1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ELF.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 51 using namespace llvm; 52 53 namespace { 54 55 class ARMOperand; 56 57 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 58 59 class UnwindContext { 60 MCAsmParser &Parser; 61 62 typedef SmallVector<SMLoc, 4> Locs; 63 64 Locs FnStartLocs; 65 Locs CantUnwindLocs; 66 Locs PersonalityLocs; 67 Locs PersonalityIndexLocs; 68 Locs HandlerDataLocs; 69 int FPReg; 70 71 public: 72 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 73 74 bool hasFnStart() const { return !FnStartLocs.empty(); } 75 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 76 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 77 bool hasPersonality() const { 78 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 79 } 80 81 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 82 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 83 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 84 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 85 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 86 87 void saveFPReg(int Reg) { FPReg = Reg; } 88 int getFPReg() const { return FPReg; } 89 90 void emitFnStartLocNotes() const { 91 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 92 FI != FE; ++FI) 93 Parser.Note(*FI, ".fnstart was specified here"); 94 } 95 void emitCantUnwindLocNotes() const { 96 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 97 UE = CantUnwindLocs.end(); UI != UE; ++UI) 98 Parser.Note(*UI, ".cantunwind was specified here"); 99 } 100 void emitHandlerDataLocNotes() const { 101 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 102 HE = HandlerDataLocs.end(); HI != HE; ++HI) 103 Parser.Note(*HI, ".handlerdata was specified here"); 104 } 105 void emitPersonalityLocNotes() const { 106 for (Locs::const_iterator PI = PersonalityLocs.begin(), 107 PE = PersonalityLocs.end(), 108 PII = PersonalityIndexLocs.begin(), 109 PIE = PersonalityIndexLocs.end(); 110 PI != PE || PII != PIE;) { 111 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 112 Parser.Note(*PI++, ".personality was specified here"); 113 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 114 Parser.Note(*PII++, ".personalityindex was specified here"); 115 else 116 llvm_unreachable(".personality and .personalityindex cannot be " 117 "at the same location"); 118 } 119 } 120 121 void reset() { 122 FnStartLocs = Locs(); 123 CantUnwindLocs = Locs(); 124 PersonalityLocs = Locs(); 125 HandlerDataLocs = Locs(); 126 PersonalityIndexLocs = Locs(); 127 FPReg = ARM::SP; 128 } 129 }; 130 131 class ARMAsmParser : public MCTargetAsmParser { 132 const MCInstrInfo &MII; 133 const MCRegisterInfo *MRI; 134 UnwindContext UC; 135 136 ARMTargetStreamer &getTargetStreamer() { 137 assert(getParser().getStreamer().getTargetStreamer() && 138 "do not have a target streamer"); 139 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 140 return static_cast<ARMTargetStreamer &>(TS); 141 } 142 143 // Map of register aliases registers via the .req directive. 144 StringMap<unsigned> RegisterReqs; 145 146 bool NextSymbolIsThumb; 147 148 struct { 149 ARMCC::CondCodes Cond; // Condition for IT block. 150 unsigned Mask:4; // Condition mask for instructions. 151 // Starting at first 1 (from lsb). 152 // '1' condition as indicated in IT. 153 // '0' inverse of condition (else). 154 // Count of instructions in IT block is 155 // 4 - trailingzeroes(mask) 156 157 bool FirstCond; // Explicit flag for when we're parsing the 158 // First instruction in the IT block. It's 159 // implied in the mask, so needs special 160 // handling. 161 162 unsigned CurPosition; // Current position in parsing of IT 163 // block. In range [0,3]. Initialized 164 // according to count of instructions in block. 165 // ~0U if no active IT block. 166 } ITState; 167 bool inITBlock() { return ITState.CurPosition != ~0U; } 168 bool lastInITBlock() { 169 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 170 } 171 void forwardITPosition() { 172 if (!inITBlock()) return; 173 // Move to the next instruction in the IT block, if there is one. If not, 174 // mark the block as done. 175 unsigned TZ = countTrailingZeros(ITState.Mask); 176 if (++ITState.CurPosition == 5 - TZ) 177 ITState.CurPosition = ~0U; // Done with the IT block after this. 178 } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return getParser().Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return getParser().Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return getParser().Error(L, Msg, Ranges); 190 } 191 192 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 193 unsigned ListNo, bool IsARPop = false); 194 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 195 unsigned ListNo); 196 197 int tryParseRegister(); 198 bool tryParseRegisterWithWriteBack(OperandVector &); 199 int tryParseShiftRegister(OperandVector &); 200 bool parseRegisterList(OperandVector &); 201 bool parseMemory(OperandVector &); 202 bool parseOperand(OperandVector &, StringRef Mnemonic); 203 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 204 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 205 unsigned &ShiftAmount); 206 bool parseLiteralValues(unsigned Size, SMLoc L); 207 bool parseDirectiveThumb(SMLoc L); 208 bool parseDirectiveARM(SMLoc L); 209 bool parseDirectiveThumbFunc(SMLoc L); 210 bool parseDirectiveCode(SMLoc L); 211 bool parseDirectiveSyntax(SMLoc L); 212 bool parseDirectiveReq(StringRef Name, SMLoc L); 213 bool parseDirectiveUnreq(SMLoc L); 214 bool parseDirectiveArch(SMLoc L); 215 bool parseDirectiveEabiAttr(SMLoc L); 216 bool parseDirectiveCPU(SMLoc L); 217 bool parseDirectiveFPU(SMLoc L); 218 bool parseDirectiveFnStart(SMLoc L); 219 bool parseDirectiveFnEnd(SMLoc L); 220 bool parseDirectiveCantUnwind(SMLoc L); 221 bool parseDirectivePersonality(SMLoc L); 222 bool parseDirectiveHandlerData(SMLoc L); 223 bool parseDirectiveSetFP(SMLoc L); 224 bool parseDirectivePad(SMLoc L); 225 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 226 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 227 bool parseDirectiveLtorg(SMLoc L); 228 bool parseDirectiveEven(SMLoc L); 229 bool parseDirectivePersonalityIndex(SMLoc L); 230 bool parseDirectiveUnwindRaw(SMLoc L); 231 bool parseDirectiveTLSDescSeq(SMLoc L); 232 bool parseDirectiveMovSP(SMLoc L); 233 bool parseDirectiveObjectArch(SMLoc L); 234 bool parseDirectiveArchExtension(SMLoc L); 235 bool parseDirectiveAlign(SMLoc L); 236 bool parseDirectiveThumbSet(SMLoc L); 237 238 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 239 bool &CarrySetting, unsigned &ProcessorIMod, 240 StringRef &ITMask); 241 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 242 bool &CanAcceptCarrySet, 243 bool &CanAcceptPredicationCode); 244 245 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 246 OperandVector &Operands); 247 bool isThumb() const { 248 // FIXME: Can tablegen auto-generate this? 249 return getSTI().getFeatureBits()[ARM::ModeThumb]; 250 } 251 bool isThumbOne() const { 252 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 253 } 254 bool isThumbTwo() const { 255 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 256 } 257 bool hasThumb() const { 258 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 259 } 260 bool hasThumb2() const { 261 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 262 } 263 bool hasV6Ops() const { 264 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 265 } 266 bool hasV6T2Ops() const { 267 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 268 } 269 bool hasV6MOps() const { 270 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 271 } 272 bool hasV7Ops() const { 273 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 274 } 275 bool hasV8Ops() const { 276 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 277 } 278 bool hasV8MBaseline() const { 279 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 280 } 281 bool hasV8MMainline() const { 282 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 283 } 284 bool has8MSecExt() const { 285 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 286 } 287 bool hasARM() const { 288 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 289 } 290 bool hasDSP() const { 291 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 292 } 293 bool hasD16() const { 294 return getSTI().getFeatureBits()[ARM::FeatureD16]; 295 } 296 bool hasV8_1aOps() const { 297 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 298 } 299 bool hasRAS() const { 300 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 301 } 302 303 void SwitchMode() { 304 MCSubtargetInfo &STI = copySTI(); 305 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 306 setAvailableFeatures(FB); 307 } 308 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 309 bool isMClass() const { 310 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 311 } 312 313 /// @name Auto-generated Match Functions 314 /// { 315 316 #define GET_ASSEMBLER_HEADER 317 #include "ARMGenAsmMatcher.inc" 318 319 /// } 320 321 OperandMatchResultTy parseITCondCode(OperandVector &); 322 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 323 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 324 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 325 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 326 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 327 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 328 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 329 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 330 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 331 int High); 332 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 333 return parsePKHImm(O, "lsl", 0, 31); 334 } 335 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 336 return parsePKHImm(O, "asr", 1, 32); 337 } 338 OperandMatchResultTy parseSetEndImm(OperandVector &); 339 OperandMatchResultTy parseShifterImm(OperandVector &); 340 OperandMatchResultTy parseRotImm(OperandVector &); 341 OperandMatchResultTy parseModImm(OperandVector &); 342 OperandMatchResultTy parseBitfield(OperandVector &); 343 OperandMatchResultTy parsePostIdxReg(OperandVector &); 344 OperandMatchResultTy parseAM3Offset(OperandVector &); 345 OperandMatchResultTy parseFPImm(OperandVector &); 346 OperandMatchResultTy parseVectorList(OperandVector &); 347 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 348 SMLoc &EndLoc); 349 350 // Asm Match Converter Methods 351 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 352 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 353 354 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 355 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 356 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 357 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 358 359 public: 360 enum ARMMatchResultTy { 361 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 362 Match_RequiresNotITBlock, 363 Match_RequiresV6, 364 Match_RequiresThumb2, 365 Match_RequiresV8, 366 #define GET_OPERAND_DIAGNOSTIC_TYPES 367 #include "ARMGenAsmMatcher.inc" 368 369 }; 370 371 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 372 const MCInstrInfo &MII, const MCTargetOptions &Options) 373 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 374 MCAsmParserExtension::Initialize(Parser); 375 376 // Cache the MCRegisterInfo. 377 MRI = getContext().getRegisterInfo(); 378 379 // Initialize the set of available features. 380 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 381 382 // Not in an ITBlock to start with. 383 ITState.CurPosition = ~0U; 384 385 NextSymbolIsThumb = false; 386 } 387 388 // Implementation of the MCTargetAsmParser interface: 389 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 390 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 391 SMLoc NameLoc, OperandVector &Operands) override; 392 bool ParseDirective(AsmToken DirectiveID) override; 393 394 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 395 unsigned Kind) override; 396 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 397 398 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 399 OperandVector &Operands, MCStreamer &Out, 400 uint64_t &ErrorInfo, 401 bool MatchingInlineAsm) override; 402 void onLabelParsed(MCSymbol *Symbol) override; 403 }; 404 } // end anonymous namespace 405 406 namespace { 407 408 /// ARMOperand - Instances of this class represent a parsed ARM machine 409 /// operand. 410 class ARMOperand : public MCParsedAsmOperand { 411 enum KindTy { 412 k_CondCode, 413 k_CCOut, 414 k_ITCondMask, 415 k_CoprocNum, 416 k_CoprocReg, 417 k_CoprocOption, 418 k_Immediate, 419 k_MemBarrierOpt, 420 k_InstSyncBarrierOpt, 421 k_Memory, 422 k_PostIndexRegister, 423 k_MSRMask, 424 k_BankedReg, 425 k_ProcIFlags, 426 k_VectorIndex, 427 k_Register, 428 k_RegisterList, 429 k_DPRRegisterList, 430 k_SPRRegisterList, 431 k_VectorList, 432 k_VectorListAllLanes, 433 k_VectorListIndexed, 434 k_ShiftedRegister, 435 k_ShiftedImmediate, 436 k_ShifterImmediate, 437 k_RotateImmediate, 438 k_ModifiedImmediate, 439 k_ConstantPoolImmediate, 440 k_BitfieldDescriptor, 441 k_Token, 442 } Kind; 443 444 SMLoc StartLoc, EndLoc, AlignmentLoc; 445 SmallVector<unsigned, 8> Registers; 446 447 struct CCOp { 448 ARMCC::CondCodes Val; 449 }; 450 451 struct CopOp { 452 unsigned Val; 453 }; 454 455 struct CoprocOptionOp { 456 unsigned Val; 457 }; 458 459 struct ITMaskOp { 460 unsigned Mask:4; 461 }; 462 463 struct MBOptOp { 464 ARM_MB::MemBOpt Val; 465 }; 466 467 struct ISBOptOp { 468 ARM_ISB::InstSyncBOpt Val; 469 }; 470 471 struct IFlagsOp { 472 ARM_PROC::IFlags Val; 473 }; 474 475 struct MMaskOp { 476 unsigned Val; 477 }; 478 479 struct BankedRegOp { 480 unsigned Val; 481 }; 482 483 struct TokOp { 484 const char *Data; 485 unsigned Length; 486 }; 487 488 struct RegOp { 489 unsigned RegNum; 490 }; 491 492 // A vector register list is a sequential list of 1 to 4 registers. 493 struct VectorListOp { 494 unsigned RegNum; 495 unsigned Count; 496 unsigned LaneIndex; 497 bool isDoubleSpaced; 498 }; 499 500 struct VectorIndexOp { 501 unsigned Val; 502 }; 503 504 struct ImmOp { 505 const MCExpr *Val; 506 }; 507 508 /// Combined record for all forms of ARM address expressions. 509 struct MemoryOp { 510 unsigned BaseRegNum; 511 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 512 // was specified. 513 const MCConstantExpr *OffsetImm; // Offset immediate value 514 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 515 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 516 unsigned ShiftImm; // shift for OffsetReg. 517 unsigned Alignment; // 0 = no alignment specified 518 // n = alignment in bytes (2, 4, 8, 16, or 32) 519 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 520 }; 521 522 struct PostIdxRegOp { 523 unsigned RegNum; 524 bool isAdd; 525 ARM_AM::ShiftOpc ShiftTy; 526 unsigned ShiftImm; 527 }; 528 529 struct ShifterImmOp { 530 bool isASR; 531 unsigned Imm; 532 }; 533 534 struct RegShiftedRegOp { 535 ARM_AM::ShiftOpc ShiftTy; 536 unsigned SrcReg; 537 unsigned ShiftReg; 538 unsigned ShiftImm; 539 }; 540 541 struct RegShiftedImmOp { 542 ARM_AM::ShiftOpc ShiftTy; 543 unsigned SrcReg; 544 unsigned ShiftImm; 545 }; 546 547 struct RotImmOp { 548 unsigned Imm; 549 }; 550 551 struct ModImmOp { 552 unsigned Bits; 553 unsigned Rot; 554 }; 555 556 struct BitfieldOp { 557 unsigned LSB; 558 unsigned Width; 559 }; 560 561 union { 562 struct CCOp CC; 563 struct CopOp Cop; 564 struct CoprocOptionOp CoprocOption; 565 struct MBOptOp MBOpt; 566 struct ISBOptOp ISBOpt; 567 struct ITMaskOp ITMask; 568 struct IFlagsOp IFlags; 569 struct MMaskOp MMask; 570 struct BankedRegOp BankedReg; 571 struct TokOp Tok; 572 struct RegOp Reg; 573 struct VectorListOp VectorList; 574 struct VectorIndexOp VectorIndex; 575 struct ImmOp Imm; 576 struct MemoryOp Memory; 577 struct PostIdxRegOp PostIdxReg; 578 struct ShifterImmOp ShifterImm; 579 struct RegShiftedRegOp RegShiftedReg; 580 struct RegShiftedImmOp RegShiftedImm; 581 struct RotImmOp RotImm; 582 struct ModImmOp ModImm; 583 struct BitfieldOp Bitfield; 584 }; 585 586 public: 587 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 588 589 /// getStartLoc - Get the location of the first token of this operand. 590 SMLoc getStartLoc() const override { return StartLoc; } 591 /// getEndLoc - Get the location of the last token of this operand. 592 SMLoc getEndLoc() const override { return EndLoc; } 593 /// getLocRange - Get the range between the first and last token of this 594 /// operand. 595 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 596 597 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 598 SMLoc getAlignmentLoc() const { 599 assert(Kind == k_Memory && "Invalid access!"); 600 return AlignmentLoc; 601 } 602 603 ARMCC::CondCodes getCondCode() const { 604 assert(Kind == k_CondCode && "Invalid access!"); 605 return CC.Val; 606 } 607 608 unsigned getCoproc() const { 609 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 610 return Cop.Val; 611 } 612 613 StringRef getToken() const { 614 assert(Kind == k_Token && "Invalid access!"); 615 return StringRef(Tok.Data, Tok.Length); 616 } 617 618 unsigned getReg() const override { 619 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 620 return Reg.RegNum; 621 } 622 623 const SmallVectorImpl<unsigned> &getRegList() const { 624 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 625 Kind == k_SPRRegisterList) && "Invalid access!"); 626 return Registers; 627 } 628 629 const MCExpr *getImm() const { 630 assert(isImm() && "Invalid access!"); 631 return Imm.Val; 632 } 633 634 const MCExpr *getConstantPoolImm() const { 635 assert(isConstantPoolImm() && "Invalid access!"); 636 return Imm.Val; 637 } 638 639 unsigned getVectorIndex() const { 640 assert(Kind == k_VectorIndex && "Invalid access!"); 641 return VectorIndex.Val; 642 } 643 644 ARM_MB::MemBOpt getMemBarrierOpt() const { 645 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 646 return MBOpt.Val; 647 } 648 649 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 650 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 651 return ISBOpt.Val; 652 } 653 654 ARM_PROC::IFlags getProcIFlags() const { 655 assert(Kind == k_ProcIFlags && "Invalid access!"); 656 return IFlags.Val; 657 } 658 659 unsigned getMSRMask() const { 660 assert(Kind == k_MSRMask && "Invalid access!"); 661 return MMask.Val; 662 } 663 664 unsigned getBankedReg() const { 665 assert(Kind == k_BankedReg && "Invalid access!"); 666 return BankedReg.Val; 667 } 668 669 bool isCoprocNum() const { return Kind == k_CoprocNum; } 670 bool isCoprocReg() const { return Kind == k_CoprocReg; } 671 bool isCoprocOption() const { return Kind == k_CoprocOption; } 672 bool isCondCode() const { return Kind == k_CondCode; } 673 bool isCCOut() const { return Kind == k_CCOut; } 674 bool isITMask() const { return Kind == k_ITCondMask; } 675 bool isITCondCode() const { return Kind == k_CondCode; } 676 bool isImm() const override { 677 return Kind == k_Immediate; 678 } 679 // checks whether this operand is an unsigned offset which fits is a field 680 // of specified width and scaled by a specific number of bits 681 template<unsigned width, unsigned scale> 682 bool isUnsignedOffset() const { 683 if (!isImm()) return false; 684 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 685 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 686 int64_t Val = CE->getValue(); 687 int64_t Align = 1LL << scale; 688 int64_t Max = Align * ((1LL << width) - 1); 689 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 690 } 691 return false; 692 } 693 // checks whether this operand is an signed offset which fits is a field 694 // of specified width and scaled by a specific number of bits 695 template<unsigned width, unsigned scale> 696 bool isSignedOffset() const { 697 if (!isImm()) return false; 698 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 699 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 700 int64_t Val = CE->getValue(); 701 int64_t Align = 1LL << scale; 702 int64_t Max = Align * ((1LL << (width-1)) - 1); 703 int64_t Min = -Align * (1LL << (width-1)); 704 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 705 } 706 return false; 707 } 708 709 // checks whether this operand is a memory operand computed as an offset 710 // applied to PC. the offset may have 8 bits of magnitude and is represented 711 // with two bits of shift. textually it may be either [pc, #imm], #imm or 712 // relocable expression... 713 bool isThumbMemPC() const { 714 int64_t Val = 0; 715 if (isImm()) { 716 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 717 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 718 if (!CE) return false; 719 Val = CE->getValue(); 720 } 721 else if (isMem()) { 722 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 723 if(Memory.BaseRegNum != ARM::PC) return false; 724 Val = Memory.OffsetImm->getValue(); 725 } 726 else return false; 727 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 728 } 729 bool isFPImm() const { 730 if (!isImm()) return false; 731 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 732 if (!CE) return false; 733 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 734 return Val != -1; 735 } 736 bool isFBits16() const { 737 if (!isImm()) return false; 738 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 739 if (!CE) return false; 740 int64_t Value = CE->getValue(); 741 return Value >= 0 && Value <= 16; 742 } 743 bool isFBits32() const { 744 if (!isImm()) return false; 745 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 746 if (!CE) return false; 747 int64_t Value = CE->getValue(); 748 return Value >= 1 && Value <= 32; 749 } 750 bool isImm8s4() const { 751 if (!isImm()) return false; 752 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 753 if (!CE) return false; 754 int64_t Value = CE->getValue(); 755 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 756 } 757 bool isImm0_1020s4() const { 758 if (!isImm()) return false; 759 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 760 if (!CE) return false; 761 int64_t Value = CE->getValue(); 762 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 763 } 764 bool isImm0_508s4() const { 765 if (!isImm()) return false; 766 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 767 if (!CE) return false; 768 int64_t Value = CE->getValue(); 769 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 770 } 771 bool isImm0_508s4Neg() const { 772 if (!isImm()) return false; 773 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 774 if (!CE) return false; 775 int64_t Value = -CE->getValue(); 776 // explicitly exclude zero. we want that to use the normal 0_508 version. 777 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 778 } 779 bool isImm0_239() const { 780 if (!isImm()) return false; 781 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 782 if (!CE) return false; 783 int64_t Value = CE->getValue(); 784 return Value >= 0 && Value < 240; 785 } 786 bool isImm0_255() const { 787 if (!isImm()) return false; 788 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 789 if (!CE) return false; 790 int64_t Value = CE->getValue(); 791 return Value >= 0 && Value < 256; 792 } 793 bool isImm0_4095() const { 794 if (!isImm()) return false; 795 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 796 if (!CE) return false; 797 int64_t Value = CE->getValue(); 798 return Value >= 0 && Value < 4096; 799 } 800 bool isImm0_4095Neg() const { 801 if (!isImm()) return false; 802 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 803 if (!CE) return false; 804 int64_t Value = -CE->getValue(); 805 return Value > 0 && Value < 4096; 806 } 807 bool isImm0_1() const { 808 if (!isImm()) return false; 809 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 810 if (!CE) return false; 811 int64_t Value = CE->getValue(); 812 return Value >= 0 && Value < 2; 813 } 814 bool isImm0_3() const { 815 if (!isImm()) return false; 816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 817 if (!CE) return false; 818 int64_t Value = CE->getValue(); 819 return Value >= 0 && Value < 4; 820 } 821 bool isImm0_7() const { 822 if (!isImm()) return false; 823 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 824 if (!CE) return false; 825 int64_t Value = CE->getValue(); 826 return Value >= 0 && Value < 8; 827 } 828 bool isImm0_15() const { 829 if (!isImm()) return false; 830 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 831 if (!CE) return false; 832 int64_t Value = CE->getValue(); 833 return Value >= 0 && Value < 16; 834 } 835 bool isImm0_31() const { 836 if (!isImm()) return false; 837 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 838 if (!CE) return false; 839 int64_t Value = CE->getValue(); 840 return Value >= 0 && Value < 32; 841 } 842 bool isImm0_63() const { 843 if (!isImm()) return false; 844 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 845 if (!CE) return false; 846 int64_t Value = CE->getValue(); 847 return Value >= 0 && Value < 64; 848 } 849 bool isImm8() const { 850 if (!isImm()) return false; 851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 852 if (!CE) return false; 853 int64_t Value = CE->getValue(); 854 return Value == 8; 855 } 856 bool isImm16() const { 857 if (!isImm()) return false; 858 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 859 if (!CE) return false; 860 int64_t Value = CE->getValue(); 861 return Value == 16; 862 } 863 bool isImm32() const { 864 if (!isImm()) return false; 865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 866 if (!CE) return false; 867 int64_t Value = CE->getValue(); 868 return Value == 32; 869 } 870 bool isShrImm8() const { 871 if (!isImm()) return false; 872 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 873 if (!CE) return false; 874 int64_t Value = CE->getValue(); 875 return Value > 0 && Value <= 8; 876 } 877 bool isShrImm16() const { 878 if (!isImm()) return false; 879 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 880 if (!CE) return false; 881 int64_t Value = CE->getValue(); 882 return Value > 0 && Value <= 16; 883 } 884 bool isShrImm32() const { 885 if (!isImm()) return false; 886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 887 if (!CE) return false; 888 int64_t Value = CE->getValue(); 889 return Value > 0 && Value <= 32; 890 } 891 bool isShrImm64() const { 892 if (!isImm()) return false; 893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 894 if (!CE) return false; 895 int64_t Value = CE->getValue(); 896 return Value > 0 && Value <= 64; 897 } 898 bool isImm1_7() const { 899 if (!isImm()) return false; 900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 901 if (!CE) return false; 902 int64_t Value = CE->getValue(); 903 return Value > 0 && Value < 8; 904 } 905 bool isImm1_15() const { 906 if (!isImm()) return false; 907 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 908 if (!CE) return false; 909 int64_t Value = CE->getValue(); 910 return Value > 0 && Value < 16; 911 } 912 bool isImm1_31() const { 913 if (!isImm()) return false; 914 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 915 if (!CE) return false; 916 int64_t Value = CE->getValue(); 917 return Value > 0 && Value < 32; 918 } 919 bool isImm1_16() const { 920 if (!isImm()) return false; 921 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 922 if (!CE) return false; 923 int64_t Value = CE->getValue(); 924 return Value > 0 && Value < 17; 925 } 926 bool isImm1_32() const { 927 if (!isImm()) return false; 928 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 929 if (!CE) return false; 930 int64_t Value = CE->getValue(); 931 return Value > 0 && Value < 33; 932 } 933 bool isImm0_32() const { 934 if (!isImm()) return false; 935 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 936 if (!CE) return false; 937 int64_t Value = CE->getValue(); 938 return Value >= 0 && Value < 33; 939 } 940 bool isImm0_65535() const { 941 if (!isImm()) return false; 942 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 943 if (!CE) return false; 944 int64_t Value = CE->getValue(); 945 return Value >= 0 && Value < 65536; 946 } 947 bool isImm256_65535Expr() const { 948 if (!isImm()) return false; 949 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 950 // If it's not a constant expression, it'll generate a fixup and be 951 // handled later. 952 if (!CE) return true; 953 int64_t Value = CE->getValue(); 954 return Value >= 256 && Value < 65536; 955 } 956 bool isImm0_65535Expr() const { 957 if (!isImm()) return false; 958 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 959 // If it's not a constant expression, it'll generate a fixup and be 960 // handled later. 961 if (!CE) return true; 962 int64_t Value = CE->getValue(); 963 return Value >= 0 && Value < 65536; 964 } 965 bool isImm24bit() const { 966 if (!isImm()) return false; 967 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 968 if (!CE) return false; 969 int64_t Value = CE->getValue(); 970 return Value >= 0 && Value <= 0xffffff; 971 } 972 bool isImmThumbSR() const { 973 if (!isImm()) return false; 974 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 975 if (!CE) return false; 976 int64_t Value = CE->getValue(); 977 return Value > 0 && Value < 33; 978 } 979 bool isPKHLSLImm() const { 980 if (!isImm()) return false; 981 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 982 if (!CE) return false; 983 int64_t Value = CE->getValue(); 984 return Value >= 0 && Value < 32; 985 } 986 bool isPKHASRImm() const { 987 if (!isImm()) return false; 988 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 989 if (!CE) return false; 990 int64_t Value = CE->getValue(); 991 return Value > 0 && Value <= 32; 992 } 993 bool isAdrLabel() const { 994 // If we have an immediate that's not a constant, treat it as a label 995 // reference needing a fixup. 996 if (isImm() && !isa<MCConstantExpr>(getImm())) 997 return true; 998 999 // If it is a constant, it must fit into a modified immediate encoding. 1000 if (!isImm()) return false; 1001 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1002 if (!CE) return false; 1003 int64_t Value = CE->getValue(); 1004 return (ARM_AM::getSOImmVal(Value) != -1 || 1005 ARM_AM::getSOImmVal(-Value) != -1); 1006 } 1007 bool isT2SOImm() const { 1008 if (!isImm()) return false; 1009 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1010 if (!CE) return false; 1011 int64_t Value = CE->getValue(); 1012 return ARM_AM::getT2SOImmVal(Value) != -1; 1013 } 1014 bool isT2SOImmNot() const { 1015 if (!isImm()) return false; 1016 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1017 if (!CE) return false; 1018 int64_t Value = CE->getValue(); 1019 return ARM_AM::getT2SOImmVal(Value) == -1 && 1020 ARM_AM::getT2SOImmVal(~Value) != -1; 1021 } 1022 bool isT2SOImmNeg() const { 1023 if (!isImm()) return false; 1024 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1025 if (!CE) return false; 1026 int64_t Value = CE->getValue(); 1027 // Only use this when not representable as a plain so_imm. 1028 return ARM_AM::getT2SOImmVal(Value) == -1 && 1029 ARM_AM::getT2SOImmVal(-Value) != -1; 1030 } 1031 bool isSetEndImm() const { 1032 if (!isImm()) return false; 1033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1034 if (!CE) return false; 1035 int64_t Value = CE->getValue(); 1036 return Value == 1 || Value == 0; 1037 } 1038 bool isReg() const override { return Kind == k_Register; } 1039 bool isRegList() const { return Kind == k_RegisterList; } 1040 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1041 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1042 bool isToken() const override { return Kind == k_Token; } 1043 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1044 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1045 bool isMem() const override { return Kind == k_Memory; } 1046 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1047 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1048 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1049 bool isRotImm() const { return Kind == k_RotateImmediate; } 1050 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1051 bool isModImmNot() const { 1052 if (!isImm()) return false; 1053 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1054 if (!CE) return false; 1055 int64_t Value = CE->getValue(); 1056 return ARM_AM::getSOImmVal(~Value) != -1; 1057 } 1058 bool isModImmNeg() const { 1059 if (!isImm()) return false; 1060 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1061 if (!CE) return false; 1062 int64_t Value = CE->getValue(); 1063 return ARM_AM::getSOImmVal(Value) == -1 && 1064 ARM_AM::getSOImmVal(-Value) != -1; 1065 } 1066 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1067 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1068 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1069 bool isPostIdxReg() const { 1070 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1071 } 1072 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1073 if (!isMem()) 1074 return false; 1075 // No offset of any kind. 1076 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1077 (alignOK || Memory.Alignment == Alignment); 1078 } 1079 bool isMemPCRelImm12() const { 1080 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1081 return false; 1082 // Base register must be PC. 1083 if (Memory.BaseRegNum != ARM::PC) 1084 return false; 1085 // Immediate offset in range [-4095, 4095]. 1086 if (!Memory.OffsetImm) return true; 1087 int64_t Val = Memory.OffsetImm->getValue(); 1088 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1089 } 1090 bool isAlignedMemory() const { 1091 return isMemNoOffset(true); 1092 } 1093 bool isAlignedMemoryNone() const { 1094 return isMemNoOffset(false, 0); 1095 } 1096 bool isDupAlignedMemoryNone() const { 1097 return isMemNoOffset(false, 0); 1098 } 1099 bool isAlignedMemory16() const { 1100 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1101 return true; 1102 return isMemNoOffset(false, 0); 1103 } 1104 bool isDupAlignedMemory16() const { 1105 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1106 return true; 1107 return isMemNoOffset(false, 0); 1108 } 1109 bool isAlignedMemory32() const { 1110 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1111 return true; 1112 return isMemNoOffset(false, 0); 1113 } 1114 bool isDupAlignedMemory32() const { 1115 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1116 return true; 1117 return isMemNoOffset(false, 0); 1118 } 1119 bool isAlignedMemory64() const { 1120 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1121 return true; 1122 return isMemNoOffset(false, 0); 1123 } 1124 bool isDupAlignedMemory64() const { 1125 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1126 return true; 1127 return isMemNoOffset(false, 0); 1128 } 1129 bool isAlignedMemory64or128() const { 1130 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1131 return true; 1132 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1133 return true; 1134 return isMemNoOffset(false, 0); 1135 } 1136 bool isDupAlignedMemory64or128() const { 1137 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1138 return true; 1139 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1140 return true; 1141 return isMemNoOffset(false, 0); 1142 } 1143 bool isAlignedMemory64or128or256() const { 1144 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1145 return true; 1146 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1147 return true; 1148 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1149 return true; 1150 return isMemNoOffset(false, 0); 1151 } 1152 bool isAddrMode2() const { 1153 if (!isMem() || Memory.Alignment != 0) return false; 1154 // Check for register offset. 1155 if (Memory.OffsetRegNum) return true; 1156 // Immediate offset in range [-4095, 4095]. 1157 if (!Memory.OffsetImm) return true; 1158 int64_t Val = Memory.OffsetImm->getValue(); 1159 return Val > -4096 && Val < 4096; 1160 } 1161 bool isAM2OffsetImm() const { 1162 if (!isImm()) return false; 1163 // Immediate offset in range [-4095, 4095]. 1164 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1165 if (!CE) return false; 1166 int64_t Val = CE->getValue(); 1167 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1168 } 1169 bool isAddrMode3() const { 1170 // If we have an immediate that's not a constant, treat it as a label 1171 // reference needing a fixup. If it is a constant, it's something else 1172 // and we reject it. 1173 if (isImm() && !isa<MCConstantExpr>(getImm())) 1174 return true; 1175 if (!isMem() || Memory.Alignment != 0) return false; 1176 // No shifts are legal for AM3. 1177 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1178 // Check for register offset. 1179 if (Memory.OffsetRegNum) return true; 1180 // Immediate offset in range [-255, 255]. 1181 if (!Memory.OffsetImm) return true; 1182 int64_t Val = Memory.OffsetImm->getValue(); 1183 // The #-0 offset is encoded as INT32_MIN, and we have to check 1184 // for this too. 1185 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1186 } 1187 bool isAM3Offset() const { 1188 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1189 return false; 1190 if (Kind == k_PostIndexRegister) 1191 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1192 // Immediate offset in range [-255, 255]. 1193 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1194 if (!CE) return false; 1195 int64_t Val = CE->getValue(); 1196 // Special case, #-0 is INT32_MIN. 1197 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1198 } 1199 bool isAddrMode5() const { 1200 // If we have an immediate that's not a constant, treat it as a label 1201 // reference needing a fixup. If it is a constant, it's something else 1202 // and we reject it. 1203 if (isImm() && !isa<MCConstantExpr>(getImm())) 1204 return true; 1205 if (!isMem() || Memory.Alignment != 0) return false; 1206 // Check for register offset. 1207 if (Memory.OffsetRegNum) return false; 1208 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1209 if (!Memory.OffsetImm) return true; 1210 int64_t Val = Memory.OffsetImm->getValue(); 1211 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1212 Val == INT32_MIN; 1213 } 1214 bool isAddrMode5FP16() const { 1215 // If we have an immediate that's not a constant, treat it as a label 1216 // reference needing a fixup. If it is a constant, it's something else 1217 // and we reject it. 1218 if (isImm() && !isa<MCConstantExpr>(getImm())) 1219 return true; 1220 if (!isMem() || Memory.Alignment != 0) return false; 1221 // Check for register offset. 1222 if (Memory.OffsetRegNum) return false; 1223 // Immediate offset in range [-510, 510] and a multiple of 2. 1224 if (!Memory.OffsetImm) return true; 1225 int64_t Val = Memory.OffsetImm->getValue(); 1226 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1227 } 1228 bool isMemTBB() const { 1229 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1230 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1231 return false; 1232 return true; 1233 } 1234 bool isMemTBH() const { 1235 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1236 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1237 Memory.Alignment != 0 ) 1238 return false; 1239 return true; 1240 } 1241 bool isMemRegOffset() const { 1242 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1243 return false; 1244 return true; 1245 } 1246 bool isT2MemRegOffset() const { 1247 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1248 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1249 return false; 1250 // Only lsl #{0, 1, 2, 3} allowed. 1251 if (Memory.ShiftType == ARM_AM::no_shift) 1252 return true; 1253 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1254 return false; 1255 return true; 1256 } 1257 bool isMemThumbRR() const { 1258 // Thumb reg+reg addressing is simple. Just two registers, a base and 1259 // an offset. No shifts, negations or any other complicating factors. 1260 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1261 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1262 return false; 1263 return isARMLowRegister(Memory.BaseRegNum) && 1264 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1265 } 1266 bool isMemThumbRIs4() const { 1267 if (!isMem() || Memory.OffsetRegNum != 0 || 1268 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1269 return false; 1270 // Immediate offset, multiple of 4 in range [0, 124]. 1271 if (!Memory.OffsetImm) return true; 1272 int64_t Val = Memory.OffsetImm->getValue(); 1273 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1274 } 1275 bool isMemThumbRIs2() const { 1276 if (!isMem() || Memory.OffsetRegNum != 0 || 1277 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1278 return false; 1279 // Immediate offset, multiple of 4 in range [0, 62]. 1280 if (!Memory.OffsetImm) return true; 1281 int64_t Val = Memory.OffsetImm->getValue(); 1282 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1283 } 1284 bool isMemThumbRIs1() const { 1285 if (!isMem() || Memory.OffsetRegNum != 0 || 1286 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1287 return false; 1288 // Immediate offset in range [0, 31]. 1289 if (!Memory.OffsetImm) return true; 1290 int64_t Val = Memory.OffsetImm->getValue(); 1291 return Val >= 0 && Val <= 31; 1292 } 1293 bool isMemThumbSPI() const { 1294 if (!isMem() || Memory.OffsetRegNum != 0 || 1295 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1296 return false; 1297 // Immediate offset, multiple of 4 in range [0, 1020]. 1298 if (!Memory.OffsetImm) return true; 1299 int64_t Val = Memory.OffsetImm->getValue(); 1300 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1301 } 1302 bool isMemImm8s4Offset() const { 1303 // If we have an immediate that's not a constant, treat it as a label 1304 // reference needing a fixup. If it is a constant, it's something else 1305 // and we reject it. 1306 if (isImm() && !isa<MCConstantExpr>(getImm())) 1307 return true; 1308 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1309 return false; 1310 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1311 if (!Memory.OffsetImm) return true; 1312 int64_t Val = Memory.OffsetImm->getValue(); 1313 // Special case, #-0 is INT32_MIN. 1314 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1315 } 1316 bool isMemImm0_1020s4Offset() const { 1317 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1318 return false; 1319 // Immediate offset a multiple of 4 in range [0, 1020]. 1320 if (!Memory.OffsetImm) return true; 1321 int64_t Val = Memory.OffsetImm->getValue(); 1322 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1323 } 1324 bool isMemImm8Offset() const { 1325 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1326 return false; 1327 // Base reg of PC isn't allowed for these encodings. 1328 if (Memory.BaseRegNum == ARM::PC) return false; 1329 // Immediate offset in range [-255, 255]. 1330 if (!Memory.OffsetImm) return true; 1331 int64_t Val = Memory.OffsetImm->getValue(); 1332 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1333 } 1334 bool isMemPosImm8Offset() const { 1335 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1336 return false; 1337 // Immediate offset in range [0, 255]. 1338 if (!Memory.OffsetImm) return true; 1339 int64_t Val = Memory.OffsetImm->getValue(); 1340 return Val >= 0 && Val < 256; 1341 } 1342 bool isMemNegImm8Offset() const { 1343 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1344 return false; 1345 // Base reg of PC isn't allowed for these encodings. 1346 if (Memory.BaseRegNum == ARM::PC) return false; 1347 // Immediate offset in range [-255, -1]. 1348 if (!Memory.OffsetImm) return false; 1349 int64_t Val = Memory.OffsetImm->getValue(); 1350 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1351 } 1352 bool isMemUImm12Offset() const { 1353 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1354 return false; 1355 // Immediate offset in range [0, 4095]. 1356 if (!Memory.OffsetImm) return true; 1357 int64_t Val = Memory.OffsetImm->getValue(); 1358 return (Val >= 0 && Val < 4096); 1359 } 1360 bool isMemImm12Offset() const { 1361 // If we have an immediate that's not a constant, treat it as a label 1362 // reference needing a fixup. If it is a constant, it's something else 1363 // and we reject it. 1364 1365 if (isImm() && !isa<MCConstantExpr>(getImm())) 1366 return true; 1367 1368 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1369 return false; 1370 // Immediate offset in range [-4095, 4095]. 1371 if (!Memory.OffsetImm) return true; 1372 int64_t Val = Memory.OffsetImm->getValue(); 1373 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1374 } 1375 bool isConstPoolAsmImm() const { 1376 // Delay processing of Constant Pool Immediate, this will turn into 1377 // a constant. Match no other operand 1378 return (isConstantPoolImm()); 1379 } 1380 bool isPostIdxImm8() const { 1381 if (!isImm()) return false; 1382 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1383 if (!CE) return false; 1384 int64_t Val = CE->getValue(); 1385 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1386 } 1387 bool isPostIdxImm8s4() const { 1388 if (!isImm()) return false; 1389 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1390 if (!CE) return false; 1391 int64_t Val = CE->getValue(); 1392 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1393 (Val == INT32_MIN); 1394 } 1395 1396 bool isMSRMask() const { return Kind == k_MSRMask; } 1397 bool isBankedReg() const { return Kind == k_BankedReg; } 1398 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1399 1400 // NEON operands. 1401 bool isSingleSpacedVectorList() const { 1402 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1403 } 1404 bool isDoubleSpacedVectorList() const { 1405 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1406 } 1407 bool isVecListOneD() const { 1408 if (!isSingleSpacedVectorList()) return false; 1409 return VectorList.Count == 1; 1410 } 1411 1412 bool isVecListDPair() const { 1413 if (!isSingleSpacedVectorList()) return false; 1414 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1415 .contains(VectorList.RegNum)); 1416 } 1417 1418 bool isVecListThreeD() const { 1419 if (!isSingleSpacedVectorList()) return false; 1420 return VectorList.Count == 3; 1421 } 1422 1423 bool isVecListFourD() const { 1424 if (!isSingleSpacedVectorList()) return false; 1425 return VectorList.Count == 4; 1426 } 1427 1428 bool isVecListDPairSpaced() const { 1429 if (Kind != k_VectorList) return false; 1430 if (isSingleSpacedVectorList()) return false; 1431 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1432 .contains(VectorList.RegNum)); 1433 } 1434 1435 bool isVecListThreeQ() const { 1436 if (!isDoubleSpacedVectorList()) return false; 1437 return VectorList.Count == 3; 1438 } 1439 1440 bool isVecListFourQ() const { 1441 if (!isDoubleSpacedVectorList()) return false; 1442 return VectorList.Count == 4; 1443 } 1444 1445 bool isSingleSpacedVectorAllLanes() const { 1446 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1447 } 1448 bool isDoubleSpacedVectorAllLanes() const { 1449 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1450 } 1451 bool isVecListOneDAllLanes() const { 1452 if (!isSingleSpacedVectorAllLanes()) return false; 1453 return VectorList.Count == 1; 1454 } 1455 1456 bool isVecListDPairAllLanes() const { 1457 if (!isSingleSpacedVectorAllLanes()) return false; 1458 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1459 .contains(VectorList.RegNum)); 1460 } 1461 1462 bool isVecListDPairSpacedAllLanes() const { 1463 if (!isDoubleSpacedVectorAllLanes()) return false; 1464 return VectorList.Count == 2; 1465 } 1466 1467 bool isVecListThreeDAllLanes() const { 1468 if (!isSingleSpacedVectorAllLanes()) return false; 1469 return VectorList.Count == 3; 1470 } 1471 1472 bool isVecListThreeQAllLanes() const { 1473 if (!isDoubleSpacedVectorAllLanes()) return false; 1474 return VectorList.Count == 3; 1475 } 1476 1477 bool isVecListFourDAllLanes() const { 1478 if (!isSingleSpacedVectorAllLanes()) return false; 1479 return VectorList.Count == 4; 1480 } 1481 1482 bool isVecListFourQAllLanes() const { 1483 if (!isDoubleSpacedVectorAllLanes()) return false; 1484 return VectorList.Count == 4; 1485 } 1486 1487 bool isSingleSpacedVectorIndexed() const { 1488 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1489 } 1490 bool isDoubleSpacedVectorIndexed() const { 1491 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1492 } 1493 bool isVecListOneDByteIndexed() const { 1494 if (!isSingleSpacedVectorIndexed()) return false; 1495 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1496 } 1497 1498 bool isVecListOneDHWordIndexed() const { 1499 if (!isSingleSpacedVectorIndexed()) return false; 1500 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1501 } 1502 1503 bool isVecListOneDWordIndexed() const { 1504 if (!isSingleSpacedVectorIndexed()) return false; 1505 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1506 } 1507 1508 bool isVecListTwoDByteIndexed() const { 1509 if (!isSingleSpacedVectorIndexed()) return false; 1510 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1511 } 1512 1513 bool isVecListTwoDHWordIndexed() const { 1514 if (!isSingleSpacedVectorIndexed()) return false; 1515 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1516 } 1517 1518 bool isVecListTwoQWordIndexed() const { 1519 if (!isDoubleSpacedVectorIndexed()) return false; 1520 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1521 } 1522 1523 bool isVecListTwoQHWordIndexed() const { 1524 if (!isDoubleSpacedVectorIndexed()) return false; 1525 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1526 } 1527 1528 bool isVecListTwoDWordIndexed() const { 1529 if (!isSingleSpacedVectorIndexed()) return false; 1530 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1531 } 1532 1533 bool isVecListThreeDByteIndexed() const { 1534 if (!isSingleSpacedVectorIndexed()) return false; 1535 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1536 } 1537 1538 bool isVecListThreeDHWordIndexed() const { 1539 if (!isSingleSpacedVectorIndexed()) return false; 1540 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1541 } 1542 1543 bool isVecListThreeQWordIndexed() const { 1544 if (!isDoubleSpacedVectorIndexed()) return false; 1545 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1546 } 1547 1548 bool isVecListThreeQHWordIndexed() const { 1549 if (!isDoubleSpacedVectorIndexed()) return false; 1550 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1551 } 1552 1553 bool isVecListThreeDWordIndexed() const { 1554 if (!isSingleSpacedVectorIndexed()) return false; 1555 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1556 } 1557 1558 bool isVecListFourDByteIndexed() const { 1559 if (!isSingleSpacedVectorIndexed()) return false; 1560 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1561 } 1562 1563 bool isVecListFourDHWordIndexed() const { 1564 if (!isSingleSpacedVectorIndexed()) return false; 1565 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1566 } 1567 1568 bool isVecListFourQWordIndexed() const { 1569 if (!isDoubleSpacedVectorIndexed()) return false; 1570 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1571 } 1572 1573 bool isVecListFourQHWordIndexed() const { 1574 if (!isDoubleSpacedVectorIndexed()) return false; 1575 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1576 } 1577 1578 bool isVecListFourDWordIndexed() const { 1579 if (!isSingleSpacedVectorIndexed()) return false; 1580 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1581 } 1582 1583 bool isVectorIndex8() const { 1584 if (Kind != k_VectorIndex) return false; 1585 return VectorIndex.Val < 8; 1586 } 1587 bool isVectorIndex16() const { 1588 if (Kind != k_VectorIndex) return false; 1589 return VectorIndex.Val < 4; 1590 } 1591 bool isVectorIndex32() const { 1592 if (Kind != k_VectorIndex) return false; 1593 return VectorIndex.Val < 2; 1594 } 1595 1596 bool isNEONi8splat() const { 1597 if (!isImm()) return false; 1598 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1599 // Must be a constant. 1600 if (!CE) return false; 1601 int64_t Value = CE->getValue(); 1602 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1603 // value. 1604 return Value >= 0 && Value < 256; 1605 } 1606 1607 bool isNEONi16splat() const { 1608 if (isNEONByteReplicate(2)) 1609 return false; // Leave that for bytes replication and forbid by default. 1610 if (!isImm()) 1611 return false; 1612 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1613 // Must be a constant. 1614 if (!CE) return false; 1615 unsigned Value = CE->getValue(); 1616 return ARM_AM::isNEONi16splat(Value); 1617 } 1618 1619 bool isNEONi16splatNot() const { 1620 if (!isImm()) 1621 return false; 1622 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1623 // Must be a constant. 1624 if (!CE) return false; 1625 unsigned Value = CE->getValue(); 1626 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1627 } 1628 1629 bool isNEONi32splat() const { 1630 if (isNEONByteReplicate(4)) 1631 return false; // Leave that for bytes replication and forbid by default. 1632 if (!isImm()) 1633 return false; 1634 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1635 // Must be a constant. 1636 if (!CE) return false; 1637 unsigned Value = CE->getValue(); 1638 return ARM_AM::isNEONi32splat(Value); 1639 } 1640 1641 bool isNEONi32splatNot() const { 1642 if (!isImm()) 1643 return false; 1644 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1645 // Must be a constant. 1646 if (!CE) return false; 1647 unsigned Value = CE->getValue(); 1648 return ARM_AM::isNEONi32splat(~Value); 1649 } 1650 1651 bool isNEONByteReplicate(unsigned NumBytes) const { 1652 if (!isImm()) 1653 return false; 1654 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1655 // Must be a constant. 1656 if (!CE) 1657 return false; 1658 int64_t Value = CE->getValue(); 1659 if (!Value) 1660 return false; // Don't bother with zero. 1661 1662 unsigned char B = Value & 0xff; 1663 for (unsigned i = 1; i < NumBytes; ++i) { 1664 Value >>= 8; 1665 if ((Value & 0xff) != B) 1666 return false; 1667 } 1668 return true; 1669 } 1670 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1671 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1672 bool isNEONi32vmov() const { 1673 if (isNEONByteReplicate(4)) 1674 return false; // Let it to be classified as byte-replicate case. 1675 if (!isImm()) 1676 return false; 1677 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1678 // Must be a constant. 1679 if (!CE) 1680 return false; 1681 int64_t Value = CE->getValue(); 1682 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1683 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1684 // FIXME: This is probably wrong and a copy and paste from previous example 1685 return (Value >= 0 && Value < 256) || 1686 (Value >= 0x0100 && Value <= 0xff00) || 1687 (Value >= 0x010000 && Value <= 0xff0000) || 1688 (Value >= 0x01000000 && Value <= 0xff000000) || 1689 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1690 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1691 } 1692 bool isNEONi32vmovNeg() const { 1693 if (!isImm()) return false; 1694 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1695 // Must be a constant. 1696 if (!CE) return false; 1697 int64_t Value = ~CE->getValue(); 1698 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1699 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1700 // FIXME: This is probably wrong and a copy and paste from previous example 1701 return (Value >= 0 && Value < 256) || 1702 (Value >= 0x0100 && Value <= 0xff00) || 1703 (Value >= 0x010000 && Value <= 0xff0000) || 1704 (Value >= 0x01000000 && Value <= 0xff000000) || 1705 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1706 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1707 } 1708 1709 bool isNEONi64splat() const { 1710 if (!isImm()) return false; 1711 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1712 // Must be a constant. 1713 if (!CE) return false; 1714 uint64_t Value = CE->getValue(); 1715 // i64 value with each byte being either 0 or 0xff. 1716 for (unsigned i = 0; i < 8; ++i) 1717 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1718 return true; 1719 } 1720 1721 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1722 // Add as immediates when possible. Null MCExpr = 0. 1723 if (!Expr) 1724 Inst.addOperand(MCOperand::createImm(0)); 1725 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1726 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1727 else 1728 Inst.addOperand(MCOperand::createExpr(Expr)); 1729 } 1730 1731 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1732 assert(N == 2 && "Invalid number of operands!"); 1733 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1734 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1735 Inst.addOperand(MCOperand::createReg(RegNum)); 1736 } 1737 1738 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1739 assert(N == 1 && "Invalid number of operands!"); 1740 Inst.addOperand(MCOperand::createImm(getCoproc())); 1741 } 1742 1743 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1744 assert(N == 1 && "Invalid number of operands!"); 1745 Inst.addOperand(MCOperand::createImm(getCoproc())); 1746 } 1747 1748 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1749 assert(N == 1 && "Invalid number of operands!"); 1750 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1751 } 1752 1753 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1754 assert(N == 1 && "Invalid number of operands!"); 1755 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1756 } 1757 1758 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1759 assert(N == 1 && "Invalid number of operands!"); 1760 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1761 } 1762 1763 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1764 assert(N == 1 && "Invalid number of operands!"); 1765 Inst.addOperand(MCOperand::createReg(getReg())); 1766 } 1767 1768 void addRegOperands(MCInst &Inst, unsigned N) const { 1769 assert(N == 1 && "Invalid number of operands!"); 1770 Inst.addOperand(MCOperand::createReg(getReg())); 1771 } 1772 1773 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1774 assert(N == 3 && "Invalid number of operands!"); 1775 assert(isRegShiftedReg() && 1776 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1777 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1778 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1779 Inst.addOperand(MCOperand::createImm( 1780 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1781 } 1782 1783 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1784 assert(N == 2 && "Invalid number of operands!"); 1785 assert(isRegShiftedImm() && 1786 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1787 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1788 // Shift of #32 is encoded as 0 where permitted 1789 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1790 Inst.addOperand(MCOperand::createImm( 1791 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1792 } 1793 1794 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1795 assert(N == 1 && "Invalid number of operands!"); 1796 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1797 ShifterImm.Imm)); 1798 } 1799 1800 void addRegListOperands(MCInst &Inst, unsigned N) const { 1801 assert(N == 1 && "Invalid number of operands!"); 1802 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1803 for (SmallVectorImpl<unsigned>::const_iterator 1804 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1805 Inst.addOperand(MCOperand::createReg(*I)); 1806 } 1807 1808 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1809 addRegListOperands(Inst, N); 1810 } 1811 1812 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1813 addRegListOperands(Inst, N); 1814 } 1815 1816 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1817 assert(N == 1 && "Invalid number of operands!"); 1818 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1819 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1820 } 1821 1822 void addModImmOperands(MCInst &Inst, unsigned N) const { 1823 assert(N == 1 && "Invalid number of operands!"); 1824 1825 // Support for fixups (MCFixup) 1826 if (isImm()) 1827 return addImmOperands(Inst, N); 1828 1829 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1830 } 1831 1832 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1833 assert(N == 1 && "Invalid number of operands!"); 1834 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1835 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1836 Inst.addOperand(MCOperand::createImm(Enc)); 1837 } 1838 1839 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1840 assert(N == 1 && "Invalid number of operands!"); 1841 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1842 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1843 Inst.addOperand(MCOperand::createImm(Enc)); 1844 } 1845 1846 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1847 assert(N == 1 && "Invalid number of operands!"); 1848 // Munge the lsb/width into a bitfield mask. 1849 unsigned lsb = Bitfield.LSB; 1850 unsigned width = Bitfield.Width; 1851 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1852 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1853 (32 - (lsb + width))); 1854 Inst.addOperand(MCOperand::createImm(Mask)); 1855 } 1856 1857 void addImmOperands(MCInst &Inst, unsigned N) const { 1858 assert(N == 1 && "Invalid number of operands!"); 1859 addExpr(Inst, getImm()); 1860 } 1861 1862 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1863 assert(N == 1 && "Invalid number of operands!"); 1864 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1865 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1866 } 1867 1868 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1869 assert(N == 1 && "Invalid number of operands!"); 1870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1871 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1872 } 1873 1874 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1875 assert(N == 1 && "Invalid number of operands!"); 1876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1877 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1878 Inst.addOperand(MCOperand::createImm(Val)); 1879 } 1880 1881 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1882 assert(N == 1 && "Invalid number of operands!"); 1883 // FIXME: We really want to scale the value here, but the LDRD/STRD 1884 // instruction don't encode operands that way yet. 1885 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1886 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1887 } 1888 1889 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1890 assert(N == 1 && "Invalid number of operands!"); 1891 // The immediate is scaled by four in the encoding and is stored 1892 // in the MCInst as such. Lop off the low two bits here. 1893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1894 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1895 } 1896 1897 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1898 assert(N == 1 && "Invalid number of operands!"); 1899 // The immediate is scaled by four in the encoding and is stored 1900 // in the MCInst as such. Lop off the low two bits here. 1901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1902 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1903 } 1904 1905 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1906 assert(N == 1 && "Invalid number of operands!"); 1907 // The immediate is scaled by four in the encoding and is stored 1908 // in the MCInst as such. Lop off the low two bits here. 1909 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1910 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1911 } 1912 1913 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1914 assert(N == 1 && "Invalid number of operands!"); 1915 // The constant encodes as the immediate-1, and we store in the instruction 1916 // the bits as encoded, so subtract off one here. 1917 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1918 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1919 } 1920 1921 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1922 assert(N == 1 && "Invalid number of operands!"); 1923 // The constant encodes as the immediate-1, and we store in the instruction 1924 // the bits as encoded, so subtract off one here. 1925 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1926 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1927 } 1928 1929 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1930 assert(N == 1 && "Invalid number of operands!"); 1931 // The constant encodes as the immediate, except for 32, which encodes as 1932 // zero. 1933 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1934 unsigned Imm = CE->getValue(); 1935 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1936 } 1937 1938 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1939 assert(N == 1 && "Invalid number of operands!"); 1940 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1941 // the instruction as well. 1942 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1943 int Val = CE->getValue(); 1944 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1945 } 1946 1947 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1948 assert(N == 1 && "Invalid number of operands!"); 1949 // The operand is actually a t2_so_imm, but we have its bitwise 1950 // negation in the assembly source, so twiddle it here. 1951 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1952 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1953 } 1954 1955 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1956 assert(N == 1 && "Invalid number of operands!"); 1957 // The operand is actually a t2_so_imm, but we have its 1958 // negation in the assembly source, so twiddle it here. 1959 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1960 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1961 } 1962 1963 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1964 assert(N == 1 && "Invalid number of operands!"); 1965 // The operand is actually an imm0_4095, but we have its 1966 // negation in the assembly source, so twiddle it here. 1967 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1968 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1969 } 1970 1971 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1972 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1973 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 1974 return; 1975 } 1976 1977 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1978 assert(SR && "Unknown value type!"); 1979 Inst.addOperand(MCOperand::createExpr(SR)); 1980 } 1981 1982 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 1983 assert(N == 1 && "Invalid number of operands!"); 1984 if (isImm()) { 1985 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1986 if (CE) { 1987 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1988 return; 1989 } 1990 1991 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1992 1993 assert(SR && "Unknown value type!"); 1994 Inst.addOperand(MCOperand::createExpr(SR)); 1995 return; 1996 } 1997 1998 assert(isMem() && "Unknown value type!"); 1999 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2000 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2001 } 2002 2003 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2004 assert(N == 1 && "Invalid number of operands!"); 2005 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2006 } 2007 2008 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2009 assert(N == 1 && "Invalid number of operands!"); 2010 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2011 } 2012 2013 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2014 assert(N == 1 && "Invalid number of operands!"); 2015 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2016 } 2017 2018 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2019 assert(N == 1 && "Invalid number of operands!"); 2020 int32_t Imm = Memory.OffsetImm->getValue(); 2021 Inst.addOperand(MCOperand::createImm(Imm)); 2022 } 2023 2024 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2025 assert(N == 1 && "Invalid number of operands!"); 2026 assert(isImm() && "Not an immediate!"); 2027 2028 // If we have an immediate that's not a constant, treat it as a label 2029 // reference needing a fixup. 2030 if (!isa<MCConstantExpr>(getImm())) { 2031 Inst.addOperand(MCOperand::createExpr(getImm())); 2032 return; 2033 } 2034 2035 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2036 int Val = CE->getValue(); 2037 Inst.addOperand(MCOperand::createImm(Val)); 2038 } 2039 2040 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2041 assert(N == 2 && "Invalid number of operands!"); 2042 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2043 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2044 } 2045 2046 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2047 addAlignedMemoryOperands(Inst, N); 2048 } 2049 2050 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2051 addAlignedMemoryOperands(Inst, N); 2052 } 2053 2054 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2055 addAlignedMemoryOperands(Inst, N); 2056 } 2057 2058 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2059 addAlignedMemoryOperands(Inst, N); 2060 } 2061 2062 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2063 addAlignedMemoryOperands(Inst, N); 2064 } 2065 2066 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2067 addAlignedMemoryOperands(Inst, N); 2068 } 2069 2070 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2071 addAlignedMemoryOperands(Inst, N); 2072 } 2073 2074 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2075 addAlignedMemoryOperands(Inst, N); 2076 } 2077 2078 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2079 addAlignedMemoryOperands(Inst, N); 2080 } 2081 2082 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2083 addAlignedMemoryOperands(Inst, N); 2084 } 2085 2086 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2087 addAlignedMemoryOperands(Inst, N); 2088 } 2089 2090 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2091 assert(N == 3 && "Invalid number of operands!"); 2092 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2093 if (!Memory.OffsetRegNum) { 2094 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2095 // Special case for #-0 2096 if (Val == INT32_MIN) Val = 0; 2097 if (Val < 0) Val = -Val; 2098 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2099 } else { 2100 // For register offset, we encode the shift type and negation flag 2101 // here. 2102 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2103 Memory.ShiftImm, Memory.ShiftType); 2104 } 2105 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2106 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2107 Inst.addOperand(MCOperand::createImm(Val)); 2108 } 2109 2110 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2111 assert(N == 2 && "Invalid number of operands!"); 2112 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2113 assert(CE && "non-constant AM2OffsetImm operand!"); 2114 int32_t Val = CE->getValue(); 2115 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2116 // Special case for #-0 2117 if (Val == INT32_MIN) Val = 0; 2118 if (Val < 0) Val = -Val; 2119 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2120 Inst.addOperand(MCOperand::createReg(0)); 2121 Inst.addOperand(MCOperand::createImm(Val)); 2122 } 2123 2124 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2125 assert(N == 3 && "Invalid number of operands!"); 2126 // If we have an immediate that's not a constant, treat it as a label 2127 // reference needing a fixup. If it is a constant, it's something else 2128 // and we reject it. 2129 if (isImm()) { 2130 Inst.addOperand(MCOperand::createExpr(getImm())); 2131 Inst.addOperand(MCOperand::createReg(0)); 2132 Inst.addOperand(MCOperand::createImm(0)); 2133 return; 2134 } 2135 2136 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2137 if (!Memory.OffsetRegNum) { 2138 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2139 // Special case for #-0 2140 if (Val == INT32_MIN) Val = 0; 2141 if (Val < 0) Val = -Val; 2142 Val = ARM_AM::getAM3Opc(AddSub, Val); 2143 } else { 2144 // For register offset, we encode the shift type and negation flag 2145 // here. 2146 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2147 } 2148 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2149 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2150 Inst.addOperand(MCOperand::createImm(Val)); 2151 } 2152 2153 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2154 assert(N == 2 && "Invalid number of operands!"); 2155 if (Kind == k_PostIndexRegister) { 2156 int32_t Val = 2157 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2158 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2159 Inst.addOperand(MCOperand::createImm(Val)); 2160 return; 2161 } 2162 2163 // Constant offset. 2164 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2165 int32_t Val = CE->getValue(); 2166 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2167 // Special case for #-0 2168 if (Val == INT32_MIN) Val = 0; 2169 if (Val < 0) Val = -Val; 2170 Val = ARM_AM::getAM3Opc(AddSub, Val); 2171 Inst.addOperand(MCOperand::createReg(0)); 2172 Inst.addOperand(MCOperand::createImm(Val)); 2173 } 2174 2175 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2176 assert(N == 2 && "Invalid number of operands!"); 2177 // If we have an immediate that's not a constant, treat it as a label 2178 // reference needing a fixup. If it is a constant, it's something else 2179 // and we reject it. 2180 if (isImm()) { 2181 Inst.addOperand(MCOperand::createExpr(getImm())); 2182 Inst.addOperand(MCOperand::createImm(0)); 2183 return; 2184 } 2185 2186 // The lower two bits are always zero and as such are not encoded. 2187 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2188 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2189 // Special case for #-0 2190 if (Val == INT32_MIN) Val = 0; 2191 if (Val < 0) Val = -Val; 2192 Val = ARM_AM::getAM5Opc(AddSub, Val); 2193 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2194 Inst.addOperand(MCOperand::createImm(Val)); 2195 } 2196 2197 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2198 assert(N == 2 && "Invalid number of operands!"); 2199 // If we have an immediate that's not a constant, treat it as a label 2200 // reference needing a fixup. If it is a constant, it's something else 2201 // and we reject it. 2202 if (isImm()) { 2203 Inst.addOperand(MCOperand::createExpr(getImm())); 2204 Inst.addOperand(MCOperand::createImm(0)); 2205 return; 2206 } 2207 2208 // The lower bit is always zero and as such is not encoded. 2209 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2210 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2211 // Special case for #-0 2212 if (Val == INT32_MIN) Val = 0; 2213 if (Val < 0) Val = -Val; 2214 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2215 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2216 Inst.addOperand(MCOperand::createImm(Val)); 2217 } 2218 2219 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2220 assert(N == 2 && "Invalid number of operands!"); 2221 // If we have an immediate that's not a constant, treat it as a label 2222 // reference needing a fixup. If it is a constant, it's something else 2223 // and we reject it. 2224 if (isImm()) { 2225 Inst.addOperand(MCOperand::createExpr(getImm())); 2226 Inst.addOperand(MCOperand::createImm(0)); 2227 return; 2228 } 2229 2230 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2231 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2232 Inst.addOperand(MCOperand::createImm(Val)); 2233 } 2234 2235 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2236 assert(N == 2 && "Invalid number of operands!"); 2237 // The lower two bits are always zero and as such are not encoded. 2238 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2239 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2240 Inst.addOperand(MCOperand::createImm(Val)); 2241 } 2242 2243 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2244 assert(N == 2 && "Invalid number of operands!"); 2245 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2246 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2247 Inst.addOperand(MCOperand::createImm(Val)); 2248 } 2249 2250 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2251 addMemImm8OffsetOperands(Inst, N); 2252 } 2253 2254 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2255 addMemImm8OffsetOperands(Inst, N); 2256 } 2257 2258 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2259 assert(N == 2 && "Invalid number of operands!"); 2260 // If this is an immediate, it's a label reference. 2261 if (isImm()) { 2262 addExpr(Inst, getImm()); 2263 Inst.addOperand(MCOperand::createImm(0)); 2264 return; 2265 } 2266 2267 // Otherwise, it's a normal memory reg+offset. 2268 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2269 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2270 Inst.addOperand(MCOperand::createImm(Val)); 2271 } 2272 2273 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2274 assert(N == 2 && "Invalid number of operands!"); 2275 // If this is an immediate, it's a label reference. 2276 if (isImm()) { 2277 addExpr(Inst, getImm()); 2278 Inst.addOperand(MCOperand::createImm(0)); 2279 return; 2280 } 2281 2282 // Otherwise, it's a normal memory reg+offset. 2283 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2284 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2285 Inst.addOperand(MCOperand::createImm(Val)); 2286 } 2287 2288 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2289 assert(N == 1 && "Invalid number of operands!"); 2290 // This is container for the immediate that we will create the constant 2291 // pool from 2292 addExpr(Inst, getConstantPoolImm()); 2293 return; 2294 } 2295 2296 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2297 assert(N == 2 && "Invalid number of operands!"); 2298 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2299 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2300 } 2301 2302 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2303 assert(N == 2 && "Invalid number of operands!"); 2304 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2305 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2306 } 2307 2308 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2309 assert(N == 3 && "Invalid number of operands!"); 2310 unsigned Val = 2311 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2312 Memory.ShiftImm, Memory.ShiftType); 2313 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2314 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2315 Inst.addOperand(MCOperand::createImm(Val)); 2316 } 2317 2318 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2319 assert(N == 3 && "Invalid number of operands!"); 2320 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2321 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2322 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2323 } 2324 2325 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2326 assert(N == 2 && "Invalid number of operands!"); 2327 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2328 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2329 } 2330 2331 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2332 assert(N == 2 && "Invalid number of operands!"); 2333 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2334 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2335 Inst.addOperand(MCOperand::createImm(Val)); 2336 } 2337 2338 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2339 assert(N == 2 && "Invalid number of operands!"); 2340 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2341 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2342 Inst.addOperand(MCOperand::createImm(Val)); 2343 } 2344 2345 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2346 assert(N == 2 && "Invalid number of operands!"); 2347 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2348 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2349 Inst.addOperand(MCOperand::createImm(Val)); 2350 } 2351 2352 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2353 assert(N == 2 && "Invalid number of operands!"); 2354 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2355 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2356 Inst.addOperand(MCOperand::createImm(Val)); 2357 } 2358 2359 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2360 assert(N == 1 && "Invalid number of operands!"); 2361 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2362 assert(CE && "non-constant post-idx-imm8 operand!"); 2363 int Imm = CE->getValue(); 2364 bool isAdd = Imm >= 0; 2365 if (Imm == INT32_MIN) Imm = 0; 2366 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2367 Inst.addOperand(MCOperand::createImm(Imm)); 2368 } 2369 2370 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2371 assert(N == 1 && "Invalid number of operands!"); 2372 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2373 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2374 int Imm = CE->getValue(); 2375 bool isAdd = Imm >= 0; 2376 if (Imm == INT32_MIN) Imm = 0; 2377 // Immediate is scaled by 4. 2378 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2379 Inst.addOperand(MCOperand::createImm(Imm)); 2380 } 2381 2382 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2383 assert(N == 2 && "Invalid number of operands!"); 2384 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2385 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2386 } 2387 2388 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2389 assert(N == 2 && "Invalid number of operands!"); 2390 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2391 // The sign, shift type, and shift amount are encoded in a single operand 2392 // using the AM2 encoding helpers. 2393 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2394 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2395 PostIdxReg.ShiftTy); 2396 Inst.addOperand(MCOperand::createImm(Imm)); 2397 } 2398 2399 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2400 assert(N == 1 && "Invalid number of operands!"); 2401 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2402 } 2403 2404 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2405 assert(N == 1 && "Invalid number of operands!"); 2406 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2407 } 2408 2409 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2410 assert(N == 1 && "Invalid number of operands!"); 2411 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2412 } 2413 2414 void addVecListOperands(MCInst &Inst, unsigned N) const { 2415 assert(N == 1 && "Invalid number of operands!"); 2416 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2417 } 2418 2419 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2420 assert(N == 2 && "Invalid number of operands!"); 2421 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2422 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2423 } 2424 2425 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2426 assert(N == 1 && "Invalid number of operands!"); 2427 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2428 } 2429 2430 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2431 assert(N == 1 && "Invalid number of operands!"); 2432 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2433 } 2434 2435 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2436 assert(N == 1 && "Invalid number of operands!"); 2437 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2438 } 2439 2440 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2441 assert(N == 1 && "Invalid number of operands!"); 2442 // The immediate encodes the type of constant as well as the value. 2443 // Mask in that this is an i8 splat. 2444 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2445 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2446 } 2447 2448 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2449 assert(N == 1 && "Invalid number of operands!"); 2450 // The immediate encodes the type of constant as well as the value. 2451 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2452 unsigned Value = CE->getValue(); 2453 Value = ARM_AM::encodeNEONi16splat(Value); 2454 Inst.addOperand(MCOperand::createImm(Value)); 2455 } 2456 2457 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2458 assert(N == 1 && "Invalid number of operands!"); 2459 // The immediate encodes the type of constant as well as the value. 2460 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2461 unsigned Value = CE->getValue(); 2462 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2463 Inst.addOperand(MCOperand::createImm(Value)); 2464 } 2465 2466 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2467 assert(N == 1 && "Invalid number of operands!"); 2468 // The immediate encodes the type of constant as well as the value. 2469 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2470 unsigned Value = CE->getValue(); 2471 Value = ARM_AM::encodeNEONi32splat(Value); 2472 Inst.addOperand(MCOperand::createImm(Value)); 2473 } 2474 2475 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2476 assert(N == 1 && "Invalid number of operands!"); 2477 // The immediate encodes the type of constant as well as the value. 2478 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2479 unsigned Value = CE->getValue(); 2480 Value = ARM_AM::encodeNEONi32splat(~Value); 2481 Inst.addOperand(MCOperand::createImm(Value)); 2482 } 2483 2484 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2485 assert(N == 1 && "Invalid number of operands!"); 2486 // The immediate encodes the type of constant as well as the value. 2487 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2488 unsigned Value = CE->getValue(); 2489 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2490 Inst.getOpcode() == ARM::VMOVv16i8) && 2491 "All vmvn instructions that wants to replicate non-zero byte " 2492 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2493 unsigned B = ((~Value) & 0xff); 2494 B |= 0xe00; // cmode = 0b1110 2495 Inst.addOperand(MCOperand::createImm(B)); 2496 } 2497 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2498 assert(N == 1 && "Invalid number of operands!"); 2499 // The immediate encodes the type of constant as well as the value. 2500 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2501 unsigned Value = CE->getValue(); 2502 if (Value >= 256 && Value <= 0xffff) 2503 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2504 else if (Value > 0xffff && Value <= 0xffffff) 2505 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2506 else if (Value > 0xffffff) 2507 Value = (Value >> 24) | 0x600; 2508 Inst.addOperand(MCOperand::createImm(Value)); 2509 } 2510 2511 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2512 assert(N == 1 && "Invalid number of operands!"); 2513 // The immediate encodes the type of constant as well as the value. 2514 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2515 unsigned Value = CE->getValue(); 2516 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2517 Inst.getOpcode() == ARM::VMOVv16i8) && 2518 "All instructions that wants to replicate non-zero byte " 2519 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2520 unsigned B = Value & 0xff; 2521 B |= 0xe00; // cmode = 0b1110 2522 Inst.addOperand(MCOperand::createImm(B)); 2523 } 2524 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2525 assert(N == 1 && "Invalid number of operands!"); 2526 // The immediate encodes the type of constant as well as the value. 2527 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2528 unsigned Value = ~CE->getValue(); 2529 if (Value >= 256 && Value <= 0xffff) 2530 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2531 else if (Value > 0xffff && Value <= 0xffffff) 2532 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2533 else if (Value > 0xffffff) 2534 Value = (Value >> 24) | 0x600; 2535 Inst.addOperand(MCOperand::createImm(Value)); 2536 } 2537 2538 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 // The immediate encodes the type of constant as well as the value. 2541 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2542 uint64_t Value = CE->getValue(); 2543 unsigned Imm = 0; 2544 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2545 Imm |= (Value & 1) << i; 2546 } 2547 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2548 } 2549 2550 void print(raw_ostream &OS) const override; 2551 2552 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2553 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2554 Op->ITMask.Mask = Mask; 2555 Op->StartLoc = S; 2556 Op->EndLoc = S; 2557 return Op; 2558 } 2559 2560 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2561 SMLoc S) { 2562 auto Op = make_unique<ARMOperand>(k_CondCode); 2563 Op->CC.Val = CC; 2564 Op->StartLoc = S; 2565 Op->EndLoc = S; 2566 return Op; 2567 } 2568 2569 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2570 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2571 Op->Cop.Val = CopVal; 2572 Op->StartLoc = S; 2573 Op->EndLoc = S; 2574 return Op; 2575 } 2576 2577 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2578 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2579 Op->Cop.Val = CopVal; 2580 Op->StartLoc = S; 2581 Op->EndLoc = S; 2582 return Op; 2583 } 2584 2585 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2586 SMLoc E) { 2587 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2588 Op->Cop.Val = Val; 2589 Op->StartLoc = S; 2590 Op->EndLoc = E; 2591 return Op; 2592 } 2593 2594 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2595 auto Op = make_unique<ARMOperand>(k_CCOut); 2596 Op->Reg.RegNum = RegNum; 2597 Op->StartLoc = S; 2598 Op->EndLoc = S; 2599 return Op; 2600 } 2601 2602 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2603 auto Op = make_unique<ARMOperand>(k_Token); 2604 Op->Tok.Data = Str.data(); 2605 Op->Tok.Length = Str.size(); 2606 Op->StartLoc = S; 2607 Op->EndLoc = S; 2608 return Op; 2609 } 2610 2611 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2612 SMLoc E) { 2613 auto Op = make_unique<ARMOperand>(k_Register); 2614 Op->Reg.RegNum = RegNum; 2615 Op->StartLoc = S; 2616 Op->EndLoc = E; 2617 return Op; 2618 } 2619 2620 static std::unique_ptr<ARMOperand> 2621 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2622 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2623 SMLoc E) { 2624 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2625 Op->RegShiftedReg.ShiftTy = ShTy; 2626 Op->RegShiftedReg.SrcReg = SrcReg; 2627 Op->RegShiftedReg.ShiftReg = ShiftReg; 2628 Op->RegShiftedReg.ShiftImm = ShiftImm; 2629 Op->StartLoc = S; 2630 Op->EndLoc = E; 2631 return Op; 2632 } 2633 2634 static std::unique_ptr<ARMOperand> 2635 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2636 unsigned ShiftImm, SMLoc S, SMLoc E) { 2637 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2638 Op->RegShiftedImm.ShiftTy = ShTy; 2639 Op->RegShiftedImm.SrcReg = SrcReg; 2640 Op->RegShiftedImm.ShiftImm = ShiftImm; 2641 Op->StartLoc = S; 2642 Op->EndLoc = E; 2643 return Op; 2644 } 2645 2646 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2647 SMLoc S, SMLoc E) { 2648 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2649 Op->ShifterImm.isASR = isASR; 2650 Op->ShifterImm.Imm = Imm; 2651 Op->StartLoc = S; 2652 Op->EndLoc = E; 2653 return Op; 2654 } 2655 2656 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2657 SMLoc E) { 2658 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2659 Op->RotImm.Imm = Imm; 2660 Op->StartLoc = S; 2661 Op->EndLoc = E; 2662 return Op; 2663 } 2664 2665 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2666 SMLoc S, SMLoc E) { 2667 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2668 Op->ModImm.Bits = Bits; 2669 Op->ModImm.Rot = Rot; 2670 Op->StartLoc = S; 2671 Op->EndLoc = E; 2672 return Op; 2673 } 2674 2675 static std::unique_ptr<ARMOperand> 2676 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2677 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2678 Op->Imm.Val = Val; 2679 Op->StartLoc = S; 2680 Op->EndLoc = E; 2681 return Op; 2682 } 2683 2684 static std::unique_ptr<ARMOperand> 2685 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2686 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2687 Op->Bitfield.LSB = LSB; 2688 Op->Bitfield.Width = Width; 2689 Op->StartLoc = S; 2690 Op->EndLoc = E; 2691 return Op; 2692 } 2693 2694 static std::unique_ptr<ARMOperand> 2695 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2696 SMLoc StartLoc, SMLoc EndLoc) { 2697 assert (Regs.size() > 0 && "RegList contains no registers?"); 2698 KindTy Kind = k_RegisterList; 2699 2700 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2701 Kind = k_DPRRegisterList; 2702 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2703 contains(Regs.front().second)) 2704 Kind = k_SPRRegisterList; 2705 2706 // Sort based on the register encoding values. 2707 array_pod_sort(Regs.begin(), Regs.end()); 2708 2709 auto Op = make_unique<ARMOperand>(Kind); 2710 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2711 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2712 Op->Registers.push_back(I->second); 2713 Op->StartLoc = StartLoc; 2714 Op->EndLoc = EndLoc; 2715 return Op; 2716 } 2717 2718 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2719 unsigned Count, 2720 bool isDoubleSpaced, 2721 SMLoc S, SMLoc E) { 2722 auto Op = make_unique<ARMOperand>(k_VectorList); 2723 Op->VectorList.RegNum = RegNum; 2724 Op->VectorList.Count = Count; 2725 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2726 Op->StartLoc = S; 2727 Op->EndLoc = E; 2728 return Op; 2729 } 2730 2731 static std::unique_ptr<ARMOperand> 2732 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2733 SMLoc S, SMLoc E) { 2734 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2735 Op->VectorList.RegNum = RegNum; 2736 Op->VectorList.Count = Count; 2737 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2738 Op->StartLoc = S; 2739 Op->EndLoc = E; 2740 return Op; 2741 } 2742 2743 static std::unique_ptr<ARMOperand> 2744 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2745 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2746 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2747 Op->VectorList.RegNum = RegNum; 2748 Op->VectorList.Count = Count; 2749 Op->VectorList.LaneIndex = Index; 2750 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2751 Op->StartLoc = S; 2752 Op->EndLoc = E; 2753 return Op; 2754 } 2755 2756 static std::unique_ptr<ARMOperand> 2757 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2758 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2759 Op->VectorIndex.Val = Idx; 2760 Op->StartLoc = S; 2761 Op->EndLoc = E; 2762 return Op; 2763 } 2764 2765 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2766 SMLoc E) { 2767 auto Op = make_unique<ARMOperand>(k_Immediate); 2768 Op->Imm.Val = Val; 2769 Op->StartLoc = S; 2770 Op->EndLoc = E; 2771 return Op; 2772 } 2773 2774 static std::unique_ptr<ARMOperand> 2775 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2776 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2777 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2778 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2779 auto Op = make_unique<ARMOperand>(k_Memory); 2780 Op->Memory.BaseRegNum = BaseRegNum; 2781 Op->Memory.OffsetImm = OffsetImm; 2782 Op->Memory.OffsetRegNum = OffsetRegNum; 2783 Op->Memory.ShiftType = ShiftType; 2784 Op->Memory.ShiftImm = ShiftImm; 2785 Op->Memory.Alignment = Alignment; 2786 Op->Memory.isNegative = isNegative; 2787 Op->StartLoc = S; 2788 Op->EndLoc = E; 2789 Op->AlignmentLoc = AlignmentLoc; 2790 return Op; 2791 } 2792 2793 static std::unique_ptr<ARMOperand> 2794 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2795 unsigned ShiftImm, SMLoc S, SMLoc E) { 2796 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2797 Op->PostIdxReg.RegNum = RegNum; 2798 Op->PostIdxReg.isAdd = isAdd; 2799 Op->PostIdxReg.ShiftTy = ShiftTy; 2800 Op->PostIdxReg.ShiftImm = ShiftImm; 2801 Op->StartLoc = S; 2802 Op->EndLoc = E; 2803 return Op; 2804 } 2805 2806 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2807 SMLoc S) { 2808 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2809 Op->MBOpt.Val = Opt; 2810 Op->StartLoc = S; 2811 Op->EndLoc = S; 2812 return Op; 2813 } 2814 2815 static std::unique_ptr<ARMOperand> 2816 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2817 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2818 Op->ISBOpt.Val = Opt; 2819 Op->StartLoc = S; 2820 Op->EndLoc = S; 2821 return Op; 2822 } 2823 2824 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2825 SMLoc S) { 2826 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2827 Op->IFlags.Val = IFlags; 2828 Op->StartLoc = S; 2829 Op->EndLoc = S; 2830 return Op; 2831 } 2832 2833 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2834 auto Op = make_unique<ARMOperand>(k_MSRMask); 2835 Op->MMask.Val = MMask; 2836 Op->StartLoc = S; 2837 Op->EndLoc = S; 2838 return Op; 2839 } 2840 2841 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2842 auto Op = make_unique<ARMOperand>(k_BankedReg); 2843 Op->BankedReg.Val = Reg; 2844 Op->StartLoc = S; 2845 Op->EndLoc = S; 2846 return Op; 2847 } 2848 }; 2849 2850 } // end anonymous namespace. 2851 2852 void ARMOperand::print(raw_ostream &OS) const { 2853 switch (Kind) { 2854 case k_CondCode: 2855 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2856 break; 2857 case k_CCOut: 2858 OS << "<ccout " << getReg() << ">"; 2859 break; 2860 case k_ITCondMask: { 2861 static const char *const MaskStr[] = { 2862 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2863 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2864 }; 2865 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2866 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2867 break; 2868 } 2869 case k_CoprocNum: 2870 OS << "<coprocessor number: " << getCoproc() << ">"; 2871 break; 2872 case k_CoprocReg: 2873 OS << "<coprocessor register: " << getCoproc() << ">"; 2874 break; 2875 case k_CoprocOption: 2876 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2877 break; 2878 case k_MSRMask: 2879 OS << "<mask: " << getMSRMask() << ">"; 2880 break; 2881 case k_BankedReg: 2882 OS << "<banked reg: " << getBankedReg() << ">"; 2883 break; 2884 case k_Immediate: 2885 OS << *getImm(); 2886 break; 2887 case k_MemBarrierOpt: 2888 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2889 break; 2890 case k_InstSyncBarrierOpt: 2891 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2892 break; 2893 case k_Memory: 2894 OS << "<memory " 2895 << " base:" << Memory.BaseRegNum; 2896 OS << ">"; 2897 break; 2898 case k_PostIndexRegister: 2899 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2900 << PostIdxReg.RegNum; 2901 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2902 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2903 << PostIdxReg.ShiftImm; 2904 OS << ">"; 2905 break; 2906 case k_ProcIFlags: { 2907 OS << "<ARM_PROC::"; 2908 unsigned IFlags = getProcIFlags(); 2909 for (int i=2; i >= 0; --i) 2910 if (IFlags & (1 << i)) 2911 OS << ARM_PROC::IFlagsToString(1 << i); 2912 OS << ">"; 2913 break; 2914 } 2915 case k_Register: 2916 OS << "<register " << getReg() << ">"; 2917 break; 2918 case k_ShifterImmediate: 2919 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2920 << " #" << ShifterImm.Imm << ">"; 2921 break; 2922 case k_ShiftedRegister: 2923 OS << "<so_reg_reg " 2924 << RegShiftedReg.SrcReg << " " 2925 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2926 << " " << RegShiftedReg.ShiftReg << ">"; 2927 break; 2928 case k_ShiftedImmediate: 2929 OS << "<so_reg_imm " 2930 << RegShiftedImm.SrcReg << " " 2931 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2932 << " #" << RegShiftedImm.ShiftImm << ">"; 2933 break; 2934 case k_RotateImmediate: 2935 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2936 break; 2937 case k_ModifiedImmediate: 2938 OS << "<mod_imm #" << ModImm.Bits << ", #" 2939 << ModImm.Rot << ")>"; 2940 break; 2941 case k_ConstantPoolImmediate: 2942 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 2943 break; 2944 case k_BitfieldDescriptor: 2945 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2946 << ", width: " << Bitfield.Width << ">"; 2947 break; 2948 case k_RegisterList: 2949 case k_DPRRegisterList: 2950 case k_SPRRegisterList: { 2951 OS << "<register_list "; 2952 2953 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2954 for (SmallVectorImpl<unsigned>::const_iterator 2955 I = RegList.begin(), E = RegList.end(); I != E; ) { 2956 OS << *I; 2957 if (++I < E) OS << ", "; 2958 } 2959 2960 OS << ">"; 2961 break; 2962 } 2963 case k_VectorList: 2964 OS << "<vector_list " << VectorList.Count << " * " 2965 << VectorList.RegNum << ">"; 2966 break; 2967 case k_VectorListAllLanes: 2968 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2969 << VectorList.RegNum << ">"; 2970 break; 2971 case k_VectorListIndexed: 2972 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2973 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2974 break; 2975 case k_Token: 2976 OS << "'" << getToken() << "'"; 2977 break; 2978 case k_VectorIndex: 2979 OS << "<vectorindex " << getVectorIndex() << ">"; 2980 break; 2981 } 2982 } 2983 2984 /// @name Auto-generated Match Functions 2985 /// { 2986 2987 static unsigned MatchRegisterName(StringRef Name); 2988 2989 /// } 2990 2991 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2992 SMLoc &StartLoc, SMLoc &EndLoc) { 2993 const AsmToken &Tok = getParser().getTok(); 2994 StartLoc = Tok.getLoc(); 2995 EndLoc = Tok.getEndLoc(); 2996 RegNo = tryParseRegister(); 2997 2998 return (RegNo == (unsigned)-1); 2999 } 3000 3001 /// Try to parse a register name. The token must be an Identifier when called, 3002 /// and if it is a register name the token is eaten and the register number is 3003 /// returned. Otherwise return -1. 3004 /// 3005 int ARMAsmParser::tryParseRegister() { 3006 MCAsmParser &Parser = getParser(); 3007 const AsmToken &Tok = Parser.getTok(); 3008 if (Tok.isNot(AsmToken::Identifier)) return -1; 3009 3010 std::string lowerCase = Tok.getString().lower(); 3011 unsigned RegNum = MatchRegisterName(lowerCase); 3012 if (!RegNum) { 3013 RegNum = StringSwitch<unsigned>(lowerCase) 3014 .Case("r13", ARM::SP) 3015 .Case("r14", ARM::LR) 3016 .Case("r15", ARM::PC) 3017 .Case("ip", ARM::R12) 3018 // Additional register name aliases for 'gas' compatibility. 3019 .Case("a1", ARM::R0) 3020 .Case("a2", ARM::R1) 3021 .Case("a3", ARM::R2) 3022 .Case("a4", ARM::R3) 3023 .Case("v1", ARM::R4) 3024 .Case("v2", ARM::R5) 3025 .Case("v3", ARM::R6) 3026 .Case("v4", ARM::R7) 3027 .Case("v5", ARM::R8) 3028 .Case("v6", ARM::R9) 3029 .Case("v7", ARM::R10) 3030 .Case("v8", ARM::R11) 3031 .Case("sb", ARM::R9) 3032 .Case("sl", ARM::R10) 3033 .Case("fp", ARM::R11) 3034 .Default(0); 3035 } 3036 if (!RegNum) { 3037 // Check for aliases registered via .req. Canonicalize to lower case. 3038 // That's more consistent since register names are case insensitive, and 3039 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3040 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3041 // If no match, return failure. 3042 if (Entry == RegisterReqs.end()) 3043 return -1; 3044 Parser.Lex(); // Eat identifier token. 3045 return Entry->getValue(); 3046 } 3047 3048 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3049 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3050 return -1; 3051 3052 Parser.Lex(); // Eat identifier token. 3053 3054 return RegNum; 3055 } 3056 3057 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3058 // If a recoverable error occurs, return 1. If an irrecoverable error 3059 // occurs, return -1. An irrecoverable error is one where tokens have been 3060 // consumed in the process of trying to parse the shifter (i.e., when it is 3061 // indeed a shifter operand, but malformed). 3062 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3063 MCAsmParser &Parser = getParser(); 3064 SMLoc S = Parser.getTok().getLoc(); 3065 const AsmToken &Tok = Parser.getTok(); 3066 if (Tok.isNot(AsmToken::Identifier)) 3067 return -1; 3068 3069 std::string lowerCase = Tok.getString().lower(); 3070 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3071 .Case("asl", ARM_AM::lsl) 3072 .Case("lsl", ARM_AM::lsl) 3073 .Case("lsr", ARM_AM::lsr) 3074 .Case("asr", ARM_AM::asr) 3075 .Case("ror", ARM_AM::ror) 3076 .Case("rrx", ARM_AM::rrx) 3077 .Default(ARM_AM::no_shift); 3078 3079 if (ShiftTy == ARM_AM::no_shift) 3080 return 1; 3081 3082 Parser.Lex(); // Eat the operator. 3083 3084 // The source register for the shift has already been added to the 3085 // operand list, so we need to pop it off and combine it into the shifted 3086 // register operand instead. 3087 std::unique_ptr<ARMOperand> PrevOp( 3088 (ARMOperand *)Operands.pop_back_val().release()); 3089 if (!PrevOp->isReg()) 3090 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3091 int SrcReg = PrevOp->getReg(); 3092 3093 SMLoc EndLoc; 3094 int64_t Imm = 0; 3095 int ShiftReg = 0; 3096 if (ShiftTy == ARM_AM::rrx) { 3097 // RRX Doesn't have an explicit shift amount. The encoder expects 3098 // the shift register to be the same as the source register. Seems odd, 3099 // but OK. 3100 ShiftReg = SrcReg; 3101 } else { 3102 // Figure out if this is shifted by a constant or a register (for non-RRX). 3103 if (Parser.getTok().is(AsmToken::Hash) || 3104 Parser.getTok().is(AsmToken::Dollar)) { 3105 Parser.Lex(); // Eat hash. 3106 SMLoc ImmLoc = Parser.getTok().getLoc(); 3107 const MCExpr *ShiftExpr = nullptr; 3108 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3109 Error(ImmLoc, "invalid immediate shift value"); 3110 return -1; 3111 } 3112 // The expression must be evaluatable as an immediate. 3113 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3114 if (!CE) { 3115 Error(ImmLoc, "invalid immediate shift value"); 3116 return -1; 3117 } 3118 // Range check the immediate. 3119 // lsl, ror: 0 <= imm <= 31 3120 // lsr, asr: 0 <= imm <= 32 3121 Imm = CE->getValue(); 3122 if (Imm < 0 || 3123 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3124 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3125 Error(ImmLoc, "immediate shift value out of range"); 3126 return -1; 3127 } 3128 // shift by zero is a nop. Always send it through as lsl. 3129 // ('as' compatibility) 3130 if (Imm == 0) 3131 ShiftTy = ARM_AM::lsl; 3132 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3133 SMLoc L = Parser.getTok().getLoc(); 3134 EndLoc = Parser.getTok().getEndLoc(); 3135 ShiftReg = tryParseRegister(); 3136 if (ShiftReg == -1) { 3137 Error(L, "expected immediate or register in shift operand"); 3138 return -1; 3139 } 3140 } else { 3141 Error(Parser.getTok().getLoc(), 3142 "expected immediate or register in shift operand"); 3143 return -1; 3144 } 3145 } 3146 3147 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3148 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3149 ShiftReg, Imm, 3150 S, EndLoc)); 3151 else 3152 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3153 S, EndLoc)); 3154 3155 return 0; 3156 } 3157 3158 3159 /// Try to parse a register name. The token must be an Identifier when called. 3160 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3161 /// if there is a "writeback". 'true' if it's not a register. 3162 /// 3163 /// TODO this is likely to change to allow different register types and or to 3164 /// parse for a specific register type. 3165 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3166 MCAsmParser &Parser = getParser(); 3167 const AsmToken &RegTok = Parser.getTok(); 3168 int RegNo = tryParseRegister(); 3169 if (RegNo == -1) 3170 return true; 3171 3172 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3173 RegTok.getEndLoc())); 3174 3175 const AsmToken &ExclaimTok = Parser.getTok(); 3176 if (ExclaimTok.is(AsmToken::Exclaim)) { 3177 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3178 ExclaimTok.getLoc())); 3179 Parser.Lex(); // Eat exclaim token 3180 return false; 3181 } 3182 3183 // Also check for an index operand. This is only legal for vector registers, 3184 // but that'll get caught OK in operand matching, so we don't need to 3185 // explicitly filter everything else out here. 3186 if (Parser.getTok().is(AsmToken::LBrac)) { 3187 SMLoc SIdx = Parser.getTok().getLoc(); 3188 Parser.Lex(); // Eat left bracket token. 3189 3190 const MCExpr *ImmVal; 3191 if (getParser().parseExpression(ImmVal)) 3192 return true; 3193 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3194 if (!MCE) 3195 return TokError("immediate value expected for vector index"); 3196 3197 if (Parser.getTok().isNot(AsmToken::RBrac)) 3198 return Error(Parser.getTok().getLoc(), "']' expected"); 3199 3200 SMLoc E = Parser.getTok().getEndLoc(); 3201 Parser.Lex(); // Eat right bracket token. 3202 3203 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3204 SIdx, E, 3205 getContext())); 3206 } 3207 3208 return false; 3209 } 3210 3211 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3212 /// instruction with a symbolic operand name. 3213 /// We accept "crN" syntax for GAS compatibility. 3214 /// <operand-name> ::= <prefix><number> 3215 /// If CoprocOp is 'c', then: 3216 /// <prefix> ::= c | cr 3217 /// If CoprocOp is 'p', then : 3218 /// <prefix> ::= p 3219 /// <number> ::= integer in range [0, 15] 3220 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3221 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3222 // but efficient. 3223 if (Name.size() < 2 || Name[0] != CoprocOp) 3224 return -1; 3225 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3226 3227 switch (Name.size()) { 3228 default: return -1; 3229 case 1: 3230 switch (Name[0]) { 3231 default: return -1; 3232 case '0': return 0; 3233 case '1': return 1; 3234 case '2': return 2; 3235 case '3': return 3; 3236 case '4': return 4; 3237 case '5': return 5; 3238 case '6': return 6; 3239 case '7': return 7; 3240 case '8': return 8; 3241 case '9': return 9; 3242 } 3243 case 2: 3244 if (Name[0] != '1') 3245 return -1; 3246 switch (Name[1]) { 3247 default: return -1; 3248 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3249 // However, old cores (v5/v6) did use them in that way. 3250 case '0': return 10; 3251 case '1': return 11; 3252 case '2': return 12; 3253 case '3': return 13; 3254 case '4': return 14; 3255 case '5': return 15; 3256 } 3257 } 3258 } 3259 3260 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3261 ARMAsmParser::OperandMatchResultTy 3262 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3263 MCAsmParser &Parser = getParser(); 3264 SMLoc S = Parser.getTok().getLoc(); 3265 const AsmToken &Tok = Parser.getTok(); 3266 if (!Tok.is(AsmToken::Identifier)) 3267 return MatchOperand_NoMatch; 3268 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3269 .Case("eq", ARMCC::EQ) 3270 .Case("ne", ARMCC::NE) 3271 .Case("hs", ARMCC::HS) 3272 .Case("cs", ARMCC::HS) 3273 .Case("lo", ARMCC::LO) 3274 .Case("cc", ARMCC::LO) 3275 .Case("mi", ARMCC::MI) 3276 .Case("pl", ARMCC::PL) 3277 .Case("vs", ARMCC::VS) 3278 .Case("vc", ARMCC::VC) 3279 .Case("hi", ARMCC::HI) 3280 .Case("ls", ARMCC::LS) 3281 .Case("ge", ARMCC::GE) 3282 .Case("lt", ARMCC::LT) 3283 .Case("gt", ARMCC::GT) 3284 .Case("le", ARMCC::LE) 3285 .Case("al", ARMCC::AL) 3286 .Default(~0U); 3287 if (CC == ~0U) 3288 return MatchOperand_NoMatch; 3289 Parser.Lex(); // Eat the token. 3290 3291 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3292 3293 return MatchOperand_Success; 3294 } 3295 3296 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3297 /// token must be an Identifier when called, and if it is a coprocessor 3298 /// number, the token is eaten and the operand is added to the operand list. 3299 ARMAsmParser::OperandMatchResultTy 3300 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3301 MCAsmParser &Parser = getParser(); 3302 SMLoc S = Parser.getTok().getLoc(); 3303 const AsmToken &Tok = Parser.getTok(); 3304 if (Tok.isNot(AsmToken::Identifier)) 3305 return MatchOperand_NoMatch; 3306 3307 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3308 if (Num == -1) 3309 return MatchOperand_NoMatch; 3310 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3311 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3312 return MatchOperand_NoMatch; 3313 3314 Parser.Lex(); // Eat identifier token. 3315 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3316 return MatchOperand_Success; 3317 } 3318 3319 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3320 /// token must be an Identifier when called, and if it is a coprocessor 3321 /// number, the token is eaten and the operand is added to the operand list. 3322 ARMAsmParser::OperandMatchResultTy 3323 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3324 MCAsmParser &Parser = getParser(); 3325 SMLoc S = Parser.getTok().getLoc(); 3326 const AsmToken &Tok = Parser.getTok(); 3327 if (Tok.isNot(AsmToken::Identifier)) 3328 return MatchOperand_NoMatch; 3329 3330 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3331 if (Reg == -1) 3332 return MatchOperand_NoMatch; 3333 3334 Parser.Lex(); // Eat identifier token. 3335 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3336 return MatchOperand_Success; 3337 } 3338 3339 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3340 /// coproc_option : '{' imm0_255 '}' 3341 ARMAsmParser::OperandMatchResultTy 3342 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3343 MCAsmParser &Parser = getParser(); 3344 SMLoc S = Parser.getTok().getLoc(); 3345 3346 // If this isn't a '{', this isn't a coprocessor immediate operand. 3347 if (Parser.getTok().isNot(AsmToken::LCurly)) 3348 return MatchOperand_NoMatch; 3349 Parser.Lex(); // Eat the '{' 3350 3351 const MCExpr *Expr; 3352 SMLoc Loc = Parser.getTok().getLoc(); 3353 if (getParser().parseExpression(Expr)) { 3354 Error(Loc, "illegal expression"); 3355 return MatchOperand_ParseFail; 3356 } 3357 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3358 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3359 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3360 return MatchOperand_ParseFail; 3361 } 3362 int Val = CE->getValue(); 3363 3364 // Check for and consume the closing '}' 3365 if (Parser.getTok().isNot(AsmToken::RCurly)) 3366 return MatchOperand_ParseFail; 3367 SMLoc E = Parser.getTok().getEndLoc(); 3368 Parser.Lex(); // Eat the '}' 3369 3370 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3371 return MatchOperand_Success; 3372 } 3373 3374 // For register list parsing, we need to map from raw GPR register numbering 3375 // to the enumeration values. The enumeration values aren't sorted by 3376 // register number due to our using "sp", "lr" and "pc" as canonical names. 3377 static unsigned getNextRegister(unsigned Reg) { 3378 // If this is a GPR, we need to do it manually, otherwise we can rely 3379 // on the sort ordering of the enumeration since the other reg-classes 3380 // are sane. 3381 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3382 return Reg + 1; 3383 switch(Reg) { 3384 default: llvm_unreachable("Invalid GPR number!"); 3385 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3386 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3387 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3388 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3389 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3390 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3391 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3392 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3393 } 3394 } 3395 3396 // Return the low-subreg of a given Q register. 3397 static unsigned getDRegFromQReg(unsigned QReg) { 3398 switch (QReg) { 3399 default: llvm_unreachable("expected a Q register!"); 3400 case ARM::Q0: return ARM::D0; 3401 case ARM::Q1: return ARM::D2; 3402 case ARM::Q2: return ARM::D4; 3403 case ARM::Q3: return ARM::D6; 3404 case ARM::Q4: return ARM::D8; 3405 case ARM::Q5: return ARM::D10; 3406 case ARM::Q6: return ARM::D12; 3407 case ARM::Q7: return ARM::D14; 3408 case ARM::Q8: return ARM::D16; 3409 case ARM::Q9: return ARM::D18; 3410 case ARM::Q10: return ARM::D20; 3411 case ARM::Q11: return ARM::D22; 3412 case ARM::Q12: return ARM::D24; 3413 case ARM::Q13: return ARM::D26; 3414 case ARM::Q14: return ARM::D28; 3415 case ARM::Q15: return ARM::D30; 3416 } 3417 } 3418 3419 /// Parse a register list. 3420 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3421 MCAsmParser &Parser = getParser(); 3422 assert(Parser.getTok().is(AsmToken::LCurly) && 3423 "Token is not a Left Curly Brace"); 3424 SMLoc S = Parser.getTok().getLoc(); 3425 Parser.Lex(); // Eat '{' token. 3426 SMLoc RegLoc = Parser.getTok().getLoc(); 3427 3428 // Check the first register in the list to see what register class 3429 // this is a list of. 3430 int Reg = tryParseRegister(); 3431 if (Reg == -1) 3432 return Error(RegLoc, "register expected"); 3433 3434 // The reglist instructions have at most 16 registers, so reserve 3435 // space for that many. 3436 int EReg = 0; 3437 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3438 3439 // Allow Q regs and just interpret them as the two D sub-registers. 3440 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3441 Reg = getDRegFromQReg(Reg); 3442 EReg = MRI->getEncodingValue(Reg); 3443 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3444 ++Reg; 3445 } 3446 const MCRegisterClass *RC; 3447 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3448 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3449 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3450 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3451 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3452 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3453 else 3454 return Error(RegLoc, "invalid register in register list"); 3455 3456 // Store the register. 3457 EReg = MRI->getEncodingValue(Reg); 3458 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3459 3460 // This starts immediately after the first register token in the list, 3461 // so we can see either a comma or a minus (range separator) as a legal 3462 // next token. 3463 while (Parser.getTok().is(AsmToken::Comma) || 3464 Parser.getTok().is(AsmToken::Minus)) { 3465 if (Parser.getTok().is(AsmToken::Minus)) { 3466 Parser.Lex(); // Eat the minus. 3467 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3468 int EndReg = tryParseRegister(); 3469 if (EndReg == -1) 3470 return Error(AfterMinusLoc, "register expected"); 3471 // Allow Q regs and just interpret them as the two D sub-registers. 3472 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3473 EndReg = getDRegFromQReg(EndReg) + 1; 3474 // If the register is the same as the start reg, there's nothing 3475 // more to do. 3476 if (Reg == EndReg) 3477 continue; 3478 // The register must be in the same register class as the first. 3479 if (!RC->contains(EndReg)) 3480 return Error(AfterMinusLoc, "invalid register in register list"); 3481 // Ranges must go from low to high. 3482 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3483 return Error(AfterMinusLoc, "bad range in register list"); 3484 3485 // Add all the registers in the range to the register list. 3486 while (Reg != EndReg) { 3487 Reg = getNextRegister(Reg); 3488 EReg = MRI->getEncodingValue(Reg); 3489 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3490 } 3491 continue; 3492 } 3493 Parser.Lex(); // Eat the comma. 3494 RegLoc = Parser.getTok().getLoc(); 3495 int OldReg = Reg; 3496 const AsmToken RegTok = Parser.getTok(); 3497 Reg = tryParseRegister(); 3498 if (Reg == -1) 3499 return Error(RegLoc, "register expected"); 3500 // Allow Q regs and just interpret them as the two D sub-registers. 3501 bool isQReg = false; 3502 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3503 Reg = getDRegFromQReg(Reg); 3504 isQReg = true; 3505 } 3506 // The register must be in the same register class as the first. 3507 if (!RC->contains(Reg)) 3508 return Error(RegLoc, "invalid register in register list"); 3509 // List must be monotonically increasing. 3510 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3511 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3512 Warning(RegLoc, "register list not in ascending order"); 3513 else 3514 return Error(RegLoc, "register list not in ascending order"); 3515 } 3516 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3517 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3518 ") in register list"); 3519 continue; 3520 } 3521 // VFP register lists must also be contiguous. 3522 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3523 Reg != OldReg + 1) 3524 return Error(RegLoc, "non-contiguous register range"); 3525 EReg = MRI->getEncodingValue(Reg); 3526 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3527 if (isQReg) { 3528 EReg = MRI->getEncodingValue(++Reg); 3529 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3530 } 3531 } 3532 3533 if (Parser.getTok().isNot(AsmToken::RCurly)) 3534 return Error(Parser.getTok().getLoc(), "'}' expected"); 3535 SMLoc E = Parser.getTok().getEndLoc(); 3536 Parser.Lex(); // Eat '}' token. 3537 3538 // Push the register list operand. 3539 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3540 3541 // The ARM system instruction variants for LDM/STM have a '^' token here. 3542 if (Parser.getTok().is(AsmToken::Caret)) { 3543 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3544 Parser.Lex(); // Eat '^' token. 3545 } 3546 3547 return false; 3548 } 3549 3550 // Helper function to parse the lane index for vector lists. 3551 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3552 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3553 MCAsmParser &Parser = getParser(); 3554 Index = 0; // Always return a defined index value. 3555 if (Parser.getTok().is(AsmToken::LBrac)) { 3556 Parser.Lex(); // Eat the '['. 3557 if (Parser.getTok().is(AsmToken::RBrac)) { 3558 // "Dn[]" is the 'all lanes' syntax. 3559 LaneKind = AllLanes; 3560 EndLoc = Parser.getTok().getEndLoc(); 3561 Parser.Lex(); // Eat the ']'. 3562 return MatchOperand_Success; 3563 } 3564 3565 // There's an optional '#' token here. Normally there wouldn't be, but 3566 // inline assemble puts one in, and it's friendly to accept that. 3567 if (Parser.getTok().is(AsmToken::Hash)) 3568 Parser.Lex(); // Eat '#' or '$'. 3569 3570 const MCExpr *LaneIndex; 3571 SMLoc Loc = Parser.getTok().getLoc(); 3572 if (getParser().parseExpression(LaneIndex)) { 3573 Error(Loc, "illegal expression"); 3574 return MatchOperand_ParseFail; 3575 } 3576 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3577 if (!CE) { 3578 Error(Loc, "lane index must be empty or an integer"); 3579 return MatchOperand_ParseFail; 3580 } 3581 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3582 Error(Parser.getTok().getLoc(), "']' expected"); 3583 return MatchOperand_ParseFail; 3584 } 3585 EndLoc = Parser.getTok().getEndLoc(); 3586 Parser.Lex(); // Eat the ']'. 3587 int64_t Val = CE->getValue(); 3588 3589 // FIXME: Make this range check context sensitive for .8, .16, .32. 3590 if (Val < 0 || Val > 7) { 3591 Error(Parser.getTok().getLoc(), "lane index out of range"); 3592 return MatchOperand_ParseFail; 3593 } 3594 Index = Val; 3595 LaneKind = IndexedLane; 3596 return MatchOperand_Success; 3597 } 3598 LaneKind = NoLanes; 3599 return MatchOperand_Success; 3600 } 3601 3602 // parse a vector register list 3603 ARMAsmParser::OperandMatchResultTy 3604 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3605 MCAsmParser &Parser = getParser(); 3606 VectorLaneTy LaneKind; 3607 unsigned LaneIndex; 3608 SMLoc S = Parser.getTok().getLoc(); 3609 // As an extension (to match gas), support a plain D register or Q register 3610 // (without encosing curly braces) as a single or double entry list, 3611 // respectively. 3612 if (Parser.getTok().is(AsmToken::Identifier)) { 3613 SMLoc E = Parser.getTok().getEndLoc(); 3614 int Reg = tryParseRegister(); 3615 if (Reg == -1) 3616 return MatchOperand_NoMatch; 3617 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3618 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3619 if (Res != MatchOperand_Success) 3620 return Res; 3621 switch (LaneKind) { 3622 case NoLanes: 3623 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3624 break; 3625 case AllLanes: 3626 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3627 S, E)); 3628 break; 3629 case IndexedLane: 3630 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3631 LaneIndex, 3632 false, S, E)); 3633 break; 3634 } 3635 return MatchOperand_Success; 3636 } 3637 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3638 Reg = getDRegFromQReg(Reg); 3639 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3640 if (Res != MatchOperand_Success) 3641 return Res; 3642 switch (LaneKind) { 3643 case NoLanes: 3644 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3645 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3646 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3647 break; 3648 case AllLanes: 3649 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3650 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3651 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3652 S, E)); 3653 break; 3654 case IndexedLane: 3655 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3656 LaneIndex, 3657 false, S, E)); 3658 break; 3659 } 3660 return MatchOperand_Success; 3661 } 3662 Error(S, "vector register expected"); 3663 return MatchOperand_ParseFail; 3664 } 3665 3666 if (Parser.getTok().isNot(AsmToken::LCurly)) 3667 return MatchOperand_NoMatch; 3668 3669 Parser.Lex(); // Eat '{' token. 3670 SMLoc RegLoc = Parser.getTok().getLoc(); 3671 3672 int Reg = tryParseRegister(); 3673 if (Reg == -1) { 3674 Error(RegLoc, "register expected"); 3675 return MatchOperand_ParseFail; 3676 } 3677 unsigned Count = 1; 3678 int Spacing = 0; 3679 unsigned FirstReg = Reg; 3680 // The list is of D registers, but we also allow Q regs and just interpret 3681 // them as the two D sub-registers. 3682 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3683 FirstReg = Reg = getDRegFromQReg(Reg); 3684 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3685 // it's ambiguous with four-register single spaced. 3686 ++Reg; 3687 ++Count; 3688 } 3689 3690 SMLoc E; 3691 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3692 return MatchOperand_ParseFail; 3693 3694 while (Parser.getTok().is(AsmToken::Comma) || 3695 Parser.getTok().is(AsmToken::Minus)) { 3696 if (Parser.getTok().is(AsmToken::Minus)) { 3697 if (!Spacing) 3698 Spacing = 1; // Register range implies a single spaced list. 3699 else if (Spacing == 2) { 3700 Error(Parser.getTok().getLoc(), 3701 "sequential registers in double spaced list"); 3702 return MatchOperand_ParseFail; 3703 } 3704 Parser.Lex(); // Eat the minus. 3705 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3706 int EndReg = tryParseRegister(); 3707 if (EndReg == -1) { 3708 Error(AfterMinusLoc, "register expected"); 3709 return MatchOperand_ParseFail; 3710 } 3711 // Allow Q regs and just interpret them as the two D sub-registers. 3712 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3713 EndReg = getDRegFromQReg(EndReg) + 1; 3714 // If the register is the same as the start reg, there's nothing 3715 // more to do. 3716 if (Reg == EndReg) 3717 continue; 3718 // The register must be in the same register class as the first. 3719 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3720 Error(AfterMinusLoc, "invalid register in register list"); 3721 return MatchOperand_ParseFail; 3722 } 3723 // Ranges must go from low to high. 3724 if (Reg > EndReg) { 3725 Error(AfterMinusLoc, "bad range in register list"); 3726 return MatchOperand_ParseFail; 3727 } 3728 // Parse the lane specifier if present. 3729 VectorLaneTy NextLaneKind; 3730 unsigned NextLaneIndex; 3731 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3732 MatchOperand_Success) 3733 return MatchOperand_ParseFail; 3734 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3735 Error(AfterMinusLoc, "mismatched lane index in register list"); 3736 return MatchOperand_ParseFail; 3737 } 3738 3739 // Add all the registers in the range to the register list. 3740 Count += EndReg - Reg; 3741 Reg = EndReg; 3742 continue; 3743 } 3744 Parser.Lex(); // Eat the comma. 3745 RegLoc = Parser.getTok().getLoc(); 3746 int OldReg = Reg; 3747 Reg = tryParseRegister(); 3748 if (Reg == -1) { 3749 Error(RegLoc, "register expected"); 3750 return MatchOperand_ParseFail; 3751 } 3752 // vector register lists must be contiguous. 3753 // It's OK to use the enumeration values directly here rather, as the 3754 // VFP register classes have the enum sorted properly. 3755 // 3756 // The list is of D registers, but we also allow Q regs and just interpret 3757 // them as the two D sub-registers. 3758 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3759 if (!Spacing) 3760 Spacing = 1; // Register range implies a single spaced list. 3761 else if (Spacing == 2) { 3762 Error(RegLoc, 3763 "invalid register in double-spaced list (must be 'D' register')"); 3764 return MatchOperand_ParseFail; 3765 } 3766 Reg = getDRegFromQReg(Reg); 3767 if (Reg != OldReg + 1) { 3768 Error(RegLoc, "non-contiguous register range"); 3769 return MatchOperand_ParseFail; 3770 } 3771 ++Reg; 3772 Count += 2; 3773 // Parse the lane specifier if present. 3774 VectorLaneTy NextLaneKind; 3775 unsigned NextLaneIndex; 3776 SMLoc LaneLoc = Parser.getTok().getLoc(); 3777 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3778 MatchOperand_Success) 3779 return MatchOperand_ParseFail; 3780 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3781 Error(LaneLoc, "mismatched lane index in register list"); 3782 return MatchOperand_ParseFail; 3783 } 3784 continue; 3785 } 3786 // Normal D register. 3787 // Figure out the register spacing (single or double) of the list if 3788 // we don't know it already. 3789 if (!Spacing) 3790 Spacing = 1 + (Reg == OldReg + 2); 3791 3792 // Just check that it's contiguous and keep going. 3793 if (Reg != OldReg + Spacing) { 3794 Error(RegLoc, "non-contiguous register range"); 3795 return MatchOperand_ParseFail; 3796 } 3797 ++Count; 3798 // Parse the lane specifier if present. 3799 VectorLaneTy NextLaneKind; 3800 unsigned NextLaneIndex; 3801 SMLoc EndLoc = Parser.getTok().getLoc(); 3802 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3803 return MatchOperand_ParseFail; 3804 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3805 Error(EndLoc, "mismatched lane index in register list"); 3806 return MatchOperand_ParseFail; 3807 } 3808 } 3809 3810 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3811 Error(Parser.getTok().getLoc(), "'}' expected"); 3812 return MatchOperand_ParseFail; 3813 } 3814 E = Parser.getTok().getEndLoc(); 3815 Parser.Lex(); // Eat '}' token. 3816 3817 switch (LaneKind) { 3818 case NoLanes: 3819 // Two-register operands have been converted to the 3820 // composite register classes. 3821 if (Count == 2) { 3822 const MCRegisterClass *RC = (Spacing == 1) ? 3823 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3824 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3825 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3826 } 3827 3828 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3829 (Spacing == 2), S, E)); 3830 break; 3831 case AllLanes: 3832 // Two-register operands have been converted to the 3833 // composite register classes. 3834 if (Count == 2) { 3835 const MCRegisterClass *RC = (Spacing == 1) ? 3836 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3837 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3838 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3839 } 3840 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3841 (Spacing == 2), 3842 S, E)); 3843 break; 3844 case IndexedLane: 3845 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3846 LaneIndex, 3847 (Spacing == 2), 3848 S, E)); 3849 break; 3850 } 3851 return MatchOperand_Success; 3852 } 3853 3854 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3855 ARMAsmParser::OperandMatchResultTy 3856 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3857 MCAsmParser &Parser = getParser(); 3858 SMLoc S = Parser.getTok().getLoc(); 3859 const AsmToken &Tok = Parser.getTok(); 3860 unsigned Opt; 3861 3862 if (Tok.is(AsmToken::Identifier)) { 3863 StringRef OptStr = Tok.getString(); 3864 3865 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3866 .Case("sy", ARM_MB::SY) 3867 .Case("st", ARM_MB::ST) 3868 .Case("ld", ARM_MB::LD) 3869 .Case("sh", ARM_MB::ISH) 3870 .Case("ish", ARM_MB::ISH) 3871 .Case("shst", ARM_MB::ISHST) 3872 .Case("ishst", ARM_MB::ISHST) 3873 .Case("ishld", ARM_MB::ISHLD) 3874 .Case("nsh", ARM_MB::NSH) 3875 .Case("un", ARM_MB::NSH) 3876 .Case("nshst", ARM_MB::NSHST) 3877 .Case("nshld", ARM_MB::NSHLD) 3878 .Case("unst", ARM_MB::NSHST) 3879 .Case("osh", ARM_MB::OSH) 3880 .Case("oshst", ARM_MB::OSHST) 3881 .Case("oshld", ARM_MB::OSHLD) 3882 .Default(~0U); 3883 3884 // ishld, oshld, nshld and ld are only available from ARMv8. 3885 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3886 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3887 Opt = ~0U; 3888 3889 if (Opt == ~0U) 3890 return MatchOperand_NoMatch; 3891 3892 Parser.Lex(); // Eat identifier token. 3893 } else if (Tok.is(AsmToken::Hash) || 3894 Tok.is(AsmToken::Dollar) || 3895 Tok.is(AsmToken::Integer)) { 3896 if (Parser.getTok().isNot(AsmToken::Integer)) 3897 Parser.Lex(); // Eat '#' or '$'. 3898 SMLoc Loc = Parser.getTok().getLoc(); 3899 3900 const MCExpr *MemBarrierID; 3901 if (getParser().parseExpression(MemBarrierID)) { 3902 Error(Loc, "illegal expression"); 3903 return MatchOperand_ParseFail; 3904 } 3905 3906 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3907 if (!CE) { 3908 Error(Loc, "constant expression expected"); 3909 return MatchOperand_ParseFail; 3910 } 3911 3912 int Val = CE->getValue(); 3913 if (Val & ~0xf) { 3914 Error(Loc, "immediate value out of range"); 3915 return MatchOperand_ParseFail; 3916 } 3917 3918 Opt = ARM_MB::RESERVED_0 + Val; 3919 } else 3920 return MatchOperand_ParseFail; 3921 3922 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3923 return MatchOperand_Success; 3924 } 3925 3926 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3927 ARMAsmParser::OperandMatchResultTy 3928 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3929 MCAsmParser &Parser = getParser(); 3930 SMLoc S = Parser.getTok().getLoc(); 3931 const AsmToken &Tok = Parser.getTok(); 3932 unsigned Opt; 3933 3934 if (Tok.is(AsmToken::Identifier)) { 3935 StringRef OptStr = Tok.getString(); 3936 3937 if (OptStr.equals_lower("sy")) 3938 Opt = ARM_ISB::SY; 3939 else 3940 return MatchOperand_NoMatch; 3941 3942 Parser.Lex(); // Eat identifier token. 3943 } else if (Tok.is(AsmToken::Hash) || 3944 Tok.is(AsmToken::Dollar) || 3945 Tok.is(AsmToken::Integer)) { 3946 if (Parser.getTok().isNot(AsmToken::Integer)) 3947 Parser.Lex(); // Eat '#' or '$'. 3948 SMLoc Loc = Parser.getTok().getLoc(); 3949 3950 const MCExpr *ISBarrierID; 3951 if (getParser().parseExpression(ISBarrierID)) { 3952 Error(Loc, "illegal expression"); 3953 return MatchOperand_ParseFail; 3954 } 3955 3956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3957 if (!CE) { 3958 Error(Loc, "constant expression expected"); 3959 return MatchOperand_ParseFail; 3960 } 3961 3962 int Val = CE->getValue(); 3963 if (Val & ~0xf) { 3964 Error(Loc, "immediate value out of range"); 3965 return MatchOperand_ParseFail; 3966 } 3967 3968 Opt = ARM_ISB::RESERVED_0 + Val; 3969 } else 3970 return MatchOperand_ParseFail; 3971 3972 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3973 (ARM_ISB::InstSyncBOpt)Opt, S)); 3974 return MatchOperand_Success; 3975 } 3976 3977 3978 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3979 ARMAsmParser::OperandMatchResultTy 3980 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3981 MCAsmParser &Parser = getParser(); 3982 SMLoc S = Parser.getTok().getLoc(); 3983 const AsmToken &Tok = Parser.getTok(); 3984 if (!Tok.is(AsmToken::Identifier)) 3985 return MatchOperand_NoMatch; 3986 StringRef IFlagsStr = Tok.getString(); 3987 3988 // An iflags string of "none" is interpreted to mean that none of the AIF 3989 // bits are set. Not a terribly useful instruction, but a valid encoding. 3990 unsigned IFlags = 0; 3991 if (IFlagsStr != "none") { 3992 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3993 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3994 .Case("a", ARM_PROC::A) 3995 .Case("i", ARM_PROC::I) 3996 .Case("f", ARM_PROC::F) 3997 .Default(~0U); 3998 3999 // If some specific iflag is already set, it means that some letter is 4000 // present more than once, this is not acceptable. 4001 if (Flag == ~0U || (IFlags & Flag)) 4002 return MatchOperand_NoMatch; 4003 4004 IFlags |= Flag; 4005 } 4006 } 4007 4008 Parser.Lex(); // Eat identifier token. 4009 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4010 return MatchOperand_Success; 4011 } 4012 4013 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4014 ARMAsmParser::OperandMatchResultTy 4015 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4016 MCAsmParser &Parser = getParser(); 4017 SMLoc S = Parser.getTok().getLoc(); 4018 const AsmToken &Tok = Parser.getTok(); 4019 if (!Tok.is(AsmToken::Identifier)) 4020 return MatchOperand_NoMatch; 4021 StringRef Mask = Tok.getString(); 4022 4023 if (isMClass()) { 4024 // See ARMv6-M 10.1.1 4025 std::string Name = Mask.lower(); 4026 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4027 // Note: in the documentation: 4028 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4029 // for MSR APSR_nzcvq. 4030 // but we do make it an alias here. This is so to get the "mask encoding" 4031 // bits correct on MSR APSR writes. 4032 // 4033 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4034 // should really only be allowed when writing a special register. Note 4035 // they get dropped in the MRS instruction reading a special register as 4036 // the SYSm field is only 8 bits. 4037 .Case("apsr", 0x800) 4038 .Case("apsr_nzcvq", 0x800) 4039 .Case("apsr_g", 0x400) 4040 .Case("apsr_nzcvqg", 0xc00) 4041 .Case("iapsr", 0x801) 4042 .Case("iapsr_nzcvq", 0x801) 4043 .Case("iapsr_g", 0x401) 4044 .Case("iapsr_nzcvqg", 0xc01) 4045 .Case("eapsr", 0x802) 4046 .Case("eapsr_nzcvq", 0x802) 4047 .Case("eapsr_g", 0x402) 4048 .Case("eapsr_nzcvqg", 0xc02) 4049 .Case("xpsr", 0x803) 4050 .Case("xpsr_nzcvq", 0x803) 4051 .Case("xpsr_g", 0x403) 4052 .Case("xpsr_nzcvqg", 0xc03) 4053 .Case("ipsr", 0x805) 4054 .Case("epsr", 0x806) 4055 .Case("iepsr", 0x807) 4056 .Case("msp", 0x808) 4057 .Case("psp", 0x809) 4058 .Case("primask", 0x810) 4059 .Case("basepri", 0x811) 4060 .Case("basepri_max", 0x812) 4061 .Case("faultmask", 0x813) 4062 .Case("control", 0x814) 4063 .Case("msplim", 0x80a) 4064 .Case("psplim", 0x80b) 4065 .Case("msp_ns", 0x888) 4066 .Case("psp_ns", 0x889) 4067 .Case("msplim_ns", 0x88a) 4068 .Case("psplim_ns", 0x88b) 4069 .Case("primask_ns", 0x890) 4070 .Case("basepri_ns", 0x891) 4071 .Case("basepri_max_ns", 0x892) 4072 .Case("faultmask_ns", 0x893) 4073 .Case("control_ns", 0x894) 4074 .Case("sp_ns", 0x898) 4075 .Default(~0U); 4076 4077 if (FlagsVal == ~0U) 4078 return MatchOperand_NoMatch; 4079 4080 if (!hasDSP() && (FlagsVal & 0x400)) 4081 // The _g and _nzcvqg versions are only valid if the DSP extension is 4082 // available. 4083 return MatchOperand_NoMatch; 4084 4085 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4086 // basepri, basepri_max and faultmask only valid for V7m. 4087 return MatchOperand_NoMatch; 4088 4089 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4090 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4091 return MatchOperand_NoMatch; 4092 4093 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4094 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4095 return MatchOperand_NoMatch; 4096 4097 Parser.Lex(); // Eat identifier token. 4098 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4099 return MatchOperand_Success; 4100 } 4101 4102 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4103 size_t Start = 0, Next = Mask.find('_'); 4104 StringRef Flags = ""; 4105 std::string SpecReg = Mask.slice(Start, Next).lower(); 4106 if (Next != StringRef::npos) 4107 Flags = Mask.slice(Next+1, Mask.size()); 4108 4109 // FlagsVal contains the complete mask: 4110 // 3-0: Mask 4111 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4112 unsigned FlagsVal = 0; 4113 4114 if (SpecReg == "apsr") { 4115 FlagsVal = StringSwitch<unsigned>(Flags) 4116 .Case("nzcvq", 0x8) // same as CPSR_f 4117 .Case("g", 0x4) // same as CPSR_s 4118 .Case("nzcvqg", 0xc) // same as CPSR_fs 4119 .Default(~0U); 4120 4121 if (FlagsVal == ~0U) { 4122 if (!Flags.empty()) 4123 return MatchOperand_NoMatch; 4124 else 4125 FlagsVal = 8; // No flag 4126 } 4127 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4128 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4129 if (Flags == "all" || Flags == "") 4130 Flags = "fc"; 4131 for (int i = 0, e = Flags.size(); i != e; ++i) { 4132 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4133 .Case("c", 1) 4134 .Case("x", 2) 4135 .Case("s", 4) 4136 .Case("f", 8) 4137 .Default(~0U); 4138 4139 // If some specific flag is already set, it means that some letter is 4140 // present more than once, this is not acceptable. 4141 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4142 return MatchOperand_NoMatch; 4143 FlagsVal |= Flag; 4144 } 4145 } else // No match for special register. 4146 return MatchOperand_NoMatch; 4147 4148 // Special register without flags is NOT equivalent to "fc" flags. 4149 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4150 // two lines would enable gas compatibility at the expense of breaking 4151 // round-tripping. 4152 // 4153 // if (!FlagsVal) 4154 // FlagsVal = 0x9; 4155 4156 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4157 if (SpecReg == "spsr") 4158 FlagsVal |= 16; 4159 4160 Parser.Lex(); // Eat identifier token. 4161 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4162 return MatchOperand_Success; 4163 } 4164 4165 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4166 /// use in the MRS/MSR instructions added to support virtualization. 4167 ARMAsmParser::OperandMatchResultTy 4168 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4169 MCAsmParser &Parser = getParser(); 4170 SMLoc S = Parser.getTok().getLoc(); 4171 const AsmToken &Tok = Parser.getTok(); 4172 if (!Tok.is(AsmToken::Identifier)) 4173 return MatchOperand_NoMatch; 4174 StringRef RegName = Tok.getString(); 4175 4176 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4177 // and bit 5 is R. 4178 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4179 .Case("r8_usr", 0x00) 4180 .Case("r9_usr", 0x01) 4181 .Case("r10_usr", 0x02) 4182 .Case("r11_usr", 0x03) 4183 .Case("r12_usr", 0x04) 4184 .Case("sp_usr", 0x05) 4185 .Case("lr_usr", 0x06) 4186 .Case("r8_fiq", 0x08) 4187 .Case("r9_fiq", 0x09) 4188 .Case("r10_fiq", 0x0a) 4189 .Case("r11_fiq", 0x0b) 4190 .Case("r12_fiq", 0x0c) 4191 .Case("sp_fiq", 0x0d) 4192 .Case("lr_fiq", 0x0e) 4193 .Case("lr_irq", 0x10) 4194 .Case("sp_irq", 0x11) 4195 .Case("lr_svc", 0x12) 4196 .Case("sp_svc", 0x13) 4197 .Case("lr_abt", 0x14) 4198 .Case("sp_abt", 0x15) 4199 .Case("lr_und", 0x16) 4200 .Case("sp_und", 0x17) 4201 .Case("lr_mon", 0x1c) 4202 .Case("sp_mon", 0x1d) 4203 .Case("elr_hyp", 0x1e) 4204 .Case("sp_hyp", 0x1f) 4205 .Case("spsr_fiq", 0x2e) 4206 .Case("spsr_irq", 0x30) 4207 .Case("spsr_svc", 0x32) 4208 .Case("spsr_abt", 0x34) 4209 .Case("spsr_und", 0x36) 4210 .Case("spsr_mon", 0x3c) 4211 .Case("spsr_hyp", 0x3e) 4212 .Default(~0U); 4213 4214 if (Encoding == ~0U) 4215 return MatchOperand_NoMatch; 4216 4217 Parser.Lex(); // Eat identifier token. 4218 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4219 return MatchOperand_Success; 4220 } 4221 4222 ARMAsmParser::OperandMatchResultTy 4223 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4224 int High) { 4225 MCAsmParser &Parser = getParser(); 4226 const AsmToken &Tok = Parser.getTok(); 4227 if (Tok.isNot(AsmToken::Identifier)) { 4228 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4229 return MatchOperand_ParseFail; 4230 } 4231 StringRef ShiftName = Tok.getString(); 4232 std::string LowerOp = Op.lower(); 4233 std::string UpperOp = Op.upper(); 4234 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4235 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4236 return MatchOperand_ParseFail; 4237 } 4238 Parser.Lex(); // Eat shift type token. 4239 4240 // There must be a '#' and a shift amount. 4241 if (Parser.getTok().isNot(AsmToken::Hash) && 4242 Parser.getTok().isNot(AsmToken::Dollar)) { 4243 Error(Parser.getTok().getLoc(), "'#' expected"); 4244 return MatchOperand_ParseFail; 4245 } 4246 Parser.Lex(); // Eat hash token. 4247 4248 const MCExpr *ShiftAmount; 4249 SMLoc Loc = Parser.getTok().getLoc(); 4250 SMLoc EndLoc; 4251 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4252 Error(Loc, "illegal expression"); 4253 return MatchOperand_ParseFail; 4254 } 4255 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4256 if (!CE) { 4257 Error(Loc, "constant expression expected"); 4258 return MatchOperand_ParseFail; 4259 } 4260 int Val = CE->getValue(); 4261 if (Val < Low || Val > High) { 4262 Error(Loc, "immediate value out of range"); 4263 return MatchOperand_ParseFail; 4264 } 4265 4266 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4267 4268 return MatchOperand_Success; 4269 } 4270 4271 ARMAsmParser::OperandMatchResultTy 4272 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4273 MCAsmParser &Parser = getParser(); 4274 const AsmToken &Tok = Parser.getTok(); 4275 SMLoc S = Tok.getLoc(); 4276 if (Tok.isNot(AsmToken::Identifier)) { 4277 Error(S, "'be' or 'le' operand expected"); 4278 return MatchOperand_ParseFail; 4279 } 4280 int Val = StringSwitch<int>(Tok.getString().lower()) 4281 .Case("be", 1) 4282 .Case("le", 0) 4283 .Default(-1); 4284 Parser.Lex(); // Eat the token. 4285 4286 if (Val == -1) { 4287 Error(S, "'be' or 'le' operand expected"); 4288 return MatchOperand_ParseFail; 4289 } 4290 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4291 getContext()), 4292 S, Tok.getEndLoc())); 4293 return MatchOperand_Success; 4294 } 4295 4296 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4297 /// instructions. Legal values are: 4298 /// lsl #n 'n' in [0,31] 4299 /// asr #n 'n' in [1,32] 4300 /// n == 32 encoded as n == 0. 4301 ARMAsmParser::OperandMatchResultTy 4302 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4303 MCAsmParser &Parser = getParser(); 4304 const AsmToken &Tok = Parser.getTok(); 4305 SMLoc S = Tok.getLoc(); 4306 if (Tok.isNot(AsmToken::Identifier)) { 4307 Error(S, "shift operator 'asr' or 'lsl' expected"); 4308 return MatchOperand_ParseFail; 4309 } 4310 StringRef ShiftName = Tok.getString(); 4311 bool isASR; 4312 if (ShiftName == "lsl" || ShiftName == "LSL") 4313 isASR = false; 4314 else if (ShiftName == "asr" || ShiftName == "ASR") 4315 isASR = true; 4316 else { 4317 Error(S, "shift operator 'asr' or 'lsl' expected"); 4318 return MatchOperand_ParseFail; 4319 } 4320 Parser.Lex(); // Eat the operator. 4321 4322 // A '#' and a shift amount. 4323 if (Parser.getTok().isNot(AsmToken::Hash) && 4324 Parser.getTok().isNot(AsmToken::Dollar)) { 4325 Error(Parser.getTok().getLoc(), "'#' expected"); 4326 return MatchOperand_ParseFail; 4327 } 4328 Parser.Lex(); // Eat hash token. 4329 SMLoc ExLoc = Parser.getTok().getLoc(); 4330 4331 const MCExpr *ShiftAmount; 4332 SMLoc EndLoc; 4333 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4334 Error(ExLoc, "malformed shift expression"); 4335 return MatchOperand_ParseFail; 4336 } 4337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4338 if (!CE) { 4339 Error(ExLoc, "shift amount must be an immediate"); 4340 return MatchOperand_ParseFail; 4341 } 4342 4343 int64_t Val = CE->getValue(); 4344 if (isASR) { 4345 // Shift amount must be in [1,32] 4346 if (Val < 1 || Val > 32) { 4347 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4348 return MatchOperand_ParseFail; 4349 } 4350 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4351 if (isThumb() && Val == 32) { 4352 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4353 return MatchOperand_ParseFail; 4354 } 4355 if (Val == 32) Val = 0; 4356 } else { 4357 // Shift amount must be in [1,32] 4358 if (Val < 0 || Val > 31) { 4359 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4360 return MatchOperand_ParseFail; 4361 } 4362 } 4363 4364 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4365 4366 return MatchOperand_Success; 4367 } 4368 4369 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4370 /// of instructions. Legal values are: 4371 /// ror #n 'n' in {0, 8, 16, 24} 4372 ARMAsmParser::OperandMatchResultTy 4373 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4374 MCAsmParser &Parser = getParser(); 4375 const AsmToken &Tok = Parser.getTok(); 4376 SMLoc S = Tok.getLoc(); 4377 if (Tok.isNot(AsmToken::Identifier)) 4378 return MatchOperand_NoMatch; 4379 StringRef ShiftName = Tok.getString(); 4380 if (ShiftName != "ror" && ShiftName != "ROR") 4381 return MatchOperand_NoMatch; 4382 Parser.Lex(); // Eat the operator. 4383 4384 // A '#' and a rotate amount. 4385 if (Parser.getTok().isNot(AsmToken::Hash) && 4386 Parser.getTok().isNot(AsmToken::Dollar)) { 4387 Error(Parser.getTok().getLoc(), "'#' expected"); 4388 return MatchOperand_ParseFail; 4389 } 4390 Parser.Lex(); // Eat hash token. 4391 SMLoc ExLoc = Parser.getTok().getLoc(); 4392 4393 const MCExpr *ShiftAmount; 4394 SMLoc EndLoc; 4395 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4396 Error(ExLoc, "malformed rotate expression"); 4397 return MatchOperand_ParseFail; 4398 } 4399 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4400 if (!CE) { 4401 Error(ExLoc, "rotate amount must be an immediate"); 4402 return MatchOperand_ParseFail; 4403 } 4404 4405 int64_t Val = CE->getValue(); 4406 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4407 // normally, zero is represented in asm by omitting the rotate operand 4408 // entirely. 4409 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4410 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4411 return MatchOperand_ParseFail; 4412 } 4413 4414 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4415 4416 return MatchOperand_Success; 4417 } 4418 4419 ARMAsmParser::OperandMatchResultTy 4420 ARMAsmParser::parseModImm(OperandVector &Operands) { 4421 MCAsmParser &Parser = getParser(); 4422 MCAsmLexer &Lexer = getLexer(); 4423 int64_t Imm1, Imm2; 4424 4425 SMLoc S = Parser.getTok().getLoc(); 4426 4427 // 1) A mod_imm operand can appear in the place of a register name: 4428 // add r0, #mod_imm 4429 // add r0, r0, #mod_imm 4430 // to correctly handle the latter, we bail out as soon as we see an 4431 // identifier. 4432 // 4433 // 2) Similarly, we do not want to parse into complex operands: 4434 // mov r0, #mod_imm 4435 // mov r0, :lower16:(_foo) 4436 if (Parser.getTok().is(AsmToken::Identifier) || 4437 Parser.getTok().is(AsmToken::Colon)) 4438 return MatchOperand_NoMatch; 4439 4440 // Hash (dollar) is optional as per the ARMARM 4441 if (Parser.getTok().is(AsmToken::Hash) || 4442 Parser.getTok().is(AsmToken::Dollar)) { 4443 // Avoid parsing into complex operands (#:) 4444 if (Lexer.peekTok().is(AsmToken::Colon)) 4445 return MatchOperand_NoMatch; 4446 4447 // Eat the hash (dollar) 4448 Parser.Lex(); 4449 } 4450 4451 SMLoc Sx1, Ex1; 4452 Sx1 = Parser.getTok().getLoc(); 4453 const MCExpr *Imm1Exp; 4454 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4455 Error(Sx1, "malformed expression"); 4456 return MatchOperand_ParseFail; 4457 } 4458 4459 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4460 4461 if (CE) { 4462 // Immediate must fit within 32-bits 4463 Imm1 = CE->getValue(); 4464 int Enc = ARM_AM::getSOImmVal(Imm1); 4465 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4466 // We have a match! 4467 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4468 (Enc & 0xF00) >> 7, 4469 Sx1, Ex1)); 4470 return MatchOperand_Success; 4471 } 4472 4473 // We have parsed an immediate which is not for us, fallback to a plain 4474 // immediate. This can happen for instruction aliases. For an example, 4475 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4476 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4477 // instruction with a mod_imm operand. The alias is defined such that the 4478 // parser method is shared, that's why we have to do this here. 4479 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4480 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4481 return MatchOperand_Success; 4482 } 4483 } else { 4484 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4485 // MCFixup). Fallback to a plain immediate. 4486 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4487 return MatchOperand_Success; 4488 } 4489 4490 // From this point onward, we expect the input to be a (#bits, #rot) pair 4491 if (Parser.getTok().isNot(AsmToken::Comma)) { 4492 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4493 return MatchOperand_ParseFail; 4494 } 4495 4496 if (Imm1 & ~0xFF) { 4497 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4498 return MatchOperand_ParseFail; 4499 } 4500 4501 // Eat the comma 4502 Parser.Lex(); 4503 4504 // Repeat for #rot 4505 SMLoc Sx2, Ex2; 4506 Sx2 = Parser.getTok().getLoc(); 4507 4508 // Eat the optional hash (dollar) 4509 if (Parser.getTok().is(AsmToken::Hash) || 4510 Parser.getTok().is(AsmToken::Dollar)) 4511 Parser.Lex(); 4512 4513 const MCExpr *Imm2Exp; 4514 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4515 Error(Sx2, "malformed expression"); 4516 return MatchOperand_ParseFail; 4517 } 4518 4519 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4520 4521 if (CE) { 4522 Imm2 = CE->getValue(); 4523 if (!(Imm2 & ~0x1E)) { 4524 // We have a match! 4525 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4526 return MatchOperand_Success; 4527 } 4528 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4529 return MatchOperand_ParseFail; 4530 } else { 4531 Error(Sx2, "constant expression expected"); 4532 return MatchOperand_ParseFail; 4533 } 4534 } 4535 4536 ARMAsmParser::OperandMatchResultTy 4537 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4538 MCAsmParser &Parser = getParser(); 4539 SMLoc S = Parser.getTok().getLoc(); 4540 // The bitfield descriptor is really two operands, the LSB and the width. 4541 if (Parser.getTok().isNot(AsmToken::Hash) && 4542 Parser.getTok().isNot(AsmToken::Dollar)) { 4543 Error(Parser.getTok().getLoc(), "'#' expected"); 4544 return MatchOperand_ParseFail; 4545 } 4546 Parser.Lex(); // Eat hash token. 4547 4548 const MCExpr *LSBExpr; 4549 SMLoc E = Parser.getTok().getLoc(); 4550 if (getParser().parseExpression(LSBExpr)) { 4551 Error(E, "malformed immediate expression"); 4552 return MatchOperand_ParseFail; 4553 } 4554 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4555 if (!CE) { 4556 Error(E, "'lsb' operand must be an immediate"); 4557 return MatchOperand_ParseFail; 4558 } 4559 4560 int64_t LSB = CE->getValue(); 4561 // The LSB must be in the range [0,31] 4562 if (LSB < 0 || LSB > 31) { 4563 Error(E, "'lsb' operand must be in the range [0,31]"); 4564 return MatchOperand_ParseFail; 4565 } 4566 E = Parser.getTok().getLoc(); 4567 4568 // Expect another immediate operand. 4569 if (Parser.getTok().isNot(AsmToken::Comma)) { 4570 Error(Parser.getTok().getLoc(), "too few operands"); 4571 return MatchOperand_ParseFail; 4572 } 4573 Parser.Lex(); // Eat hash token. 4574 if (Parser.getTok().isNot(AsmToken::Hash) && 4575 Parser.getTok().isNot(AsmToken::Dollar)) { 4576 Error(Parser.getTok().getLoc(), "'#' expected"); 4577 return MatchOperand_ParseFail; 4578 } 4579 Parser.Lex(); // Eat hash token. 4580 4581 const MCExpr *WidthExpr; 4582 SMLoc EndLoc; 4583 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4584 Error(E, "malformed immediate expression"); 4585 return MatchOperand_ParseFail; 4586 } 4587 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4588 if (!CE) { 4589 Error(E, "'width' operand must be an immediate"); 4590 return MatchOperand_ParseFail; 4591 } 4592 4593 int64_t Width = CE->getValue(); 4594 // The LSB must be in the range [1,32-lsb] 4595 if (Width < 1 || Width > 32 - LSB) { 4596 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4597 return MatchOperand_ParseFail; 4598 } 4599 4600 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4601 4602 return MatchOperand_Success; 4603 } 4604 4605 ARMAsmParser::OperandMatchResultTy 4606 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4607 // Check for a post-index addressing register operand. Specifically: 4608 // postidx_reg := '+' register {, shift} 4609 // | '-' register {, shift} 4610 // | register {, shift} 4611 4612 // This method must return MatchOperand_NoMatch without consuming any tokens 4613 // in the case where there is no match, as other alternatives take other 4614 // parse methods. 4615 MCAsmParser &Parser = getParser(); 4616 AsmToken Tok = Parser.getTok(); 4617 SMLoc S = Tok.getLoc(); 4618 bool haveEaten = false; 4619 bool isAdd = true; 4620 if (Tok.is(AsmToken::Plus)) { 4621 Parser.Lex(); // Eat the '+' token. 4622 haveEaten = true; 4623 } else if (Tok.is(AsmToken::Minus)) { 4624 Parser.Lex(); // Eat the '-' token. 4625 isAdd = false; 4626 haveEaten = true; 4627 } 4628 4629 SMLoc E = Parser.getTok().getEndLoc(); 4630 int Reg = tryParseRegister(); 4631 if (Reg == -1) { 4632 if (!haveEaten) 4633 return MatchOperand_NoMatch; 4634 Error(Parser.getTok().getLoc(), "register expected"); 4635 return MatchOperand_ParseFail; 4636 } 4637 4638 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4639 unsigned ShiftImm = 0; 4640 if (Parser.getTok().is(AsmToken::Comma)) { 4641 Parser.Lex(); // Eat the ','. 4642 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4643 return MatchOperand_ParseFail; 4644 4645 // FIXME: Only approximates end...may include intervening whitespace. 4646 E = Parser.getTok().getLoc(); 4647 } 4648 4649 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4650 ShiftImm, S, E)); 4651 4652 return MatchOperand_Success; 4653 } 4654 4655 ARMAsmParser::OperandMatchResultTy 4656 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4657 // Check for a post-index addressing register operand. Specifically: 4658 // am3offset := '+' register 4659 // | '-' register 4660 // | register 4661 // | # imm 4662 // | # + imm 4663 // | # - imm 4664 4665 // This method must return MatchOperand_NoMatch without consuming any tokens 4666 // in the case where there is no match, as other alternatives take other 4667 // parse methods. 4668 MCAsmParser &Parser = getParser(); 4669 AsmToken Tok = Parser.getTok(); 4670 SMLoc S = Tok.getLoc(); 4671 4672 // Do immediates first, as we always parse those if we have a '#'. 4673 if (Parser.getTok().is(AsmToken::Hash) || 4674 Parser.getTok().is(AsmToken::Dollar)) { 4675 Parser.Lex(); // Eat '#' or '$'. 4676 // Explicitly look for a '-', as we need to encode negative zero 4677 // differently. 4678 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4679 const MCExpr *Offset; 4680 SMLoc E; 4681 if (getParser().parseExpression(Offset, E)) 4682 return MatchOperand_ParseFail; 4683 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4684 if (!CE) { 4685 Error(S, "constant expression expected"); 4686 return MatchOperand_ParseFail; 4687 } 4688 // Negative zero is encoded as the flag value INT32_MIN. 4689 int32_t Val = CE->getValue(); 4690 if (isNegative && Val == 0) 4691 Val = INT32_MIN; 4692 4693 Operands.push_back( 4694 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4695 4696 return MatchOperand_Success; 4697 } 4698 4699 4700 bool haveEaten = false; 4701 bool isAdd = true; 4702 if (Tok.is(AsmToken::Plus)) { 4703 Parser.Lex(); // Eat the '+' token. 4704 haveEaten = true; 4705 } else if (Tok.is(AsmToken::Minus)) { 4706 Parser.Lex(); // Eat the '-' token. 4707 isAdd = false; 4708 haveEaten = true; 4709 } 4710 4711 Tok = Parser.getTok(); 4712 int Reg = tryParseRegister(); 4713 if (Reg == -1) { 4714 if (!haveEaten) 4715 return MatchOperand_NoMatch; 4716 Error(Tok.getLoc(), "register expected"); 4717 return MatchOperand_ParseFail; 4718 } 4719 4720 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4721 0, S, Tok.getEndLoc())); 4722 4723 return MatchOperand_Success; 4724 } 4725 4726 /// Convert parsed operands to MCInst. Needed here because this instruction 4727 /// only has two register operands, but multiplication is commutative so 4728 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4729 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4730 const OperandVector &Operands) { 4731 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4732 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4733 // If we have a three-operand form, make sure to set Rn to be the operand 4734 // that isn't the same as Rd. 4735 unsigned RegOp = 4; 4736 if (Operands.size() == 6 && 4737 ((ARMOperand &)*Operands[4]).getReg() == 4738 ((ARMOperand &)*Operands[3]).getReg()) 4739 RegOp = 5; 4740 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4741 Inst.addOperand(Inst.getOperand(0)); 4742 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4743 } 4744 4745 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4746 const OperandVector &Operands) { 4747 int CondOp = -1, ImmOp = -1; 4748 switch(Inst.getOpcode()) { 4749 case ARM::tB: 4750 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4751 4752 case ARM::t2B: 4753 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4754 4755 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4756 } 4757 // first decide whether or not the branch should be conditional 4758 // by looking at it's location relative to an IT block 4759 if(inITBlock()) { 4760 // inside an IT block we cannot have any conditional branches. any 4761 // such instructions needs to be converted to unconditional form 4762 switch(Inst.getOpcode()) { 4763 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4764 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4765 } 4766 } else { 4767 // outside IT blocks we can only have unconditional branches with AL 4768 // condition code or conditional branches with non-AL condition code 4769 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4770 switch(Inst.getOpcode()) { 4771 case ARM::tB: 4772 case ARM::tBcc: 4773 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4774 break; 4775 case ARM::t2B: 4776 case ARM::t2Bcc: 4777 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4778 break; 4779 } 4780 } 4781 4782 // now decide on encoding size based on branch target range 4783 switch(Inst.getOpcode()) { 4784 // classify tB as either t2B or t1B based on range of immediate operand 4785 case ARM::tB: { 4786 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4787 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4788 Inst.setOpcode(ARM::t2B); 4789 break; 4790 } 4791 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4792 case ARM::tBcc: { 4793 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4794 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4795 Inst.setOpcode(ARM::t2Bcc); 4796 break; 4797 } 4798 } 4799 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4800 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4801 } 4802 4803 /// Parse an ARM memory expression, return false if successful else return true 4804 /// or an error. The first token must be a '[' when called. 4805 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4806 MCAsmParser &Parser = getParser(); 4807 SMLoc S, E; 4808 assert(Parser.getTok().is(AsmToken::LBrac) && 4809 "Token is not a Left Bracket"); 4810 S = Parser.getTok().getLoc(); 4811 Parser.Lex(); // Eat left bracket token. 4812 4813 const AsmToken &BaseRegTok = Parser.getTok(); 4814 int BaseRegNum = tryParseRegister(); 4815 if (BaseRegNum == -1) 4816 return Error(BaseRegTok.getLoc(), "register expected"); 4817 4818 // The next token must either be a comma, a colon or a closing bracket. 4819 const AsmToken &Tok = Parser.getTok(); 4820 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4821 !Tok.is(AsmToken::RBrac)) 4822 return Error(Tok.getLoc(), "malformed memory operand"); 4823 4824 if (Tok.is(AsmToken::RBrac)) { 4825 E = Tok.getEndLoc(); 4826 Parser.Lex(); // Eat right bracket token. 4827 4828 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4829 ARM_AM::no_shift, 0, 0, false, 4830 S, E)); 4831 4832 // If there's a pre-indexing writeback marker, '!', just add it as a token 4833 // operand. It's rather odd, but syntactically valid. 4834 if (Parser.getTok().is(AsmToken::Exclaim)) { 4835 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4836 Parser.Lex(); // Eat the '!'. 4837 } 4838 4839 return false; 4840 } 4841 4842 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4843 "Lost colon or comma in memory operand?!"); 4844 if (Tok.is(AsmToken::Comma)) { 4845 Parser.Lex(); // Eat the comma. 4846 } 4847 4848 // If we have a ':', it's an alignment specifier. 4849 if (Parser.getTok().is(AsmToken::Colon)) { 4850 Parser.Lex(); // Eat the ':'. 4851 E = Parser.getTok().getLoc(); 4852 SMLoc AlignmentLoc = Tok.getLoc(); 4853 4854 const MCExpr *Expr; 4855 if (getParser().parseExpression(Expr)) 4856 return true; 4857 4858 // The expression has to be a constant. Memory references with relocations 4859 // don't come through here, as they use the <label> forms of the relevant 4860 // instructions. 4861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4862 if (!CE) 4863 return Error (E, "constant expression expected"); 4864 4865 unsigned Align = 0; 4866 switch (CE->getValue()) { 4867 default: 4868 return Error(E, 4869 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4870 case 16: Align = 2; break; 4871 case 32: Align = 4; break; 4872 case 64: Align = 8; break; 4873 case 128: Align = 16; break; 4874 case 256: Align = 32; break; 4875 } 4876 4877 // Now we should have the closing ']' 4878 if (Parser.getTok().isNot(AsmToken::RBrac)) 4879 return Error(Parser.getTok().getLoc(), "']' expected"); 4880 E = Parser.getTok().getEndLoc(); 4881 Parser.Lex(); // Eat right bracket token. 4882 4883 // Don't worry about range checking the value here. That's handled by 4884 // the is*() predicates. 4885 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4886 ARM_AM::no_shift, 0, Align, 4887 false, S, E, AlignmentLoc)); 4888 4889 // If there's a pre-indexing writeback marker, '!', just add it as a token 4890 // operand. 4891 if (Parser.getTok().is(AsmToken::Exclaim)) { 4892 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4893 Parser.Lex(); // Eat the '!'. 4894 } 4895 4896 return false; 4897 } 4898 4899 // If we have a '#', it's an immediate offset, else assume it's a register 4900 // offset. Be friendly and also accept a plain integer (without a leading 4901 // hash) for gas compatibility. 4902 if (Parser.getTok().is(AsmToken::Hash) || 4903 Parser.getTok().is(AsmToken::Dollar) || 4904 Parser.getTok().is(AsmToken::Integer)) { 4905 if (Parser.getTok().isNot(AsmToken::Integer)) 4906 Parser.Lex(); // Eat '#' or '$'. 4907 E = Parser.getTok().getLoc(); 4908 4909 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4910 const MCExpr *Offset; 4911 if (getParser().parseExpression(Offset)) 4912 return true; 4913 4914 // The expression has to be a constant. Memory references with relocations 4915 // don't come through here, as they use the <label> forms of the relevant 4916 // instructions. 4917 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4918 if (!CE) 4919 return Error (E, "constant expression expected"); 4920 4921 // If the constant was #-0, represent it as INT32_MIN. 4922 int32_t Val = CE->getValue(); 4923 if (isNegative && Val == 0) 4924 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4925 4926 // Now we should have the closing ']' 4927 if (Parser.getTok().isNot(AsmToken::RBrac)) 4928 return Error(Parser.getTok().getLoc(), "']' expected"); 4929 E = Parser.getTok().getEndLoc(); 4930 Parser.Lex(); // Eat right bracket token. 4931 4932 // Don't worry about range checking the value here. That's handled by 4933 // the is*() predicates. 4934 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4935 ARM_AM::no_shift, 0, 0, 4936 false, S, E)); 4937 4938 // If there's a pre-indexing writeback marker, '!', just add it as a token 4939 // operand. 4940 if (Parser.getTok().is(AsmToken::Exclaim)) { 4941 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4942 Parser.Lex(); // Eat the '!'. 4943 } 4944 4945 return false; 4946 } 4947 4948 // The register offset is optionally preceded by a '+' or '-' 4949 bool isNegative = false; 4950 if (Parser.getTok().is(AsmToken::Minus)) { 4951 isNegative = true; 4952 Parser.Lex(); // Eat the '-'. 4953 } else if (Parser.getTok().is(AsmToken::Plus)) { 4954 // Nothing to do. 4955 Parser.Lex(); // Eat the '+'. 4956 } 4957 4958 E = Parser.getTok().getLoc(); 4959 int OffsetRegNum = tryParseRegister(); 4960 if (OffsetRegNum == -1) 4961 return Error(E, "register expected"); 4962 4963 // If there's a shift operator, handle it. 4964 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4965 unsigned ShiftImm = 0; 4966 if (Parser.getTok().is(AsmToken::Comma)) { 4967 Parser.Lex(); // Eat the ','. 4968 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4969 return true; 4970 } 4971 4972 // Now we should have the closing ']' 4973 if (Parser.getTok().isNot(AsmToken::RBrac)) 4974 return Error(Parser.getTok().getLoc(), "']' expected"); 4975 E = Parser.getTok().getEndLoc(); 4976 Parser.Lex(); // Eat right bracket token. 4977 4978 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4979 ShiftType, ShiftImm, 0, isNegative, 4980 S, E)); 4981 4982 // If there's a pre-indexing writeback marker, '!', just add it as a token 4983 // operand. 4984 if (Parser.getTok().is(AsmToken::Exclaim)) { 4985 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4986 Parser.Lex(); // Eat the '!'. 4987 } 4988 4989 return false; 4990 } 4991 4992 /// parseMemRegOffsetShift - one of these two: 4993 /// ( lsl | lsr | asr | ror ) , # shift_amount 4994 /// rrx 4995 /// return true if it parses a shift otherwise it returns false. 4996 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4997 unsigned &Amount) { 4998 MCAsmParser &Parser = getParser(); 4999 SMLoc Loc = Parser.getTok().getLoc(); 5000 const AsmToken &Tok = Parser.getTok(); 5001 if (Tok.isNot(AsmToken::Identifier)) 5002 return true; 5003 StringRef ShiftName = Tok.getString(); 5004 if (ShiftName == "lsl" || ShiftName == "LSL" || 5005 ShiftName == "asl" || ShiftName == "ASL") 5006 St = ARM_AM::lsl; 5007 else if (ShiftName == "lsr" || ShiftName == "LSR") 5008 St = ARM_AM::lsr; 5009 else if (ShiftName == "asr" || ShiftName == "ASR") 5010 St = ARM_AM::asr; 5011 else if (ShiftName == "ror" || ShiftName == "ROR") 5012 St = ARM_AM::ror; 5013 else if (ShiftName == "rrx" || ShiftName == "RRX") 5014 St = ARM_AM::rrx; 5015 else 5016 return Error(Loc, "illegal shift operator"); 5017 Parser.Lex(); // Eat shift type token. 5018 5019 // rrx stands alone. 5020 Amount = 0; 5021 if (St != ARM_AM::rrx) { 5022 Loc = Parser.getTok().getLoc(); 5023 // A '#' and a shift amount. 5024 const AsmToken &HashTok = Parser.getTok(); 5025 if (HashTok.isNot(AsmToken::Hash) && 5026 HashTok.isNot(AsmToken::Dollar)) 5027 return Error(HashTok.getLoc(), "'#' expected"); 5028 Parser.Lex(); // Eat hash token. 5029 5030 const MCExpr *Expr; 5031 if (getParser().parseExpression(Expr)) 5032 return true; 5033 // Range check the immediate. 5034 // lsl, ror: 0 <= imm <= 31 5035 // lsr, asr: 0 <= imm <= 32 5036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5037 if (!CE) 5038 return Error(Loc, "shift amount must be an immediate"); 5039 int64_t Imm = CE->getValue(); 5040 if (Imm < 0 || 5041 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5042 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5043 return Error(Loc, "immediate shift value out of range"); 5044 // If <ShiftTy> #0, turn it into a no_shift. 5045 if (Imm == 0) 5046 St = ARM_AM::lsl; 5047 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5048 if (Imm == 32) 5049 Imm = 0; 5050 Amount = Imm; 5051 } 5052 5053 return false; 5054 } 5055 5056 /// parseFPImm - A floating point immediate expression operand. 5057 ARMAsmParser::OperandMatchResultTy 5058 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5059 MCAsmParser &Parser = getParser(); 5060 // Anything that can accept a floating point constant as an operand 5061 // needs to go through here, as the regular parseExpression is 5062 // integer only. 5063 // 5064 // This routine still creates a generic Immediate operand, containing 5065 // a bitcast of the 64-bit floating point value. The various operands 5066 // that accept floats can check whether the value is valid for them 5067 // via the standard is*() predicates. 5068 5069 SMLoc S = Parser.getTok().getLoc(); 5070 5071 if (Parser.getTok().isNot(AsmToken::Hash) && 5072 Parser.getTok().isNot(AsmToken::Dollar)) 5073 return MatchOperand_NoMatch; 5074 5075 // Disambiguate the VMOV forms that can accept an FP immediate. 5076 // vmov.f32 <sreg>, #imm 5077 // vmov.f64 <dreg>, #imm 5078 // vmov.f32 <dreg>, #imm @ vector f32x2 5079 // vmov.f32 <qreg>, #imm @ vector f32x4 5080 // 5081 // There are also the NEON VMOV instructions which expect an 5082 // integer constant. Make sure we don't try to parse an FPImm 5083 // for these: 5084 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5085 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5086 bool isVmovf = TyOp.isToken() && 5087 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5088 TyOp.getToken() == ".f16"); 5089 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5090 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5091 Mnemonic.getToken() == "fconsts"); 5092 if (!(isVmovf || isFconst)) 5093 return MatchOperand_NoMatch; 5094 5095 Parser.Lex(); // Eat '#' or '$'. 5096 5097 // Handle negation, as that still comes through as a separate token. 5098 bool isNegative = false; 5099 if (Parser.getTok().is(AsmToken::Minus)) { 5100 isNegative = true; 5101 Parser.Lex(); 5102 } 5103 const AsmToken &Tok = Parser.getTok(); 5104 SMLoc Loc = Tok.getLoc(); 5105 if (Tok.is(AsmToken::Real) && isVmovf) { 5106 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 5107 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5108 // If we had a '-' in front, toggle the sign bit. 5109 IntVal ^= (uint64_t)isNegative << 31; 5110 Parser.Lex(); // Eat the token. 5111 Operands.push_back(ARMOperand::CreateImm( 5112 MCConstantExpr::create(IntVal, getContext()), 5113 S, Parser.getTok().getLoc())); 5114 return MatchOperand_Success; 5115 } 5116 // Also handle plain integers. Instructions which allow floating point 5117 // immediates also allow a raw encoded 8-bit value. 5118 if (Tok.is(AsmToken::Integer) && isFconst) { 5119 int64_t Val = Tok.getIntVal(); 5120 Parser.Lex(); // Eat the token. 5121 if (Val > 255 || Val < 0) { 5122 Error(Loc, "encoded floating point value out of range"); 5123 return MatchOperand_ParseFail; 5124 } 5125 float RealVal = ARM_AM::getFPImmFloat(Val); 5126 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5127 5128 Operands.push_back(ARMOperand::CreateImm( 5129 MCConstantExpr::create(Val, getContext()), S, 5130 Parser.getTok().getLoc())); 5131 return MatchOperand_Success; 5132 } 5133 5134 Error(Loc, "invalid floating point immediate"); 5135 return MatchOperand_ParseFail; 5136 } 5137 5138 /// Parse a arm instruction operand. For now this parses the operand regardless 5139 /// of the mnemonic. 5140 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5141 MCAsmParser &Parser = getParser(); 5142 SMLoc S, E; 5143 5144 // Check if the current operand has a custom associated parser, if so, try to 5145 // custom parse the operand, or fallback to the general approach. 5146 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5147 if (ResTy == MatchOperand_Success) 5148 return false; 5149 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5150 // there was a match, but an error occurred, in which case, just return that 5151 // the operand parsing failed. 5152 if (ResTy == MatchOperand_ParseFail) 5153 return true; 5154 5155 switch (getLexer().getKind()) { 5156 default: 5157 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5158 return true; 5159 case AsmToken::Identifier: { 5160 // If we've seen a branch mnemonic, the next operand must be a label. This 5161 // is true even if the label is a register name. So "br r1" means branch to 5162 // label "r1". 5163 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5164 if (!ExpectLabel) { 5165 if (!tryParseRegisterWithWriteBack(Operands)) 5166 return false; 5167 int Res = tryParseShiftRegister(Operands); 5168 if (Res == 0) // success 5169 return false; 5170 else if (Res == -1) // irrecoverable error 5171 return true; 5172 // If this is VMRS, check for the apsr_nzcv operand. 5173 if (Mnemonic == "vmrs" && 5174 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5175 S = Parser.getTok().getLoc(); 5176 Parser.Lex(); 5177 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5178 return false; 5179 } 5180 } 5181 5182 // Fall though for the Identifier case that is not a register or a 5183 // special name. 5184 } 5185 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5186 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5187 case AsmToken::String: // quoted label names. 5188 case AsmToken::Dot: { // . as a branch target 5189 // This was not a register so parse other operands that start with an 5190 // identifier (like labels) as expressions and create them as immediates. 5191 const MCExpr *IdVal; 5192 S = Parser.getTok().getLoc(); 5193 if (getParser().parseExpression(IdVal)) 5194 return true; 5195 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5196 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5197 return false; 5198 } 5199 case AsmToken::LBrac: 5200 return parseMemory(Operands); 5201 case AsmToken::LCurly: 5202 return parseRegisterList(Operands); 5203 case AsmToken::Dollar: 5204 case AsmToken::Hash: { 5205 // #42 -> immediate. 5206 S = Parser.getTok().getLoc(); 5207 Parser.Lex(); 5208 5209 if (Parser.getTok().isNot(AsmToken::Colon)) { 5210 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5211 const MCExpr *ImmVal; 5212 if (getParser().parseExpression(ImmVal)) 5213 return true; 5214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5215 if (CE) { 5216 int32_t Val = CE->getValue(); 5217 if (isNegative && Val == 0) 5218 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5219 } 5220 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5221 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5222 5223 // There can be a trailing '!' on operands that we want as a separate 5224 // '!' Token operand. Handle that here. For example, the compatibility 5225 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5226 if (Parser.getTok().is(AsmToken::Exclaim)) { 5227 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5228 Parser.getTok().getLoc())); 5229 Parser.Lex(); // Eat exclaim token 5230 } 5231 return false; 5232 } 5233 // w/ a ':' after the '#', it's just like a plain ':'. 5234 // FALLTHROUGH 5235 } 5236 case AsmToken::Colon: { 5237 S = Parser.getTok().getLoc(); 5238 // ":lower16:" and ":upper16:" expression prefixes 5239 // FIXME: Check it's an expression prefix, 5240 // e.g. (FOO - :lower16:BAR) isn't legal. 5241 ARMMCExpr::VariantKind RefKind; 5242 if (parsePrefix(RefKind)) 5243 return true; 5244 5245 const MCExpr *SubExprVal; 5246 if (getParser().parseExpression(SubExprVal)) 5247 return true; 5248 5249 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5250 getContext()); 5251 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5252 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5253 return false; 5254 } 5255 case AsmToken::Equal: { 5256 S = Parser.getTok().getLoc(); 5257 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5258 return Error(S, "unexpected token in operand"); 5259 Parser.Lex(); // Eat '=' 5260 const MCExpr *SubExprVal; 5261 if (getParser().parseExpression(SubExprVal)) 5262 return true; 5263 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5264 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5265 return false; 5266 } 5267 } 5268 } 5269 5270 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5271 // :lower16: and :upper16:. 5272 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5273 MCAsmParser &Parser = getParser(); 5274 RefKind = ARMMCExpr::VK_ARM_None; 5275 5276 // consume an optional '#' (GNU compatibility) 5277 if (getLexer().is(AsmToken::Hash)) 5278 Parser.Lex(); 5279 5280 // :lower16: and :upper16: modifiers 5281 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5282 Parser.Lex(); // Eat ':' 5283 5284 if (getLexer().isNot(AsmToken::Identifier)) { 5285 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5286 return true; 5287 } 5288 5289 enum { 5290 COFF = (1 << MCObjectFileInfo::IsCOFF), 5291 ELF = (1 << MCObjectFileInfo::IsELF), 5292 MACHO = (1 << MCObjectFileInfo::IsMachO) 5293 }; 5294 static const struct PrefixEntry { 5295 const char *Spelling; 5296 ARMMCExpr::VariantKind VariantKind; 5297 uint8_t SupportedFormats; 5298 } PrefixEntries[] = { 5299 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5300 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5301 }; 5302 5303 StringRef IDVal = Parser.getTok().getIdentifier(); 5304 5305 const auto &Prefix = 5306 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5307 [&IDVal](const PrefixEntry &PE) { 5308 return PE.Spelling == IDVal; 5309 }); 5310 if (Prefix == std::end(PrefixEntries)) { 5311 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5312 return true; 5313 } 5314 5315 uint8_t CurrentFormat; 5316 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5317 case MCObjectFileInfo::IsMachO: 5318 CurrentFormat = MACHO; 5319 break; 5320 case MCObjectFileInfo::IsELF: 5321 CurrentFormat = ELF; 5322 break; 5323 case MCObjectFileInfo::IsCOFF: 5324 CurrentFormat = COFF; 5325 break; 5326 } 5327 5328 if (~Prefix->SupportedFormats & CurrentFormat) { 5329 Error(Parser.getTok().getLoc(), 5330 "cannot represent relocation in the current file format"); 5331 return true; 5332 } 5333 5334 RefKind = Prefix->VariantKind; 5335 Parser.Lex(); 5336 5337 if (getLexer().isNot(AsmToken::Colon)) { 5338 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5339 return true; 5340 } 5341 Parser.Lex(); // Eat the last ':' 5342 5343 return false; 5344 } 5345 5346 /// \brief Given a mnemonic, split out possible predication code and carry 5347 /// setting letters to form a canonical mnemonic and flags. 5348 // 5349 // FIXME: Would be nice to autogen this. 5350 // FIXME: This is a bit of a maze of special cases. 5351 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5352 unsigned &PredicationCode, 5353 bool &CarrySetting, 5354 unsigned &ProcessorIMod, 5355 StringRef &ITMask) { 5356 PredicationCode = ARMCC::AL; 5357 CarrySetting = false; 5358 ProcessorIMod = 0; 5359 5360 // Ignore some mnemonics we know aren't predicated forms. 5361 // 5362 // FIXME: Would be nice to autogen this. 5363 if ((Mnemonic == "movs" && isThumb()) || 5364 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5365 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5366 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5367 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5368 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5369 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5370 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5371 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5372 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5373 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5374 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5375 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5376 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5377 Mnemonic == "bxns" || Mnemonic == "blxns") 5378 return Mnemonic; 5379 5380 // First, split out any predication code. Ignore mnemonics we know aren't 5381 // predicated but do have a carry-set and so weren't caught above. 5382 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5383 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5384 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5385 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5386 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5387 .Case("eq", ARMCC::EQ) 5388 .Case("ne", ARMCC::NE) 5389 .Case("hs", ARMCC::HS) 5390 .Case("cs", ARMCC::HS) 5391 .Case("lo", ARMCC::LO) 5392 .Case("cc", ARMCC::LO) 5393 .Case("mi", ARMCC::MI) 5394 .Case("pl", ARMCC::PL) 5395 .Case("vs", ARMCC::VS) 5396 .Case("vc", ARMCC::VC) 5397 .Case("hi", ARMCC::HI) 5398 .Case("ls", ARMCC::LS) 5399 .Case("ge", ARMCC::GE) 5400 .Case("lt", ARMCC::LT) 5401 .Case("gt", ARMCC::GT) 5402 .Case("le", ARMCC::LE) 5403 .Case("al", ARMCC::AL) 5404 .Default(~0U); 5405 if (CC != ~0U) { 5406 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5407 PredicationCode = CC; 5408 } 5409 } 5410 5411 // Next, determine if we have a carry setting bit. We explicitly ignore all 5412 // the instructions we know end in 's'. 5413 if (Mnemonic.endswith("s") && 5414 !(Mnemonic == "cps" || Mnemonic == "mls" || 5415 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5416 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5417 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5418 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5419 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5420 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5421 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5422 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5423 (Mnemonic == "movs" && isThumb()))) { 5424 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5425 CarrySetting = true; 5426 } 5427 5428 // The "cps" instruction can have a interrupt mode operand which is glued into 5429 // the mnemonic. Check if this is the case, split it and parse the imod op 5430 if (Mnemonic.startswith("cps")) { 5431 // Split out any imod code. 5432 unsigned IMod = 5433 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5434 .Case("ie", ARM_PROC::IE) 5435 .Case("id", ARM_PROC::ID) 5436 .Default(~0U); 5437 if (IMod != ~0U) { 5438 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5439 ProcessorIMod = IMod; 5440 } 5441 } 5442 5443 // The "it" instruction has the condition mask on the end of the mnemonic. 5444 if (Mnemonic.startswith("it")) { 5445 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5446 Mnemonic = Mnemonic.slice(0, 2); 5447 } 5448 5449 return Mnemonic; 5450 } 5451 5452 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5453 /// inclusion of carry set or predication code operands. 5454 // 5455 // FIXME: It would be nice to autogen this. 5456 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5457 bool &CanAcceptCarrySet, 5458 bool &CanAcceptPredicationCode) { 5459 CanAcceptCarrySet = 5460 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5461 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5462 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5463 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5464 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5465 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5466 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5467 (!isThumb() && 5468 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5469 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5470 5471 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5472 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5473 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5474 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5475 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5476 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5477 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5478 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5479 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5480 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5481 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5482 Mnemonic == "vmovx" || Mnemonic == "vins") { 5483 // These mnemonics are never predicable 5484 CanAcceptPredicationCode = false; 5485 } else if (!isThumb()) { 5486 // Some instructions are only predicable in Thumb mode 5487 CanAcceptPredicationCode = 5488 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5489 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5490 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5491 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5492 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5493 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5494 !Mnemonic.startswith("srs"); 5495 } else if (isThumbOne()) { 5496 if (hasV6MOps()) 5497 CanAcceptPredicationCode = Mnemonic != "movs"; 5498 else 5499 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5500 } else 5501 CanAcceptPredicationCode = true; 5502 } 5503 5504 // \brief Some Thumb instructions have two operand forms that are not 5505 // available as three operand, convert to two operand form if possible. 5506 // 5507 // FIXME: We would really like to be able to tablegen'erate this. 5508 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5509 bool CarrySetting, 5510 OperandVector &Operands) { 5511 if (Operands.size() != 6) 5512 return; 5513 5514 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5515 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5516 if (!Op3.isReg() || !Op4.isReg()) 5517 return; 5518 5519 auto Op3Reg = Op3.getReg(); 5520 auto Op4Reg = Op4.getReg(); 5521 5522 // For most Thumb2 cases we just generate the 3 operand form and reduce 5523 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5524 // won't accept SP or PC so we do the transformation here taking care 5525 // with immediate range in the 'add sp, sp #imm' case. 5526 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5527 if (isThumbTwo()) { 5528 if (Mnemonic != "add") 5529 return; 5530 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5531 (Op5.isReg() && Op5.getReg() == ARM::PC); 5532 if (!TryTransform) { 5533 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5534 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5535 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5536 Op5.isImm() && !Op5.isImm0_508s4()); 5537 } 5538 if (!TryTransform) 5539 return; 5540 } else if (!isThumbOne()) 5541 return; 5542 5543 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5544 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5545 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5546 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5547 return; 5548 5549 // If first 2 operands of a 3 operand instruction are the same 5550 // then transform to 2 operand version of the same instruction 5551 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5552 bool Transform = Op3Reg == Op4Reg; 5553 5554 // For communtative operations, we might be able to transform if we swap 5555 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5556 // as tADDrsp. 5557 const ARMOperand *LastOp = &Op5; 5558 bool Swap = false; 5559 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5560 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5561 Mnemonic == "and" || Mnemonic == "eor" || 5562 Mnemonic == "adc" || Mnemonic == "orr")) { 5563 Swap = true; 5564 LastOp = &Op4; 5565 Transform = true; 5566 } 5567 5568 // If both registers are the same then remove one of them from 5569 // the operand list, with certain exceptions. 5570 if (Transform) { 5571 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5572 // 2 operand forms don't exist. 5573 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5574 LastOp->isReg()) 5575 Transform = false; 5576 5577 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5578 // 3-bits because the ARMARM says not to. 5579 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5580 Transform = false; 5581 } 5582 5583 if (Transform) { 5584 if (Swap) 5585 std::swap(Op4, Op5); 5586 Operands.erase(Operands.begin() + 3); 5587 } 5588 } 5589 5590 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5591 OperandVector &Operands) { 5592 // FIXME: This is all horribly hacky. We really need a better way to deal 5593 // with optional operands like this in the matcher table. 5594 5595 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5596 // another does not. Specifically, the MOVW instruction does not. So we 5597 // special case it here and remove the defaulted (non-setting) cc_out 5598 // operand if that's the instruction we're trying to match. 5599 // 5600 // We do this as post-processing of the explicit operands rather than just 5601 // conditionally adding the cc_out in the first place because we need 5602 // to check the type of the parsed immediate operand. 5603 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5604 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5605 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5606 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5607 return true; 5608 5609 // Register-register 'add' for thumb does not have a cc_out operand 5610 // when there are only two register operands. 5611 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5612 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5613 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5614 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5615 return true; 5616 // Register-register 'add' for thumb does not have a cc_out operand 5617 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5618 // have to check the immediate range here since Thumb2 has a variant 5619 // that can handle a different range and has a cc_out operand. 5620 if (((isThumb() && Mnemonic == "add") || 5621 (isThumbTwo() && Mnemonic == "sub")) && 5622 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5623 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5624 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5625 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5626 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5627 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5628 return true; 5629 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5630 // imm0_4095 variant. That's the least-preferred variant when 5631 // selecting via the generic "add" mnemonic, so to know that we 5632 // should remove the cc_out operand, we have to explicitly check that 5633 // it's not one of the other variants. Ugh. 5634 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5635 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5636 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5637 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5638 // Nest conditions rather than one big 'if' statement for readability. 5639 // 5640 // If both registers are low, we're in an IT block, and the immediate is 5641 // in range, we should use encoding T1 instead, which has a cc_out. 5642 if (inITBlock() && 5643 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5644 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5645 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5646 return false; 5647 // Check against T3. If the second register is the PC, this is an 5648 // alternate form of ADR, which uses encoding T4, so check for that too. 5649 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5650 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5651 return false; 5652 5653 // Otherwise, we use encoding T4, which does not have a cc_out 5654 // operand. 5655 return true; 5656 } 5657 5658 // The thumb2 multiply instruction doesn't have a CCOut register, so 5659 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5660 // use the 16-bit encoding or not. 5661 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5662 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5663 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5664 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5665 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5666 // If the registers aren't low regs, the destination reg isn't the 5667 // same as one of the source regs, or the cc_out operand is zero 5668 // outside of an IT block, we have to use the 32-bit encoding, so 5669 // remove the cc_out operand. 5670 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5671 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5672 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5673 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5674 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5675 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5676 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5677 return true; 5678 5679 // Also check the 'mul' syntax variant that doesn't specify an explicit 5680 // destination register. 5681 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5682 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5683 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5684 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5685 // If the registers aren't low regs or the cc_out operand is zero 5686 // outside of an IT block, we have to use the 32-bit encoding, so 5687 // remove the cc_out operand. 5688 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5689 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5690 !inITBlock())) 5691 return true; 5692 5693 5694 5695 // Register-register 'add/sub' for thumb does not have a cc_out operand 5696 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5697 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5698 // right, this will result in better diagnostics (which operand is off) 5699 // anyway. 5700 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5701 (Operands.size() == 5 || Operands.size() == 6) && 5702 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5703 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5704 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5705 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5706 (Operands.size() == 6 && 5707 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5708 return true; 5709 5710 return false; 5711 } 5712 5713 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5714 OperandVector &Operands) { 5715 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5716 unsigned RegIdx = 3; 5717 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5718 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5719 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5720 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5721 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5722 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5723 RegIdx = 4; 5724 5725 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5726 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5727 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5728 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5729 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5730 return true; 5731 } 5732 return false; 5733 } 5734 5735 static bool isDataTypeToken(StringRef Tok) { 5736 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5737 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5738 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5739 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5740 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5741 Tok == ".f" || Tok == ".d"; 5742 } 5743 5744 // FIXME: This bit should probably be handled via an explicit match class 5745 // in the .td files that matches the suffix instead of having it be 5746 // a literal string token the way it is now. 5747 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5748 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5749 } 5750 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5751 unsigned VariantID); 5752 5753 static bool RequiresVFPRegListValidation(StringRef Inst, 5754 bool &AcceptSinglePrecisionOnly, 5755 bool &AcceptDoublePrecisionOnly) { 5756 if (Inst.size() < 7) 5757 return false; 5758 5759 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5760 StringRef AddressingMode = Inst.substr(4, 2); 5761 if (AddressingMode == "ia" || AddressingMode == "db" || 5762 AddressingMode == "ea" || AddressingMode == "fd") { 5763 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5764 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5765 return true; 5766 } 5767 } 5768 5769 return false; 5770 } 5771 5772 /// Parse an arm instruction mnemonic followed by its operands. 5773 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5774 SMLoc NameLoc, OperandVector &Operands) { 5775 MCAsmParser &Parser = getParser(); 5776 // FIXME: Can this be done via tablegen in some fashion? 5777 bool RequireVFPRegisterListCheck; 5778 bool AcceptSinglePrecisionOnly; 5779 bool AcceptDoublePrecisionOnly; 5780 RequireVFPRegisterListCheck = 5781 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5782 AcceptDoublePrecisionOnly); 5783 5784 // Apply mnemonic aliases before doing anything else, as the destination 5785 // mnemonic may include suffices and we want to handle them normally. 5786 // The generic tblgen'erated code does this later, at the start of 5787 // MatchInstructionImpl(), but that's too late for aliases that include 5788 // any sort of suffix. 5789 uint64_t AvailableFeatures = getAvailableFeatures(); 5790 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5791 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5792 5793 // First check for the ARM-specific .req directive. 5794 if (Parser.getTok().is(AsmToken::Identifier) && 5795 Parser.getTok().getIdentifier() == ".req") { 5796 parseDirectiveReq(Name, NameLoc); 5797 // We always return 'error' for this, as we're done with this 5798 // statement and don't need to match the 'instruction." 5799 return true; 5800 } 5801 5802 // Create the leading tokens for the mnemonic, split by '.' characters. 5803 size_t Start = 0, Next = Name.find('.'); 5804 StringRef Mnemonic = Name.slice(Start, Next); 5805 5806 // Split out the predication code and carry setting flag from the mnemonic. 5807 unsigned PredicationCode; 5808 unsigned ProcessorIMod; 5809 bool CarrySetting; 5810 StringRef ITMask; 5811 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5812 ProcessorIMod, ITMask); 5813 5814 // In Thumb1, only the branch (B) instruction can be predicated. 5815 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5816 Parser.eatToEndOfStatement(); 5817 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5818 } 5819 5820 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5821 5822 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5823 // is the mask as it will be for the IT encoding if the conditional 5824 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5825 // where the conditional bit0 is zero, the instruction post-processing 5826 // will adjust the mask accordingly. 5827 if (Mnemonic == "it") { 5828 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5829 if (ITMask.size() > 3) { 5830 Parser.eatToEndOfStatement(); 5831 return Error(Loc, "too many conditions on IT instruction"); 5832 } 5833 unsigned Mask = 8; 5834 for (unsigned i = ITMask.size(); i != 0; --i) { 5835 char pos = ITMask[i - 1]; 5836 if (pos != 't' && pos != 'e') { 5837 Parser.eatToEndOfStatement(); 5838 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5839 } 5840 Mask >>= 1; 5841 if (ITMask[i - 1] == 't') 5842 Mask |= 8; 5843 } 5844 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5845 } 5846 5847 // FIXME: This is all a pretty gross hack. We should automatically handle 5848 // optional operands like this via tblgen. 5849 5850 // Next, add the CCOut and ConditionCode operands, if needed. 5851 // 5852 // For mnemonics which can ever incorporate a carry setting bit or predication 5853 // code, our matching model involves us always generating CCOut and 5854 // ConditionCode operands to match the mnemonic "as written" and then we let 5855 // the matcher deal with finding the right instruction or generating an 5856 // appropriate error. 5857 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5858 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5859 5860 // If we had a carry-set on an instruction that can't do that, issue an 5861 // error. 5862 if (!CanAcceptCarrySet && CarrySetting) { 5863 Parser.eatToEndOfStatement(); 5864 return Error(NameLoc, "instruction '" + Mnemonic + 5865 "' can not set flags, but 's' suffix specified"); 5866 } 5867 // If we had a predication code on an instruction that can't do that, issue an 5868 // error. 5869 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5870 Parser.eatToEndOfStatement(); 5871 return Error(NameLoc, "instruction '" + Mnemonic + 5872 "' is not predicable, but condition code specified"); 5873 } 5874 5875 // Add the carry setting operand, if necessary. 5876 if (CanAcceptCarrySet) { 5877 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5878 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5879 Loc)); 5880 } 5881 5882 // Add the predication code operand, if necessary. 5883 if (CanAcceptPredicationCode) { 5884 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5885 CarrySetting); 5886 Operands.push_back(ARMOperand::CreateCondCode( 5887 ARMCC::CondCodes(PredicationCode), Loc)); 5888 } 5889 5890 // Add the processor imod operand, if necessary. 5891 if (ProcessorIMod) { 5892 Operands.push_back(ARMOperand::CreateImm( 5893 MCConstantExpr::create(ProcessorIMod, getContext()), 5894 NameLoc, NameLoc)); 5895 } else if (Mnemonic == "cps" && isMClass()) { 5896 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5897 } 5898 5899 // Add the remaining tokens in the mnemonic. 5900 while (Next != StringRef::npos) { 5901 Start = Next; 5902 Next = Name.find('.', Start + 1); 5903 StringRef ExtraToken = Name.slice(Start, Next); 5904 5905 // Some NEON instructions have an optional datatype suffix that is 5906 // completely ignored. Check for that. 5907 if (isDataTypeToken(ExtraToken) && 5908 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5909 continue; 5910 5911 // For for ARM mode generate an error if the .n qualifier is used. 5912 if (ExtraToken == ".n" && !isThumb()) { 5913 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5914 Parser.eatToEndOfStatement(); 5915 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5916 "arm mode"); 5917 } 5918 5919 // The .n qualifier is always discarded as that is what the tables 5920 // and matcher expect. In ARM mode the .w qualifier has no effect, 5921 // so discard it to avoid errors that can be caused by the matcher. 5922 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5923 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5924 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5925 } 5926 } 5927 5928 // Read the remaining operands. 5929 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5930 // Read the first operand. 5931 if (parseOperand(Operands, Mnemonic)) { 5932 Parser.eatToEndOfStatement(); 5933 return true; 5934 } 5935 5936 while (getLexer().is(AsmToken::Comma)) { 5937 Parser.Lex(); // Eat the comma. 5938 5939 // Parse and remember the operand. 5940 if (parseOperand(Operands, Mnemonic)) { 5941 Parser.eatToEndOfStatement(); 5942 return true; 5943 } 5944 } 5945 } 5946 5947 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5948 SMLoc Loc = getLexer().getLoc(); 5949 Parser.eatToEndOfStatement(); 5950 return Error(Loc, "unexpected token in argument list"); 5951 } 5952 5953 Parser.Lex(); // Consume the EndOfStatement 5954 5955 if (RequireVFPRegisterListCheck) { 5956 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5957 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5958 return Error(Op.getStartLoc(), 5959 "VFP/Neon single precision register expected"); 5960 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5961 return Error(Op.getStartLoc(), 5962 "VFP/Neon double precision register expected"); 5963 } 5964 5965 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5966 5967 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5968 // do and don't have a cc_out optional-def operand. With some spot-checks 5969 // of the operand list, we can figure out which variant we're trying to 5970 // parse and adjust accordingly before actually matching. We shouldn't ever 5971 // try to remove a cc_out operand that was explicitly set on the 5972 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5973 // table driven matcher doesn't fit well with the ARM instruction set. 5974 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5975 Operands.erase(Operands.begin() + 1); 5976 5977 // Some instructions have the same mnemonic, but don't always 5978 // have a predicate. Distinguish them here and delete the 5979 // predicate if needed. 5980 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5981 Operands.erase(Operands.begin() + 1); 5982 5983 // ARM mode 'blx' need special handling, as the register operand version 5984 // is predicable, but the label operand version is not. So, we can't rely 5985 // on the Mnemonic based checking to correctly figure out when to put 5986 // a k_CondCode operand in the list. If we're trying to match the label 5987 // version, remove the k_CondCode operand here. 5988 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5989 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5990 Operands.erase(Operands.begin() + 1); 5991 5992 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5993 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5994 // a single GPRPair reg operand is used in the .td file to replace the two 5995 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5996 // expressed as a GPRPair, so we have to manually merge them. 5997 // FIXME: We would really like to be able to tablegen'erate this. 5998 if (!isThumb() && Operands.size() > 4 && 5999 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6000 Mnemonic == "stlexd")) { 6001 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6002 unsigned Idx = isLoad ? 2 : 3; 6003 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6004 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6005 6006 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6007 // Adjust only if Op1 and Op2 are GPRs. 6008 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6009 MRC.contains(Op2.getReg())) { 6010 unsigned Reg1 = Op1.getReg(); 6011 unsigned Reg2 = Op2.getReg(); 6012 unsigned Rt = MRI->getEncodingValue(Reg1); 6013 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6014 6015 // Rt2 must be Rt + 1 and Rt must be even. 6016 if (Rt + 1 != Rt2 || (Rt & 1)) { 6017 Error(Op2.getStartLoc(), isLoad 6018 ? "destination operands must be sequential" 6019 : "source operands must be sequential"); 6020 return true; 6021 } 6022 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6023 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6024 Operands[Idx] = 6025 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6026 Operands.erase(Operands.begin() + Idx + 1); 6027 } 6028 } 6029 6030 // GNU Assembler extension (compatibility) 6031 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6032 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6033 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6034 if (Op3.isMem()) { 6035 assert(Op2.isReg() && "expected register argument"); 6036 6037 unsigned SuperReg = MRI->getMatchingSuperReg( 6038 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6039 6040 assert(SuperReg && "expected register pair"); 6041 6042 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6043 6044 Operands.insert( 6045 Operands.begin() + 3, 6046 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6047 } 6048 } 6049 6050 // FIXME: As said above, this is all a pretty gross hack. This instruction 6051 // does not fit with other "subs" and tblgen. 6052 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6053 // so the Mnemonic is the original name "subs" and delete the predicate 6054 // operand so it will match the table entry. 6055 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6056 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6057 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6058 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6059 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6060 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6061 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6062 Operands.erase(Operands.begin() + 1); 6063 } 6064 return false; 6065 } 6066 6067 // Validate context-sensitive operand constraints. 6068 6069 // return 'true' if register list contains non-low GPR registers, 6070 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6071 // 'containsReg' to true. 6072 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6073 unsigned Reg, unsigned HiReg, 6074 bool &containsReg) { 6075 containsReg = false; 6076 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6077 unsigned OpReg = Inst.getOperand(i).getReg(); 6078 if (OpReg == Reg) 6079 containsReg = true; 6080 // Anything other than a low register isn't legal here. 6081 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6082 return true; 6083 } 6084 return false; 6085 } 6086 6087 // Check if the specified regisgter is in the register list of the inst, 6088 // starting at the indicated operand number. 6089 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6090 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6091 unsigned OpReg = Inst.getOperand(i).getReg(); 6092 if (OpReg == Reg) 6093 return true; 6094 } 6095 return false; 6096 } 6097 6098 // Return true if instruction has the interesting property of being 6099 // allowed in IT blocks, but not being predicable. 6100 static bool instIsBreakpoint(const MCInst &Inst) { 6101 return Inst.getOpcode() == ARM::tBKPT || 6102 Inst.getOpcode() == ARM::BKPT || 6103 Inst.getOpcode() == ARM::tHLT || 6104 Inst.getOpcode() == ARM::HLT; 6105 6106 } 6107 6108 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6109 const OperandVector &Operands, 6110 unsigned ListNo, bool IsARPop) { 6111 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6112 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6113 6114 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6115 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6116 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6117 6118 if (!IsARPop && ListContainsSP) 6119 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6120 "SP may not be in the register list"); 6121 else if (ListContainsPC && ListContainsLR) 6122 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6123 "PC and LR may not be in the register list simultaneously"); 6124 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6125 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6126 "instruction must be outside of IT block or the last " 6127 "instruction in an IT block"); 6128 return false; 6129 } 6130 6131 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6132 const OperandVector &Operands, 6133 unsigned ListNo) { 6134 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6135 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6136 6137 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6138 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6139 6140 if (ListContainsSP && ListContainsPC) 6141 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6142 "SP and PC may not be in the register list"); 6143 else if (ListContainsSP) 6144 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6145 "SP may not be in the register list"); 6146 else if (ListContainsPC) 6147 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6148 "PC may not be in the register list"); 6149 return false; 6150 } 6151 6152 // FIXME: We would really like to be able to tablegen'erate this. 6153 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6154 const OperandVector &Operands) { 6155 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6156 SMLoc Loc = Operands[0]->getStartLoc(); 6157 6158 // Check the IT block state first. 6159 // NOTE: BKPT and HLT instructions have the interesting property of being 6160 // allowed in IT blocks, but not being predicable. They just always execute. 6161 if (inITBlock() && !instIsBreakpoint(Inst)) { 6162 unsigned Bit = 1; 6163 if (ITState.FirstCond) 6164 ITState.FirstCond = false; 6165 else 6166 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6167 // The instruction must be predicable. 6168 if (!MCID.isPredicable()) 6169 return Error(Loc, "instructions in IT block must be predicable"); 6170 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6171 unsigned ITCond = Bit ? ITState.Cond : 6172 ARMCC::getOppositeCondition(ITState.Cond); 6173 if (Cond != ITCond) { 6174 // Find the condition code Operand to get its SMLoc information. 6175 SMLoc CondLoc; 6176 for (unsigned I = 1; I < Operands.size(); ++I) 6177 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6178 CondLoc = Operands[I]->getStartLoc(); 6179 return Error(CondLoc, "incorrect condition in IT block; got '" + 6180 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6181 "', but expected '" + 6182 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6183 } 6184 // Check for non-'al' condition codes outside of the IT block. 6185 } else if (isThumbTwo() && MCID.isPredicable() && 6186 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6187 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6188 Inst.getOpcode() != ARM::t2Bcc) 6189 return Error(Loc, "predicated instructions must be in IT block"); 6190 6191 const unsigned Opcode = Inst.getOpcode(); 6192 switch (Opcode) { 6193 case ARM::LDRD: 6194 case ARM::LDRD_PRE: 6195 case ARM::LDRD_POST: { 6196 const unsigned RtReg = Inst.getOperand(0).getReg(); 6197 6198 // Rt can't be R14. 6199 if (RtReg == ARM::LR) 6200 return Error(Operands[3]->getStartLoc(), 6201 "Rt can't be R14"); 6202 6203 const unsigned Rt = MRI->getEncodingValue(RtReg); 6204 // Rt must be even-numbered. 6205 if ((Rt & 1) == 1) 6206 return Error(Operands[3]->getStartLoc(), 6207 "Rt must be even-numbered"); 6208 6209 // Rt2 must be Rt + 1. 6210 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6211 if (Rt2 != Rt + 1) 6212 return Error(Operands[3]->getStartLoc(), 6213 "destination operands must be sequential"); 6214 6215 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6216 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6217 // For addressing modes with writeback, the base register needs to be 6218 // different from the destination registers. 6219 if (Rn == Rt || Rn == Rt2) 6220 return Error(Operands[3]->getStartLoc(), 6221 "base register needs to be different from destination " 6222 "registers"); 6223 } 6224 6225 return false; 6226 } 6227 case ARM::t2LDRDi8: 6228 case ARM::t2LDRD_PRE: 6229 case ARM::t2LDRD_POST: { 6230 // Rt2 must be different from Rt. 6231 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6232 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6233 if (Rt2 == Rt) 6234 return Error(Operands[3]->getStartLoc(), 6235 "destination operands can't be identical"); 6236 return false; 6237 } 6238 case ARM::t2BXJ: { 6239 const unsigned RmReg = Inst.getOperand(0).getReg(); 6240 // Rm = SP is no longer unpredictable in v8-A 6241 if (RmReg == ARM::SP && !hasV8Ops()) 6242 return Error(Operands[2]->getStartLoc(), 6243 "r13 (SP) is an unpredictable operand to BXJ"); 6244 return false; 6245 } 6246 case ARM::STRD: { 6247 // Rt2 must be Rt + 1. 6248 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6249 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6250 if (Rt2 != Rt + 1) 6251 return Error(Operands[3]->getStartLoc(), 6252 "source operands must be sequential"); 6253 return false; 6254 } 6255 case ARM::STRD_PRE: 6256 case ARM::STRD_POST: { 6257 // Rt2 must be Rt + 1. 6258 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6259 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6260 if (Rt2 != Rt + 1) 6261 return Error(Operands[3]->getStartLoc(), 6262 "source operands must be sequential"); 6263 return false; 6264 } 6265 case ARM::STR_PRE_IMM: 6266 case ARM::STR_PRE_REG: 6267 case ARM::STR_POST_IMM: 6268 case ARM::STR_POST_REG: 6269 case ARM::STRH_PRE: 6270 case ARM::STRH_POST: 6271 case ARM::STRB_PRE_IMM: 6272 case ARM::STRB_PRE_REG: 6273 case ARM::STRB_POST_IMM: 6274 case ARM::STRB_POST_REG: { 6275 // Rt must be different from Rn. 6276 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6277 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6278 6279 if (Rt == Rn) 6280 return Error(Operands[3]->getStartLoc(), 6281 "source register and base register can't be identical"); 6282 return false; 6283 } 6284 case ARM::LDR_PRE_IMM: 6285 case ARM::LDR_PRE_REG: 6286 case ARM::LDR_POST_IMM: 6287 case ARM::LDR_POST_REG: 6288 case ARM::LDRH_PRE: 6289 case ARM::LDRH_POST: 6290 case ARM::LDRSH_PRE: 6291 case ARM::LDRSH_POST: 6292 case ARM::LDRB_PRE_IMM: 6293 case ARM::LDRB_PRE_REG: 6294 case ARM::LDRB_POST_IMM: 6295 case ARM::LDRB_POST_REG: 6296 case ARM::LDRSB_PRE: 6297 case ARM::LDRSB_POST: { 6298 // Rt must be different from Rn. 6299 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6300 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6301 6302 if (Rt == Rn) 6303 return Error(Operands[3]->getStartLoc(), 6304 "destination register and base register can't be identical"); 6305 return false; 6306 } 6307 case ARM::SBFX: 6308 case ARM::UBFX: { 6309 // Width must be in range [1, 32-lsb]. 6310 unsigned LSB = Inst.getOperand(2).getImm(); 6311 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6312 if (Widthm1 >= 32 - LSB) 6313 return Error(Operands[5]->getStartLoc(), 6314 "bitfield width must be in range [1,32-lsb]"); 6315 return false; 6316 } 6317 // Notionally handles ARM::tLDMIA_UPD too. 6318 case ARM::tLDMIA: { 6319 // If we're parsing Thumb2, the .w variant is available and handles 6320 // most cases that are normally illegal for a Thumb1 LDM instruction. 6321 // We'll make the transformation in processInstruction() if necessary. 6322 // 6323 // Thumb LDM instructions are writeback iff the base register is not 6324 // in the register list. 6325 unsigned Rn = Inst.getOperand(0).getReg(); 6326 bool HasWritebackToken = 6327 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6328 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6329 bool ListContainsBase; 6330 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6331 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6332 "registers must be in range r0-r7"); 6333 // If we should have writeback, then there should be a '!' token. 6334 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6335 return Error(Operands[2]->getStartLoc(), 6336 "writeback operator '!' expected"); 6337 // If we should not have writeback, there must not be a '!'. This is 6338 // true even for the 32-bit wide encodings. 6339 if (ListContainsBase && HasWritebackToken) 6340 return Error(Operands[3]->getStartLoc(), 6341 "writeback operator '!' not allowed when base register " 6342 "in register list"); 6343 6344 if (validatetLDMRegList(Inst, Operands, 3)) 6345 return true; 6346 break; 6347 } 6348 case ARM::LDMIA_UPD: 6349 case ARM::LDMDB_UPD: 6350 case ARM::LDMIB_UPD: 6351 case ARM::LDMDA_UPD: 6352 // ARM variants loading and updating the same register are only officially 6353 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6354 if (!hasV7Ops()) 6355 break; 6356 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6357 return Error(Operands.back()->getStartLoc(), 6358 "writeback register not allowed in register list"); 6359 break; 6360 case ARM::t2LDMIA: 6361 case ARM::t2LDMDB: 6362 if (validatetLDMRegList(Inst, Operands, 3)) 6363 return true; 6364 break; 6365 case ARM::t2STMIA: 6366 case ARM::t2STMDB: 6367 if (validatetSTMRegList(Inst, Operands, 3)) 6368 return true; 6369 break; 6370 case ARM::t2LDMIA_UPD: 6371 case ARM::t2LDMDB_UPD: 6372 case ARM::t2STMIA_UPD: 6373 case ARM::t2STMDB_UPD: { 6374 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6375 return Error(Operands.back()->getStartLoc(), 6376 "writeback register not allowed in register list"); 6377 6378 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6379 if (validatetLDMRegList(Inst, Operands, 3)) 6380 return true; 6381 } else { 6382 if (validatetSTMRegList(Inst, Operands, 3)) 6383 return true; 6384 } 6385 break; 6386 } 6387 case ARM::sysLDMIA_UPD: 6388 case ARM::sysLDMDA_UPD: 6389 case ARM::sysLDMDB_UPD: 6390 case ARM::sysLDMIB_UPD: 6391 if (!listContainsReg(Inst, 3, ARM::PC)) 6392 return Error(Operands[4]->getStartLoc(), 6393 "writeback register only allowed on system LDM " 6394 "if PC in register-list"); 6395 break; 6396 case ARM::sysSTMIA_UPD: 6397 case ARM::sysSTMDA_UPD: 6398 case ARM::sysSTMDB_UPD: 6399 case ARM::sysSTMIB_UPD: 6400 return Error(Operands[2]->getStartLoc(), 6401 "system STM cannot have writeback register"); 6402 case ARM::tMUL: { 6403 // The second source operand must be the same register as the destination 6404 // operand. 6405 // 6406 // In this case, we must directly check the parsed operands because the 6407 // cvtThumbMultiply() function is written in such a way that it guarantees 6408 // this first statement is always true for the new Inst. Essentially, the 6409 // destination is unconditionally copied into the second source operand 6410 // without checking to see if it matches what we actually parsed. 6411 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6412 ((ARMOperand &)*Operands[5]).getReg()) && 6413 (((ARMOperand &)*Operands[3]).getReg() != 6414 ((ARMOperand &)*Operands[4]).getReg())) { 6415 return Error(Operands[3]->getStartLoc(), 6416 "destination register must match source register"); 6417 } 6418 break; 6419 } 6420 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6421 // so only issue a diagnostic for thumb1. The instructions will be 6422 // switched to the t2 encodings in processInstruction() if necessary. 6423 case ARM::tPOP: { 6424 bool ListContainsBase; 6425 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6426 !isThumbTwo()) 6427 return Error(Operands[2]->getStartLoc(), 6428 "registers must be in range r0-r7 or pc"); 6429 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6430 return true; 6431 break; 6432 } 6433 case ARM::tPUSH: { 6434 bool ListContainsBase; 6435 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6436 !isThumbTwo()) 6437 return Error(Operands[2]->getStartLoc(), 6438 "registers must be in range r0-r7 or lr"); 6439 if (validatetSTMRegList(Inst, Operands, 2)) 6440 return true; 6441 break; 6442 } 6443 case ARM::tSTMIA_UPD: { 6444 bool ListContainsBase, InvalidLowList; 6445 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6446 0, ListContainsBase); 6447 if (InvalidLowList && !isThumbTwo()) 6448 return Error(Operands[4]->getStartLoc(), 6449 "registers must be in range r0-r7"); 6450 6451 // This would be converted to a 32-bit stm, but that's not valid if the 6452 // writeback register is in the list. 6453 if (InvalidLowList && ListContainsBase) 6454 return Error(Operands[4]->getStartLoc(), 6455 "writeback operator '!' not allowed when base register " 6456 "in register list"); 6457 6458 if (validatetSTMRegList(Inst, Operands, 4)) 6459 return true; 6460 break; 6461 } 6462 case ARM::tADDrSP: { 6463 // If the non-SP source operand and the destination operand are not the 6464 // same, we need thumb2 (for the wide encoding), or we have an error. 6465 if (!isThumbTwo() && 6466 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6467 return Error(Operands[4]->getStartLoc(), 6468 "source register must be the same as destination"); 6469 } 6470 break; 6471 } 6472 // Final range checking for Thumb unconditional branch instructions. 6473 case ARM::tB: 6474 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6475 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6476 break; 6477 case ARM::t2B: { 6478 int op = (Operands[2]->isImm()) ? 2 : 3; 6479 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6480 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6481 break; 6482 } 6483 // Final range checking for Thumb conditional branch instructions. 6484 case ARM::tBcc: 6485 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6486 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6487 break; 6488 case ARM::t2Bcc: { 6489 int Op = (Operands[2]->isImm()) ? 2 : 3; 6490 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6491 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6492 break; 6493 } 6494 case ARM::MOVi16: 6495 case ARM::t2MOVi16: 6496 case ARM::t2MOVTi16: 6497 { 6498 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6499 // especially when we turn it into a movw and the expression <symbol> does 6500 // not have a :lower16: or :upper16 as part of the expression. We don't 6501 // want the behavior of silently truncating, which can be unexpected and 6502 // lead to bugs that are difficult to find since this is an easy mistake 6503 // to make. 6504 int i = (Operands[3]->isImm()) ? 3 : 4; 6505 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6506 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6507 if (CE) break; 6508 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6509 if (!E) break; 6510 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6511 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6512 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6513 return Error( 6514 Op.getStartLoc(), 6515 "immediate expression for mov requires :lower16: or :upper16"); 6516 break; 6517 } 6518 case ARM::HINT: 6519 case ARM::t2HINT: { 6520 if (hasRAS()) { 6521 // ESB is not predicable (pred must be AL) 6522 unsigned Imm8 = Inst.getOperand(0).getImm(); 6523 unsigned Pred = Inst.getOperand(1).getImm(); 6524 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6525 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6526 "predicable, but condition " 6527 "code specified"); 6528 } 6529 // Without the RAS extension, this behaves as any other unallocated hint. 6530 break; 6531 } 6532 } 6533 6534 return false; 6535 } 6536 6537 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6538 switch(Opc) { 6539 default: llvm_unreachable("unexpected opcode!"); 6540 // VST1LN 6541 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6542 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6543 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6544 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6545 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6546 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6547 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6548 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6549 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6550 6551 // VST2LN 6552 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6553 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6554 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6555 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6556 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6557 6558 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6559 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6560 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6561 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6562 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6563 6564 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6565 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6566 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6567 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6568 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6569 6570 // VST3LN 6571 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6572 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6573 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6574 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6575 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6576 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6577 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6578 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6579 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6580 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6581 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6582 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6583 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6584 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6585 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6586 6587 // VST3 6588 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6589 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6590 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6591 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6592 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6593 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6594 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6595 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6596 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6597 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6598 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6599 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6600 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6601 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6602 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6603 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6604 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6605 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6606 6607 // VST4LN 6608 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6609 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6610 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6611 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6612 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6613 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6614 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6615 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6616 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6617 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6618 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6619 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6620 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6621 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6622 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6623 6624 // VST4 6625 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6626 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6627 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6628 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6629 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6630 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6631 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6632 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6633 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6634 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6635 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6636 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6637 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6638 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6639 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6640 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6641 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6642 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6643 } 6644 } 6645 6646 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6647 switch(Opc) { 6648 default: llvm_unreachable("unexpected opcode!"); 6649 // VLD1LN 6650 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6651 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6652 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6653 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6654 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6655 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6656 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6657 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6658 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6659 6660 // VLD2LN 6661 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6662 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6663 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6664 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6665 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6666 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6667 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6668 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6669 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6670 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6671 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6672 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6673 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6674 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6675 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6676 6677 // VLD3DUP 6678 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6679 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6680 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6681 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6682 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6683 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6684 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6685 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6686 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6687 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6688 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6689 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6690 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6691 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6692 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6693 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6694 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6695 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6696 6697 // VLD3LN 6698 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6699 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6700 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6701 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6702 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6703 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6704 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6705 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6706 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6707 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6708 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6709 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6710 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6711 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6712 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6713 6714 // VLD3 6715 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6716 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6717 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6718 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6719 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6720 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6721 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6722 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6723 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6724 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6725 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6726 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6727 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6728 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6729 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6730 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6731 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6732 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6733 6734 // VLD4LN 6735 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6736 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6737 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6738 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6739 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6740 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6741 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6742 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6743 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6744 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6745 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6746 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6747 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6748 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6749 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6750 6751 // VLD4DUP 6752 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6753 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6754 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6755 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6756 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6757 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6758 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6759 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6760 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6761 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6762 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6763 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6764 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6765 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6766 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6767 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6768 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6769 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6770 6771 // VLD4 6772 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6773 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6774 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6775 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6776 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6777 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6778 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6779 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6780 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6781 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6782 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6783 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6784 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6785 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6786 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6787 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6788 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6789 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6790 } 6791 } 6792 6793 bool ARMAsmParser::processInstruction(MCInst &Inst, 6794 const OperandVector &Operands, 6795 MCStreamer &Out) { 6796 switch (Inst.getOpcode()) { 6797 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6798 case ARM::LDRT_POST: 6799 case ARM::LDRBT_POST: { 6800 const unsigned Opcode = 6801 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6802 : ARM::LDRBT_POST_IMM; 6803 MCInst TmpInst; 6804 TmpInst.setOpcode(Opcode); 6805 TmpInst.addOperand(Inst.getOperand(0)); 6806 TmpInst.addOperand(Inst.getOperand(1)); 6807 TmpInst.addOperand(Inst.getOperand(1)); 6808 TmpInst.addOperand(MCOperand::createReg(0)); 6809 TmpInst.addOperand(MCOperand::createImm(0)); 6810 TmpInst.addOperand(Inst.getOperand(2)); 6811 TmpInst.addOperand(Inst.getOperand(3)); 6812 Inst = TmpInst; 6813 return true; 6814 } 6815 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6816 case ARM::STRT_POST: 6817 case ARM::STRBT_POST: { 6818 const unsigned Opcode = 6819 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6820 : ARM::STRBT_POST_IMM; 6821 MCInst TmpInst; 6822 TmpInst.setOpcode(Opcode); 6823 TmpInst.addOperand(Inst.getOperand(1)); 6824 TmpInst.addOperand(Inst.getOperand(0)); 6825 TmpInst.addOperand(Inst.getOperand(1)); 6826 TmpInst.addOperand(MCOperand::createReg(0)); 6827 TmpInst.addOperand(MCOperand::createImm(0)); 6828 TmpInst.addOperand(Inst.getOperand(2)); 6829 TmpInst.addOperand(Inst.getOperand(3)); 6830 Inst = TmpInst; 6831 return true; 6832 } 6833 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6834 case ARM::ADDri: { 6835 if (Inst.getOperand(1).getReg() != ARM::PC || 6836 Inst.getOperand(5).getReg() != 0 || 6837 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6838 return false; 6839 MCInst TmpInst; 6840 TmpInst.setOpcode(ARM::ADR); 6841 TmpInst.addOperand(Inst.getOperand(0)); 6842 if (Inst.getOperand(2).isImm()) { 6843 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6844 // before passing it to the ADR instruction. 6845 unsigned Enc = Inst.getOperand(2).getImm(); 6846 TmpInst.addOperand(MCOperand::createImm( 6847 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6848 } else { 6849 // Turn PC-relative expression into absolute expression. 6850 // Reading PC provides the start of the current instruction + 8 and 6851 // the transform to adr is biased by that. 6852 MCSymbol *Dot = getContext().createTempSymbol(); 6853 Out.EmitLabel(Dot); 6854 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6855 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6856 MCSymbolRefExpr::VK_None, 6857 getContext()); 6858 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6859 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6860 getContext()); 6861 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6862 getContext()); 6863 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6864 } 6865 TmpInst.addOperand(Inst.getOperand(3)); 6866 TmpInst.addOperand(Inst.getOperand(4)); 6867 Inst = TmpInst; 6868 return true; 6869 } 6870 // Aliases for alternate PC+imm syntax of LDR instructions. 6871 case ARM::t2LDRpcrel: 6872 // Select the narrow version if the immediate will fit. 6873 if (Inst.getOperand(1).getImm() > 0 && 6874 Inst.getOperand(1).getImm() <= 0xff && 6875 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6876 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6877 Inst.setOpcode(ARM::tLDRpci); 6878 else 6879 Inst.setOpcode(ARM::t2LDRpci); 6880 return true; 6881 case ARM::t2LDRBpcrel: 6882 Inst.setOpcode(ARM::t2LDRBpci); 6883 return true; 6884 case ARM::t2LDRHpcrel: 6885 Inst.setOpcode(ARM::t2LDRHpci); 6886 return true; 6887 case ARM::t2LDRSBpcrel: 6888 Inst.setOpcode(ARM::t2LDRSBpci); 6889 return true; 6890 case ARM::t2LDRSHpcrel: 6891 Inst.setOpcode(ARM::t2LDRSHpci); 6892 return true; 6893 case ARM::LDRConstPool: 6894 case ARM::tLDRConstPool: 6895 case ARM::t2LDRConstPool: { 6896 // Pseudo instruction ldr rt, =immediate is converted to a 6897 // MOV rt, immediate if immediate is known and representable 6898 // otherwise we create a constant pool entry that we load from. 6899 MCInst TmpInst; 6900 if (Inst.getOpcode() == ARM::LDRConstPool) 6901 TmpInst.setOpcode(ARM::LDRi12); 6902 else if (Inst.getOpcode() == ARM::tLDRConstPool) 6903 TmpInst.setOpcode(ARM::tLDRpci); 6904 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 6905 TmpInst.setOpcode(ARM::t2LDRpci); 6906 const ARMOperand &PoolOperand = 6907 static_cast<ARMOperand &>(*Operands[3]); 6908 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 6909 // If SubExprVal is a constant we may be able to use a MOV 6910 if (isa<MCConstantExpr>(SubExprVal) && 6911 Inst.getOperand(0).getReg() != ARM::PC && 6912 Inst.getOperand(0).getReg() != ARM::SP) { 6913 int64_t Value = 6914 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 6915 bool UseMov = true; 6916 bool MovHasS = true; 6917 if (Inst.getOpcode() == ARM::LDRConstPool) { 6918 // ARM Constant 6919 if (ARM_AM::getSOImmVal(Value) != -1) { 6920 Value = ARM_AM::getSOImmVal(Value); 6921 TmpInst.setOpcode(ARM::MOVi); 6922 } 6923 else if (ARM_AM::getSOImmVal(~Value) != -1) { 6924 Value = ARM_AM::getSOImmVal(~Value); 6925 TmpInst.setOpcode(ARM::MVNi); 6926 } 6927 else if (hasV6T2Ops() && 6928 Value >=0 && Value < 65536) { 6929 TmpInst.setOpcode(ARM::MOVi16); 6930 MovHasS = false; 6931 } 6932 else 6933 UseMov = false; 6934 } 6935 else { 6936 // Thumb/Thumb2 Constant 6937 if (hasThumb2() && 6938 ARM_AM::getT2SOImmVal(Value) != -1) 6939 TmpInst.setOpcode(ARM::t2MOVi); 6940 else if (hasThumb2() && 6941 ARM_AM::getT2SOImmVal(~Value) != -1) { 6942 TmpInst.setOpcode(ARM::t2MVNi); 6943 Value = ~Value; 6944 } 6945 else if (hasV8MBaseline() && 6946 Value >=0 && Value < 65536) { 6947 TmpInst.setOpcode(ARM::t2MOVi16); 6948 MovHasS = false; 6949 } 6950 else 6951 UseMov = false; 6952 } 6953 if (UseMov) { 6954 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6955 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 6956 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6957 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6958 if (MovHasS) 6959 TmpInst.addOperand(MCOperand::createReg(0)); // S 6960 Inst = TmpInst; 6961 return true; 6962 } 6963 } 6964 // No opportunity to use MOV/MVN create constant pool 6965 const MCExpr *CPLoc = 6966 getTargetStreamer().addConstantPoolEntry(SubExprVal, 6967 PoolOperand.getStartLoc()); 6968 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6969 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 6970 if (TmpInst.getOpcode() == ARM::LDRi12) 6971 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 6972 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6973 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6974 Inst = TmpInst; 6975 return true; 6976 } 6977 // Handle NEON VST complex aliases. 6978 case ARM::VST1LNdWB_register_Asm_8: 6979 case ARM::VST1LNdWB_register_Asm_16: 6980 case ARM::VST1LNdWB_register_Asm_32: { 6981 MCInst TmpInst; 6982 // Shuffle the operands around so the lane index operand is in the 6983 // right place. 6984 unsigned Spacing; 6985 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6986 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6987 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6988 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6989 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6990 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6991 TmpInst.addOperand(Inst.getOperand(1)); // lane 6992 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6993 TmpInst.addOperand(Inst.getOperand(6)); 6994 Inst = TmpInst; 6995 return true; 6996 } 6997 6998 case ARM::VST2LNdWB_register_Asm_8: 6999 case ARM::VST2LNdWB_register_Asm_16: 7000 case ARM::VST2LNdWB_register_Asm_32: 7001 case ARM::VST2LNqWB_register_Asm_16: 7002 case ARM::VST2LNqWB_register_Asm_32: { 7003 MCInst TmpInst; 7004 // Shuffle the operands around so the lane index operand is in the 7005 // right place. 7006 unsigned Spacing; 7007 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7008 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7009 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7010 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7011 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7012 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7013 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7014 Spacing)); 7015 TmpInst.addOperand(Inst.getOperand(1)); // lane 7016 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7017 TmpInst.addOperand(Inst.getOperand(6)); 7018 Inst = TmpInst; 7019 return true; 7020 } 7021 7022 case ARM::VST3LNdWB_register_Asm_8: 7023 case ARM::VST3LNdWB_register_Asm_16: 7024 case ARM::VST3LNdWB_register_Asm_32: 7025 case ARM::VST3LNqWB_register_Asm_16: 7026 case ARM::VST3LNqWB_register_Asm_32: { 7027 MCInst TmpInst; 7028 // Shuffle the operands around so the lane index operand is in the 7029 // right place. 7030 unsigned Spacing; 7031 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7032 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7033 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7034 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7035 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7036 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7037 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7038 Spacing)); 7039 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7040 Spacing * 2)); 7041 TmpInst.addOperand(Inst.getOperand(1)); // lane 7042 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7043 TmpInst.addOperand(Inst.getOperand(6)); 7044 Inst = TmpInst; 7045 return true; 7046 } 7047 7048 case ARM::VST4LNdWB_register_Asm_8: 7049 case ARM::VST4LNdWB_register_Asm_16: 7050 case ARM::VST4LNdWB_register_Asm_32: 7051 case ARM::VST4LNqWB_register_Asm_16: 7052 case ARM::VST4LNqWB_register_Asm_32: { 7053 MCInst TmpInst; 7054 // Shuffle the operands around so the lane index operand is in the 7055 // right place. 7056 unsigned Spacing; 7057 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7058 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7059 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7060 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7061 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7062 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7063 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7064 Spacing)); 7065 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7066 Spacing * 2)); 7067 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7068 Spacing * 3)); 7069 TmpInst.addOperand(Inst.getOperand(1)); // lane 7070 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7071 TmpInst.addOperand(Inst.getOperand(6)); 7072 Inst = TmpInst; 7073 return true; 7074 } 7075 7076 case ARM::VST1LNdWB_fixed_Asm_8: 7077 case ARM::VST1LNdWB_fixed_Asm_16: 7078 case ARM::VST1LNdWB_fixed_Asm_32: { 7079 MCInst TmpInst; 7080 // Shuffle the operands around so the lane index operand is in the 7081 // right place. 7082 unsigned Spacing; 7083 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7084 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7085 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7086 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7087 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7088 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7089 TmpInst.addOperand(Inst.getOperand(1)); // lane 7090 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7091 TmpInst.addOperand(Inst.getOperand(5)); 7092 Inst = TmpInst; 7093 return true; 7094 } 7095 7096 case ARM::VST2LNdWB_fixed_Asm_8: 7097 case ARM::VST2LNdWB_fixed_Asm_16: 7098 case ARM::VST2LNdWB_fixed_Asm_32: 7099 case ARM::VST2LNqWB_fixed_Asm_16: 7100 case ARM::VST2LNqWB_fixed_Asm_32: { 7101 MCInst TmpInst; 7102 // Shuffle the operands around so the lane index operand is in the 7103 // right place. 7104 unsigned Spacing; 7105 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7106 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7107 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7108 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7109 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7110 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7111 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7112 Spacing)); 7113 TmpInst.addOperand(Inst.getOperand(1)); // lane 7114 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7115 TmpInst.addOperand(Inst.getOperand(5)); 7116 Inst = TmpInst; 7117 return true; 7118 } 7119 7120 case ARM::VST3LNdWB_fixed_Asm_8: 7121 case ARM::VST3LNdWB_fixed_Asm_16: 7122 case ARM::VST3LNdWB_fixed_Asm_32: 7123 case ARM::VST3LNqWB_fixed_Asm_16: 7124 case ARM::VST3LNqWB_fixed_Asm_32: { 7125 MCInst TmpInst; 7126 // Shuffle the operands around so the lane index operand is in the 7127 // right place. 7128 unsigned Spacing; 7129 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7130 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7131 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7132 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7133 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7134 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7135 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7136 Spacing)); 7137 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7138 Spacing * 2)); 7139 TmpInst.addOperand(Inst.getOperand(1)); // lane 7140 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7141 TmpInst.addOperand(Inst.getOperand(5)); 7142 Inst = TmpInst; 7143 return true; 7144 } 7145 7146 case ARM::VST4LNdWB_fixed_Asm_8: 7147 case ARM::VST4LNdWB_fixed_Asm_16: 7148 case ARM::VST4LNdWB_fixed_Asm_32: 7149 case ARM::VST4LNqWB_fixed_Asm_16: 7150 case ARM::VST4LNqWB_fixed_Asm_32: { 7151 MCInst TmpInst; 7152 // Shuffle the operands around so the lane index operand is in the 7153 // right place. 7154 unsigned Spacing; 7155 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7156 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7157 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7158 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7159 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7160 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7161 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7162 Spacing)); 7163 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7164 Spacing * 2)); 7165 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7166 Spacing * 3)); 7167 TmpInst.addOperand(Inst.getOperand(1)); // lane 7168 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7169 TmpInst.addOperand(Inst.getOperand(5)); 7170 Inst = TmpInst; 7171 return true; 7172 } 7173 7174 case ARM::VST1LNdAsm_8: 7175 case ARM::VST1LNdAsm_16: 7176 case ARM::VST1LNdAsm_32: { 7177 MCInst TmpInst; 7178 // Shuffle the operands around so the lane index operand is in the 7179 // right place. 7180 unsigned Spacing; 7181 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7182 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7183 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7184 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7185 TmpInst.addOperand(Inst.getOperand(1)); // lane 7186 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7187 TmpInst.addOperand(Inst.getOperand(5)); 7188 Inst = TmpInst; 7189 return true; 7190 } 7191 7192 case ARM::VST2LNdAsm_8: 7193 case ARM::VST2LNdAsm_16: 7194 case ARM::VST2LNdAsm_32: 7195 case ARM::VST2LNqAsm_16: 7196 case ARM::VST2LNqAsm_32: { 7197 MCInst TmpInst; 7198 // Shuffle the operands around so the lane index operand is in the 7199 // right place. 7200 unsigned Spacing; 7201 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7202 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7203 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7204 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7205 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7206 Spacing)); 7207 TmpInst.addOperand(Inst.getOperand(1)); // lane 7208 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7209 TmpInst.addOperand(Inst.getOperand(5)); 7210 Inst = TmpInst; 7211 return true; 7212 } 7213 7214 case ARM::VST3LNdAsm_8: 7215 case ARM::VST3LNdAsm_16: 7216 case ARM::VST3LNdAsm_32: 7217 case ARM::VST3LNqAsm_16: 7218 case ARM::VST3LNqAsm_32: { 7219 MCInst TmpInst; 7220 // Shuffle the operands around so the lane index operand is in the 7221 // right place. 7222 unsigned Spacing; 7223 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7224 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7225 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7226 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7227 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7228 Spacing)); 7229 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7230 Spacing * 2)); 7231 TmpInst.addOperand(Inst.getOperand(1)); // lane 7232 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7233 TmpInst.addOperand(Inst.getOperand(5)); 7234 Inst = TmpInst; 7235 return true; 7236 } 7237 7238 case ARM::VST4LNdAsm_8: 7239 case ARM::VST4LNdAsm_16: 7240 case ARM::VST4LNdAsm_32: 7241 case ARM::VST4LNqAsm_16: 7242 case ARM::VST4LNqAsm_32: { 7243 MCInst TmpInst; 7244 // Shuffle the operands around so the lane index operand is in the 7245 // right place. 7246 unsigned Spacing; 7247 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7248 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7249 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7250 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7251 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7252 Spacing)); 7253 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7254 Spacing * 2)); 7255 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7256 Spacing * 3)); 7257 TmpInst.addOperand(Inst.getOperand(1)); // lane 7258 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7259 TmpInst.addOperand(Inst.getOperand(5)); 7260 Inst = TmpInst; 7261 return true; 7262 } 7263 7264 // Handle NEON VLD complex aliases. 7265 case ARM::VLD1LNdWB_register_Asm_8: 7266 case ARM::VLD1LNdWB_register_Asm_16: 7267 case ARM::VLD1LNdWB_register_Asm_32: { 7268 MCInst TmpInst; 7269 // Shuffle the operands around so the lane index operand is in the 7270 // right place. 7271 unsigned Spacing; 7272 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7273 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7274 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7275 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7276 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7277 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7278 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7279 TmpInst.addOperand(Inst.getOperand(1)); // lane 7280 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7281 TmpInst.addOperand(Inst.getOperand(6)); 7282 Inst = TmpInst; 7283 return true; 7284 } 7285 7286 case ARM::VLD2LNdWB_register_Asm_8: 7287 case ARM::VLD2LNdWB_register_Asm_16: 7288 case ARM::VLD2LNdWB_register_Asm_32: 7289 case ARM::VLD2LNqWB_register_Asm_16: 7290 case ARM::VLD2LNqWB_register_Asm_32: { 7291 MCInst TmpInst; 7292 // Shuffle the operands around so the lane index operand is in the 7293 // right place. 7294 unsigned Spacing; 7295 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7296 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7297 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7298 Spacing)); 7299 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7300 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7301 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7302 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7303 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7304 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7305 Spacing)); 7306 TmpInst.addOperand(Inst.getOperand(1)); // lane 7307 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7308 TmpInst.addOperand(Inst.getOperand(6)); 7309 Inst = TmpInst; 7310 return true; 7311 } 7312 7313 case ARM::VLD3LNdWB_register_Asm_8: 7314 case ARM::VLD3LNdWB_register_Asm_16: 7315 case ARM::VLD3LNdWB_register_Asm_32: 7316 case ARM::VLD3LNqWB_register_Asm_16: 7317 case ARM::VLD3LNqWB_register_Asm_32: { 7318 MCInst TmpInst; 7319 // Shuffle the operands around so the lane index operand is in the 7320 // right place. 7321 unsigned Spacing; 7322 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7323 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7324 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7325 Spacing)); 7326 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7327 Spacing * 2)); 7328 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7329 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7330 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7331 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7332 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7334 Spacing)); 7335 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7336 Spacing * 2)); 7337 TmpInst.addOperand(Inst.getOperand(1)); // lane 7338 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7339 TmpInst.addOperand(Inst.getOperand(6)); 7340 Inst = TmpInst; 7341 return true; 7342 } 7343 7344 case ARM::VLD4LNdWB_register_Asm_8: 7345 case ARM::VLD4LNdWB_register_Asm_16: 7346 case ARM::VLD4LNdWB_register_Asm_32: 7347 case ARM::VLD4LNqWB_register_Asm_16: 7348 case ARM::VLD4LNqWB_register_Asm_32: { 7349 MCInst TmpInst; 7350 // Shuffle the operands around so the lane index operand is in the 7351 // right place. 7352 unsigned Spacing; 7353 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7354 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7356 Spacing)); 7357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7358 Spacing * 2)); 7359 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7360 Spacing * 3)); 7361 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7362 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7363 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7364 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7365 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7366 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7367 Spacing)); 7368 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7369 Spacing * 2)); 7370 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7371 Spacing * 3)); 7372 TmpInst.addOperand(Inst.getOperand(1)); // lane 7373 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7374 TmpInst.addOperand(Inst.getOperand(6)); 7375 Inst = TmpInst; 7376 return true; 7377 } 7378 7379 case ARM::VLD1LNdWB_fixed_Asm_8: 7380 case ARM::VLD1LNdWB_fixed_Asm_16: 7381 case ARM::VLD1LNdWB_fixed_Asm_32: { 7382 MCInst TmpInst; 7383 // Shuffle the operands around so the lane index operand is in the 7384 // right place. 7385 unsigned Spacing; 7386 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7387 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7388 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7389 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7390 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7391 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7392 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7393 TmpInst.addOperand(Inst.getOperand(1)); // lane 7394 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7395 TmpInst.addOperand(Inst.getOperand(5)); 7396 Inst = TmpInst; 7397 return true; 7398 } 7399 7400 case ARM::VLD2LNdWB_fixed_Asm_8: 7401 case ARM::VLD2LNdWB_fixed_Asm_16: 7402 case ARM::VLD2LNdWB_fixed_Asm_32: 7403 case ARM::VLD2LNqWB_fixed_Asm_16: 7404 case ARM::VLD2LNqWB_fixed_Asm_32: { 7405 MCInst TmpInst; 7406 // Shuffle the operands around so the lane index operand is in the 7407 // right place. 7408 unsigned Spacing; 7409 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7410 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7411 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7412 Spacing)); 7413 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7414 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7415 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7416 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7417 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7419 Spacing)); 7420 TmpInst.addOperand(Inst.getOperand(1)); // lane 7421 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7422 TmpInst.addOperand(Inst.getOperand(5)); 7423 Inst = TmpInst; 7424 return true; 7425 } 7426 7427 case ARM::VLD3LNdWB_fixed_Asm_8: 7428 case ARM::VLD3LNdWB_fixed_Asm_16: 7429 case ARM::VLD3LNdWB_fixed_Asm_32: 7430 case ARM::VLD3LNqWB_fixed_Asm_16: 7431 case ARM::VLD3LNqWB_fixed_Asm_32: { 7432 MCInst TmpInst; 7433 // Shuffle the operands around so the lane index operand is in the 7434 // right place. 7435 unsigned Spacing; 7436 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7437 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7438 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7439 Spacing)); 7440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7441 Spacing * 2)); 7442 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7443 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7444 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7445 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7446 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7447 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7448 Spacing)); 7449 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7450 Spacing * 2)); 7451 TmpInst.addOperand(Inst.getOperand(1)); // lane 7452 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7453 TmpInst.addOperand(Inst.getOperand(5)); 7454 Inst = TmpInst; 7455 return true; 7456 } 7457 7458 case ARM::VLD4LNdWB_fixed_Asm_8: 7459 case ARM::VLD4LNdWB_fixed_Asm_16: 7460 case ARM::VLD4LNdWB_fixed_Asm_32: 7461 case ARM::VLD4LNqWB_fixed_Asm_16: 7462 case ARM::VLD4LNqWB_fixed_Asm_32: { 7463 MCInst TmpInst; 7464 // Shuffle the operands around so the lane index operand is in the 7465 // right place. 7466 unsigned Spacing; 7467 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7468 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7469 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7470 Spacing)); 7471 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7472 Spacing * 2)); 7473 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7474 Spacing * 3)); 7475 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7476 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7477 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7478 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7479 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7480 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7481 Spacing)); 7482 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7483 Spacing * 2)); 7484 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7485 Spacing * 3)); 7486 TmpInst.addOperand(Inst.getOperand(1)); // lane 7487 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7488 TmpInst.addOperand(Inst.getOperand(5)); 7489 Inst = TmpInst; 7490 return true; 7491 } 7492 7493 case ARM::VLD1LNdAsm_8: 7494 case ARM::VLD1LNdAsm_16: 7495 case ARM::VLD1LNdAsm_32: { 7496 MCInst TmpInst; 7497 // Shuffle the operands around so the lane index operand is in the 7498 // right place. 7499 unsigned Spacing; 7500 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7501 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7502 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7503 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7504 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7505 TmpInst.addOperand(Inst.getOperand(1)); // lane 7506 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7507 TmpInst.addOperand(Inst.getOperand(5)); 7508 Inst = TmpInst; 7509 return true; 7510 } 7511 7512 case ARM::VLD2LNdAsm_8: 7513 case ARM::VLD2LNdAsm_16: 7514 case ARM::VLD2LNdAsm_32: 7515 case ARM::VLD2LNqAsm_16: 7516 case ARM::VLD2LNqAsm_32: { 7517 MCInst TmpInst; 7518 // Shuffle the operands around so the lane index operand is in the 7519 // right place. 7520 unsigned Spacing; 7521 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7522 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7523 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7524 Spacing)); 7525 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7526 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7527 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7528 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7529 Spacing)); 7530 TmpInst.addOperand(Inst.getOperand(1)); // lane 7531 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7532 TmpInst.addOperand(Inst.getOperand(5)); 7533 Inst = TmpInst; 7534 return true; 7535 } 7536 7537 case ARM::VLD3LNdAsm_8: 7538 case ARM::VLD3LNdAsm_16: 7539 case ARM::VLD3LNdAsm_32: 7540 case ARM::VLD3LNqAsm_16: 7541 case ARM::VLD3LNqAsm_32: { 7542 MCInst TmpInst; 7543 // Shuffle the operands around so the lane index operand is in the 7544 // right place. 7545 unsigned Spacing; 7546 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7547 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7548 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7549 Spacing)); 7550 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7551 Spacing * 2)); 7552 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7553 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7554 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7555 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7556 Spacing)); 7557 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7558 Spacing * 2)); 7559 TmpInst.addOperand(Inst.getOperand(1)); // lane 7560 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7561 TmpInst.addOperand(Inst.getOperand(5)); 7562 Inst = TmpInst; 7563 return true; 7564 } 7565 7566 case ARM::VLD4LNdAsm_8: 7567 case ARM::VLD4LNdAsm_16: 7568 case ARM::VLD4LNdAsm_32: 7569 case ARM::VLD4LNqAsm_16: 7570 case ARM::VLD4LNqAsm_32: { 7571 MCInst TmpInst; 7572 // Shuffle the operands around so the lane index operand is in the 7573 // right place. 7574 unsigned Spacing; 7575 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7576 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7577 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7578 Spacing)); 7579 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7580 Spacing * 2)); 7581 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7582 Spacing * 3)); 7583 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7584 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7585 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7586 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7587 Spacing)); 7588 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7589 Spacing * 2)); 7590 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7591 Spacing * 3)); 7592 TmpInst.addOperand(Inst.getOperand(1)); // lane 7593 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7594 TmpInst.addOperand(Inst.getOperand(5)); 7595 Inst = TmpInst; 7596 return true; 7597 } 7598 7599 // VLD3DUP single 3-element structure to all lanes instructions. 7600 case ARM::VLD3DUPdAsm_8: 7601 case ARM::VLD3DUPdAsm_16: 7602 case ARM::VLD3DUPdAsm_32: 7603 case ARM::VLD3DUPqAsm_8: 7604 case ARM::VLD3DUPqAsm_16: 7605 case ARM::VLD3DUPqAsm_32: { 7606 MCInst TmpInst; 7607 unsigned Spacing; 7608 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7609 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7610 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7611 Spacing)); 7612 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7613 Spacing * 2)); 7614 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7615 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7616 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7617 TmpInst.addOperand(Inst.getOperand(4)); 7618 Inst = TmpInst; 7619 return true; 7620 } 7621 7622 case ARM::VLD3DUPdWB_fixed_Asm_8: 7623 case ARM::VLD3DUPdWB_fixed_Asm_16: 7624 case ARM::VLD3DUPdWB_fixed_Asm_32: 7625 case ARM::VLD3DUPqWB_fixed_Asm_8: 7626 case ARM::VLD3DUPqWB_fixed_Asm_16: 7627 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7628 MCInst TmpInst; 7629 unsigned Spacing; 7630 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7631 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7632 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7633 Spacing)); 7634 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7635 Spacing * 2)); 7636 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7637 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7638 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7639 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7640 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7641 TmpInst.addOperand(Inst.getOperand(4)); 7642 Inst = TmpInst; 7643 return true; 7644 } 7645 7646 case ARM::VLD3DUPdWB_register_Asm_8: 7647 case ARM::VLD3DUPdWB_register_Asm_16: 7648 case ARM::VLD3DUPdWB_register_Asm_32: 7649 case ARM::VLD3DUPqWB_register_Asm_8: 7650 case ARM::VLD3DUPqWB_register_Asm_16: 7651 case ARM::VLD3DUPqWB_register_Asm_32: { 7652 MCInst TmpInst; 7653 unsigned Spacing; 7654 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7655 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7656 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7657 Spacing)); 7658 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7659 Spacing * 2)); 7660 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7661 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7662 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7663 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7664 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7665 TmpInst.addOperand(Inst.getOperand(5)); 7666 Inst = TmpInst; 7667 return true; 7668 } 7669 7670 // VLD3 multiple 3-element structure instructions. 7671 case ARM::VLD3dAsm_8: 7672 case ARM::VLD3dAsm_16: 7673 case ARM::VLD3dAsm_32: 7674 case ARM::VLD3qAsm_8: 7675 case ARM::VLD3qAsm_16: 7676 case ARM::VLD3qAsm_32: { 7677 MCInst TmpInst; 7678 unsigned Spacing; 7679 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7680 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7681 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7682 Spacing)); 7683 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7684 Spacing * 2)); 7685 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7686 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7687 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7688 TmpInst.addOperand(Inst.getOperand(4)); 7689 Inst = TmpInst; 7690 return true; 7691 } 7692 7693 case ARM::VLD3dWB_fixed_Asm_8: 7694 case ARM::VLD3dWB_fixed_Asm_16: 7695 case ARM::VLD3dWB_fixed_Asm_32: 7696 case ARM::VLD3qWB_fixed_Asm_8: 7697 case ARM::VLD3qWB_fixed_Asm_16: 7698 case ARM::VLD3qWB_fixed_Asm_32: { 7699 MCInst TmpInst; 7700 unsigned Spacing; 7701 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7702 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7703 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7704 Spacing)); 7705 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7706 Spacing * 2)); 7707 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7708 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7709 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7710 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7711 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7712 TmpInst.addOperand(Inst.getOperand(4)); 7713 Inst = TmpInst; 7714 return true; 7715 } 7716 7717 case ARM::VLD3dWB_register_Asm_8: 7718 case ARM::VLD3dWB_register_Asm_16: 7719 case ARM::VLD3dWB_register_Asm_32: 7720 case ARM::VLD3qWB_register_Asm_8: 7721 case ARM::VLD3qWB_register_Asm_16: 7722 case ARM::VLD3qWB_register_Asm_32: { 7723 MCInst TmpInst; 7724 unsigned Spacing; 7725 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7726 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7727 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7728 Spacing)); 7729 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7730 Spacing * 2)); 7731 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7732 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7733 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7734 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7735 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7736 TmpInst.addOperand(Inst.getOperand(5)); 7737 Inst = TmpInst; 7738 return true; 7739 } 7740 7741 // VLD4DUP single 3-element structure to all lanes instructions. 7742 case ARM::VLD4DUPdAsm_8: 7743 case ARM::VLD4DUPdAsm_16: 7744 case ARM::VLD4DUPdAsm_32: 7745 case ARM::VLD4DUPqAsm_8: 7746 case ARM::VLD4DUPqAsm_16: 7747 case ARM::VLD4DUPqAsm_32: { 7748 MCInst TmpInst; 7749 unsigned Spacing; 7750 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7751 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7752 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7753 Spacing)); 7754 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7755 Spacing * 2)); 7756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7757 Spacing * 3)); 7758 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7759 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7760 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7761 TmpInst.addOperand(Inst.getOperand(4)); 7762 Inst = TmpInst; 7763 return true; 7764 } 7765 7766 case ARM::VLD4DUPdWB_fixed_Asm_8: 7767 case ARM::VLD4DUPdWB_fixed_Asm_16: 7768 case ARM::VLD4DUPdWB_fixed_Asm_32: 7769 case ARM::VLD4DUPqWB_fixed_Asm_8: 7770 case ARM::VLD4DUPqWB_fixed_Asm_16: 7771 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7772 MCInst TmpInst; 7773 unsigned Spacing; 7774 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7775 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7776 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7777 Spacing)); 7778 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7779 Spacing * 2)); 7780 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7781 Spacing * 3)); 7782 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7783 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7784 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7785 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7786 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7787 TmpInst.addOperand(Inst.getOperand(4)); 7788 Inst = TmpInst; 7789 return true; 7790 } 7791 7792 case ARM::VLD4DUPdWB_register_Asm_8: 7793 case ARM::VLD4DUPdWB_register_Asm_16: 7794 case ARM::VLD4DUPdWB_register_Asm_32: 7795 case ARM::VLD4DUPqWB_register_Asm_8: 7796 case ARM::VLD4DUPqWB_register_Asm_16: 7797 case ARM::VLD4DUPqWB_register_Asm_32: { 7798 MCInst TmpInst; 7799 unsigned Spacing; 7800 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7801 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7802 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7803 Spacing)); 7804 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7805 Spacing * 2)); 7806 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7807 Spacing * 3)); 7808 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7809 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7810 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7811 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7812 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7813 TmpInst.addOperand(Inst.getOperand(5)); 7814 Inst = TmpInst; 7815 return true; 7816 } 7817 7818 // VLD4 multiple 4-element structure instructions. 7819 case ARM::VLD4dAsm_8: 7820 case ARM::VLD4dAsm_16: 7821 case ARM::VLD4dAsm_32: 7822 case ARM::VLD4qAsm_8: 7823 case ARM::VLD4qAsm_16: 7824 case ARM::VLD4qAsm_32: { 7825 MCInst TmpInst; 7826 unsigned Spacing; 7827 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7828 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7829 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7830 Spacing)); 7831 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7832 Spacing * 2)); 7833 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7834 Spacing * 3)); 7835 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7836 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7837 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7838 TmpInst.addOperand(Inst.getOperand(4)); 7839 Inst = TmpInst; 7840 return true; 7841 } 7842 7843 case ARM::VLD4dWB_fixed_Asm_8: 7844 case ARM::VLD4dWB_fixed_Asm_16: 7845 case ARM::VLD4dWB_fixed_Asm_32: 7846 case ARM::VLD4qWB_fixed_Asm_8: 7847 case ARM::VLD4qWB_fixed_Asm_16: 7848 case ARM::VLD4qWB_fixed_Asm_32: { 7849 MCInst TmpInst; 7850 unsigned Spacing; 7851 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7852 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7853 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7854 Spacing)); 7855 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7856 Spacing * 2)); 7857 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7858 Spacing * 3)); 7859 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7860 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7861 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7862 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7863 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7864 TmpInst.addOperand(Inst.getOperand(4)); 7865 Inst = TmpInst; 7866 return true; 7867 } 7868 7869 case ARM::VLD4dWB_register_Asm_8: 7870 case ARM::VLD4dWB_register_Asm_16: 7871 case ARM::VLD4dWB_register_Asm_32: 7872 case ARM::VLD4qWB_register_Asm_8: 7873 case ARM::VLD4qWB_register_Asm_16: 7874 case ARM::VLD4qWB_register_Asm_32: { 7875 MCInst TmpInst; 7876 unsigned Spacing; 7877 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7878 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7879 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7880 Spacing)); 7881 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7882 Spacing * 2)); 7883 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7884 Spacing * 3)); 7885 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7886 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7887 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7888 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7889 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7890 TmpInst.addOperand(Inst.getOperand(5)); 7891 Inst = TmpInst; 7892 return true; 7893 } 7894 7895 // VST3 multiple 3-element structure instructions. 7896 case ARM::VST3dAsm_8: 7897 case ARM::VST3dAsm_16: 7898 case ARM::VST3dAsm_32: 7899 case ARM::VST3qAsm_8: 7900 case ARM::VST3qAsm_16: 7901 case ARM::VST3qAsm_32: { 7902 MCInst TmpInst; 7903 unsigned Spacing; 7904 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7905 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7906 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7907 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7909 Spacing)); 7910 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7911 Spacing * 2)); 7912 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7913 TmpInst.addOperand(Inst.getOperand(4)); 7914 Inst = TmpInst; 7915 return true; 7916 } 7917 7918 case ARM::VST3dWB_fixed_Asm_8: 7919 case ARM::VST3dWB_fixed_Asm_16: 7920 case ARM::VST3dWB_fixed_Asm_32: 7921 case ARM::VST3qWB_fixed_Asm_8: 7922 case ARM::VST3qWB_fixed_Asm_16: 7923 case ARM::VST3qWB_fixed_Asm_32: { 7924 MCInst TmpInst; 7925 unsigned Spacing; 7926 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7927 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7928 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7929 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7930 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7931 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7933 Spacing)); 7934 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7935 Spacing * 2)); 7936 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7937 TmpInst.addOperand(Inst.getOperand(4)); 7938 Inst = TmpInst; 7939 return true; 7940 } 7941 7942 case ARM::VST3dWB_register_Asm_8: 7943 case ARM::VST3dWB_register_Asm_16: 7944 case ARM::VST3dWB_register_Asm_32: 7945 case ARM::VST3qWB_register_Asm_8: 7946 case ARM::VST3qWB_register_Asm_16: 7947 case ARM::VST3qWB_register_Asm_32: { 7948 MCInst TmpInst; 7949 unsigned Spacing; 7950 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7951 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7952 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7953 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7954 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7955 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7956 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7957 Spacing)); 7958 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7959 Spacing * 2)); 7960 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7961 TmpInst.addOperand(Inst.getOperand(5)); 7962 Inst = TmpInst; 7963 return true; 7964 } 7965 7966 // VST4 multiple 3-element structure instructions. 7967 case ARM::VST4dAsm_8: 7968 case ARM::VST4dAsm_16: 7969 case ARM::VST4dAsm_32: 7970 case ARM::VST4qAsm_8: 7971 case ARM::VST4qAsm_16: 7972 case ARM::VST4qAsm_32: { 7973 MCInst TmpInst; 7974 unsigned Spacing; 7975 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7976 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7977 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7978 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7979 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7980 Spacing)); 7981 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7982 Spacing * 2)); 7983 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7984 Spacing * 3)); 7985 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7986 TmpInst.addOperand(Inst.getOperand(4)); 7987 Inst = TmpInst; 7988 return true; 7989 } 7990 7991 case ARM::VST4dWB_fixed_Asm_8: 7992 case ARM::VST4dWB_fixed_Asm_16: 7993 case ARM::VST4dWB_fixed_Asm_32: 7994 case ARM::VST4qWB_fixed_Asm_8: 7995 case ARM::VST4qWB_fixed_Asm_16: 7996 case ARM::VST4qWB_fixed_Asm_32: { 7997 MCInst TmpInst; 7998 unsigned Spacing; 7999 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8000 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8001 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8002 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8003 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8004 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8005 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8006 Spacing)); 8007 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8008 Spacing * 2)); 8009 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8010 Spacing * 3)); 8011 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8012 TmpInst.addOperand(Inst.getOperand(4)); 8013 Inst = TmpInst; 8014 return true; 8015 } 8016 8017 case ARM::VST4dWB_register_Asm_8: 8018 case ARM::VST4dWB_register_Asm_16: 8019 case ARM::VST4dWB_register_Asm_32: 8020 case ARM::VST4qWB_register_Asm_8: 8021 case ARM::VST4qWB_register_Asm_16: 8022 case ARM::VST4qWB_register_Asm_32: { 8023 MCInst TmpInst; 8024 unsigned Spacing; 8025 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8026 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8027 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8028 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8029 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8030 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8031 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8032 Spacing)); 8033 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8034 Spacing * 2)); 8035 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8036 Spacing * 3)); 8037 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8038 TmpInst.addOperand(Inst.getOperand(5)); 8039 Inst = TmpInst; 8040 return true; 8041 } 8042 8043 // Handle encoding choice for the shift-immediate instructions. 8044 case ARM::t2LSLri: 8045 case ARM::t2LSRri: 8046 case ARM::t2ASRri: { 8047 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8048 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8049 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8050 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8051 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8052 unsigned NewOpc; 8053 switch (Inst.getOpcode()) { 8054 default: llvm_unreachable("unexpected opcode"); 8055 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8056 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8057 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8058 } 8059 // The Thumb1 operands aren't in the same order. Awesome, eh? 8060 MCInst TmpInst; 8061 TmpInst.setOpcode(NewOpc); 8062 TmpInst.addOperand(Inst.getOperand(0)); 8063 TmpInst.addOperand(Inst.getOperand(5)); 8064 TmpInst.addOperand(Inst.getOperand(1)); 8065 TmpInst.addOperand(Inst.getOperand(2)); 8066 TmpInst.addOperand(Inst.getOperand(3)); 8067 TmpInst.addOperand(Inst.getOperand(4)); 8068 Inst = TmpInst; 8069 return true; 8070 } 8071 return false; 8072 } 8073 8074 // Handle the Thumb2 mode MOV complex aliases. 8075 case ARM::t2MOVsr: 8076 case ARM::t2MOVSsr: { 8077 // Which instruction to expand to depends on the CCOut operand and 8078 // whether we're in an IT block if the register operands are low 8079 // registers. 8080 bool isNarrow = false; 8081 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8082 isARMLowRegister(Inst.getOperand(1).getReg()) && 8083 isARMLowRegister(Inst.getOperand(2).getReg()) && 8084 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8085 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8086 isNarrow = true; 8087 MCInst TmpInst; 8088 unsigned newOpc; 8089 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8090 default: llvm_unreachable("unexpected opcode!"); 8091 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8092 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8093 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8094 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8095 } 8096 TmpInst.setOpcode(newOpc); 8097 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8098 if (isNarrow) 8099 TmpInst.addOperand(MCOperand::createReg( 8100 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8101 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8102 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8103 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8104 TmpInst.addOperand(Inst.getOperand(5)); 8105 if (!isNarrow) 8106 TmpInst.addOperand(MCOperand::createReg( 8107 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8108 Inst = TmpInst; 8109 return true; 8110 } 8111 case ARM::t2MOVsi: 8112 case ARM::t2MOVSsi: { 8113 // Which instruction to expand to depends on the CCOut operand and 8114 // whether we're in an IT block if the register operands are low 8115 // registers. 8116 bool isNarrow = false; 8117 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8118 isARMLowRegister(Inst.getOperand(1).getReg()) && 8119 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8120 isNarrow = true; 8121 MCInst TmpInst; 8122 unsigned newOpc; 8123 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 8124 default: llvm_unreachable("unexpected opcode!"); 8125 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8126 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8127 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8128 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8129 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8130 } 8131 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8132 if (Amount == 32) Amount = 0; 8133 TmpInst.setOpcode(newOpc); 8134 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8135 if (isNarrow) 8136 TmpInst.addOperand(MCOperand::createReg( 8137 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8138 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8139 if (newOpc != ARM::t2RRX) 8140 TmpInst.addOperand(MCOperand::createImm(Amount)); 8141 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8142 TmpInst.addOperand(Inst.getOperand(4)); 8143 if (!isNarrow) 8144 TmpInst.addOperand(MCOperand::createReg( 8145 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8146 Inst = TmpInst; 8147 return true; 8148 } 8149 // Handle the ARM mode MOV complex aliases. 8150 case ARM::ASRr: 8151 case ARM::LSRr: 8152 case ARM::LSLr: 8153 case ARM::RORr: { 8154 ARM_AM::ShiftOpc ShiftTy; 8155 switch(Inst.getOpcode()) { 8156 default: llvm_unreachable("unexpected opcode!"); 8157 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8158 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8159 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8160 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8161 } 8162 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8163 MCInst TmpInst; 8164 TmpInst.setOpcode(ARM::MOVsr); 8165 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8166 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8167 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8168 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8169 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8170 TmpInst.addOperand(Inst.getOperand(4)); 8171 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8172 Inst = TmpInst; 8173 return true; 8174 } 8175 case ARM::ASRi: 8176 case ARM::LSRi: 8177 case ARM::LSLi: 8178 case ARM::RORi: { 8179 ARM_AM::ShiftOpc ShiftTy; 8180 switch(Inst.getOpcode()) { 8181 default: llvm_unreachable("unexpected opcode!"); 8182 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8183 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8184 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8185 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8186 } 8187 // A shift by zero is a plain MOVr, not a MOVsi. 8188 unsigned Amt = Inst.getOperand(2).getImm(); 8189 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8190 // A shift by 32 should be encoded as 0 when permitted 8191 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8192 Amt = 0; 8193 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8194 MCInst TmpInst; 8195 TmpInst.setOpcode(Opc); 8196 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8197 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8198 if (Opc == ARM::MOVsi) 8199 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8200 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8201 TmpInst.addOperand(Inst.getOperand(4)); 8202 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8203 Inst = TmpInst; 8204 return true; 8205 } 8206 case ARM::RRXi: { 8207 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8208 MCInst TmpInst; 8209 TmpInst.setOpcode(ARM::MOVsi); 8210 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8211 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8212 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8213 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8214 TmpInst.addOperand(Inst.getOperand(3)); 8215 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8216 Inst = TmpInst; 8217 return true; 8218 } 8219 case ARM::t2LDMIA_UPD: { 8220 // If this is a load of a single register, then we should use 8221 // a post-indexed LDR instruction instead, per the ARM ARM. 8222 if (Inst.getNumOperands() != 5) 8223 return false; 8224 MCInst TmpInst; 8225 TmpInst.setOpcode(ARM::t2LDR_POST); 8226 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8227 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8228 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8229 TmpInst.addOperand(MCOperand::createImm(4)); 8230 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8231 TmpInst.addOperand(Inst.getOperand(3)); 8232 Inst = TmpInst; 8233 return true; 8234 } 8235 case ARM::t2STMDB_UPD: { 8236 // If this is a store of a single register, then we should use 8237 // a pre-indexed STR instruction instead, per the ARM ARM. 8238 if (Inst.getNumOperands() != 5) 8239 return false; 8240 MCInst TmpInst; 8241 TmpInst.setOpcode(ARM::t2STR_PRE); 8242 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8243 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8244 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8245 TmpInst.addOperand(MCOperand::createImm(-4)); 8246 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8247 TmpInst.addOperand(Inst.getOperand(3)); 8248 Inst = TmpInst; 8249 return true; 8250 } 8251 case ARM::LDMIA_UPD: 8252 // If this is a load of a single register via a 'pop', then we should use 8253 // a post-indexed LDR instruction instead, per the ARM ARM. 8254 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8255 Inst.getNumOperands() == 5) { 8256 MCInst TmpInst; 8257 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8258 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8259 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8260 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8261 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8262 TmpInst.addOperand(MCOperand::createImm(4)); 8263 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8264 TmpInst.addOperand(Inst.getOperand(3)); 8265 Inst = TmpInst; 8266 return true; 8267 } 8268 break; 8269 case ARM::STMDB_UPD: 8270 // If this is a store of a single register via a 'push', then we should use 8271 // a pre-indexed STR instruction instead, per the ARM ARM. 8272 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8273 Inst.getNumOperands() == 5) { 8274 MCInst TmpInst; 8275 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8276 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8277 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8278 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8279 TmpInst.addOperand(MCOperand::createImm(-4)); 8280 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8281 TmpInst.addOperand(Inst.getOperand(3)); 8282 Inst = TmpInst; 8283 } 8284 break; 8285 case ARM::t2ADDri12: 8286 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8287 // mnemonic was used (not "addw"), encoding T3 is preferred. 8288 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8289 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8290 break; 8291 Inst.setOpcode(ARM::t2ADDri); 8292 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8293 break; 8294 case ARM::t2SUBri12: 8295 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8296 // mnemonic was used (not "subw"), encoding T3 is preferred. 8297 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8298 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8299 break; 8300 Inst.setOpcode(ARM::t2SUBri); 8301 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8302 break; 8303 case ARM::tADDi8: 8304 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8305 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8306 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8307 // to encoding T1 if <Rd> is omitted." 8308 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8309 Inst.setOpcode(ARM::tADDi3); 8310 return true; 8311 } 8312 break; 8313 case ARM::tSUBi8: 8314 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8315 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8316 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8317 // to encoding T1 if <Rd> is omitted." 8318 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8319 Inst.setOpcode(ARM::tSUBi3); 8320 return true; 8321 } 8322 break; 8323 case ARM::t2ADDri: 8324 case ARM::t2SUBri: { 8325 // If the destination and first source operand are the same, and 8326 // the flags are compatible with the current IT status, use encoding T2 8327 // instead of T3. For compatibility with the system 'as'. Make sure the 8328 // wide encoding wasn't explicit. 8329 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8330 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8331 (unsigned)Inst.getOperand(2).getImm() > 255 || 8332 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8333 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8334 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8335 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8336 break; 8337 MCInst TmpInst; 8338 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8339 ARM::tADDi8 : ARM::tSUBi8); 8340 TmpInst.addOperand(Inst.getOperand(0)); 8341 TmpInst.addOperand(Inst.getOperand(5)); 8342 TmpInst.addOperand(Inst.getOperand(0)); 8343 TmpInst.addOperand(Inst.getOperand(2)); 8344 TmpInst.addOperand(Inst.getOperand(3)); 8345 TmpInst.addOperand(Inst.getOperand(4)); 8346 Inst = TmpInst; 8347 return true; 8348 } 8349 case ARM::t2ADDrr: { 8350 // If the destination and first source operand are the same, and 8351 // there's no setting of the flags, use encoding T2 instead of T3. 8352 // Note that this is only for ADD, not SUB. This mirrors the system 8353 // 'as' behaviour. Also take advantage of ADD being commutative. 8354 // Make sure the wide encoding wasn't explicit. 8355 bool Swap = false; 8356 auto DestReg = Inst.getOperand(0).getReg(); 8357 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8358 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8359 Transform = true; 8360 Swap = true; 8361 } 8362 if (!Transform || 8363 Inst.getOperand(5).getReg() != 0 || 8364 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8365 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8366 break; 8367 MCInst TmpInst; 8368 TmpInst.setOpcode(ARM::tADDhirr); 8369 TmpInst.addOperand(Inst.getOperand(0)); 8370 TmpInst.addOperand(Inst.getOperand(0)); 8371 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8372 TmpInst.addOperand(Inst.getOperand(3)); 8373 TmpInst.addOperand(Inst.getOperand(4)); 8374 Inst = TmpInst; 8375 return true; 8376 } 8377 case ARM::tADDrSP: { 8378 // If the non-SP source operand and the destination operand are not the 8379 // same, we need to use the 32-bit encoding if it's available. 8380 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8381 Inst.setOpcode(ARM::t2ADDrr); 8382 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8383 return true; 8384 } 8385 break; 8386 } 8387 case ARM::tB: 8388 // A Thumb conditional branch outside of an IT block is a tBcc. 8389 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8390 Inst.setOpcode(ARM::tBcc); 8391 return true; 8392 } 8393 break; 8394 case ARM::t2B: 8395 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8396 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8397 Inst.setOpcode(ARM::t2Bcc); 8398 return true; 8399 } 8400 break; 8401 case ARM::t2Bcc: 8402 // If the conditional is AL or we're in an IT block, we really want t2B. 8403 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8404 Inst.setOpcode(ARM::t2B); 8405 return true; 8406 } 8407 break; 8408 case ARM::tBcc: 8409 // If the conditional is AL, we really want tB. 8410 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8411 Inst.setOpcode(ARM::tB); 8412 return true; 8413 } 8414 break; 8415 case ARM::tLDMIA: { 8416 // If the register list contains any high registers, or if the writeback 8417 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8418 // instead if we're in Thumb2. Otherwise, this should have generated 8419 // an error in validateInstruction(). 8420 unsigned Rn = Inst.getOperand(0).getReg(); 8421 bool hasWritebackToken = 8422 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8423 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8424 bool listContainsBase; 8425 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8426 (!listContainsBase && !hasWritebackToken) || 8427 (listContainsBase && hasWritebackToken)) { 8428 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8429 assert (isThumbTwo()); 8430 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8431 // If we're switching to the updating version, we need to insert 8432 // the writeback tied operand. 8433 if (hasWritebackToken) 8434 Inst.insert(Inst.begin(), 8435 MCOperand::createReg(Inst.getOperand(0).getReg())); 8436 return true; 8437 } 8438 break; 8439 } 8440 case ARM::tSTMIA_UPD: { 8441 // If the register list contains any high registers, we need to use 8442 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8443 // should have generated an error in validateInstruction(). 8444 unsigned Rn = Inst.getOperand(0).getReg(); 8445 bool listContainsBase; 8446 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8447 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8448 assert (isThumbTwo()); 8449 Inst.setOpcode(ARM::t2STMIA_UPD); 8450 return true; 8451 } 8452 break; 8453 } 8454 case ARM::tPOP: { 8455 bool listContainsBase; 8456 // If the register list contains any high registers, we need to use 8457 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8458 // should have generated an error in validateInstruction(). 8459 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8460 return false; 8461 assert (isThumbTwo()); 8462 Inst.setOpcode(ARM::t2LDMIA_UPD); 8463 // Add the base register and writeback operands. 8464 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8465 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8466 return true; 8467 } 8468 case ARM::tPUSH: { 8469 bool listContainsBase; 8470 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8471 return false; 8472 assert (isThumbTwo()); 8473 Inst.setOpcode(ARM::t2STMDB_UPD); 8474 // Add the base register and writeback operands. 8475 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8476 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8477 return true; 8478 } 8479 case ARM::t2MOVi: { 8480 // If we can use the 16-bit encoding and the user didn't explicitly 8481 // request the 32-bit variant, transform it here. 8482 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8483 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8484 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8485 Inst.getOperand(4).getReg() == ARM::CPSR) || 8486 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8487 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8488 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8489 // The operands aren't in the same order for tMOVi8... 8490 MCInst TmpInst; 8491 TmpInst.setOpcode(ARM::tMOVi8); 8492 TmpInst.addOperand(Inst.getOperand(0)); 8493 TmpInst.addOperand(Inst.getOperand(4)); 8494 TmpInst.addOperand(Inst.getOperand(1)); 8495 TmpInst.addOperand(Inst.getOperand(2)); 8496 TmpInst.addOperand(Inst.getOperand(3)); 8497 Inst = TmpInst; 8498 return true; 8499 } 8500 break; 8501 } 8502 case ARM::t2MOVr: { 8503 // If we can use the 16-bit encoding and the user didn't explicitly 8504 // request the 32-bit variant, transform it here. 8505 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8506 isARMLowRegister(Inst.getOperand(1).getReg()) && 8507 Inst.getOperand(2).getImm() == ARMCC::AL && 8508 Inst.getOperand(4).getReg() == ARM::CPSR && 8509 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8510 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8511 // The operands aren't the same for tMOV[S]r... (no cc_out) 8512 MCInst TmpInst; 8513 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8514 TmpInst.addOperand(Inst.getOperand(0)); 8515 TmpInst.addOperand(Inst.getOperand(1)); 8516 TmpInst.addOperand(Inst.getOperand(2)); 8517 TmpInst.addOperand(Inst.getOperand(3)); 8518 Inst = TmpInst; 8519 return true; 8520 } 8521 break; 8522 } 8523 case ARM::t2SXTH: 8524 case ARM::t2SXTB: 8525 case ARM::t2UXTH: 8526 case ARM::t2UXTB: { 8527 // If we can use the 16-bit encoding and the user didn't explicitly 8528 // request the 32-bit variant, transform it here. 8529 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8530 isARMLowRegister(Inst.getOperand(1).getReg()) && 8531 Inst.getOperand(2).getImm() == 0 && 8532 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8533 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8534 unsigned NewOpc; 8535 switch (Inst.getOpcode()) { 8536 default: llvm_unreachable("Illegal opcode!"); 8537 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8538 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8539 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8540 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8541 } 8542 // The operands aren't the same for thumb1 (no rotate operand). 8543 MCInst TmpInst; 8544 TmpInst.setOpcode(NewOpc); 8545 TmpInst.addOperand(Inst.getOperand(0)); 8546 TmpInst.addOperand(Inst.getOperand(1)); 8547 TmpInst.addOperand(Inst.getOperand(3)); 8548 TmpInst.addOperand(Inst.getOperand(4)); 8549 Inst = TmpInst; 8550 return true; 8551 } 8552 break; 8553 } 8554 case ARM::MOVsi: { 8555 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8556 // rrx shifts and asr/lsr of #32 is encoded as 0 8557 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8558 return false; 8559 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8560 // Shifting by zero is accepted as a vanilla 'MOVr' 8561 MCInst TmpInst; 8562 TmpInst.setOpcode(ARM::MOVr); 8563 TmpInst.addOperand(Inst.getOperand(0)); 8564 TmpInst.addOperand(Inst.getOperand(1)); 8565 TmpInst.addOperand(Inst.getOperand(3)); 8566 TmpInst.addOperand(Inst.getOperand(4)); 8567 TmpInst.addOperand(Inst.getOperand(5)); 8568 Inst = TmpInst; 8569 return true; 8570 } 8571 return false; 8572 } 8573 case ARM::ANDrsi: 8574 case ARM::ORRrsi: 8575 case ARM::EORrsi: 8576 case ARM::BICrsi: 8577 case ARM::SUBrsi: 8578 case ARM::ADDrsi: { 8579 unsigned newOpc; 8580 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8581 if (SOpc == ARM_AM::rrx) return false; 8582 switch (Inst.getOpcode()) { 8583 default: llvm_unreachable("unexpected opcode!"); 8584 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8585 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8586 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8587 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8588 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8589 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8590 } 8591 // If the shift is by zero, use the non-shifted instruction definition. 8592 // The exception is for right shifts, where 0 == 32 8593 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8594 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8595 MCInst TmpInst; 8596 TmpInst.setOpcode(newOpc); 8597 TmpInst.addOperand(Inst.getOperand(0)); 8598 TmpInst.addOperand(Inst.getOperand(1)); 8599 TmpInst.addOperand(Inst.getOperand(2)); 8600 TmpInst.addOperand(Inst.getOperand(4)); 8601 TmpInst.addOperand(Inst.getOperand(5)); 8602 TmpInst.addOperand(Inst.getOperand(6)); 8603 Inst = TmpInst; 8604 return true; 8605 } 8606 return false; 8607 } 8608 case ARM::ITasm: 8609 case ARM::t2IT: { 8610 // The mask bits for all but the first condition are represented as 8611 // the low bit of the condition code value implies 't'. We currently 8612 // always have 1 implies 't', so XOR toggle the bits if the low bit 8613 // of the condition code is zero. 8614 MCOperand &MO = Inst.getOperand(1); 8615 unsigned Mask = MO.getImm(); 8616 unsigned OrigMask = Mask; 8617 unsigned TZ = countTrailingZeros(Mask); 8618 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8619 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8620 Mask ^= (0xE << TZ) & 0xF; 8621 } 8622 MO.setImm(Mask); 8623 8624 // Set up the IT block state according to the IT instruction we just 8625 // matched. 8626 assert(!inITBlock() && "nested IT blocks?!"); 8627 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8628 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8629 ITState.CurPosition = 0; 8630 ITState.FirstCond = true; 8631 break; 8632 } 8633 case ARM::t2LSLrr: 8634 case ARM::t2LSRrr: 8635 case ARM::t2ASRrr: 8636 case ARM::t2SBCrr: 8637 case ARM::t2RORrr: 8638 case ARM::t2BICrr: 8639 { 8640 // Assemblers should use the narrow encodings of these instructions when permissible. 8641 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8642 isARMLowRegister(Inst.getOperand(2).getReg())) && 8643 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8644 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8645 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8646 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8647 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8648 ".w"))) { 8649 unsigned NewOpc; 8650 switch (Inst.getOpcode()) { 8651 default: llvm_unreachable("unexpected opcode"); 8652 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8653 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8654 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8655 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8656 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8657 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8658 } 8659 MCInst TmpInst; 8660 TmpInst.setOpcode(NewOpc); 8661 TmpInst.addOperand(Inst.getOperand(0)); 8662 TmpInst.addOperand(Inst.getOperand(5)); 8663 TmpInst.addOperand(Inst.getOperand(1)); 8664 TmpInst.addOperand(Inst.getOperand(2)); 8665 TmpInst.addOperand(Inst.getOperand(3)); 8666 TmpInst.addOperand(Inst.getOperand(4)); 8667 Inst = TmpInst; 8668 return true; 8669 } 8670 return false; 8671 } 8672 case ARM::t2ANDrr: 8673 case ARM::t2EORrr: 8674 case ARM::t2ADCrr: 8675 case ARM::t2ORRrr: 8676 { 8677 // Assemblers should use the narrow encodings of these instructions when permissible. 8678 // These instructions are special in that they are commutable, so shorter encodings 8679 // are available more often. 8680 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8681 isARMLowRegister(Inst.getOperand(2).getReg())) && 8682 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8683 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8684 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8685 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8686 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8687 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8688 ".w"))) { 8689 unsigned NewOpc; 8690 switch (Inst.getOpcode()) { 8691 default: llvm_unreachable("unexpected opcode"); 8692 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8693 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8694 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8695 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8696 } 8697 MCInst TmpInst; 8698 TmpInst.setOpcode(NewOpc); 8699 TmpInst.addOperand(Inst.getOperand(0)); 8700 TmpInst.addOperand(Inst.getOperand(5)); 8701 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8702 TmpInst.addOperand(Inst.getOperand(1)); 8703 TmpInst.addOperand(Inst.getOperand(2)); 8704 } else { 8705 TmpInst.addOperand(Inst.getOperand(2)); 8706 TmpInst.addOperand(Inst.getOperand(1)); 8707 } 8708 TmpInst.addOperand(Inst.getOperand(3)); 8709 TmpInst.addOperand(Inst.getOperand(4)); 8710 Inst = TmpInst; 8711 return true; 8712 } 8713 return false; 8714 } 8715 } 8716 return false; 8717 } 8718 8719 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8720 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8721 // suffix depending on whether they're in an IT block or not. 8722 unsigned Opc = Inst.getOpcode(); 8723 const MCInstrDesc &MCID = MII.get(Opc); 8724 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8725 assert(MCID.hasOptionalDef() && 8726 "optionally flag setting instruction missing optional def operand"); 8727 assert(MCID.NumOperands == Inst.getNumOperands() && 8728 "operand count mismatch!"); 8729 // Find the optional-def operand (cc_out). 8730 unsigned OpNo; 8731 for (OpNo = 0; 8732 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8733 ++OpNo) 8734 ; 8735 // If we're parsing Thumb1, reject it completely. 8736 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8737 return Match_MnemonicFail; 8738 // If we're parsing Thumb2, which form is legal depends on whether we're 8739 // in an IT block. 8740 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8741 !inITBlock()) 8742 return Match_RequiresITBlock; 8743 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8744 inITBlock()) 8745 return Match_RequiresNotITBlock; 8746 } else if (isThumbOne()) { 8747 // Some high-register supporting Thumb1 encodings only allow both registers 8748 // to be from r0-r7 when in Thumb2. 8749 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8750 isARMLowRegister(Inst.getOperand(1).getReg()) && 8751 isARMLowRegister(Inst.getOperand(2).getReg())) 8752 return Match_RequiresThumb2; 8753 // Others only require ARMv6 or later. 8754 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8755 isARMLowRegister(Inst.getOperand(0).getReg()) && 8756 isARMLowRegister(Inst.getOperand(1).getReg())) 8757 return Match_RequiresV6; 8758 } 8759 8760 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8761 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8762 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8763 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8764 return Match_RequiresV8; 8765 else if (Inst.getOperand(I).getReg() == ARM::PC) 8766 return Match_InvalidOperand; 8767 } 8768 8769 return Match_Success; 8770 } 8771 8772 namespace llvm { 8773 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8774 return true; // In an assembly source, no need to second-guess 8775 } 8776 } 8777 8778 static const char *getSubtargetFeatureName(uint64_t Val); 8779 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8780 OperandVector &Operands, 8781 MCStreamer &Out, uint64_t &ErrorInfo, 8782 bool MatchingInlineAsm) { 8783 MCInst Inst; 8784 unsigned MatchResult; 8785 8786 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8787 MatchingInlineAsm); 8788 switch (MatchResult) { 8789 case Match_Success: 8790 // Context sensitive operand constraints aren't handled by the matcher, 8791 // so check them here. 8792 if (validateInstruction(Inst, Operands)) { 8793 // Still progress the IT block, otherwise one wrong condition causes 8794 // nasty cascading errors. 8795 forwardITPosition(); 8796 return true; 8797 } 8798 8799 { // processInstruction() updates inITBlock state, we need to save it away 8800 bool wasInITBlock = inITBlock(); 8801 8802 // Some instructions need post-processing to, for example, tweak which 8803 // encoding is selected. Loop on it while changes happen so the 8804 // individual transformations can chain off each other. E.g., 8805 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8806 while (processInstruction(Inst, Operands, Out)) 8807 ; 8808 8809 // Only after the instruction is fully processed, we can validate it 8810 if (wasInITBlock && hasV8Ops() && isThumb() && 8811 !isV8EligibleForIT(&Inst)) { 8812 Warning(IDLoc, "deprecated instruction in IT block"); 8813 } 8814 } 8815 8816 // Only move forward at the very end so that everything in validate 8817 // and process gets a consistent answer about whether we're in an IT 8818 // block. 8819 forwardITPosition(); 8820 8821 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8822 // doesn't actually encode. 8823 if (Inst.getOpcode() == ARM::ITasm) 8824 return false; 8825 8826 Inst.setLoc(IDLoc); 8827 Out.EmitInstruction(Inst, getSTI()); 8828 return false; 8829 case Match_MissingFeature: { 8830 assert(ErrorInfo && "Unknown missing feature!"); 8831 // Special case the error message for the very common case where only 8832 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8833 std::string Msg = "instruction requires:"; 8834 uint64_t Mask = 1; 8835 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8836 if (ErrorInfo & Mask) { 8837 Msg += " "; 8838 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8839 } 8840 Mask <<= 1; 8841 } 8842 return Error(IDLoc, Msg); 8843 } 8844 case Match_InvalidOperand: { 8845 SMLoc ErrorLoc = IDLoc; 8846 if (ErrorInfo != ~0ULL) { 8847 if (ErrorInfo >= Operands.size()) 8848 return Error(IDLoc, "too few operands for instruction"); 8849 8850 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8851 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8852 } 8853 8854 return Error(ErrorLoc, "invalid operand for instruction"); 8855 } 8856 case Match_MnemonicFail: 8857 return Error(IDLoc, "invalid instruction", 8858 ((ARMOperand &)*Operands[0]).getLocRange()); 8859 case Match_RequiresNotITBlock: 8860 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8861 case Match_RequiresITBlock: 8862 return Error(IDLoc, "instruction only valid inside IT block"); 8863 case Match_RequiresV6: 8864 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8865 case Match_RequiresThumb2: 8866 return Error(IDLoc, "instruction variant requires Thumb2"); 8867 case Match_RequiresV8: 8868 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 8869 case Match_ImmRange0_15: { 8870 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8871 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8872 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8873 } 8874 case Match_ImmRange0_239: { 8875 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8876 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8877 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8878 } 8879 case Match_AlignedMemoryRequiresNone: 8880 case Match_DupAlignedMemoryRequiresNone: 8881 case Match_AlignedMemoryRequires16: 8882 case Match_DupAlignedMemoryRequires16: 8883 case Match_AlignedMemoryRequires32: 8884 case Match_DupAlignedMemoryRequires32: 8885 case Match_AlignedMemoryRequires64: 8886 case Match_DupAlignedMemoryRequires64: 8887 case Match_AlignedMemoryRequires64or128: 8888 case Match_DupAlignedMemoryRequires64or128: 8889 case Match_AlignedMemoryRequires64or128or256: 8890 { 8891 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8892 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8893 switch (MatchResult) { 8894 default: 8895 llvm_unreachable("Missing Match_Aligned type"); 8896 case Match_AlignedMemoryRequiresNone: 8897 case Match_DupAlignedMemoryRequiresNone: 8898 return Error(ErrorLoc, "alignment must be omitted"); 8899 case Match_AlignedMemoryRequires16: 8900 case Match_DupAlignedMemoryRequires16: 8901 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8902 case Match_AlignedMemoryRequires32: 8903 case Match_DupAlignedMemoryRequires32: 8904 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8905 case Match_AlignedMemoryRequires64: 8906 case Match_DupAlignedMemoryRequires64: 8907 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8908 case Match_AlignedMemoryRequires64or128: 8909 case Match_DupAlignedMemoryRequires64or128: 8910 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8911 case Match_AlignedMemoryRequires64or128or256: 8912 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8913 } 8914 } 8915 } 8916 8917 llvm_unreachable("Implement any new match types added!"); 8918 } 8919 8920 /// parseDirective parses the arm specific directives 8921 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8922 const MCObjectFileInfo::Environment Format = 8923 getContext().getObjectFileInfo()->getObjectFileType(); 8924 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8925 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8926 8927 StringRef IDVal = DirectiveID.getIdentifier(); 8928 if (IDVal == ".word") 8929 return parseLiteralValues(4, DirectiveID.getLoc()); 8930 else if (IDVal == ".short" || IDVal == ".hword") 8931 return parseLiteralValues(2, DirectiveID.getLoc()); 8932 else if (IDVal == ".thumb") 8933 return parseDirectiveThumb(DirectiveID.getLoc()); 8934 else if (IDVal == ".arm") 8935 return parseDirectiveARM(DirectiveID.getLoc()); 8936 else if (IDVal == ".thumb_func") 8937 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8938 else if (IDVal == ".code") 8939 return parseDirectiveCode(DirectiveID.getLoc()); 8940 else if (IDVal == ".syntax") 8941 return parseDirectiveSyntax(DirectiveID.getLoc()); 8942 else if (IDVal == ".unreq") 8943 return parseDirectiveUnreq(DirectiveID.getLoc()); 8944 else if (IDVal == ".fnend") 8945 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8946 else if (IDVal == ".cantunwind") 8947 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8948 else if (IDVal == ".personality") 8949 return parseDirectivePersonality(DirectiveID.getLoc()); 8950 else if (IDVal == ".handlerdata") 8951 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8952 else if (IDVal == ".setfp") 8953 return parseDirectiveSetFP(DirectiveID.getLoc()); 8954 else if (IDVal == ".pad") 8955 return parseDirectivePad(DirectiveID.getLoc()); 8956 else if (IDVal == ".save") 8957 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8958 else if (IDVal == ".vsave") 8959 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8960 else if (IDVal == ".ltorg" || IDVal == ".pool") 8961 return parseDirectiveLtorg(DirectiveID.getLoc()); 8962 else if (IDVal == ".even") 8963 return parseDirectiveEven(DirectiveID.getLoc()); 8964 else if (IDVal == ".personalityindex") 8965 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8966 else if (IDVal == ".unwind_raw") 8967 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8968 else if (IDVal == ".movsp") 8969 return parseDirectiveMovSP(DirectiveID.getLoc()); 8970 else if (IDVal == ".arch_extension") 8971 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8972 else if (IDVal == ".align") 8973 return parseDirectiveAlign(DirectiveID.getLoc()); 8974 else if (IDVal == ".thumb_set") 8975 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8976 8977 if (!IsMachO && !IsCOFF) { 8978 if (IDVal == ".arch") 8979 return parseDirectiveArch(DirectiveID.getLoc()); 8980 else if (IDVal == ".cpu") 8981 return parseDirectiveCPU(DirectiveID.getLoc()); 8982 else if (IDVal == ".eabi_attribute") 8983 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8984 else if (IDVal == ".fpu") 8985 return parseDirectiveFPU(DirectiveID.getLoc()); 8986 else if (IDVal == ".fnstart") 8987 return parseDirectiveFnStart(DirectiveID.getLoc()); 8988 else if (IDVal == ".inst") 8989 return parseDirectiveInst(DirectiveID.getLoc()); 8990 else if (IDVal == ".inst.n") 8991 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8992 else if (IDVal == ".inst.w") 8993 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8994 else if (IDVal == ".object_arch") 8995 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8996 else if (IDVal == ".tlsdescseq") 8997 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8998 } 8999 9000 return true; 9001 } 9002 9003 /// parseLiteralValues 9004 /// ::= .hword expression [, expression]* 9005 /// ::= .short expression [, expression]* 9006 /// ::= .word expression [, expression]* 9007 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9008 MCAsmParser &Parser = getParser(); 9009 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9010 for (;;) { 9011 const MCExpr *Value; 9012 if (getParser().parseExpression(Value)) { 9013 Parser.eatToEndOfStatement(); 9014 return false; 9015 } 9016 9017 getParser().getStreamer().EmitValue(Value, Size, L); 9018 9019 if (getLexer().is(AsmToken::EndOfStatement)) 9020 break; 9021 9022 // FIXME: Improve diagnostic. 9023 if (getLexer().isNot(AsmToken::Comma)) { 9024 Error(L, "unexpected token in directive"); 9025 return false; 9026 } 9027 Parser.Lex(); 9028 } 9029 } 9030 9031 Parser.Lex(); 9032 return false; 9033 } 9034 9035 /// parseDirectiveThumb 9036 /// ::= .thumb 9037 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9038 MCAsmParser &Parser = getParser(); 9039 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9040 Error(L, "unexpected token in directive"); 9041 return false; 9042 } 9043 Parser.Lex(); 9044 9045 if (!hasThumb()) { 9046 Error(L, "target does not support Thumb mode"); 9047 return false; 9048 } 9049 9050 if (!isThumb()) 9051 SwitchMode(); 9052 9053 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9054 return false; 9055 } 9056 9057 /// parseDirectiveARM 9058 /// ::= .arm 9059 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9060 MCAsmParser &Parser = getParser(); 9061 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9062 Error(L, "unexpected token in directive"); 9063 return false; 9064 } 9065 Parser.Lex(); 9066 9067 if (!hasARM()) { 9068 Error(L, "target does not support ARM mode"); 9069 return false; 9070 } 9071 9072 if (isThumb()) 9073 SwitchMode(); 9074 9075 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9076 return false; 9077 } 9078 9079 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9080 if (NextSymbolIsThumb) { 9081 getParser().getStreamer().EmitThumbFunc(Symbol); 9082 NextSymbolIsThumb = false; 9083 } 9084 } 9085 9086 /// parseDirectiveThumbFunc 9087 /// ::= .thumbfunc symbol_name 9088 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9089 MCAsmParser &Parser = getParser(); 9090 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9091 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9092 9093 // Darwin asm has (optionally) function name after .thumb_func direction 9094 // ELF doesn't 9095 if (IsMachO) { 9096 const AsmToken &Tok = Parser.getTok(); 9097 if (Tok.isNot(AsmToken::EndOfStatement)) { 9098 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 9099 Error(L, "unexpected token in .thumb_func directive"); 9100 return false; 9101 } 9102 9103 MCSymbol *Func = 9104 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 9105 getParser().getStreamer().EmitThumbFunc(Func); 9106 Parser.Lex(); // Consume the identifier token. 9107 return false; 9108 } 9109 } 9110 9111 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9112 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9113 Parser.eatToEndOfStatement(); 9114 return false; 9115 } 9116 9117 NextSymbolIsThumb = true; 9118 return false; 9119 } 9120 9121 /// parseDirectiveSyntax 9122 /// ::= .syntax unified | divided 9123 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9124 MCAsmParser &Parser = getParser(); 9125 const AsmToken &Tok = Parser.getTok(); 9126 if (Tok.isNot(AsmToken::Identifier)) { 9127 Error(L, "unexpected token in .syntax directive"); 9128 return false; 9129 } 9130 9131 StringRef Mode = Tok.getString(); 9132 if (Mode == "unified" || Mode == "UNIFIED") { 9133 Parser.Lex(); 9134 } else if (Mode == "divided" || Mode == "DIVIDED") { 9135 Error(L, "'.syntax divided' arm asssembly not supported"); 9136 return false; 9137 } else { 9138 Error(L, "unrecognized syntax mode in .syntax directive"); 9139 return false; 9140 } 9141 9142 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9143 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9144 return false; 9145 } 9146 Parser.Lex(); 9147 9148 // TODO tell the MC streamer the mode 9149 // getParser().getStreamer().Emit???(); 9150 return false; 9151 } 9152 9153 /// parseDirectiveCode 9154 /// ::= .code 16 | 32 9155 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9156 MCAsmParser &Parser = getParser(); 9157 const AsmToken &Tok = Parser.getTok(); 9158 if (Tok.isNot(AsmToken::Integer)) { 9159 Error(L, "unexpected token in .code directive"); 9160 return false; 9161 } 9162 int64_t Val = Parser.getTok().getIntVal(); 9163 if (Val != 16 && Val != 32) { 9164 Error(L, "invalid operand to .code directive"); 9165 return false; 9166 } 9167 Parser.Lex(); 9168 9169 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9170 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9171 return false; 9172 } 9173 Parser.Lex(); 9174 9175 if (Val == 16) { 9176 if (!hasThumb()) { 9177 Error(L, "target does not support Thumb mode"); 9178 return false; 9179 } 9180 9181 if (!isThumb()) 9182 SwitchMode(); 9183 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9184 } else { 9185 if (!hasARM()) { 9186 Error(L, "target does not support ARM mode"); 9187 return false; 9188 } 9189 9190 if (isThumb()) 9191 SwitchMode(); 9192 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9193 } 9194 9195 return false; 9196 } 9197 9198 /// parseDirectiveReq 9199 /// ::= name .req registername 9200 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9201 MCAsmParser &Parser = getParser(); 9202 Parser.Lex(); // Eat the '.req' token. 9203 unsigned Reg; 9204 SMLoc SRegLoc, ERegLoc; 9205 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 9206 Parser.eatToEndOfStatement(); 9207 Error(SRegLoc, "register name expected"); 9208 return false; 9209 } 9210 9211 // Shouldn't be anything else. 9212 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9213 Parser.eatToEndOfStatement(); 9214 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9215 return false; 9216 } 9217 9218 Parser.Lex(); // Consume the EndOfStatement 9219 9220 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9221 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9222 return false; 9223 } 9224 9225 return false; 9226 } 9227 9228 /// parseDirectiveUneq 9229 /// ::= .unreq registername 9230 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9231 MCAsmParser &Parser = getParser(); 9232 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9233 Parser.eatToEndOfStatement(); 9234 Error(L, "unexpected input in .unreq directive."); 9235 return false; 9236 } 9237 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9238 Parser.Lex(); // Eat the identifier. 9239 return false; 9240 } 9241 9242 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9243 // before, if supported by the new target, or emit mapping symbols for the mode 9244 // switch. 9245 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9246 if (WasThumb != isThumb()) { 9247 if (WasThumb && hasThumb()) { 9248 // Stay in Thumb mode 9249 SwitchMode(); 9250 } else if (!WasThumb && hasARM()) { 9251 // Stay in ARM mode 9252 SwitchMode(); 9253 } else { 9254 // Mode switch forced, because the new arch doesn't support the old mode. 9255 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9256 : MCAF_Code32); 9257 // Warn about the implcit mode switch. GAS does not switch modes here, 9258 // but instead stays in the old mode, reporting an error on any following 9259 // instructions as the mode does not exist on the target. 9260 Warning(Loc, Twine("new target does not support ") + 9261 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9262 (!WasThumb ? "thumb" : "arm") + " mode"); 9263 } 9264 } 9265 } 9266 9267 /// parseDirectiveArch 9268 /// ::= .arch token 9269 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9270 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9271 9272 unsigned ID = ARM::parseArch(Arch); 9273 9274 if (ID == ARM::AK_INVALID) { 9275 Error(L, "Unknown arch name"); 9276 return false; 9277 } 9278 9279 bool WasThumb = isThumb(); 9280 Triple T; 9281 MCSubtargetInfo &STI = copySTI(); 9282 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9283 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9284 FixModeAfterArchChange(WasThumb, L); 9285 9286 getTargetStreamer().emitArch(ID); 9287 return false; 9288 } 9289 9290 /// parseDirectiveEabiAttr 9291 /// ::= .eabi_attribute int, int [, "str"] 9292 /// ::= .eabi_attribute Tag_name, int [, "str"] 9293 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9294 MCAsmParser &Parser = getParser(); 9295 int64_t Tag; 9296 SMLoc TagLoc; 9297 TagLoc = Parser.getTok().getLoc(); 9298 if (Parser.getTok().is(AsmToken::Identifier)) { 9299 StringRef Name = Parser.getTok().getIdentifier(); 9300 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9301 if (Tag == -1) { 9302 Error(TagLoc, "attribute name not recognised: " + Name); 9303 Parser.eatToEndOfStatement(); 9304 return false; 9305 } 9306 Parser.Lex(); 9307 } else { 9308 const MCExpr *AttrExpr; 9309 9310 TagLoc = Parser.getTok().getLoc(); 9311 if (Parser.parseExpression(AttrExpr)) { 9312 Parser.eatToEndOfStatement(); 9313 return false; 9314 } 9315 9316 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9317 if (!CE) { 9318 Error(TagLoc, "expected numeric constant"); 9319 Parser.eatToEndOfStatement(); 9320 return false; 9321 } 9322 9323 Tag = CE->getValue(); 9324 } 9325 9326 if (Parser.getTok().isNot(AsmToken::Comma)) { 9327 Error(Parser.getTok().getLoc(), "comma expected"); 9328 Parser.eatToEndOfStatement(); 9329 return false; 9330 } 9331 Parser.Lex(); // skip comma 9332 9333 StringRef StringValue = ""; 9334 bool IsStringValue = false; 9335 9336 int64_t IntegerValue = 0; 9337 bool IsIntegerValue = false; 9338 9339 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9340 IsStringValue = true; 9341 else if (Tag == ARMBuildAttrs::compatibility) { 9342 IsStringValue = true; 9343 IsIntegerValue = true; 9344 } else if (Tag < 32 || Tag % 2 == 0) 9345 IsIntegerValue = true; 9346 else if (Tag % 2 == 1) 9347 IsStringValue = true; 9348 else 9349 llvm_unreachable("invalid tag type"); 9350 9351 if (IsIntegerValue) { 9352 const MCExpr *ValueExpr; 9353 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9354 if (Parser.parseExpression(ValueExpr)) { 9355 Parser.eatToEndOfStatement(); 9356 return false; 9357 } 9358 9359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9360 if (!CE) { 9361 Error(ValueExprLoc, "expected numeric constant"); 9362 Parser.eatToEndOfStatement(); 9363 return false; 9364 } 9365 9366 IntegerValue = CE->getValue(); 9367 } 9368 9369 if (Tag == ARMBuildAttrs::compatibility) { 9370 if (Parser.getTok().isNot(AsmToken::Comma)) 9371 IsStringValue = false; 9372 if (Parser.getTok().isNot(AsmToken::Comma)) { 9373 Error(Parser.getTok().getLoc(), "comma expected"); 9374 Parser.eatToEndOfStatement(); 9375 return false; 9376 } else { 9377 Parser.Lex(); 9378 } 9379 } 9380 9381 if (IsStringValue) { 9382 if (Parser.getTok().isNot(AsmToken::String)) { 9383 Error(Parser.getTok().getLoc(), "bad string constant"); 9384 Parser.eatToEndOfStatement(); 9385 return false; 9386 } 9387 9388 StringValue = Parser.getTok().getStringContents(); 9389 Parser.Lex(); 9390 } 9391 9392 if (IsIntegerValue && IsStringValue) { 9393 assert(Tag == ARMBuildAttrs::compatibility); 9394 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9395 } else if (IsIntegerValue) 9396 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9397 else if (IsStringValue) 9398 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9399 return false; 9400 } 9401 9402 /// parseDirectiveCPU 9403 /// ::= .cpu str 9404 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9405 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9406 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9407 9408 // FIXME: This is using table-gen data, but should be moved to 9409 // ARMTargetParser once that is table-gen'd. 9410 if (!getSTI().isCPUStringValid(CPU)) { 9411 Error(L, "Unknown CPU name"); 9412 return false; 9413 } 9414 9415 bool WasThumb = isThumb(); 9416 MCSubtargetInfo &STI = copySTI(); 9417 STI.setDefaultFeatures(CPU, ""); 9418 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9419 FixModeAfterArchChange(WasThumb, L); 9420 9421 return false; 9422 } 9423 /// parseDirectiveFPU 9424 /// ::= .fpu str 9425 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9426 SMLoc FPUNameLoc = getTok().getLoc(); 9427 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9428 9429 unsigned ID = ARM::parseFPU(FPU); 9430 std::vector<const char *> Features; 9431 if (!ARM::getFPUFeatures(ID, Features)) { 9432 Error(FPUNameLoc, "Unknown FPU name"); 9433 return false; 9434 } 9435 9436 MCSubtargetInfo &STI = copySTI(); 9437 for (auto Feature : Features) 9438 STI.ApplyFeatureFlag(Feature); 9439 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9440 9441 getTargetStreamer().emitFPU(ID); 9442 return false; 9443 } 9444 9445 /// parseDirectiveFnStart 9446 /// ::= .fnstart 9447 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9448 if (UC.hasFnStart()) { 9449 Error(L, ".fnstart starts before the end of previous one"); 9450 UC.emitFnStartLocNotes(); 9451 return false; 9452 } 9453 9454 // Reset the unwind directives parser state 9455 UC.reset(); 9456 9457 getTargetStreamer().emitFnStart(); 9458 9459 UC.recordFnStart(L); 9460 return false; 9461 } 9462 9463 /// parseDirectiveFnEnd 9464 /// ::= .fnend 9465 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9466 // Check the ordering of unwind directives 9467 if (!UC.hasFnStart()) { 9468 Error(L, ".fnstart must precede .fnend directive"); 9469 return false; 9470 } 9471 9472 // Reset the unwind directives parser state 9473 getTargetStreamer().emitFnEnd(); 9474 9475 UC.reset(); 9476 return false; 9477 } 9478 9479 /// parseDirectiveCantUnwind 9480 /// ::= .cantunwind 9481 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9482 UC.recordCantUnwind(L); 9483 9484 // Check the ordering of unwind directives 9485 if (!UC.hasFnStart()) { 9486 Error(L, ".fnstart must precede .cantunwind directive"); 9487 return false; 9488 } 9489 if (UC.hasHandlerData()) { 9490 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9491 UC.emitHandlerDataLocNotes(); 9492 return false; 9493 } 9494 if (UC.hasPersonality()) { 9495 Error(L, ".cantunwind can't be used with .personality directive"); 9496 UC.emitPersonalityLocNotes(); 9497 return false; 9498 } 9499 9500 getTargetStreamer().emitCantUnwind(); 9501 return false; 9502 } 9503 9504 /// parseDirectivePersonality 9505 /// ::= .personality name 9506 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9507 MCAsmParser &Parser = getParser(); 9508 bool HasExistingPersonality = UC.hasPersonality(); 9509 9510 UC.recordPersonality(L); 9511 9512 // Check the ordering of unwind directives 9513 if (!UC.hasFnStart()) { 9514 Error(L, ".fnstart must precede .personality directive"); 9515 return false; 9516 } 9517 if (UC.cantUnwind()) { 9518 Error(L, ".personality can't be used with .cantunwind directive"); 9519 UC.emitCantUnwindLocNotes(); 9520 return false; 9521 } 9522 if (UC.hasHandlerData()) { 9523 Error(L, ".personality must precede .handlerdata directive"); 9524 UC.emitHandlerDataLocNotes(); 9525 return false; 9526 } 9527 if (HasExistingPersonality) { 9528 Parser.eatToEndOfStatement(); 9529 Error(L, "multiple personality directives"); 9530 UC.emitPersonalityLocNotes(); 9531 return false; 9532 } 9533 9534 // Parse the name of the personality routine 9535 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9536 Parser.eatToEndOfStatement(); 9537 Error(L, "unexpected input in .personality directive."); 9538 return false; 9539 } 9540 StringRef Name(Parser.getTok().getIdentifier()); 9541 Parser.Lex(); 9542 9543 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9544 getTargetStreamer().emitPersonality(PR); 9545 return false; 9546 } 9547 9548 /// parseDirectiveHandlerData 9549 /// ::= .handlerdata 9550 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9551 UC.recordHandlerData(L); 9552 9553 // Check the ordering of unwind directives 9554 if (!UC.hasFnStart()) { 9555 Error(L, ".fnstart must precede .personality directive"); 9556 return false; 9557 } 9558 if (UC.cantUnwind()) { 9559 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9560 UC.emitCantUnwindLocNotes(); 9561 return false; 9562 } 9563 9564 getTargetStreamer().emitHandlerData(); 9565 return false; 9566 } 9567 9568 /// parseDirectiveSetFP 9569 /// ::= .setfp fpreg, spreg [, offset] 9570 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9571 MCAsmParser &Parser = getParser(); 9572 // Check the ordering of unwind directives 9573 if (!UC.hasFnStart()) { 9574 Error(L, ".fnstart must precede .setfp directive"); 9575 return false; 9576 } 9577 if (UC.hasHandlerData()) { 9578 Error(L, ".setfp must precede .handlerdata directive"); 9579 return false; 9580 } 9581 9582 // Parse fpreg 9583 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9584 int FPReg = tryParseRegister(); 9585 if (FPReg == -1) { 9586 Error(FPRegLoc, "frame pointer register expected"); 9587 return false; 9588 } 9589 9590 // Consume comma 9591 if (Parser.getTok().isNot(AsmToken::Comma)) { 9592 Error(Parser.getTok().getLoc(), "comma expected"); 9593 return false; 9594 } 9595 Parser.Lex(); // skip comma 9596 9597 // Parse spreg 9598 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9599 int SPReg = tryParseRegister(); 9600 if (SPReg == -1) { 9601 Error(SPRegLoc, "stack pointer register expected"); 9602 return false; 9603 } 9604 9605 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9606 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9607 return false; 9608 } 9609 9610 // Update the frame pointer register 9611 UC.saveFPReg(FPReg); 9612 9613 // Parse offset 9614 int64_t Offset = 0; 9615 if (Parser.getTok().is(AsmToken::Comma)) { 9616 Parser.Lex(); // skip comma 9617 9618 if (Parser.getTok().isNot(AsmToken::Hash) && 9619 Parser.getTok().isNot(AsmToken::Dollar)) { 9620 Error(Parser.getTok().getLoc(), "'#' expected"); 9621 return false; 9622 } 9623 Parser.Lex(); // skip hash token. 9624 9625 const MCExpr *OffsetExpr; 9626 SMLoc ExLoc = Parser.getTok().getLoc(); 9627 SMLoc EndLoc; 9628 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9629 Error(ExLoc, "malformed setfp offset"); 9630 return false; 9631 } 9632 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9633 if (!CE) { 9634 Error(ExLoc, "setfp offset must be an immediate"); 9635 return false; 9636 } 9637 9638 Offset = CE->getValue(); 9639 } 9640 9641 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9642 static_cast<unsigned>(SPReg), Offset); 9643 return false; 9644 } 9645 9646 /// parseDirective 9647 /// ::= .pad offset 9648 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9649 MCAsmParser &Parser = getParser(); 9650 // Check the ordering of unwind directives 9651 if (!UC.hasFnStart()) { 9652 Error(L, ".fnstart must precede .pad directive"); 9653 return false; 9654 } 9655 if (UC.hasHandlerData()) { 9656 Error(L, ".pad must precede .handlerdata directive"); 9657 return false; 9658 } 9659 9660 // Parse the offset 9661 if (Parser.getTok().isNot(AsmToken::Hash) && 9662 Parser.getTok().isNot(AsmToken::Dollar)) { 9663 Error(Parser.getTok().getLoc(), "'#' expected"); 9664 return false; 9665 } 9666 Parser.Lex(); // skip hash token. 9667 9668 const MCExpr *OffsetExpr; 9669 SMLoc ExLoc = Parser.getTok().getLoc(); 9670 SMLoc EndLoc; 9671 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9672 Error(ExLoc, "malformed pad offset"); 9673 return false; 9674 } 9675 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9676 if (!CE) { 9677 Error(ExLoc, "pad offset must be an immediate"); 9678 return false; 9679 } 9680 9681 getTargetStreamer().emitPad(CE->getValue()); 9682 return false; 9683 } 9684 9685 /// parseDirectiveRegSave 9686 /// ::= .save { registers } 9687 /// ::= .vsave { registers } 9688 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9689 // Check the ordering of unwind directives 9690 if (!UC.hasFnStart()) { 9691 Error(L, ".fnstart must precede .save or .vsave directives"); 9692 return false; 9693 } 9694 if (UC.hasHandlerData()) { 9695 Error(L, ".save or .vsave must precede .handlerdata directive"); 9696 return false; 9697 } 9698 9699 // RAII object to make sure parsed operands are deleted. 9700 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9701 9702 // Parse the register list 9703 if (parseRegisterList(Operands)) 9704 return false; 9705 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9706 if (!IsVector && !Op.isRegList()) { 9707 Error(L, ".save expects GPR registers"); 9708 return false; 9709 } 9710 if (IsVector && !Op.isDPRRegList()) { 9711 Error(L, ".vsave expects DPR registers"); 9712 return false; 9713 } 9714 9715 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9716 return false; 9717 } 9718 9719 /// parseDirectiveInst 9720 /// ::= .inst opcode [, ...] 9721 /// ::= .inst.n opcode [, ...] 9722 /// ::= .inst.w opcode [, ...] 9723 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9724 MCAsmParser &Parser = getParser(); 9725 int Width; 9726 9727 if (isThumb()) { 9728 switch (Suffix) { 9729 case 'n': 9730 Width = 2; 9731 break; 9732 case 'w': 9733 Width = 4; 9734 break; 9735 default: 9736 Parser.eatToEndOfStatement(); 9737 Error(Loc, "cannot determine Thumb instruction size, " 9738 "use inst.n/inst.w instead"); 9739 return false; 9740 } 9741 } else { 9742 if (Suffix) { 9743 Parser.eatToEndOfStatement(); 9744 Error(Loc, "width suffixes are invalid in ARM mode"); 9745 return false; 9746 } 9747 Width = 4; 9748 } 9749 9750 if (getLexer().is(AsmToken::EndOfStatement)) { 9751 Parser.eatToEndOfStatement(); 9752 Error(Loc, "expected expression following directive"); 9753 return false; 9754 } 9755 9756 for (;;) { 9757 const MCExpr *Expr; 9758 9759 if (getParser().parseExpression(Expr)) { 9760 Error(Loc, "expected expression"); 9761 return false; 9762 } 9763 9764 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9765 if (!Value) { 9766 Error(Loc, "expected constant expression"); 9767 return false; 9768 } 9769 9770 switch (Width) { 9771 case 2: 9772 if (Value->getValue() > 0xffff) { 9773 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9774 return false; 9775 } 9776 break; 9777 case 4: 9778 if (Value->getValue() > 0xffffffff) { 9779 Error(Loc, 9780 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9781 return false; 9782 } 9783 break; 9784 default: 9785 llvm_unreachable("only supported widths are 2 and 4"); 9786 } 9787 9788 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9789 9790 if (getLexer().is(AsmToken::EndOfStatement)) 9791 break; 9792 9793 if (getLexer().isNot(AsmToken::Comma)) { 9794 Error(Loc, "unexpected token in directive"); 9795 return false; 9796 } 9797 9798 Parser.Lex(); 9799 } 9800 9801 Parser.Lex(); 9802 return false; 9803 } 9804 9805 /// parseDirectiveLtorg 9806 /// ::= .ltorg | .pool 9807 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9808 getTargetStreamer().emitCurrentConstantPool(); 9809 return false; 9810 } 9811 9812 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9813 const MCSection *Section = getStreamer().getCurrentSection().first; 9814 9815 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9816 TokError("unexpected token in directive"); 9817 return false; 9818 } 9819 9820 if (!Section) { 9821 getStreamer().InitSections(false); 9822 Section = getStreamer().getCurrentSection().first; 9823 } 9824 9825 assert(Section && "must have section to emit alignment"); 9826 if (Section->UseCodeAlign()) 9827 getStreamer().EmitCodeAlignment(2); 9828 else 9829 getStreamer().EmitValueToAlignment(2); 9830 9831 return false; 9832 } 9833 9834 /// parseDirectivePersonalityIndex 9835 /// ::= .personalityindex index 9836 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9837 MCAsmParser &Parser = getParser(); 9838 bool HasExistingPersonality = UC.hasPersonality(); 9839 9840 UC.recordPersonalityIndex(L); 9841 9842 if (!UC.hasFnStart()) { 9843 Parser.eatToEndOfStatement(); 9844 Error(L, ".fnstart must precede .personalityindex directive"); 9845 return false; 9846 } 9847 if (UC.cantUnwind()) { 9848 Parser.eatToEndOfStatement(); 9849 Error(L, ".personalityindex cannot be used with .cantunwind"); 9850 UC.emitCantUnwindLocNotes(); 9851 return false; 9852 } 9853 if (UC.hasHandlerData()) { 9854 Parser.eatToEndOfStatement(); 9855 Error(L, ".personalityindex must precede .handlerdata directive"); 9856 UC.emitHandlerDataLocNotes(); 9857 return false; 9858 } 9859 if (HasExistingPersonality) { 9860 Parser.eatToEndOfStatement(); 9861 Error(L, "multiple personality directives"); 9862 UC.emitPersonalityLocNotes(); 9863 return false; 9864 } 9865 9866 const MCExpr *IndexExpression; 9867 SMLoc IndexLoc = Parser.getTok().getLoc(); 9868 if (Parser.parseExpression(IndexExpression)) { 9869 Parser.eatToEndOfStatement(); 9870 return false; 9871 } 9872 9873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9874 if (!CE) { 9875 Parser.eatToEndOfStatement(); 9876 Error(IndexLoc, "index must be a constant number"); 9877 return false; 9878 } 9879 if (CE->getValue() < 0 || 9880 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9881 Parser.eatToEndOfStatement(); 9882 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9883 return false; 9884 } 9885 9886 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9887 return false; 9888 } 9889 9890 /// parseDirectiveUnwindRaw 9891 /// ::= .unwind_raw offset, opcode [, opcode...] 9892 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9893 MCAsmParser &Parser = getParser(); 9894 if (!UC.hasFnStart()) { 9895 Parser.eatToEndOfStatement(); 9896 Error(L, ".fnstart must precede .unwind_raw directives"); 9897 return false; 9898 } 9899 9900 int64_t StackOffset; 9901 9902 const MCExpr *OffsetExpr; 9903 SMLoc OffsetLoc = getLexer().getLoc(); 9904 if (getLexer().is(AsmToken::EndOfStatement) || 9905 getParser().parseExpression(OffsetExpr)) { 9906 Error(OffsetLoc, "expected expression"); 9907 Parser.eatToEndOfStatement(); 9908 return false; 9909 } 9910 9911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9912 if (!CE) { 9913 Error(OffsetLoc, "offset must be a constant"); 9914 Parser.eatToEndOfStatement(); 9915 return false; 9916 } 9917 9918 StackOffset = CE->getValue(); 9919 9920 if (getLexer().isNot(AsmToken::Comma)) { 9921 Error(getLexer().getLoc(), "expected comma"); 9922 Parser.eatToEndOfStatement(); 9923 return false; 9924 } 9925 Parser.Lex(); 9926 9927 SmallVector<uint8_t, 16> Opcodes; 9928 for (;;) { 9929 const MCExpr *OE; 9930 9931 SMLoc OpcodeLoc = getLexer().getLoc(); 9932 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9933 Error(OpcodeLoc, "expected opcode expression"); 9934 Parser.eatToEndOfStatement(); 9935 return false; 9936 } 9937 9938 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9939 if (!OC) { 9940 Error(OpcodeLoc, "opcode value must be a constant"); 9941 Parser.eatToEndOfStatement(); 9942 return false; 9943 } 9944 9945 const int64_t Opcode = OC->getValue(); 9946 if (Opcode & ~0xff) { 9947 Error(OpcodeLoc, "invalid opcode"); 9948 Parser.eatToEndOfStatement(); 9949 return false; 9950 } 9951 9952 Opcodes.push_back(uint8_t(Opcode)); 9953 9954 if (getLexer().is(AsmToken::EndOfStatement)) 9955 break; 9956 9957 if (getLexer().isNot(AsmToken::Comma)) { 9958 Error(getLexer().getLoc(), "unexpected token in directive"); 9959 Parser.eatToEndOfStatement(); 9960 return false; 9961 } 9962 9963 Parser.Lex(); 9964 } 9965 9966 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9967 9968 Parser.Lex(); 9969 return false; 9970 } 9971 9972 /// parseDirectiveTLSDescSeq 9973 /// ::= .tlsdescseq tls-variable 9974 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9975 MCAsmParser &Parser = getParser(); 9976 9977 if (getLexer().isNot(AsmToken::Identifier)) { 9978 TokError("expected variable after '.tlsdescseq' directive"); 9979 Parser.eatToEndOfStatement(); 9980 return false; 9981 } 9982 9983 const MCSymbolRefExpr *SRE = 9984 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9985 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9986 Lex(); 9987 9988 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9989 Error(Parser.getTok().getLoc(), "unexpected token"); 9990 Parser.eatToEndOfStatement(); 9991 return false; 9992 } 9993 9994 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9995 return false; 9996 } 9997 9998 /// parseDirectiveMovSP 9999 /// ::= .movsp reg [, #offset] 10000 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10001 MCAsmParser &Parser = getParser(); 10002 if (!UC.hasFnStart()) { 10003 Parser.eatToEndOfStatement(); 10004 Error(L, ".fnstart must precede .movsp directives"); 10005 return false; 10006 } 10007 if (UC.getFPReg() != ARM::SP) { 10008 Parser.eatToEndOfStatement(); 10009 Error(L, "unexpected .movsp directive"); 10010 return false; 10011 } 10012 10013 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10014 int SPReg = tryParseRegister(); 10015 if (SPReg == -1) { 10016 Parser.eatToEndOfStatement(); 10017 Error(SPRegLoc, "register expected"); 10018 return false; 10019 } 10020 10021 if (SPReg == ARM::SP || SPReg == ARM::PC) { 10022 Parser.eatToEndOfStatement(); 10023 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10024 return false; 10025 } 10026 10027 int64_t Offset = 0; 10028 if (Parser.getTok().is(AsmToken::Comma)) { 10029 Parser.Lex(); 10030 10031 if (Parser.getTok().isNot(AsmToken::Hash)) { 10032 Error(Parser.getTok().getLoc(), "expected #constant"); 10033 Parser.eatToEndOfStatement(); 10034 return false; 10035 } 10036 Parser.Lex(); 10037 10038 const MCExpr *OffsetExpr; 10039 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10040 if (Parser.parseExpression(OffsetExpr)) { 10041 Parser.eatToEndOfStatement(); 10042 Error(OffsetLoc, "malformed offset expression"); 10043 return false; 10044 } 10045 10046 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10047 if (!CE) { 10048 Parser.eatToEndOfStatement(); 10049 Error(OffsetLoc, "offset must be an immediate constant"); 10050 return false; 10051 } 10052 10053 Offset = CE->getValue(); 10054 } 10055 10056 getTargetStreamer().emitMovSP(SPReg, Offset); 10057 UC.saveFPReg(SPReg); 10058 10059 return false; 10060 } 10061 10062 /// parseDirectiveObjectArch 10063 /// ::= .object_arch name 10064 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10065 MCAsmParser &Parser = getParser(); 10066 if (getLexer().isNot(AsmToken::Identifier)) { 10067 Error(getLexer().getLoc(), "unexpected token"); 10068 Parser.eatToEndOfStatement(); 10069 return false; 10070 } 10071 10072 StringRef Arch = Parser.getTok().getString(); 10073 SMLoc ArchLoc = Parser.getTok().getLoc(); 10074 getLexer().Lex(); 10075 10076 unsigned ID = ARM::parseArch(Arch); 10077 10078 if (ID == ARM::AK_INVALID) { 10079 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10080 Parser.eatToEndOfStatement(); 10081 return false; 10082 } 10083 10084 getTargetStreamer().emitObjectArch(ID); 10085 10086 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10087 Error(getLexer().getLoc(), "unexpected token"); 10088 Parser.eatToEndOfStatement(); 10089 } 10090 10091 return false; 10092 } 10093 10094 /// parseDirectiveAlign 10095 /// ::= .align 10096 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10097 // NOTE: if this is not the end of the statement, fall back to the target 10098 // agnostic handling for this directive which will correctly handle this. 10099 if (getLexer().isNot(AsmToken::EndOfStatement)) 10100 return true; 10101 10102 // '.align' is target specifically handled to mean 2**2 byte alignment. 10103 const MCSection *Section = getStreamer().getCurrentSection().first; 10104 assert(Section && "must have section to emit alignment"); 10105 if (Section->UseCodeAlign()) 10106 getStreamer().EmitCodeAlignment(4, 0); 10107 else 10108 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10109 10110 return false; 10111 } 10112 10113 /// parseDirectiveThumbSet 10114 /// ::= .thumb_set name, value 10115 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10116 MCAsmParser &Parser = getParser(); 10117 10118 StringRef Name; 10119 if (Parser.parseIdentifier(Name)) { 10120 TokError("expected identifier after '.thumb_set'"); 10121 Parser.eatToEndOfStatement(); 10122 return false; 10123 } 10124 10125 if (getLexer().isNot(AsmToken::Comma)) { 10126 TokError("expected comma after name '" + Name + "'"); 10127 Parser.eatToEndOfStatement(); 10128 return false; 10129 } 10130 Lex(); 10131 10132 MCSymbol *Sym; 10133 const MCExpr *Value; 10134 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10135 Parser, Sym, Value)) 10136 return true; 10137 10138 getTargetStreamer().emitThumbSet(Sym, Value); 10139 return false; 10140 } 10141 10142 /// Force static initialization. 10143 extern "C" void LLVMInitializeARMAsmParser() { 10144 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 10145 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 10146 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 10147 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 10148 } 10149 10150 #define GET_REGISTER_MATCHER 10151 #define GET_SUBTARGET_FEATURE_NAME 10152 #define GET_MATCHER_IMPLEMENTATION 10153 #include "ARMGenAsmMatcher.inc" 10154 10155 // FIXME: This structure should be moved inside ARMTargetParser 10156 // when we start to table-generate them, and we can use the ARM 10157 // flags below, that were generated by table-gen. 10158 static const struct { 10159 const unsigned Kind; 10160 const uint64_t ArchCheck; 10161 const FeatureBitset Features; 10162 } Extensions[] = { 10163 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10164 { ARM::AEK_CRYPTO, Feature_HasV8, 10165 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10166 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10167 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10168 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10169 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10170 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10171 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10172 // FIXME: Only available in A-class, isel not predicated 10173 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10174 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10175 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10176 // FIXME: Unsupported extensions. 10177 { ARM::AEK_OS, Feature_None, {} }, 10178 { ARM::AEK_IWMMXT, Feature_None, {} }, 10179 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10180 { ARM::AEK_MAVERICK, Feature_None, {} }, 10181 { ARM::AEK_XSCALE, Feature_None, {} }, 10182 }; 10183 10184 /// parseDirectiveArchExtension 10185 /// ::= .arch_extension [no]feature 10186 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10187 MCAsmParser &Parser = getParser(); 10188 10189 if (getLexer().isNot(AsmToken::Identifier)) { 10190 Error(getLexer().getLoc(), "unexpected token"); 10191 Parser.eatToEndOfStatement(); 10192 return false; 10193 } 10194 10195 StringRef Name = Parser.getTok().getString(); 10196 SMLoc ExtLoc = Parser.getTok().getLoc(); 10197 getLexer().Lex(); 10198 10199 bool EnableFeature = true; 10200 if (Name.startswith_lower("no")) { 10201 EnableFeature = false; 10202 Name = Name.substr(2); 10203 } 10204 unsigned FeatureKind = ARM::parseArchExt(Name); 10205 if (FeatureKind == ARM::AEK_INVALID) 10206 Error(ExtLoc, "unknown architectural extension: " + Name); 10207 10208 for (const auto &Extension : Extensions) { 10209 if (Extension.Kind != FeatureKind) 10210 continue; 10211 10212 if (Extension.Features.none()) 10213 report_fatal_error("unsupported architectural extension: " + Name); 10214 10215 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 10216 Error(ExtLoc, "architectural extension '" + Name + "' is not " 10217 "allowed for the current base architecture"); 10218 return false; 10219 } 10220 10221 MCSubtargetInfo &STI = copySTI(); 10222 FeatureBitset ToggleFeatures = EnableFeature 10223 ? (~STI.getFeatureBits() & Extension.Features) 10224 : ( STI.getFeatureBits() & Extension.Features); 10225 10226 uint64_t Features = 10227 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10228 setAvailableFeatures(Features); 10229 return false; 10230 } 10231 10232 Error(ExtLoc, "unknown architectural extension: " + Name); 10233 Parser.eatToEndOfStatement(); 10234 return false; 10235 } 10236 10237 // Define this matcher function after the auto-generated include so we 10238 // have the match class enum definitions. 10239 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10240 unsigned Kind) { 10241 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10242 // If the kind is a token for a literal immediate, check if our asm 10243 // operand matches. This is for InstAliases which have a fixed-value 10244 // immediate in the syntax. 10245 switch (Kind) { 10246 default: break; 10247 case MCK__35_0: 10248 if (Op.isImm()) 10249 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10250 if (CE->getValue() == 0) 10251 return Match_Success; 10252 break; 10253 case MCK_ModImm: 10254 if (Op.isImm()) { 10255 const MCExpr *SOExpr = Op.getImm(); 10256 int64_t Value; 10257 if (!SOExpr->evaluateAsAbsolute(Value)) 10258 return Match_Success; 10259 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10260 "expression value must be representable in 32 bits"); 10261 } 10262 break; 10263 case MCK_rGPR: 10264 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10265 return Match_Success; 10266 break; 10267 case MCK_GPRPair: 10268 if (Op.isReg() && 10269 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10270 return Match_Success; 10271 break; 10272 } 10273 return Match_InvalidOperand; 10274 } 10275