 3197 } 3198 3199 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3200 /// instruction with a symbolic operand name. 3201 /// We accept "crN" syntax for GAS compatibility. 3202 /// <operand-name> ::= <prefix><number> 3203 /// If CoprocOp is 'c', then: 3204 /// <prefix> ::= c | cr 3205 /// If CoprocOp is 'p', then : 3206 /// <prefix> ::= p 3207 /// <number> ::= integer in range [0, 15] 3208 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3209 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3210 // but efficient. 3211 if (Name.size() < 2 || Name[0] != CoprocOp) 3212 return -1; 3213 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3214 3215 switch (Name.size()) { 3216 default: return -1; 3217 case 1: 3218 switch (Name[0]) { 3219 default: return -1; 3220 case '0': return 0; 3221 case '1': return 1; 3222 case '2': return 2; 3223 case '3': return 3; 3224 case '4': return 4; 3225 case '5': return 5; 3226 case '6': return 6; 3227 case '7': return 7; 3228 case '8': return 8; 3229 case '9': return 9; 3230 } 3231 case 2: 3232 if (Name[0] != '1') 3233 return -1; 3234 switch (Name[1]) { 3235 default: return -1; 3236 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3237 // However, old cores (v5/v6) did use them in that way. 3238 case '0': return 10; 3239 case '1': return 11; 3240 case '2': return 12; 3241 case '3': return 13; 3242 case '4': return 14; 3243 case '5': return 15; 3244 } 3245 } 3246 } 3247 3248 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3249 ARMAsmParser::OperandMatchResultTy 3250 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3251 MCAsmParser &Parser = getParser(); 3252 SMLoc S = Parser.getTok().getLoc(); 3253 const AsmToken &Tok = Parser.getTok(); 3254 if (!Tok.is(AsmToken::Identifier)) 3255 return MatchOperand_NoMatch; 3256 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3257 .Case("eq", ARMCC::EQ) 3258 .Case("ne", ARMCC::NE) 3259 .Case("hs", ARMCC::HS) 3260 .Case("cs", ARMCC::HS) 3261 .Case("lo", ARMCC::LO) 3262 .Case("cc", ARMCC::LO) 3263 .Case("mi", ARMCC::MI) 3264 .Case("pl", ARMCC::PL) 3265 .Case("vs", ARMCC::VS) 3266 .Case("vc", ARMCC::VC) 3267 .Case("hi", ARMCC::HI) 3268 .Case("ls", ARMCC::LS) 3269 .Case("ge", ARMCC::GE) 3270 .Case("lt", ARMCC::LT) 3271 .Case("gt", ARMCC::GT) 3272 .Case("le", ARMCC::LE) 3273 .Case("al", ARMCC::AL) 3274 .Default(~0U); 3275 if (CC == ~0U) 3276 return MatchOperand_NoMatch; 3277 Parser.Lex(); // Eat the token. 3278 3279 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3280 3281 return MatchOperand_Success; 3282 } 3283 3284 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3285 /// token must be an Identifier when called, and if it is a coprocessor 3286 /// number, the token is eaten and the operand is added to the operand list. 3287 ARMAsmParser::OperandMatchResultTy 3288 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3289 MCAsmParser &Parser = getParser(); 3290 SMLoc S = Parser.getTok().getLoc(); 3291 const AsmToken &Tok = Parser.getTok(); 3292 if (Tok.isNot(AsmToken::Identifier)) 3293 return MatchOperand_NoMatch; 3294 3295 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3296 if (Num == -1) 3297 return MatchOperand_NoMatch; 3298 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3299 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3300 return MatchOperand_NoMatch; 3301 3302 Parser.Lex(); // Eat identifier token. 3303 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3304 return MatchOperand_Success; 3305 } 3306 3307 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3308 /// token must be an Identifier when called, and if it is a coprocessor 3309 /// number, the token is eaten and the operand is added to the operand list. 3310 ARMAsmParser::OperandMatchResultTy 3311 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3312 MCAsmParser &Parser = getParser(); 3313 SMLoc S = Parser.getTok().getLoc(); 3314 const AsmToken &Tok = Parser.getTok(); 3315 if (Tok.isNot(AsmToken::Identifier)) 3316 return MatchOperand_NoMatch; 3317 3318 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3319 if (Reg == -1) 3320 return MatchOperand_NoMatch; 3321 3322 Parser.Lex(); // Eat identifier token. 3323 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3324 return MatchOperand_Success; 3325 } 3326 3327 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3328 /// coproc_option : '{' imm0_255 '}' 3329 ARMAsmParser::OperandMatchResultTy 3330 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3331 MCAsmParser &Parser = getParser(); 3332 SMLoc S = Parser.getTok().getLoc(); 3333 3334 // If this isn't a '{', this isn't a coprocessor immediate operand. 3335 if (Parser.getTok().isNot(AsmToken::LCurly)) 3336 return MatchOperand_NoMatch; 3337 Parser.Lex(); // Eat the '{' 3338 3339 const MCExpr *Expr; 3340 SMLoc Loc = Parser.getTok().getLoc(); 3341 if (getParser().parseExpression(Expr)) { 3342 Error(Loc, "illegal expression"); 3343 return MatchOperand_ParseFail; 3344 } 3345 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3346 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3347 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3348 return MatchOperand_ParseFail; 3349 } 3350 int Val = CE->getValue(); 3351 3352 // Check for and consume the closing '}' 3353 if (Parser.getTok().isNot(AsmToken::RCurly)) 3354 return MatchOperand_ParseFail; 3355 SMLoc E = Parser.getTok().getEndLoc(); 3356 Parser.Lex(); // Eat the '}' 3357 3358 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3359 return MatchOperand_Success; 3360 } 3361 3362 // For register list parsing, we need to map from raw GPR register numbering 3363 // to the enumeration values. The enumeration values aren't sorted by 3364 // register number due to our using "sp", "lr" and "pc" as canonical names. 3365 static unsigned getNextRegister(unsigned Reg) { 3366 // If this is a GPR, we need to do it manually, otherwise we can rely 3367 // on the sort ordering of the enumeration since the other reg-classes 3368 // are sane. 3369 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3370 return Reg + 1; 3371 switch(Reg) { 3372 default: llvm_unreachable("Invalid GPR number!"); 3373 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3374 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3375 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3376 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3377 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3378 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3379 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3380 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3381 } 3382 } 3383 3384 // Return the low-subreg of a given Q register. 3385 static unsigned getDRegFromQReg(unsigned QReg) { 3386 switch (QReg) { 3387 default: llvm_unreachable("expected a Q register!"); 3388 case ARM::Q0: return ARM::D0; 3389 case ARM::Q1: return ARM::D2; 3390 case ARM::Q2: return ARM::D4; 3391 case ARM::Q3: return ARM::D6; 3392 case ARM::Q4: return ARM::D8; 3393 case ARM::Q5: return ARM::D10; 3394 case ARM::Q6: return ARM::D12; 3395 case ARM::Q7: return ARM::D14; 3396 case ARM::Q8: return ARM::D16; 3397 case ARM::Q9: return ARM::D18; 3398 case ARM::Q10: return ARM::D20; 3399 case ARM::Q11: return ARM::D22; 3400 case ARM::Q12: return ARM::D24; 3401 case ARM::Q13: return ARM::D26; 3402 case ARM::Q14: return ARM::D28; 3403 case ARM::Q15: return ARM::D30; 3404 } 3405 } 3406 3407 /// Parse a register list. 3408 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3409 MCAsmParser &Parser = getParser(); 3410 assert(Parser.getTok().is(AsmToken::LCurly) && 3411 "Token is not a Left Curly Brace"); 3412 SMLoc S = Parser.getTok().getLoc(); 3413 Parser.Lex(); // Eat '{' token. 3414 SMLoc RegLoc = Parser.getTok().getLoc(); 3415 3416 // Check the first register in the list to see what register class 3417 // this is a list of. 3418 int Reg = tryParseRegister(); 3419 if (Reg == -1) 3420 return Error(RegLoc, "register expected"); 3421 3422 // The reglist instructions have at most 16 registers, so reserve 3423 // space for that many. 3424 int EReg = 0; 3425 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3426 3427 // Allow Q regs and just interpret them as the two D sub-registers. 3428 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3429 Reg = getDRegFromQReg(Reg); 3430 EReg = MRI->getEncodingValue(Reg); 3431 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3432 ++Reg; 3433 } 3434 const MCRegisterClass *RC; 3435 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3436 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3437 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3438 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3439 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3440 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3441 else 3442 return Error(RegLoc, "invalid register in register list"); 3443 3444 // Store the register. 3445 EReg = MRI->getEncodingValue(Reg); 3446 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3447 3448 // This starts immediately after the first register token in the list, 3449 // so we can see either a comma or a minus (range separator) as a legal 3450 // next token. 3451 while (Parser.getTok().is(AsmToken::Comma) || 3452 Parser.getTok().is(AsmToken::Minus)) { 3453 if (Parser.getTok().is(AsmToken::Minus)) { 3454 Parser.Lex(); // Eat the minus. 3455 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3456 int EndReg = tryParseRegister(); 3457 if (EndReg == -1) 3458 return Error(AfterMinusLoc, "register expected"); 3459 // Allow Q regs and just interpret them as the two D sub-registers. 3460 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3461 EndReg = getDRegFromQReg(EndReg) + 1; 3462 // If the register is the same as the start reg, there's nothing 3463 // more to do. 3464 if (Reg == EndReg) 3465 continue; 3466 // The register must be in the same register class as the first. 3467 if (!RC->contains(EndReg)) 3468 return Error(AfterMinusLoc, "invalid register in register list"); 3469 // Ranges must go from low to high. 3470 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3471 return Error(AfterMinusLoc, "bad range in register list"); 3472 3473 // Add all the registers in the range to the register list. 3474 while (Reg != EndReg) { 3475 Reg = getNextRegister(Reg); 3476 EReg = MRI->getEncodingValue(Reg); 3477 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3478 } 3479 continue; 3480 } 3481 Parser.Lex(); // Eat the comma. 3482 RegLoc = Parser.getTok().getLoc(); 3483 int OldReg = Reg; 3484 const AsmToken RegTok = Parser.getTok(); 3485 Reg = tryParseRegister(); 3486 if (Reg == -1) 3487 return Error(RegLoc, "register expected"); 3488 // Allow Q regs and just interpret them as the two D sub-registers. 3489 bool isQReg = false; 3490 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3491 Reg = getDRegFromQReg(Reg); 3492 isQReg = true; 3493 } 3494 // The register must be in the same register class as the first. 3495 if (!RC->contains(Reg)) 3496 return Error(RegLoc, "invalid register in register list"); 3497 // List must be monotonically increasing. 3498 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3499 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3500 Warning(RegLoc, "register list not in ascending order"); 3501 else 3502 return Error(RegLoc, "register list not in ascending order"); 3503 } 3504 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3505 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3506 ") in register list"); 3507 continue; 3508 } 3509 // VFP register lists must also be contiguous. 3510 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3511 Reg != OldReg + 1) 3512 return Error(RegLoc, "non-contiguous register range"); 3513 EReg = MRI->getEncodingValue(Reg); 3514 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3515 if (isQReg) { 3516 EReg = MRI->getEncodingValue(++Reg); 3517 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3518 } 3519 } 3520 3521 if (Parser.getTok().isNot(AsmToken::RCurly)) 3522 return Error(Parser.getTok().getLoc(), "'}' expected"); 3523 SMLoc E = Parser.getTok().getEndLoc(); 3524 Parser.Lex(); // Eat '}' token. 3525 3526 // Push the register list operand. 3527 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3528 3529 // The ARM system instruction variants for LDM/STM have a '^' token here. 3530 if (Parser.getTok().is(AsmToken::Caret)) { 3531 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3532 Parser.Lex(); // Eat '^' token. 3533 } 3534 3535 return false; 3536 } 3537 3538 // Helper function to parse the lane index for vector lists. 3539 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3540 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3541 MCAsmParser &Parser = getParser(); 3542 Index = 0; // Always return a defined index value. 3543 if (Parser.getTok().is(AsmToken::LBrac)) { 3544 Parser.Lex(); // Eat the '['. 3545 if (Parser.getTok().is(AsmToken::RBrac)) { 3546 // "Dn[]" is the 'all lanes' syntax. 3547 LaneKind = AllLanes; 3548 EndLoc = Parser.getTok().getEndLoc(); 3549 Parser.Lex(); // Eat the ']'. 3550 return MatchOperand_Success; 3551 } 3552 3553 // There's an optional '#' token here. Normally there wouldn't be, but 3554 // inline assemble puts one in, and it's friendly to accept that. 3555 if (Parser.getTok().is(AsmToken::Hash)) 3556 Parser.Lex(); // Eat '#' or '$'. 3557 3558 const MCExpr *LaneIndex; 3559 SMLoc Loc = Parser.getTok().getLoc(); 3560 if (getParser().parseExpression(LaneIndex)) { 3561 Error(Loc, "illegal expression"); 3562 return MatchOperand_ParseFail; 3563 } 3564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3565 if (!CE) { 3566 Error(Loc, "lane index must be empty or an integer"); 3567 return MatchOperand_ParseFail; 3568 } 3569 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3570 Error(Parser.getTok().getLoc(), "']' expected"); 3571 return MatchOperand_ParseFail; 3572 } 3573 EndLoc = Parser.getTok().getEndLoc(); 3574 Parser.Lex(); // Eat the ']'. 3575 int64_t Val = CE->getValue(); 3576 3577 // FIXME: Make this range check context sensitive for .8, .16, .32. 3578 if (Val < 0 || Val > 7) { 3579 Error(Parser.getTok().getLoc(), "lane index out of range"); 3580 return MatchOperand_ParseFail; 3581 } 3582 Index = Val; 3583 LaneKind = IndexedLane; 3584 return MatchOperand_Success; 3585 } 3586 LaneKind = NoLanes; 3587 return MatchOperand_Success; 3588 } 3589 3590 // parse a vector register list 3591 ARMAsmParser::OperandMatchResultTy 3592 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3593 MCAsmParser &Parser = getParser(); 3594 VectorLaneTy LaneKind; 3595 unsigned LaneIndex; 3596 SMLoc S = Parser.getTok().getLoc(); 3597 // As an extension (to match gas), support a plain D register or Q register 3598 // (without encosing curly braces) as a single or double entry list, 3599 // respectively. 3600 if (Parser.getTok().is(AsmToken::Identifier)) { 3601 SMLoc E = Parser.getTok().getEndLoc(); 3602 int Reg = tryParseRegister(); 3603 if (Reg == -1) 3604 return MatchOperand_NoMatch; 3605 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3606 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3607 if (Res != MatchOperand_Success) 3608 return Res; 3609 switch (LaneKind) { 3610 case NoLanes: 3611 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3612 break; 3613 case AllLanes: 3614 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3615 S, E)); 3616 break; 3617 case IndexedLane: 3618 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3619 LaneIndex, 3620 false, S, E)); 3621 break; 3622 } 3623 return MatchOperand_Success; 3624 } 3625 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3626 Reg = getDRegFromQReg(Reg); 3627 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3628 if (Res != MatchOperand_Success) 3629 return Res; 3630 switch (LaneKind) { 3631 case NoLanes: 3632 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3633 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3634 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3635 break; 3636 case AllLanes: 3637 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3638 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3639 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3640 S, E)); 3641 break; 3642 case IndexedLane: 3643 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3644 LaneIndex, 3645 false, S, E)); 3646 break; 3647 } 3648 return MatchOperand_Success; 3649 } 3650 Error(S, "vector register expected"); 3651 return MatchOperand_ParseFail; 3652 } 3653 3654 if (Parser.getTok().isNot(AsmToken::LCurly)) 3655 return MatchOperand_NoMatch; 3656 3657 Parser.Lex(); // Eat '{' token. 3658 SMLoc RegLoc = Parser.getTok().getLoc(); 3659 3660 int Reg = tryParseRegister(); 3661 if (Reg == -1) { 3662 Error(RegLoc, "register expected"); 3663 return MatchOperand_ParseFail; 3664 } 3665 unsigned Count = 1; 3666 int Spacing = 0; 3667 unsigned FirstReg = Reg; 3668 // The list is of D registers, but we also allow Q regs and just interpret 3669 // them as the two D sub-registers. 3670 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3671 FirstReg = Reg = getDRegFromQReg(Reg); 3672 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3673 // it's ambiguous with four-register single spaced. 3674 ++Reg; 3675 ++Count; 3676 } 3677 3678 SMLoc E; 3679 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3680 return MatchOperand_ParseFail; 3681 3682 while (Parser.getTok().is(AsmToken::Comma) || 3683 Parser.getTok().is(AsmToken::Minus)) { 3684 if (Parser.getTok().is(AsmToken::Minus)) { 3685 if (!Spacing) 3686 Spacing = 1; // Register range implies a single spaced list. 3687 else if (Spacing == 2) { 3688 Error(Parser.getTok().getLoc(), 3689 "sequential registers in double spaced list"); 3690 return MatchOperand_ParseFail; 3691 } 3692 Parser.Lex(); // Eat the minus. 3693 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3694 int EndReg = tryParseRegister(); 3695 if (EndReg == -1) { 3696 Error(AfterMinusLoc, "register expected"); 3697 return MatchOperand_ParseFail; 3698 } 3699 // Allow Q regs and just interpret them as the two D sub-registers. 3700 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3701 EndReg = getDRegFromQReg(EndReg) + 1; 3702 // If the register is the same as the start reg, there's nothing 3703 // more to do. 3704 if (Reg == EndReg) 3705 continue; 3706 // The register must be in the same register class as the first. 3707 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3708 Error(AfterMinusLoc, "invalid register in register list"); 3709 return MatchOperand_ParseFail; 3710 } 3711 // Ranges must go from low to high. 3712 if (Reg > EndReg) { 3713 Error(AfterMinusLoc, "bad range in register list"); 3714 return MatchOperand_ParseFail; 3715 } 3716 // Parse the lane specifier if present. 3717 VectorLaneTy NextLaneKind; 3718 unsigned NextLaneIndex; 3719 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3720 MatchOperand_Success) 3721 return MatchOperand_ParseFail; 3722 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3723 Error(AfterMinusLoc, "mismatched lane index in register list"); 3724 return MatchOperand_ParseFail; 3725 } 3726 3727 // Add all the registers in the range to the register list. 3728 Count += EndReg - Reg; 3729 Reg = EndReg; 3730 continue; 3731 } 3732 Parser.Lex(); // Eat the comma. 3733 RegLoc = Parser.getTok().getLoc(); 3734 int OldReg = Reg; 3735 Reg = tryParseRegister(); 3736 if (Reg == -1) { 3737 Error(RegLoc, "register expected"); 3738 return MatchOperand_ParseFail; 3739 } 3740 // vector register lists must be contiguous. 3741 // It's OK to use the enumeration values directly here rather, as the 3742 // VFP register classes have the enum sorted properly. 3743 // 3744 // The list is of D registers, but we also allow Q regs and just interpret 3745 // them as the two D sub-registers. 3746 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3747 if (!Spacing) 3748 Spacing = 1; // Register range implies a single spaced list. 3749 else if (Spacing == 2) { 3750 Error(RegLoc, 3751 "invalid register in double-spaced list (must be 'D' register')"); 3752 return MatchOperand_ParseFail; 3753 } 3754 Reg = getDRegFromQReg(Reg); 3755 if (Reg != OldReg + 1) { 3756 Error(RegLoc, "non-contiguous register range"); 3757 return MatchOperand_ParseFail; 3758 } 3759 ++Reg; 3760 Count += 2; 3761 // Parse the lane specifier if present. 3762 VectorLaneTy NextLaneKind; 3763 unsigned NextLaneIndex; 3764 SMLoc LaneLoc = Parser.getTok().getLoc(); 3765 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3766 MatchOperand_Success) 3767 return MatchOperand_ParseFail; 3768 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3769 Error(LaneLoc, "mismatched lane index in register list"); 3770 return MatchOperand_ParseFail; 3771 } 3772 continue; 3773 } 3774 // Normal D register. 3775 // Figure out the register spacing (single or double) of the list if 3776 // we don't know it already. 3777 if (!Spacing) 3778 Spacing = 1 + (Reg == OldReg + 2); 3779 3780 // Just check that it's contiguous and keep going. 3781 if (Reg != OldReg + Spacing) { 3782 Error(RegLoc, "non-contiguous register range"); 3783 return MatchOperand_ParseFail; 3784 } 3785 ++Count; 3786 // Parse the lane specifier if present. 3787 VectorLaneTy NextLaneKind; 3788 unsigned NextLaneIndex; 3789 SMLoc EndLoc = Parser.getTok().getLoc(); 3790 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3791 return MatchOperand_ParseFail; 3792 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3793 Error(EndLoc, "mismatched lane index in register list"); 3794 return MatchOperand_ParseFail; 3795 } 3796 } 3797 3798 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3799 Error(Parser.getTok().getLoc(), "'}' expected"); 3800 return MatchOperand_ParseFail; 3801 } 3802 E = Parser.getTok().getEndLoc(); 3803 Parser.Lex(); // Eat '}' token. 3804 3805 switch (LaneKind) { 3806 case NoLanes: 3807 // Two-register operands have been converted to the 3808 // composite register classes. 3809 if (Count == 2) { 3810 const MCRegisterClass *RC = (Spacing == 1) ? 3811 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3812 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3813 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3814 } 3815 3816 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3817 (Spacing == 2), S, E)); 3818 break; 3819 case AllLanes: 3820 // Two-register operands have been converted to the 3821 // composite register classes. 3822 if (Count == 2) { 3823 const MCRegisterClass *RC = (Spacing == 1) ? 3824 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3825 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3826 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3827 } 3828 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3829 (Spacing == 2), 3830 S, E)); 3831 break; 3832 case IndexedLane: 3833 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3834 LaneIndex, 3835 (Spacing == 2), 3836 S, E)); 3837 break; 3838 } 3839 return MatchOperand_Success; 3840 } 3841 3842 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3843 ARMAsmParser::OperandMatchResultTy 3844 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3845 MCAsmParser &Parser = getParser(); 3846 SMLoc S = Parser.getTok().getLoc(); 3847 const AsmToken &Tok = Parser.getTok(); 3848 unsigned Opt; 3849 3850 if (Tok.is(AsmToken::Identifier)) { 3851 StringRef OptStr = Tok.getString(); 3852 3853 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3854 .Case("sy", ARM_MB::SY) 3855 .Case("st", ARM_MB::ST) 3856 .Case("ld", ARM_MB::LD) 3857 .Case("sh", ARM_MB::ISH) 3858 .Case("ish", ARM_MB::ISH) 3859 .Case("shst", ARM_MB::ISHST) 3860 .Case("ishst", ARM_MB::ISHST) 3861 .Case("ishld", ARM_MB::ISHLD) 3862 .Case("nsh", ARM_MB::NSH) 3863 .Case("un", ARM_MB::NSH) 3864 .Case("nshst", ARM_MB::NSHST) 3865 .Case("nshld", ARM_MB::NSHLD) 3866 .Case("unst", ARM_MB::NSHST) 3867 .Case("osh", ARM_MB::OSH) 3868 .Case("oshst", ARM_MB::OSHST) 3869 .Case("oshld", ARM_MB::OSHLD) 3870 .Default(~0U); 3871 3872 // ishld, oshld, nshld and ld are only available from ARMv8. 3873 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3874 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3875 Opt = ~0U; 3876 3877 if (Opt == ~0U) 3878 return MatchOperand_NoMatch; 3879 3880 Parser.Lex(); // Eat identifier token. 3881 } else if (Tok.is(AsmToken::Hash) || 3882 Tok.is(AsmToken::Dollar) || 3883 Tok.is(AsmToken::Integer)) { 3884 if (Parser.getTok().isNot(AsmToken::Integer)) 3885 Parser.Lex(); // Eat '#' or '$'. 3886 SMLoc Loc = Parser.getTok().getLoc(); 3887 3888 const MCExpr *MemBarrierID; 3889 if (getParser().parseExpression(MemBarrierID)) { 3890 Error(Loc, "illegal expression"); 3891 return MatchOperand_ParseFail; 3892 } 3893 3894 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3895 if (!CE) { 3896 Error(Loc, "constant expression expected"); 3897 return MatchOperand_ParseFail; 3898 } 3899 3900 int Val = CE->getValue(); 3901 if (Val & ~0xf) { 3902 Error(Loc, "immediate value out of range"); 3903 return MatchOperand_ParseFail; 3904 } 3905 3906 Opt = ARM_MB::RESERVED_0 + Val; 3907 } else 3908 return MatchOperand_ParseFail; 3909 3910 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3911 return MatchOperand_Success; 3912 } 3913 3914 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3915 ARMAsmParser::OperandMatchResultTy 3916 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3917 MCAsmParser &Parser = getParser(); 3918 SMLoc S = Parser.getTok().getLoc(); 3919 const AsmToken &Tok = Parser.getTok(); 3920 unsigned Opt; 3921 3922 if (Tok.is(AsmToken::Identifier)) { 3923 StringRef OptStr = Tok.getString(); 3924 3925 if (OptStr.equals_lower("sy")) 3926 Opt = ARM_ISB::SY; 3927 else 3928 return MatchOperand_NoMatch; 3929 3930 Parser.Lex(); // Eat identifier token. 3931 } else if (Tok.is(AsmToken::Hash) || 3932 Tok.is(AsmToken::Dollar) || 3933 Tok.is(AsmToken::Integer)) { 3934 if (Parser.getTok().isNot(AsmToken::Integer)) 3935 Parser.Lex(); // Eat '#' or '$'. 3936 SMLoc Loc = Parser.getTok().getLoc(); 3937 3938 const MCExpr *ISBarrierID; 3939 if (getParser().parseExpression(ISBarrierID)) { 3940 Error(Loc, "illegal expression"); 3941 return MatchOperand_ParseFail; 3942 } 3943 3944 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3945 if (!CE) { 3946 Error(Loc, "constant expression expected"); 3947 return MatchOperand_ParseFail; 3948 } 3949 3950 int Val = CE->getValue(); 3951 if (Val & ~0xf) { 3952 Error(Loc, "immediate value out of range"); 3953 return MatchOperand_ParseFail; 3954 } 3955 3956 Opt = ARM_ISB::RESERVED_0 + Val; 3957 } else 3958 return MatchOperand_ParseFail; 3959 3960 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3961 (ARM_ISB::InstSyncBOpt)Opt, S)); 3962 return MatchOperand_Success; 3963 } 3964 3965 3966 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3967 ARMAsmParser::OperandMatchResultTy 3968 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3969 MCAsmParser &Parser = getParser(); 3970 SMLoc S = Parser.getTok().getLoc(); 3971 const AsmToken &Tok = Parser.getTok(); 3972 if (!Tok.is(AsmToken::Identifier)) 3973 return MatchOperand_NoMatch; 3974 StringRef IFlagsStr = Tok.getString(); 3975 3976 // An iflags string of "none" is interpreted to mean that none of the AIF 3977 // bits are set. Not a terribly useful instruction, but a valid encoding. 3978 unsigned IFlags = 0; 3979 if (IFlagsStr != "none") { 3980 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3981 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3982 .Case("a", ARM_PROC::A) 3983 .Case("i", ARM_PROC::I) 3984 .Case("f", ARM_PROC::F) 3985 .Default(~0U); 3986 3987 // If some specific iflag is already set, it means that some letter is 3988 // present more than once, this is not acceptable. 3989 if (Flag == ~0U || (IFlags & Flag)) 3990 return MatchOperand_NoMatch; 3991 3992 IFlags |= Flag; 3993 } 3994 } 3995 3996 Parser.Lex(); // Eat identifier token. 3997 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 3998 return MatchOperand_Success; 3999 } 4000 4001 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4002 ARMAsmParser::OperandMatchResultTy 4003 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4004 MCAsmParser &Parser = getParser(); 4005 SMLoc S = Parser.getTok().getLoc(); 4006 const AsmToken &Tok = Parser.getTok(); 4007 if (!Tok.is(AsmToken::Identifier)) 4008 return MatchOperand_NoMatch; 4009 StringRef Mask = Tok.getString(); 4010 4011 if (isMClass()) { 4012 // See ARMv6-M 10.1.1 4013 std::string Name = Mask.lower(); 4014 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4015 // Note: in the documentation: 4016 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4017 // for MSR APSR_nzcvq. 4018 // but we do make it an alias here. This is so to get the "mask encoding" 4019 // bits correct on MSR APSR writes. 4020 // 4021 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4022 // should really only be allowed when writing a special register. Note 4023 // they get dropped in the MRS instruction reading a special register as 4024 // the SYSm field is only 8 bits. 4025 .Case("apsr", 0x800) 4026 .Case("apsr_nzcvq", 0x800) 4027 .Case("apsr_g", 0x400) 4028 .Case("apsr_nzcvqg", 0xc00) 4029 .Case("iapsr", 0x801) 4030 .Case("iapsr_nzcvq", 0x801) 4031 .Case("iapsr_g", 0x401) 4032 .Case("iapsr_nzcvqg", 0xc01) 4033 .Case("eapsr", 0x802) 4034 .Case("eapsr_nzcvq", 0x802) 4035 .Case("eapsr_g", 0x402) 4036 .Case("eapsr_nzcvqg", 0xc02) 4037 .Case("xpsr", 0x803) 4038 .Case("xpsr_nzcvq", 0x803) 4039 .Case("xpsr_g", 0x403) 4040 .Case("xpsr_nzcvqg", 0xc03) 4041 .Case("ipsr", 0x805) 4042 .Case("epsr", 0x806) 4043 .Case("iepsr", 0x807) 4044 .Case("msp", 0x808) 4045 .Case("psp", 0x809) 4046 .Case("primask", 0x810) 4047 .Case("basepri", 0x811) 4048 .Case("basepri_max", 0x812) 4049 .Case("faultmask", 0x813) 4050 .Case("control", 0x814) 4051 .Default(~0U); 4052 4053 if (FlagsVal == ~0U) 4054 return MatchOperand_NoMatch; 4055 4056 if (!hasThumb2DSP() && (FlagsVal & 0x400)) 4057 // The _g and _nzcvqg versions are only valid if the DSP extension is 4058 // available. 4059 return MatchOperand_NoMatch; 4060 4061 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4062 // basepri, basepri_max and faultmask only valid for V7m. 4063 return MatchOperand_NoMatch; 4064 4065 Parser.Lex(); // Eat identifier token. 4066 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4067 return MatchOperand_Success; 4068 } 4069 4070 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4071 size_t Start = 0, Next = Mask.find('_'); 4072 StringRef Flags = ""; 4073 std::string SpecReg = Mask.slice(Start, Next).lower(); 4074 if (Next != StringRef::npos) 4075 Flags = Mask.slice(Next+1, Mask.size()); 4076 4077 // FlagsVal contains the complete mask: 4078 // 3-0: Mask 4079 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4080 unsigned FlagsVal = 0; 4081 4082 if (SpecReg == "apsr") { 4083 FlagsVal = StringSwitch<unsigned>(Flags) 4084 .Case("nzcvq", 0x8) // same as CPSR_f 4085 .Case("g", 0x4) // same as CPSR_s 4086 .Case("nzcvqg", 0xc) // same as CPSR_fs 4087 .Default(~0U); 4088 4089 if (FlagsVal == ~0U) { 4090 if (!Flags.empty()) 4091 return MatchOperand_NoMatch; 4092 else 4093 FlagsVal = 8; // No flag 4094 } 4095 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4096 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4097 if (Flags == "all" || Flags == "") 4098 Flags = "fc"; 4099 for (int i = 0, e = Flags.size(); i != e; ++i) { 4100 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4101 .Case("c", 1) 4102 .Case("x", 2) 4103 .Case("s", 4) 4104 .Case("f", 8) 4105 .Default(~0U); 4106 4107 // If some specific flag is already set, it means that some letter is 4108 // present more than once, this is not acceptable. 4109 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4110 return MatchOperand_NoMatch; 4111 FlagsVal |= Flag; 4112 } 4113 } else // No match for special register. 4114 return MatchOperand_NoMatch; 4115 4116 // Special register without flags is NOT equivalent to "fc" flags. 4117 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4118 // two lines would enable gas compatibility at the expense of breaking 4119 // round-tripping. 4120 // 4121 // if (!FlagsVal) 4122 // FlagsVal = 0x9; 4123 4124 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4125 if (SpecReg == "spsr") 4126 FlagsVal |= 16; 4127 4128 Parser.Lex(); // Eat identifier token. 4129 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4130 return MatchOperand_Success; 4131 } 4132 4133 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4134 /// use in the MRS/MSR instructions added to support virtualization. 4135 ARMAsmParser::OperandMatchResultTy 4136 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4137 MCAsmParser &Parser = getParser(); 4138 SMLoc S = Parser.getTok().getLoc(); 4139 const AsmToken &Tok = Parser.getTok(); 4140 if (!Tok.is(AsmToken::Identifier)) 4141 return MatchOperand_NoMatch; 4142 StringRef RegName = Tok.getString(); 4143 4144 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4145 // and bit 5 is R. 4146 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4147 .Case("r8_usr", 0x00) 4148 .Case("r9_usr", 0x01) 4149 .Case("r10_usr", 0x02) 4150 .Case("r11_usr", 0x03) 4151 .Case("r12_usr", 0x04) 4152 .Case("sp_usr", 0x05) 4153 .Case("lr_usr", 0x06) 4154 .Case("r8_fiq", 0x08) 4155 .Case("r9_fiq", 0x09) 4156 .Case("r10_fiq", 0x0a) 4157 .Case("r11_fiq", 0x0b) 4158 .Case("r12_fiq", 0x0c) 4159 .Case("sp_fiq", 0x0d) 4160 .Case("lr_fiq", 0x0e) 4161 .Case("lr_irq", 0x10) 4162 .Case("sp_irq", 0x11) 4163 .Case("lr_svc", 0x12) 4164 .Case("sp_svc", 0x13) 4165 .Case("lr_abt", 0x14) 4166 .Case("sp_abt", 0x15) 4167 .Case("lr_und", 0x16) 4168 .Case("sp_und", 0x17) 4169 .Case("lr_mon", 0x1c) 4170 .Case("sp_mon", 0x1d) 4171 .Case("elr_hyp", 0x1e) 4172 .Case("sp_hyp", 0x1f) 4173 .Case("spsr_fiq", 0x2e) 4174 .Case("spsr_irq", 0x30) 4175 .Case("spsr_svc", 0x32) 4176 .Case("spsr_abt", 0x34) 4177 .Case("spsr_und", 0x36) 4178 .Case("spsr_mon", 0x3c) 4179 .Case("spsr_hyp", 0x3e) 4180 .Default(~0U); 4181 4182 if (Encoding == ~0U) 4183 return MatchOperand_NoMatch; 4184 4185 Parser.Lex(); // Eat identifier token. 4186 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4187 return MatchOperand_Success; 4188 } 4189 4190 ARMAsmParser::OperandMatchResultTy 4191 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4192 int High) { 4193 MCAsmParser &Parser = getParser(); 4194 const AsmToken &Tok = Parser.getTok(); 4195 if (Tok.isNot(AsmToken::Identifier)) { 4196 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4197 return MatchOperand_ParseFail; 4198 } 4199 StringRef ShiftName = Tok.getString(); 4200 std::string LowerOp = Op.lower(); 4201 std::string UpperOp = Op.upper(); 4202 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4203 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4204 return MatchOperand_ParseFail; 4205 } 4206 Parser.Lex(); // Eat shift type token. 4207 4208 // There must be a '#' and a shift amount. 4209 if (Parser.getTok().isNot(AsmToken::Hash) && 4210 Parser.getTok().isNot(AsmToken::Dollar)) { 4211 Error(Parser.getTok().getLoc(), "'#' expected"); 4212 return MatchOperand_ParseFail; 4213 } 4214 Parser.Lex(); // Eat hash token. 4215 4216 const MCExpr *ShiftAmount; 4217 SMLoc Loc = Parser.getTok().getLoc(); 4218 SMLoc EndLoc; 4219 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4220 Error(Loc, "illegal expression"); 4221 return MatchOperand_ParseFail; 4222 } 4223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4224 if (!CE) { 4225 Error(Loc, "constant expression expected"); 4226 return MatchOperand_ParseFail; 4227 } 4228 int Val = CE->getValue(); 4229 if (Val < Low || Val > High) { 4230 Error(Loc, "immediate value out of range"); 4231 return MatchOperand_ParseFail; 4232 } 4233 4234 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4235 4236 return MatchOperand_Success; 4237 } 4238 4239 ARMAsmParser::OperandMatchResultTy 4240 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4241 MCAsmParser &Parser = getParser(); 4242 const AsmToken &Tok = Parser.getTok(); 4243 SMLoc S = Tok.getLoc(); 4244 if (Tok.isNot(AsmToken::Identifier)) { 4245 Error(S, "'be' or 'le' operand expected"); 4246 return MatchOperand_ParseFail; 4247 } 4248 int Val = StringSwitch<int>(Tok.getString().lower()) 4249 .Case("be", 1) 4250 .Case("le", 0) 4251 .Default(-1); 4252 Parser.Lex(); // Eat the token. 4253 4254 if (Val == -1) { 4255 Error(S, "'be' or 'le' operand expected"); 4256 return MatchOperand_ParseFail; 4257 } 4258 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4259 getContext()), 4260 S, Tok.getEndLoc())); 4261 return MatchOperand_Success; 4262 } 4263 4264 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4265 /// instructions. Legal values are: 4266 /// lsl #n 'n' in [0,31] 4267 /// asr #n 'n' in [1,32] 4268 /// n == 32 encoded as n == 0. 4269 ARMAsmParser::OperandMatchResultTy 4270 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4271 MCAsmParser &Parser = getParser(); 4272 const AsmToken &Tok = Parser.getTok(); 4273 SMLoc S = Tok.getLoc(); 4274 if (Tok.isNot(AsmToken::Identifier)) { 4275 Error(S, "shift operator 'asr' or 'lsl' expected"); 4276 return MatchOperand_ParseFail; 4277 } 4278 StringRef ShiftName = Tok.getString(); 4279 bool isASR; 4280 if (ShiftName == "lsl" || ShiftName == "LSL") 4281 isASR = false; 4282 else if (ShiftName == "asr" || ShiftName == "ASR") 4283 isASR = true; 4284 else { 4285 Error(S, "shift operator 'asr' or 'lsl' expected"); 4286 return MatchOperand_ParseFail; 4287 } 4288 Parser.Lex(); // Eat the operator. 4289 4290 // A '#' and a shift amount. 4291 if (Parser.getTok().isNot(AsmToken::Hash) && 4292 Parser.getTok().isNot(AsmToken::Dollar)) { 4293 Error(Parser.getTok().getLoc(), "'#' expected"); 4294 return MatchOperand_ParseFail; 4295 } 4296 Parser.Lex(); // Eat hash token. 4297 SMLoc ExLoc = Parser.getTok().getLoc(); 4298 4299 const MCExpr *ShiftAmount; 4300 SMLoc EndLoc; 4301 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4302 Error(ExLoc, "malformed shift expression"); 4303 return MatchOperand_ParseFail; 4304 } 4305 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4306 if (!CE) { 4307 Error(ExLoc, "shift amount must be an immediate"); 4308 return MatchOperand_ParseFail; 4309 } 4310 4311 int64_t Val = CE->getValue(); 4312 if (isASR) { 4313 // Shift amount must be in [1,32] 4314 if (Val < 1 || Val > 32) { 4315 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4316 return MatchOperand_ParseFail; 4317 } 4318 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4319 if (isThumb() && Val == 32) { 4320 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4321 return MatchOperand_ParseFail; 4322 } 4323 if (Val == 32) Val = 0; 4324 } else { 4325 // Shift amount must be in [1,32] 4326 if (Val < 0 || Val > 31) { 4327 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4328 return MatchOperand_ParseFail; 4329 } 4330 } 4331 4332 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4333 4334 return MatchOperand_Success; 4335 } 4336 4337 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4338 /// of instructions. Legal values are: 4339 /// ror #n 'n' in {0, 8, 16, 24} 4340 ARMAsmParser::OperandMatchResultTy 4341 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4342 MCAsmParser &Parser = getParser(); 4343 const AsmToken &Tok = Parser.getTok(); 4344 SMLoc S = Tok.getLoc(); 4345 if (Tok.isNot(AsmToken::Identifier)) 4346 return MatchOperand_NoMatch; 4347 StringRef ShiftName = Tok.getString(); 4348 if (ShiftName != "ror" && ShiftName != "ROR") 4349 return MatchOperand_NoMatch; 4350 Parser.Lex(); // Eat the operator. 4351 4352 // A '#' and a rotate amount. 4353 if (Parser.getTok().isNot(AsmToken::Hash) && 4354 Parser.getTok().isNot(AsmToken::Dollar)) { 4355 Error(Parser.getTok().getLoc(), "'#' expected"); 4356 return MatchOperand_ParseFail; 4357 } 4358 Parser.Lex(); // Eat hash token. 4359 SMLoc ExLoc = Parser.getTok().getLoc(); 4360 4361 const MCExpr *ShiftAmount; 4362 SMLoc EndLoc; 4363 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4364 Error(ExLoc, "malformed rotate expression"); 4365 return MatchOperand_ParseFail; 4366 } 4367 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4368 if (!CE) { 4369 Error(ExLoc, "rotate amount must be an immediate"); 4370 return MatchOperand_ParseFail; 4371 } 4372 4373 int64_t Val = CE->getValue(); 4374 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4375 // normally, zero is represented in asm by omitting the rotate operand 4376 // entirely. 4377 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4378 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4379 return MatchOperand_ParseFail; 4380 } 4381 4382 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4383 4384 return MatchOperand_Success; 4385 } 4386 4387 ARMAsmParser::OperandMatchResultTy 4388 ARMAsmParser::parseModImm(OperandVector &Operands) { 4389 MCAsmParser &Parser = getParser(); 4390 MCAsmLexer &Lexer = getLexer(); 4391 int64_t Imm1, Imm2; 4392 4393 SMLoc S = Parser.getTok().getLoc(); 4394 4395 // 1) A mod_imm operand can appear in the place of a register name: 4396 // add r0, #mod_imm 4397 // add r0, r0, #mod_imm 4398 // to correctly handle the latter, we bail out as soon as we see an 4399 // identifier. 4400 // 4401 // 2) Similarly, we do not want to parse into complex operands: 4402 // mov r0, #mod_imm 4403 // mov r0, :lower16:(_foo) 4404 if (Parser.getTok().is(AsmToken::Identifier) || 4405 Parser.getTok().is(AsmToken::Colon)) 4406 return MatchOperand_NoMatch; 4407 4408 // Hash (dollar) is optional as per the ARMARM 4409 if (Parser.getTok().is(AsmToken::Hash) || 4410 Parser.getTok().is(AsmToken::Dollar)) { 4411 // Avoid parsing into complex operands (#:) 4412 if (Lexer.peekTok().is(AsmToken::Colon)) 4413 return MatchOperand_NoMatch; 4414 4415 // Eat the hash (dollar) 4416 Parser.Lex(); 4417 } 4418 4419 SMLoc Sx1, Ex1; 4420 Sx1 = Parser.getTok().getLoc(); 4421 const MCExpr *Imm1Exp; 4422 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4423 Error(Sx1, "malformed expression"); 4424 return MatchOperand_ParseFail; 4425 } 4426 4427 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4428 4429 if (CE) { 4430 // Immediate must fit within 32-bits 4431 Imm1 = CE->getValue(); 4432 int Enc = ARM_AM::getSOImmVal(Imm1); 4433 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4434 // We have a match! 4435 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4436 (Enc & 0xF00) >> 7, 4437 Sx1, Ex1)); 4438 return MatchOperand_Success; 4439 } 4440 4441 // We have parsed an immediate which is not for us, fallback to a plain 4442 // immediate. This can happen for instruction aliases. For an example, 4443 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4444 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4445 // instruction with a mod_imm operand. The alias is defined such that the 4446 // parser method is shared, that's why we have to do this here. 4447 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4448 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4449 return MatchOperand_Success; 4450 } 4451 } else { 4452 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4453 // MCFixup). Fallback to a plain immediate. 4454 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4455 return MatchOperand_Success; 4456 } 4457 4458 // From this point onward, we expect the input to be a (#bits, #rot) pair 4459 if (Parser.getTok().isNot(AsmToken::Comma)) { 4460 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4461 return MatchOperand_ParseFail; 4462 } 4463 4464 if (Imm1 & ~0xFF) { 4465 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4466 return MatchOperand_ParseFail; 4467 } 4468 4469 // Eat the comma 4470 Parser.Lex(); 4471 4472 // Repeat for #rot 4473 SMLoc Sx2, Ex2; 4474 Sx2 = Parser.getTok().getLoc(); 4475 4476 // Eat the optional hash (dollar) 4477 if (Parser.getTok().is(AsmToken::Hash) || 4478 Parser.getTok().is(AsmToken::Dollar)) 4479 Parser.Lex(); 4480 4481 const MCExpr *Imm2Exp; 4482 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4483 Error(Sx2, "malformed expression"); 4484 return MatchOperand_ParseFail; 4485 } 4486 4487 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4488 4489 if (CE) { 4490 Imm2 = CE->getValue(); 4491 if (!(Imm2 & ~0x1E)) { 4492 // We have a match! 4493 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4494 return MatchOperand_Success; 4495 } 4496 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4497 return MatchOperand_ParseFail; 4498 } else { 4499 Error(Sx2, "constant expression expected"); 4500 return MatchOperand_ParseFail; 4501 } 4502 } 4503 4504 ARMAsmParser::OperandMatchResultTy 4505 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4506 MCAsmParser &Parser = getParser(); 4507 SMLoc S = Parser.getTok().getLoc(); 4508 // The bitfield descriptor is really two operands, the LSB and the width. 4509 if (Parser.getTok().isNot(AsmToken::Hash) && 4510 Parser.getTok().isNot(AsmToken::Dollar)) { 4511 Error(Parser.getTok().getLoc(), "'#' expected"); 4512 return MatchOperand_ParseFail; 4513 } 4514 Parser.Lex(); // Eat hash token. 4515 4516 const MCExpr *LSBExpr; 4517 SMLoc E = Parser.getTok().getLoc(); 4518 if (getParser().parseExpression(LSBExpr)) { 4519 Error(E, "malformed immediate expression"); 4520 return MatchOperand_ParseFail; 4521 } 4522 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4523 if (!CE) { 4524 Error(E, "'lsb' operand must be an immediate"); 4525 return MatchOperand_ParseFail; 4526 } 4527 4528 int64_t LSB = CE->getValue(); 4529 // The LSB must be in the range [0,31] 4530 if (LSB < 0 || LSB > 31) { 4531 Error(E, "'lsb' operand must be in the range [0,31]"); 4532 return MatchOperand_ParseFail; 4533 } 4534 E = Parser.getTok().getLoc(); 4535 4536 // Expect another immediate operand. 4537 if (Parser.getTok().isNot(AsmToken::Comma)) { 4538 Error(Parser.getTok().getLoc(), "too few operands"); 4539 return MatchOperand_ParseFail; 4540 } 4541 Parser.Lex(); // Eat hash token. 4542 if (Parser.getTok().isNot(AsmToken::Hash) && 4543 Parser.getTok().isNot(AsmToken::Dollar)) { 4544 Error(Parser.getTok().getLoc(), "'#' expected"); 4545 return MatchOperand_ParseFail; 4546 } 4547 Parser.Lex(); // Eat hash token. 4548 4549 const MCExpr *WidthExpr; 4550 SMLoc EndLoc; 4551 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4552 Error(E, "malformed immediate expression"); 4553 return MatchOperand_ParseFail; 4554 } 4555 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4556 if (!CE) { 4557 Error(E, "'width' operand must be an immediate"); 4558 return MatchOperand_ParseFail; 4559 } 4560 4561 int64_t Width = CE->getValue(); 4562 // The LSB must be in the range [1,32-lsb] 4563 if (Width < 1 || Width > 32 - LSB) { 4564 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4565 return MatchOperand_ParseFail; 4566 } 4567 4568 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4569 4570 return MatchOperand_Success; 4571 } 4572 4573 ARMAsmParser::OperandMatchResultTy 4574 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4575 // Check for a post-index addressing register operand. Specifically: 4576 // postidx_reg := '+' register {, shift} 4577 // | '-' register {, shift} 4578 // | register {, shift} 4579 4580 // This method must return MatchOperand_NoMatch without consuming any tokens 4581 // in the case where there is no match, as other alternatives take other 4582 // parse methods. 4583 MCAsmParser &Parser = getParser(); 4584 AsmToken Tok = Parser.getTok(); 4585 SMLoc S = Tok.getLoc(); 4586 bool haveEaten = false; 4587 bool isAdd = true; 4588 if (Tok.is(AsmToken::Plus)) { 4589 Parser.Lex(); // Eat the '+' token. 4590 haveEaten = true; 4591 } else if (Tok.is(AsmToken::Minus)) { 4592 Parser.Lex(); // Eat the '-' token. 4593 isAdd = false; 4594 haveEaten = true; 4595 } 4596 4597 SMLoc E = Parser.getTok().getEndLoc(); 4598 int Reg = tryParseRegister(); 4599 if (Reg == -1) { 4600 if (!haveEaten) 4601 return MatchOperand_NoMatch; 4602 Error(Parser.getTok().getLoc(), "register expected"); 4603 return MatchOperand_ParseFail; 4604 } 4605 4606 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4607 unsigned ShiftImm = 0; 4608 if (Parser.getTok().is(AsmToken::Comma)) { 4609 Parser.Lex(); // Eat the ','. 4610 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4611 return MatchOperand_ParseFail; 4612 4613 // FIXME: Only approximates end...may include intervening whitespace. 4614 E = Parser.getTok().getLoc(); 4615 } 4616 4617 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4618 ShiftImm, S, E)); 4619 4620 return MatchOperand_Success; 4621 } 4622 4623 ARMAsmParser::OperandMatchResultTy 4624 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4625 // Check for a post-index addressing register operand. Specifically: 4626 // am3offset := '+' register 4627 // | '-' register 4628 // | register 4629 // | # imm 4630 // | # + imm 4631 // | # - imm 4632 4633 // This method must return MatchOperand_NoMatch without consuming any tokens 4634 // in the case where there is no match, as other alternatives take other 4635 // parse methods. 4636 MCAsmParser &Parser = getParser(); 4637 AsmToken Tok = Parser.getTok(); 4638 SMLoc S = Tok.getLoc(); 4639 4640 // Do immediates first, as we always parse those if we have a '#'. 4641 if (Parser.getTok().is(AsmToken::Hash) || 4642 Parser.getTok().is(AsmToken::Dollar)) { 4643 Parser.Lex(); // Eat '#' or '$'. 4644 // Explicitly look for a '-', as we need to encode negative zero 4645 // differently. 4646 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4647 const MCExpr *Offset; 4648 SMLoc E; 4649 if (getParser().parseExpression(Offset, E)) 4650 return MatchOperand_ParseFail; 4651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4652 if (!CE) { 4653 Error(S, "constant expression expected"); 4654 return MatchOperand_ParseFail; 4655 } 4656 // Negative zero is encoded as the flag value INT32_MIN. 4657 int32_t Val = CE->getValue(); 4658 if (isNegative && Val == 0) 4659 Val = INT32_MIN; 4660 4661 Operands.push_back( 4662 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4663 4664 return MatchOperand_Success; 4665 } 4666 4667 4668 bool haveEaten = false; 4669 bool isAdd = true; 4670 if (Tok.is(AsmToken::Plus)) { 4671 Parser.Lex(); // Eat the '+' token. 4672 haveEaten = true; 4673 } else if (Tok.is(AsmToken::Minus)) { 4674 Parser.Lex(); // Eat the '-' token. 4675 isAdd = false; 4676 haveEaten = true; 4677 } 4678 4679 Tok = Parser.getTok(); 4680 int Reg = tryParseRegister(); 4681 if (Reg == -1) { 4682 if (!haveEaten) 4683 return MatchOperand_NoMatch; 4684 Error(Tok.getLoc(), "register expected"); 4685 return MatchOperand_ParseFail; 4686 } 4687 4688 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4689 0, S, Tok.getEndLoc())); 4690 4691 return MatchOperand_Success; 4692 } 4693 4694 /// Convert parsed operands to MCInst. Needed here because this instruction 4695 /// only has two register operands, but multiplication is commutative so 4696 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4697 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4698 const OperandVector &Operands) { 4699 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4700 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4701 // If we have a three-operand form, make sure to set Rn to be the operand 4702 // that isn't the same as Rd. 4703 unsigned RegOp = 4; 4704 if (Operands.size() == 6 && 4705 ((ARMOperand &)*Operands[4]).getReg() == 4706 ((ARMOperand &)*Operands[3]).getReg()) 4707 RegOp = 5; 4708 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4709 Inst.addOperand(Inst.getOperand(0)); 4710 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4711 } 4712 4713 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4714 const OperandVector &Operands) { 4715 int CondOp = -1, ImmOp = -1; 4716 switch(Inst.getOpcode()) { 4717 case ARM::tB: 4718 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4719 4720 case ARM::t2B: 4721 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4722 4723 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4724 } 4725 // first decide whether or not the branch should be conditional 4726 // by looking at it's location relative to an IT block 4727 if(inITBlock()) { 4728 // inside an IT block we cannot have any conditional branches. any 4729 // such instructions needs to be converted to unconditional form 4730 switch(Inst.getOpcode()) { 4731 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4732 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4733 } 4734 } else { 4735 // outside IT blocks we can only have unconditional branches with AL 4736 // condition code or conditional branches with non-AL condition code 4737 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4738 switch(Inst.getOpcode()) { 4739 case ARM::tB: 4740 case ARM::tBcc: 4741 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4742 break; 4743 case ARM::t2B: 4744 case ARM::t2Bcc: 4745 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4746 break; 4747 } 4748 } 4749 4750 // now decide on encoding size based on branch target range 4751 switch(Inst.getOpcode()) { 4752 // classify tB as either t2B or t1B based on range of immediate operand 4753 case ARM::tB: { 4754 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4755 if (!op.isSignedOffset<11, 1>() && isThumbTwo()) 4756 Inst.setOpcode(ARM::t2B); 4757 break; 4758 } 4759 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4760 case ARM::tBcc: { 4761 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4762 if (!op.isSignedOffset<8, 1>() && isThumbTwo()) 4763 Inst.setOpcode(ARM::t2Bcc); 4764 break; 4765 } 4766 } 4767 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4768 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4769 } 4770 4771 /// Parse an ARM memory expression, return false if successful else return true 4772 /// or an error. The first token must be a '[' when called. 4773 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4774 MCAsmParser &Parser = getParser(); 4775 SMLoc S, E; 4776 assert(Parser.getTok().is(AsmToken::LBrac) && 4777 "Token is not a Left Bracket"); 4778 S = Parser.getTok().getLoc(); 4779 Parser.Lex(); // Eat left bracket token. 4780 4781 const AsmToken &BaseRegTok = Parser.getTok(); 4782 int BaseRegNum = tryParseRegister(); 4783 if (BaseRegNum == -1) 4784 return Error(BaseRegTok.getLoc(), "register expected"); 4785 4786 // The next token must either be a comma, a colon or a closing bracket. 4787 const AsmToken &Tok = Parser.getTok(); 4788 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4789 !Tok.is(AsmToken::RBrac)) 4790 return Error(Tok.getLoc(), "malformed memory operand"); 4791 4792 if (Tok.is(AsmToken::RBrac)) { 4793 E = Tok.getEndLoc(); 4794 Parser.Lex(); // Eat right bracket token. 4795 4796 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4797 ARM_AM::no_shift, 0, 0, false, 4798 S, E)); 4799 4800 // If there's a pre-indexing writeback marker, '!', just add it as a token 4801 // operand. It's rather odd, but syntactically valid. 4802 if (Parser.getTok().is(AsmToken::Exclaim)) { 4803 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4804 Parser.Lex(); // Eat the '!'. 4805 } 4806 4807 return false; 4808 } 4809 4810 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4811 "Lost colon or comma in memory operand?!"); 4812 if (Tok.is(AsmToken::Comma)) { 4813 Parser.Lex(); // Eat the comma. 4814 } 4815 4816 // If we have a ':', it's an alignment specifier. 4817 if (Parser.getTok().is(AsmToken::Colon)) { 4818 Parser.Lex(); // Eat the ':'. 4819 E = Parser.getTok().getLoc(); 4820 SMLoc AlignmentLoc = Tok.getLoc(); 4821 4822 const MCExpr *Expr; 4823 if (getParser().parseExpression(Expr)) 4824 return true; 4825 4826 // The expression has to be a constant. Memory references with relocations 4827 // don't come through here, as they use the <label> forms of the relevant 4828 // instructions. 4829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4830 if (!CE) 4831 return Error (E, "constant expression expected"); 4832 4833 unsigned Align = 0; 4834 switch (CE->getValue()) { 4835 default: 4836 return Error(E, 4837 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4838 case 16: Align = 2; break; 4839 case 32: Align = 4; break; 4840 case 64: Align = 8; break; 4841 case 128: Align = 16; break; 4842 case 256: Align = 32; break; 4843 } 4844 4845 // Now we should have the closing ']' 4846 if (Parser.getTok().isNot(AsmToken::RBrac)) 4847 return Error(Parser.getTok().getLoc(), "']' expected"); 4848 E = Parser.getTok().getEndLoc(); 4849 Parser.Lex(); // Eat right bracket token. 4850 4851 // Don't worry about range checking the value here. That's handled by 4852 // the is*() predicates. 4853 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4854 ARM_AM::no_shift, 0, Align, 4855 false, S, E, AlignmentLoc)); 4856 4857 // If there's a pre-indexing writeback marker, '!', just add it as a token 4858 // operand. 4859 if (Parser.getTok().is(AsmToken::Exclaim)) { 4860 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4861 Parser.Lex(); // Eat the '!'. 4862 } 4863 4864 return false; 4865 } 4866 4867 // If we have a '#', it's an immediate offset, else assume it's a register 4868 // offset. Be friendly and also accept a plain integer (without a leading 4869 // hash) for gas compatibility. 4870 if (Parser.getTok().is(AsmToken::Hash) || 4871 Parser.getTok().is(AsmToken::Dollar) || 4872 Parser.getTok().is(AsmToken::Integer)) { 4873 if (Parser.getTok().isNot(AsmToken::Integer)) 4874 Parser.Lex(); // Eat '#' or '$'. 4875 E = Parser.getTok().getLoc(); 4876 4877 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4878 const MCExpr *Offset; 4879 if (getParser().parseExpression(Offset)) 4880 return true; 4881 4882 // The expression has to be a constant. Memory references with relocations 4883 // don't come through here, as they use the <label> forms of the relevant 4884 // instructions. 4885 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4886 if (!CE) 4887 return Error (E, "constant expression expected"); 4888 4889 // If the constant was #-0, represent it as INT32_MIN. 4890 int32_t Val = CE->getValue(); 4891 if (isNegative && Val == 0) 4892 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4893 4894 // Now we should have the closing ']' 4895 if (Parser.getTok().isNot(AsmToken::RBrac)) 4896 return Error(Parser.getTok().getLoc(), "']' expected"); 4897 E = Parser.getTok().getEndLoc(); 4898 Parser.Lex(); // Eat right bracket token. 4899 4900 // Don't worry about range checking the value here. That's handled by 4901 // the is*() predicates. 4902 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4903 ARM_AM::no_shift, 0, 0, 4904 false, S, E)); 4905 4906 // If there's a pre-indexing writeback marker, '!', just add it as a token 4907 // operand. 4908 if (Parser.getTok().is(AsmToken::Exclaim)) { 4909 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4910 Parser.Lex(); // Eat the '!'. 4911 } 4912 4913 return false; 4914 } 4915 4916 // The register offset is optionally preceded by a '+' or '-' 4917 bool isNegative = false; 4918 if (Parser.getTok().is(AsmToken::Minus)) { 4919 isNegative = true; 4920 Parser.Lex(); // Eat the '-'. 4921 } else if (Parser.getTok().is(AsmToken::Plus)) { 4922 // Nothing to do. 4923 Parser.Lex(); // Eat the '+'. 4924 } 4925 4926 E = Parser.getTok().getLoc(); 4927 int OffsetRegNum = tryParseRegister(); 4928 if (OffsetRegNum == -1) 4929 return Error(E, "register expected"); 4930 4931 // If there's a shift operator, handle it. 4932 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4933 unsigned ShiftImm = 0; 4934 if (Parser.getTok().is(AsmToken::Comma)) { 4935 Parser.Lex(); // Eat the ','. 4936 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4937 return true; 4938 } 4939 4940 // Now we should have the closing ']' 4941 if (Parser.getTok().isNot(AsmToken::RBrac)) 4942 return Error(Parser.getTok().getLoc(), "']' expected"); 4943 E = Parser.getTok().getEndLoc(); 4944 Parser.Lex(); // Eat right bracket token. 4945 4946 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4947 ShiftType, ShiftImm, 0, isNegative, 4948 S, E)); 4949 4950 // If there's a pre-indexing writeback marker, '!', just add it as a token 4951 // operand. 4952 if (Parser.getTok().is(AsmToken::Exclaim)) { 4953 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4954 Parser.Lex(); // Eat the '!'. 4955 } 4956 4957 return false; 4958 } 4959 4960 /// parseMemRegOffsetShift - one of these two: 4961 /// ( lsl | lsr | asr | ror ) , # shift_amount 4962 /// rrx 4963 /// return true if it parses a shift otherwise it returns false. 4964 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4965 unsigned &Amount) { 4966 MCAsmParser &Parser = getParser(); 4967 SMLoc Loc = Parser.getTok().getLoc(); 4968 const AsmToken &Tok = Parser.getTok(); 4969 if (Tok.isNot(AsmToken::Identifier)) 4970 return true; 4971 StringRef ShiftName = Tok.getString(); 4972 if (ShiftName == "lsl" || ShiftName == "LSL" || 4973 ShiftName == "asl" || ShiftName == "ASL") 4974 St = ARM_AM::lsl; 4975 else if (ShiftName == "lsr" || ShiftName == "LSR") 4976 St = ARM_AM::lsr; 4977 else if (ShiftName == "asr" || ShiftName == "ASR") 4978 St = ARM_AM::asr; 4979 else if (ShiftName == "ror" || ShiftName == "ROR") 4980 St = ARM_AM::ror; 4981 else if (ShiftName == "rrx" || ShiftName == "RRX") 4982 St = ARM_AM::rrx; 4983 else 4984 return Error(Loc, "illegal shift operator"); 4985 Parser.Lex(); // Eat shift type token. 4986 4987 // rrx stands alone. 4988 Amount = 0; 4989 if (St != ARM_AM::rrx) { 4990 Loc = Parser.getTok().getLoc(); 4991 // A '#' and a shift amount. 4992 const AsmToken &HashTok = Parser.getTok(); 4993 if (HashTok.isNot(AsmToken::Hash) && 4994 HashTok.isNot(AsmToken::Dollar)) 4995 return Error(HashTok.getLoc(), "'#' expected"); 4996 Parser.Lex(); // Eat hash token. 4997 4998 const MCExpr *Expr; 4999 if (getParser().parseExpression(Expr)) 5000 return true; 5001 // Range check the immediate. 5002 // lsl, ror: 0 <= imm <= 31 5003 // lsr, asr: 0 <= imm <= 32 5004 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5005 if (!CE) 5006 return Error(Loc, "shift amount must be an immediate"); 5007 int64_t Imm = CE->getValue(); 5008 if (Imm < 0 || 5009 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5010 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5011 return Error(Loc, "immediate shift value out of range"); 5012 // If <ShiftTy> #0, turn it into a no_shift. 5013 if (Imm == 0) 5014 St = ARM_AM::lsl; 5015 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5016 if (Imm == 32) 5017 Imm = 0; 5018 Amount = Imm; 5019 } 5020 5021 return false; 5022 } 5023 5024 /// parseFPImm - A floating point immediate expression operand. 5025 ARMAsmParser::OperandMatchResultTy 5026 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5027 MCAsmParser &Parser = getParser(); 5028 // Anything that can accept a floating point constant as an operand 5029 // needs to go through here, as the regular parseExpression is 5030 // integer only. 5031 // 5032 // This routine still creates a generic Immediate operand, containing 5033 // a bitcast of the 64-bit floating point value. The various operands 5034 // that accept floats can check whether the value is valid for them 5035 // via the standard is*() predicates. 5036 5037 SMLoc S = Parser.getTok().getLoc(); 5038 5039 if (Parser.getTok().isNot(AsmToken::Hash) && 5040 Parser.getTok().isNot(AsmToken::Dollar)) 5041 return MatchOperand_NoMatch; 5042 5043 // Disambiguate the VMOV forms that can accept an FP immediate. 5044 // vmov.f32 <sreg>, #imm 5045 // vmov.f64 <dreg>, #imm 5046 // vmov.f32 <dreg>, #imm @ vector f32x2 5047 // vmov.f32 <qreg>, #imm @ vector f32x4 5048 // 5049 // There are also the NEON VMOV instructions which expect an 5050 // integer constant. Make sure we don't try to parse an FPImm 5051 // for these: 5052 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5053 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5054 bool isVmovf = TyOp.isToken() && 5055 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64"); 5056 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5057 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5058 Mnemonic.getToken() == "fconsts"); 5059 if (!(isVmovf || isFconst)) 5060 return MatchOperand_NoMatch; 5061 5062 Parser.Lex(); // Eat '#' or '$'. 5063 5064 // Handle negation, as that still comes through as a separate token. 5065 bool isNegative = false; 5066 if (Parser.getTok().is(AsmToken::Minus)) { 5067 isNegative = true; 5068 Parser.Lex(); 5069 } 5070 const AsmToken &Tok = Parser.getTok(); 5071 SMLoc Loc = Tok.getLoc(); 5072 if (Tok.is(AsmToken::Real) && isVmovf) { 5073 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 5074 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5075 // If we had a '-' in front, toggle the sign bit. 5076 IntVal ^= (uint64_t)isNegative << 31; 5077 Parser.Lex(); // Eat the token. 5078 Operands.push_back(ARMOperand::CreateImm( 5079 MCConstantExpr::create(IntVal, getContext()), 5080 S, Parser.getTok().getLoc())); 5081 return MatchOperand_Success; 5082 } 5083 // Also handle plain integers. Instructions which allow floating point 5084 // immediates also allow a raw encoded 8-bit value. 5085 if (Tok.is(AsmToken::Integer) && isFconst) { 5086 int64_t Val = Tok.getIntVal(); 5087 Parser.Lex(); // Eat the token. 5088 if (Val > 255 || Val < 0) { 5089 Error(Loc, "encoded floating point value out of range"); 5090 return MatchOperand_ParseFail; 5091 } 5092 float RealVal = ARM_AM::getFPImmFloat(Val); 5093 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5094 5095 Operands.push_back(ARMOperand::CreateImm( 5096 MCConstantExpr::create(Val, getContext()), S, 5097 Parser.getTok().getLoc())); 5098 return MatchOperand_Success; 5099 } 5100 5101 Error(Loc, "invalid floating point immediate"); 5102 return MatchOperand_ParseFail; 5103 } 5104 5105 /// Parse a arm instruction operand. For now this parses the operand regardless 5106 /// of the mnemonic. 5107 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5108 MCAsmParser &Parser = getParser(); 5109 SMLoc S, E; 5110 5111 // Check if the current operand has a custom associated parser, if so, try to 5112 // custom parse the operand, or fallback to the general approach. 5113 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5114 if (ResTy == MatchOperand_Success) 5115 return false; 5116 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5117 // there was a match, but an error occurred, in which case, just return that 5118 // the operand parsing failed. 5119 if (ResTy == MatchOperand_ParseFail) 5120 return true; 5121 5122 switch (getLexer().getKind()) { 5123 default: 5124 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5125 return true; 5126 case AsmToken::Identifier: { 5127 // If we've seen a branch mnemonic, the next operand must be a label. This 5128 // is true even if the label is a register name. So "br r1" means branch to 5129 // label "r1". 5130 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5131 if (!ExpectLabel) { 5132 if (!tryParseRegisterWithWriteBack(Operands)) 5133 return false; 5134 int Res = tryParseShiftRegister(Operands); 5135 if (Res == 0) // success 5136 return false; 5137 else if (Res == -1) // irrecoverable error 5138 return true; 5139 // If this is VMRS, check for the apsr_nzcv operand. 5140 if (Mnemonic == "vmrs" && 5141 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5142 S = Parser.getTok().getLoc(); 5143 Parser.Lex(); 5144 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5145 return false; 5146 } 5147 } 5148 5149 // Fall though for the Identifier case that is not a register or a 5150 // special name. 5151 } 5152 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5153 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5154 case AsmToken::String: // quoted label names. 5155 case AsmToken::Dot: { // . as a branch target 5156 // This was not a register so parse other operands that start with an 5157 // identifier (like labels) as expressions and create them as immediates. 5158 const MCExpr *IdVal; 5159 S = Parser.getTok().getLoc(); 5160 if (getParser().parseExpression(IdVal)) 5161 return true; 5162 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5163 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5164 return false; 5165 } 5166 case AsmToken::LBrac: 5167 return parseMemory(Operands); 5168 case AsmToken::LCurly: 5169 return parseRegisterList(Operands); 5170 case AsmToken::Dollar: 5171 case AsmToken::Hash: { 5172 // #42 -> immediate. 5173 S = Parser.getTok().getLoc(); 5174 Parser.Lex(); 5175 5176 if (Parser.getTok().isNot(AsmToken::Colon)) { 5177 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5178 const MCExpr *ImmVal; 5179 if (getParser().parseExpression(ImmVal)) 5180 return true; 5181 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5182 if (CE) { 5183 int32_t Val = CE->getValue(); 5184 if (isNegative && Val == 0) 5185 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5186 } 5187 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5188 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5189 5190 // There can be a trailing '!' on operands that we want as a separate 5191 // '!' Token operand. Handle that here. For example, the compatibility 5192 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5193 if (Parser.getTok().is(AsmToken::Exclaim)) { 5194 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5195 Parser.getTok().getLoc())); 5196 Parser.Lex(); // Eat exclaim token 5197 } 5198 return false; 5199 } 5200 // w/ a ':' after the '#', it's just like a plain ':'. 5201 // FALLTHROUGH 5202 } 5203 case AsmToken::Colon: { 5204 // ":lower16:" and ":upper16:" expression prefixes 5205 // FIXME: Check it's an expression prefix, 5206 // e.g. (FOO - :lower16:BAR) isn't legal. 5207 ARMMCExpr::VariantKind RefKind; 5208 if (parsePrefix(RefKind)) 5209 return true; 5210 5211 const MCExpr *SubExprVal; 5212 if (getParser().parseExpression(SubExprVal)) 5213 return true; 5214 5215 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5216 getContext()); 5217 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5218 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5219 return false; 5220 } 5221 case AsmToken::Equal: { 5222 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5223 return Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5224 5225 Parser.Lex(); // Eat '=' 5226 const MCExpr *SubExprVal; 5227 if (getParser().parseExpression(SubExprVal)) 5228 return true; 5229 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5230 5231 const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal); 5232 Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); 5233 return false; 5234 } 5235 } 5236 } 5237 5238 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5239 // :lower16: and :upper16:. 5240 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5241 MCAsmParser &Parser = getParser(); 5242 RefKind = ARMMCExpr::VK_ARM_None; 5243 5244 // consume an optional '#' (GNU compatibility) 5245 if (getLexer().is(AsmToken::Hash)) 5246 Parser.Lex(); 5247 5248 // :lower16: and :upper16: modifiers 5249 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5250 Parser.Lex(); // Eat ':' 5251 5252 if (getLexer().isNot(AsmToken::Identifier)) { 5253 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5254 return true; 5255 } 5256 5257 enum { 5258 COFF = (1 << MCObjectFileInfo::IsCOFF), 5259 ELF = (1 << MCObjectFileInfo::IsELF), 5260 MACHO = (1 << MCObjectFileInfo::IsMachO) 5261 }; 5262 static const struct PrefixEntry { 5263 const char *Spelling; 5264 ARMMCExpr::VariantKind VariantKind; 5265 uint8_t SupportedFormats; 5266 } PrefixEntries[] = { 5267 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5268 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5269 }; 5270 5271 StringRef IDVal = Parser.getTok().getIdentifier(); 5272 5273 const auto &Prefix = 5274 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5275 [&IDVal](const PrefixEntry &PE) { 5276 return PE.Spelling == IDVal; 5277 }); 5278 if (Prefix == std::end(PrefixEntries)) { 5279 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5280 return true; 5281 } 5282 5283 uint8_t CurrentFormat; 5284 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5285 case MCObjectFileInfo::IsMachO: 5286 CurrentFormat = MACHO; 5287 break; 5288 case MCObjectFileInfo::IsELF: 5289 CurrentFormat = ELF; 5290 break; 5291 case MCObjectFileInfo::IsCOFF: 5292 CurrentFormat = COFF; 5293 break; 5294 } 5295 5296 if (~Prefix->SupportedFormats & CurrentFormat) { 5297 Error(Parser.getTok().getLoc(), 5298 "cannot represent relocation in the current file format"); 5299 return true; 5300 } 5301 5302 RefKind = Prefix->VariantKind; 5303 Parser.Lex(); 5304 5305 if (getLexer().isNot(AsmToken::Colon)) { 5306 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5307 return true; 5308 } 5309 Parser.Lex(); // Eat the last ':' 5310 5311 return false; 5312 } 5313 5314 /// \brief Given a mnemonic, split out possible predication code and carry 5315 /// setting letters to form a canonical mnemonic and flags. 5316 // 5317 // FIXME: Would be nice to autogen this. 5318 // FIXME: This is a bit of a maze of special cases. 5319 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5320 unsigned &PredicationCode, 5321 bool &CarrySetting, 5322 unsigned &ProcessorIMod, 5323 StringRef &ITMask) { 5324 PredicationCode = ARMCC::AL; 5325 CarrySetting = false; 5326 ProcessorIMod = 0; 5327 5328 // Ignore some mnemonics we know aren't predicated forms. 5329 // 5330 // FIXME: Would be nice to autogen this. 5331 if ((Mnemonic == "movs" && isThumb()) || 5332 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5333 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5334 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5335 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5336 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5337 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5338 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5339 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5340 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5341 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5342 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5343 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5344 Mnemonic.startswith("vsel")) 5345 return Mnemonic; 5346 5347 // First, split out any predication code. Ignore mnemonics we know aren't 5348 // predicated but do have a carry-set and so weren't caught above. 5349 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5350 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5351 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5352 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5353 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5354 .Case("eq", ARMCC::EQ) 5355 .Case("ne", ARMCC::NE) 5356 .Case("hs", ARMCC::HS) 5357 .Case("cs", ARMCC::HS) 5358 .Case("lo", ARMCC::LO) 5359 .Case("cc", ARMCC::LO) 5360 .Case("mi", ARMCC::MI) 5361 .Case("pl", ARMCC::PL) 5362 .Case("vs", ARMCC::VS) 5363 .Case("vc", ARMCC::VC) 5364 .Case("hi", ARMCC::HI) 5365 .Case("ls", ARMCC::LS) 5366 .Case("ge", ARMCC::GE) 5367 .Case("lt", ARMCC::LT) 5368 .Case("gt", ARMCC::GT) 5369 .Case("le", ARMCC::LE) 5370 .Case("al", ARMCC::AL) 5371 .Default(~0U); 5372 if (CC != ~0U) { 5373 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5374 PredicationCode = CC; 5375 } 5376 } 5377 5378 // Next, determine if we have a carry setting bit. We explicitly ignore all 5379 // the instructions we know end in 's'. 5380 if (Mnemonic.endswith("s") && 5381 !(Mnemonic == "cps" || Mnemonic == "mls" || 5382 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5383 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5384 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5385 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5386 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5387 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5388 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5389 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5390 (Mnemonic == "movs" && isThumb()))) { 5391 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5392 CarrySetting = true; 5393 } 5394 5395 // The "cps" instruction can have a interrupt mode operand which is glued into 5396 // the mnemonic. Check if this is the case, split it and parse the imod op 5397 if (Mnemonic.startswith("cps")) { 5398 // Split out any imod code. 5399 unsigned IMod = 5400 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5401 .Case("ie", ARM_PROC::IE) 5402 .Case("id", ARM_PROC::ID) 5403 .Default(~0U); 5404 if (IMod != ~0U) { 5405 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5406 ProcessorIMod = IMod; 5407 } 5408 } 5409 5410 // The "it" instruction has the condition mask on the end of the mnemonic. 5411 if (Mnemonic.startswith("it")) { 5412 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5413 Mnemonic = Mnemonic.slice(0, 2); 5414 } 5415 5416 return Mnemonic; 5417 } 5418 5419 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5420 /// inclusion of carry set or predication code operands. 5421 // 5422 // FIXME: It would be nice to autogen this. 5423 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5424 bool &CanAcceptCarrySet, 5425 bool &CanAcceptPredicationCode) { 5426 CanAcceptCarrySet = 5427 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5428 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5429 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5430 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5431 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5432 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5433 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5434 (!isThumb() && 5435 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5436 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5437 5438 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5439 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5440 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5441 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5442 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5443 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5444 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5445 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5446 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5447 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5448 (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) { 5449 // These mnemonics are never predicable 5450 CanAcceptPredicationCode = false; 5451 } else if (!isThumb()) { 5452 // Some instructions are only predicable in Thumb mode 5453 CanAcceptPredicationCode = 5454 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5455 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5456 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5457 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5458 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5459 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5460 !Mnemonic.startswith("srs"); 5461 } else if (isThumbOne()) { 5462 if (hasV6MOps()) 5463 CanAcceptPredicationCode = Mnemonic != "movs"; 5464 else 5465 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5466 } else 5467 CanAcceptPredicationCode = true; 5468 } 5469 5470 // \brief Some Thumb instructions have two operand forms that are not 5471 // available as three operand, convert to two operand form if possible. 5472 // 5473 // FIXME: We would really like to be able to tablegen'erate this. 5474 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5475 bool CarrySetting, 5476 OperandVector &Operands) { 5477 if (Operands.size() != 6) 5478 return; 5479 5480 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5481 ARMOperand &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5482 if (!Op3.isReg() || !Op4.isReg()) 5483 return; 5484 5485 // For most Thumb2 cases we just generate the 3 operand form and reduce 5486 // it in processInstruction(), but for ADD involving PC the the 3 operand 5487 // form won't accept PC so we do the transformation here. 5488 ARMOperand &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5489 if (isThumbTwo()) { 5490 if (Mnemonic != "add" || 5491 !(Op3.getReg() == ARM::PC || Op4.getReg() == ARM::PC || 5492 (Op5.isReg() && Op5.getReg() == ARM::PC))) 5493 return; 5494 } else if (!isThumbOne()) 5495 return; 5496 5497 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5498 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5499 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5500 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5501 return; 5502 5503 // If first 2 operands of a 3 operand instruction are the same 5504 // then transform to 2 operand version of the same instruction 5505 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5506 bool Transform = Op3.getReg() == Op4.getReg(); 5507 5508 // For communtative operations, we might be able to transform if we swap 5509 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5510 // as tADDrsp. 5511 const ARMOperand *LastOp = &Op5; 5512 bool Swap = false; 5513 if (!Transform && Op5.isReg() && Op3.getReg() == Op5.getReg() && 5514 ((Mnemonic == "add" && Op4.getReg() != ARM::SP) || 5515 Mnemonic == "and" || Mnemonic == "eor" || 5516 Mnemonic == "adc" || Mnemonic == "orr")) { 5517 Swap = true; 5518 LastOp = &Op4; 5519 Transform = true; 5520 } 5521 5522 // If both registers are the same then remove one of them from 5523 // the operand list, with certain exceptions. 5524 if (Transform) { 5525 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5526 // 2 operand forms don't exist. 5527 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5528 LastOp->isReg()) 5529 Transform = false; 5530 5531 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5532 // 3-bits because the ARMARM says not to. 5533 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5534 Transform = false; 5535 } 5536 5537 if (Transform) { 5538 if (Swap) 5539 std::swap(Op4, Op5); 5540 Operands.erase(Operands.begin() + 3); 5541 } 5542 } 5543 5544 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5545 OperandVector &Operands) { 5546 // FIXME: This is all horribly hacky. We really need a better way to deal 5547 // with optional operands like this in the matcher table. 5548 5549 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5550 // another does not. Specifically, the MOVW instruction does not. So we 5551 // special case it here and remove the defaulted (non-setting) cc_out 5552 // operand if that's the instruction we're trying to match. 5553 // 5554 // We do this as post-processing of the explicit operands rather than just 5555 // conditionally adding the cc_out in the first place because we need 5556 // to check the type of the parsed immediate operand. 5557 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5558 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5559 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5560 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5561 return true; 5562 5563 // Register-register 'add' for thumb does not have a cc_out operand 5564 // when there are only two register operands. 5565 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5566 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5567 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5568 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5569 return true; 5570 // Register-register 'add' for thumb does not have a cc_out operand 5571 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5572 // have to check the immediate range here since Thumb2 has a variant 5573 // that can handle a different range and has a cc_out operand. 5574 if (((isThumb() && Mnemonic == "add") || 5575 (isThumbTwo() && Mnemonic == "sub")) && 5576 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5577 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5578 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5579 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5580 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5581 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5582 return true; 5583 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5584 // imm0_4095 variant. That's the least-preferred variant when 5585 // selecting via the generic "add" mnemonic, so to know that we 5586 // should remove the cc_out operand, we have to explicitly check that 5587 // it's not one of the other variants. Ugh. 5588 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5589 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5590 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5591 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5592 // Nest conditions rather than one big 'if' statement for readability. 5593 // 5594 // If both registers are low, we're in an IT block, and the immediate is 5595 // in range, we should use encoding T1 instead, which has a cc_out. 5596 if (inITBlock() && 5597 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5598 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5599 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5600 return false; 5601 // Check against T3. If the second register is the PC, this is an 5602 // alternate form of ADR, which uses encoding T4, so check for that too. 5603 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5604 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5605 return false; 5606 5607 // Otherwise, we use encoding T4, which does not have a cc_out 5608 // operand. 5609 return true; 5610 } 5611 5612 // The thumb2 multiply instruction doesn't have a CCOut register, so 5613 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5614 // use the 16-bit encoding or not. 5615 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5616 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5617 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5618 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5619 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5620 // If the registers aren't low regs, the destination reg isn't the 5621 // same as one of the source regs, or the cc_out operand is zero 5622 // outside of an IT block, we have to use the 32-bit encoding, so 5623 // remove the cc_out operand. 5624 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5625 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5626 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5627 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5628 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5629 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5630 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5631 return true; 5632 5633 // Also check the 'mul' syntax variant that doesn't specify an explicit 5634 // destination register. 5635 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5636 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5637 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5638 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5639 // If the registers aren't low regs or the cc_out operand is zero 5640 // outside of an IT block, we have to use the 32-bit encoding, so 5641 // remove the cc_out operand. 5642 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5643 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5644 !inITBlock())) 5645 return true; 5646 5647 5648 5649 // Register-register 'add/sub' for thumb does not have a cc_out operand 5650 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5651 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5652 // right, this will result in better diagnostics (which operand is off) 5653 // anyway. 5654 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5655 (Operands.size() == 5 || Operands.size() == 6) && 5656 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5657 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5658 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5659 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5660 (Operands.size() == 6 && 5661 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5662 return true; 5663 5664 return false; 5665 } 5666 5667 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5668 OperandVector &Operands) { 5669 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5670 unsigned RegIdx = 3; 5671 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5672 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") { 5673 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5674 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32") 5675 RegIdx = 4; 5676 5677 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5678 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5679 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5680 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5681 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5682 return true; 5683 } 5684 return false; 5685 } 5686 5687 static bool isDataTypeToken(StringRef Tok) { 5688 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5689 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5690 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5691 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5692 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5693 Tok == ".f" || Tok == ".d"; 5694 } 5695 5696 // FIXME: This bit should probably be handled via an explicit match class 5697 // in the .td files that matches the suffix instead of having it be 5698 // a literal string token the way it is now. 5699 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5700 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5701 } 5702 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5703 unsigned VariantID); 5704 5705 static bool RequiresVFPRegListValidation(StringRef Inst, 5706 bool &AcceptSinglePrecisionOnly, 5707 bool &AcceptDoublePrecisionOnly) { 5708 if (Inst.size() < 7) 5709 return false; 5710 5711 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5712 StringRef AddressingMode = Inst.substr(4, 2); 5713 if (AddressingMode == "ia" || AddressingMode == "db" || 5714 AddressingMode == "ea" || AddressingMode == "fd") { 5715 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5716 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5717 return true; 5718 } 5719 } 5720 5721 return false; 5722 } 5723 5724 /// Parse an arm instruction mnemonic followed by its operands. 5725 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5726 SMLoc NameLoc, OperandVector &Operands) { 5727 MCAsmParser &Parser = getParser(); 5728 // FIXME: Can this be done via tablegen in some fashion? 5729 bool RequireVFPRegisterListCheck; 5730 bool AcceptSinglePrecisionOnly; 5731 bool AcceptDoublePrecisionOnly; 5732 RequireVFPRegisterListCheck = 5733 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5734 AcceptDoublePrecisionOnly); 5735 5736 // Apply mnemonic aliases before doing anything else, as the destination 5737 // mnemonic may include suffices and we want to handle them normally. 5738 // The generic tblgen'erated code does this later, at the start of 5739 // MatchInstructionImpl(), but that's too late for aliases that include 5740 // any sort of suffix. 5741 uint64_t AvailableFeatures = getAvailableFeatures(); 5742 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5743 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5744 5745 // First check for the ARM-specific .req directive. 5746 if (Parser.getTok().is(AsmToken::Identifier) && 5747 Parser.getTok().getIdentifier() == ".req") { 5748 parseDirectiveReq(Name, NameLoc); 5749 // We always return 'error' for this, as we're done with this 5750 // statement and don't need to match the 'instruction." 5751 return true; 5752 } 5753 5754 // Create the leading tokens for the mnemonic, split by '.' characters. 5755 size_t Start = 0, Next = Name.find('.'); 5756 StringRef Mnemonic = Name.slice(Start, Next); 5757 5758 // Split out the predication code and carry setting flag from the mnemonic. 5759 unsigned PredicationCode; 5760 unsigned ProcessorIMod; 5761 bool CarrySetting; 5762 StringRef ITMask; 5763 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5764 ProcessorIMod, ITMask); 5765 5766 // In Thumb1, only the branch (B) instruction can be predicated. 5767 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5768 Parser.eatToEndOfStatement(); 5769 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5770 } 5771 5772 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5773 5774 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5775 // is the mask as it will be for the IT encoding if the conditional 5776 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5777 // where the conditional bit0 is zero, the instruction post-processing 5778 // will adjust the mask accordingly. 5779 if (Mnemonic == "it") { 5780 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5781 if (ITMask.size() > 3) { 5782 Parser.eatToEndOfStatement(); 5783 return Error(Loc, "too many conditions on IT instruction"); 5784 } 5785 unsigned Mask = 8; 5786 for (unsigned i = ITMask.size(); i != 0; --i) { 5787 char pos = ITMask[i - 1]; 5788 if (pos != 't' && pos != 'e') { 5789 Parser.eatToEndOfStatement(); 5790 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5791 } 5792 Mask >>= 1; 5793 if (ITMask[i - 1] == 't') 5794 Mask |= 8; 5795 } 5796 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5797 } 5798 5799 // FIXME: This is all a pretty gross hack. We should automatically handle 5800 // optional operands like this via tblgen. 5801 5802 // Next, add the CCOut and ConditionCode operands, if needed. 5803 // 5804 // For mnemonics which can ever incorporate a carry setting bit or predication 5805 // code, our matching model involves us always generating CCOut and 5806 // ConditionCode operands to match the mnemonic "as written" and then we let 5807 // the matcher deal with finding the right instruction or generating an 5808 // appropriate error. 5809 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5810 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5811 5812 // If we had a carry-set on an instruction that can't do that, issue an 5813 // error. 5814 if (!CanAcceptCarrySet && CarrySetting) { 5815 Parser.eatToEndOfStatement(); 5816 return Error(NameLoc, "instruction '" + Mnemonic + 5817 "' can not set flags, but 's' suffix specified"); 5818 } 5819 // If we had a predication code on an instruction that can't do that, issue an 5820 // error. 5821 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5822 Parser.eatToEndOfStatement(); 5823 return Error(NameLoc, "instruction '" + Mnemonic + 5824 "' is not predicable, but condition code specified"); 5825 } 5826 5827 // Add the carry setting operand, if necessary. 5828 if (CanAcceptCarrySet) { 5829 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5830 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5831 Loc)); 5832 } 5833 5834 // Add the predication code operand, if necessary. 5835 if (CanAcceptPredicationCode) { 5836 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5837 CarrySetting); 5838 Operands.push_back(ARMOperand::CreateCondCode( 5839 ARMCC::CondCodes(PredicationCode), Loc)); 5840 } 5841 5842 // Add the processor imod operand, if necessary. 5843 if (ProcessorIMod) { 5844 Operands.push_back(ARMOperand::CreateImm( 5845 MCConstantExpr::create(ProcessorIMod, getContext()), 5846 NameLoc, NameLoc)); 5847 } else if (Mnemonic == "cps" && isMClass()) { 5848 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5849 } 5850 5851 // Add the remaining tokens in the mnemonic. 5852 while (Next != StringRef::npos) { 5853 Start = Next; 5854 Next = Name.find('.', Start + 1); 5855 StringRef ExtraToken = Name.slice(Start, Next); 5856 5857 // Some NEON instructions have an optional datatype suffix that is 5858 // completely ignored. Check for that. 5859 if (isDataTypeToken(ExtraToken) && 5860 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5861 continue; 5862 5863 // For for ARM mode generate an error if the .n qualifier is used. 5864 if (ExtraToken == ".n" && !isThumb()) { 5865 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5866 Parser.eatToEndOfStatement(); 5867 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5868 "arm mode"); 5869 } 5870 5871 // The .n qualifier is always discarded as that is what the tables 5872 // and matcher expect. In ARM mode the .w qualifier has no effect, 5873 // so discard it to avoid errors that can be caused by the matcher. 5874 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5875 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5876 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5877 } 5878 } 5879 5880 // Read the remaining operands. 5881 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5882 // Read the first operand. 5883 if (parseOperand(Operands, Mnemonic)) { 5884 Parser.eatToEndOfStatement(); 5885 return true; 5886 } 5887 5888 while (getLexer().is(AsmToken::Comma)) { 5889 Parser.Lex(); // Eat the comma. 5890 5891 // Parse and remember the operand. 5892 if (parseOperand(Operands, Mnemonic)) { 5893 Parser.eatToEndOfStatement(); 5894 return true; 5895 } 5896 } 5897 } 5898 5899 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5900 SMLoc Loc = getLexer().getLoc(); 5901 Parser.eatToEndOfStatement(); 5902 return Error(Loc, "unexpected token in argument list"); 5903 } 5904 5905 Parser.Lex(); // Consume the EndOfStatement 5906 5907 if (RequireVFPRegisterListCheck) { 5908 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5909 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5910 return Error(Op.getStartLoc(), 5911 "VFP/Neon single precision register expected"); 5912 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5913 return Error(Op.getStartLoc(), 5914 "VFP/Neon double precision register expected"); 5915 } 5916 5917 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5918 5919 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5920 // do and don't have a cc_out optional-def operand. With some spot-checks 5921 // of the operand list, we can figure out which variant we're trying to 5922 // parse and adjust accordingly before actually matching. We shouldn't ever 5923 // try to remove a cc_out operand that was explicitly set on the 5924 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5925 // table driven matcher doesn't fit well with the ARM instruction set. 5926 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5927 Operands.erase(Operands.begin() + 1); 5928 5929 // Some instructions have the same mnemonic, but don't always 5930 // have a predicate. Distinguish them here and delete the 5931 // predicate if needed. 5932 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5933 Operands.erase(Operands.begin() + 1); 5934 5935 // ARM mode 'blx' need special handling, as the register operand version 5936 // is predicable, but the label operand version is not. So, we can't rely 5937 // on the Mnemonic based checking to correctly figure out when to put 5938 // a k_CondCode operand in the list. If we're trying to match the label 5939 // version, remove the k_CondCode operand here. 5940 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5941 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5942 Operands.erase(Operands.begin() + 1); 5943 5944 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5945 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5946 // a single GPRPair reg operand is used in the .td file to replace the two 5947 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5948 // expressed as a GPRPair, so we have to manually merge them. 5949 // FIXME: We would really like to be able to tablegen'erate this. 5950 if (!isThumb() && Operands.size() > 4 && 5951 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5952 Mnemonic == "stlexd")) { 5953 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5954 unsigned Idx = isLoad ? 2 : 3; 5955 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5956 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5957 5958 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5959 // Adjust only if Op1 and Op2 are GPRs. 5960 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5961 MRC.contains(Op2.getReg())) { 5962 unsigned Reg1 = Op1.getReg(); 5963 unsigned Reg2 = Op2.getReg(); 5964 unsigned Rt = MRI->getEncodingValue(Reg1); 5965 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5966 5967 // Rt2 must be Rt + 1 and Rt must be even. 5968 if (Rt + 1 != Rt2 || (Rt & 1)) { 5969 Error(Op2.getStartLoc(), isLoad 5970 ? "destination operands must be sequential" 5971 : "source operands must be sequential"); 5972 return true; 5973 } 5974 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5975 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5976 Operands[Idx] = 5977 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5978 Operands.erase(Operands.begin() + Idx + 1); 5979 } 5980 } 5981 5982 // GNU Assembler extension (compatibility) 5983 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5984 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5985 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5986 if (Op3.isMem()) { 5987 assert(Op2.isReg() && "expected register argument"); 5988 5989 unsigned SuperReg = MRI->getMatchingSuperReg( 5990 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5991 5992 assert(SuperReg && "expected register pair"); 5993 5994 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 5995 5996 Operands.insert( 5997 Operands.begin() + 3, 5998 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5999 } 6000 } 6001 6002 // FIXME: As said above, this is all a pretty gross hack. This instruction 6003 // does not fit with other "subs" and tblgen. 6004 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6005 // so the Mnemonic is the original name "subs" and delete the predicate 6006 // operand so it will match the table entry. 6007 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6008 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6009 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6010 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6011 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6012 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6013 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6014 Operands.erase(Operands.begin() + 1); 6015 } 6016 return false; 6017 } 6018 6019 // Validate context-sensitive operand constraints. 6020 6021 // return 'true' if register list contains non-low GPR registers, 6022 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6023 // 'containsReg' to true. 6024 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg, 6025 unsigned HiReg, bool &containsReg) { 6026 containsReg = false; 6027 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6028 unsigned OpReg = Inst.getOperand(i).getReg(); 6029 if (OpReg == Reg) 6030 containsReg = true; 6031 // Anything other than a low register isn't legal here. 6032 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6033 return true; 6034 } 6035 return false; 6036 } 6037 6038 // Check if the specified regisgter is in the register list of the inst, 6039 // starting at the indicated operand number. 6040 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) { 6041 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6042 unsigned OpReg = Inst.getOperand(i).getReg(); 6043 if (OpReg == Reg) 6044 return true; 6045 } 6046 return false; 6047 } 6048 6049 // Return true if instruction has the interesting property of being 6050 // allowed in IT blocks, but not being predicable. 6051 static bool instIsBreakpoint(const MCInst &Inst) { 6052 return Inst.getOpcode() == ARM::tBKPT || 6053 Inst.getOpcode() == ARM::BKPT || 6054 Inst.getOpcode() == ARM::tHLT || 6055 Inst.getOpcode() == ARM::HLT; 6056 6057 } 6058 6059 bool ARMAsmParser::validatetLDMRegList(MCInst Inst, 6060 const OperandVector &Operands, 6061 unsigned ListNo, bool IsARPop) { 6062 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6063 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6064 6065 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6066 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6067 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6068 6069 if (!IsARPop && ListContainsSP) 6070 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6071 "SP may not be in the register list"); 6072 else if (ListContainsPC && ListContainsLR) 6073 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6074 "PC and LR may not be in the register list simultaneously"); 6075 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6076 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6077 "instruction must be outside of IT block or the last " 6078 "instruction in an IT block"); 6079 return false; 6080 } 6081 6082 bool ARMAsmParser::validatetSTMRegList(MCInst Inst, 6083 const OperandVector &Operands, 6084 unsigned ListNo) { 6085 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6086 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6087 6088 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6089 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6090 6091 if (ListContainsSP && ListContainsPC) 6092 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6093 "SP and PC may not be in the register list"); 6094 else if (ListContainsSP) 6095 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6096 "SP may not be in the register list"); 6097 else if (ListContainsPC) 6098 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6099 "PC may not be in the register list"); 6100 return false; 6101 } 6102 6103 // FIXME: We would really like to be able to tablegen'erate this. 6104 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6105 const OperandVector &Operands) { 6106 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6107 SMLoc Loc = Operands[0]->getStartLoc(); 6108 6109 // Check the IT block state first. 6110 // NOTE: BKPT and HLT instructions have the interesting property of being 6111 // allowed in IT blocks, but not being predicable. They just always execute. 6112 if (inITBlock() && !instIsBreakpoint(Inst)) { 6113 unsigned Bit = 1; 6114 if (ITState.FirstCond) 6115 ITState.FirstCond = false; 6116 else 6117 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6118 // The instruction must be predicable. 6119 if (!MCID.isPredicable()) 6120 return Error(Loc, "instructions in IT block must be predicable"); 6121 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6122 unsigned ITCond = Bit ? ITState.Cond : 6123 ARMCC::getOppositeCondition(ITState.Cond); 6124 if (Cond != ITCond) { 6125 // Find the condition code Operand to get its SMLoc information. 6126 SMLoc CondLoc; 6127 for (unsigned I = 1; I < Operands.size(); ++I) 6128 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6129 CondLoc = Operands[I]->getStartLoc(); 6130 return Error(CondLoc, "incorrect condition in IT block; got '" + 6131 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6132 "', but expected '" + 6133 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6134 } 6135 // Check for non-'al' condition codes outside of the IT block. 6136 } else if (isThumbTwo() && MCID.isPredicable() && 6137 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6138 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6139 Inst.getOpcode() != ARM::t2Bcc) 6140 return Error(Loc, "predicated instructions must be in IT block"); 6141 6142 const unsigned Opcode = Inst.getOpcode(); 6143 switch (Opcode) { 6144 case ARM::LDRD: 6145 case ARM::LDRD_PRE: 6146 case ARM::LDRD_POST: { 6147 const unsigned RtReg = Inst.getOperand(0).getReg(); 6148 6149 // Rt can't be R14. 6150 if (RtReg == ARM::LR) 6151 return Error(Operands[3]->getStartLoc(), 6152 "Rt can't be R14"); 6153 6154 const unsigned Rt = MRI->getEncodingValue(RtReg); 6155 // Rt must be even-numbered. 6156 if ((Rt & 1) == 1) 6157 return Error(Operands[3]->getStartLoc(), 6158 "Rt must be even-numbered"); 6159 6160 // Rt2 must be Rt + 1. 6161 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6162 if (Rt2 != Rt + 1) 6163 return Error(Operands[3]->getStartLoc(), 6164 "destination operands must be sequential"); 6165 6166 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6167 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6168 // For addressing modes with writeback, the base register needs to be 6169 // different from the destination registers. 6170 if (Rn == Rt || Rn == Rt2) 6171 return Error(Operands[3]->getStartLoc(), 6172 "base register needs to be different from destination " 6173 "registers"); 6174 } 6175 6176 return false; 6177 } 6178 case ARM::t2LDRDi8: 6179 case ARM::t2LDRD_PRE: 6180 case ARM::t2LDRD_POST: { 6181 // Rt2 must be different from Rt. 6182 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6183 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6184 if (Rt2 == Rt) 6185 return Error(Operands[3]->getStartLoc(), 6186 "destination operands can't be identical"); 6187 return false; 6188 } 6189 case ARM::t2BXJ: { 6190 const unsigned RmReg = Inst.getOperand(0).getReg(); 6191 // Rm = SP is no longer unpredictable in v8-A 6192 if (RmReg == ARM::SP && !hasV8Ops()) 6193 return Error(Operands[2]->getStartLoc(), 6194 "r13 (SP) is an unpredictable operand to BXJ"); 6195 return false; 6196 } 6197 case ARM::STRD: { 6198 // Rt2 must be Rt + 1. 6199 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6200 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6201 if (Rt2 != Rt + 1) 6202 return Error(Operands[3]->getStartLoc(), 6203 "source operands must be sequential"); 6204 return false; 6205 } 6206 case ARM::STRD_PRE: 6207 case ARM::STRD_POST: { 6208 // Rt2 must be Rt + 1. 6209 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6210 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6211 if (Rt2 != Rt + 1) 6212 return Error(Operands[3]->getStartLoc(), 6213 "source operands must be sequential"); 6214 return false; 6215 } 6216 case ARM::STR_PRE_IMM: 6217 case ARM::STR_PRE_REG: 6218 case ARM::STR_POST_IMM: 6219 case ARM::STR_POST_REG: 6220 case ARM::STRH_PRE: 6221 case ARM::STRH_POST: 6222 case ARM::STRB_PRE_IMM: 6223 case ARM::STRB_PRE_REG: 6224 case ARM::STRB_POST_IMM: 6225 case ARM::STRB_POST_REG: { 6226 // Rt must be different from Rn. 6227 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6228 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6229 6230 if (Rt == Rn) 6231 return Error(Operands[3]->getStartLoc(), 6232 "source register and base register can't be identical"); 6233 return false; 6234 } 6235 case ARM::LDR_PRE_IMM: 6236 case ARM::LDR_PRE_REG: 6237 case ARM::LDR_POST_IMM: 6238 case ARM::LDR_POST_REG: 6239 case ARM::LDRH_PRE: 6240 case ARM::LDRH_POST: 6241 case ARM::LDRSH_PRE: 6242 case ARM::LDRSH_POST: 6243 case ARM::LDRB_PRE_IMM: 6244 case ARM::LDRB_PRE_REG: 6245 case ARM::LDRB_POST_IMM: 6246 case ARM::LDRB_POST_REG: 6247 case ARM::LDRSB_PRE: 6248 case ARM::LDRSB_POST: { 6249 // Rt must be different from Rn. 6250 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6251 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6252 6253 if (Rt == Rn) 6254 return Error(Operands[3]->getStartLoc(), 6255 "destination register and base register can't be identical"); 6256 return false; 6257 } 6258 case ARM::SBFX: 6259 case ARM::UBFX: { 6260 // Width must be in range [1, 32-lsb]. 6261 unsigned LSB = Inst.getOperand(2).getImm(); 6262 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6263 if (Widthm1 >= 32 - LSB) 6264 return Error(Operands[5]->getStartLoc(), 6265 "bitfield width must be in range [1,32-lsb]"); 6266 return false; 6267 } 6268 // Notionally handles ARM::tLDMIA_UPD too. 6269 case ARM::tLDMIA: { 6270 // If we're parsing Thumb2, the .w variant is available and handles 6271 // most cases that are normally illegal for a Thumb1 LDM instruction. 6272 // We'll make the transformation in processInstruction() if necessary. 6273 // 6274 // Thumb LDM instructions are writeback iff the base register is not 6275 // in the register list. 6276 unsigned Rn = Inst.getOperand(0).getReg(); 6277 bool HasWritebackToken = 6278 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6279 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6280 bool ListContainsBase; 6281 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6282 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6283 "registers must be in range r0-r7"); 6284 // If we should have writeback, then there should be a '!' token. 6285 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6286 return Error(Operands[2]->getStartLoc(), 6287 "writeback operator '!' expected"); 6288 // If we should not have writeback, there must not be a '!'. This is 6289 // true even for the 32-bit wide encodings. 6290 if (ListContainsBase && HasWritebackToken) 6291 return Error(Operands[3]->getStartLoc(), 6292 "writeback operator '!' not allowed when base register " 6293 "in register list"); 6294 6295 if (validatetLDMRegList(Inst, Operands, 3)) 6296 return true; 6297 break; 6298 } 6299 case ARM::LDMIA_UPD: 6300 case ARM::LDMDB_UPD: 6301 case ARM::LDMIB_UPD: 6302 case ARM::LDMDA_UPD: 6303 // ARM variants loading and updating the same register are only officially 6304 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6305 if (!hasV7Ops()) 6306 break; 6307 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6308 return Error(Operands.back()->getStartLoc(), 6309 "writeback register not allowed in register list"); 6310 break; 6311 case ARM::t2LDMIA: 6312 case ARM::t2LDMDB: 6313 if (validatetLDMRegList(Inst, Operands, 3)) 6314 return true; 6315 break; 6316 case ARM::t2STMIA: 6317 case ARM::t2STMDB: 6318 if (validatetSTMRegList(Inst, Operands, 3)) 6319 return true; 6320 break; 6321 case ARM::t2LDMIA_UPD: 6322 case ARM::t2LDMDB_UPD: 6323 case ARM::t2STMIA_UPD: 6324 case ARM::t2STMDB_UPD: { 6325 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6326 return Error(Operands.back()->getStartLoc(), 6327 "writeback register not allowed in register list"); 6328 6329 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6330 if (validatetLDMRegList(Inst, Operands, 3)) 6331 return true; 6332 } else { 6333 if (validatetSTMRegList(Inst, Operands, 3)) 6334 return true; 6335 } 6336 break; 6337 } 6338 case ARM::sysLDMIA_UPD: 6339 case ARM::sysLDMDA_UPD: 6340 case ARM::sysLDMDB_UPD: 6341 case ARM::sysLDMIB_UPD: 6342 if (!listContainsReg(Inst, 3, ARM::PC)) 6343 return Error(Operands[4]->getStartLoc(), 6344 "writeback register only allowed on system LDM " 6345 "if PC in register-list"); 6346 break; 6347 case ARM::sysSTMIA_UPD: 6348 case ARM::sysSTMDA_UPD: 6349 case ARM::sysSTMDB_UPD: 6350 case ARM::sysSTMIB_UPD: 6351 return Error(Operands[2]->getStartLoc(), 6352 "system STM cannot have writeback register"); 6353 case ARM::tMUL: { 6354 // The second source operand must be the same register as the destination 6355 // operand. 6356 // 6357 // In this case, we must directly check the parsed operands because the 6358 // cvtThumbMultiply() function is written in such a way that it guarantees 6359 // this first statement is always true for the new Inst. Essentially, the 6360 // destination is unconditionally copied into the second source operand 6361 // without checking to see if it matches what we actually parsed. 6362 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6363 ((ARMOperand &)*Operands[5]).getReg()) && 6364 (((ARMOperand &)*Operands[3]).getReg() != 6365 ((ARMOperand &)*Operands[4]).getReg())) { 6366 return Error(Operands[3]->getStartLoc(), 6367 "destination register must match source register"); 6368 } 6369 break; 6370 } 6371 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6372 // so only issue a diagnostic for thumb1. The instructions will be 6373 // switched to the t2 encodings in processInstruction() if necessary. 6374 case ARM::tPOP: { 6375 bool ListContainsBase; 6376 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6377 !isThumbTwo()) 6378 return Error(Operands[2]->getStartLoc(), 6379 "registers must be in range r0-r7 or pc"); 6380 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6381 return true; 6382 break; 6383 } 6384 case ARM::tPUSH: { 6385 bool ListContainsBase; 6386 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6387 !isThumbTwo()) 6388 return Error(Operands[2]->getStartLoc(), 6389 "registers must be in range r0-r7 or lr"); 6390 if (validatetSTMRegList(Inst, Operands, 2)) 6391 return true; 6392 break; 6393 } 6394 case ARM::tSTMIA_UPD: { 6395 bool ListContainsBase, InvalidLowList; 6396 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6397 0, ListContainsBase); 6398 if (InvalidLowList && !isThumbTwo()) 6399 return Error(Operands[4]->getStartLoc(), 6400 "registers must be in range r0-r7"); 6401 6402 // This would be converted to a 32-bit stm, but that's not valid if the 6403 // writeback register is in the list. 6404 if (InvalidLowList && ListContainsBase) 6405 return Error(Operands[4]->getStartLoc(), 6406 "writeback operator '!' not allowed when base register " 6407 "in register list"); 6408 6409 if (validatetSTMRegList(Inst, Operands, 4)) 6410 return true; 6411 break; 6412 } 6413 case ARM::tADDrSP: { 6414 // If the non-SP source operand and the destination operand are not the 6415 // same, we need thumb2 (for the wide encoding), or we have an error. 6416 if (!isThumbTwo() && 6417 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6418 return Error(Operands[4]->getStartLoc(), 6419 "source register must be the same as destination"); 6420 } 6421 break; 6422 } 6423 // Final range checking for Thumb unconditional branch instructions. 6424 case ARM::tB: 6425 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6426 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6427 break; 6428 case ARM::t2B: { 6429 int op = (Operands[2]->isImm()) ? 2 : 3; 6430 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6431 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6432 break; 6433 } 6434 // Final range checking for Thumb conditional branch instructions. 6435 case ARM::tBcc: 6436 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6437 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6438 break; 6439 case ARM::t2Bcc: { 6440 int Op = (Operands[2]->isImm()) ? 2 : 3; 6441 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6442 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6443 break; 6444 } 6445 case ARM::MOVi16: 6446 case ARM::t2MOVi16: 6447 case ARM::t2MOVTi16: 6448 { 6449 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6450 // especially when we turn it into a movw and the expression <symbol> does 6451 // not have a :lower16: or :upper16 as part of the expression. We don't 6452 // want the behavior of silently truncating, which can be unexpected and 6453 // lead to bugs that are difficult to find since this is an easy mistake 6454 // to make. 6455 int i = (Operands[3]->isImm()) ? 3 : 4; 6456 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6457 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6458 if (CE) break; 6459 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6460 if (!E) break; 6461 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6462 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6463 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6464 return Error( 6465 Op.getStartLoc(), 6466 "immediate expression for mov requires :lower16: or :upper16"); 6467 break; 6468 } 6469 } 6470 6471 return false; 6472 } 6473 6474 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6475 switch(Opc) { 6476 default: llvm_unreachable("unexpected opcode!"); 6477 // VST1LN 6478 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6479 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6480 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6481 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6482 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6483 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6484 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6485 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6486 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6487 6488 // VST2LN 6489 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6490 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6491 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6492 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6493 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6494 6495 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6496 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6497 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6498 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6499 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6500 6501 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6502 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6503 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6504 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6505 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6506 6507 // VST3LN 6508 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6509 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6510 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6511 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6512 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6513 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6514 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6515 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6516 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6517 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6518 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6519 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6520 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6521 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6522 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6523 6524 // VST3 6525 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6526 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6527 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6528 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6529 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6530 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6531 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6532 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6533 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6534 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6535 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6536 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6537 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6538 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6539 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6540 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6541 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6542 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6543 6544 // VST4LN 6545 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6546 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6547 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6548 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6549 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6550 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6551 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6552 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6553 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6554 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6555 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6556 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6557 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6558 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6559 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6560 6561 // VST4 6562 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6563 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6564 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6565 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6566 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6567 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6568 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6569 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6570 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6571 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6572 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6573 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6574 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6575 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6576 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6577 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6578 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6579 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6580 } 6581 } 6582 6583 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6584 switch(Opc) { 6585 default: llvm_unreachable("unexpected opcode!"); 6586 // VLD1LN 6587 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6588 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6589 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6590 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6591 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6592 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6593 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6594 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6595 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6596 6597 // VLD2LN 6598 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6599 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6600 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6601 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6602 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6603 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6604 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6605 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6606 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6607 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6608 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6609 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6610 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6611 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6612 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6613 6614 // VLD3DUP 6615 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6616 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6617 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6618 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6619 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6620 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6621 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6622 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6623 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6624 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6625 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6626 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6627 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6628 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6629 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6630 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6631 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6632 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6633 6634 // VLD3LN 6635 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6636 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6637 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6638 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6639 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6640 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6641 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6642 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6643 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6644 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6645 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6646 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6647 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6648 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6649 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6650 6651 // VLD3 6652 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6653 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6654 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6655 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6656 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6657 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6658 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6659 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6660 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6661 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6662 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6663 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6664 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6665 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6666 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6667 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6668 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6669 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6670 6671 // VLD4LN 6672 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6673 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6674 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6675 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6676 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6677 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6678 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6679 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6680 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6681 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6682 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6683 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6684 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6685 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6686 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6687 6688 // VLD4DUP 6689 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6690 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6691 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6692 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6693 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6694 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6695 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6696 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6697 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6698 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6699 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6700 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6701 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6702 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6703 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6704 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6705 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6706 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6707 6708 // VLD4 6709 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6710 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6711 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6712 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6713 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6714 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6715 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6716 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6717 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6718 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6719 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6720 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6721 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6722 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6723 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6724 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6725 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6726 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6727 } 6728 } 6729 6730 bool ARMAsmParser::processInstruction(MCInst &Inst, 6731 const OperandVector &Operands, 6732 MCStreamer &Out) { 6733 switch (Inst.getOpcode()) { 6734 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6735 case ARM::LDRT_POST: 6736 case ARM::LDRBT_POST: { 6737 const unsigned Opcode = 6738 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6739 : ARM::LDRBT_POST_IMM; 6740 MCInst TmpInst; 6741 TmpInst.setOpcode(Opcode); 6742 TmpInst.addOperand(Inst.getOperand(0)); 6743 TmpInst.addOperand(Inst.getOperand(1)); 6744 TmpInst.addOperand(Inst.getOperand(1)); 6745 TmpInst.addOperand(MCOperand::createReg(0)); 6746 TmpInst.addOperand(MCOperand::createImm(0)); 6747 TmpInst.addOperand(Inst.getOperand(2)); 6748 TmpInst.addOperand(Inst.getOperand(3)); 6749 Inst = TmpInst; 6750 return true; 6751 } 6752 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6753 case ARM::STRT_POST: 6754 case ARM::STRBT_POST: { 6755 const unsigned Opcode = 6756 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6757 : ARM::STRBT_POST_IMM; 6758 MCInst TmpInst; 6759 TmpInst.setOpcode(Opcode); 6760 TmpInst.addOperand(Inst.getOperand(1)); 6761 TmpInst.addOperand(Inst.getOperand(0)); 6762 TmpInst.addOperand(Inst.getOperand(1)); 6763 TmpInst.addOperand(MCOperand::createReg(0)); 6764 TmpInst.addOperand(MCOperand::createImm(0)); 6765 TmpInst.addOperand(Inst.getOperand(2)); 6766 TmpInst.addOperand(Inst.getOperand(3)); 6767 Inst = TmpInst; 6768 return true; 6769 } 6770 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6771 case ARM::ADDri: { 6772 if (Inst.getOperand(1).getReg() != ARM::PC || 6773 Inst.getOperand(5).getReg() != 0 || 6774 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6775 return false; 6776 MCInst TmpInst; 6777 TmpInst.setOpcode(ARM::ADR); 6778 TmpInst.addOperand(Inst.getOperand(0)); 6779 if (Inst.getOperand(2).isImm()) { 6780 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6781 // before passing it to the ADR instruction. 6782 unsigned Enc = Inst.getOperand(2).getImm(); 6783 TmpInst.addOperand(MCOperand::createImm( 6784 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6785 } else { 6786 // Turn PC-relative expression into absolute expression. 6787 // Reading PC provides the start of the current instruction + 8 and 6788 // the transform to adr is biased by that. 6789 MCSymbol *Dot = getContext().createTempSymbol(); 6790 Out.EmitLabel(Dot); 6791 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6792 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6793 MCSymbolRefExpr::VK_None, 6794 getContext()); 6795 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6796 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6797 getContext()); 6798 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6799 getContext()); 6800 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6801 } 6802 TmpInst.addOperand(Inst.getOperand(3)); 6803 TmpInst.addOperand(Inst.getOperand(4)); 6804 Inst = TmpInst; 6805 return true; 6806 } 6807 // Aliases for alternate PC+imm syntax of LDR instructions. 6808 case ARM::t2LDRpcrel: 6809 // Select the narrow version if the immediate will fit. 6810 if (Inst.getOperand(1).getImm() > 0 && 6811 Inst.getOperand(1).getImm() <= 0xff && 6812 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6813 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6814 Inst.setOpcode(ARM::tLDRpci); 6815 else 6816 Inst.setOpcode(ARM::t2LDRpci); 6817 return true; 6818 case ARM::t2LDRBpcrel: 6819 Inst.setOpcode(ARM::t2LDRBpci); 6820 return true; 6821 case ARM::t2LDRHpcrel: 6822 Inst.setOpcode(ARM::t2LDRHpci); 6823 return true; 6824 case ARM::t2LDRSBpcrel: 6825 Inst.setOpcode(ARM::t2LDRSBpci); 6826 return true; 6827 case ARM::t2LDRSHpcrel: 6828 Inst.setOpcode(ARM::t2LDRSHpci); 6829 return true; 6830 // Handle NEON VST complex aliases. 6831 case ARM::VST1LNdWB_register_Asm_8: 6832 case ARM::VST1LNdWB_register_Asm_16: 6833 case ARM::VST1LNdWB_register_Asm_32: { 6834 MCInst TmpInst; 6835 // Shuffle the operands around so the lane index operand is in the 6836 // right place. 6837 unsigned Spacing; 6838 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6839 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6840 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6841 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6842 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6843 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6844 TmpInst.addOperand(Inst.getOperand(1)); // lane 6845 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6846 TmpInst.addOperand(Inst.getOperand(6)); 6847 Inst = TmpInst; 6848 return true; 6849 } 6850 6851 case ARM::VST2LNdWB_register_Asm_8: 6852 case ARM::VST2LNdWB_register_Asm_16: 6853 case ARM::VST2LNdWB_register_Asm_32: 6854 case ARM::VST2LNqWB_register_Asm_16: 6855 case ARM::VST2LNqWB_register_Asm_32: { 6856 MCInst TmpInst; 6857 // Shuffle the operands around so the lane index operand is in the 6858 // right place. 6859 unsigned Spacing; 6860 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6861 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6862 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6863 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6864 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6865 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6866 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6867 Spacing)); 6868 TmpInst.addOperand(Inst.getOperand(1)); // lane 6869 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6870 TmpInst.addOperand(Inst.getOperand(6)); 6871 Inst = TmpInst; 6872 return true; 6873 } 6874 6875 case ARM::VST3LNdWB_register_Asm_8: 6876 case ARM::VST3LNdWB_register_Asm_16: 6877 case ARM::VST3LNdWB_register_Asm_32: 6878 case ARM::VST3LNqWB_register_Asm_16: 6879 case ARM::VST3LNqWB_register_Asm_32: { 6880 MCInst TmpInst; 6881 // Shuffle the operands around so the lane index operand is in the 6882 // right place. 6883 unsigned Spacing; 6884 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6885 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6886 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6887 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6888 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6889 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6890 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6891 Spacing)); 6892 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6893 Spacing * 2)); 6894 TmpInst.addOperand(Inst.getOperand(1)); // lane 6895 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6896 TmpInst.addOperand(Inst.getOperand(6)); 6897 Inst = TmpInst; 6898 return true; 6899 } 6900 6901 case ARM::VST4LNdWB_register_Asm_8: 6902 case ARM::VST4LNdWB_register_Asm_16: 6903 case ARM::VST4LNdWB_register_Asm_32: 6904 case ARM::VST4LNqWB_register_Asm_16: 6905 case ARM::VST4LNqWB_register_Asm_32: { 6906 MCInst TmpInst; 6907 // Shuffle the operands around so the lane index operand is in the 6908 // right place. 6909 unsigned Spacing; 6910 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6911 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6912 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6913 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6914 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6915 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6916 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6917 Spacing)); 6918 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6919 Spacing * 2)); 6920 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6921 Spacing * 3)); 6922 TmpInst.addOperand(Inst.getOperand(1)); // lane 6923 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6924 TmpInst.addOperand(Inst.getOperand(6)); 6925 Inst = TmpInst; 6926 return true; 6927 } 6928 6929 case ARM::VST1LNdWB_fixed_Asm_8: 6930 case ARM::VST1LNdWB_fixed_Asm_16: 6931 case ARM::VST1LNdWB_fixed_Asm_32: { 6932 MCInst TmpInst; 6933 // Shuffle the operands around so the lane index operand is in the 6934 // right place. 6935 unsigned Spacing; 6936 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6937 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6938 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6939 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6940 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6941 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6942 TmpInst.addOperand(Inst.getOperand(1)); // lane 6943 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6944 TmpInst.addOperand(Inst.getOperand(5)); 6945 Inst = TmpInst; 6946 return true; 6947 } 6948 6949 case ARM::VST2LNdWB_fixed_Asm_8: 6950 case ARM::VST2LNdWB_fixed_Asm_16: 6951 case ARM::VST2LNdWB_fixed_Asm_32: 6952 case ARM::VST2LNqWB_fixed_Asm_16: 6953 case ARM::VST2LNqWB_fixed_Asm_32: { 6954 MCInst TmpInst; 6955 // Shuffle the operands around so the lane index operand is in the 6956 // right place. 6957 unsigned Spacing; 6958 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6959 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6960 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6961 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6962 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6963 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6965 Spacing)); 6966 TmpInst.addOperand(Inst.getOperand(1)); // lane 6967 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6968 TmpInst.addOperand(Inst.getOperand(5)); 6969 Inst = TmpInst; 6970 return true; 6971 } 6972 6973 case ARM::VST3LNdWB_fixed_Asm_8: 6974 case ARM::VST3LNdWB_fixed_Asm_16: 6975 case ARM::VST3LNdWB_fixed_Asm_32: 6976 case ARM::VST3LNqWB_fixed_Asm_16: 6977 case ARM::VST3LNqWB_fixed_Asm_32: { 6978 MCInst TmpInst; 6979 // Shuffle the operands around so the lane index operand is in the 6980 // right place. 6981 unsigned Spacing; 6982 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6983 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6984 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6985 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6986 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6987 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6988 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6989 Spacing)); 6990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6991 Spacing * 2)); 6992 TmpInst.addOperand(Inst.getOperand(1)); // lane 6993 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6994 TmpInst.addOperand(Inst.getOperand(5)); 6995 Inst = TmpInst; 6996 return true; 6997 } 6998 6999 case ARM::VST4LNdWB_fixed_Asm_8: 7000 case ARM::VST4LNdWB_fixed_Asm_16: 7001 case ARM::VST4LNdWB_fixed_Asm_32: 7002 case ARM::VST4LNqWB_fixed_Asm_16: 7003 case ARM::VST4LNqWB_fixed_Asm_32: { 7004 MCInst TmpInst; 7005 // Shuffle the operands around so the lane index operand is in the 7006 // right place. 7007 unsigned Spacing; 7008 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7009 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7010 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7011 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7012 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7013 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7015 Spacing)); 7016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7017 Spacing * 2)); 7018 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7019 Spacing * 3)); 7020 TmpInst.addOperand(Inst.getOperand(1)); // lane 7021 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7022 TmpInst.addOperand(Inst.getOperand(5)); 7023 Inst = TmpInst; 7024 return true; 7025 } 7026 7027 case ARM::VST1LNdAsm_8: 7028 case ARM::VST1LNdAsm_16: 7029 case ARM::VST1LNdAsm_32: { 7030 MCInst TmpInst; 7031 // Shuffle the operands around so the lane index operand is in the 7032 // right place. 7033 unsigned Spacing; 7034 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7035 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7036 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7037 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7038 TmpInst.addOperand(Inst.getOperand(1)); // lane 7039 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7040 TmpInst.addOperand(Inst.getOperand(5)); 7041 Inst = TmpInst; 7042 return true; 7043 } 7044 7045 case ARM::VST2LNdAsm_8: 7046 case ARM::VST2LNdAsm_16: 7047 case ARM::VST2LNdAsm_32: 7048 case ARM::VST2LNqAsm_16: 7049 case ARM::VST2LNqAsm_32: { 7050 MCInst TmpInst; 7051 // Shuffle the operands around so the lane index operand is in the 7052 // right place. 7053 unsigned Spacing; 7054 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7055 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7056 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7057 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7058 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7059 Spacing)); 7060 TmpInst.addOperand(Inst.getOperand(1)); // lane 7061 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7062 TmpInst.addOperand(Inst.getOperand(5)); 7063 Inst = TmpInst; 7064 return true; 7065 } 7066 7067 case ARM::VST3LNdAsm_8: 7068 case ARM::VST3LNdAsm_16: 7069 case ARM::VST3LNdAsm_32: 7070 case ARM::VST3LNqAsm_16: 7071 case ARM::VST3LNqAsm_32: { 7072 MCInst TmpInst; 7073 // Shuffle the operands around so the lane index operand is in the 7074 // right place. 7075 unsigned Spacing; 7076 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7077 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7078 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7079 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7080 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7081 Spacing)); 7082 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7083 Spacing * 2)); 7084 TmpInst.addOperand(Inst.getOperand(1)); // lane 7085 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7086 TmpInst.addOperand(Inst.getOperand(5)); 7087 Inst = TmpInst; 7088 return true; 7089 } 7090 7091 case ARM::VST4LNdAsm_8: 7092 case ARM::VST4LNdAsm_16: 7093 case ARM::VST4LNdAsm_32: 7094 case ARM::VST4LNqAsm_16: 7095 case ARM::VST4LNqAsm_32: { 7096 MCInst TmpInst; 7097 // Shuffle the operands around so the lane index operand is in the 7098 // right place. 7099 unsigned Spacing; 7100 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7101 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7102 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7103 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7104 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7105 Spacing)); 7106 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7107 Spacing * 2)); 7108 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7109 Spacing * 3)); 7110 TmpInst.addOperand(Inst.getOperand(1)); // lane 7111 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7112 TmpInst.addOperand(Inst.getOperand(5)); 7113 Inst = TmpInst; 7114 return true; 7115 } 7116 7117 // Handle NEON VLD complex aliases. 7118 case ARM::VLD1LNdWB_register_Asm_8: 7119 case ARM::VLD1LNdWB_register_Asm_16: 7120 case ARM::VLD1LNdWB_register_Asm_32: { 7121 MCInst TmpInst; 7122 // Shuffle the operands around so the lane index operand is in the 7123 // right place. 7124 unsigned Spacing; 7125 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7126 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7127 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7128 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7129 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7130 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7131 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7132 TmpInst.addOperand(Inst.getOperand(1)); // lane 7133 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7134 TmpInst.addOperand(Inst.getOperand(6)); 7135 Inst = TmpInst; 7136 return true; 7137 } 7138 7139 case ARM::VLD2LNdWB_register_Asm_8: 7140 case ARM::VLD2LNdWB_register_Asm_16: 7141 case ARM::VLD2LNdWB_register_Asm_32: 7142 case ARM::VLD2LNqWB_register_Asm_16: 7143 case ARM::VLD2LNqWB_register_Asm_32: { 7144 MCInst TmpInst; 7145 // Shuffle the operands around so the lane index operand is in the 7146 // right place. 7147 unsigned Spacing; 7148 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7149 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7150 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7151 Spacing)); 7152 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7153 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7154 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7155 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7156 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7157 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7158 Spacing)); 7159 TmpInst.addOperand(Inst.getOperand(1)); // lane 7160 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7161 TmpInst.addOperand(Inst.getOperand(6)); 7162 Inst = TmpInst; 7163 return true; 7164 } 7165 7166 case ARM::VLD3LNdWB_register_Asm_8: 7167 case ARM::VLD3LNdWB_register_Asm_16: 7168 case ARM::VLD3LNdWB_register_Asm_32: 7169 case ARM::VLD3LNqWB_register_Asm_16: 7170 case ARM::VLD3LNqWB_register_Asm_32: { 7171 MCInst TmpInst; 7172 // Shuffle the operands around so the lane index operand is in the 7173 // right place. 7174 unsigned Spacing; 7175 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7176 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7178 Spacing)); 7179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7180 Spacing * 2)); 7181 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7182 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7183 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7184 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7185 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7186 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7187 Spacing)); 7188 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7189 Spacing * 2)); 7190 TmpInst.addOperand(Inst.getOperand(1)); // lane 7191 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7192 TmpInst.addOperand(Inst.getOperand(6)); 7193 Inst = TmpInst; 7194 return true; 7195 } 7196 7197 case ARM::VLD4LNdWB_register_Asm_8: 7198 case ARM::VLD4LNdWB_register_Asm_16: 7199 case ARM::VLD4LNdWB_register_Asm_32: 7200 case ARM::VLD4LNqWB_register_Asm_16: 7201 case ARM::VLD4LNqWB_register_Asm_32: { 7202 MCInst TmpInst; 7203 // Shuffle the operands around so the lane index operand is in the 7204 // right place. 7205 unsigned Spacing; 7206 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7207 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7208 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7209 Spacing)); 7210 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7211 Spacing * 2)); 7212 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7213 Spacing * 3)); 7214 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7215 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7216 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7217 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7218 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7219 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7220 Spacing)); 7221 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7222 Spacing * 2)); 7223 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7224 Spacing * 3)); 7225 TmpInst.addOperand(Inst.getOperand(1)); // lane 7226 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7227 TmpInst.addOperand(Inst.getOperand(6)); 7228 Inst = TmpInst; 7229 return true; 7230 } 7231 7232 case ARM::VLD1LNdWB_fixed_Asm_8: 7233 case ARM::VLD1LNdWB_fixed_Asm_16: 7234 case ARM::VLD1LNdWB_fixed_Asm_32: { 7235 MCInst TmpInst; 7236 // Shuffle the operands around so the lane index operand is in the 7237 // right place. 7238 unsigned Spacing; 7239 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7240 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7241 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7242 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7243 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7244 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7245 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7246 TmpInst.addOperand(Inst.getOperand(1)); // lane 7247 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7248 TmpInst.addOperand(Inst.getOperand(5)); 7249 Inst = TmpInst; 7250 return true; 7251 } 7252 7253 case ARM::VLD2LNdWB_fixed_Asm_8: 7254 case ARM::VLD2LNdWB_fixed_Asm_16: 7255 case ARM::VLD2LNdWB_fixed_Asm_32: 7256 case ARM::VLD2LNqWB_fixed_Asm_16: 7257 case ARM::VLD2LNqWB_fixed_Asm_32: { 7258 MCInst TmpInst; 7259 // Shuffle the operands around so the lane index operand is in the 7260 // right place. 7261 unsigned Spacing; 7262 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7263 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7264 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7265 Spacing)); 7266 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7267 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7268 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7269 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7270 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7271 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7272 Spacing)); 7273 TmpInst.addOperand(Inst.getOperand(1)); // lane 7274 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7275 TmpInst.addOperand(Inst.getOperand(5)); 7276 Inst = TmpInst; 7277 return true; 7278 } 7279 7280 case ARM::VLD3LNdWB_fixed_Asm_8: 7281 case ARM::VLD3LNdWB_fixed_Asm_16: 7282 case ARM::VLD3LNdWB_fixed_Asm_32: 7283 case ARM::VLD3LNqWB_fixed_Asm_16: 7284 case ARM::VLD3LNqWB_fixed_Asm_32: { 7285 MCInst TmpInst; 7286 // Shuffle the operands around so the lane index operand is in the 7287 // right place. 7288 unsigned Spacing; 7289 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7290 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7291 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7292 Spacing)); 7293 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7294 Spacing * 2)); 7295 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7296 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7297 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7298 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7299 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7300 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7301 Spacing)); 7302 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7303 Spacing * 2)); 7304 TmpInst.addOperand(Inst.getOperand(1)); // lane 7305 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7306 TmpInst.addOperand(Inst.getOperand(5)); 7307 Inst = TmpInst; 7308 return true; 7309 } 7310 7311 case ARM::VLD4LNdWB_fixed_Asm_8: 7312 case ARM::VLD4LNdWB_fixed_Asm_16: 7313 case ARM::VLD4LNdWB_fixed_Asm_32: 7314 case ARM::VLD4LNqWB_fixed_Asm_16: 7315 case ARM::VLD4LNqWB_fixed_Asm_32: { 7316 MCInst TmpInst; 7317 // Shuffle the operands around so the lane index operand is in the 7318 // right place. 7319 unsigned Spacing; 7320 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7321 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7322 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7323 Spacing)); 7324 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7325 Spacing * 2)); 7326 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7327 Spacing * 3)); 7328 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7329 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7330 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7331 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7332 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7334 Spacing)); 7335 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7336 Spacing * 2)); 7337 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7338 Spacing * 3)); 7339 TmpInst.addOperand(Inst.getOperand(1)); // lane 7340 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7341 TmpInst.addOperand(Inst.getOperand(5)); 7342 Inst = TmpInst; 7343 return true; 7344 } 7345 7346 case ARM::VLD1LNdAsm_8: 7347 case ARM::VLD1LNdAsm_16: 7348 case ARM::VLD1LNdAsm_32: { 7349 MCInst TmpInst; 7350 // Shuffle the operands around so the lane index operand is in the 7351 // right place. 7352 unsigned Spacing; 7353 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7354 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7355 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7356 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7357 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7358 TmpInst.addOperand(Inst.getOperand(1)); // lane 7359 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7360 TmpInst.addOperand(Inst.getOperand(5)); 7361 Inst = TmpInst; 7362 return true; 7363 } 7364 7365 case ARM::VLD2LNdAsm_8: 7366 case ARM::VLD2LNdAsm_16: 7367 case ARM::VLD2LNdAsm_32: 7368 case ARM::VLD2LNqAsm_16: 7369 case ARM::VLD2LNqAsm_32: { 7370 MCInst TmpInst; 7371 // Shuffle the operands around so the lane index operand is in the 7372 // right place. 7373 unsigned Spacing; 7374 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7375 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7376 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7377 Spacing)); 7378 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7379 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7380 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7381 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7382 Spacing)); 7383 TmpInst.addOperand(Inst.getOperand(1)); // lane 7384 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7385 TmpInst.addOperand(Inst.getOperand(5)); 7386 Inst = TmpInst; 7387 return true; 7388 } 7389 7390 case ARM::VLD3LNdAsm_8: 7391 case ARM::VLD3LNdAsm_16: 7392 case ARM::VLD3LNdAsm_32: 7393 case ARM::VLD3LNqAsm_16: 7394 case ARM::VLD3LNqAsm_32: { 7395 MCInst TmpInst; 7396 // Shuffle the operands around so the lane index operand is in the 7397 // right place. 7398 unsigned Spacing; 7399 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7400 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7401 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7402 Spacing)); 7403 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7404 Spacing * 2)); 7405 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7406 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7407 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7408 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7409 Spacing)); 7410 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7411 Spacing * 2)); 7412 TmpInst.addOperand(Inst.getOperand(1)); // lane 7413 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7414 TmpInst.addOperand(Inst.getOperand(5)); 7415 Inst = TmpInst; 7416 return true; 7417 } 7418 7419 case ARM::VLD4LNdAsm_8: 7420 case ARM::VLD4LNdAsm_16: 7421 case ARM::VLD4LNdAsm_32: 7422 case ARM::VLD4LNqAsm_16: 7423 case ARM::VLD4LNqAsm_32: { 7424 MCInst TmpInst; 7425 // Shuffle the operands around so the lane index operand is in the 7426 // right place. 7427 unsigned Spacing; 7428 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7429 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7430 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7431 Spacing)); 7432 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7433 Spacing * 2)); 7434 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7435 Spacing * 3)); 7436 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7437 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7438 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7439 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7440 Spacing)); 7441 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7442 Spacing * 2)); 7443 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7444 Spacing * 3)); 7445 TmpInst.addOperand(Inst.getOperand(1)); // lane 7446 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7447 TmpInst.addOperand(Inst.getOperand(5)); 7448 Inst = TmpInst; 7449 return true; 7450 } 7451 7452 // VLD3DUP single 3-element structure to all lanes instructions. 7453 case ARM::VLD3DUPdAsm_8: 7454 case ARM::VLD3DUPdAsm_16: 7455 case ARM::VLD3DUPdAsm_32: 7456 case ARM::VLD3DUPqAsm_8: 7457 case ARM::VLD3DUPqAsm_16: 7458 case ARM::VLD3DUPqAsm_32: { 7459 MCInst TmpInst; 7460 unsigned Spacing; 7461 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7462 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7463 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7464 Spacing)); 7465 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7466 Spacing * 2)); 7467 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7468 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7469 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7470 TmpInst.addOperand(Inst.getOperand(4)); 7471 Inst = TmpInst; 7472 return true; 7473 } 7474 7475 case ARM::VLD3DUPdWB_fixed_Asm_8: 7476 case ARM::VLD3DUPdWB_fixed_Asm_16: 7477 case ARM::VLD3DUPdWB_fixed_Asm_32: 7478 case ARM::VLD3DUPqWB_fixed_Asm_8: 7479 case ARM::VLD3DUPqWB_fixed_Asm_16: 7480 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7481 MCInst TmpInst; 7482 unsigned Spacing; 7483 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7484 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7485 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7486 Spacing)); 7487 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7488 Spacing * 2)); 7489 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7490 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7491 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7492 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7493 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7494 TmpInst.addOperand(Inst.getOperand(4)); 7495 Inst = TmpInst; 7496 return true; 7497 } 7498 7499 case ARM::VLD3DUPdWB_register_Asm_8: 7500 case ARM::VLD3DUPdWB_register_Asm_16: 7501 case ARM::VLD3DUPdWB_register_Asm_32: 7502 case ARM::VLD3DUPqWB_register_Asm_8: 7503 case ARM::VLD3DUPqWB_register_Asm_16: 7504 case ARM::VLD3DUPqWB_register_Asm_32: { 7505 MCInst TmpInst; 7506 unsigned Spacing; 7507 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7508 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7509 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7510 Spacing)); 7511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7512 Spacing * 2)); 7513 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7514 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7515 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7516 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7517 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7518 TmpInst.addOperand(Inst.getOperand(5)); 7519 Inst = TmpInst; 7520 return true; 7521 } 7522 7523 // VLD3 multiple 3-element structure instructions. 7524 case ARM::VLD3dAsm_8: 7525 case ARM::VLD3dAsm_16: 7526 case ARM::VLD3dAsm_32: 7527 case ARM::VLD3qAsm_8: 7528 case ARM::VLD3qAsm_16: 7529 case ARM::VLD3qAsm_32: { 7530 MCInst TmpInst; 7531 unsigned Spacing; 7532 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7533 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7534 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7535 Spacing)); 7536 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7537 Spacing * 2)); 7538 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7539 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7540 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7541 TmpInst.addOperand(Inst.getOperand(4)); 7542 Inst = TmpInst; 7543 return true; 7544 } 7545 7546 case ARM::VLD3dWB_fixed_Asm_8: 7547 case ARM::VLD3dWB_fixed_Asm_16: 7548 case ARM::VLD3dWB_fixed_Asm_32: 7549 case ARM::VLD3qWB_fixed_Asm_8: 7550 case ARM::VLD3qWB_fixed_Asm_16: 7551 case ARM::VLD3qWB_fixed_Asm_32: { 7552 MCInst TmpInst; 7553 unsigned Spacing; 7554 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7555 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7556 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7557 Spacing)); 7558 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7559 Spacing * 2)); 7560 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7561 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7562 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7563 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7564 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7565 TmpInst.addOperand(Inst.getOperand(4)); 7566 Inst = TmpInst; 7567 return true; 7568 } 7569 7570 case ARM::VLD3dWB_register_Asm_8: 7571 case ARM::VLD3dWB_register_Asm_16: 7572 case ARM::VLD3dWB_register_Asm_32: 7573 case ARM::VLD3qWB_register_Asm_8: 7574 case ARM::VLD3qWB_register_Asm_16: 7575 case ARM::VLD3qWB_register_Asm_32: { 7576 MCInst TmpInst; 7577 unsigned Spacing; 7578 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7579 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7580 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7581 Spacing)); 7582 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7583 Spacing * 2)); 7584 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7585 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7586 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7587 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7588 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7589 TmpInst.addOperand(Inst.getOperand(5)); 7590 Inst = TmpInst; 7591 return true; 7592 } 7593 7594 // VLD4DUP single 3-element structure to all lanes instructions. 7595 case ARM::VLD4DUPdAsm_8: 7596 case ARM::VLD4DUPdAsm_16: 7597 case ARM::VLD4DUPdAsm_32: 7598 case ARM::VLD4DUPqAsm_8: 7599 case ARM::VLD4DUPqAsm_16: 7600 case ARM::VLD4DUPqAsm_32: { 7601 MCInst TmpInst; 7602 unsigned Spacing; 7603 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7604 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7605 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7606 Spacing)); 7607 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7608 Spacing * 2)); 7609 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7610 Spacing * 3)); 7611 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7612 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7613 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7614 TmpInst.addOperand(Inst.getOperand(4)); 7615 Inst = TmpInst; 7616 return true; 7617 } 7618 7619 case ARM::VLD4DUPdWB_fixed_Asm_8: 7620 case ARM::VLD4DUPdWB_fixed_Asm_16: 7621 case ARM::VLD4DUPdWB_fixed_Asm_32: 7622 case ARM::VLD4DUPqWB_fixed_Asm_8: 7623 case ARM::VLD4DUPqWB_fixed_Asm_16: 7624 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7625 MCInst TmpInst; 7626 unsigned Spacing; 7627 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7628 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7629 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7630 Spacing)); 7631 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7632 Spacing * 2)); 7633 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7634 Spacing * 3)); 7635 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7636 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7637 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7638 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7639 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7640 TmpInst.addOperand(Inst.getOperand(4)); 7641 Inst = TmpInst; 7642 return true; 7643 } 7644 7645 case ARM::VLD4DUPdWB_register_Asm_8: 7646 case ARM::VLD4DUPdWB_register_Asm_16: 7647 case ARM::VLD4DUPdWB_register_Asm_32: 7648 case ARM::VLD4DUPqWB_register_Asm_8: 7649 case ARM::VLD4DUPqWB_register_Asm_16: 7650 case ARM::VLD4DUPqWB_register_Asm_32: { 7651 MCInst TmpInst; 7652 unsigned Spacing; 7653 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7654 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7655 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7656 Spacing)); 7657 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7658 Spacing * 2)); 7659 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7660 Spacing * 3)); 7661 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7662 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7663 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7664 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7665 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7666 TmpInst.addOperand(Inst.getOperand(5)); 7667 Inst = TmpInst; 7668 return true; 7669 } 7670 7671 // VLD4 multiple 4-element structure instructions. 7672 case ARM::VLD4dAsm_8: 7673 case ARM::VLD4dAsm_16: 7674 case ARM::VLD4dAsm_32: 7675 case ARM::VLD4qAsm_8: 7676 case ARM::VLD4qAsm_16: 7677 case ARM::VLD4qAsm_32: { 7678 MCInst TmpInst; 7679 unsigned Spacing; 7680 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7681 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7682 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7683 Spacing)); 7684 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7685 Spacing * 2)); 7686 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7687 Spacing * 3)); 7688 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7689 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7690 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7691 TmpInst.addOperand(Inst.getOperand(4)); 7692 Inst = TmpInst; 7693 return true; 7694 } 7695 7696 case ARM::VLD4dWB_fixed_Asm_8: 7697 case ARM::VLD4dWB_fixed_Asm_16: 7698 case ARM::VLD4dWB_fixed_Asm_32: 7699 case ARM::VLD4qWB_fixed_Asm_8: 7700 case ARM::VLD4qWB_fixed_Asm_16: 7701 case ARM::VLD4qWB_fixed_Asm_32: { 7702 MCInst TmpInst; 7703 unsigned Spacing; 7704 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7705 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7706 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7707 Spacing)); 7708 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7709 Spacing * 2)); 7710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7711 Spacing * 3)); 7712 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7713 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7714 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7715 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7716 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7717 TmpInst.addOperand(Inst.getOperand(4)); 7718 Inst = TmpInst; 7719 return true; 7720 } 7721 7722 case ARM::VLD4dWB_register_Asm_8: 7723 case ARM::VLD4dWB_register_Asm_16: 7724 case ARM::VLD4dWB_register_Asm_32: 7725 case ARM::VLD4qWB_register_Asm_8: 7726 case ARM::VLD4qWB_register_Asm_16: 7727 case ARM::VLD4qWB_register_Asm_32: { 7728 MCInst TmpInst; 7729 unsigned Spacing; 7730 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7731 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7732 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7733 Spacing)); 7734 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7735 Spacing * 2)); 7736 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7737 Spacing * 3)); 7738 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7739 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7740 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7741 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7742 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7743 TmpInst.addOperand(Inst.getOperand(5)); 7744 Inst = TmpInst; 7745 return true; 7746 } 7747 7748 // VST3 multiple 3-element structure instructions. 7749 case ARM::VST3dAsm_8: 7750 case ARM::VST3dAsm_16: 7751 case ARM::VST3dAsm_32: 7752 case ARM::VST3qAsm_8: 7753 case ARM::VST3qAsm_16: 7754 case ARM::VST3qAsm_32: { 7755 MCInst TmpInst; 7756 unsigned Spacing; 7757 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7758 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7759 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7760 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7761 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7762 Spacing)); 7763 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7764 Spacing * 2)); 7765 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7766 TmpInst.addOperand(Inst.getOperand(4)); 7767 Inst = TmpInst; 7768 return true; 7769 } 7770 7771 case ARM::VST3dWB_fixed_Asm_8: 7772 case ARM::VST3dWB_fixed_Asm_16: 7773 case ARM::VST3dWB_fixed_Asm_32: 7774 case ARM::VST3qWB_fixed_Asm_8: 7775 case ARM::VST3qWB_fixed_Asm_16: 7776 case ARM::VST3qWB_fixed_Asm_32: { 7777 MCInst TmpInst; 7778 unsigned Spacing; 7779 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7780 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7781 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7782 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7783 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7784 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7786 Spacing)); 7787 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7788 Spacing * 2)); 7789 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7790 TmpInst.addOperand(Inst.getOperand(4)); 7791 Inst = TmpInst; 7792 return true; 7793 } 7794 7795 case ARM::VST3dWB_register_Asm_8: 7796 case ARM::VST3dWB_register_Asm_16: 7797 case ARM::VST3dWB_register_Asm_32: 7798 case ARM::VST3qWB_register_Asm_8: 7799 case ARM::VST3qWB_register_Asm_16: 7800 case ARM::VST3qWB_register_Asm_32: { 7801 MCInst TmpInst; 7802 unsigned Spacing; 7803 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7804 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7805 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7806 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7807 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7808 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7810 Spacing)); 7811 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7812 Spacing * 2)); 7813 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7814 TmpInst.addOperand(Inst.getOperand(5)); 7815 Inst = TmpInst; 7816 return true; 7817 } 7818 7819 // VST4 multiple 3-element structure instructions. 7820 case ARM::VST4dAsm_8: 7821 case ARM::VST4dAsm_16: 7822 case ARM::VST4dAsm_32: 7823 case ARM::VST4qAsm_8: 7824 case ARM::VST4qAsm_16: 7825 case ARM::VST4qAsm_32: { 7826 MCInst TmpInst; 7827 unsigned Spacing; 7828 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7829 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7830 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7831 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7832 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7833 Spacing)); 7834 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7835 Spacing * 2)); 7836 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7837 Spacing * 3)); 7838 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7839 TmpInst.addOperand(Inst.getOperand(4)); 7840 Inst = TmpInst; 7841 return true; 7842 } 7843 7844 case ARM::VST4dWB_fixed_Asm_8: 7845 case ARM::VST4dWB_fixed_Asm_16: 7846 case ARM::VST4dWB_fixed_Asm_32: 7847 case ARM::VST4qWB_fixed_Asm_8: 7848 case ARM::VST4qWB_fixed_Asm_16: 7849 case ARM::VST4qWB_fixed_Asm_32: { 7850 MCInst TmpInst; 7851 unsigned Spacing; 7852 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7853 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7854 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7855 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7856 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7857 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7858 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7859 Spacing)); 7860 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7861 Spacing * 2)); 7862 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7863 Spacing * 3)); 7864 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7865 TmpInst.addOperand(Inst.getOperand(4)); 7866 Inst = TmpInst; 7867 return true; 7868 } 7869 7870 case ARM::VST4dWB_register_Asm_8: 7871 case ARM::VST4dWB_register_Asm_16: 7872 case ARM::VST4dWB_register_Asm_32: 7873 case ARM::VST4qWB_register_Asm_8: 7874 case ARM::VST4qWB_register_Asm_16: 7875 case ARM::VST4qWB_register_Asm_32: { 7876 MCInst TmpInst; 7877 unsigned Spacing; 7878 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7879 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7880 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7881 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7882 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7883 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7884 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7885 Spacing)); 7886 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7887 Spacing * 2)); 7888 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7889 Spacing * 3)); 7890 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7891 TmpInst.addOperand(Inst.getOperand(5)); 7892 Inst = TmpInst; 7893 return true; 7894 } 7895 7896 // Handle encoding choice for the shift-immediate instructions. 7897 case ARM::t2LSLri: 7898 case ARM::t2LSRri: 7899 case ARM::t2ASRri: { 7900 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7901 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7902 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7903 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 7904 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 7905 unsigned NewOpc; 7906 switch (Inst.getOpcode()) { 7907 default: llvm_unreachable("unexpected opcode"); 7908 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7909 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7910 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7911 } 7912 // The Thumb1 operands aren't in the same order. Awesome, eh? 7913 MCInst TmpInst; 7914 TmpInst.setOpcode(NewOpc); 7915 TmpInst.addOperand(Inst.getOperand(0)); 7916 TmpInst.addOperand(Inst.getOperand(5)); 7917 TmpInst.addOperand(Inst.getOperand(1)); 7918 TmpInst.addOperand(Inst.getOperand(2)); 7919 TmpInst.addOperand(Inst.getOperand(3)); 7920 TmpInst.addOperand(Inst.getOperand(4)); 7921 Inst = TmpInst; 7922 return true; 7923 } 7924 return false; 7925 } 7926 7927 // Handle the Thumb2 mode MOV complex aliases. 7928 case ARM::t2MOVsr: 7929 case ARM::t2MOVSsr: { 7930 // Which instruction to expand to depends on the CCOut operand and 7931 // whether we're in an IT block if the register operands are low 7932 // registers. 7933 bool isNarrow = false; 7934 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7935 isARMLowRegister(Inst.getOperand(1).getReg()) && 7936 isARMLowRegister(Inst.getOperand(2).getReg()) && 7937 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7938 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 7939 isNarrow = true; 7940 MCInst TmpInst; 7941 unsigned newOpc; 7942 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 7943 default: llvm_unreachable("unexpected opcode!"); 7944 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 7945 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 7946 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 7947 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 7948 } 7949 TmpInst.setOpcode(newOpc); 7950 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7951 if (isNarrow) 7952 TmpInst.addOperand(MCOperand::createReg( 7953 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7954 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7955 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7956 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7957 TmpInst.addOperand(Inst.getOperand(5)); 7958 if (!isNarrow) 7959 TmpInst.addOperand(MCOperand::createReg( 7960 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7961 Inst = TmpInst; 7962 return true; 7963 } 7964 case ARM::t2MOVsi: 7965 case ARM::t2MOVSsi: { 7966 // Which instruction to expand to depends on the CCOut operand and 7967 // whether we're in an IT block if the register operands are low 7968 // registers. 7969 bool isNarrow = false; 7970 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7971 isARMLowRegister(Inst.getOperand(1).getReg()) && 7972 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 7973 isNarrow = true; 7974 MCInst TmpInst; 7975 unsigned newOpc; 7976 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 7977 default: llvm_unreachable("unexpected opcode!"); 7978 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 7979 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 7980 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 7981 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 7982 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 7983 } 7984 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 7985 if (Amount == 32) Amount = 0; 7986 TmpInst.setOpcode(newOpc); 7987 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7988 if (isNarrow) 7989 TmpInst.addOperand(MCOperand::createReg( 7990 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7991 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7992 if (newOpc != ARM::t2RRX) 7993 TmpInst.addOperand(MCOperand::createImm(Amount)); 7994 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7995 TmpInst.addOperand(Inst.getOperand(4)); 7996 if (!isNarrow) 7997 TmpInst.addOperand(MCOperand::createReg( 7998 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7999 Inst = TmpInst; 8000 return true; 8001 } 8002 // Handle the ARM mode MOV complex aliases. 8003 case ARM::ASRr: 8004 case ARM::LSRr: 8005 case ARM::LSLr: 8006 case ARM::RORr: { 8007 ARM_AM::ShiftOpc ShiftTy; 8008 switch(Inst.getOpcode()) { 8009 default: llvm_unreachable("unexpected opcode!"); 8010 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8011 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8012 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8013 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8014 } 8015 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8016 MCInst TmpInst; 8017 TmpInst.setOpcode(ARM::MOVsr); 8018 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8019 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8020 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8021 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8022 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8023 TmpInst.addOperand(Inst.getOperand(4)); 8024 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8025 Inst = TmpInst; 8026 return true; 8027 } 8028 case ARM::ASRi: 8029 case ARM::LSRi: 8030 case ARM::LSLi: 8031 case ARM::RORi: { 8032 ARM_AM::ShiftOpc ShiftTy; 8033 switch(Inst.getOpcode()) { 8034 default: llvm_unreachable("unexpected opcode!"); 8035 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8036 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8037 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8038 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8039 } 8040 // A shift by zero is a plain MOVr, not a MOVsi. 8041 unsigned Amt = Inst.getOperand(2).getImm(); 8042 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8043 // A shift by 32 should be encoded as 0 when permitted 8044 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8045 Amt = 0; 8046 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8047 MCInst TmpInst; 8048 TmpInst.setOpcode(Opc); 8049 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8050 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8051 if (Opc == ARM::MOVsi) 8052 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8053 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8054 TmpInst.addOperand(Inst.getOperand(4)); 8055 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8056 Inst = TmpInst; 8057 return true; 8058 } 8059 case ARM::RRXi: { 8060 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8061 MCInst TmpInst; 8062 TmpInst.setOpcode(ARM::MOVsi); 8063 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8064 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8065 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8066 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8067 TmpInst.addOperand(Inst.getOperand(3)); 8068 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8069 Inst = TmpInst; 8070 return true; 8071 } 8072 case ARM::t2LDMIA_UPD: { 8073 // If this is a load of a single register, then we should use 8074 // a post-indexed LDR instruction instead, per the ARM ARM. 8075 if (Inst.getNumOperands() != 5) 8076 return false; 8077 MCInst TmpInst; 8078 TmpInst.setOpcode(ARM::t2LDR_POST); 8079 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8080 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8081 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8082 TmpInst.addOperand(MCOperand::createImm(4)); 8083 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8084 TmpInst.addOperand(Inst.getOperand(3)); 8085 Inst = TmpInst; 8086 return true; 8087 } 8088 case ARM::t2STMDB_UPD: { 8089 // If this is a store of a single register, then we should use 8090 // a pre-indexed STR instruction instead, per the ARM ARM. 8091 if (Inst.getNumOperands() != 5) 8092 return false; 8093 MCInst TmpInst; 8094 TmpInst.setOpcode(ARM::t2STR_PRE); 8095 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8096 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8097 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8098 TmpInst.addOperand(MCOperand::createImm(-4)); 8099 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8100 TmpInst.addOperand(Inst.getOperand(3)); 8101 Inst = TmpInst; 8102 return true; 8103 } 8104 case ARM::LDMIA_UPD: 8105 // If this is a load of a single register via a 'pop', then we should use 8106 // a post-indexed LDR instruction instead, per the ARM ARM. 8107 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8108 Inst.getNumOperands() == 5) { 8109 MCInst TmpInst; 8110 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8111 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8112 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8113 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8114 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8115 TmpInst.addOperand(MCOperand::createImm(4)); 8116 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8117 TmpInst.addOperand(Inst.getOperand(3)); 8118 Inst = TmpInst; 8119 return true; 8120 } 8121 break; 8122 case ARM::STMDB_UPD: 8123 // If this is a store of a single register via a 'push', then we should use 8124 // a pre-indexed STR instruction instead, per the ARM ARM. 8125 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8126 Inst.getNumOperands() == 5) { 8127 MCInst TmpInst; 8128 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8129 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8130 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8131 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8132 TmpInst.addOperand(MCOperand::createImm(-4)); 8133 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8134 TmpInst.addOperand(Inst.getOperand(3)); 8135 Inst = TmpInst; 8136 } 8137 break; 8138 case ARM::t2ADDri12: 8139 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8140 // mnemonic was used (not "addw"), encoding T3 is preferred. 8141 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8142 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8143 break; 8144 Inst.setOpcode(ARM::t2ADDri); 8145 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8146 break; 8147 case ARM::t2SUBri12: 8148 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8149 // mnemonic was used (not "subw"), encoding T3 is preferred. 8150 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8151 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8152 break; 8153 Inst.setOpcode(ARM::t2SUBri); 8154 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8155 break; 8156 case ARM::tADDi8: 8157 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8158 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8159 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8160 // to encoding T1 if <Rd> is omitted." 8161 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8162 Inst.setOpcode(ARM::tADDi3); 8163 return true; 8164 } 8165 break; 8166 case ARM::tSUBi8: 8167 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8168 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8169 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8170 // to encoding T1 if <Rd> is omitted." 8171 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8172 Inst.setOpcode(ARM::tSUBi3); 8173 return true; 8174 } 8175 break; 8176 case ARM::t2ADDri: 8177 case ARM::t2SUBri: { 8178 // If the destination and first source operand are the same, and 8179 // the flags are compatible with the current IT status, use encoding T2 8180 // instead of T3. For compatibility with the system 'as'. Make sure the 8181 // wide encoding wasn't explicit. 8182 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8183 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8184 (unsigned)Inst.getOperand(2).getImm() > 255 || 8185 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8186 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8187 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8188 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8189 break; 8190 MCInst TmpInst; 8191 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8192 ARM::tADDi8 : ARM::tSUBi8); 8193 TmpInst.addOperand(Inst.getOperand(0)); 8194 TmpInst.addOperand(Inst.getOperand(5)); 8195 TmpInst.addOperand(Inst.getOperand(0)); 8196 TmpInst.addOperand(Inst.getOperand(2)); 8197 TmpInst.addOperand(Inst.getOperand(3)); 8198 TmpInst.addOperand(Inst.getOperand(4)); 8199 Inst = TmpInst; 8200 return true; 8201 } 8202 case ARM::t2ADDrr: { 8203 // If the destination and first source operand are the same, and 8204 // there's no setting of the flags, use encoding T2 instead of T3. 8205 // Note that this is only for ADD, not SUB. This mirrors the system 8206 // 'as' behaviour. Make sure the wide encoding wasn't explicit. 8207 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8208 Inst.getOperand(5).getReg() != 0 || 8209 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8210 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8211 break; 8212 MCInst TmpInst; 8213 TmpInst.setOpcode(ARM::tADDhirr); 8214 TmpInst.addOperand(Inst.getOperand(0)); 8215 TmpInst.addOperand(Inst.getOperand(0)); 8216 TmpInst.addOperand(Inst.getOperand(2)); 8217 TmpInst.addOperand(Inst.getOperand(3)); 8218 TmpInst.addOperand(Inst.getOperand(4)); 8219 Inst = TmpInst; 8220 return true; 8221 } 8222 case ARM::tADDrSP: { 8223 // If the non-SP source operand and the destination operand are not the 8224 // same, we need to use the 32-bit encoding if it's available. 8225 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8226 Inst.setOpcode(ARM::t2ADDrr); 8227 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8228 return true; 8229 } 8230 break; 8231 } 8232 case ARM::tB: 8233 // A Thumb conditional branch outside of an IT block is a tBcc. 8234 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8235 Inst.setOpcode(ARM::tBcc); 8236 return true; 8237 } 8238 break; 8239 case ARM::t2B: 8240 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8241 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8242 Inst.setOpcode(ARM::t2Bcc); 8243 return true; 8244 } 8245 break; 8246 case ARM::t2Bcc: 8247 // If the conditional is AL or we're in an IT block, we really want t2B. 8248 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8249 Inst.setOpcode(ARM::t2B); 8250 return true; 8251 } 8252 break; 8253 case ARM::tBcc: 8254 // If the conditional is AL, we really want tB. 8255 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8256 Inst.setOpcode(ARM::tB); 8257 return true; 8258 } 8259 break; 8260 case ARM::tLDMIA: { 8261 // If the register list contains any high registers, or if the writeback 8262 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8263 // instead if we're in Thumb2. Otherwise, this should have generated 8264 // an error in validateInstruction(). 8265 unsigned Rn = Inst.getOperand(0).getReg(); 8266 bool hasWritebackToken = 8267 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8268 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8269 bool listContainsBase; 8270 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8271 (!listContainsBase && !hasWritebackToken) || 8272 (listContainsBase && hasWritebackToken)) { 8273 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8274 assert (isThumbTwo()); 8275 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8276 // If we're switching to the updating version, we need to insert 8277 // the writeback tied operand. 8278 if (hasWritebackToken) 8279 Inst.insert(Inst.begin(), 8280 MCOperand::createReg(Inst.getOperand(0).getReg())); 8281 return true; 8282 } 8283 break; 8284 } 8285 case ARM::tSTMIA_UPD: { 8286 // If the register list contains any high registers, we need to use 8287 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8288 // should have generated an error in validateInstruction(). 8289 unsigned Rn = Inst.getOperand(0).getReg(); 8290 bool listContainsBase; 8291 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8292 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8293 assert (isThumbTwo()); 8294 Inst.setOpcode(ARM::t2STMIA_UPD); 8295 return true; 8296 } 8297 break; 8298 } 8299 case ARM::tPOP: { 8300 bool listContainsBase; 8301 // If the register list contains any high registers, we need to use 8302 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8303 // should have generated an error in validateInstruction(). 8304 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8305 return false; 8306 assert (isThumbTwo()); 8307 Inst.setOpcode(ARM::t2LDMIA_UPD); 8308 // Add the base register and writeback operands. 8309 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8310 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8311 return true; 8312 } 8313 case ARM::tPUSH: { 8314 bool listContainsBase; 8315 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8316 return false; 8317 assert (isThumbTwo()); 8318 Inst.setOpcode(ARM::t2STMDB_UPD); 8319 // Add the base register and writeback operands. 8320 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8321 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8322 return true; 8323 } 8324 case ARM::t2MOVi: { 8325 // If we can use the 16-bit encoding and the user didn't explicitly 8326 // request the 32-bit variant, transform it here. 8327 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8328 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8329 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8330 Inst.getOperand(4).getReg() == ARM::CPSR) || 8331 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8332 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8333 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8334 // The operands aren't in the same order for tMOVi8... 8335 MCInst TmpInst; 8336 TmpInst.setOpcode(ARM::tMOVi8); 8337 TmpInst.addOperand(Inst.getOperand(0)); 8338 TmpInst.addOperand(Inst.getOperand(4)); 8339 TmpInst.addOperand(Inst.getOperand(1)); 8340 TmpInst.addOperand(Inst.getOperand(2)); 8341 TmpInst.addOperand(Inst.getOperand(3)); 8342 Inst = TmpInst; 8343 return true; 8344 } 8345 break; 8346 } 8347 case ARM::t2MOVr: { 8348 // If we can use the 16-bit encoding and the user didn't explicitly 8349 // request the 32-bit variant, transform it here. 8350 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8351 isARMLowRegister(Inst.getOperand(1).getReg()) && 8352 Inst.getOperand(2).getImm() == ARMCC::AL && 8353 Inst.getOperand(4).getReg() == ARM::CPSR && 8354 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8355 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8356 // The operands aren't the same for tMOV[S]r... (no cc_out) 8357 MCInst TmpInst; 8358 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8359 TmpInst.addOperand(Inst.getOperand(0)); 8360 TmpInst.addOperand(Inst.getOperand(1)); 8361 TmpInst.addOperand(Inst.getOperand(2)); 8362 TmpInst.addOperand(Inst.getOperand(3)); 8363 Inst = TmpInst; 8364 return true; 8365 } 8366 break; 8367 } 8368 case ARM::t2SXTH: 8369 case ARM::t2SXTB: 8370 case ARM::t2UXTH: 8371 case ARM::t2UXTB: { 8372 // If we can use the 16-bit encoding and the user didn't explicitly 8373 // request the 32-bit variant, transform it here. 8374 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8375 isARMLowRegister(Inst.getOperand(1).getReg()) && 8376 Inst.getOperand(2).getImm() == 0 && 8377 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8378 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8379 unsigned NewOpc; 8380 switch (Inst.getOpcode()) { 8381 default: llvm_unreachable("Illegal opcode!"); 8382 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8383 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8384 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8385 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8386 } 8387 // The operands aren't the same for thumb1 (no rotate operand). 8388 MCInst TmpInst; 8389 TmpInst.setOpcode(NewOpc); 8390 TmpInst.addOperand(Inst.getOperand(0)); 8391 TmpInst.addOperand(Inst.getOperand(1)); 8392 TmpInst.addOperand(Inst.getOperand(3)); 8393 TmpInst.addOperand(Inst.getOperand(4)); 8394 Inst = TmpInst; 8395 return true; 8396 } 8397 break; 8398 } 8399 case ARM::MOVsi: { 8400 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8401 // rrx shifts and asr/lsr of #32 is encoded as 0 8402 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8403 return false; 8404 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8405 // Shifting by zero is accepted as a vanilla 'MOVr' 8406 MCInst TmpInst; 8407 TmpInst.setOpcode(ARM::MOVr); 8408 TmpInst.addOperand(Inst.getOperand(0)); 8409 TmpInst.addOperand(Inst.getOperand(1)); 8410 TmpInst.addOperand(Inst.getOperand(3)); 8411 TmpInst.addOperand(Inst.getOperand(4)); 8412 TmpInst.addOperand(Inst.getOperand(5)); 8413 Inst = TmpInst; 8414 return true; 8415 } 8416 return false; 8417 } 8418 case ARM::ANDrsi: 8419 case ARM::ORRrsi: 8420 case ARM::EORrsi: 8421 case ARM::BICrsi: 8422 case ARM::SUBrsi: 8423 case ARM::ADDrsi: { 8424 unsigned newOpc; 8425 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8426 if (SOpc == ARM_AM::rrx) return false; 8427 switch (Inst.getOpcode()) { 8428 default: llvm_unreachable("unexpected opcode!"); 8429 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8430 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8431 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8432 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8433 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8434 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8435 } 8436 // If the shift is by zero, use the non-shifted instruction definition. 8437 // The exception is for right shifts, where 0 == 32 8438 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8439 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8440 MCInst TmpInst; 8441 TmpInst.setOpcode(newOpc); 8442 TmpInst.addOperand(Inst.getOperand(0)); 8443 TmpInst.addOperand(Inst.getOperand(1)); 8444 TmpInst.addOperand(Inst.getOperand(2)); 8445 TmpInst.addOperand(Inst.getOperand(4)); 8446 TmpInst.addOperand(Inst.getOperand(5)); 8447 TmpInst.addOperand(Inst.getOperand(6)); 8448 Inst = TmpInst; 8449 return true; 8450 } 8451 return false; 8452 } 8453 case ARM::ITasm: 8454 case ARM::t2IT: { 8455 // The mask bits for all but the first condition are represented as 8456 // the low bit of the condition code value implies 't'. We currently 8457 // always have 1 implies 't', so XOR toggle the bits if the low bit 8458 // of the condition code is zero. 8459 MCOperand &MO = Inst.getOperand(1); 8460 unsigned Mask = MO.getImm(); 8461 unsigned OrigMask = Mask; 8462 unsigned TZ = countTrailingZeros(Mask); 8463 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8464 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8465 Mask ^= (0xE << TZ) & 0xF; 8466 } 8467 MO.setImm(Mask); 8468 8469 // Set up the IT block state according to the IT instruction we just 8470 // matched. 8471 assert(!inITBlock() && "nested IT blocks?!"); 8472 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8473 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8474 ITState.CurPosition = 0; 8475 ITState.FirstCond = true; 8476 break; 8477 } 8478 case ARM::t2LSLrr: 8479 case ARM::t2LSRrr: 8480 case ARM::t2ASRrr: 8481 case ARM::t2SBCrr: 8482 case ARM::t2RORrr: 8483 case ARM::t2BICrr: 8484 { 8485 // Assemblers should use the narrow encodings of these instructions when permissible. 8486 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8487 isARMLowRegister(Inst.getOperand(2).getReg())) && 8488 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8489 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8490 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8491 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8492 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8493 ".w"))) { 8494 unsigned NewOpc; 8495 switch (Inst.getOpcode()) { 8496 default: llvm_unreachable("unexpected opcode"); 8497 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8498 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8499 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8500 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8501 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8502 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8503 } 8504 MCInst TmpInst; 8505 TmpInst.setOpcode(NewOpc); 8506 TmpInst.addOperand(Inst.getOperand(0)); 8507 TmpInst.addOperand(Inst.getOperand(5)); 8508 TmpInst.addOperand(Inst.getOperand(1)); 8509 TmpInst.addOperand(Inst.getOperand(2)); 8510 TmpInst.addOperand(Inst.getOperand(3)); 8511 TmpInst.addOperand(Inst.getOperand(4)); 8512 Inst = TmpInst; 8513 return true; 8514 } 8515 return false; 8516 } 8517 case ARM::t2ANDrr: 8518 case ARM::t2EORrr: 8519 case ARM::t2ADCrr: 8520 case ARM::t2ORRrr: 8521 { 8522 // Assemblers should use the narrow encodings of these instructions when permissible. 8523 // These instructions are special in that they are commutable, so shorter encodings 8524 // are available more often. 8525 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8526 isARMLowRegister(Inst.getOperand(2).getReg())) && 8527 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8528 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8529 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8530 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8531 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8532 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8533 ".w"))) { 8534 unsigned NewOpc; 8535 switch (Inst.getOpcode()) { 8536 default: llvm_unreachable("unexpected opcode"); 8537 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8538 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8539 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8540 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8541 } 8542 MCInst TmpInst; 8543 TmpInst.setOpcode(NewOpc); 8544 TmpInst.addOperand(Inst.getOperand(0)); 8545 TmpInst.addOperand(Inst.getOperand(5)); 8546 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8547 TmpInst.addOperand(Inst.getOperand(1)); 8548 TmpInst.addOperand(Inst.getOperand(2)); 8549 } else { 8550 TmpInst.addOperand(Inst.getOperand(2)); 8551 TmpInst.addOperand(Inst.getOperand(1)); 8552 } 8553 TmpInst.addOperand(Inst.getOperand(3)); 8554 TmpInst.addOperand(Inst.getOperand(4)); 8555 Inst = TmpInst; 8556 return true; 8557 } 8558 return false; 8559 } 8560 } 8561 return false; 8562 } 8563 8564 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8565 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8566 // suffix depending on whether they're in an IT block or not. 8567 unsigned Opc = Inst.getOpcode(); 8568 const MCInstrDesc &MCID = MII.get(Opc); 8569 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8570 assert(MCID.hasOptionalDef() && 8571 "optionally flag setting instruction missing optional def operand"); 8572 assert(MCID.NumOperands == Inst.getNumOperands() && 8573 "operand count mismatch!"); 8574 // Find the optional-def operand (cc_out). 8575 unsigned OpNo; 8576 for (OpNo = 0; 8577 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8578 ++OpNo) 8579 ; 8580 // If we're parsing Thumb1, reject it completely. 8581 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8582 return Match_MnemonicFail; 8583 // If we're parsing Thumb2, which form is legal depends on whether we're 8584 // in an IT block. 8585 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8586 !inITBlock()) 8587 return Match_RequiresITBlock; 8588 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8589 inITBlock()) 8590 return Match_RequiresNotITBlock; 8591 } 8592 // Some high-register supporting Thumb1 encodings only allow both registers 8593 // to be from r0-r7 when in Thumb2. 8594 else if (Opc == ARM::tADDhirr && isThumbOne() && !hasV6MOps() && 8595 isARMLowRegister(Inst.getOperand(1).getReg()) && 8596 isARMLowRegister(Inst.getOperand(2).getReg())) 8597 return Match_RequiresThumb2; 8598 // Others only require ARMv6 or later. 8599 else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() && 8600 isARMLowRegister(Inst.getOperand(0).getReg()) && 8601 isARMLowRegister(Inst.getOperand(1).getReg())) 8602 return Match_RequiresV6; 8603 return Match_Success; 8604 } 8605 8606 namespace llvm { 8607 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8608 return true; // In an assembly source, no need to second-guess 8609 } 8610 } 8611 8612 static const char *getSubtargetFeatureName(uint64_t Val); 8613 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8614 OperandVector &Operands, 8615 MCStreamer &Out, uint64_t &ErrorInfo, 8616 bool MatchingInlineAsm) { 8617 MCInst Inst; 8618 unsigned MatchResult; 8619 8620 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8621 MatchingInlineAsm); 8622 switch (MatchResult) { 8623 case Match_Success: 8624 // Context sensitive operand constraints aren't handled by the matcher, 8625 // so check them here. 8626 if (validateInstruction(Inst, Operands)) { 8627 // Still progress the IT block, otherwise one wrong condition causes 8628 // nasty cascading errors. 8629 forwardITPosition(); 8630 return true; 8631 } 8632 8633 { // processInstruction() updates inITBlock state, we need to save it away 8634 bool wasInITBlock = inITBlock(); 8635 8636 // Some instructions need post-processing to, for example, tweak which 8637 // encoding is selected. Loop on it while changes happen so the 8638 // individual transformations can chain off each other. E.g., 8639 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8640 while (processInstruction(Inst, Operands, Out)) 8641 ; 8642 8643 // Only after the instruction is fully processed, we can validate it 8644 if (wasInITBlock && hasV8Ops() && isThumb() && 8645 !isV8EligibleForIT(&Inst)) { 8646 Warning(IDLoc, "deprecated instruction in IT block"); 8647 } 8648 } 8649 8650 // Only move forward at the very end so that everything in validate 8651 // and process gets a consistent answer about whether we're in an IT 8652 // block. 8653 forwardITPosition(); 8654 8655 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8656 // doesn't actually encode. 8657 if (Inst.getOpcode() == ARM::ITasm) 8658 return false; 8659 8660 Inst.setLoc(IDLoc); 8661 Out.EmitInstruction(Inst, STI); 8662 return false; 8663 case Match_MissingFeature: { 8664 assert(ErrorInfo && "Unknown missing feature!"); 8665 // Special case the error message for the very common case where only 8666 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8667 std::string Msg = "instruction requires:"; 8668 uint64_t Mask = 1; 8669 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8670 if (ErrorInfo & Mask) { 8671 Msg += " "; 8672 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8673 } 8674 Mask <<= 1; 8675 } 8676 return Error(IDLoc, Msg); 8677 } 8678 case Match_InvalidOperand: { 8679 SMLoc ErrorLoc = IDLoc; 8680 if (ErrorInfo != ~0ULL) { 8681 if (ErrorInfo >= Operands.size()) 8682 return Error(IDLoc, "too few operands for instruction"); 8683 8684 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8685 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8686 } 8687 8688 return Error(ErrorLoc, "invalid operand for instruction"); 8689 } 8690 case Match_MnemonicFail: 8691 return Error(IDLoc, "invalid instruction", 8692 ((ARMOperand &)*Operands[0]).getLocRange()); 8693 case Match_RequiresNotITBlock: 8694 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8695 case Match_RequiresITBlock: 8696 return Error(IDLoc, "instruction only valid inside IT block"); 8697 case Match_RequiresV6: 8698 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8699 case Match_RequiresThumb2: 8700 return Error(IDLoc, "instruction variant requires Thumb2"); 8701 case Match_ImmRange0_15: { 8702 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8703 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8704 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8705 } 8706 case Match_ImmRange0_239: { 8707 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8708 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8709 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8710 } 8711 case Match_AlignedMemoryRequiresNone: 8712 case Match_DupAlignedMemoryRequiresNone: 8713 case Match_AlignedMemoryRequires16: 8714 case Match_DupAlignedMemoryRequires16: 8715 case Match_AlignedMemoryRequires32: 8716 case Match_DupAlignedMemoryRequires32: 8717 case Match_AlignedMemoryRequires64: 8718 case Match_DupAlignedMemoryRequires64: 8719 case Match_AlignedMemoryRequires64or128: 8720 case Match_DupAlignedMemoryRequires64or128: 8721 case Match_AlignedMemoryRequires64or128or256: 8722 { 8723 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8724 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8725 switch (MatchResult) { 8726 default: 8727 llvm_unreachable("Missing Match_Aligned type"); 8728 case Match_AlignedMemoryRequiresNone: 8729 case Match_DupAlignedMemoryRequiresNone: 8730 return Error(ErrorLoc, "alignment must be omitted"); 8731 case Match_AlignedMemoryRequires16: 8732 case Match_DupAlignedMemoryRequires16: 8733 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8734 case Match_AlignedMemoryRequires32: 8735 case Match_DupAlignedMemoryRequires32: 8736 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8737 case Match_AlignedMemoryRequires64: 8738 case Match_DupAlignedMemoryRequires64: 8739 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8740 case Match_AlignedMemoryRequires64or128: 8741 case Match_DupAlignedMemoryRequires64or128: 8742 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8743 case Match_AlignedMemoryRequires64or128or256: 8744 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8745 } 8746 } 8747 } 8748 8749 llvm_unreachable("Implement any new match types added!"); 8750 } 8751 8752 /// parseDirective parses the arm specific directives 8753 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8754 const MCObjectFileInfo::Environment Format = 8755 getContext().getObjectFileInfo()->getObjectFileType(); 8756 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8757 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8758 8759 StringRef IDVal = DirectiveID.getIdentifier(); 8760 if (IDVal == ".word") 8761 return parseLiteralValues(4, DirectiveID.getLoc()); 8762 else if (IDVal == ".short" || IDVal == ".hword") 8763 return parseLiteralValues(2, DirectiveID.getLoc()); 8764 else if (IDVal == ".thumb") 8765 return parseDirectiveThumb(DirectiveID.getLoc()); 8766 else if (IDVal == ".arm") 8767 return parseDirectiveARM(DirectiveID.getLoc()); 8768 else if (IDVal == ".thumb_func") 8769 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8770 else if (IDVal == ".code") 8771 return parseDirectiveCode(DirectiveID.getLoc()); 8772 else if (IDVal == ".syntax") 8773 return parseDirectiveSyntax(DirectiveID.getLoc()); 8774 else if (IDVal == ".unreq") 8775 return parseDirectiveUnreq(DirectiveID.getLoc()); 8776 else if (IDVal == ".fnend") 8777 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8778 else if (IDVal == ".cantunwind") 8779 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8780 else if (IDVal == ".personality") 8781 return parseDirectivePersonality(DirectiveID.getLoc()); 8782 else if (IDVal == ".handlerdata") 8783 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8784 else if (IDVal == ".setfp") 8785 return parseDirectiveSetFP(DirectiveID.getLoc()); 8786 else if (IDVal == ".pad") 8787 return parseDirectivePad(DirectiveID.getLoc()); 8788 else if (IDVal == ".save") 8789 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8790 else if (IDVal == ".vsave") 8791 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8792 else if (IDVal == ".ltorg" || IDVal == ".pool") 8793 return parseDirectiveLtorg(DirectiveID.getLoc()); 8794 else if (IDVal == ".even") 8795 return parseDirectiveEven(DirectiveID.getLoc()); 8796 else if (IDVal == ".personalityindex") 8797 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8798 else if (IDVal == ".unwind_raw") 8799 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8800 else if (IDVal == ".movsp") 8801 return parseDirectiveMovSP(DirectiveID.getLoc()); 8802 else if (IDVal == ".arch_extension") 8803 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8804 else if (IDVal == ".align") 8805 return parseDirectiveAlign(DirectiveID.getLoc()); 8806 else if (IDVal == ".thumb_set") 8807 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8808 8809 if (!IsMachO && !IsCOFF) { 8810 if (IDVal == ".arch") 8811 return parseDirectiveArch(DirectiveID.getLoc()); 8812 else if (IDVal == ".cpu") 8813 return parseDirectiveCPU(DirectiveID.getLoc()); 8814 else if (IDVal == ".eabi_attribute") 8815 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8816 else if (IDVal == ".fpu") 8817 return parseDirectiveFPU(DirectiveID.getLoc()); 8818 else if (IDVal == ".fnstart") 8819 return parseDirectiveFnStart(DirectiveID.getLoc()); 8820 else if (IDVal == ".inst") 8821 return parseDirectiveInst(DirectiveID.getLoc()); 8822 else if (IDVal == ".inst.n") 8823 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8824 else if (IDVal == ".inst.w") 8825 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8826 else if (IDVal == ".object_arch") 8827 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8828 else if (IDVal == ".tlsdescseq") 8829 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8830 } 8831 8832 return true; 8833 } 8834 8835 /// parseLiteralValues 8836 /// ::= .hword expression [, expression]* 8837 /// ::= .short expression [, expression]* 8838 /// ::= .word expression [, expression]* 8839 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8840 MCAsmParser &Parser = getParser(); 8841 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8842 for (;;) { 8843 const MCExpr *Value; 8844 if (getParser().parseExpression(Value)) { 8845 Parser.eatToEndOfStatement(); 8846 return false; 8847 } 8848 8849 getParser().getStreamer().EmitValue(Value, Size); 8850 8851 if (getLexer().is(AsmToken::EndOfStatement)) 8852 break; 8853 8854 // FIXME: Improve diagnostic. 8855 if (getLexer().isNot(AsmToken::Comma)) { 8856 Error(L, "unexpected token in directive"); 8857 return false; 8858 } 8859 Parser.Lex(); 8860 } 8861 } 8862 8863 Parser.Lex(); 8864 return false; 8865 } 8866 8867 /// parseDirectiveThumb 8868 /// ::= .thumb 8869 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 8870 MCAsmParser &Parser = getParser(); 8871 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8872 Error(L, "unexpected token in directive"); 8873 return false; 8874 } 8875 Parser.Lex(); 8876 8877 if (!hasThumb()) { 8878 Error(L, "target does not support Thumb mode"); 8879 return false; 8880 } 8881 8882 if (!isThumb()) 8883 SwitchMode(); 8884 8885 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8886 return false; 8887 } 8888 8889 /// parseDirectiveARM 8890 /// ::= .arm 8891 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 8892 MCAsmParser &Parser = getParser(); 8893 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8894 Error(L, "unexpected token in directive"); 8895 return false; 8896 } 8897 Parser.Lex(); 8898 8899 if (!hasARM()) { 8900 Error(L, "target does not support ARM mode"); 8901 return false; 8902 } 8903 8904 if (isThumb()) 8905 SwitchMode(); 8906 8907 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8908 return false; 8909 } 8910 8911 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 8912 if (NextSymbolIsThumb) { 8913 getParser().getStreamer().EmitThumbFunc(Symbol); 8914 NextSymbolIsThumb = false; 8915 } 8916 } 8917 8918 /// parseDirectiveThumbFunc 8919 /// ::= .thumbfunc symbol_name 8920 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 8921 MCAsmParser &Parser = getParser(); 8922 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 8923 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8924 8925 // Darwin asm has (optionally) function name after .thumb_func direction 8926 // ELF doesn't 8927 if (IsMachO) { 8928 const AsmToken &Tok = Parser.getTok(); 8929 if (Tok.isNot(AsmToken::EndOfStatement)) { 8930 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 8931 Error(L, "unexpected token in .thumb_func directive"); 8932 return false; 8933 } 8934 8935 MCSymbol *Func = 8936 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 8937 getParser().getStreamer().EmitThumbFunc(Func); 8938 Parser.Lex(); // Consume the identifier token. 8939 return false; 8940 } 8941 } 8942 8943 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8944 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8945 Parser.eatToEndOfStatement(); 8946 return false; 8947 } 8948 8949 NextSymbolIsThumb = true; 8950 return false; 8951 } 8952 8953 /// parseDirectiveSyntax 8954 /// ::= .syntax unified | divided 8955 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 8956 MCAsmParser &Parser = getParser(); 8957 const AsmToken &Tok = Parser.getTok(); 8958 if (Tok.isNot(AsmToken::Identifier)) { 8959 Error(L, "unexpected token in .syntax directive"); 8960 return false; 8961 } 8962 8963 StringRef Mode = Tok.getString(); 8964 if (Mode == "unified" || Mode == "UNIFIED") { 8965 Parser.Lex(); 8966 } else if (Mode == "divided" || Mode == "DIVIDED") { 8967 Error(L, "'.syntax divided' arm asssembly not supported"); 8968 return false; 8969 } else { 8970 Error(L, "unrecognized syntax mode in .syntax directive"); 8971 return false; 8972 } 8973 8974 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8975 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8976 return false; 8977 } 8978 Parser.Lex(); 8979 8980 // TODO tell the MC streamer the mode 8981 // getParser().getStreamer().Emit???(); 8982 return false; 8983 } 8984 8985 /// parseDirectiveCode 8986 /// ::= .code 16 | 32 8987 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 8988 MCAsmParser &Parser = getParser(); 8989 const AsmToken &Tok = Parser.getTok(); 8990 if (Tok.isNot(AsmToken::Integer)) { 8991 Error(L, "unexpected token in .code directive"); 8992 return false; 8993 } 8994 int64_t Val = Parser.getTok().getIntVal(); 8995 if (Val != 16 && Val != 32) { 8996 Error(L, "invalid operand to .code directive"); 8997 return false; 8998 } 8999 Parser.Lex(); 9000 9001 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9002 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9003 return false; 9004 } 9005 Parser.Lex(); 9006 9007 if (Val == 16) { 9008 if (!hasThumb()) { 9009 Error(L, "target does not support Thumb mode"); 9010 return false; 9011 } 9012 9013 if (!isThumb()) 9014 SwitchMode(); 9015 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9016 } else { 9017 if (!hasARM()) { 9018 Error(L, "target does not support ARM mode"); 9019 return false; 9020 } 9021 9022 if (isThumb()) 9023 SwitchMode(); 9024 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9025 } 9026 9027 return false; 9028 } 9029 9030 /// parseDirectiveReq 9031 /// ::= name .req registername 9032 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9033 MCAsmParser &Parser = getParser(); 9034 Parser.Lex(); // Eat the '.req' token. 9035 unsigned Reg; 9036 SMLoc SRegLoc, ERegLoc; 9037 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 9038 Parser.eatToEndOfStatement(); 9039 Error(SRegLoc, "register name expected"); 9040 return false; 9041 } 9042 9043 // Shouldn't be anything else. 9044 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9045 Parser.eatToEndOfStatement(); 9046 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9047 return false; 9048 } 9049 9050 Parser.Lex(); // Consume the EndOfStatement 9051 9052 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9053 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9054 return false; 9055 } 9056 9057 return false; 9058 } 9059 9060 /// parseDirectiveUneq 9061 /// ::= .unreq registername 9062 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9063 MCAsmParser &Parser = getParser(); 9064 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9065 Parser.eatToEndOfStatement(); 9066 Error(L, "unexpected input in .unreq directive."); 9067 return false; 9068 } 9069 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9070 Parser.Lex(); // Eat the identifier. 9071 return false; 9072 } 9073 9074 /// parseDirectiveArch 9075 /// ::= .arch token 9076 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9077 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9078 9079 unsigned ID = ARMTargetParser::parseArch(Arch); 9080 9081 if (ID == ARM::AK_INVALID) { 9082 Error(L, "Unknown arch name"); 9083 return false; 9084 } 9085 9086 getTargetStreamer().emitArch(ID); 9087 return false; 9088 } 9089 9090 /// parseDirectiveEabiAttr 9091 /// ::= .eabi_attribute int, int [, "str"] 9092 /// ::= .eabi_attribute Tag_name, int [, "str"] 9093 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9094 MCAsmParser &Parser = getParser(); 9095 int64_t Tag; 9096 SMLoc TagLoc; 9097 TagLoc = Parser.getTok().getLoc(); 9098 if (Parser.getTok().is(AsmToken::Identifier)) { 9099 StringRef Name = Parser.getTok().getIdentifier(); 9100 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9101 if (Tag == -1) { 9102 Error(TagLoc, "attribute name not recognised: " + Name); 9103 Parser.eatToEndOfStatement(); 9104 return false; 9105 } 9106 Parser.Lex(); 9107 } else { 9108 const MCExpr *AttrExpr; 9109 9110 TagLoc = Parser.getTok().getLoc(); 9111 if (Parser.parseExpression(AttrExpr)) { 9112 Parser.eatToEndOfStatement(); 9113 return false; 9114 } 9115 9116 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9117 if (!CE) { 9118 Error(TagLoc, "expected numeric constant"); 9119 Parser.eatToEndOfStatement(); 9120 return false; 9121 } 9122 9123 Tag = CE->getValue(); 9124 } 9125 9126 if (Parser.getTok().isNot(AsmToken::Comma)) { 9127 Error(Parser.getTok().getLoc(), "comma expected"); 9128 Parser.eatToEndOfStatement(); 9129 return false; 9130 } 9131 Parser.Lex(); // skip comma 9132 9133 StringRef StringValue = ""; 9134 bool IsStringValue = false; 9135 9136 int64_t IntegerValue = 0; 9137 bool IsIntegerValue = false; 9138 9139 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9140 IsStringValue = true; 9141 else if (Tag == ARMBuildAttrs::compatibility) { 9142 IsStringValue = true; 9143 IsIntegerValue = true; 9144 } else if (Tag < 32 || Tag % 2 == 0) 9145 IsIntegerValue = true; 9146 else if (Tag % 2 == 1) 9147 IsStringValue = true; 9148 else 9149 llvm_unreachable("invalid tag type"); 9150 9151 if (IsIntegerValue) { 9152 const MCExpr *ValueExpr; 9153 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9154 if (Parser.parseExpression(ValueExpr)) { 9155 Parser.eatToEndOfStatement(); 9156 return false; 9157 } 9158 9159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9160 if (!CE) { 9161 Error(ValueExprLoc, "expected numeric constant"); 9162 Parser.eatToEndOfStatement(); 9163 return false; 9164 } 9165 9166 IntegerValue = CE->getValue(); 9167 } 9168 9169 if (Tag == ARMBuildAttrs::compatibility) { 9170 if (Parser.getTok().isNot(AsmToken::Comma)) 9171 IsStringValue = false; 9172 if (Parser.getTok().isNot(AsmToken::Comma)) { 9173 Error(Parser.getTok().getLoc(), "comma expected"); 9174 Parser.eatToEndOfStatement(); 9175 return false; 9176 } else { 9177 Parser.Lex(); 9178 } 9179 } 9180 9181 if (IsStringValue) { 9182 if (Parser.getTok().isNot(AsmToken::String)) { 9183 Error(Parser.getTok().getLoc(), "bad string constant"); 9184 Parser.eatToEndOfStatement(); 9185 return false; 9186 } 9187 9188 StringValue = Parser.getTok().getStringContents(); 9189 Parser.Lex(); 9190 } 9191 9192 if (IsIntegerValue && IsStringValue) { 9193 assert(Tag == ARMBuildAttrs::compatibility); 9194 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9195 } else if (IsIntegerValue) 9196 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9197 else if (IsStringValue) 9198 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9199 return false; 9200 } 9201 9202 /// parseDirectiveCPU 9203 /// ::= .cpu str 9204 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9205 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9206 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9207 9208 // FIXME: This is using table-gen data, but should be moved to 9209 // ARMTargetParser once that is table-gen'd. 9210 if (!STI.isCPUStringValid(CPU)) { 9211 Error(L, "Unknown CPU name"); 9212 return false; 9213 } 9214 9215 STI.InitMCProcessorInfo(CPU, ""); 9216 STI.InitCPUSchedModel(CPU); 9217 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9218 9219 return false; 9220 } 9221 /// parseDirectiveFPU 9222 /// ::= .fpu str 9223 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9224 SMLoc FPUNameLoc = getTok().getLoc(); 9225 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9226 9227 unsigned ID = ARMTargetParser::parseFPU(FPU); 9228 std::vector<const char *> Features; 9229 if (!ARMTargetParser::getFPUFeatures(ID, Features)) { 9230 Error(FPUNameLoc, "Unknown FPU name"); 9231 return false; 9232 } 9233 9234 for (auto Feature : Features) 9235 STI.ApplyFeatureFlag(Feature); 9236 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9237 9238 getTargetStreamer().emitFPU(ID); 9239 return false; 9240 } 9241 9242 /// parseDirectiveFnStart 9243 /// ::= .fnstart 9244 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9245 if (UC.hasFnStart()) { 9246 Error(L, ".fnstart starts before the end of previous one"); 9247 UC.emitFnStartLocNotes(); 9248 return false; 9249 } 9250 9251 // Reset the unwind directives parser state 9252 UC.reset(); 9253 9254 getTargetStreamer().emitFnStart(); 9255 9256 UC.recordFnStart(L); 9257 return false; 9258 } 9259 9260 /// parseDirectiveFnEnd 9261 /// ::= .fnend 9262 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9263 // Check the ordering of unwind directives 9264 if (!UC.hasFnStart()) { 9265 Error(L, ".fnstart must precede .fnend directive"); 9266 return false; 9267 } 9268 9269 // Reset the unwind directives parser state 9270 getTargetStreamer().emitFnEnd(); 9271 9272 UC.reset(); 9273 return false; 9274 } 9275 9276 /// parseDirectiveCantUnwind 9277 /// ::= .cantunwind 9278 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9279 UC.recordCantUnwind(L); 9280 9281 // Check the ordering of unwind directives 9282 if (!UC.hasFnStart()) { 9283 Error(L, ".fnstart must precede .cantunwind directive"); 9284 return false; 9285 } 9286 if (UC.hasHandlerData()) { 9287 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9288 UC.emitHandlerDataLocNotes(); 9289 return false; 9290 } 9291 if (UC.hasPersonality()) { 9292 Error(L, ".cantunwind can't be used with .personality directive"); 9293 UC.emitPersonalityLocNotes(); 9294 return false; 9295 } 9296 9297 getTargetStreamer().emitCantUnwind(); 9298 return false; 9299 } 9300 9301 /// parseDirectivePersonality 9302 /// ::= .personality name 9303 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9304 MCAsmParser &Parser = getParser(); 9305 bool HasExistingPersonality = UC.hasPersonality(); 9306 9307 UC.recordPersonality(L); 9308 9309 // Check the ordering of unwind directives 9310 if (!UC.hasFnStart()) { 9311 Error(L, ".fnstart must precede .personality directive"); 9312 return false; 9313 } 9314 if (UC.cantUnwind()) { 9315 Error(L, ".personality can't be used with .cantunwind directive"); 9316 UC.emitCantUnwindLocNotes(); 9317 return false; 9318 } 9319 if (UC.hasHandlerData()) { 9320 Error(L, ".personality must precede .handlerdata directive"); 9321 UC.emitHandlerDataLocNotes(); 9322 return false; 9323 } 9324 if (HasExistingPersonality) { 9325 Parser.eatToEndOfStatement(); 9326 Error(L, "multiple personality directives"); 9327 UC.emitPersonalityLocNotes(); 9328 return false; 9329 } 9330 9331 // Parse the name of the personality routine 9332 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9333 Parser.eatToEndOfStatement(); 9334 Error(L, "unexpected input in .personality directive."); 9335 return false; 9336 } 9337 StringRef Name(Parser.getTok().getIdentifier()); 9338 Parser.Lex(); 9339 9340 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9341 getTargetStreamer().emitPersonality(PR); 9342 return false; 9343 } 9344 9345 /// parseDirectiveHandlerData 9346 /// ::= .handlerdata 9347 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9348 UC.recordHandlerData(L); 9349 9350 // Check the ordering of unwind directives 9351 if (!UC.hasFnStart()) { 9352 Error(L, ".fnstart must precede .personality directive"); 9353 return false; 9354 } 9355 if (UC.cantUnwind()) { 9356 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9357 UC.emitCantUnwindLocNotes(); 9358 return false; 9359 } 9360 9361 getTargetStreamer().emitHandlerData(); 9362 return false; 9363 } 9364 9365 /// parseDirectiveSetFP 9366 /// ::= .setfp fpreg, spreg [, offset] 9367 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9368 MCAsmParser &Parser = getParser(); 9369 // Check the ordering of unwind directives 9370 if (!UC.hasFnStart()) { 9371 Error(L, ".fnstart must precede .setfp directive"); 9372 return false; 9373 } 9374 if (UC.hasHandlerData()) { 9375 Error(L, ".setfp must precede .handlerdata directive"); 9376 return false; 9377 } 9378 9379 // Parse fpreg 9380 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9381 int FPReg = tryParseRegister(); 9382 if (FPReg == -1) { 9383 Error(FPRegLoc, "frame pointer register expected"); 9384 return false; 9385 } 9386 9387 // Consume comma 9388 if (Parser.getTok().isNot(AsmToken::Comma)) { 9389 Error(Parser.getTok().getLoc(), "comma expected"); 9390 return false; 9391 } 9392 Parser.Lex(); // skip comma 9393 9394 // Parse spreg 9395 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9396 int SPReg = tryParseRegister(); 9397 if (SPReg == -1) { 9398 Error(SPRegLoc, "stack pointer register expected"); 9399 return false; 9400 } 9401 9402 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9403 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9404 return false; 9405 } 9406 9407 // Update the frame pointer register 9408 UC.saveFPReg(FPReg); 9409 9410 // Parse offset 9411 int64_t Offset = 0; 9412 if (Parser.getTok().is(AsmToken::Comma)) { 9413 Parser.Lex(); // skip comma 9414 9415 if (Parser.getTok().isNot(AsmToken::Hash) && 9416 Parser.getTok().isNot(AsmToken::Dollar)) { 9417 Error(Parser.getTok().getLoc(), "'#' expected"); 9418 return false; 9419 } 9420 Parser.Lex(); // skip hash token. 9421 9422 const MCExpr *OffsetExpr; 9423 SMLoc ExLoc = Parser.getTok().getLoc(); 9424 SMLoc EndLoc; 9425 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9426 Error(ExLoc, "malformed setfp offset"); 9427 return false; 9428 } 9429 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9430 if (!CE) { 9431 Error(ExLoc, "setfp offset must be an immediate"); 9432 return false; 9433 } 9434 9435 Offset = CE->getValue(); 9436 } 9437 9438 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9439 static_cast<unsigned>(SPReg), Offset); 9440 return false; 9441 } 9442 9443 /// parseDirective 9444 /// ::= .pad offset 9445 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9446 MCAsmParser &Parser = getParser(); 9447 // Check the ordering of unwind directives 9448 if (!UC.hasFnStart()) { 9449 Error(L, ".fnstart must precede .pad directive"); 9450 return false; 9451 } 9452 if (UC.hasHandlerData()) { 9453 Error(L, ".pad must precede .handlerdata directive"); 9454 return false; 9455 } 9456 9457 // Parse the offset 9458 if (Parser.getTok().isNot(AsmToken::Hash) && 9459 Parser.getTok().isNot(AsmToken::Dollar)) { 9460 Error(Parser.getTok().getLoc(), "'#' expected"); 9461 return false; 9462 } 9463 Parser.Lex(); // skip hash token. 9464 9465 const MCExpr *OffsetExpr; 9466 SMLoc ExLoc = Parser.getTok().getLoc(); 9467 SMLoc EndLoc; 9468 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9469 Error(ExLoc, "malformed pad offset"); 9470 return false; 9471 } 9472 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9473 if (!CE) { 9474 Error(ExLoc, "pad offset must be an immediate"); 9475 return false; 9476 } 9477 9478 getTargetStreamer().emitPad(CE->getValue()); 9479 return false; 9480 } 9481 9482 /// parseDirectiveRegSave 9483 /// ::= .save { registers } 9484 /// ::= .vsave { registers } 9485 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9486 // Check the ordering of unwind directives 9487 if (!UC.hasFnStart()) { 9488 Error(L, ".fnstart must precede .save or .vsave directives"); 9489 return false; 9490 } 9491 if (UC.hasHandlerData()) { 9492 Error(L, ".save or .vsave must precede .handlerdata directive"); 9493 return false; 9494 } 9495 9496 // RAII object to make sure parsed operands are deleted. 9497 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9498 9499 // Parse the register list 9500 if (parseRegisterList(Operands)) 9501 return false; 9502 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9503 if (!IsVector && !Op.isRegList()) { 9504 Error(L, ".save expects GPR registers"); 9505 return false; 9506 } 9507 if (IsVector && !Op.isDPRRegList()) { 9508 Error(L, ".vsave expects DPR registers"); 9509 return false; 9510 } 9511 9512 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9513 return false; 9514 } 9515 9516 /// parseDirectiveInst 9517 /// ::= .inst opcode [, ...] 9518 /// ::= .inst.n opcode [, ...] 9519 /// ::= .inst.w opcode [, ...] 9520 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9521 MCAsmParser &Parser = getParser(); 9522 int Width; 9523 9524 if (isThumb()) { 9525 switch (Suffix) { 9526 case 'n': 9527 Width = 2; 9528 break; 9529 case 'w': 9530 Width = 4; 9531 break; 9532 default: 9533 Parser.eatToEndOfStatement(); 9534 Error(Loc, "cannot determine Thumb instruction size, " 9535 "use inst.n/inst.w instead"); 9536 return false; 9537 } 9538 } else { 9539 if (Suffix) { 9540 Parser.eatToEndOfStatement(); 9541 Error(Loc, "width suffixes are invalid in ARM mode"); 9542 return false; 9543 } 9544 Width = 4; 9545 } 9546 9547 if (getLexer().is(AsmToken::EndOfStatement)) { 9548 Parser.eatToEndOfStatement(); 9549 Error(Loc, "expected expression following directive"); 9550 return false; 9551 } 9552 9553 for (;;) { 9554 const MCExpr *Expr; 9555 9556 if (getParser().parseExpression(Expr)) { 9557 Error(Loc, "expected expression"); 9558 return false; 9559 } 9560 9561 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9562 if (!Value) { 9563 Error(Loc, "expected constant expression"); 9564 return false; 9565 } 9566 9567 switch (Width) { 9568 case 2: 9569 if (Value->getValue() > 0xffff) { 9570 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9571 return false; 9572 } 9573 break; 9574 case 4: 9575 if (Value->getValue() > 0xffffffff) { 9576 Error(Loc, 9577 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9578 return false; 9579 } 9580 break; 9581 default: 9582 llvm_unreachable("only supported widths are 2 and 4"); 9583 } 9584 9585 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9586 9587 if (getLexer().is(AsmToken::EndOfStatement)) 9588 break; 9589 9590 if (getLexer().isNot(AsmToken::Comma)) { 9591 Error(Loc, "unexpected token in directive"); 9592 return false; 9593 } 9594 9595 Parser.Lex(); 9596 } 9597 9598 Parser.Lex(); 9599 return false; 9600 } 9601 9602 /// parseDirectiveLtorg 9603 /// ::= .ltorg | .pool 9604 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9605 getTargetStreamer().emitCurrentConstantPool(); 9606 return false; 9607 } 9608 9609 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9610 const MCSection *Section = getStreamer().getCurrentSection().first; 9611 9612 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9613 TokError("unexpected token in directive"); 9614 return false; 9615 } 9616 9617 if (!Section) { 9618 getStreamer().InitSections(false); 9619 Section = getStreamer().getCurrentSection().first; 9620 } 9621 9622 assert(Section && "must have section to emit alignment"); 9623 if (Section->UseCodeAlign()) 9624 getStreamer().EmitCodeAlignment(2); 9625 else 9626 getStreamer().EmitValueToAlignment(2); 9627 9628 return false; 9629 } 9630 9631 /// parseDirectivePersonalityIndex 9632 /// ::= .personalityindex index 9633 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9634 MCAsmParser &Parser = getParser(); 9635 bool HasExistingPersonality = UC.hasPersonality(); 9636 9637 UC.recordPersonalityIndex(L); 9638 9639 if (!UC.hasFnStart()) { 9640 Parser.eatToEndOfStatement(); 9641 Error(L, ".fnstart must precede .personalityindex directive"); 9642 return false; 9643 } 9644 if (UC.cantUnwind()) { 9645 Parser.eatToEndOfStatement(); 9646 Error(L, ".personalityindex cannot be used with .cantunwind"); 9647 UC.emitCantUnwindLocNotes(); 9648 return false; 9649 } 9650 if (UC.hasHandlerData()) { 9651 Parser.eatToEndOfStatement(); 9652 Error(L, ".personalityindex must precede .handlerdata directive"); 9653 UC.emitHandlerDataLocNotes(); 9654 return false; 9655 } 9656 if (HasExistingPersonality) { 9657 Parser.eatToEndOfStatement(); 9658 Error(L, "multiple personality directives"); 9659 UC.emitPersonalityLocNotes(); 9660 return false; 9661 } 9662 9663 const MCExpr *IndexExpression; 9664 SMLoc IndexLoc = Parser.getTok().getLoc(); 9665 if (Parser.parseExpression(IndexExpression)) { 9666 Parser.eatToEndOfStatement(); 9667 return false; 9668 } 9669 9670 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9671 if (!CE) { 9672 Parser.eatToEndOfStatement(); 9673 Error(IndexLoc, "index must be a constant number"); 9674 return false; 9675 } 9676 if (CE->getValue() < 0 || 9677 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9678 Parser.eatToEndOfStatement(); 9679 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9680 return false; 9681 } 9682 9683 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9684 return false; 9685 } 9686 9687 /// parseDirectiveUnwindRaw 9688 /// ::= .unwind_raw offset, opcode [, opcode...] 9689 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9690 MCAsmParser &Parser = getParser(); 9691 if (!UC.hasFnStart()) { 9692 Parser.eatToEndOfStatement(); 9693 Error(L, ".fnstart must precede .unwind_raw directives"); 9694 return false; 9695 } 9696 9697 int64_t StackOffset; 9698 9699 const MCExpr *OffsetExpr; 9700 SMLoc OffsetLoc = getLexer().getLoc(); 9701 if (getLexer().is(AsmToken::EndOfStatement) || 9702 getParser().parseExpression(OffsetExpr)) { 9703 Error(OffsetLoc, "expected expression"); 9704 Parser.eatToEndOfStatement(); 9705 return false; 9706 } 9707 9708 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9709 if (!CE) { 9710 Error(OffsetLoc, "offset must be a constant"); 9711 Parser.eatToEndOfStatement(); 9712 return false; 9713 } 9714 9715 StackOffset = CE->getValue(); 9716 9717 if (getLexer().isNot(AsmToken::Comma)) { 9718 Error(getLexer().getLoc(), "expected comma"); 9719 Parser.eatToEndOfStatement(); 9720 return false; 9721 } 9722 Parser.Lex(); 9723 9724 SmallVector<uint8_t, 16> Opcodes; 9725 for (;;) { 9726 const MCExpr *OE; 9727 9728 SMLoc OpcodeLoc = getLexer().getLoc(); 9729 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9730 Error(OpcodeLoc, "expected opcode expression"); 9731 Parser.eatToEndOfStatement(); 9732 return false; 9733 } 9734 9735 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9736 if (!OC) { 9737 Error(OpcodeLoc, "opcode value must be a constant"); 9738 Parser.eatToEndOfStatement(); 9739 return false; 9740 } 9741 9742 const int64_t Opcode = OC->getValue(); 9743 if (Opcode & ~0xff) { 9744 Error(OpcodeLoc, "invalid opcode"); 9745 Parser.eatToEndOfStatement(); 9746 return false; 9747 } 9748 9749 Opcodes.push_back(uint8_t(Opcode)); 9750 9751 if (getLexer().is(AsmToken::EndOfStatement)) 9752 break; 9753 9754 if (getLexer().isNot(AsmToken::Comma)) { 9755 Error(getLexer().getLoc(), "unexpected token in directive"); 9756 Parser.eatToEndOfStatement(); 9757 return false; 9758 } 9759 9760 Parser.Lex(); 9761 } 9762 9763 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9764 9765 Parser.Lex(); 9766 return false; 9767 } 9768 9769 /// parseDirectiveTLSDescSeq 9770 /// ::= .tlsdescseq tls-variable 9771 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9772 MCAsmParser &Parser = getParser(); 9773 9774 if (getLexer().isNot(AsmToken::Identifier)) { 9775 TokError("expected variable after '.tlsdescseq' directive"); 9776 Parser.eatToEndOfStatement(); 9777 return false; 9778 } 9779 9780 const MCSymbolRefExpr *SRE = 9781 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9782 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9783 Lex(); 9784 9785 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9786 Error(Parser.getTok().getLoc(), "unexpected token"); 9787 Parser.eatToEndOfStatement(); 9788 return false; 9789 } 9790 9791 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9792 return false; 9793 } 9794 9795 /// parseDirectiveMovSP 9796 /// ::= .movsp reg [, #offset] 9797 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9798 MCAsmParser &Parser = getParser(); 9799 if (!UC.hasFnStart()) { 9800 Parser.eatToEndOfStatement(); 9801 Error(L, ".fnstart must precede .movsp directives"); 9802 return false; 9803 } 9804 if (UC.getFPReg() != ARM::SP) { 9805 Parser.eatToEndOfStatement(); 9806 Error(L, "unexpected .movsp directive"); 9807 return false; 9808 } 9809 9810 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9811 int SPReg = tryParseRegister(); 9812 if (SPReg == -1) { 9813 Parser.eatToEndOfStatement(); 9814 Error(SPRegLoc, "register expected"); 9815 return false; 9816 } 9817 9818 if (SPReg == ARM::SP || SPReg == ARM::PC) { 9819 Parser.eatToEndOfStatement(); 9820 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9821 return false; 9822 } 9823 9824 int64_t Offset = 0; 9825 if (Parser.getTok().is(AsmToken::Comma)) { 9826 Parser.Lex(); 9827 9828 if (Parser.getTok().isNot(AsmToken::Hash)) { 9829 Error(Parser.getTok().getLoc(), "expected #constant"); 9830 Parser.eatToEndOfStatement(); 9831 return false; 9832 } 9833 Parser.Lex(); 9834 9835 const MCExpr *OffsetExpr; 9836 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9837 if (Parser.parseExpression(OffsetExpr)) { 9838 Parser.eatToEndOfStatement(); 9839 Error(OffsetLoc, "malformed offset expression"); 9840 return false; 9841 } 9842 9843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9844 if (!CE) { 9845 Parser.eatToEndOfStatement(); 9846 Error(OffsetLoc, "offset must be an immediate constant"); 9847 return false; 9848 } 9849 9850 Offset = CE->getValue(); 9851 } 9852 9853 getTargetStreamer().emitMovSP(SPReg, Offset); 9854 UC.saveFPReg(SPReg); 9855 9856 return false; 9857 } 9858 9859 /// parseDirectiveObjectArch 9860 /// ::= .object_arch name 9861 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9862 MCAsmParser &Parser = getParser(); 9863 if (getLexer().isNot(AsmToken::Identifier)) { 9864 Error(getLexer().getLoc(), "unexpected token"); 9865 Parser.eatToEndOfStatement(); 9866 return false; 9867 } 9868 9869 StringRef Arch = Parser.getTok().getString(); 9870 SMLoc ArchLoc = Parser.getTok().getLoc(); 9871 getLexer().Lex(); 9872 9873 unsigned ID = ARMTargetParser::parseArch(Arch); 9874 9875 if (ID == ARM::AK_INVALID) { 9876 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9877 Parser.eatToEndOfStatement(); 9878 return false; 9879 } 9880 9881 getTargetStreamer().emitObjectArch(ID); 9882 9883 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9884 Error(getLexer().getLoc(), "unexpected token"); 9885 Parser.eatToEndOfStatement(); 9886 } 9887 9888 return false; 9889 } 9890 9891 /// parseDirectiveAlign 9892 /// ::= .align 9893 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9894 // NOTE: if this is not the end of the statement, fall back to the target 9895 // agnostic handling for this directive which will correctly handle this. 9896 if (getLexer().isNot(AsmToken::EndOfStatement)) 9897 return true; 9898 9899 // '.align' is target specifically handled to mean 2**2 byte alignment. 9900 if (getStreamer().getCurrentSection().first->UseCodeAlign()) 9901 getStreamer().EmitCodeAlignment(4, 0); 9902 else 9903 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 9904 9905 return false; 9906 } 9907 9908 /// parseDirectiveThumbSet 9909 /// ::= .thumb_set name, value 9910 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 9911 MCAsmParser &Parser = getParser(); 9912 9913 StringRef Name; 9914 if (Parser.parseIdentifier(Name)) { 9915 TokError("expected identifier after '.thumb_set'"); 9916 Parser.eatToEndOfStatement(); 9917 return false; 9918 } 9919 9920 if (getLexer().isNot(AsmToken::Comma)) { 9921 TokError("expected comma after name '" + Name + "'"); 9922 Parser.eatToEndOfStatement(); 9923 return false; 9924 } 9925 Lex(); 9926 9927 MCSymbol *Sym; 9928 const MCExpr *Value; 9929 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 9930 Parser, Sym, Value)) 9931 return true; 9932 9933 getTargetStreamer().emitThumbSet(Sym, Value); 9934 return false; 9935 } 9936 9937 /// Force static initialization. 9938 extern "C" void LLVMInitializeARMAsmParser() { 9939 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 9940 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 9941 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 9942 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 9943 } 9944 9945 #define GET_REGISTER_MATCHER 9946 #define GET_SUBTARGET_FEATURE_NAME 9947 #define GET_MATCHER_IMPLEMENTATION 9948 #include "ARMGenAsmMatcher.inc" 9949 9950 // FIXME: This structure should be moved inside ARMTargetParser 9951 // when we start to table-generate them, and we can use the ARM 9952 // flags below, that were generated by table-gen. 9953 static const struct { 9954 const ARM::ArchExtKind Kind; 9955 const unsigned ArchCheck; 9956 const FeatureBitset Features; 9957 } Extensions[] = { 9958 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 9959 { ARM::AEK_CRYPTO, Feature_HasV8, 9960 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9961 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 9962 { ARM::AEK_HWDIV, Feature_HasV7 | Feature_IsNotMClass, 9963 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 9964 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 9965 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9966 // FIXME: Also available in ARMv6-K 9967 { ARM::AEK_SEC, Feature_HasV7, {ARM::FeatureTrustZone} }, 9968 // FIXME: Only available in A-class, isel not predicated 9969 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 9970 // FIXME: Unsupported extensions. 9971 { ARM::AEK_OS, Feature_None, {} }, 9972 { ARM::AEK_IWMMXT, Feature_None, {} }, 9973 { ARM::AEK_IWMMXT2, Feature_None, {} }, 9974 { ARM::AEK_MAVERICK, Feature_None, {} }, 9975 { ARM::AEK_XSCALE, Feature_None, {} }, 9976 }; 9977 9978 /// parseDirectiveArchExtension 9979 /// ::= .arch_extension [no]feature 9980 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 9981 MCAsmParser &Parser = getParser(); 9982 9983 if (getLexer().isNot(AsmToken::Identifier)) { 9984 Error(getLexer().getLoc(), "unexpected token"); 9985 Parser.eatToEndOfStatement(); 9986 return false; 9987 } 9988 9989 StringRef Name = Parser.getTok().getString(); 9990 SMLoc ExtLoc = Parser.getTok().getLoc(); 9991 getLexer().Lex(); 9992 9993 bool EnableFeature = true; 9994 if (Name.startswith_lower("no")) { 9995 EnableFeature = false; 9996 Name = Name.substr(2); 9997 } 9998 unsigned FeatureKind = ARMTargetParser::parseArchExt(Name); 9999 if (FeatureKind == ARM::AEK_INVALID) 10000 Error(ExtLoc, "unknown architectural extension: " + Name); 10001 10002 for (const auto &Extension : Extensions) { 10003 if (Extension.Kind != FeatureKind) 10004 continue; 10005 10006 if (Extension.Features.none()) 10007 report_fatal_error("unsupported architectural extension: " + Name); 10008 10009 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 10010 Error(ExtLoc, "architectural extension '" + Name + "' is not " 10011 "allowed for the current base architecture"); 10012 return false; 10013 } 10014 10015 FeatureBitset ToggleFeatures = EnableFeature 10016 ? (~STI.getFeatureBits() & Extension.Features) 10017 : ( STI.getFeatureBits() & Extension.Features); 10018 10019 uint64_t Features = 10020 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10021 setAvailableFeatures(Features); 10022 return false; 10023 } 10024 10025 Error(ExtLoc, "unknown architectural extension: " + Name); 10026 Parser.eatToEndOfStatement(); 10027 return false; 10028 } 10029 10030 // Define this matcher function after the auto-generated include so we 10031 // have the match class enum definitions. 10032 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10033 unsigned Kind) { 10034 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10035 // If the kind is a token for a literal immediate, check if our asm 10036 // operand matches. This is for InstAliases which have a fixed-value 10037 // immediate in the syntax. 10038 switch (Kind) { 10039 default: break; 10040 case MCK__35_0: 10041 if (Op.isImm()) 10042 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10043 if (CE->getValue() == 0) 10044 return Match_Success; 10045 break; 10046 case MCK_ModImm: 10047 if (Op.isImm()) { 10048 const MCExpr *SOExpr = Op.getImm(); 10049 int64_t Value; 10050 if (!SOExpr->evaluateAsAbsolute(Value)) 10051 return Match_Success; 10052 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10053 "expression value must be representable in 32 bits"); 10054 } 10055 break; 10056 case MCK_GPRPair: 10057 if (Op.isReg() && 10058 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10059 return Match_Success; 10060 break; 10061 } 10062 return Match_InvalidOperand; 10063 } 10064