1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 36 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 38 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/SubtargetFeature.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/SMLoc.h" 53 #include "llvm/Support/TargetParser.h" 54 #include "llvm/Support/TargetRegistry.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 #include <vector> 66 67 #define DEBUG_TYPE "asm-parser" 68 69 using namespace llvm; 70 71 namespace { 72 73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 74 75 static cl::opt<ImplicitItModeTy> ImplicitItMode( 76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 77 cl::desc("Allow conditional instructions outdside of an IT block"), 78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 79 "Accept in both ISAs, emit implicit ITs in Thumb"), 80 clEnumValN(ImplicitItModeTy::Never, "never", 81 "Warn in ARM, reject in Thumb"), 82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 83 "Accept in ARM, reject in Thumb"), 84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 85 "Warn in ARM, emit implicit ITs in Thumb"))); 86 87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 88 cl::init(false)); 89 90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 91 92 class UnwindContext { 93 using Locs = SmallVector<SMLoc, 4>; 94 95 MCAsmParser &Parser; 96 Locs FnStartLocs; 97 Locs CantUnwindLocs; 98 Locs PersonalityLocs; 99 Locs PersonalityIndexLocs; 100 Locs HandlerDataLocs; 101 int FPReg; 102 103 public: 104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 105 106 bool hasFnStart() const { return !FnStartLocs.empty(); } 107 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 109 110 bool hasPersonality() const { 111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 112 } 113 114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 119 120 void saveFPReg(int Reg) { FPReg = Reg; } 121 int getFPReg() const { return FPReg; } 122 123 void emitFnStartLocNotes() const { 124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 125 FI != FE; ++FI) 126 Parser.Note(*FI, ".fnstart was specified here"); 127 } 128 129 void emitCantUnwindLocNotes() const { 130 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 131 UE = CantUnwindLocs.end(); UI != UE; ++UI) 132 Parser.Note(*UI, ".cantunwind was specified here"); 133 } 134 135 void emitHandlerDataLocNotes() const { 136 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 137 HE = HandlerDataLocs.end(); HI != HE; ++HI) 138 Parser.Note(*HI, ".handlerdata was specified here"); 139 } 140 141 void emitPersonalityLocNotes() const { 142 for (Locs::const_iterator PI = PersonalityLocs.begin(), 143 PE = PersonalityLocs.end(), 144 PII = PersonalityIndexLocs.begin(), 145 PIE = PersonalityIndexLocs.end(); 146 PI != PE || PII != PIE;) { 147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 148 Parser.Note(*PI++, ".personality was specified here"); 149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 150 Parser.Note(*PII++, ".personalityindex was specified here"); 151 else 152 llvm_unreachable(".personality and .personalityindex cannot be " 153 "at the same location"); 154 } 155 } 156 157 void reset() { 158 FnStartLocs = Locs(); 159 CantUnwindLocs = Locs(); 160 PersonalityLocs = Locs(); 161 HandlerDataLocs = Locs(); 162 PersonalityIndexLocs = Locs(); 163 FPReg = ARM::SP; 164 } 165 }; 166 167 class ARMAsmParser : public MCTargetAsmParser { 168 const MCRegisterInfo *MRI; 169 UnwindContext UC; 170 171 ARMTargetStreamer &getTargetStreamer() { 172 assert(getParser().getStreamer().getTargetStreamer() && 173 "do not have a target streamer"); 174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 175 return static_cast<ARMTargetStreamer &>(TS); 176 } 177 178 // Map of register aliases registers via the .req directive. 179 StringMap<unsigned> RegisterReqs; 180 181 bool NextSymbolIsThumb; 182 183 bool useImplicitITThumb() const { 184 return ImplicitItMode == ImplicitItModeTy::Always || 185 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 186 } 187 188 bool useImplicitITARM() const { 189 return ImplicitItMode == ImplicitItModeTy::Always || 190 ImplicitItMode == ImplicitItModeTy::ARMOnly; 191 } 192 193 struct { 194 ARMCC::CondCodes Cond; // Condition for IT block. 195 unsigned Mask:4; // Condition mask for instructions. 196 // Starting at first 1 (from lsb). 197 // '1' condition as indicated in IT. 198 // '0' inverse of condition (else). 199 // Count of instructions in IT block is 200 // 4 - trailingzeroes(mask) 201 // Note that this does not have the same encoding 202 // as in the IT instruction, which also depends 203 // on the low bit of the condition code. 204 205 unsigned CurPosition; // Current position in parsing of IT 206 // block. In range [0,4], with 0 being the IT 207 // instruction itself. Initialized according to 208 // count of instructions in block. ~0U if no 209 // active IT block. 210 211 bool IsExplicit; // true - The IT instruction was present in the 212 // input, we should not modify it. 213 // false - The IT instruction was added 214 // implicitly, we can extend it if that 215 // would be legal. 216 } ITState; 217 218 SmallVector<MCInst, 4> PendingConditionalInsts; 219 220 void flushPendingInstructions(MCStreamer &Out) override { 221 if (!inImplicitITBlock()) { 222 assert(PendingConditionalInsts.size() == 0); 223 return; 224 } 225 226 // Emit the IT instruction 227 unsigned Mask = getITMaskEncoding(); 228 MCInst ITInst; 229 ITInst.setOpcode(ARM::t2IT); 230 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 231 ITInst.addOperand(MCOperand::createImm(Mask)); 232 Out.EmitInstruction(ITInst, getSTI()); 233 234 // Emit the conditonal instructions 235 assert(PendingConditionalInsts.size() <= 4); 236 for (const MCInst &Inst : PendingConditionalInsts) { 237 Out.EmitInstruction(Inst, getSTI()); 238 } 239 PendingConditionalInsts.clear(); 240 241 // Clear the IT state 242 ITState.Mask = 0; 243 ITState.CurPosition = ~0U; 244 } 245 246 bool inITBlock() { return ITState.CurPosition != ~0U; } 247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 249 250 bool lastInITBlock() { 251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 252 } 253 254 void forwardITPosition() { 255 if (!inITBlock()) return; 256 // Move to the next instruction in the IT block, if there is one. If not, 257 // mark the block as done, except for implicit IT blocks, which we leave 258 // open until we find an instruction that can't be added to it. 259 unsigned TZ = countTrailingZeros(ITState.Mask); 260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 261 ITState.CurPosition = ~0U; // Done with the IT block after this. 262 } 263 264 // Rewind the state of the current IT block, removing the last slot from it. 265 void rewindImplicitITPosition() { 266 assert(inImplicitITBlock()); 267 assert(ITState.CurPosition > 1); 268 ITState.CurPosition--; 269 unsigned TZ = countTrailingZeros(ITState.Mask); 270 unsigned NewMask = 0; 271 NewMask |= ITState.Mask & (0xC << TZ); 272 NewMask |= 0x2 << TZ; 273 ITState.Mask = NewMask; 274 } 275 276 // Rewind the state of the current IT block, removing the last slot from it. 277 // If we were at the first slot, this closes the IT block. 278 void discardImplicitITBlock() { 279 assert(inImplicitITBlock()); 280 assert(ITState.CurPosition == 1); 281 ITState.CurPosition = ~0U; 282 } 283 284 // Return the low-subreg of a given Q register. 285 unsigned getDRegFromQReg(unsigned QReg) const { 286 return MRI->getSubReg(QReg, ARM::dsub_0); 287 } 288 289 // Get the encoding of the IT mask, as it will appear in an IT instruction. 290 unsigned getITMaskEncoding() { 291 assert(inITBlock()); 292 unsigned Mask = ITState.Mask; 293 unsigned TZ = countTrailingZeros(Mask); 294 if ((ITState.Cond & 1) == 0) { 295 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 296 Mask ^= (0xE << TZ) & 0xF; 297 } 298 return Mask; 299 } 300 301 // Get the condition code corresponding to the current IT block slot. 302 ARMCC::CondCodes currentITCond() { 303 unsigned MaskBit; 304 if (ITState.CurPosition == 1) 305 MaskBit = 1; 306 else 307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 308 309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 310 } 311 312 // Invert the condition of the current IT block slot without changing any 313 // other slots in the same block. 314 void invertCurrentITCondition() { 315 if (ITState.CurPosition == 1) { 316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 317 } else { 318 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 319 } 320 } 321 322 // Returns true if the current IT block is full (all 4 slots used). 323 bool isITBlockFull() { 324 return inITBlock() && (ITState.Mask & 1); 325 } 326 327 // Extend the current implicit IT block to have one more slot with the given 328 // condition code. 329 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 330 assert(inImplicitITBlock()); 331 assert(!isITBlockFull()); 332 assert(Cond == ITState.Cond || 333 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 unsigned NewMask = 0; 336 // Keep any existing condition bits. 337 NewMask |= ITState.Mask & (0xE << TZ); 338 // Insert the new condition bit. 339 NewMask |= (Cond == ITState.Cond) << TZ; 340 // Move the trailing 1 down one bit. 341 NewMask |= 1 << (TZ - 1); 342 ITState.Mask = NewMask; 343 } 344 345 // Create a new implicit IT block with a dummy condition code. 346 void startImplicitITBlock() { 347 assert(!inITBlock()); 348 ITState.Cond = ARMCC::AL; 349 ITState.Mask = 8; 350 ITState.CurPosition = 1; 351 ITState.IsExplicit = false; 352 } 353 354 // Create a new explicit IT block with the given condition and mask. The mask 355 // should be in the parsed format, with a 1 implying 't', regardless of the 356 // low bit of the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 366 return getParser().Note(L, Msg, Range); 367 } 368 369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 370 return getParser().Warning(L, Msg, Range); 371 } 372 373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 374 return getParser().Error(L, Msg, Range); 375 } 376 377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 378 unsigned ListNo, bool IsARPop = false); 379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 380 unsigned ListNo); 381 382 int tryParseRegister(); 383 bool tryParseRegisterWithWriteBack(OperandVector &); 384 int tryParseShiftRegister(OperandVector &); 385 bool parseRegisterList(OperandVector &); 386 bool parseMemory(OperandVector &); 387 bool parseOperand(OperandVector &, StringRef Mnemonic); 388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 390 unsigned &ShiftAmount); 391 bool parseLiteralValues(unsigned Size, SMLoc L); 392 bool parseDirectiveThumb(SMLoc L); 393 bool parseDirectiveARM(SMLoc L); 394 bool parseDirectiveThumbFunc(SMLoc L); 395 bool parseDirectiveCode(SMLoc L); 396 bool parseDirectiveSyntax(SMLoc L); 397 bool parseDirectiveReq(StringRef Name, SMLoc L); 398 bool parseDirectiveUnreq(SMLoc L); 399 bool parseDirectiveArch(SMLoc L); 400 bool parseDirectiveEabiAttr(SMLoc L); 401 bool parseDirectiveCPU(SMLoc L); 402 bool parseDirectiveFPU(SMLoc L); 403 bool parseDirectiveFnStart(SMLoc L); 404 bool parseDirectiveFnEnd(SMLoc L); 405 bool parseDirectiveCantUnwind(SMLoc L); 406 bool parseDirectivePersonality(SMLoc L); 407 bool parseDirectiveHandlerData(SMLoc L); 408 bool parseDirectiveSetFP(SMLoc L); 409 bool parseDirectivePad(SMLoc L); 410 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 412 bool parseDirectiveLtorg(SMLoc L); 413 bool parseDirectiveEven(SMLoc L); 414 bool parseDirectivePersonalityIndex(SMLoc L); 415 bool parseDirectiveUnwindRaw(SMLoc L); 416 bool parseDirectiveTLSDescSeq(SMLoc L); 417 bool parseDirectiveMovSP(SMLoc L); 418 bool parseDirectiveObjectArch(SMLoc L); 419 bool parseDirectiveArchExtension(SMLoc L); 420 bool parseDirectiveAlign(SMLoc L); 421 bool parseDirectiveThumbSet(SMLoc L); 422 423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 424 bool &CarrySetting, unsigned &ProcessorIMod, 425 StringRef &ITMask); 426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 427 bool &CanAcceptCarrySet, 428 bool &CanAcceptPredicationCode); 429 430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 431 OperandVector &Operands); 432 bool isThumb() const { 433 // FIXME: Can tablegen auto-generate this? 434 return getSTI().getFeatureBits()[ARM::ModeThumb]; 435 } 436 437 bool isThumbOne() const { 438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 439 } 440 441 bool isThumbTwo() const { 442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 443 } 444 445 bool hasThumb() const { 446 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 447 } 448 449 bool hasThumb2() const { 450 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 451 } 452 453 bool hasV6Ops() const { 454 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 455 } 456 457 bool hasV6T2Ops() const { 458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 459 } 460 461 bool hasV6MOps() const { 462 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 463 } 464 465 bool hasV7Ops() const { 466 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 467 } 468 469 bool hasV8Ops() const { 470 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 471 } 472 473 bool hasV8MBaseline() const { 474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 475 } 476 477 bool hasV8MMainline() const { 478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 479 } 480 481 bool has8MSecExt() const { 482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 483 } 484 485 bool hasARM() const { 486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 487 } 488 489 bool hasDSP() const { 490 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 491 } 492 493 bool hasD16() const { 494 return getSTI().getFeatureBits()[ARM::FeatureD16]; 495 } 496 497 bool hasV8_1aOps() const { 498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 499 } 500 501 bool hasRAS() const { 502 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 503 } 504 505 void SwitchMode() { 506 MCSubtargetInfo &STI = copySTI(); 507 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 508 setAvailableFeatures(FB); 509 } 510 511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 512 513 bool isMClass() const { 514 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 515 } 516 517 /// @name Auto-generated Match Functions 518 /// { 519 520 #define GET_ASSEMBLER_HEADER 521 #include "ARMGenAsmMatcher.inc" 522 523 /// } 524 525 OperandMatchResultTy parseITCondCode(OperandVector &); 526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 530 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 531 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 532 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 533 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 534 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 535 int High); 536 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 537 return parsePKHImm(O, "lsl", 0, 31); 538 } 539 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 540 return parsePKHImm(O, "asr", 1, 32); 541 } 542 OperandMatchResultTy parseSetEndImm(OperandVector &); 543 OperandMatchResultTy parseShifterImm(OperandVector &); 544 OperandMatchResultTy parseRotImm(OperandVector &); 545 OperandMatchResultTy parseModImm(OperandVector &); 546 OperandMatchResultTy parseBitfield(OperandVector &); 547 OperandMatchResultTy parsePostIdxReg(OperandVector &); 548 OperandMatchResultTy parseAM3Offset(OperandVector &); 549 OperandMatchResultTy parseFPImm(OperandVector &); 550 OperandMatchResultTy parseVectorList(OperandVector &); 551 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 552 SMLoc &EndLoc); 553 554 // Asm Match Converter Methods 555 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 556 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 557 558 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 559 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 560 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 561 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 562 bool isITBlockTerminator(MCInst &Inst) const; 563 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 564 565 public: 566 enum ARMMatchResultTy { 567 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 568 Match_RequiresNotITBlock, 569 Match_RequiresV6, 570 Match_RequiresThumb2, 571 Match_RequiresV8, 572 Match_RequiresFlagSetting, 573 #define GET_OPERAND_DIAGNOSTIC_TYPES 574 #include "ARMGenAsmMatcher.inc" 575 576 }; 577 578 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 579 const MCInstrInfo &MII, const MCTargetOptions &Options) 580 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 581 MCAsmParserExtension::Initialize(Parser); 582 583 // Cache the MCRegisterInfo. 584 MRI = getContext().getRegisterInfo(); 585 586 // Initialize the set of available features. 587 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 588 589 // Add build attributes based on the selected target. 590 if (AddBuildAttributes) 591 getTargetStreamer().emitTargetAttributes(STI); 592 593 // Not in an ITBlock to start with. 594 ITState.CurPosition = ~0U; 595 596 NextSymbolIsThumb = false; 597 } 598 599 // Implementation of the MCTargetAsmParser interface: 600 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 601 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 602 SMLoc NameLoc, OperandVector &Operands) override; 603 bool ParseDirective(AsmToken DirectiveID) override; 604 605 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 606 unsigned Kind) override; 607 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 608 609 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 610 OperandVector &Operands, MCStreamer &Out, 611 uint64_t &ErrorInfo, 612 bool MatchingInlineAsm) override; 613 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 614 SmallVectorImpl<NearMissInfo> &NearMisses, 615 bool MatchingInlineAsm, bool &EmitInITBlock, 616 MCStreamer &Out); 617 618 struct NearMissMessage { 619 SMLoc Loc; 620 SmallString<128> Message; 621 }; 622 623 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 624 625 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 626 SmallVectorImpl<NearMissMessage> &NearMissesOut, 627 SMLoc IDLoc, OperandVector &Operands); 628 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 629 OperandVector &Operands); 630 631 void onLabelParsed(MCSymbol *Symbol) override; 632 }; 633 634 /// ARMOperand - Instances of this class represent a parsed ARM machine 635 /// operand. 636 class ARMOperand : public MCParsedAsmOperand { 637 enum KindTy { 638 k_CondCode, 639 k_CCOut, 640 k_ITCondMask, 641 k_CoprocNum, 642 k_CoprocReg, 643 k_CoprocOption, 644 k_Immediate, 645 k_MemBarrierOpt, 646 k_InstSyncBarrierOpt, 647 k_Memory, 648 k_PostIndexRegister, 649 k_MSRMask, 650 k_BankedReg, 651 k_ProcIFlags, 652 k_VectorIndex, 653 k_Register, 654 k_RegisterList, 655 k_DPRRegisterList, 656 k_SPRRegisterList, 657 k_VectorList, 658 k_VectorListAllLanes, 659 k_VectorListIndexed, 660 k_ShiftedRegister, 661 k_ShiftedImmediate, 662 k_ShifterImmediate, 663 k_RotateImmediate, 664 k_ModifiedImmediate, 665 k_ConstantPoolImmediate, 666 k_BitfieldDescriptor, 667 k_Token, 668 } Kind; 669 670 SMLoc StartLoc, EndLoc, AlignmentLoc; 671 SmallVector<unsigned, 8> Registers; 672 673 struct CCOp { 674 ARMCC::CondCodes Val; 675 }; 676 677 struct CopOp { 678 unsigned Val; 679 }; 680 681 struct CoprocOptionOp { 682 unsigned Val; 683 }; 684 685 struct ITMaskOp { 686 unsigned Mask:4; 687 }; 688 689 struct MBOptOp { 690 ARM_MB::MemBOpt Val; 691 }; 692 693 struct ISBOptOp { 694 ARM_ISB::InstSyncBOpt Val; 695 }; 696 697 struct IFlagsOp { 698 ARM_PROC::IFlags Val; 699 }; 700 701 struct MMaskOp { 702 unsigned Val; 703 }; 704 705 struct BankedRegOp { 706 unsigned Val; 707 }; 708 709 struct TokOp { 710 const char *Data; 711 unsigned Length; 712 }; 713 714 struct RegOp { 715 unsigned RegNum; 716 }; 717 718 // A vector register list is a sequential list of 1 to 4 registers. 719 struct VectorListOp { 720 unsigned RegNum; 721 unsigned Count; 722 unsigned LaneIndex; 723 bool isDoubleSpaced; 724 }; 725 726 struct VectorIndexOp { 727 unsigned Val; 728 }; 729 730 struct ImmOp { 731 const MCExpr *Val; 732 }; 733 734 /// Combined record for all forms of ARM address expressions. 735 struct MemoryOp { 736 unsigned BaseRegNum; 737 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 738 // was specified. 739 const MCConstantExpr *OffsetImm; // Offset immediate value 740 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 741 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 742 unsigned ShiftImm; // shift for OffsetReg. 743 unsigned Alignment; // 0 = no alignment specified 744 // n = alignment in bytes (2, 4, 8, 16, or 32) 745 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 746 }; 747 748 struct PostIdxRegOp { 749 unsigned RegNum; 750 bool isAdd; 751 ARM_AM::ShiftOpc ShiftTy; 752 unsigned ShiftImm; 753 }; 754 755 struct ShifterImmOp { 756 bool isASR; 757 unsigned Imm; 758 }; 759 760 struct RegShiftedRegOp { 761 ARM_AM::ShiftOpc ShiftTy; 762 unsigned SrcReg; 763 unsigned ShiftReg; 764 unsigned ShiftImm; 765 }; 766 767 struct RegShiftedImmOp { 768 ARM_AM::ShiftOpc ShiftTy; 769 unsigned SrcReg; 770 unsigned ShiftImm; 771 }; 772 773 struct RotImmOp { 774 unsigned Imm; 775 }; 776 777 struct ModImmOp { 778 unsigned Bits; 779 unsigned Rot; 780 }; 781 782 struct BitfieldOp { 783 unsigned LSB; 784 unsigned Width; 785 }; 786 787 union { 788 struct CCOp CC; 789 struct CopOp Cop; 790 struct CoprocOptionOp CoprocOption; 791 struct MBOptOp MBOpt; 792 struct ISBOptOp ISBOpt; 793 struct ITMaskOp ITMask; 794 struct IFlagsOp IFlags; 795 struct MMaskOp MMask; 796 struct BankedRegOp BankedReg; 797 struct TokOp Tok; 798 struct RegOp Reg; 799 struct VectorListOp VectorList; 800 struct VectorIndexOp VectorIndex; 801 struct ImmOp Imm; 802 struct MemoryOp Memory; 803 struct PostIdxRegOp PostIdxReg; 804 struct ShifterImmOp ShifterImm; 805 struct RegShiftedRegOp RegShiftedReg; 806 struct RegShiftedImmOp RegShiftedImm; 807 struct RotImmOp RotImm; 808 struct ModImmOp ModImm; 809 struct BitfieldOp Bitfield; 810 }; 811 812 public: 813 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 814 815 /// getStartLoc - Get the location of the first token of this operand. 816 SMLoc getStartLoc() const override { return StartLoc; } 817 818 /// getEndLoc - Get the location of the last token of this operand. 819 SMLoc getEndLoc() const override { return EndLoc; } 820 821 /// getLocRange - Get the range between the first and last token of this 822 /// operand. 823 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 824 825 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 826 SMLoc getAlignmentLoc() const { 827 assert(Kind == k_Memory && "Invalid access!"); 828 return AlignmentLoc; 829 } 830 831 ARMCC::CondCodes getCondCode() const { 832 assert(Kind == k_CondCode && "Invalid access!"); 833 return CC.Val; 834 } 835 836 unsigned getCoproc() const { 837 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 838 return Cop.Val; 839 } 840 841 StringRef getToken() const { 842 assert(Kind == k_Token && "Invalid access!"); 843 return StringRef(Tok.Data, Tok.Length); 844 } 845 846 unsigned getReg() const override { 847 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 848 return Reg.RegNum; 849 } 850 851 const SmallVectorImpl<unsigned> &getRegList() const { 852 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 853 Kind == k_SPRRegisterList) && "Invalid access!"); 854 return Registers; 855 } 856 857 const MCExpr *getImm() const { 858 assert(isImm() && "Invalid access!"); 859 return Imm.Val; 860 } 861 862 const MCExpr *getConstantPoolImm() const { 863 assert(isConstantPoolImm() && "Invalid access!"); 864 return Imm.Val; 865 } 866 867 unsigned getVectorIndex() const { 868 assert(Kind == k_VectorIndex && "Invalid access!"); 869 return VectorIndex.Val; 870 } 871 872 ARM_MB::MemBOpt getMemBarrierOpt() const { 873 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 874 return MBOpt.Val; 875 } 876 877 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 878 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 879 return ISBOpt.Val; 880 } 881 882 ARM_PROC::IFlags getProcIFlags() const { 883 assert(Kind == k_ProcIFlags && "Invalid access!"); 884 return IFlags.Val; 885 } 886 887 unsigned getMSRMask() const { 888 assert(Kind == k_MSRMask && "Invalid access!"); 889 return MMask.Val; 890 } 891 892 unsigned getBankedReg() const { 893 assert(Kind == k_BankedReg && "Invalid access!"); 894 return BankedReg.Val; 895 } 896 897 bool isCoprocNum() const { return Kind == k_CoprocNum; } 898 bool isCoprocReg() const { return Kind == k_CoprocReg; } 899 bool isCoprocOption() const { return Kind == k_CoprocOption; } 900 bool isCondCode() const { return Kind == k_CondCode; } 901 bool isCCOut() const { return Kind == k_CCOut; } 902 bool isITMask() const { return Kind == k_ITCondMask; } 903 bool isITCondCode() const { return Kind == k_CondCode; } 904 bool isImm() const override { 905 return Kind == k_Immediate; 906 } 907 908 bool isARMBranchTarget() const { 909 if (!isImm()) return false; 910 911 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 912 return CE->getValue() % 4 == 0; 913 return true; 914 } 915 916 917 bool isThumbBranchTarget() const { 918 if (!isImm()) return false; 919 920 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 921 return CE->getValue() % 2 == 0; 922 return true; 923 } 924 925 // checks whether this operand is an unsigned offset which fits is a field 926 // of specified width and scaled by a specific number of bits 927 template<unsigned width, unsigned scale> 928 bool isUnsignedOffset() const { 929 if (!isImm()) return false; 930 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 931 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 932 int64_t Val = CE->getValue(); 933 int64_t Align = 1LL << scale; 934 int64_t Max = Align * ((1LL << width) - 1); 935 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 936 } 937 return false; 938 } 939 940 // checks whether this operand is an signed offset which fits is a field 941 // of specified width and scaled by a specific number of bits 942 template<unsigned width, unsigned scale> 943 bool isSignedOffset() const { 944 if (!isImm()) return false; 945 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 946 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 947 int64_t Val = CE->getValue(); 948 int64_t Align = 1LL << scale; 949 int64_t Max = Align * ((1LL << (width-1)) - 1); 950 int64_t Min = -Align * (1LL << (width-1)); 951 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 952 } 953 return false; 954 } 955 956 // checks whether this operand is a memory operand computed as an offset 957 // applied to PC. the offset may have 8 bits of magnitude and is represented 958 // with two bits of shift. textually it may be either [pc, #imm], #imm or 959 // relocable expression... 960 bool isThumbMemPC() const { 961 int64_t Val = 0; 962 if (isImm()) { 963 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 964 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 965 if (!CE) return false; 966 Val = CE->getValue(); 967 } 968 else if (isMem()) { 969 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 970 if(Memory.BaseRegNum != ARM::PC) return false; 971 Val = Memory.OffsetImm->getValue(); 972 } 973 else return false; 974 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 975 } 976 977 bool isFPImm() const { 978 if (!isImm()) return false; 979 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 980 if (!CE) return false; 981 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 982 return Val != -1; 983 } 984 985 template<int64_t N, int64_t M> 986 bool isImmediate() const { 987 if (!isImm()) return false; 988 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 989 if (!CE) return false; 990 int64_t Value = CE->getValue(); 991 return Value >= N && Value <= M; 992 } 993 994 template<int64_t N, int64_t M> 995 bool isImmediateS4() const { 996 if (!isImm()) return false; 997 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 998 if (!CE) return false; 999 int64_t Value = CE->getValue(); 1000 return ((Value & 3) == 0) && Value >= N && Value <= M; 1001 } 1002 1003 bool isFBits16() const { 1004 return isImmediate<0, 17>(); 1005 } 1006 bool isFBits32() const { 1007 return isImmediate<1, 33>(); 1008 } 1009 bool isImm8s4() const { 1010 return isImmediateS4<-1020, 1020>(); 1011 } 1012 bool isImm0_1020s4() const { 1013 return isImmediateS4<0, 1020>(); 1014 } 1015 bool isImm0_508s4() const { 1016 return isImmediateS4<0, 508>(); 1017 } 1018 bool isImm0_508s4Neg() const { 1019 if (!isImm()) return false; 1020 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1021 if (!CE) return false; 1022 int64_t Value = -CE->getValue(); 1023 // explicitly exclude zero. we want that to use the normal 0_508 version. 1024 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1025 } 1026 1027 bool isImm0_4095Neg() const { 1028 if (!isImm()) return false; 1029 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1030 if (!CE) return false; 1031 int64_t Value = -CE->getValue(); 1032 return Value > 0 && Value < 4096; 1033 } 1034 1035 bool isImm0_7() const { 1036 return isImmediate<0, 7>(); 1037 } 1038 1039 bool isImm1_16() const { 1040 return isImmediate<1, 16>(); 1041 } 1042 1043 bool isImm1_32() const { 1044 return isImmediate<1, 32>(); 1045 } 1046 1047 bool isImm8_255() const { 1048 return isImmediate<8, 255>(); 1049 } 1050 1051 bool isImm256_65535Expr() const { 1052 if (!isImm()) return false; 1053 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1054 // If it's not a constant expression, it'll generate a fixup and be 1055 // handled later. 1056 if (!CE) return true; 1057 int64_t Value = CE->getValue(); 1058 return Value >= 256 && Value < 65536; 1059 } 1060 1061 bool isImm0_65535Expr() const { 1062 if (!isImm()) return false; 1063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1064 // If it's not a constant expression, it'll generate a fixup and be 1065 // handled later. 1066 if (!CE) return true; 1067 int64_t Value = CE->getValue(); 1068 return Value >= 0 && Value < 65536; 1069 } 1070 1071 bool isImm24bit() const { 1072 return isImmediate<0, 0xffffff + 1>(); 1073 } 1074 1075 bool isImmThumbSR() const { 1076 return isImmediate<1, 33>(); 1077 } 1078 1079 bool isPKHLSLImm() const { 1080 return isImmediate<0, 32>(); 1081 } 1082 1083 bool isPKHASRImm() const { 1084 return isImmediate<0, 33>(); 1085 } 1086 1087 bool isAdrLabel() const { 1088 // If we have an immediate that's not a constant, treat it as a label 1089 // reference needing a fixup. 1090 if (isImm() && !isa<MCConstantExpr>(getImm())) 1091 return true; 1092 1093 // If it is a constant, it must fit into a modified immediate encoding. 1094 if (!isImm()) return false; 1095 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1096 if (!CE) return false; 1097 int64_t Value = CE->getValue(); 1098 return (ARM_AM::getSOImmVal(Value) != -1 || 1099 ARM_AM::getSOImmVal(-Value) != -1); 1100 } 1101 1102 bool isT2SOImm() const { 1103 // If we have an immediate that's not a constant, treat it as an expression 1104 // needing a fixup. 1105 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1106 // We want to avoid matching :upper16: and :lower16: as we want these 1107 // expressions to match in isImm0_65535Expr() 1108 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1109 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1110 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1111 } 1112 if (!isImm()) return false; 1113 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1114 if (!CE) return false; 1115 int64_t Value = CE->getValue(); 1116 return ARM_AM::getT2SOImmVal(Value) != -1; 1117 } 1118 1119 bool isT2SOImmNot() const { 1120 if (!isImm()) return false; 1121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1122 if (!CE) return false; 1123 int64_t Value = CE->getValue(); 1124 return ARM_AM::getT2SOImmVal(Value) == -1 && 1125 ARM_AM::getT2SOImmVal(~Value) != -1; 1126 } 1127 1128 bool isT2SOImmNeg() const { 1129 if (!isImm()) return false; 1130 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1131 if (!CE) return false; 1132 int64_t Value = CE->getValue(); 1133 // Only use this when not representable as a plain so_imm. 1134 return ARM_AM::getT2SOImmVal(Value) == -1 && 1135 ARM_AM::getT2SOImmVal(-Value) != -1; 1136 } 1137 1138 bool isSetEndImm() const { 1139 if (!isImm()) return false; 1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1141 if (!CE) return false; 1142 int64_t Value = CE->getValue(); 1143 return Value == 1 || Value == 0; 1144 } 1145 1146 bool isReg() const override { return Kind == k_Register; } 1147 bool isRegList() const { return Kind == k_RegisterList; } 1148 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1149 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1150 bool isToken() const override { return Kind == k_Token; } 1151 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1152 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1153 bool isMem() const override { 1154 if (Kind != k_Memory) 1155 return false; 1156 if (Memory.BaseRegNum && 1157 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1158 return false; 1159 if (Memory.OffsetRegNum && 1160 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1161 return false; 1162 return true; 1163 } 1164 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1165 bool isRegShiftedReg() const { 1166 return Kind == k_ShiftedRegister && 1167 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1168 RegShiftedReg.SrcReg) && 1169 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1170 RegShiftedReg.ShiftReg); 1171 } 1172 bool isRegShiftedImm() const { 1173 return Kind == k_ShiftedImmediate && 1174 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1175 RegShiftedImm.SrcReg); 1176 } 1177 bool isRotImm() const { return Kind == k_RotateImmediate; } 1178 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1179 1180 bool isModImmNot() const { 1181 if (!isImm()) return false; 1182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1183 if (!CE) return false; 1184 int64_t Value = CE->getValue(); 1185 return ARM_AM::getSOImmVal(~Value) != -1; 1186 } 1187 1188 bool isModImmNeg() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 int64_t Value = CE->getValue(); 1193 return ARM_AM::getSOImmVal(Value) == -1 && 1194 ARM_AM::getSOImmVal(-Value) != -1; 1195 } 1196 1197 bool isThumbModImmNeg1_7() const { 1198 if (!isImm()) return false; 1199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1200 if (!CE) return false; 1201 int32_t Value = -(int32_t)CE->getValue(); 1202 return 0 < Value && Value < 8; 1203 } 1204 1205 bool isThumbModImmNeg8_255() const { 1206 if (!isImm()) return false; 1207 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1208 if (!CE) return false; 1209 int32_t Value = -(int32_t)CE->getValue(); 1210 return 7 < Value && Value < 256; 1211 } 1212 1213 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1214 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1215 bool isPostIdxRegShifted() const { 1216 return Kind == k_PostIndexRegister && 1217 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1218 } 1219 bool isPostIdxReg() const { 1220 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1221 } 1222 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1223 if (!isMem()) 1224 return false; 1225 // No offset of any kind. 1226 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1227 (alignOK || Memory.Alignment == Alignment); 1228 } 1229 bool isMemPCRelImm12() const { 1230 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1231 return false; 1232 // Base register must be PC. 1233 if (Memory.BaseRegNum != ARM::PC) 1234 return false; 1235 // Immediate offset in range [-4095, 4095]. 1236 if (!Memory.OffsetImm) return true; 1237 int64_t Val = Memory.OffsetImm->getValue(); 1238 return (Val > -4096 && Val < 4096) || 1239 (Val == std::numeric_limits<int32_t>::min()); 1240 } 1241 1242 bool isAlignedMemory() const { 1243 return isMemNoOffset(true); 1244 } 1245 1246 bool isAlignedMemoryNone() const { 1247 return isMemNoOffset(false, 0); 1248 } 1249 1250 bool isDupAlignedMemoryNone() const { 1251 return isMemNoOffset(false, 0); 1252 } 1253 1254 bool isAlignedMemory16() const { 1255 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1256 return true; 1257 return isMemNoOffset(false, 0); 1258 } 1259 1260 bool isDupAlignedMemory16() const { 1261 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1262 return true; 1263 return isMemNoOffset(false, 0); 1264 } 1265 1266 bool isAlignedMemory32() const { 1267 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1268 return true; 1269 return isMemNoOffset(false, 0); 1270 } 1271 1272 bool isDupAlignedMemory32() const { 1273 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1274 return true; 1275 return isMemNoOffset(false, 0); 1276 } 1277 1278 bool isAlignedMemory64() const { 1279 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1280 return true; 1281 return isMemNoOffset(false, 0); 1282 } 1283 1284 bool isDupAlignedMemory64() const { 1285 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1286 return true; 1287 return isMemNoOffset(false, 0); 1288 } 1289 1290 bool isAlignedMemory64or128() const { 1291 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1292 return true; 1293 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1294 return true; 1295 return isMemNoOffset(false, 0); 1296 } 1297 1298 bool isDupAlignedMemory64or128() const { 1299 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1300 return true; 1301 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1302 return true; 1303 return isMemNoOffset(false, 0); 1304 } 1305 1306 bool isAlignedMemory64or128or256() const { 1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1308 return true; 1309 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1310 return true; 1311 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1312 return true; 1313 return isMemNoOffset(false, 0); 1314 } 1315 1316 bool isAddrMode2() const { 1317 if (!isMem() || Memory.Alignment != 0) return false; 1318 // Check for register offset. 1319 if (Memory.OffsetRegNum) return true; 1320 // Immediate offset in range [-4095, 4095]. 1321 if (!Memory.OffsetImm) return true; 1322 int64_t Val = Memory.OffsetImm->getValue(); 1323 return Val > -4096 && Val < 4096; 1324 } 1325 1326 bool isAM2OffsetImm() const { 1327 if (!isImm()) return false; 1328 // Immediate offset in range [-4095, 4095]. 1329 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1330 if (!CE) return false; 1331 int64_t Val = CE->getValue(); 1332 return (Val == std::numeric_limits<int32_t>::min()) || 1333 (Val > -4096 && Val < 4096); 1334 } 1335 1336 bool isAddrMode3() const { 1337 // If we have an immediate that's not a constant, treat it as a label 1338 // reference needing a fixup. If it is a constant, it's something else 1339 // and we reject it. 1340 if (isImm() && !isa<MCConstantExpr>(getImm())) 1341 return true; 1342 if (!isMem() || Memory.Alignment != 0) return false; 1343 // No shifts are legal for AM3. 1344 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1345 // Check for register offset. 1346 if (Memory.OffsetRegNum) return true; 1347 // Immediate offset in range [-255, 255]. 1348 if (!Memory.OffsetImm) return true; 1349 int64_t Val = Memory.OffsetImm->getValue(); 1350 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1351 // have to check for this too. 1352 return (Val > -256 && Val < 256) || 1353 Val == std::numeric_limits<int32_t>::min(); 1354 } 1355 1356 bool isAM3Offset() const { 1357 if (isPostIdxReg()) 1358 return true; 1359 if (!isImm()) 1360 return false; 1361 // Immediate offset in range [-255, 255]. 1362 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1363 if (!CE) return false; 1364 int64_t Val = CE->getValue(); 1365 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1366 return (Val > -256 && Val < 256) || 1367 Val == std::numeric_limits<int32_t>::min(); 1368 } 1369 1370 bool isAddrMode5() const { 1371 // If we have an immediate that's not a constant, treat it as a label 1372 // reference needing a fixup. If it is a constant, it's something else 1373 // and we reject it. 1374 if (isImm() && !isa<MCConstantExpr>(getImm())) 1375 return true; 1376 if (!isMem() || Memory.Alignment != 0) return false; 1377 // Check for register offset. 1378 if (Memory.OffsetRegNum) return false; 1379 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1380 if (!Memory.OffsetImm) return true; 1381 int64_t Val = Memory.OffsetImm->getValue(); 1382 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1383 Val == std::numeric_limits<int32_t>::min(); 1384 } 1385 1386 bool isAddrMode5FP16() const { 1387 // If we have an immediate that's not a constant, treat it as a label 1388 // reference needing a fixup. If it is a constant, it's something else 1389 // and we reject it. 1390 if (isImm() && !isa<MCConstantExpr>(getImm())) 1391 return true; 1392 if (!isMem() || Memory.Alignment != 0) return false; 1393 // Check for register offset. 1394 if (Memory.OffsetRegNum) return false; 1395 // Immediate offset in range [-510, 510] and a multiple of 2. 1396 if (!Memory.OffsetImm) return true; 1397 int64_t Val = Memory.OffsetImm->getValue(); 1398 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1399 Val == std::numeric_limits<int32_t>::min(); 1400 } 1401 1402 bool isMemTBB() const { 1403 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1404 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1405 return false; 1406 return true; 1407 } 1408 1409 bool isMemTBH() const { 1410 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1411 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1412 Memory.Alignment != 0 ) 1413 return false; 1414 return true; 1415 } 1416 1417 bool isMemRegOffset() const { 1418 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1419 return false; 1420 return true; 1421 } 1422 1423 bool isT2MemRegOffset() const { 1424 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1425 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1426 return false; 1427 // Only lsl #{0, 1, 2, 3} allowed. 1428 if (Memory.ShiftType == ARM_AM::no_shift) 1429 return true; 1430 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1431 return false; 1432 return true; 1433 } 1434 1435 bool isMemThumbRR() const { 1436 // Thumb reg+reg addressing is simple. Just two registers, a base and 1437 // an offset. No shifts, negations or any other complicating factors. 1438 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1439 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1440 return false; 1441 return isARMLowRegister(Memory.BaseRegNum) && 1442 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1443 } 1444 1445 bool isMemThumbRIs4() const { 1446 if (!isMem() || Memory.OffsetRegNum != 0 || 1447 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1448 return false; 1449 // Immediate offset, multiple of 4 in range [0, 124]. 1450 if (!Memory.OffsetImm) return true; 1451 int64_t Val = Memory.OffsetImm->getValue(); 1452 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1453 } 1454 1455 bool isMemThumbRIs2() const { 1456 if (!isMem() || Memory.OffsetRegNum != 0 || 1457 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1458 return false; 1459 // Immediate offset, multiple of 4 in range [0, 62]. 1460 if (!Memory.OffsetImm) return true; 1461 int64_t Val = Memory.OffsetImm->getValue(); 1462 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1463 } 1464 1465 bool isMemThumbRIs1() const { 1466 if (!isMem() || Memory.OffsetRegNum != 0 || 1467 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1468 return false; 1469 // Immediate offset in range [0, 31]. 1470 if (!Memory.OffsetImm) return true; 1471 int64_t Val = Memory.OffsetImm->getValue(); 1472 return Val >= 0 && Val <= 31; 1473 } 1474 1475 bool isMemThumbSPI() const { 1476 if (!isMem() || Memory.OffsetRegNum != 0 || 1477 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1478 return false; 1479 // Immediate offset, multiple of 4 in range [0, 1020]. 1480 if (!Memory.OffsetImm) return true; 1481 int64_t Val = Memory.OffsetImm->getValue(); 1482 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1483 } 1484 1485 bool isMemImm8s4Offset() const { 1486 // If we have an immediate that's not a constant, treat it as a label 1487 // reference needing a fixup. If it is a constant, it's something else 1488 // and we reject it. 1489 if (isImm() && !isa<MCConstantExpr>(getImm())) 1490 return true; 1491 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1492 return false; 1493 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1494 if (!Memory.OffsetImm) return true; 1495 int64_t Val = Memory.OffsetImm->getValue(); 1496 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1497 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1498 Val == std::numeric_limits<int32_t>::min(); 1499 } 1500 1501 bool isMemImm0_1020s4Offset() const { 1502 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1503 return false; 1504 // Immediate offset a multiple of 4 in range [0, 1020]. 1505 if (!Memory.OffsetImm) return true; 1506 int64_t Val = Memory.OffsetImm->getValue(); 1507 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1508 } 1509 1510 bool isMemImm8Offset() const { 1511 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1512 return false; 1513 // Base reg of PC isn't allowed for these encodings. 1514 if (Memory.BaseRegNum == ARM::PC) return false; 1515 // Immediate offset in range [-255, 255]. 1516 if (!Memory.OffsetImm) return true; 1517 int64_t Val = Memory.OffsetImm->getValue(); 1518 return (Val == std::numeric_limits<int32_t>::min()) || 1519 (Val > -256 && Val < 256); 1520 } 1521 1522 bool isMemPosImm8Offset() const { 1523 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1524 return false; 1525 // Immediate offset in range [0, 255]. 1526 if (!Memory.OffsetImm) return true; 1527 int64_t Val = Memory.OffsetImm->getValue(); 1528 return Val >= 0 && Val < 256; 1529 } 1530 1531 bool isMemNegImm8Offset() const { 1532 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1533 return false; 1534 // Base reg of PC isn't allowed for these encodings. 1535 if (Memory.BaseRegNum == ARM::PC) return false; 1536 // Immediate offset in range [-255, -1]. 1537 if (!Memory.OffsetImm) return false; 1538 int64_t Val = Memory.OffsetImm->getValue(); 1539 return (Val == std::numeric_limits<int32_t>::min()) || 1540 (Val > -256 && Val < 0); 1541 } 1542 1543 bool isMemUImm12Offset() const { 1544 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1545 return false; 1546 // Immediate offset in range [0, 4095]. 1547 if (!Memory.OffsetImm) return true; 1548 int64_t Val = Memory.OffsetImm->getValue(); 1549 return (Val >= 0 && Val < 4096); 1550 } 1551 1552 bool isMemImm12Offset() const { 1553 // If we have an immediate that's not a constant, treat it as a label 1554 // reference needing a fixup. If it is a constant, it's something else 1555 // and we reject it. 1556 1557 if (isImm() && !isa<MCConstantExpr>(getImm())) 1558 return true; 1559 1560 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1561 return false; 1562 // Immediate offset in range [-4095, 4095]. 1563 if (!Memory.OffsetImm) return true; 1564 int64_t Val = Memory.OffsetImm->getValue(); 1565 return (Val > -4096 && Val < 4096) || 1566 (Val == std::numeric_limits<int32_t>::min()); 1567 } 1568 1569 bool isConstPoolAsmImm() const { 1570 // Delay processing of Constant Pool Immediate, this will turn into 1571 // a constant. Match no other operand 1572 return (isConstantPoolImm()); 1573 } 1574 1575 bool isPostIdxImm8() const { 1576 if (!isImm()) return false; 1577 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1578 if (!CE) return false; 1579 int64_t Val = CE->getValue(); 1580 return (Val > -256 && Val < 256) || 1581 (Val == std::numeric_limits<int32_t>::min()); 1582 } 1583 1584 bool isPostIdxImm8s4() const { 1585 if (!isImm()) return false; 1586 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1587 if (!CE) return false; 1588 int64_t Val = CE->getValue(); 1589 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1590 (Val == std::numeric_limits<int32_t>::min()); 1591 } 1592 1593 bool isMSRMask() const { return Kind == k_MSRMask; } 1594 bool isBankedReg() const { return Kind == k_BankedReg; } 1595 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1596 1597 // NEON operands. 1598 bool isSingleSpacedVectorList() const { 1599 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1600 } 1601 1602 bool isDoubleSpacedVectorList() const { 1603 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1604 } 1605 1606 bool isVecListOneD() const { 1607 if (!isSingleSpacedVectorList()) return false; 1608 return VectorList.Count == 1; 1609 } 1610 1611 bool isVecListDPair() const { 1612 if (!isSingleSpacedVectorList()) return false; 1613 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1614 .contains(VectorList.RegNum)); 1615 } 1616 1617 bool isVecListThreeD() const { 1618 if (!isSingleSpacedVectorList()) return false; 1619 return VectorList.Count == 3; 1620 } 1621 1622 bool isVecListFourD() const { 1623 if (!isSingleSpacedVectorList()) return false; 1624 return VectorList.Count == 4; 1625 } 1626 1627 bool isVecListDPairSpaced() const { 1628 if (Kind != k_VectorList) return false; 1629 if (isSingleSpacedVectorList()) return false; 1630 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1631 .contains(VectorList.RegNum)); 1632 } 1633 1634 bool isVecListThreeQ() const { 1635 if (!isDoubleSpacedVectorList()) return false; 1636 return VectorList.Count == 3; 1637 } 1638 1639 bool isVecListFourQ() const { 1640 if (!isDoubleSpacedVectorList()) return false; 1641 return VectorList.Count == 4; 1642 } 1643 1644 bool isSingleSpacedVectorAllLanes() const { 1645 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1646 } 1647 1648 bool isDoubleSpacedVectorAllLanes() const { 1649 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1650 } 1651 1652 bool isVecListOneDAllLanes() const { 1653 if (!isSingleSpacedVectorAllLanes()) return false; 1654 return VectorList.Count == 1; 1655 } 1656 1657 bool isVecListDPairAllLanes() const { 1658 if (!isSingleSpacedVectorAllLanes()) return false; 1659 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1660 .contains(VectorList.RegNum)); 1661 } 1662 1663 bool isVecListDPairSpacedAllLanes() const { 1664 if (!isDoubleSpacedVectorAllLanes()) return false; 1665 return VectorList.Count == 2; 1666 } 1667 1668 bool isVecListThreeDAllLanes() const { 1669 if (!isSingleSpacedVectorAllLanes()) return false; 1670 return VectorList.Count == 3; 1671 } 1672 1673 bool isVecListThreeQAllLanes() const { 1674 if (!isDoubleSpacedVectorAllLanes()) return false; 1675 return VectorList.Count == 3; 1676 } 1677 1678 bool isVecListFourDAllLanes() const { 1679 if (!isSingleSpacedVectorAllLanes()) return false; 1680 return VectorList.Count == 4; 1681 } 1682 1683 bool isVecListFourQAllLanes() const { 1684 if (!isDoubleSpacedVectorAllLanes()) return false; 1685 return VectorList.Count == 4; 1686 } 1687 1688 bool isSingleSpacedVectorIndexed() const { 1689 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1690 } 1691 1692 bool isDoubleSpacedVectorIndexed() const { 1693 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1694 } 1695 1696 bool isVecListOneDByteIndexed() const { 1697 if (!isSingleSpacedVectorIndexed()) return false; 1698 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1699 } 1700 1701 bool isVecListOneDHWordIndexed() const { 1702 if (!isSingleSpacedVectorIndexed()) return false; 1703 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1704 } 1705 1706 bool isVecListOneDWordIndexed() const { 1707 if (!isSingleSpacedVectorIndexed()) return false; 1708 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1709 } 1710 1711 bool isVecListTwoDByteIndexed() const { 1712 if (!isSingleSpacedVectorIndexed()) return false; 1713 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1714 } 1715 1716 bool isVecListTwoDHWordIndexed() const { 1717 if (!isSingleSpacedVectorIndexed()) return false; 1718 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1719 } 1720 1721 bool isVecListTwoQWordIndexed() const { 1722 if (!isDoubleSpacedVectorIndexed()) return false; 1723 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1724 } 1725 1726 bool isVecListTwoQHWordIndexed() const { 1727 if (!isDoubleSpacedVectorIndexed()) return false; 1728 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1729 } 1730 1731 bool isVecListTwoDWordIndexed() const { 1732 if (!isSingleSpacedVectorIndexed()) return false; 1733 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1734 } 1735 1736 bool isVecListThreeDByteIndexed() const { 1737 if (!isSingleSpacedVectorIndexed()) return false; 1738 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1739 } 1740 1741 bool isVecListThreeDHWordIndexed() const { 1742 if (!isSingleSpacedVectorIndexed()) return false; 1743 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1744 } 1745 1746 bool isVecListThreeQWordIndexed() const { 1747 if (!isDoubleSpacedVectorIndexed()) return false; 1748 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1749 } 1750 1751 bool isVecListThreeQHWordIndexed() const { 1752 if (!isDoubleSpacedVectorIndexed()) return false; 1753 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1754 } 1755 1756 bool isVecListThreeDWordIndexed() const { 1757 if (!isSingleSpacedVectorIndexed()) return false; 1758 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1759 } 1760 1761 bool isVecListFourDByteIndexed() const { 1762 if (!isSingleSpacedVectorIndexed()) return false; 1763 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1764 } 1765 1766 bool isVecListFourDHWordIndexed() const { 1767 if (!isSingleSpacedVectorIndexed()) return false; 1768 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1769 } 1770 1771 bool isVecListFourQWordIndexed() const { 1772 if (!isDoubleSpacedVectorIndexed()) return false; 1773 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1774 } 1775 1776 bool isVecListFourQHWordIndexed() const { 1777 if (!isDoubleSpacedVectorIndexed()) return false; 1778 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1779 } 1780 1781 bool isVecListFourDWordIndexed() const { 1782 if (!isSingleSpacedVectorIndexed()) return false; 1783 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1784 } 1785 1786 bool isVectorIndex8() const { 1787 if (Kind != k_VectorIndex) return false; 1788 return VectorIndex.Val < 8; 1789 } 1790 1791 bool isVectorIndex16() const { 1792 if (Kind != k_VectorIndex) return false; 1793 return VectorIndex.Val < 4; 1794 } 1795 1796 bool isVectorIndex32() const { 1797 if (Kind != k_VectorIndex) return false; 1798 return VectorIndex.Val < 2; 1799 } 1800 bool isVectorIndex64() const { 1801 if (Kind != k_VectorIndex) return false; 1802 return VectorIndex.Val < 1; 1803 } 1804 1805 bool isNEONi8splat() const { 1806 if (!isImm()) return false; 1807 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1808 // Must be a constant. 1809 if (!CE) return false; 1810 int64_t Value = CE->getValue(); 1811 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1812 // value. 1813 return Value >= 0 && Value < 256; 1814 } 1815 1816 bool isNEONi16splat() const { 1817 if (isNEONByteReplicate(2)) 1818 return false; // Leave that for bytes replication and forbid by default. 1819 if (!isImm()) 1820 return false; 1821 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1822 // Must be a constant. 1823 if (!CE) return false; 1824 unsigned Value = CE->getValue(); 1825 return ARM_AM::isNEONi16splat(Value); 1826 } 1827 1828 bool isNEONi16splatNot() const { 1829 if (!isImm()) 1830 return false; 1831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1832 // Must be a constant. 1833 if (!CE) return false; 1834 unsigned Value = CE->getValue(); 1835 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1836 } 1837 1838 bool isNEONi32splat() const { 1839 if (isNEONByteReplicate(4)) 1840 return false; // Leave that for bytes replication and forbid by default. 1841 if (!isImm()) 1842 return false; 1843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1844 // Must be a constant. 1845 if (!CE) return false; 1846 unsigned Value = CE->getValue(); 1847 return ARM_AM::isNEONi32splat(Value); 1848 } 1849 1850 bool isNEONi32splatNot() const { 1851 if (!isImm()) 1852 return false; 1853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1854 // Must be a constant. 1855 if (!CE) return false; 1856 unsigned Value = CE->getValue(); 1857 return ARM_AM::isNEONi32splat(~Value); 1858 } 1859 1860 bool isNEONByteReplicate(unsigned NumBytes) const { 1861 if (!isImm()) 1862 return false; 1863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1864 // Must be a constant. 1865 if (!CE) 1866 return false; 1867 int64_t Value = CE->getValue(); 1868 if (!Value) 1869 return false; // Don't bother with zero. 1870 1871 unsigned char B = Value & 0xff; 1872 for (unsigned i = 1; i < NumBytes; ++i) { 1873 Value >>= 8; 1874 if ((Value & 0xff) != B) 1875 return false; 1876 } 1877 return true; 1878 } 1879 1880 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1881 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1882 1883 bool isNEONi32vmov() const { 1884 if (isNEONByteReplicate(4)) 1885 return false; // Let it to be classified as byte-replicate case. 1886 if (!isImm()) 1887 return false; 1888 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1889 // Must be a constant. 1890 if (!CE) 1891 return false; 1892 int64_t Value = CE->getValue(); 1893 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1894 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1895 // FIXME: This is probably wrong and a copy and paste from previous example 1896 return (Value >= 0 && Value < 256) || 1897 (Value >= 0x0100 && Value <= 0xff00) || 1898 (Value >= 0x010000 && Value <= 0xff0000) || 1899 (Value >= 0x01000000 && Value <= 0xff000000) || 1900 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1901 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1902 } 1903 1904 bool isNEONi32vmovNeg() const { 1905 if (!isImm()) return false; 1906 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1907 // Must be a constant. 1908 if (!CE) return false; 1909 int64_t Value = ~CE->getValue(); 1910 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1911 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1912 // FIXME: This is probably wrong and a copy and paste from previous example 1913 return (Value >= 0 && Value < 256) || 1914 (Value >= 0x0100 && Value <= 0xff00) || 1915 (Value >= 0x010000 && Value <= 0xff0000) || 1916 (Value >= 0x01000000 && Value <= 0xff000000) || 1917 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1918 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1919 } 1920 1921 bool isNEONi64splat() const { 1922 if (!isImm()) return false; 1923 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1924 // Must be a constant. 1925 if (!CE) return false; 1926 uint64_t Value = CE->getValue(); 1927 // i64 value with each byte being either 0 or 0xff. 1928 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1929 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1930 return true; 1931 } 1932 1933 template<int64_t Angle, int64_t Remainder> 1934 bool isComplexRotation() const { 1935 if (!isImm()) return false; 1936 1937 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1938 if (!CE) return false; 1939 uint64_t Value = CE->getValue(); 1940 1941 return (Value % Angle == Remainder && Value <= 270); 1942 } 1943 1944 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1945 // Add as immediates when possible. Null MCExpr = 0. 1946 if (!Expr) 1947 Inst.addOperand(MCOperand::createImm(0)); 1948 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1949 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1950 else 1951 Inst.addOperand(MCOperand::createExpr(Expr)); 1952 } 1953 1954 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1955 assert(N == 1 && "Invalid number of operands!"); 1956 addExpr(Inst, getImm()); 1957 } 1958 1959 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1960 assert(N == 1 && "Invalid number of operands!"); 1961 addExpr(Inst, getImm()); 1962 } 1963 1964 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1965 assert(N == 2 && "Invalid number of operands!"); 1966 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1967 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1968 Inst.addOperand(MCOperand::createReg(RegNum)); 1969 } 1970 1971 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1972 assert(N == 1 && "Invalid number of operands!"); 1973 Inst.addOperand(MCOperand::createImm(getCoproc())); 1974 } 1975 1976 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1977 assert(N == 1 && "Invalid number of operands!"); 1978 Inst.addOperand(MCOperand::createImm(getCoproc())); 1979 } 1980 1981 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1982 assert(N == 1 && "Invalid number of operands!"); 1983 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1984 } 1985 1986 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1987 assert(N == 1 && "Invalid number of operands!"); 1988 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1989 } 1990 1991 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1992 assert(N == 1 && "Invalid number of operands!"); 1993 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1994 } 1995 1996 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1997 assert(N == 1 && "Invalid number of operands!"); 1998 Inst.addOperand(MCOperand::createReg(getReg())); 1999 } 2000 2001 void addRegOperands(MCInst &Inst, unsigned N) const { 2002 assert(N == 1 && "Invalid number of operands!"); 2003 Inst.addOperand(MCOperand::createReg(getReg())); 2004 } 2005 2006 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2007 assert(N == 3 && "Invalid number of operands!"); 2008 assert(isRegShiftedReg() && 2009 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2010 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2011 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2012 Inst.addOperand(MCOperand::createImm( 2013 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2014 } 2015 2016 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2017 assert(N == 2 && "Invalid number of operands!"); 2018 assert(isRegShiftedImm() && 2019 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2020 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2021 // Shift of #32 is encoded as 0 where permitted 2022 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2023 Inst.addOperand(MCOperand::createImm( 2024 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2025 } 2026 2027 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2028 assert(N == 1 && "Invalid number of operands!"); 2029 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2030 ShifterImm.Imm)); 2031 } 2032 2033 void addRegListOperands(MCInst &Inst, unsigned N) const { 2034 assert(N == 1 && "Invalid number of operands!"); 2035 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2036 for (SmallVectorImpl<unsigned>::const_iterator 2037 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2038 Inst.addOperand(MCOperand::createReg(*I)); 2039 } 2040 2041 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2042 addRegListOperands(Inst, N); 2043 } 2044 2045 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2046 addRegListOperands(Inst, N); 2047 } 2048 2049 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2050 assert(N == 1 && "Invalid number of operands!"); 2051 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2052 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2053 } 2054 2055 void addModImmOperands(MCInst &Inst, unsigned N) const { 2056 assert(N == 1 && "Invalid number of operands!"); 2057 2058 // Support for fixups (MCFixup) 2059 if (isImm()) 2060 return addImmOperands(Inst, N); 2061 2062 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2063 } 2064 2065 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2066 assert(N == 1 && "Invalid number of operands!"); 2067 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2068 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2069 Inst.addOperand(MCOperand::createImm(Enc)); 2070 } 2071 2072 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2073 assert(N == 1 && "Invalid number of operands!"); 2074 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2075 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2076 Inst.addOperand(MCOperand::createImm(Enc)); 2077 } 2078 2079 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2080 assert(N == 1 && "Invalid number of operands!"); 2081 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2082 uint32_t Val = -CE->getValue(); 2083 Inst.addOperand(MCOperand::createImm(Val)); 2084 } 2085 2086 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2087 assert(N == 1 && "Invalid number of operands!"); 2088 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2089 uint32_t Val = -CE->getValue(); 2090 Inst.addOperand(MCOperand::createImm(Val)); 2091 } 2092 2093 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2094 assert(N == 1 && "Invalid number of operands!"); 2095 // Munge the lsb/width into a bitfield mask. 2096 unsigned lsb = Bitfield.LSB; 2097 unsigned width = Bitfield.Width; 2098 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2099 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2100 (32 - (lsb + width))); 2101 Inst.addOperand(MCOperand::createImm(Mask)); 2102 } 2103 2104 void addImmOperands(MCInst &Inst, unsigned N) const { 2105 assert(N == 1 && "Invalid number of operands!"); 2106 addExpr(Inst, getImm()); 2107 } 2108 2109 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2110 assert(N == 1 && "Invalid number of operands!"); 2111 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2112 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2113 } 2114 2115 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2116 assert(N == 1 && "Invalid number of operands!"); 2117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2118 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2119 } 2120 2121 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2122 assert(N == 1 && "Invalid number of operands!"); 2123 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2124 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2125 Inst.addOperand(MCOperand::createImm(Val)); 2126 } 2127 2128 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2129 assert(N == 1 && "Invalid number of operands!"); 2130 // FIXME: We really want to scale the value here, but the LDRD/STRD 2131 // instruction don't encode operands that way yet. 2132 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2133 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2134 } 2135 2136 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2137 assert(N == 1 && "Invalid number of operands!"); 2138 // The immediate is scaled by four in the encoding and is stored 2139 // in the MCInst as such. Lop off the low two bits here. 2140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2141 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2142 } 2143 2144 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2145 assert(N == 1 && "Invalid number of operands!"); 2146 // The immediate is scaled by four in the encoding and is stored 2147 // in the MCInst as such. Lop off the low two bits here. 2148 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2149 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2150 } 2151 2152 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2153 assert(N == 1 && "Invalid number of operands!"); 2154 // The immediate is scaled by four in the encoding and is stored 2155 // in the MCInst as such. Lop off the low two bits here. 2156 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2157 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2158 } 2159 2160 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2161 assert(N == 1 && "Invalid number of operands!"); 2162 // The constant encodes as the immediate-1, and we store in the instruction 2163 // the bits as encoded, so subtract off one here. 2164 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2165 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2166 } 2167 2168 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2169 assert(N == 1 && "Invalid number of operands!"); 2170 // The constant encodes as the immediate-1, and we store in the instruction 2171 // the bits as encoded, so subtract off one here. 2172 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2173 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2174 } 2175 2176 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2177 assert(N == 1 && "Invalid number of operands!"); 2178 // The constant encodes as the immediate, except for 32, which encodes as 2179 // zero. 2180 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2181 unsigned Imm = CE->getValue(); 2182 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2183 } 2184 2185 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2186 assert(N == 1 && "Invalid number of operands!"); 2187 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2188 // the instruction as well. 2189 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2190 int Val = CE->getValue(); 2191 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2192 } 2193 2194 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2195 assert(N == 1 && "Invalid number of operands!"); 2196 // The operand is actually a t2_so_imm, but we have its bitwise 2197 // negation in the assembly source, so twiddle it here. 2198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2199 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2200 } 2201 2202 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2203 assert(N == 1 && "Invalid number of operands!"); 2204 // The operand is actually a t2_so_imm, but we have its 2205 // negation in the assembly source, so twiddle it here. 2206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2207 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2208 } 2209 2210 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2211 assert(N == 1 && "Invalid number of operands!"); 2212 // The operand is actually an imm0_4095, but we have its 2213 // negation in the assembly source, so twiddle it here. 2214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2215 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2216 } 2217 2218 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2219 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2220 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2221 return; 2222 } 2223 2224 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2225 assert(SR && "Unknown value type!"); 2226 Inst.addOperand(MCOperand::createExpr(SR)); 2227 } 2228 2229 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2230 assert(N == 1 && "Invalid number of operands!"); 2231 if (isImm()) { 2232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2233 if (CE) { 2234 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2235 return; 2236 } 2237 2238 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2239 2240 assert(SR && "Unknown value type!"); 2241 Inst.addOperand(MCOperand::createExpr(SR)); 2242 return; 2243 } 2244 2245 assert(isMem() && "Unknown value type!"); 2246 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2247 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2248 } 2249 2250 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2251 assert(N == 1 && "Invalid number of operands!"); 2252 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2253 } 2254 2255 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2256 assert(N == 1 && "Invalid number of operands!"); 2257 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2258 } 2259 2260 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2261 assert(N == 1 && "Invalid number of operands!"); 2262 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2263 } 2264 2265 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2266 assert(N == 1 && "Invalid number of operands!"); 2267 int32_t Imm = Memory.OffsetImm->getValue(); 2268 Inst.addOperand(MCOperand::createImm(Imm)); 2269 } 2270 2271 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2272 assert(N == 1 && "Invalid number of operands!"); 2273 assert(isImm() && "Not an immediate!"); 2274 2275 // If we have an immediate that's not a constant, treat it as a label 2276 // reference needing a fixup. 2277 if (!isa<MCConstantExpr>(getImm())) { 2278 Inst.addOperand(MCOperand::createExpr(getImm())); 2279 return; 2280 } 2281 2282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2283 int Val = CE->getValue(); 2284 Inst.addOperand(MCOperand::createImm(Val)); 2285 } 2286 2287 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2288 assert(N == 2 && "Invalid number of operands!"); 2289 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2290 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2291 } 2292 2293 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2294 addAlignedMemoryOperands(Inst, N); 2295 } 2296 2297 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2298 addAlignedMemoryOperands(Inst, N); 2299 } 2300 2301 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2302 addAlignedMemoryOperands(Inst, N); 2303 } 2304 2305 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2306 addAlignedMemoryOperands(Inst, N); 2307 } 2308 2309 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2310 addAlignedMemoryOperands(Inst, N); 2311 } 2312 2313 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2314 addAlignedMemoryOperands(Inst, N); 2315 } 2316 2317 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2318 addAlignedMemoryOperands(Inst, N); 2319 } 2320 2321 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2322 addAlignedMemoryOperands(Inst, N); 2323 } 2324 2325 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2326 addAlignedMemoryOperands(Inst, N); 2327 } 2328 2329 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2330 addAlignedMemoryOperands(Inst, N); 2331 } 2332 2333 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2334 addAlignedMemoryOperands(Inst, N); 2335 } 2336 2337 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2338 assert(N == 3 && "Invalid number of operands!"); 2339 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2340 if (!Memory.OffsetRegNum) { 2341 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2342 // Special case for #-0 2343 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2344 if (Val < 0) Val = -Val; 2345 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2346 } else { 2347 // For register offset, we encode the shift type and negation flag 2348 // here. 2349 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2350 Memory.ShiftImm, Memory.ShiftType); 2351 } 2352 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2353 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2354 Inst.addOperand(MCOperand::createImm(Val)); 2355 } 2356 2357 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2358 assert(N == 2 && "Invalid number of operands!"); 2359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2360 assert(CE && "non-constant AM2OffsetImm operand!"); 2361 int32_t Val = CE->getValue(); 2362 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2363 // Special case for #-0 2364 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2365 if (Val < 0) Val = -Val; 2366 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2367 Inst.addOperand(MCOperand::createReg(0)); 2368 Inst.addOperand(MCOperand::createImm(Val)); 2369 } 2370 2371 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2372 assert(N == 3 && "Invalid number of operands!"); 2373 // If we have an immediate that's not a constant, treat it as a label 2374 // reference needing a fixup. If it is a constant, it's something else 2375 // and we reject it. 2376 if (isImm()) { 2377 Inst.addOperand(MCOperand::createExpr(getImm())); 2378 Inst.addOperand(MCOperand::createReg(0)); 2379 Inst.addOperand(MCOperand::createImm(0)); 2380 return; 2381 } 2382 2383 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2384 if (!Memory.OffsetRegNum) { 2385 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2386 // Special case for #-0 2387 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2388 if (Val < 0) Val = -Val; 2389 Val = ARM_AM::getAM3Opc(AddSub, Val); 2390 } else { 2391 // For register offset, we encode the shift type and negation flag 2392 // here. 2393 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2394 } 2395 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2396 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2397 Inst.addOperand(MCOperand::createImm(Val)); 2398 } 2399 2400 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2401 assert(N == 2 && "Invalid number of operands!"); 2402 if (Kind == k_PostIndexRegister) { 2403 int32_t Val = 2404 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2405 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2406 Inst.addOperand(MCOperand::createImm(Val)); 2407 return; 2408 } 2409 2410 // Constant offset. 2411 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2412 int32_t Val = CE->getValue(); 2413 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2414 // Special case for #-0 2415 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2416 if (Val < 0) Val = -Val; 2417 Val = ARM_AM::getAM3Opc(AddSub, Val); 2418 Inst.addOperand(MCOperand::createReg(0)); 2419 Inst.addOperand(MCOperand::createImm(Val)); 2420 } 2421 2422 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2423 assert(N == 2 && "Invalid number of operands!"); 2424 // If we have an immediate that's not a constant, treat it as a label 2425 // reference needing a fixup. If it is a constant, it's something else 2426 // and we reject it. 2427 if (isImm()) { 2428 Inst.addOperand(MCOperand::createExpr(getImm())); 2429 Inst.addOperand(MCOperand::createImm(0)); 2430 return; 2431 } 2432 2433 // The lower two bits are always zero and as such are not encoded. 2434 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2435 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2436 // Special case for #-0 2437 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2438 if (Val < 0) Val = -Val; 2439 Val = ARM_AM::getAM5Opc(AddSub, Val); 2440 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2441 Inst.addOperand(MCOperand::createImm(Val)); 2442 } 2443 2444 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2445 assert(N == 2 && "Invalid number of operands!"); 2446 // If we have an immediate that's not a constant, treat it as a label 2447 // reference needing a fixup. If it is a constant, it's something else 2448 // and we reject it. 2449 if (isImm()) { 2450 Inst.addOperand(MCOperand::createExpr(getImm())); 2451 Inst.addOperand(MCOperand::createImm(0)); 2452 return; 2453 } 2454 2455 // The lower bit is always zero and as such is not encoded. 2456 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2457 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2458 // Special case for #-0 2459 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2460 if (Val < 0) Val = -Val; 2461 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2462 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2463 Inst.addOperand(MCOperand::createImm(Val)); 2464 } 2465 2466 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2467 assert(N == 2 && "Invalid number of operands!"); 2468 // If we have an immediate that's not a constant, treat it as a label 2469 // reference needing a fixup. If it is a constant, it's something else 2470 // and we reject it. 2471 if (isImm()) { 2472 Inst.addOperand(MCOperand::createExpr(getImm())); 2473 Inst.addOperand(MCOperand::createImm(0)); 2474 return; 2475 } 2476 2477 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2478 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2479 Inst.addOperand(MCOperand::createImm(Val)); 2480 } 2481 2482 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2483 assert(N == 2 && "Invalid number of operands!"); 2484 // The lower two bits are always zero and as such are not encoded. 2485 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2486 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2487 Inst.addOperand(MCOperand::createImm(Val)); 2488 } 2489 2490 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2491 assert(N == 2 && "Invalid number of operands!"); 2492 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2493 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2494 Inst.addOperand(MCOperand::createImm(Val)); 2495 } 2496 2497 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2498 addMemImm8OffsetOperands(Inst, N); 2499 } 2500 2501 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2502 addMemImm8OffsetOperands(Inst, N); 2503 } 2504 2505 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2506 assert(N == 2 && "Invalid number of operands!"); 2507 // If this is an immediate, it's a label reference. 2508 if (isImm()) { 2509 addExpr(Inst, getImm()); 2510 Inst.addOperand(MCOperand::createImm(0)); 2511 return; 2512 } 2513 2514 // Otherwise, it's a normal memory reg+offset. 2515 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2516 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2517 Inst.addOperand(MCOperand::createImm(Val)); 2518 } 2519 2520 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2521 assert(N == 2 && "Invalid number of operands!"); 2522 // If this is an immediate, it's a label reference. 2523 if (isImm()) { 2524 addExpr(Inst, getImm()); 2525 Inst.addOperand(MCOperand::createImm(0)); 2526 return; 2527 } 2528 2529 // Otherwise, it's a normal memory reg+offset. 2530 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2531 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2532 Inst.addOperand(MCOperand::createImm(Val)); 2533 } 2534 2535 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2536 assert(N == 1 && "Invalid number of operands!"); 2537 // This is container for the immediate that we will create the constant 2538 // pool from 2539 addExpr(Inst, getConstantPoolImm()); 2540 return; 2541 } 2542 2543 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2544 assert(N == 2 && "Invalid number of operands!"); 2545 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2546 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2547 } 2548 2549 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2550 assert(N == 2 && "Invalid number of operands!"); 2551 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2552 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2553 } 2554 2555 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2556 assert(N == 3 && "Invalid number of operands!"); 2557 unsigned Val = 2558 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2559 Memory.ShiftImm, Memory.ShiftType); 2560 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2561 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2562 Inst.addOperand(MCOperand::createImm(Val)); 2563 } 2564 2565 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2566 assert(N == 3 && "Invalid number of operands!"); 2567 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2568 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2569 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2570 } 2571 2572 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2573 assert(N == 2 && "Invalid number of operands!"); 2574 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2575 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2576 } 2577 2578 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2579 assert(N == 2 && "Invalid number of operands!"); 2580 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2581 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2582 Inst.addOperand(MCOperand::createImm(Val)); 2583 } 2584 2585 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2586 assert(N == 2 && "Invalid number of operands!"); 2587 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2588 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2589 Inst.addOperand(MCOperand::createImm(Val)); 2590 } 2591 2592 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2593 assert(N == 2 && "Invalid number of operands!"); 2594 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2595 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2596 Inst.addOperand(MCOperand::createImm(Val)); 2597 } 2598 2599 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2600 assert(N == 2 && "Invalid number of operands!"); 2601 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2602 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2603 Inst.addOperand(MCOperand::createImm(Val)); 2604 } 2605 2606 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2607 assert(N == 1 && "Invalid number of operands!"); 2608 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2609 assert(CE && "non-constant post-idx-imm8 operand!"); 2610 int Imm = CE->getValue(); 2611 bool isAdd = Imm >= 0; 2612 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2613 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2614 Inst.addOperand(MCOperand::createImm(Imm)); 2615 } 2616 2617 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2618 assert(N == 1 && "Invalid number of operands!"); 2619 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2620 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2621 int Imm = CE->getValue(); 2622 bool isAdd = Imm >= 0; 2623 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2624 // Immediate is scaled by 4. 2625 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2626 Inst.addOperand(MCOperand::createImm(Imm)); 2627 } 2628 2629 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2630 assert(N == 2 && "Invalid number of operands!"); 2631 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2632 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2633 } 2634 2635 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2636 assert(N == 2 && "Invalid number of operands!"); 2637 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2638 // The sign, shift type, and shift amount are encoded in a single operand 2639 // using the AM2 encoding helpers. 2640 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2641 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2642 PostIdxReg.ShiftTy); 2643 Inst.addOperand(MCOperand::createImm(Imm)); 2644 } 2645 2646 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2647 assert(N == 1 && "Invalid number of operands!"); 2648 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2649 } 2650 2651 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2652 assert(N == 1 && "Invalid number of operands!"); 2653 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2654 } 2655 2656 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2657 assert(N == 1 && "Invalid number of operands!"); 2658 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2659 } 2660 2661 void addVecListOperands(MCInst &Inst, unsigned N) const { 2662 assert(N == 1 && "Invalid number of operands!"); 2663 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2664 } 2665 2666 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2667 assert(N == 2 && "Invalid number of operands!"); 2668 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2669 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2670 } 2671 2672 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2673 assert(N == 1 && "Invalid number of operands!"); 2674 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2675 } 2676 2677 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2678 assert(N == 1 && "Invalid number of operands!"); 2679 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2680 } 2681 2682 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2683 assert(N == 1 && "Invalid number of operands!"); 2684 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2685 } 2686 2687 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2688 assert(N == 1 && "Invalid number of operands!"); 2689 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2690 } 2691 2692 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2693 assert(N == 1 && "Invalid number of operands!"); 2694 // The immediate encodes the type of constant as well as the value. 2695 // Mask in that this is an i8 splat. 2696 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2697 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2698 } 2699 2700 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2701 assert(N == 1 && "Invalid number of operands!"); 2702 // The immediate encodes the type of constant as well as the value. 2703 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2704 unsigned Value = CE->getValue(); 2705 Value = ARM_AM::encodeNEONi16splat(Value); 2706 Inst.addOperand(MCOperand::createImm(Value)); 2707 } 2708 2709 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2710 assert(N == 1 && "Invalid number of operands!"); 2711 // The immediate encodes the type of constant as well as the value. 2712 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2713 unsigned Value = CE->getValue(); 2714 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2715 Inst.addOperand(MCOperand::createImm(Value)); 2716 } 2717 2718 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2719 assert(N == 1 && "Invalid number of operands!"); 2720 // The immediate encodes the type of constant as well as the value. 2721 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2722 unsigned Value = CE->getValue(); 2723 Value = ARM_AM::encodeNEONi32splat(Value); 2724 Inst.addOperand(MCOperand::createImm(Value)); 2725 } 2726 2727 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2728 assert(N == 1 && "Invalid number of operands!"); 2729 // The immediate encodes the type of constant as well as the value. 2730 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2731 unsigned Value = CE->getValue(); 2732 Value = ARM_AM::encodeNEONi32splat(~Value); 2733 Inst.addOperand(MCOperand::createImm(Value)); 2734 } 2735 2736 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2737 assert(N == 1 && "Invalid number of operands!"); 2738 // The immediate encodes the type of constant as well as the value. 2739 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2740 unsigned Value = CE->getValue(); 2741 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2742 Inst.getOpcode() == ARM::VMOVv16i8) && 2743 "All vmvn instructions that wants to replicate non-zero byte " 2744 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2745 unsigned B = ((~Value) & 0xff); 2746 B |= 0xe00; // cmode = 0b1110 2747 Inst.addOperand(MCOperand::createImm(B)); 2748 } 2749 2750 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2751 assert(N == 1 && "Invalid number of operands!"); 2752 // The immediate encodes the type of constant as well as the value. 2753 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2754 unsigned Value = CE->getValue(); 2755 if (Value >= 256 && Value <= 0xffff) 2756 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2757 else if (Value > 0xffff && Value <= 0xffffff) 2758 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2759 else if (Value > 0xffffff) 2760 Value = (Value >> 24) | 0x600; 2761 Inst.addOperand(MCOperand::createImm(Value)); 2762 } 2763 2764 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2765 assert(N == 1 && "Invalid number of operands!"); 2766 // The immediate encodes the type of constant as well as the value. 2767 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2768 unsigned Value = CE->getValue(); 2769 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2770 Inst.getOpcode() == ARM::VMOVv16i8) && 2771 "All instructions that wants to replicate non-zero byte " 2772 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2773 unsigned B = Value & 0xff; 2774 B |= 0xe00; // cmode = 0b1110 2775 Inst.addOperand(MCOperand::createImm(B)); 2776 } 2777 2778 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2779 assert(N == 1 && "Invalid number of operands!"); 2780 // The immediate encodes the type of constant as well as the value. 2781 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2782 unsigned Value = ~CE->getValue(); 2783 if (Value >= 256 && Value <= 0xffff) 2784 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2785 else if (Value > 0xffff && Value <= 0xffffff) 2786 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2787 else if (Value > 0xffffff) 2788 Value = (Value >> 24) | 0x600; 2789 Inst.addOperand(MCOperand::createImm(Value)); 2790 } 2791 2792 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2793 assert(N == 1 && "Invalid number of operands!"); 2794 // The immediate encodes the type of constant as well as the value. 2795 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2796 uint64_t Value = CE->getValue(); 2797 unsigned Imm = 0; 2798 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2799 Imm |= (Value & 1) << i; 2800 } 2801 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2802 } 2803 2804 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2805 assert(N == 1 && "Invalid number of operands!"); 2806 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2807 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2808 } 2809 2810 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2811 assert(N == 1 && "Invalid number of operands!"); 2812 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2813 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2814 } 2815 2816 void print(raw_ostream &OS) const override; 2817 2818 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2819 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2820 Op->ITMask.Mask = Mask; 2821 Op->StartLoc = S; 2822 Op->EndLoc = S; 2823 return Op; 2824 } 2825 2826 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2827 SMLoc S) { 2828 auto Op = make_unique<ARMOperand>(k_CondCode); 2829 Op->CC.Val = CC; 2830 Op->StartLoc = S; 2831 Op->EndLoc = S; 2832 return Op; 2833 } 2834 2835 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2836 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2837 Op->Cop.Val = CopVal; 2838 Op->StartLoc = S; 2839 Op->EndLoc = S; 2840 return Op; 2841 } 2842 2843 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2844 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2845 Op->Cop.Val = CopVal; 2846 Op->StartLoc = S; 2847 Op->EndLoc = S; 2848 return Op; 2849 } 2850 2851 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2852 SMLoc E) { 2853 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2854 Op->Cop.Val = Val; 2855 Op->StartLoc = S; 2856 Op->EndLoc = E; 2857 return Op; 2858 } 2859 2860 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2861 auto Op = make_unique<ARMOperand>(k_CCOut); 2862 Op->Reg.RegNum = RegNum; 2863 Op->StartLoc = S; 2864 Op->EndLoc = S; 2865 return Op; 2866 } 2867 2868 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2869 auto Op = make_unique<ARMOperand>(k_Token); 2870 Op->Tok.Data = Str.data(); 2871 Op->Tok.Length = Str.size(); 2872 Op->StartLoc = S; 2873 Op->EndLoc = S; 2874 return Op; 2875 } 2876 2877 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2878 SMLoc E) { 2879 auto Op = make_unique<ARMOperand>(k_Register); 2880 Op->Reg.RegNum = RegNum; 2881 Op->StartLoc = S; 2882 Op->EndLoc = E; 2883 return Op; 2884 } 2885 2886 static std::unique_ptr<ARMOperand> 2887 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2888 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2889 SMLoc E) { 2890 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2891 Op->RegShiftedReg.ShiftTy = ShTy; 2892 Op->RegShiftedReg.SrcReg = SrcReg; 2893 Op->RegShiftedReg.ShiftReg = ShiftReg; 2894 Op->RegShiftedReg.ShiftImm = ShiftImm; 2895 Op->StartLoc = S; 2896 Op->EndLoc = E; 2897 return Op; 2898 } 2899 2900 static std::unique_ptr<ARMOperand> 2901 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2902 unsigned ShiftImm, SMLoc S, SMLoc E) { 2903 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2904 Op->RegShiftedImm.ShiftTy = ShTy; 2905 Op->RegShiftedImm.SrcReg = SrcReg; 2906 Op->RegShiftedImm.ShiftImm = ShiftImm; 2907 Op->StartLoc = S; 2908 Op->EndLoc = E; 2909 return Op; 2910 } 2911 2912 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2913 SMLoc S, SMLoc E) { 2914 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2915 Op->ShifterImm.isASR = isASR; 2916 Op->ShifterImm.Imm = Imm; 2917 Op->StartLoc = S; 2918 Op->EndLoc = E; 2919 return Op; 2920 } 2921 2922 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2923 SMLoc E) { 2924 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2925 Op->RotImm.Imm = Imm; 2926 Op->StartLoc = S; 2927 Op->EndLoc = E; 2928 return Op; 2929 } 2930 2931 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2932 SMLoc S, SMLoc E) { 2933 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2934 Op->ModImm.Bits = Bits; 2935 Op->ModImm.Rot = Rot; 2936 Op->StartLoc = S; 2937 Op->EndLoc = E; 2938 return Op; 2939 } 2940 2941 static std::unique_ptr<ARMOperand> 2942 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2943 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2944 Op->Imm.Val = Val; 2945 Op->StartLoc = S; 2946 Op->EndLoc = E; 2947 return Op; 2948 } 2949 2950 static std::unique_ptr<ARMOperand> 2951 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2952 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2953 Op->Bitfield.LSB = LSB; 2954 Op->Bitfield.Width = Width; 2955 Op->StartLoc = S; 2956 Op->EndLoc = E; 2957 return Op; 2958 } 2959 2960 static std::unique_ptr<ARMOperand> 2961 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2962 SMLoc StartLoc, SMLoc EndLoc) { 2963 assert(Regs.size() > 0 && "RegList contains no registers?"); 2964 KindTy Kind = k_RegisterList; 2965 2966 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2967 Kind = k_DPRRegisterList; 2968 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2969 contains(Regs.front().second)) 2970 Kind = k_SPRRegisterList; 2971 2972 // Sort based on the register encoding values. 2973 array_pod_sort(Regs.begin(), Regs.end()); 2974 2975 auto Op = make_unique<ARMOperand>(Kind); 2976 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 2977 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2978 Op->Registers.push_back(I->second); 2979 Op->StartLoc = StartLoc; 2980 Op->EndLoc = EndLoc; 2981 return Op; 2982 } 2983 2984 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2985 unsigned Count, 2986 bool isDoubleSpaced, 2987 SMLoc S, SMLoc E) { 2988 auto Op = make_unique<ARMOperand>(k_VectorList); 2989 Op->VectorList.RegNum = RegNum; 2990 Op->VectorList.Count = Count; 2991 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2992 Op->StartLoc = S; 2993 Op->EndLoc = E; 2994 return Op; 2995 } 2996 2997 static std::unique_ptr<ARMOperand> 2998 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2999 SMLoc S, SMLoc E) { 3000 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3001 Op->VectorList.RegNum = RegNum; 3002 Op->VectorList.Count = Count; 3003 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3004 Op->StartLoc = S; 3005 Op->EndLoc = E; 3006 return Op; 3007 } 3008 3009 static std::unique_ptr<ARMOperand> 3010 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3011 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3012 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3013 Op->VectorList.RegNum = RegNum; 3014 Op->VectorList.Count = Count; 3015 Op->VectorList.LaneIndex = Index; 3016 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3017 Op->StartLoc = S; 3018 Op->EndLoc = E; 3019 return Op; 3020 } 3021 3022 static std::unique_ptr<ARMOperand> 3023 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3024 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3025 Op->VectorIndex.Val = Idx; 3026 Op->StartLoc = S; 3027 Op->EndLoc = E; 3028 return Op; 3029 } 3030 3031 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3032 SMLoc E) { 3033 auto Op = make_unique<ARMOperand>(k_Immediate); 3034 Op->Imm.Val = Val; 3035 Op->StartLoc = S; 3036 Op->EndLoc = E; 3037 return Op; 3038 } 3039 3040 static std::unique_ptr<ARMOperand> 3041 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3042 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3043 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3044 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3045 auto Op = make_unique<ARMOperand>(k_Memory); 3046 Op->Memory.BaseRegNum = BaseRegNum; 3047 Op->Memory.OffsetImm = OffsetImm; 3048 Op->Memory.OffsetRegNum = OffsetRegNum; 3049 Op->Memory.ShiftType = ShiftType; 3050 Op->Memory.ShiftImm = ShiftImm; 3051 Op->Memory.Alignment = Alignment; 3052 Op->Memory.isNegative = isNegative; 3053 Op->StartLoc = S; 3054 Op->EndLoc = E; 3055 Op->AlignmentLoc = AlignmentLoc; 3056 return Op; 3057 } 3058 3059 static std::unique_ptr<ARMOperand> 3060 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3061 unsigned ShiftImm, SMLoc S, SMLoc E) { 3062 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3063 Op->PostIdxReg.RegNum = RegNum; 3064 Op->PostIdxReg.isAdd = isAdd; 3065 Op->PostIdxReg.ShiftTy = ShiftTy; 3066 Op->PostIdxReg.ShiftImm = ShiftImm; 3067 Op->StartLoc = S; 3068 Op->EndLoc = E; 3069 return Op; 3070 } 3071 3072 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3073 SMLoc S) { 3074 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3075 Op->MBOpt.Val = Opt; 3076 Op->StartLoc = S; 3077 Op->EndLoc = S; 3078 return Op; 3079 } 3080 3081 static std::unique_ptr<ARMOperand> 3082 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3083 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3084 Op->ISBOpt.Val = Opt; 3085 Op->StartLoc = S; 3086 Op->EndLoc = S; 3087 return Op; 3088 } 3089 3090 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3091 SMLoc S) { 3092 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3093 Op->IFlags.Val = IFlags; 3094 Op->StartLoc = S; 3095 Op->EndLoc = S; 3096 return Op; 3097 } 3098 3099 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3100 auto Op = make_unique<ARMOperand>(k_MSRMask); 3101 Op->MMask.Val = MMask; 3102 Op->StartLoc = S; 3103 Op->EndLoc = S; 3104 return Op; 3105 } 3106 3107 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3108 auto Op = make_unique<ARMOperand>(k_BankedReg); 3109 Op->BankedReg.Val = Reg; 3110 Op->StartLoc = S; 3111 Op->EndLoc = S; 3112 return Op; 3113 } 3114 }; 3115 3116 } // end anonymous namespace. 3117 3118 void ARMOperand::print(raw_ostream &OS) const { 3119 switch (Kind) { 3120 case k_CondCode: 3121 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3122 break; 3123 case k_CCOut: 3124 OS << "<ccout " << getReg() << ">"; 3125 break; 3126 case k_ITCondMask: { 3127 static const char *const MaskStr[] = { 3128 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3129 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3130 }; 3131 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3132 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3133 break; 3134 } 3135 case k_CoprocNum: 3136 OS << "<coprocessor number: " << getCoproc() << ">"; 3137 break; 3138 case k_CoprocReg: 3139 OS << "<coprocessor register: " << getCoproc() << ">"; 3140 break; 3141 case k_CoprocOption: 3142 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3143 break; 3144 case k_MSRMask: 3145 OS << "<mask: " << getMSRMask() << ">"; 3146 break; 3147 case k_BankedReg: 3148 OS << "<banked reg: " << getBankedReg() << ">"; 3149 break; 3150 case k_Immediate: 3151 OS << *getImm(); 3152 break; 3153 case k_MemBarrierOpt: 3154 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3155 break; 3156 case k_InstSyncBarrierOpt: 3157 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3158 break; 3159 case k_Memory: 3160 OS << "<memory " 3161 << " base:" << Memory.BaseRegNum; 3162 OS << ">"; 3163 break; 3164 case k_PostIndexRegister: 3165 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3166 << PostIdxReg.RegNum; 3167 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3168 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3169 << PostIdxReg.ShiftImm; 3170 OS << ">"; 3171 break; 3172 case k_ProcIFlags: { 3173 OS << "<ARM_PROC::"; 3174 unsigned IFlags = getProcIFlags(); 3175 for (int i=2; i >= 0; --i) 3176 if (IFlags & (1 << i)) 3177 OS << ARM_PROC::IFlagsToString(1 << i); 3178 OS << ">"; 3179 break; 3180 } 3181 case k_Register: 3182 OS << "<register " << getReg() << ">"; 3183 break; 3184 case k_ShifterImmediate: 3185 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3186 << " #" << ShifterImm.Imm << ">"; 3187 break; 3188 case k_ShiftedRegister: 3189 OS << "<so_reg_reg " 3190 << RegShiftedReg.SrcReg << " " 3191 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3192 << " " << RegShiftedReg.ShiftReg << ">"; 3193 break; 3194 case k_ShiftedImmediate: 3195 OS << "<so_reg_imm " 3196 << RegShiftedImm.SrcReg << " " 3197 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3198 << " #" << RegShiftedImm.ShiftImm << ">"; 3199 break; 3200 case k_RotateImmediate: 3201 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3202 break; 3203 case k_ModifiedImmediate: 3204 OS << "<mod_imm #" << ModImm.Bits << ", #" 3205 << ModImm.Rot << ")>"; 3206 break; 3207 case k_ConstantPoolImmediate: 3208 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3209 break; 3210 case k_BitfieldDescriptor: 3211 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3212 << ", width: " << Bitfield.Width << ">"; 3213 break; 3214 case k_RegisterList: 3215 case k_DPRRegisterList: 3216 case k_SPRRegisterList: { 3217 OS << "<register_list "; 3218 3219 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3220 for (SmallVectorImpl<unsigned>::const_iterator 3221 I = RegList.begin(), E = RegList.end(); I != E; ) { 3222 OS << *I; 3223 if (++I < E) OS << ", "; 3224 } 3225 3226 OS << ">"; 3227 break; 3228 } 3229 case k_VectorList: 3230 OS << "<vector_list " << VectorList.Count << " * " 3231 << VectorList.RegNum << ">"; 3232 break; 3233 case k_VectorListAllLanes: 3234 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3235 << VectorList.RegNum << ">"; 3236 break; 3237 case k_VectorListIndexed: 3238 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3239 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3240 break; 3241 case k_Token: 3242 OS << "'" << getToken() << "'"; 3243 break; 3244 case k_VectorIndex: 3245 OS << "<vectorindex " << getVectorIndex() << ">"; 3246 break; 3247 } 3248 } 3249 3250 /// @name Auto-generated Match Functions 3251 /// { 3252 3253 static unsigned MatchRegisterName(StringRef Name); 3254 3255 /// } 3256 3257 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3258 SMLoc &StartLoc, SMLoc &EndLoc) { 3259 const AsmToken &Tok = getParser().getTok(); 3260 StartLoc = Tok.getLoc(); 3261 EndLoc = Tok.getEndLoc(); 3262 RegNo = tryParseRegister(); 3263 3264 return (RegNo == (unsigned)-1); 3265 } 3266 3267 /// Try to parse a register name. The token must be an Identifier when called, 3268 /// and if it is a register name the token is eaten and the register number is 3269 /// returned. Otherwise return -1. 3270 int ARMAsmParser::tryParseRegister() { 3271 MCAsmParser &Parser = getParser(); 3272 const AsmToken &Tok = Parser.getTok(); 3273 if (Tok.isNot(AsmToken::Identifier)) return -1; 3274 3275 std::string lowerCase = Tok.getString().lower(); 3276 unsigned RegNum = MatchRegisterName(lowerCase); 3277 if (!RegNum) { 3278 RegNum = StringSwitch<unsigned>(lowerCase) 3279 .Case("r13", ARM::SP) 3280 .Case("r14", ARM::LR) 3281 .Case("r15", ARM::PC) 3282 .Case("ip", ARM::R12) 3283 // Additional register name aliases for 'gas' compatibility. 3284 .Case("a1", ARM::R0) 3285 .Case("a2", ARM::R1) 3286 .Case("a3", ARM::R2) 3287 .Case("a4", ARM::R3) 3288 .Case("v1", ARM::R4) 3289 .Case("v2", ARM::R5) 3290 .Case("v3", ARM::R6) 3291 .Case("v4", ARM::R7) 3292 .Case("v5", ARM::R8) 3293 .Case("v6", ARM::R9) 3294 .Case("v7", ARM::R10) 3295 .Case("v8", ARM::R11) 3296 .Case("sb", ARM::R9) 3297 .Case("sl", ARM::R10) 3298 .Case("fp", ARM::R11) 3299 .Default(0); 3300 } 3301 if (!RegNum) { 3302 // Check for aliases registered via .req. Canonicalize to lower case. 3303 // That's more consistent since register names are case insensitive, and 3304 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3305 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3306 // If no match, return failure. 3307 if (Entry == RegisterReqs.end()) 3308 return -1; 3309 Parser.Lex(); // Eat identifier token. 3310 return Entry->getValue(); 3311 } 3312 3313 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3314 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3315 return -1; 3316 3317 Parser.Lex(); // Eat identifier token. 3318 3319 return RegNum; 3320 } 3321 3322 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3323 // If a recoverable error occurs, return 1. If an irrecoverable error 3324 // occurs, return -1. An irrecoverable error is one where tokens have been 3325 // consumed in the process of trying to parse the shifter (i.e., when it is 3326 // indeed a shifter operand, but malformed). 3327 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3328 MCAsmParser &Parser = getParser(); 3329 SMLoc S = Parser.getTok().getLoc(); 3330 const AsmToken &Tok = Parser.getTok(); 3331 if (Tok.isNot(AsmToken::Identifier)) 3332 return -1; 3333 3334 std::string lowerCase = Tok.getString().lower(); 3335 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3336 .Case("asl", ARM_AM::lsl) 3337 .Case("lsl", ARM_AM::lsl) 3338 .Case("lsr", ARM_AM::lsr) 3339 .Case("asr", ARM_AM::asr) 3340 .Case("ror", ARM_AM::ror) 3341 .Case("rrx", ARM_AM::rrx) 3342 .Default(ARM_AM::no_shift); 3343 3344 if (ShiftTy == ARM_AM::no_shift) 3345 return 1; 3346 3347 Parser.Lex(); // Eat the operator. 3348 3349 // The source register for the shift has already been added to the 3350 // operand list, so we need to pop it off and combine it into the shifted 3351 // register operand instead. 3352 std::unique_ptr<ARMOperand> PrevOp( 3353 (ARMOperand *)Operands.pop_back_val().release()); 3354 if (!PrevOp->isReg()) 3355 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3356 int SrcReg = PrevOp->getReg(); 3357 3358 SMLoc EndLoc; 3359 int64_t Imm = 0; 3360 int ShiftReg = 0; 3361 if (ShiftTy == ARM_AM::rrx) { 3362 // RRX Doesn't have an explicit shift amount. The encoder expects 3363 // the shift register to be the same as the source register. Seems odd, 3364 // but OK. 3365 ShiftReg = SrcReg; 3366 } else { 3367 // Figure out if this is shifted by a constant or a register (for non-RRX). 3368 if (Parser.getTok().is(AsmToken::Hash) || 3369 Parser.getTok().is(AsmToken::Dollar)) { 3370 Parser.Lex(); // Eat hash. 3371 SMLoc ImmLoc = Parser.getTok().getLoc(); 3372 const MCExpr *ShiftExpr = nullptr; 3373 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3374 Error(ImmLoc, "invalid immediate shift value"); 3375 return -1; 3376 } 3377 // The expression must be evaluatable as an immediate. 3378 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3379 if (!CE) { 3380 Error(ImmLoc, "invalid immediate shift value"); 3381 return -1; 3382 } 3383 // Range check the immediate. 3384 // lsl, ror: 0 <= imm <= 31 3385 // lsr, asr: 0 <= imm <= 32 3386 Imm = CE->getValue(); 3387 if (Imm < 0 || 3388 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3389 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3390 Error(ImmLoc, "immediate shift value out of range"); 3391 return -1; 3392 } 3393 // shift by zero is a nop. Always send it through as lsl. 3394 // ('as' compatibility) 3395 if (Imm == 0) 3396 ShiftTy = ARM_AM::lsl; 3397 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3398 SMLoc L = Parser.getTok().getLoc(); 3399 EndLoc = Parser.getTok().getEndLoc(); 3400 ShiftReg = tryParseRegister(); 3401 if (ShiftReg == -1) { 3402 Error(L, "expected immediate or register in shift operand"); 3403 return -1; 3404 } 3405 } else { 3406 Error(Parser.getTok().getLoc(), 3407 "expected immediate or register in shift operand"); 3408 return -1; 3409 } 3410 } 3411 3412 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3413 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3414 ShiftReg, Imm, 3415 S, EndLoc)); 3416 else 3417 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3418 S, EndLoc)); 3419 3420 return 0; 3421 } 3422 3423 /// Try to parse a register name. The token must be an Identifier when called. 3424 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3425 /// if there is a "writeback". 'true' if it's not a register. 3426 /// 3427 /// TODO this is likely to change to allow different register types and or to 3428 /// parse for a specific register type. 3429 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3430 MCAsmParser &Parser = getParser(); 3431 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3432 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3433 int RegNo = tryParseRegister(); 3434 if (RegNo == -1) 3435 return true; 3436 3437 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3438 3439 const AsmToken &ExclaimTok = Parser.getTok(); 3440 if (ExclaimTok.is(AsmToken::Exclaim)) { 3441 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3442 ExclaimTok.getLoc())); 3443 Parser.Lex(); // Eat exclaim token 3444 return false; 3445 } 3446 3447 // Also check for an index operand. This is only legal for vector registers, 3448 // but that'll get caught OK in operand matching, so we don't need to 3449 // explicitly filter everything else out here. 3450 if (Parser.getTok().is(AsmToken::LBrac)) { 3451 SMLoc SIdx = Parser.getTok().getLoc(); 3452 Parser.Lex(); // Eat left bracket token. 3453 3454 const MCExpr *ImmVal; 3455 if (getParser().parseExpression(ImmVal)) 3456 return true; 3457 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3458 if (!MCE) 3459 return TokError("immediate value expected for vector index"); 3460 3461 if (Parser.getTok().isNot(AsmToken::RBrac)) 3462 return Error(Parser.getTok().getLoc(), "']' expected"); 3463 3464 SMLoc E = Parser.getTok().getEndLoc(); 3465 Parser.Lex(); // Eat right bracket token. 3466 3467 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3468 SIdx, E, 3469 getContext())); 3470 } 3471 3472 return false; 3473 } 3474 3475 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3476 /// instruction with a symbolic operand name. 3477 /// We accept "crN" syntax for GAS compatibility. 3478 /// <operand-name> ::= <prefix><number> 3479 /// If CoprocOp is 'c', then: 3480 /// <prefix> ::= c | cr 3481 /// If CoprocOp is 'p', then : 3482 /// <prefix> ::= p 3483 /// <number> ::= integer in range [0, 15] 3484 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3485 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3486 // but efficient. 3487 if (Name.size() < 2 || Name[0] != CoprocOp) 3488 return -1; 3489 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3490 3491 switch (Name.size()) { 3492 default: return -1; 3493 case 1: 3494 switch (Name[0]) { 3495 default: return -1; 3496 case '0': return 0; 3497 case '1': return 1; 3498 case '2': return 2; 3499 case '3': return 3; 3500 case '4': return 4; 3501 case '5': return 5; 3502 case '6': return 6; 3503 case '7': return 7; 3504 case '8': return 8; 3505 case '9': return 9; 3506 } 3507 case 2: 3508 if (Name[0] != '1') 3509 return -1; 3510 switch (Name[1]) { 3511 default: return -1; 3512 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3513 // However, old cores (v5/v6) did use them in that way. 3514 case '0': return 10; 3515 case '1': return 11; 3516 case '2': return 12; 3517 case '3': return 13; 3518 case '4': return 14; 3519 case '5': return 15; 3520 } 3521 } 3522 } 3523 3524 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3525 OperandMatchResultTy 3526 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3527 MCAsmParser &Parser = getParser(); 3528 SMLoc S = Parser.getTok().getLoc(); 3529 const AsmToken &Tok = Parser.getTok(); 3530 if (!Tok.is(AsmToken::Identifier)) 3531 return MatchOperand_NoMatch; 3532 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3533 if (CC == ~0U) 3534 return MatchOperand_NoMatch; 3535 Parser.Lex(); // Eat the token. 3536 3537 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3538 3539 return MatchOperand_Success; 3540 } 3541 3542 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3543 /// token must be an Identifier when called, and if it is a coprocessor 3544 /// number, the token is eaten and the operand is added to the operand list. 3545 OperandMatchResultTy 3546 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3547 MCAsmParser &Parser = getParser(); 3548 SMLoc S = Parser.getTok().getLoc(); 3549 const AsmToken &Tok = Parser.getTok(); 3550 if (Tok.isNot(AsmToken::Identifier)) 3551 return MatchOperand_NoMatch; 3552 3553 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3554 if (Num == -1) 3555 return MatchOperand_NoMatch; 3556 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3557 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3558 return MatchOperand_NoMatch; 3559 3560 Parser.Lex(); // Eat identifier token. 3561 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3562 return MatchOperand_Success; 3563 } 3564 3565 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3566 /// token must be an Identifier when called, and if it is a coprocessor 3567 /// number, the token is eaten and the operand is added to the operand list. 3568 OperandMatchResultTy 3569 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3570 MCAsmParser &Parser = getParser(); 3571 SMLoc S = Parser.getTok().getLoc(); 3572 const AsmToken &Tok = Parser.getTok(); 3573 if (Tok.isNot(AsmToken::Identifier)) 3574 return MatchOperand_NoMatch; 3575 3576 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3577 if (Reg == -1) 3578 return MatchOperand_NoMatch; 3579 3580 Parser.Lex(); // Eat identifier token. 3581 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3582 return MatchOperand_Success; 3583 } 3584 3585 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3586 /// coproc_option : '{' imm0_255 '}' 3587 OperandMatchResultTy 3588 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3589 MCAsmParser &Parser = getParser(); 3590 SMLoc S = Parser.getTok().getLoc(); 3591 3592 // If this isn't a '{', this isn't a coprocessor immediate operand. 3593 if (Parser.getTok().isNot(AsmToken::LCurly)) 3594 return MatchOperand_NoMatch; 3595 Parser.Lex(); // Eat the '{' 3596 3597 const MCExpr *Expr; 3598 SMLoc Loc = Parser.getTok().getLoc(); 3599 if (getParser().parseExpression(Expr)) { 3600 Error(Loc, "illegal expression"); 3601 return MatchOperand_ParseFail; 3602 } 3603 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3604 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3605 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3606 return MatchOperand_ParseFail; 3607 } 3608 int Val = CE->getValue(); 3609 3610 // Check for and consume the closing '}' 3611 if (Parser.getTok().isNot(AsmToken::RCurly)) 3612 return MatchOperand_ParseFail; 3613 SMLoc E = Parser.getTok().getEndLoc(); 3614 Parser.Lex(); // Eat the '}' 3615 3616 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3617 return MatchOperand_Success; 3618 } 3619 3620 // For register list parsing, we need to map from raw GPR register numbering 3621 // to the enumeration values. The enumeration values aren't sorted by 3622 // register number due to our using "sp", "lr" and "pc" as canonical names. 3623 static unsigned getNextRegister(unsigned Reg) { 3624 // If this is a GPR, we need to do it manually, otherwise we can rely 3625 // on the sort ordering of the enumeration since the other reg-classes 3626 // are sane. 3627 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3628 return Reg + 1; 3629 switch(Reg) { 3630 default: llvm_unreachable("Invalid GPR number!"); 3631 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3632 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3633 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3634 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3635 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3636 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3637 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3638 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3639 } 3640 } 3641 3642 /// Parse a register list. 3643 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3644 MCAsmParser &Parser = getParser(); 3645 if (Parser.getTok().isNot(AsmToken::LCurly)) 3646 return TokError("Token is not a Left Curly Brace"); 3647 SMLoc S = Parser.getTok().getLoc(); 3648 Parser.Lex(); // Eat '{' token. 3649 SMLoc RegLoc = Parser.getTok().getLoc(); 3650 3651 // Check the first register in the list to see what register class 3652 // this is a list of. 3653 int Reg = tryParseRegister(); 3654 if (Reg == -1) 3655 return Error(RegLoc, "register expected"); 3656 3657 // The reglist instructions have at most 16 registers, so reserve 3658 // space for that many. 3659 int EReg = 0; 3660 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3661 3662 // Allow Q regs and just interpret them as the two D sub-registers. 3663 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3664 Reg = getDRegFromQReg(Reg); 3665 EReg = MRI->getEncodingValue(Reg); 3666 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3667 ++Reg; 3668 } 3669 const MCRegisterClass *RC; 3670 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3671 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3672 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3673 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3674 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3675 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3676 else 3677 return Error(RegLoc, "invalid register in register list"); 3678 3679 // Store the register. 3680 EReg = MRI->getEncodingValue(Reg); 3681 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3682 3683 // This starts immediately after the first register token in the list, 3684 // so we can see either a comma or a minus (range separator) as a legal 3685 // next token. 3686 while (Parser.getTok().is(AsmToken::Comma) || 3687 Parser.getTok().is(AsmToken::Minus)) { 3688 if (Parser.getTok().is(AsmToken::Minus)) { 3689 Parser.Lex(); // Eat the minus. 3690 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3691 int EndReg = tryParseRegister(); 3692 if (EndReg == -1) 3693 return Error(AfterMinusLoc, "register expected"); 3694 // Allow Q regs and just interpret them as the two D sub-registers. 3695 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3696 EndReg = getDRegFromQReg(EndReg) + 1; 3697 // If the register is the same as the start reg, there's nothing 3698 // more to do. 3699 if (Reg == EndReg) 3700 continue; 3701 // The register must be in the same register class as the first. 3702 if (!RC->contains(EndReg)) 3703 return Error(AfterMinusLoc, "invalid register in register list"); 3704 // Ranges must go from low to high. 3705 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3706 return Error(AfterMinusLoc, "bad range in register list"); 3707 3708 // Add all the registers in the range to the register list. 3709 while (Reg != EndReg) { 3710 Reg = getNextRegister(Reg); 3711 EReg = MRI->getEncodingValue(Reg); 3712 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3713 } 3714 continue; 3715 } 3716 Parser.Lex(); // Eat the comma. 3717 RegLoc = Parser.getTok().getLoc(); 3718 int OldReg = Reg; 3719 const AsmToken RegTok = Parser.getTok(); 3720 Reg = tryParseRegister(); 3721 if (Reg == -1) 3722 return Error(RegLoc, "register expected"); 3723 // Allow Q regs and just interpret them as the two D sub-registers. 3724 bool isQReg = false; 3725 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3726 Reg = getDRegFromQReg(Reg); 3727 isQReg = true; 3728 } 3729 // The register must be in the same register class as the first. 3730 if (!RC->contains(Reg)) 3731 return Error(RegLoc, "invalid register in register list"); 3732 // List must be monotonically increasing. 3733 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3734 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3735 Warning(RegLoc, "register list not in ascending order"); 3736 else 3737 return Error(RegLoc, "register list not in ascending order"); 3738 } 3739 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3740 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3741 ") in register list"); 3742 continue; 3743 } 3744 // VFP register lists must also be contiguous. 3745 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3746 Reg != OldReg + 1) 3747 return Error(RegLoc, "non-contiguous register range"); 3748 EReg = MRI->getEncodingValue(Reg); 3749 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3750 if (isQReg) { 3751 EReg = MRI->getEncodingValue(++Reg); 3752 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3753 } 3754 } 3755 3756 if (Parser.getTok().isNot(AsmToken::RCurly)) 3757 return Error(Parser.getTok().getLoc(), "'}' expected"); 3758 SMLoc E = Parser.getTok().getEndLoc(); 3759 Parser.Lex(); // Eat '}' token. 3760 3761 // Push the register list operand. 3762 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3763 3764 // The ARM system instruction variants for LDM/STM have a '^' token here. 3765 if (Parser.getTok().is(AsmToken::Caret)) { 3766 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3767 Parser.Lex(); // Eat '^' token. 3768 } 3769 3770 return false; 3771 } 3772 3773 // Helper function to parse the lane index for vector lists. 3774 OperandMatchResultTy ARMAsmParser:: 3775 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3776 MCAsmParser &Parser = getParser(); 3777 Index = 0; // Always return a defined index value. 3778 if (Parser.getTok().is(AsmToken::LBrac)) { 3779 Parser.Lex(); // Eat the '['. 3780 if (Parser.getTok().is(AsmToken::RBrac)) { 3781 // "Dn[]" is the 'all lanes' syntax. 3782 LaneKind = AllLanes; 3783 EndLoc = Parser.getTok().getEndLoc(); 3784 Parser.Lex(); // Eat the ']'. 3785 return MatchOperand_Success; 3786 } 3787 3788 // There's an optional '#' token here. Normally there wouldn't be, but 3789 // inline assemble puts one in, and it's friendly to accept that. 3790 if (Parser.getTok().is(AsmToken::Hash)) 3791 Parser.Lex(); // Eat '#' or '$'. 3792 3793 const MCExpr *LaneIndex; 3794 SMLoc Loc = Parser.getTok().getLoc(); 3795 if (getParser().parseExpression(LaneIndex)) { 3796 Error(Loc, "illegal expression"); 3797 return MatchOperand_ParseFail; 3798 } 3799 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3800 if (!CE) { 3801 Error(Loc, "lane index must be empty or an integer"); 3802 return MatchOperand_ParseFail; 3803 } 3804 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3805 Error(Parser.getTok().getLoc(), "']' expected"); 3806 return MatchOperand_ParseFail; 3807 } 3808 EndLoc = Parser.getTok().getEndLoc(); 3809 Parser.Lex(); // Eat the ']'. 3810 int64_t Val = CE->getValue(); 3811 3812 // FIXME: Make this range check context sensitive for .8, .16, .32. 3813 if (Val < 0 || Val > 7) { 3814 Error(Parser.getTok().getLoc(), "lane index out of range"); 3815 return MatchOperand_ParseFail; 3816 } 3817 Index = Val; 3818 LaneKind = IndexedLane; 3819 return MatchOperand_Success; 3820 } 3821 LaneKind = NoLanes; 3822 return MatchOperand_Success; 3823 } 3824 3825 // parse a vector register list 3826 OperandMatchResultTy 3827 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3828 MCAsmParser &Parser = getParser(); 3829 VectorLaneTy LaneKind; 3830 unsigned LaneIndex; 3831 SMLoc S = Parser.getTok().getLoc(); 3832 // As an extension (to match gas), support a plain D register or Q register 3833 // (without encosing curly braces) as a single or double entry list, 3834 // respectively. 3835 if (Parser.getTok().is(AsmToken::Identifier)) { 3836 SMLoc E = Parser.getTok().getEndLoc(); 3837 int Reg = tryParseRegister(); 3838 if (Reg == -1) 3839 return MatchOperand_NoMatch; 3840 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3841 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3842 if (Res != MatchOperand_Success) 3843 return Res; 3844 switch (LaneKind) { 3845 case NoLanes: 3846 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3847 break; 3848 case AllLanes: 3849 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3850 S, E)); 3851 break; 3852 case IndexedLane: 3853 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3854 LaneIndex, 3855 false, S, E)); 3856 break; 3857 } 3858 return MatchOperand_Success; 3859 } 3860 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3861 Reg = getDRegFromQReg(Reg); 3862 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3863 if (Res != MatchOperand_Success) 3864 return Res; 3865 switch (LaneKind) { 3866 case NoLanes: 3867 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3868 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3869 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3870 break; 3871 case AllLanes: 3872 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3873 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3874 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3875 S, E)); 3876 break; 3877 case IndexedLane: 3878 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3879 LaneIndex, 3880 false, S, E)); 3881 break; 3882 } 3883 return MatchOperand_Success; 3884 } 3885 Error(S, "vector register expected"); 3886 return MatchOperand_ParseFail; 3887 } 3888 3889 if (Parser.getTok().isNot(AsmToken::LCurly)) 3890 return MatchOperand_NoMatch; 3891 3892 Parser.Lex(); // Eat '{' token. 3893 SMLoc RegLoc = Parser.getTok().getLoc(); 3894 3895 int Reg = tryParseRegister(); 3896 if (Reg == -1) { 3897 Error(RegLoc, "register expected"); 3898 return MatchOperand_ParseFail; 3899 } 3900 unsigned Count = 1; 3901 int Spacing = 0; 3902 unsigned FirstReg = Reg; 3903 // The list is of D registers, but we also allow Q regs and just interpret 3904 // them as the two D sub-registers. 3905 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3906 FirstReg = Reg = getDRegFromQReg(Reg); 3907 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3908 // it's ambiguous with four-register single spaced. 3909 ++Reg; 3910 ++Count; 3911 } 3912 3913 SMLoc E; 3914 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3915 return MatchOperand_ParseFail; 3916 3917 while (Parser.getTok().is(AsmToken::Comma) || 3918 Parser.getTok().is(AsmToken::Minus)) { 3919 if (Parser.getTok().is(AsmToken::Minus)) { 3920 if (!Spacing) 3921 Spacing = 1; // Register range implies a single spaced list. 3922 else if (Spacing == 2) { 3923 Error(Parser.getTok().getLoc(), 3924 "sequential registers in double spaced list"); 3925 return MatchOperand_ParseFail; 3926 } 3927 Parser.Lex(); // Eat the minus. 3928 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3929 int EndReg = tryParseRegister(); 3930 if (EndReg == -1) { 3931 Error(AfterMinusLoc, "register expected"); 3932 return MatchOperand_ParseFail; 3933 } 3934 // Allow Q regs and just interpret them as the two D sub-registers. 3935 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3936 EndReg = getDRegFromQReg(EndReg) + 1; 3937 // If the register is the same as the start reg, there's nothing 3938 // more to do. 3939 if (Reg == EndReg) 3940 continue; 3941 // The register must be in the same register class as the first. 3942 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3943 Error(AfterMinusLoc, "invalid register in register list"); 3944 return MatchOperand_ParseFail; 3945 } 3946 // Ranges must go from low to high. 3947 if (Reg > EndReg) { 3948 Error(AfterMinusLoc, "bad range in register list"); 3949 return MatchOperand_ParseFail; 3950 } 3951 // Parse the lane specifier if present. 3952 VectorLaneTy NextLaneKind; 3953 unsigned NextLaneIndex; 3954 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3955 MatchOperand_Success) 3956 return MatchOperand_ParseFail; 3957 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3958 Error(AfterMinusLoc, "mismatched lane index in register list"); 3959 return MatchOperand_ParseFail; 3960 } 3961 3962 // Add all the registers in the range to the register list. 3963 Count += EndReg - Reg; 3964 Reg = EndReg; 3965 continue; 3966 } 3967 Parser.Lex(); // Eat the comma. 3968 RegLoc = Parser.getTok().getLoc(); 3969 int OldReg = Reg; 3970 Reg = tryParseRegister(); 3971 if (Reg == -1) { 3972 Error(RegLoc, "register expected"); 3973 return MatchOperand_ParseFail; 3974 } 3975 // vector register lists must be contiguous. 3976 // It's OK to use the enumeration values directly here rather, as the 3977 // VFP register classes have the enum sorted properly. 3978 // 3979 // The list is of D registers, but we also allow Q regs and just interpret 3980 // them as the two D sub-registers. 3981 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3982 if (!Spacing) 3983 Spacing = 1; // Register range implies a single spaced list. 3984 else if (Spacing == 2) { 3985 Error(RegLoc, 3986 "invalid register in double-spaced list (must be 'D' register')"); 3987 return MatchOperand_ParseFail; 3988 } 3989 Reg = getDRegFromQReg(Reg); 3990 if (Reg != OldReg + 1) { 3991 Error(RegLoc, "non-contiguous register range"); 3992 return MatchOperand_ParseFail; 3993 } 3994 ++Reg; 3995 Count += 2; 3996 // Parse the lane specifier if present. 3997 VectorLaneTy NextLaneKind; 3998 unsigned NextLaneIndex; 3999 SMLoc LaneLoc = Parser.getTok().getLoc(); 4000 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4001 MatchOperand_Success) 4002 return MatchOperand_ParseFail; 4003 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4004 Error(LaneLoc, "mismatched lane index in register list"); 4005 return MatchOperand_ParseFail; 4006 } 4007 continue; 4008 } 4009 // Normal D register. 4010 // Figure out the register spacing (single or double) of the list if 4011 // we don't know it already. 4012 if (!Spacing) 4013 Spacing = 1 + (Reg == OldReg + 2); 4014 4015 // Just check that it's contiguous and keep going. 4016 if (Reg != OldReg + Spacing) { 4017 Error(RegLoc, "non-contiguous register range"); 4018 return MatchOperand_ParseFail; 4019 } 4020 ++Count; 4021 // Parse the lane specifier if present. 4022 VectorLaneTy NextLaneKind; 4023 unsigned NextLaneIndex; 4024 SMLoc EndLoc = Parser.getTok().getLoc(); 4025 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4026 return MatchOperand_ParseFail; 4027 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4028 Error(EndLoc, "mismatched lane index in register list"); 4029 return MatchOperand_ParseFail; 4030 } 4031 } 4032 4033 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4034 Error(Parser.getTok().getLoc(), "'}' expected"); 4035 return MatchOperand_ParseFail; 4036 } 4037 E = Parser.getTok().getEndLoc(); 4038 Parser.Lex(); // Eat '}' token. 4039 4040 switch (LaneKind) { 4041 case NoLanes: 4042 // Two-register operands have been converted to the 4043 // composite register classes. 4044 if (Count == 2) { 4045 const MCRegisterClass *RC = (Spacing == 1) ? 4046 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4047 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4048 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4049 } 4050 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4051 (Spacing == 2), S, E)); 4052 break; 4053 case AllLanes: 4054 // Two-register operands have been converted to the 4055 // composite register classes. 4056 if (Count == 2) { 4057 const MCRegisterClass *RC = (Spacing == 1) ? 4058 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4059 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4060 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4061 } 4062 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4063 (Spacing == 2), 4064 S, E)); 4065 break; 4066 case IndexedLane: 4067 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4068 LaneIndex, 4069 (Spacing == 2), 4070 S, E)); 4071 break; 4072 } 4073 return MatchOperand_Success; 4074 } 4075 4076 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4077 OperandMatchResultTy 4078 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4079 MCAsmParser &Parser = getParser(); 4080 SMLoc S = Parser.getTok().getLoc(); 4081 const AsmToken &Tok = Parser.getTok(); 4082 unsigned Opt; 4083 4084 if (Tok.is(AsmToken::Identifier)) { 4085 StringRef OptStr = Tok.getString(); 4086 4087 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4088 .Case("sy", ARM_MB::SY) 4089 .Case("st", ARM_MB::ST) 4090 .Case("ld", ARM_MB::LD) 4091 .Case("sh", ARM_MB::ISH) 4092 .Case("ish", ARM_MB::ISH) 4093 .Case("shst", ARM_MB::ISHST) 4094 .Case("ishst", ARM_MB::ISHST) 4095 .Case("ishld", ARM_MB::ISHLD) 4096 .Case("nsh", ARM_MB::NSH) 4097 .Case("un", ARM_MB::NSH) 4098 .Case("nshst", ARM_MB::NSHST) 4099 .Case("nshld", ARM_MB::NSHLD) 4100 .Case("unst", ARM_MB::NSHST) 4101 .Case("osh", ARM_MB::OSH) 4102 .Case("oshst", ARM_MB::OSHST) 4103 .Case("oshld", ARM_MB::OSHLD) 4104 .Default(~0U); 4105 4106 // ishld, oshld, nshld and ld are only available from ARMv8. 4107 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4108 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4109 Opt = ~0U; 4110 4111 if (Opt == ~0U) 4112 return MatchOperand_NoMatch; 4113 4114 Parser.Lex(); // Eat identifier token. 4115 } else if (Tok.is(AsmToken::Hash) || 4116 Tok.is(AsmToken::Dollar) || 4117 Tok.is(AsmToken::Integer)) { 4118 if (Parser.getTok().isNot(AsmToken::Integer)) 4119 Parser.Lex(); // Eat '#' or '$'. 4120 SMLoc Loc = Parser.getTok().getLoc(); 4121 4122 const MCExpr *MemBarrierID; 4123 if (getParser().parseExpression(MemBarrierID)) { 4124 Error(Loc, "illegal expression"); 4125 return MatchOperand_ParseFail; 4126 } 4127 4128 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4129 if (!CE) { 4130 Error(Loc, "constant expression expected"); 4131 return MatchOperand_ParseFail; 4132 } 4133 4134 int Val = CE->getValue(); 4135 if (Val & ~0xf) { 4136 Error(Loc, "immediate value out of range"); 4137 return MatchOperand_ParseFail; 4138 } 4139 4140 Opt = ARM_MB::RESERVED_0 + Val; 4141 } else 4142 return MatchOperand_ParseFail; 4143 4144 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4145 return MatchOperand_Success; 4146 } 4147 4148 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4149 OperandMatchResultTy 4150 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4151 MCAsmParser &Parser = getParser(); 4152 SMLoc S = Parser.getTok().getLoc(); 4153 const AsmToken &Tok = Parser.getTok(); 4154 unsigned Opt; 4155 4156 if (Tok.is(AsmToken::Identifier)) { 4157 StringRef OptStr = Tok.getString(); 4158 4159 if (OptStr.equals_lower("sy")) 4160 Opt = ARM_ISB::SY; 4161 else 4162 return MatchOperand_NoMatch; 4163 4164 Parser.Lex(); // Eat identifier token. 4165 } else if (Tok.is(AsmToken::Hash) || 4166 Tok.is(AsmToken::Dollar) || 4167 Tok.is(AsmToken::Integer)) { 4168 if (Parser.getTok().isNot(AsmToken::Integer)) 4169 Parser.Lex(); // Eat '#' or '$'. 4170 SMLoc Loc = Parser.getTok().getLoc(); 4171 4172 const MCExpr *ISBarrierID; 4173 if (getParser().parseExpression(ISBarrierID)) { 4174 Error(Loc, "illegal expression"); 4175 return MatchOperand_ParseFail; 4176 } 4177 4178 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4179 if (!CE) { 4180 Error(Loc, "constant expression expected"); 4181 return MatchOperand_ParseFail; 4182 } 4183 4184 int Val = CE->getValue(); 4185 if (Val & ~0xf) { 4186 Error(Loc, "immediate value out of range"); 4187 return MatchOperand_ParseFail; 4188 } 4189 4190 Opt = ARM_ISB::RESERVED_0 + Val; 4191 } else 4192 return MatchOperand_ParseFail; 4193 4194 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4195 (ARM_ISB::InstSyncBOpt)Opt, S)); 4196 return MatchOperand_Success; 4197 } 4198 4199 4200 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4201 OperandMatchResultTy 4202 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4203 MCAsmParser &Parser = getParser(); 4204 SMLoc S = Parser.getTok().getLoc(); 4205 const AsmToken &Tok = Parser.getTok(); 4206 if (!Tok.is(AsmToken::Identifier)) 4207 return MatchOperand_NoMatch; 4208 StringRef IFlagsStr = Tok.getString(); 4209 4210 // An iflags string of "none" is interpreted to mean that none of the AIF 4211 // bits are set. Not a terribly useful instruction, but a valid encoding. 4212 unsigned IFlags = 0; 4213 if (IFlagsStr != "none") { 4214 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4215 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4216 .Case("a", ARM_PROC::A) 4217 .Case("i", ARM_PROC::I) 4218 .Case("f", ARM_PROC::F) 4219 .Default(~0U); 4220 4221 // If some specific iflag is already set, it means that some letter is 4222 // present more than once, this is not acceptable. 4223 if (Flag == ~0U || (IFlags & Flag)) 4224 return MatchOperand_NoMatch; 4225 4226 IFlags |= Flag; 4227 } 4228 } 4229 4230 Parser.Lex(); // Eat identifier token. 4231 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4232 return MatchOperand_Success; 4233 } 4234 4235 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4236 OperandMatchResultTy 4237 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4238 MCAsmParser &Parser = getParser(); 4239 SMLoc S = Parser.getTok().getLoc(); 4240 const AsmToken &Tok = Parser.getTok(); 4241 if (!Tok.is(AsmToken::Identifier)) 4242 return MatchOperand_NoMatch; 4243 StringRef Mask = Tok.getString(); 4244 4245 if (isMClass()) { 4246 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4247 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4248 return MatchOperand_NoMatch; 4249 4250 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4251 4252 Parser.Lex(); // Eat identifier token. 4253 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4254 return MatchOperand_Success; 4255 } 4256 4257 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4258 size_t Start = 0, Next = Mask.find('_'); 4259 StringRef Flags = ""; 4260 std::string SpecReg = Mask.slice(Start, Next).lower(); 4261 if (Next != StringRef::npos) 4262 Flags = Mask.slice(Next+1, Mask.size()); 4263 4264 // FlagsVal contains the complete mask: 4265 // 3-0: Mask 4266 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4267 unsigned FlagsVal = 0; 4268 4269 if (SpecReg == "apsr") { 4270 FlagsVal = StringSwitch<unsigned>(Flags) 4271 .Case("nzcvq", 0x8) // same as CPSR_f 4272 .Case("g", 0x4) // same as CPSR_s 4273 .Case("nzcvqg", 0xc) // same as CPSR_fs 4274 .Default(~0U); 4275 4276 if (FlagsVal == ~0U) { 4277 if (!Flags.empty()) 4278 return MatchOperand_NoMatch; 4279 else 4280 FlagsVal = 8; // No flag 4281 } 4282 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4283 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4284 if (Flags == "all" || Flags == "") 4285 Flags = "fc"; 4286 for (int i = 0, e = Flags.size(); i != e; ++i) { 4287 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4288 .Case("c", 1) 4289 .Case("x", 2) 4290 .Case("s", 4) 4291 .Case("f", 8) 4292 .Default(~0U); 4293 4294 // If some specific flag is already set, it means that some letter is 4295 // present more than once, this is not acceptable. 4296 if (Flag == ~0U || (FlagsVal & Flag)) 4297 return MatchOperand_NoMatch; 4298 FlagsVal |= Flag; 4299 } 4300 } else // No match for special register. 4301 return MatchOperand_NoMatch; 4302 4303 // Special register without flags is NOT equivalent to "fc" flags. 4304 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4305 // two lines would enable gas compatibility at the expense of breaking 4306 // round-tripping. 4307 // 4308 // if (!FlagsVal) 4309 // FlagsVal = 0x9; 4310 4311 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4312 if (SpecReg == "spsr") 4313 FlagsVal |= 16; 4314 4315 Parser.Lex(); // Eat identifier token. 4316 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4317 return MatchOperand_Success; 4318 } 4319 4320 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4321 /// use in the MRS/MSR instructions added to support virtualization. 4322 OperandMatchResultTy 4323 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4324 MCAsmParser &Parser = getParser(); 4325 SMLoc S = Parser.getTok().getLoc(); 4326 const AsmToken &Tok = Parser.getTok(); 4327 if (!Tok.is(AsmToken::Identifier)) 4328 return MatchOperand_NoMatch; 4329 StringRef RegName = Tok.getString(); 4330 4331 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4332 if (!TheReg) 4333 return MatchOperand_NoMatch; 4334 unsigned Encoding = TheReg->Encoding; 4335 4336 Parser.Lex(); // Eat identifier token. 4337 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4338 return MatchOperand_Success; 4339 } 4340 4341 OperandMatchResultTy 4342 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4343 int High) { 4344 MCAsmParser &Parser = getParser(); 4345 const AsmToken &Tok = Parser.getTok(); 4346 if (Tok.isNot(AsmToken::Identifier)) { 4347 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4348 return MatchOperand_ParseFail; 4349 } 4350 StringRef ShiftName = Tok.getString(); 4351 std::string LowerOp = Op.lower(); 4352 std::string UpperOp = Op.upper(); 4353 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4354 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4355 return MatchOperand_ParseFail; 4356 } 4357 Parser.Lex(); // Eat shift type token. 4358 4359 // There must be a '#' and a shift amount. 4360 if (Parser.getTok().isNot(AsmToken::Hash) && 4361 Parser.getTok().isNot(AsmToken::Dollar)) { 4362 Error(Parser.getTok().getLoc(), "'#' expected"); 4363 return MatchOperand_ParseFail; 4364 } 4365 Parser.Lex(); // Eat hash token. 4366 4367 const MCExpr *ShiftAmount; 4368 SMLoc Loc = Parser.getTok().getLoc(); 4369 SMLoc EndLoc; 4370 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4371 Error(Loc, "illegal expression"); 4372 return MatchOperand_ParseFail; 4373 } 4374 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4375 if (!CE) { 4376 Error(Loc, "constant expression expected"); 4377 return MatchOperand_ParseFail; 4378 } 4379 int Val = CE->getValue(); 4380 if (Val < Low || Val > High) { 4381 Error(Loc, "immediate value out of range"); 4382 return MatchOperand_ParseFail; 4383 } 4384 4385 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4386 4387 return MatchOperand_Success; 4388 } 4389 4390 OperandMatchResultTy 4391 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4392 MCAsmParser &Parser = getParser(); 4393 const AsmToken &Tok = Parser.getTok(); 4394 SMLoc S = Tok.getLoc(); 4395 if (Tok.isNot(AsmToken::Identifier)) { 4396 Error(S, "'be' or 'le' operand expected"); 4397 return MatchOperand_ParseFail; 4398 } 4399 int Val = StringSwitch<int>(Tok.getString().lower()) 4400 .Case("be", 1) 4401 .Case("le", 0) 4402 .Default(-1); 4403 Parser.Lex(); // Eat the token. 4404 4405 if (Val == -1) { 4406 Error(S, "'be' or 'le' operand expected"); 4407 return MatchOperand_ParseFail; 4408 } 4409 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4410 getContext()), 4411 S, Tok.getEndLoc())); 4412 return MatchOperand_Success; 4413 } 4414 4415 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4416 /// instructions. Legal values are: 4417 /// lsl #n 'n' in [0,31] 4418 /// asr #n 'n' in [1,32] 4419 /// n == 32 encoded as n == 0. 4420 OperandMatchResultTy 4421 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4422 MCAsmParser &Parser = getParser(); 4423 const AsmToken &Tok = Parser.getTok(); 4424 SMLoc S = Tok.getLoc(); 4425 if (Tok.isNot(AsmToken::Identifier)) { 4426 Error(S, "shift operator 'asr' or 'lsl' expected"); 4427 return MatchOperand_ParseFail; 4428 } 4429 StringRef ShiftName = Tok.getString(); 4430 bool isASR; 4431 if (ShiftName == "lsl" || ShiftName == "LSL") 4432 isASR = false; 4433 else if (ShiftName == "asr" || ShiftName == "ASR") 4434 isASR = true; 4435 else { 4436 Error(S, "shift operator 'asr' or 'lsl' expected"); 4437 return MatchOperand_ParseFail; 4438 } 4439 Parser.Lex(); // Eat the operator. 4440 4441 // A '#' and a shift amount. 4442 if (Parser.getTok().isNot(AsmToken::Hash) && 4443 Parser.getTok().isNot(AsmToken::Dollar)) { 4444 Error(Parser.getTok().getLoc(), "'#' expected"); 4445 return MatchOperand_ParseFail; 4446 } 4447 Parser.Lex(); // Eat hash token. 4448 SMLoc ExLoc = Parser.getTok().getLoc(); 4449 4450 const MCExpr *ShiftAmount; 4451 SMLoc EndLoc; 4452 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4453 Error(ExLoc, "malformed shift expression"); 4454 return MatchOperand_ParseFail; 4455 } 4456 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4457 if (!CE) { 4458 Error(ExLoc, "shift amount must be an immediate"); 4459 return MatchOperand_ParseFail; 4460 } 4461 4462 int64_t Val = CE->getValue(); 4463 if (isASR) { 4464 // Shift amount must be in [1,32] 4465 if (Val < 1 || Val > 32) { 4466 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4467 return MatchOperand_ParseFail; 4468 } 4469 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4470 if (isThumb() && Val == 32) { 4471 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4472 return MatchOperand_ParseFail; 4473 } 4474 if (Val == 32) Val = 0; 4475 } else { 4476 // Shift amount must be in [1,32] 4477 if (Val < 0 || Val > 31) { 4478 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4479 return MatchOperand_ParseFail; 4480 } 4481 } 4482 4483 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4484 4485 return MatchOperand_Success; 4486 } 4487 4488 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4489 /// of instructions. Legal values are: 4490 /// ror #n 'n' in {0, 8, 16, 24} 4491 OperandMatchResultTy 4492 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4493 MCAsmParser &Parser = getParser(); 4494 const AsmToken &Tok = Parser.getTok(); 4495 SMLoc S = Tok.getLoc(); 4496 if (Tok.isNot(AsmToken::Identifier)) 4497 return MatchOperand_NoMatch; 4498 StringRef ShiftName = Tok.getString(); 4499 if (ShiftName != "ror" && ShiftName != "ROR") 4500 return MatchOperand_NoMatch; 4501 Parser.Lex(); // Eat the operator. 4502 4503 // A '#' and a rotate amount. 4504 if (Parser.getTok().isNot(AsmToken::Hash) && 4505 Parser.getTok().isNot(AsmToken::Dollar)) { 4506 Error(Parser.getTok().getLoc(), "'#' expected"); 4507 return MatchOperand_ParseFail; 4508 } 4509 Parser.Lex(); // Eat hash token. 4510 SMLoc ExLoc = Parser.getTok().getLoc(); 4511 4512 const MCExpr *ShiftAmount; 4513 SMLoc EndLoc; 4514 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4515 Error(ExLoc, "malformed rotate expression"); 4516 return MatchOperand_ParseFail; 4517 } 4518 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4519 if (!CE) { 4520 Error(ExLoc, "rotate amount must be an immediate"); 4521 return MatchOperand_ParseFail; 4522 } 4523 4524 int64_t Val = CE->getValue(); 4525 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4526 // normally, zero is represented in asm by omitting the rotate operand 4527 // entirely. 4528 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4529 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4530 return MatchOperand_ParseFail; 4531 } 4532 4533 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4534 4535 return MatchOperand_Success; 4536 } 4537 4538 OperandMatchResultTy 4539 ARMAsmParser::parseModImm(OperandVector &Operands) { 4540 MCAsmParser &Parser = getParser(); 4541 MCAsmLexer &Lexer = getLexer(); 4542 int64_t Imm1, Imm2; 4543 4544 SMLoc S = Parser.getTok().getLoc(); 4545 4546 // 1) A mod_imm operand can appear in the place of a register name: 4547 // add r0, #mod_imm 4548 // add r0, r0, #mod_imm 4549 // to correctly handle the latter, we bail out as soon as we see an 4550 // identifier. 4551 // 4552 // 2) Similarly, we do not want to parse into complex operands: 4553 // mov r0, #mod_imm 4554 // mov r0, :lower16:(_foo) 4555 if (Parser.getTok().is(AsmToken::Identifier) || 4556 Parser.getTok().is(AsmToken::Colon)) 4557 return MatchOperand_NoMatch; 4558 4559 // Hash (dollar) is optional as per the ARMARM 4560 if (Parser.getTok().is(AsmToken::Hash) || 4561 Parser.getTok().is(AsmToken::Dollar)) { 4562 // Avoid parsing into complex operands (#:) 4563 if (Lexer.peekTok().is(AsmToken::Colon)) 4564 return MatchOperand_NoMatch; 4565 4566 // Eat the hash (dollar) 4567 Parser.Lex(); 4568 } 4569 4570 SMLoc Sx1, Ex1; 4571 Sx1 = Parser.getTok().getLoc(); 4572 const MCExpr *Imm1Exp; 4573 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4574 Error(Sx1, "malformed expression"); 4575 return MatchOperand_ParseFail; 4576 } 4577 4578 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4579 4580 if (CE) { 4581 // Immediate must fit within 32-bits 4582 Imm1 = CE->getValue(); 4583 int Enc = ARM_AM::getSOImmVal(Imm1); 4584 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4585 // We have a match! 4586 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4587 (Enc & 0xF00) >> 7, 4588 Sx1, Ex1)); 4589 return MatchOperand_Success; 4590 } 4591 4592 // We have parsed an immediate which is not for us, fallback to a plain 4593 // immediate. This can happen for instruction aliases. For an example, 4594 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4595 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4596 // instruction with a mod_imm operand. The alias is defined such that the 4597 // parser method is shared, that's why we have to do this here. 4598 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4599 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4600 return MatchOperand_Success; 4601 } 4602 } else { 4603 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4604 // MCFixup). Fallback to a plain immediate. 4605 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4606 return MatchOperand_Success; 4607 } 4608 4609 // From this point onward, we expect the input to be a (#bits, #rot) pair 4610 if (Parser.getTok().isNot(AsmToken::Comma)) { 4611 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4612 return MatchOperand_ParseFail; 4613 } 4614 4615 if (Imm1 & ~0xFF) { 4616 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4617 return MatchOperand_ParseFail; 4618 } 4619 4620 // Eat the comma 4621 Parser.Lex(); 4622 4623 // Repeat for #rot 4624 SMLoc Sx2, Ex2; 4625 Sx2 = Parser.getTok().getLoc(); 4626 4627 // Eat the optional hash (dollar) 4628 if (Parser.getTok().is(AsmToken::Hash) || 4629 Parser.getTok().is(AsmToken::Dollar)) 4630 Parser.Lex(); 4631 4632 const MCExpr *Imm2Exp; 4633 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4634 Error(Sx2, "malformed expression"); 4635 return MatchOperand_ParseFail; 4636 } 4637 4638 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4639 4640 if (CE) { 4641 Imm2 = CE->getValue(); 4642 if (!(Imm2 & ~0x1E)) { 4643 // We have a match! 4644 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4645 return MatchOperand_Success; 4646 } 4647 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4648 return MatchOperand_ParseFail; 4649 } else { 4650 Error(Sx2, "constant expression expected"); 4651 return MatchOperand_ParseFail; 4652 } 4653 } 4654 4655 OperandMatchResultTy 4656 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4657 MCAsmParser &Parser = getParser(); 4658 SMLoc S = Parser.getTok().getLoc(); 4659 // The bitfield descriptor is really two operands, the LSB and the width. 4660 if (Parser.getTok().isNot(AsmToken::Hash) && 4661 Parser.getTok().isNot(AsmToken::Dollar)) { 4662 Error(Parser.getTok().getLoc(), "'#' expected"); 4663 return MatchOperand_ParseFail; 4664 } 4665 Parser.Lex(); // Eat hash token. 4666 4667 const MCExpr *LSBExpr; 4668 SMLoc E = Parser.getTok().getLoc(); 4669 if (getParser().parseExpression(LSBExpr)) { 4670 Error(E, "malformed immediate expression"); 4671 return MatchOperand_ParseFail; 4672 } 4673 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4674 if (!CE) { 4675 Error(E, "'lsb' operand must be an immediate"); 4676 return MatchOperand_ParseFail; 4677 } 4678 4679 int64_t LSB = CE->getValue(); 4680 // The LSB must be in the range [0,31] 4681 if (LSB < 0 || LSB > 31) { 4682 Error(E, "'lsb' operand must be in the range [0,31]"); 4683 return MatchOperand_ParseFail; 4684 } 4685 E = Parser.getTok().getLoc(); 4686 4687 // Expect another immediate operand. 4688 if (Parser.getTok().isNot(AsmToken::Comma)) { 4689 Error(Parser.getTok().getLoc(), "too few operands"); 4690 return MatchOperand_ParseFail; 4691 } 4692 Parser.Lex(); // Eat hash token. 4693 if (Parser.getTok().isNot(AsmToken::Hash) && 4694 Parser.getTok().isNot(AsmToken::Dollar)) { 4695 Error(Parser.getTok().getLoc(), "'#' expected"); 4696 return MatchOperand_ParseFail; 4697 } 4698 Parser.Lex(); // Eat hash token. 4699 4700 const MCExpr *WidthExpr; 4701 SMLoc EndLoc; 4702 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4703 Error(E, "malformed immediate expression"); 4704 return MatchOperand_ParseFail; 4705 } 4706 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4707 if (!CE) { 4708 Error(E, "'width' operand must be an immediate"); 4709 return MatchOperand_ParseFail; 4710 } 4711 4712 int64_t Width = CE->getValue(); 4713 // The LSB must be in the range [1,32-lsb] 4714 if (Width < 1 || Width > 32 - LSB) { 4715 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4716 return MatchOperand_ParseFail; 4717 } 4718 4719 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4720 4721 return MatchOperand_Success; 4722 } 4723 4724 OperandMatchResultTy 4725 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4726 // Check for a post-index addressing register operand. Specifically: 4727 // postidx_reg := '+' register {, shift} 4728 // | '-' register {, shift} 4729 // | register {, shift} 4730 4731 // This method must return MatchOperand_NoMatch without consuming any tokens 4732 // in the case where there is no match, as other alternatives take other 4733 // parse methods. 4734 MCAsmParser &Parser = getParser(); 4735 AsmToken Tok = Parser.getTok(); 4736 SMLoc S = Tok.getLoc(); 4737 bool haveEaten = false; 4738 bool isAdd = true; 4739 if (Tok.is(AsmToken::Plus)) { 4740 Parser.Lex(); // Eat the '+' token. 4741 haveEaten = true; 4742 } else if (Tok.is(AsmToken::Minus)) { 4743 Parser.Lex(); // Eat the '-' token. 4744 isAdd = false; 4745 haveEaten = true; 4746 } 4747 4748 SMLoc E = Parser.getTok().getEndLoc(); 4749 int Reg = tryParseRegister(); 4750 if (Reg == -1) { 4751 if (!haveEaten) 4752 return MatchOperand_NoMatch; 4753 Error(Parser.getTok().getLoc(), "register expected"); 4754 return MatchOperand_ParseFail; 4755 } 4756 4757 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4758 unsigned ShiftImm = 0; 4759 if (Parser.getTok().is(AsmToken::Comma)) { 4760 Parser.Lex(); // Eat the ','. 4761 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4762 return MatchOperand_ParseFail; 4763 4764 // FIXME: Only approximates end...may include intervening whitespace. 4765 E = Parser.getTok().getLoc(); 4766 } 4767 4768 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4769 ShiftImm, S, E)); 4770 4771 return MatchOperand_Success; 4772 } 4773 4774 OperandMatchResultTy 4775 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4776 // Check for a post-index addressing register operand. Specifically: 4777 // am3offset := '+' register 4778 // | '-' register 4779 // | register 4780 // | # imm 4781 // | # + imm 4782 // | # - imm 4783 4784 // This method must return MatchOperand_NoMatch without consuming any tokens 4785 // in the case where there is no match, as other alternatives take other 4786 // parse methods. 4787 MCAsmParser &Parser = getParser(); 4788 AsmToken Tok = Parser.getTok(); 4789 SMLoc S = Tok.getLoc(); 4790 4791 // Do immediates first, as we always parse those if we have a '#'. 4792 if (Parser.getTok().is(AsmToken::Hash) || 4793 Parser.getTok().is(AsmToken::Dollar)) { 4794 Parser.Lex(); // Eat '#' or '$'. 4795 // Explicitly look for a '-', as we need to encode negative zero 4796 // differently. 4797 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4798 const MCExpr *Offset; 4799 SMLoc E; 4800 if (getParser().parseExpression(Offset, E)) 4801 return MatchOperand_ParseFail; 4802 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4803 if (!CE) { 4804 Error(S, "constant expression expected"); 4805 return MatchOperand_ParseFail; 4806 } 4807 // Negative zero is encoded as the flag value 4808 // std::numeric_limits<int32_t>::min(). 4809 int32_t Val = CE->getValue(); 4810 if (isNegative && Val == 0) 4811 Val = std::numeric_limits<int32_t>::min(); 4812 4813 Operands.push_back( 4814 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4815 4816 return MatchOperand_Success; 4817 } 4818 4819 bool haveEaten = false; 4820 bool isAdd = true; 4821 if (Tok.is(AsmToken::Plus)) { 4822 Parser.Lex(); // Eat the '+' token. 4823 haveEaten = true; 4824 } else if (Tok.is(AsmToken::Minus)) { 4825 Parser.Lex(); // Eat the '-' token. 4826 isAdd = false; 4827 haveEaten = true; 4828 } 4829 4830 Tok = Parser.getTok(); 4831 int Reg = tryParseRegister(); 4832 if (Reg == -1) { 4833 if (!haveEaten) 4834 return MatchOperand_NoMatch; 4835 Error(Tok.getLoc(), "register expected"); 4836 return MatchOperand_ParseFail; 4837 } 4838 4839 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4840 0, S, Tok.getEndLoc())); 4841 4842 return MatchOperand_Success; 4843 } 4844 4845 /// Convert parsed operands to MCInst. Needed here because this instruction 4846 /// only has two register operands, but multiplication is commutative so 4847 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4848 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4849 const OperandVector &Operands) { 4850 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4851 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4852 // If we have a three-operand form, make sure to set Rn to be the operand 4853 // that isn't the same as Rd. 4854 unsigned RegOp = 4; 4855 if (Operands.size() == 6 && 4856 ((ARMOperand &)*Operands[4]).getReg() == 4857 ((ARMOperand &)*Operands[3]).getReg()) 4858 RegOp = 5; 4859 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4860 Inst.addOperand(Inst.getOperand(0)); 4861 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4862 } 4863 4864 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4865 const OperandVector &Operands) { 4866 int CondOp = -1, ImmOp = -1; 4867 switch(Inst.getOpcode()) { 4868 case ARM::tB: 4869 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4870 4871 case ARM::t2B: 4872 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4873 4874 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4875 } 4876 // first decide whether or not the branch should be conditional 4877 // by looking at it's location relative to an IT block 4878 if(inITBlock()) { 4879 // inside an IT block we cannot have any conditional branches. any 4880 // such instructions needs to be converted to unconditional form 4881 switch(Inst.getOpcode()) { 4882 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4883 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4884 } 4885 } else { 4886 // outside IT blocks we can only have unconditional branches with AL 4887 // condition code or conditional branches with non-AL condition code 4888 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4889 switch(Inst.getOpcode()) { 4890 case ARM::tB: 4891 case ARM::tBcc: 4892 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4893 break; 4894 case ARM::t2B: 4895 case ARM::t2Bcc: 4896 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4897 break; 4898 } 4899 } 4900 4901 // now decide on encoding size based on branch target range 4902 switch(Inst.getOpcode()) { 4903 // classify tB as either t2B or t1B based on range of immediate operand 4904 case ARM::tB: { 4905 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4906 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4907 Inst.setOpcode(ARM::t2B); 4908 break; 4909 } 4910 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4911 case ARM::tBcc: { 4912 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4913 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4914 Inst.setOpcode(ARM::t2Bcc); 4915 break; 4916 } 4917 } 4918 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4919 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4920 } 4921 4922 /// Parse an ARM memory expression, return false if successful else return true 4923 /// or an error. The first token must be a '[' when called. 4924 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4925 MCAsmParser &Parser = getParser(); 4926 SMLoc S, E; 4927 if (Parser.getTok().isNot(AsmToken::LBrac)) 4928 return TokError("Token is not a Left Bracket"); 4929 S = Parser.getTok().getLoc(); 4930 Parser.Lex(); // Eat left bracket token. 4931 4932 const AsmToken &BaseRegTok = Parser.getTok(); 4933 int BaseRegNum = tryParseRegister(); 4934 if (BaseRegNum == -1) 4935 return Error(BaseRegTok.getLoc(), "register expected"); 4936 4937 // The next token must either be a comma, a colon or a closing bracket. 4938 const AsmToken &Tok = Parser.getTok(); 4939 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4940 !Tok.is(AsmToken::RBrac)) 4941 return Error(Tok.getLoc(), "malformed memory operand"); 4942 4943 if (Tok.is(AsmToken::RBrac)) { 4944 E = Tok.getEndLoc(); 4945 Parser.Lex(); // Eat right bracket token. 4946 4947 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4948 ARM_AM::no_shift, 0, 0, false, 4949 S, E)); 4950 4951 // If there's a pre-indexing writeback marker, '!', just add it as a token 4952 // operand. It's rather odd, but syntactically valid. 4953 if (Parser.getTok().is(AsmToken::Exclaim)) { 4954 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4955 Parser.Lex(); // Eat the '!'. 4956 } 4957 4958 return false; 4959 } 4960 4961 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4962 "Lost colon or comma in memory operand?!"); 4963 if (Tok.is(AsmToken::Comma)) { 4964 Parser.Lex(); // Eat the comma. 4965 } 4966 4967 // If we have a ':', it's an alignment specifier. 4968 if (Parser.getTok().is(AsmToken::Colon)) { 4969 Parser.Lex(); // Eat the ':'. 4970 E = Parser.getTok().getLoc(); 4971 SMLoc AlignmentLoc = Tok.getLoc(); 4972 4973 const MCExpr *Expr; 4974 if (getParser().parseExpression(Expr)) 4975 return true; 4976 4977 // The expression has to be a constant. Memory references with relocations 4978 // don't come through here, as they use the <label> forms of the relevant 4979 // instructions. 4980 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4981 if (!CE) 4982 return Error (E, "constant expression expected"); 4983 4984 unsigned Align = 0; 4985 switch (CE->getValue()) { 4986 default: 4987 return Error(E, 4988 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4989 case 16: Align = 2; break; 4990 case 32: Align = 4; break; 4991 case 64: Align = 8; break; 4992 case 128: Align = 16; break; 4993 case 256: Align = 32; break; 4994 } 4995 4996 // Now we should have the closing ']' 4997 if (Parser.getTok().isNot(AsmToken::RBrac)) 4998 return Error(Parser.getTok().getLoc(), "']' expected"); 4999 E = Parser.getTok().getEndLoc(); 5000 Parser.Lex(); // Eat right bracket token. 5001 5002 // Don't worry about range checking the value here. That's handled by 5003 // the is*() predicates. 5004 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5005 ARM_AM::no_shift, 0, Align, 5006 false, S, E, AlignmentLoc)); 5007 5008 // If there's a pre-indexing writeback marker, '!', just add it as a token 5009 // operand. 5010 if (Parser.getTok().is(AsmToken::Exclaim)) { 5011 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5012 Parser.Lex(); // Eat the '!'. 5013 } 5014 5015 return false; 5016 } 5017 5018 // If we have a '#', it's an immediate offset, else assume it's a register 5019 // offset. Be friendly and also accept a plain integer (without a leading 5020 // hash) for gas compatibility. 5021 if (Parser.getTok().is(AsmToken::Hash) || 5022 Parser.getTok().is(AsmToken::Dollar) || 5023 Parser.getTok().is(AsmToken::Integer)) { 5024 if (Parser.getTok().isNot(AsmToken::Integer)) 5025 Parser.Lex(); // Eat '#' or '$'. 5026 E = Parser.getTok().getLoc(); 5027 5028 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5029 const MCExpr *Offset; 5030 if (getParser().parseExpression(Offset)) 5031 return true; 5032 5033 // The expression has to be a constant. Memory references with relocations 5034 // don't come through here, as they use the <label> forms of the relevant 5035 // instructions. 5036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5037 if (!CE) 5038 return Error (E, "constant expression expected"); 5039 5040 // If the constant was #-0, represent it as 5041 // std::numeric_limits<int32_t>::min(). 5042 int32_t Val = CE->getValue(); 5043 if (isNegative && Val == 0) 5044 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5045 getContext()); 5046 5047 // Now we should have the closing ']' 5048 if (Parser.getTok().isNot(AsmToken::RBrac)) 5049 return Error(Parser.getTok().getLoc(), "']' expected"); 5050 E = Parser.getTok().getEndLoc(); 5051 Parser.Lex(); // Eat right bracket token. 5052 5053 // Don't worry about range checking the value here. That's handled by 5054 // the is*() predicates. 5055 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5056 ARM_AM::no_shift, 0, 0, 5057 false, S, E)); 5058 5059 // If there's a pre-indexing writeback marker, '!', just add it as a token 5060 // operand. 5061 if (Parser.getTok().is(AsmToken::Exclaim)) { 5062 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5063 Parser.Lex(); // Eat the '!'. 5064 } 5065 5066 return false; 5067 } 5068 5069 // The register offset is optionally preceded by a '+' or '-' 5070 bool isNegative = false; 5071 if (Parser.getTok().is(AsmToken::Minus)) { 5072 isNegative = true; 5073 Parser.Lex(); // Eat the '-'. 5074 } else if (Parser.getTok().is(AsmToken::Plus)) { 5075 // Nothing to do. 5076 Parser.Lex(); // Eat the '+'. 5077 } 5078 5079 E = Parser.getTok().getLoc(); 5080 int OffsetRegNum = tryParseRegister(); 5081 if (OffsetRegNum == -1) 5082 return Error(E, "register expected"); 5083 5084 // If there's a shift operator, handle it. 5085 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5086 unsigned ShiftImm = 0; 5087 if (Parser.getTok().is(AsmToken::Comma)) { 5088 Parser.Lex(); // Eat the ','. 5089 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5090 return true; 5091 } 5092 5093 // Now we should have the closing ']' 5094 if (Parser.getTok().isNot(AsmToken::RBrac)) 5095 return Error(Parser.getTok().getLoc(), "']' expected"); 5096 E = Parser.getTok().getEndLoc(); 5097 Parser.Lex(); // Eat right bracket token. 5098 5099 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5100 ShiftType, ShiftImm, 0, isNegative, 5101 S, E)); 5102 5103 // If there's a pre-indexing writeback marker, '!', just add it as a token 5104 // operand. 5105 if (Parser.getTok().is(AsmToken::Exclaim)) { 5106 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5107 Parser.Lex(); // Eat the '!'. 5108 } 5109 5110 return false; 5111 } 5112 5113 /// parseMemRegOffsetShift - one of these two: 5114 /// ( lsl | lsr | asr | ror ) , # shift_amount 5115 /// rrx 5116 /// return true if it parses a shift otherwise it returns false. 5117 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5118 unsigned &Amount) { 5119 MCAsmParser &Parser = getParser(); 5120 SMLoc Loc = Parser.getTok().getLoc(); 5121 const AsmToken &Tok = Parser.getTok(); 5122 if (Tok.isNot(AsmToken::Identifier)) 5123 return Error(Loc, "illegal shift operator"); 5124 StringRef ShiftName = Tok.getString(); 5125 if (ShiftName == "lsl" || ShiftName == "LSL" || 5126 ShiftName == "asl" || ShiftName == "ASL") 5127 St = ARM_AM::lsl; 5128 else if (ShiftName == "lsr" || ShiftName == "LSR") 5129 St = ARM_AM::lsr; 5130 else if (ShiftName == "asr" || ShiftName == "ASR") 5131 St = ARM_AM::asr; 5132 else if (ShiftName == "ror" || ShiftName == "ROR") 5133 St = ARM_AM::ror; 5134 else if (ShiftName == "rrx" || ShiftName == "RRX") 5135 St = ARM_AM::rrx; 5136 else 5137 return Error(Loc, "illegal shift operator"); 5138 Parser.Lex(); // Eat shift type token. 5139 5140 // rrx stands alone. 5141 Amount = 0; 5142 if (St != ARM_AM::rrx) { 5143 Loc = Parser.getTok().getLoc(); 5144 // A '#' and a shift amount. 5145 const AsmToken &HashTok = Parser.getTok(); 5146 if (HashTok.isNot(AsmToken::Hash) && 5147 HashTok.isNot(AsmToken::Dollar)) 5148 return Error(HashTok.getLoc(), "'#' expected"); 5149 Parser.Lex(); // Eat hash token. 5150 5151 const MCExpr *Expr; 5152 if (getParser().parseExpression(Expr)) 5153 return true; 5154 // Range check the immediate. 5155 // lsl, ror: 0 <= imm <= 31 5156 // lsr, asr: 0 <= imm <= 32 5157 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5158 if (!CE) 5159 return Error(Loc, "shift amount must be an immediate"); 5160 int64_t Imm = CE->getValue(); 5161 if (Imm < 0 || 5162 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5163 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5164 return Error(Loc, "immediate shift value out of range"); 5165 // If <ShiftTy> #0, turn it into a no_shift. 5166 if (Imm == 0) 5167 St = ARM_AM::lsl; 5168 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5169 if (Imm == 32) 5170 Imm = 0; 5171 Amount = Imm; 5172 } 5173 5174 return false; 5175 } 5176 5177 /// parseFPImm - A floating point immediate expression operand. 5178 OperandMatchResultTy 5179 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5180 MCAsmParser &Parser = getParser(); 5181 // Anything that can accept a floating point constant as an operand 5182 // needs to go through here, as the regular parseExpression is 5183 // integer only. 5184 // 5185 // This routine still creates a generic Immediate operand, containing 5186 // a bitcast of the 64-bit floating point value. The various operands 5187 // that accept floats can check whether the value is valid for them 5188 // via the standard is*() predicates. 5189 5190 SMLoc S = Parser.getTok().getLoc(); 5191 5192 if (Parser.getTok().isNot(AsmToken::Hash) && 5193 Parser.getTok().isNot(AsmToken::Dollar)) 5194 return MatchOperand_NoMatch; 5195 5196 // Disambiguate the VMOV forms that can accept an FP immediate. 5197 // vmov.f32 <sreg>, #imm 5198 // vmov.f64 <dreg>, #imm 5199 // vmov.f32 <dreg>, #imm @ vector f32x2 5200 // vmov.f32 <qreg>, #imm @ vector f32x4 5201 // 5202 // There are also the NEON VMOV instructions which expect an 5203 // integer constant. Make sure we don't try to parse an FPImm 5204 // for these: 5205 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5206 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5207 bool isVmovf = TyOp.isToken() && 5208 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5209 TyOp.getToken() == ".f16"); 5210 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5211 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5212 Mnemonic.getToken() == "fconsts"); 5213 if (!(isVmovf || isFconst)) 5214 return MatchOperand_NoMatch; 5215 5216 Parser.Lex(); // Eat '#' or '$'. 5217 5218 // Handle negation, as that still comes through as a separate token. 5219 bool isNegative = false; 5220 if (Parser.getTok().is(AsmToken::Minus)) { 5221 isNegative = true; 5222 Parser.Lex(); 5223 } 5224 const AsmToken &Tok = Parser.getTok(); 5225 SMLoc Loc = Tok.getLoc(); 5226 if (Tok.is(AsmToken::Real) && isVmovf) { 5227 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5228 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5229 // If we had a '-' in front, toggle the sign bit. 5230 IntVal ^= (uint64_t)isNegative << 31; 5231 Parser.Lex(); // Eat the token. 5232 Operands.push_back(ARMOperand::CreateImm( 5233 MCConstantExpr::create(IntVal, getContext()), 5234 S, Parser.getTok().getLoc())); 5235 return MatchOperand_Success; 5236 } 5237 // Also handle plain integers. Instructions which allow floating point 5238 // immediates also allow a raw encoded 8-bit value. 5239 if (Tok.is(AsmToken::Integer) && isFconst) { 5240 int64_t Val = Tok.getIntVal(); 5241 Parser.Lex(); // Eat the token. 5242 if (Val > 255 || Val < 0) { 5243 Error(Loc, "encoded floating point value out of range"); 5244 return MatchOperand_ParseFail; 5245 } 5246 float RealVal = ARM_AM::getFPImmFloat(Val); 5247 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5248 5249 Operands.push_back(ARMOperand::CreateImm( 5250 MCConstantExpr::create(Val, getContext()), S, 5251 Parser.getTok().getLoc())); 5252 return MatchOperand_Success; 5253 } 5254 5255 Error(Loc, "invalid floating point immediate"); 5256 return MatchOperand_ParseFail; 5257 } 5258 5259 /// Parse a arm instruction operand. For now this parses the operand regardless 5260 /// of the mnemonic. 5261 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5262 MCAsmParser &Parser = getParser(); 5263 SMLoc S, E; 5264 5265 // Check if the current operand has a custom associated parser, if so, try to 5266 // custom parse the operand, or fallback to the general approach. 5267 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5268 if (ResTy == MatchOperand_Success) 5269 return false; 5270 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5271 // there was a match, but an error occurred, in which case, just return that 5272 // the operand parsing failed. 5273 if (ResTy == MatchOperand_ParseFail) 5274 return true; 5275 5276 switch (getLexer().getKind()) { 5277 default: 5278 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5279 return true; 5280 case AsmToken::Identifier: { 5281 // If we've seen a branch mnemonic, the next operand must be a label. This 5282 // is true even if the label is a register name. So "br r1" means branch to 5283 // label "r1". 5284 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5285 if (!ExpectLabel) { 5286 if (!tryParseRegisterWithWriteBack(Operands)) 5287 return false; 5288 int Res = tryParseShiftRegister(Operands); 5289 if (Res == 0) // success 5290 return false; 5291 else if (Res == -1) // irrecoverable error 5292 return true; 5293 // If this is VMRS, check for the apsr_nzcv operand. 5294 if (Mnemonic == "vmrs" && 5295 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5296 S = Parser.getTok().getLoc(); 5297 Parser.Lex(); 5298 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5299 return false; 5300 } 5301 } 5302 5303 // Fall though for the Identifier case that is not a register or a 5304 // special name. 5305 LLVM_FALLTHROUGH; 5306 } 5307 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5308 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5309 case AsmToken::String: // quoted label names. 5310 case AsmToken::Dot: { // . as a branch target 5311 // This was not a register so parse other operands that start with an 5312 // identifier (like labels) as expressions and create them as immediates. 5313 const MCExpr *IdVal; 5314 S = Parser.getTok().getLoc(); 5315 if (getParser().parseExpression(IdVal)) 5316 return true; 5317 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5318 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5319 return false; 5320 } 5321 case AsmToken::LBrac: 5322 return parseMemory(Operands); 5323 case AsmToken::LCurly: 5324 return parseRegisterList(Operands); 5325 case AsmToken::Dollar: 5326 case AsmToken::Hash: 5327 // #42 -> immediate. 5328 S = Parser.getTok().getLoc(); 5329 Parser.Lex(); 5330 5331 if (Parser.getTok().isNot(AsmToken::Colon)) { 5332 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5333 const MCExpr *ImmVal; 5334 if (getParser().parseExpression(ImmVal)) 5335 return true; 5336 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5337 if (CE) { 5338 int32_t Val = CE->getValue(); 5339 if (isNegative && Val == 0) 5340 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5341 getContext()); 5342 } 5343 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5344 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5345 5346 // There can be a trailing '!' on operands that we want as a separate 5347 // '!' Token operand. Handle that here. For example, the compatibility 5348 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5349 if (Parser.getTok().is(AsmToken::Exclaim)) { 5350 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5351 Parser.getTok().getLoc())); 5352 Parser.Lex(); // Eat exclaim token 5353 } 5354 return false; 5355 } 5356 // w/ a ':' after the '#', it's just like a plain ':'. 5357 LLVM_FALLTHROUGH; 5358 5359 case AsmToken::Colon: { 5360 S = Parser.getTok().getLoc(); 5361 // ":lower16:" and ":upper16:" expression prefixes 5362 // FIXME: Check it's an expression prefix, 5363 // e.g. (FOO - :lower16:BAR) isn't legal. 5364 ARMMCExpr::VariantKind RefKind; 5365 if (parsePrefix(RefKind)) 5366 return true; 5367 5368 const MCExpr *SubExprVal; 5369 if (getParser().parseExpression(SubExprVal)) 5370 return true; 5371 5372 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5373 getContext()); 5374 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5375 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5376 return false; 5377 } 5378 case AsmToken::Equal: { 5379 S = Parser.getTok().getLoc(); 5380 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5381 return Error(S, "unexpected token in operand"); 5382 Parser.Lex(); // Eat '=' 5383 const MCExpr *SubExprVal; 5384 if (getParser().parseExpression(SubExprVal)) 5385 return true; 5386 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5387 5388 // execute-only: we assume that assembly programmers know what they are 5389 // doing and allow literal pool creation here 5390 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5391 return false; 5392 } 5393 } 5394 } 5395 5396 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5397 // :lower16: and :upper16:. 5398 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5399 MCAsmParser &Parser = getParser(); 5400 RefKind = ARMMCExpr::VK_ARM_None; 5401 5402 // consume an optional '#' (GNU compatibility) 5403 if (getLexer().is(AsmToken::Hash)) 5404 Parser.Lex(); 5405 5406 // :lower16: and :upper16: modifiers 5407 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5408 Parser.Lex(); // Eat ':' 5409 5410 if (getLexer().isNot(AsmToken::Identifier)) { 5411 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5412 return true; 5413 } 5414 5415 enum { 5416 COFF = (1 << MCObjectFileInfo::IsCOFF), 5417 ELF = (1 << MCObjectFileInfo::IsELF), 5418 MACHO = (1 << MCObjectFileInfo::IsMachO), 5419 WASM = (1 << MCObjectFileInfo::IsWasm), 5420 }; 5421 static const struct PrefixEntry { 5422 const char *Spelling; 5423 ARMMCExpr::VariantKind VariantKind; 5424 uint8_t SupportedFormats; 5425 } PrefixEntries[] = { 5426 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5427 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5428 }; 5429 5430 StringRef IDVal = Parser.getTok().getIdentifier(); 5431 5432 const auto &Prefix = 5433 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5434 [&IDVal](const PrefixEntry &PE) { 5435 return PE.Spelling == IDVal; 5436 }); 5437 if (Prefix == std::end(PrefixEntries)) { 5438 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5439 return true; 5440 } 5441 5442 uint8_t CurrentFormat; 5443 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5444 case MCObjectFileInfo::IsMachO: 5445 CurrentFormat = MACHO; 5446 break; 5447 case MCObjectFileInfo::IsELF: 5448 CurrentFormat = ELF; 5449 break; 5450 case MCObjectFileInfo::IsCOFF: 5451 CurrentFormat = COFF; 5452 break; 5453 case MCObjectFileInfo::IsWasm: 5454 CurrentFormat = WASM; 5455 break; 5456 } 5457 5458 if (~Prefix->SupportedFormats & CurrentFormat) { 5459 Error(Parser.getTok().getLoc(), 5460 "cannot represent relocation in the current file format"); 5461 return true; 5462 } 5463 5464 RefKind = Prefix->VariantKind; 5465 Parser.Lex(); 5466 5467 if (getLexer().isNot(AsmToken::Colon)) { 5468 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5469 return true; 5470 } 5471 Parser.Lex(); // Eat the last ':' 5472 5473 return false; 5474 } 5475 5476 /// \brief Given a mnemonic, split out possible predication code and carry 5477 /// setting letters to form a canonical mnemonic and flags. 5478 // 5479 // FIXME: Would be nice to autogen this. 5480 // FIXME: This is a bit of a maze of special cases. 5481 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5482 unsigned &PredicationCode, 5483 bool &CarrySetting, 5484 unsigned &ProcessorIMod, 5485 StringRef &ITMask) { 5486 PredicationCode = ARMCC::AL; 5487 CarrySetting = false; 5488 ProcessorIMod = 0; 5489 5490 // Ignore some mnemonics we know aren't predicated forms. 5491 // 5492 // FIXME: Would be nice to autogen this. 5493 if ((Mnemonic == "movs" && isThumb()) || 5494 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5495 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5496 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5497 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5498 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5499 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5500 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5501 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5502 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5503 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5504 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5505 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5506 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5507 Mnemonic == "bxns" || Mnemonic == "blxns" || 5508 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5509 Mnemonic == "vcmla" || Mnemonic == "vcadd") 5510 return Mnemonic; 5511 5512 // First, split out any predication code. Ignore mnemonics we know aren't 5513 // predicated but do have a carry-set and so weren't caught above. 5514 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5515 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5516 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5517 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5518 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5519 if (CC != ~0U) { 5520 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5521 PredicationCode = CC; 5522 } 5523 } 5524 5525 // Next, determine if we have a carry setting bit. We explicitly ignore all 5526 // the instructions we know end in 's'. 5527 if (Mnemonic.endswith("s") && 5528 !(Mnemonic == "cps" || Mnemonic == "mls" || 5529 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5530 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5531 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5532 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5533 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5534 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5535 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5536 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5537 Mnemonic == "bxns" || Mnemonic == "blxns" || 5538 (Mnemonic == "movs" && isThumb()))) { 5539 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5540 CarrySetting = true; 5541 } 5542 5543 // The "cps" instruction can have a interrupt mode operand which is glued into 5544 // the mnemonic. Check if this is the case, split it and parse the imod op 5545 if (Mnemonic.startswith("cps")) { 5546 // Split out any imod code. 5547 unsigned IMod = 5548 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5549 .Case("ie", ARM_PROC::IE) 5550 .Case("id", ARM_PROC::ID) 5551 .Default(~0U); 5552 if (IMod != ~0U) { 5553 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5554 ProcessorIMod = IMod; 5555 } 5556 } 5557 5558 // The "it" instruction has the condition mask on the end of the mnemonic. 5559 if (Mnemonic.startswith("it")) { 5560 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5561 Mnemonic = Mnemonic.slice(0, 2); 5562 } 5563 5564 return Mnemonic; 5565 } 5566 5567 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5568 /// inclusion of carry set or predication code operands. 5569 // 5570 // FIXME: It would be nice to autogen this. 5571 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5572 bool &CanAcceptCarrySet, 5573 bool &CanAcceptPredicationCode) { 5574 CanAcceptCarrySet = 5575 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5576 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5577 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5578 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5579 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5580 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5581 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5582 (!isThumb() && 5583 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5584 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5585 5586 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5587 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5588 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5589 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5590 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5591 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5592 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5593 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5594 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5595 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5596 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5597 Mnemonic == "vmovx" || Mnemonic == "vins" || 5598 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5599 Mnemonic == "vcmla" || Mnemonic == "vcadd") { 5600 // These mnemonics are never predicable 5601 CanAcceptPredicationCode = false; 5602 } else if (!isThumb()) { 5603 // Some instructions are only predicable in Thumb mode 5604 CanAcceptPredicationCode = 5605 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5606 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5607 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 5608 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 5609 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5610 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5611 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5612 } else if (isThumbOne()) { 5613 if (hasV6MOps()) 5614 CanAcceptPredicationCode = Mnemonic != "movs"; 5615 else 5616 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5617 } else 5618 CanAcceptPredicationCode = true; 5619 } 5620 5621 // \brief Some Thumb instructions have two operand forms that are not 5622 // available as three operand, convert to two operand form if possible. 5623 // 5624 // FIXME: We would really like to be able to tablegen'erate this. 5625 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5626 bool CarrySetting, 5627 OperandVector &Operands) { 5628 if (Operands.size() != 6) 5629 return; 5630 5631 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5632 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5633 if (!Op3.isReg() || !Op4.isReg()) 5634 return; 5635 5636 auto Op3Reg = Op3.getReg(); 5637 auto Op4Reg = Op4.getReg(); 5638 5639 // For most Thumb2 cases we just generate the 3 operand form and reduce 5640 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5641 // won't accept SP or PC so we do the transformation here taking care 5642 // with immediate range in the 'add sp, sp #imm' case. 5643 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5644 if (isThumbTwo()) { 5645 if (Mnemonic != "add") 5646 return; 5647 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5648 (Op5.isReg() && Op5.getReg() == ARM::PC); 5649 if (!TryTransform) { 5650 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5651 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5652 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5653 Op5.isImm() && !Op5.isImm0_508s4()); 5654 } 5655 if (!TryTransform) 5656 return; 5657 } else if (!isThumbOne()) 5658 return; 5659 5660 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5661 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5662 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5663 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5664 return; 5665 5666 // If first 2 operands of a 3 operand instruction are the same 5667 // then transform to 2 operand version of the same instruction 5668 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5669 bool Transform = Op3Reg == Op4Reg; 5670 5671 // For communtative operations, we might be able to transform if we swap 5672 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5673 // as tADDrsp. 5674 const ARMOperand *LastOp = &Op5; 5675 bool Swap = false; 5676 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5677 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5678 Mnemonic == "and" || Mnemonic == "eor" || 5679 Mnemonic == "adc" || Mnemonic == "orr")) { 5680 Swap = true; 5681 LastOp = &Op4; 5682 Transform = true; 5683 } 5684 5685 // If both registers are the same then remove one of them from 5686 // the operand list, with certain exceptions. 5687 if (Transform) { 5688 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5689 // 2 operand forms don't exist. 5690 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5691 LastOp->isReg()) 5692 Transform = false; 5693 5694 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5695 // 3-bits because the ARMARM says not to. 5696 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5697 Transform = false; 5698 } 5699 5700 if (Transform) { 5701 if (Swap) 5702 std::swap(Op4, Op5); 5703 Operands.erase(Operands.begin() + 3); 5704 } 5705 } 5706 5707 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5708 OperandVector &Operands) { 5709 // FIXME: This is all horribly hacky. We really need a better way to deal 5710 // with optional operands like this in the matcher table. 5711 5712 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5713 // another does not. Specifically, the MOVW instruction does not. So we 5714 // special case it here and remove the defaulted (non-setting) cc_out 5715 // operand if that's the instruction we're trying to match. 5716 // 5717 // We do this as post-processing of the explicit operands rather than just 5718 // conditionally adding the cc_out in the first place because we need 5719 // to check the type of the parsed immediate operand. 5720 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5721 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5722 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5723 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5724 return true; 5725 5726 // Register-register 'add' for thumb does not have a cc_out operand 5727 // when there are only two register operands. 5728 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5729 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5730 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5731 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5732 return true; 5733 // Register-register 'add' for thumb does not have a cc_out operand 5734 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5735 // have to check the immediate range here since Thumb2 has a variant 5736 // that can handle a different range and has a cc_out operand. 5737 if (((isThumb() && Mnemonic == "add") || 5738 (isThumbTwo() && Mnemonic == "sub")) && 5739 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5740 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5741 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5742 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5743 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5744 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5745 return true; 5746 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5747 // imm0_4095 variant. That's the least-preferred variant when 5748 // selecting via the generic "add" mnemonic, so to know that we 5749 // should remove the cc_out operand, we have to explicitly check that 5750 // it's not one of the other variants. Ugh. 5751 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5752 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5753 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5754 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5755 // Nest conditions rather than one big 'if' statement for readability. 5756 // 5757 // If both registers are low, we're in an IT block, and the immediate is 5758 // in range, we should use encoding T1 instead, which has a cc_out. 5759 if (inITBlock() && 5760 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5761 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5762 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5763 return false; 5764 // Check against T3. If the second register is the PC, this is an 5765 // alternate form of ADR, which uses encoding T4, so check for that too. 5766 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5767 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5768 return false; 5769 5770 // Otherwise, we use encoding T4, which does not have a cc_out 5771 // operand. 5772 return true; 5773 } 5774 5775 // The thumb2 multiply instruction doesn't have a CCOut register, so 5776 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5777 // use the 16-bit encoding or not. 5778 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5779 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5780 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5781 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5782 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5783 // If the registers aren't low regs, the destination reg isn't the 5784 // same as one of the source regs, or the cc_out operand is zero 5785 // outside of an IT block, we have to use the 32-bit encoding, so 5786 // remove the cc_out operand. 5787 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5788 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5789 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5790 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5791 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5792 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5793 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5794 return true; 5795 5796 // Also check the 'mul' syntax variant that doesn't specify an explicit 5797 // destination register. 5798 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5799 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5800 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5801 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5802 // If the registers aren't low regs or the cc_out operand is zero 5803 // outside of an IT block, we have to use the 32-bit encoding, so 5804 // remove the cc_out operand. 5805 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5806 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5807 !inITBlock())) 5808 return true; 5809 5810 // Register-register 'add/sub' for thumb does not have a cc_out operand 5811 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5812 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5813 // right, this will result in better diagnostics (which operand is off) 5814 // anyway. 5815 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5816 (Operands.size() == 5 || Operands.size() == 6) && 5817 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5818 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5819 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5820 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5821 (Operands.size() == 6 && 5822 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5823 return true; 5824 5825 return false; 5826 } 5827 5828 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5829 OperandVector &Operands) { 5830 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 5831 unsigned RegIdx = 3; 5832 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && 5833 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5834 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5835 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5836 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5837 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5838 RegIdx = 4; 5839 5840 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5841 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5842 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5843 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5844 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5845 return true; 5846 } 5847 return false; 5848 } 5849 5850 static bool isDataTypeToken(StringRef Tok) { 5851 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5852 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5853 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5854 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5855 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5856 Tok == ".f" || Tok == ".d"; 5857 } 5858 5859 // FIXME: This bit should probably be handled via an explicit match class 5860 // in the .td files that matches the suffix instead of having it be 5861 // a literal string token the way it is now. 5862 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5863 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5864 } 5865 5866 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5867 unsigned VariantID); 5868 5869 // The GNU assembler has aliases of ldrd and strd with the second register 5870 // omitted. We don't have a way to do that in tablegen, so fix it up here. 5871 // 5872 // We have to be careful to not emit an invalid Rt2 here, because the rest of 5873 // the assmebly parser could then generate confusing diagnostics refering to 5874 // it. If we do find anything that prevents us from doing the transformation we 5875 // bail out, and let the assembly parser report an error on the instruction as 5876 // it is written. 5877 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 5878 OperandVector &Operands) { 5879 if (Mnemonic != "ldrd" && Mnemonic != "strd") 5880 return; 5881 if (Operands.size() < 4) 5882 return; 5883 5884 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5885 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5886 5887 if (!Op2.isReg()) 5888 return; 5889 if (!Op3.isMem()) 5890 return; 5891 5892 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 5893 if (!GPR.contains(Op2.getReg())) 5894 return; 5895 5896 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 5897 if (!isThumb() && (RtEncoding & 1)) { 5898 // In ARM mode, the registers must be from an aligned pair, this 5899 // restriction does not apply in Thumb mode. 5900 return; 5901 } 5902 if (Op2.getReg() == ARM::PC) 5903 return; 5904 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 5905 if (!PairedReg || PairedReg == ARM::PC || 5906 (PairedReg == ARM::SP && !hasV8Ops())) 5907 return; 5908 5909 Operands.insert( 5910 Operands.begin() + 3, 5911 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5912 } 5913 5914 /// Parse an arm instruction mnemonic followed by its operands. 5915 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5916 SMLoc NameLoc, OperandVector &Operands) { 5917 MCAsmParser &Parser = getParser(); 5918 5919 // Apply mnemonic aliases before doing anything else, as the destination 5920 // mnemonic may include suffices and we want to handle them normally. 5921 // The generic tblgen'erated code does this later, at the start of 5922 // MatchInstructionImpl(), but that's too late for aliases that include 5923 // any sort of suffix. 5924 uint64_t AvailableFeatures = getAvailableFeatures(); 5925 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5926 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5927 5928 // First check for the ARM-specific .req directive. 5929 if (Parser.getTok().is(AsmToken::Identifier) && 5930 Parser.getTok().getIdentifier() == ".req") { 5931 parseDirectiveReq(Name, NameLoc); 5932 // We always return 'error' for this, as we're done with this 5933 // statement and don't need to match the 'instruction." 5934 return true; 5935 } 5936 5937 // Create the leading tokens for the mnemonic, split by '.' characters. 5938 size_t Start = 0, Next = Name.find('.'); 5939 StringRef Mnemonic = Name.slice(Start, Next); 5940 5941 // Split out the predication code and carry setting flag from the mnemonic. 5942 unsigned PredicationCode; 5943 unsigned ProcessorIMod; 5944 bool CarrySetting; 5945 StringRef ITMask; 5946 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5947 ProcessorIMod, ITMask); 5948 5949 // In Thumb1, only the branch (B) instruction can be predicated. 5950 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5951 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5952 } 5953 5954 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5955 5956 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5957 // is the mask as it will be for the IT encoding if the conditional 5958 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5959 // where the conditional bit0 is zero, the instruction post-processing 5960 // will adjust the mask accordingly. 5961 if (Mnemonic == "it") { 5962 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5963 if (ITMask.size() > 3) { 5964 return Error(Loc, "too many conditions on IT instruction"); 5965 } 5966 unsigned Mask = 8; 5967 for (unsigned i = ITMask.size(); i != 0; --i) { 5968 char pos = ITMask[i - 1]; 5969 if (pos != 't' && pos != 'e') { 5970 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5971 } 5972 Mask >>= 1; 5973 if (ITMask[i - 1] == 't') 5974 Mask |= 8; 5975 } 5976 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5977 } 5978 5979 // FIXME: This is all a pretty gross hack. We should automatically handle 5980 // optional operands like this via tblgen. 5981 5982 // Next, add the CCOut and ConditionCode operands, if needed. 5983 // 5984 // For mnemonics which can ever incorporate a carry setting bit or predication 5985 // code, our matching model involves us always generating CCOut and 5986 // ConditionCode operands to match the mnemonic "as written" and then we let 5987 // the matcher deal with finding the right instruction or generating an 5988 // appropriate error. 5989 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5990 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5991 5992 // If we had a carry-set on an instruction that can't do that, issue an 5993 // error. 5994 if (!CanAcceptCarrySet && CarrySetting) { 5995 return Error(NameLoc, "instruction '" + Mnemonic + 5996 "' can not set flags, but 's' suffix specified"); 5997 } 5998 // If we had a predication code on an instruction that can't do that, issue an 5999 // error. 6000 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6001 return Error(NameLoc, "instruction '" + Mnemonic + 6002 "' is not predicable, but condition code specified"); 6003 } 6004 6005 // Add the carry setting operand, if necessary. 6006 if (CanAcceptCarrySet) { 6007 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6008 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6009 Loc)); 6010 } 6011 6012 // Add the predication code operand, if necessary. 6013 if (CanAcceptPredicationCode) { 6014 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6015 CarrySetting); 6016 Operands.push_back(ARMOperand::CreateCondCode( 6017 ARMCC::CondCodes(PredicationCode), Loc)); 6018 } 6019 6020 // Add the processor imod operand, if necessary. 6021 if (ProcessorIMod) { 6022 Operands.push_back(ARMOperand::CreateImm( 6023 MCConstantExpr::create(ProcessorIMod, getContext()), 6024 NameLoc, NameLoc)); 6025 } else if (Mnemonic == "cps" && isMClass()) { 6026 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6027 } 6028 6029 // Add the remaining tokens in the mnemonic. 6030 while (Next != StringRef::npos) { 6031 Start = Next; 6032 Next = Name.find('.', Start + 1); 6033 StringRef ExtraToken = Name.slice(Start, Next); 6034 6035 // Some NEON instructions have an optional datatype suffix that is 6036 // completely ignored. Check for that. 6037 if (isDataTypeToken(ExtraToken) && 6038 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6039 continue; 6040 6041 // For for ARM mode generate an error if the .n qualifier is used. 6042 if (ExtraToken == ".n" && !isThumb()) { 6043 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6044 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6045 "arm mode"); 6046 } 6047 6048 // The .n qualifier is always discarded as that is what the tables 6049 // and matcher expect. In ARM mode the .w qualifier has no effect, 6050 // so discard it to avoid errors that can be caused by the matcher. 6051 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6052 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6053 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6054 } 6055 } 6056 6057 // Read the remaining operands. 6058 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6059 // Read the first operand. 6060 if (parseOperand(Operands, Mnemonic)) { 6061 return true; 6062 } 6063 6064 while (parseOptionalToken(AsmToken::Comma)) { 6065 // Parse and remember the operand. 6066 if (parseOperand(Operands, Mnemonic)) { 6067 return true; 6068 } 6069 } 6070 } 6071 6072 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6073 return true; 6074 6075 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6076 6077 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6078 // do and don't have a cc_out optional-def operand. With some spot-checks 6079 // of the operand list, we can figure out which variant we're trying to 6080 // parse and adjust accordingly before actually matching. We shouldn't ever 6081 // try to remove a cc_out operand that was explicitly set on the 6082 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6083 // table driven matcher doesn't fit well with the ARM instruction set. 6084 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6085 Operands.erase(Operands.begin() + 1); 6086 6087 // Some instructions have the same mnemonic, but don't always 6088 // have a predicate. Distinguish them here and delete the 6089 // predicate if needed. 6090 if (PredicationCode == ARMCC::AL && 6091 shouldOmitPredicateOperand(Mnemonic, Operands)) 6092 Operands.erase(Operands.begin() + 1); 6093 6094 // ARM mode 'blx' need special handling, as the register operand version 6095 // is predicable, but the label operand version is not. So, we can't rely 6096 // on the Mnemonic based checking to correctly figure out when to put 6097 // a k_CondCode operand in the list. If we're trying to match the label 6098 // version, remove the k_CondCode operand here. 6099 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6100 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6101 Operands.erase(Operands.begin() + 1); 6102 6103 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6104 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6105 // a single GPRPair reg operand is used in the .td file to replace the two 6106 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6107 // expressed as a GPRPair, so we have to manually merge them. 6108 // FIXME: We would really like to be able to tablegen'erate this. 6109 if (!isThumb() && Operands.size() > 4 && 6110 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6111 Mnemonic == "stlexd")) { 6112 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6113 unsigned Idx = isLoad ? 2 : 3; 6114 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6115 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6116 6117 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6118 // Adjust only if Op1 and Op2 are GPRs. 6119 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6120 MRC.contains(Op2.getReg())) { 6121 unsigned Reg1 = Op1.getReg(); 6122 unsigned Reg2 = Op2.getReg(); 6123 unsigned Rt = MRI->getEncodingValue(Reg1); 6124 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6125 6126 // Rt2 must be Rt + 1 and Rt must be even. 6127 if (Rt + 1 != Rt2 || (Rt & 1)) { 6128 return Error(Op2.getStartLoc(), 6129 isLoad ? "destination operands must be sequential" 6130 : "source operands must be sequential"); 6131 } 6132 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6133 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6134 Operands[Idx] = 6135 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6136 Operands.erase(Operands.begin() + Idx + 1); 6137 } 6138 } 6139 6140 // GNU Assembler extension (compatibility). 6141 fixupGNULDRDAlias(Mnemonic, Operands); 6142 6143 // FIXME: As said above, this is all a pretty gross hack. This instruction 6144 // does not fit with other "subs" and tblgen. 6145 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6146 // so the Mnemonic is the original name "subs" and delete the predicate 6147 // operand so it will match the table entry. 6148 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6149 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6150 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6151 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6152 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6153 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6154 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6155 Operands.erase(Operands.begin() + 1); 6156 } 6157 return false; 6158 } 6159 6160 // Validate context-sensitive operand constraints. 6161 6162 // return 'true' if register list contains non-low GPR registers, 6163 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6164 // 'containsReg' to true. 6165 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6166 unsigned Reg, unsigned HiReg, 6167 bool &containsReg) { 6168 containsReg = false; 6169 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6170 unsigned OpReg = Inst.getOperand(i).getReg(); 6171 if (OpReg == Reg) 6172 containsReg = true; 6173 // Anything other than a low register isn't legal here. 6174 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6175 return true; 6176 } 6177 return false; 6178 } 6179 6180 // Check if the specified regisgter is in the register list of the inst, 6181 // starting at the indicated operand number. 6182 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6183 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6184 unsigned OpReg = Inst.getOperand(i).getReg(); 6185 if (OpReg == Reg) 6186 return true; 6187 } 6188 return false; 6189 } 6190 6191 // Return true if instruction has the interesting property of being 6192 // allowed in IT blocks, but not being predicable. 6193 static bool instIsBreakpoint(const MCInst &Inst) { 6194 return Inst.getOpcode() == ARM::tBKPT || 6195 Inst.getOpcode() == ARM::BKPT || 6196 Inst.getOpcode() == ARM::tHLT || 6197 Inst.getOpcode() == ARM::HLT; 6198 } 6199 6200 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6201 const OperandVector &Operands, 6202 unsigned ListNo, bool IsARPop) { 6203 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6204 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6205 6206 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6207 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6208 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6209 6210 if (!IsARPop && ListContainsSP) 6211 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6212 "SP may not be in the register list"); 6213 else if (ListContainsPC && ListContainsLR) 6214 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6215 "PC and LR may not be in the register list simultaneously"); 6216 return false; 6217 } 6218 6219 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6220 const OperandVector &Operands, 6221 unsigned ListNo) { 6222 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6223 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6224 6225 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6226 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6227 6228 if (ListContainsSP && ListContainsPC) 6229 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6230 "SP and PC may not be in the register list"); 6231 else if (ListContainsSP) 6232 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6233 "SP may not be in the register list"); 6234 else if (ListContainsPC) 6235 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6236 "PC may not be in the register list"); 6237 return false; 6238 } 6239 6240 // FIXME: We would really like to be able to tablegen'erate this. 6241 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6242 const OperandVector &Operands) { 6243 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6244 SMLoc Loc = Operands[0]->getStartLoc(); 6245 6246 // Check the IT block state first. 6247 // NOTE: BKPT and HLT instructions have the interesting property of being 6248 // allowed in IT blocks, but not being predicable. They just always execute. 6249 if (inITBlock() && !instIsBreakpoint(Inst)) { 6250 // The instruction must be predicable. 6251 if (!MCID.isPredicable()) 6252 return Error(Loc, "instructions in IT block must be predicable"); 6253 ARMCC::CondCodes Cond = ARMCC::CondCodes( 6254 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 6255 if (Cond != currentITCond()) { 6256 // Find the condition code Operand to get its SMLoc information. 6257 SMLoc CondLoc; 6258 for (unsigned I = 1; I < Operands.size(); ++I) 6259 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6260 CondLoc = Operands[I]->getStartLoc(); 6261 return Error(CondLoc, "incorrect condition in IT block; got '" + 6262 StringRef(ARMCondCodeToString(Cond)) + 6263 "', but expected '" + 6264 ARMCondCodeToString(currentITCond()) + "'"); 6265 } 6266 // Check for non-'al' condition codes outside of the IT block. 6267 } else if (isThumbTwo() && MCID.isPredicable() && 6268 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6269 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6270 Inst.getOpcode() != ARM::t2Bcc) { 6271 return Error(Loc, "predicated instructions must be in IT block"); 6272 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6273 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6274 ARMCC::AL) { 6275 return Warning(Loc, "predicated instructions should be in IT block"); 6276 } 6277 6278 // PC-setting instructions in an IT block, but not the last instruction of 6279 // the block, are UNPREDICTABLE. 6280 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6281 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6282 } 6283 6284 const unsigned Opcode = Inst.getOpcode(); 6285 switch (Opcode) { 6286 case ARM::LDRD: 6287 case ARM::LDRD_PRE: 6288 case ARM::LDRD_POST: { 6289 const unsigned RtReg = Inst.getOperand(0).getReg(); 6290 6291 // Rt can't be R14. 6292 if (RtReg == ARM::LR) 6293 return Error(Operands[3]->getStartLoc(), 6294 "Rt can't be R14"); 6295 6296 const unsigned Rt = MRI->getEncodingValue(RtReg); 6297 // Rt must be even-numbered. 6298 if ((Rt & 1) == 1) 6299 return Error(Operands[3]->getStartLoc(), 6300 "Rt must be even-numbered"); 6301 6302 // Rt2 must be Rt + 1. 6303 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6304 if (Rt2 != Rt + 1) 6305 return Error(Operands[3]->getStartLoc(), 6306 "destination operands must be sequential"); 6307 6308 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6309 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6310 // For addressing modes with writeback, the base register needs to be 6311 // different from the destination registers. 6312 if (Rn == Rt || Rn == Rt2) 6313 return Error(Operands[3]->getStartLoc(), 6314 "base register needs to be different from destination " 6315 "registers"); 6316 } 6317 6318 return false; 6319 } 6320 case ARM::t2LDRDi8: 6321 case ARM::t2LDRD_PRE: 6322 case ARM::t2LDRD_POST: { 6323 // Rt2 must be different from Rt. 6324 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6325 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6326 if (Rt2 == Rt) 6327 return Error(Operands[3]->getStartLoc(), 6328 "destination operands can't be identical"); 6329 return false; 6330 } 6331 case ARM::t2BXJ: { 6332 const unsigned RmReg = Inst.getOperand(0).getReg(); 6333 // Rm = SP is no longer unpredictable in v8-A 6334 if (RmReg == ARM::SP && !hasV8Ops()) 6335 return Error(Operands[2]->getStartLoc(), 6336 "r13 (SP) is an unpredictable operand to BXJ"); 6337 return false; 6338 } 6339 case ARM::STRD: { 6340 // Rt2 must be Rt + 1. 6341 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6342 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6343 if (Rt2 != Rt + 1) 6344 return Error(Operands[3]->getStartLoc(), 6345 "source operands must be sequential"); 6346 return false; 6347 } 6348 case ARM::STRD_PRE: 6349 case ARM::STRD_POST: { 6350 // Rt2 must be Rt + 1. 6351 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6352 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6353 if (Rt2 != Rt + 1) 6354 return Error(Operands[3]->getStartLoc(), 6355 "source operands must be sequential"); 6356 return false; 6357 } 6358 case ARM::STR_PRE_IMM: 6359 case ARM::STR_PRE_REG: 6360 case ARM::STR_POST_IMM: 6361 case ARM::STR_POST_REG: 6362 case ARM::STRH_PRE: 6363 case ARM::STRH_POST: 6364 case ARM::STRB_PRE_IMM: 6365 case ARM::STRB_PRE_REG: 6366 case ARM::STRB_POST_IMM: 6367 case ARM::STRB_POST_REG: { 6368 // Rt must be different from Rn. 6369 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6370 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6371 6372 if (Rt == Rn) 6373 return Error(Operands[3]->getStartLoc(), 6374 "source register and base register can't be identical"); 6375 return false; 6376 } 6377 case ARM::LDR_PRE_IMM: 6378 case ARM::LDR_PRE_REG: 6379 case ARM::LDR_POST_IMM: 6380 case ARM::LDR_POST_REG: 6381 case ARM::LDRH_PRE: 6382 case ARM::LDRH_POST: 6383 case ARM::LDRSH_PRE: 6384 case ARM::LDRSH_POST: 6385 case ARM::LDRB_PRE_IMM: 6386 case ARM::LDRB_PRE_REG: 6387 case ARM::LDRB_POST_IMM: 6388 case ARM::LDRB_POST_REG: 6389 case ARM::LDRSB_PRE: 6390 case ARM::LDRSB_POST: { 6391 // Rt must be different from Rn. 6392 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6393 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6394 6395 if (Rt == Rn) 6396 return Error(Operands[3]->getStartLoc(), 6397 "destination register and base register can't be identical"); 6398 return false; 6399 } 6400 case ARM::SBFX: 6401 case ARM::UBFX: { 6402 // Width must be in range [1, 32-lsb]. 6403 unsigned LSB = Inst.getOperand(2).getImm(); 6404 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6405 if (Widthm1 >= 32 - LSB) 6406 return Error(Operands[5]->getStartLoc(), 6407 "bitfield width must be in range [1,32-lsb]"); 6408 return false; 6409 } 6410 // Notionally handles ARM::tLDMIA_UPD too. 6411 case ARM::tLDMIA: { 6412 // If we're parsing Thumb2, the .w variant is available and handles 6413 // most cases that are normally illegal for a Thumb1 LDM instruction. 6414 // We'll make the transformation in processInstruction() if necessary. 6415 // 6416 // Thumb LDM instructions are writeback iff the base register is not 6417 // in the register list. 6418 unsigned Rn = Inst.getOperand(0).getReg(); 6419 bool HasWritebackToken = 6420 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6421 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6422 bool ListContainsBase; 6423 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6424 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6425 "registers must be in range r0-r7"); 6426 // If we should have writeback, then there should be a '!' token. 6427 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6428 return Error(Operands[2]->getStartLoc(), 6429 "writeback operator '!' expected"); 6430 // If we should not have writeback, there must not be a '!'. This is 6431 // true even for the 32-bit wide encodings. 6432 if (ListContainsBase && HasWritebackToken) 6433 return Error(Operands[3]->getStartLoc(), 6434 "writeback operator '!' not allowed when base register " 6435 "in register list"); 6436 6437 if (validatetLDMRegList(Inst, Operands, 3)) 6438 return true; 6439 break; 6440 } 6441 case ARM::LDMIA_UPD: 6442 case ARM::LDMDB_UPD: 6443 case ARM::LDMIB_UPD: 6444 case ARM::LDMDA_UPD: 6445 // ARM variants loading and updating the same register are only officially 6446 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6447 if (!hasV7Ops()) 6448 break; 6449 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6450 return Error(Operands.back()->getStartLoc(), 6451 "writeback register not allowed in register list"); 6452 break; 6453 case ARM::t2LDMIA: 6454 case ARM::t2LDMDB: 6455 if (validatetLDMRegList(Inst, Operands, 3)) 6456 return true; 6457 break; 6458 case ARM::t2STMIA: 6459 case ARM::t2STMDB: 6460 if (validatetSTMRegList(Inst, Operands, 3)) 6461 return true; 6462 break; 6463 case ARM::t2LDMIA_UPD: 6464 case ARM::t2LDMDB_UPD: 6465 case ARM::t2STMIA_UPD: 6466 case ARM::t2STMDB_UPD: 6467 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6468 return Error(Operands.back()->getStartLoc(), 6469 "writeback register not allowed in register list"); 6470 6471 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6472 if (validatetLDMRegList(Inst, Operands, 3)) 6473 return true; 6474 } else { 6475 if (validatetSTMRegList(Inst, Operands, 3)) 6476 return true; 6477 } 6478 break; 6479 6480 case ARM::sysLDMIA_UPD: 6481 case ARM::sysLDMDA_UPD: 6482 case ARM::sysLDMDB_UPD: 6483 case ARM::sysLDMIB_UPD: 6484 if (!listContainsReg(Inst, 3, ARM::PC)) 6485 return Error(Operands[4]->getStartLoc(), 6486 "writeback register only allowed on system LDM " 6487 "if PC in register-list"); 6488 break; 6489 case ARM::sysSTMIA_UPD: 6490 case ARM::sysSTMDA_UPD: 6491 case ARM::sysSTMDB_UPD: 6492 case ARM::sysSTMIB_UPD: 6493 return Error(Operands[2]->getStartLoc(), 6494 "system STM cannot have writeback register"); 6495 case ARM::tMUL: 6496 // The second source operand must be the same register as the destination 6497 // operand. 6498 // 6499 // In this case, we must directly check the parsed operands because the 6500 // cvtThumbMultiply() function is written in such a way that it guarantees 6501 // this first statement is always true for the new Inst. Essentially, the 6502 // destination is unconditionally copied into the second source operand 6503 // without checking to see if it matches what we actually parsed. 6504 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6505 ((ARMOperand &)*Operands[5]).getReg()) && 6506 (((ARMOperand &)*Operands[3]).getReg() != 6507 ((ARMOperand &)*Operands[4]).getReg())) { 6508 return Error(Operands[3]->getStartLoc(), 6509 "destination register must match source register"); 6510 } 6511 break; 6512 6513 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6514 // so only issue a diagnostic for thumb1. The instructions will be 6515 // switched to the t2 encodings in processInstruction() if necessary. 6516 case ARM::tPOP: { 6517 bool ListContainsBase; 6518 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6519 !isThumbTwo()) 6520 return Error(Operands[2]->getStartLoc(), 6521 "registers must be in range r0-r7 or pc"); 6522 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6523 return true; 6524 break; 6525 } 6526 case ARM::tPUSH: { 6527 bool ListContainsBase; 6528 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6529 !isThumbTwo()) 6530 return Error(Operands[2]->getStartLoc(), 6531 "registers must be in range r0-r7 or lr"); 6532 if (validatetSTMRegList(Inst, Operands, 2)) 6533 return true; 6534 break; 6535 } 6536 case ARM::tSTMIA_UPD: { 6537 bool ListContainsBase, InvalidLowList; 6538 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6539 0, ListContainsBase); 6540 if (InvalidLowList && !isThumbTwo()) 6541 return Error(Operands[4]->getStartLoc(), 6542 "registers must be in range r0-r7"); 6543 6544 // This would be converted to a 32-bit stm, but that's not valid if the 6545 // writeback register is in the list. 6546 if (InvalidLowList && ListContainsBase) 6547 return Error(Operands[4]->getStartLoc(), 6548 "writeback operator '!' not allowed when base register " 6549 "in register list"); 6550 6551 if (validatetSTMRegList(Inst, Operands, 4)) 6552 return true; 6553 break; 6554 } 6555 case ARM::tADDrSP: 6556 // If the non-SP source operand and the destination operand are not the 6557 // same, we need thumb2 (for the wide encoding), or we have an error. 6558 if (!isThumbTwo() && 6559 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6560 return Error(Operands[4]->getStartLoc(), 6561 "source register must be the same as destination"); 6562 } 6563 break; 6564 6565 // Final range checking for Thumb unconditional branch instructions. 6566 case ARM::tB: 6567 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6568 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6569 break; 6570 case ARM::t2B: { 6571 int op = (Operands[2]->isImm()) ? 2 : 3; 6572 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6573 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6574 break; 6575 } 6576 // Final range checking for Thumb conditional branch instructions. 6577 case ARM::tBcc: 6578 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6579 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6580 break; 6581 case ARM::t2Bcc: { 6582 int Op = (Operands[2]->isImm()) ? 2 : 3; 6583 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6584 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6585 break; 6586 } 6587 case ARM::tCBZ: 6588 case ARM::tCBNZ: { 6589 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6590 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6591 break; 6592 } 6593 case ARM::MOVi16: 6594 case ARM::MOVTi16: 6595 case ARM::t2MOVi16: 6596 case ARM::t2MOVTi16: 6597 { 6598 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6599 // especially when we turn it into a movw and the expression <symbol> does 6600 // not have a :lower16: or :upper16 as part of the expression. We don't 6601 // want the behavior of silently truncating, which can be unexpected and 6602 // lead to bugs that are difficult to find since this is an easy mistake 6603 // to make. 6604 int i = (Operands[3]->isImm()) ? 3 : 4; 6605 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6606 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6607 if (CE) break; 6608 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6609 if (!E) break; 6610 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6611 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6612 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6613 return Error( 6614 Op.getStartLoc(), 6615 "immediate expression for mov requires :lower16: or :upper16"); 6616 break; 6617 } 6618 case ARM::HINT: 6619 case ARM::t2HINT: 6620 if (hasRAS()) { 6621 // ESB is not predicable (pred must be AL) 6622 unsigned Imm8 = Inst.getOperand(0).getImm(); 6623 unsigned Pred = Inst.getOperand(1).getImm(); 6624 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6625 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6626 "predicable, but condition " 6627 "code specified"); 6628 } 6629 // Without the RAS extension, this behaves as any other unallocated hint. 6630 break; 6631 } 6632 6633 return false; 6634 } 6635 6636 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6637 switch(Opc) { 6638 default: llvm_unreachable("unexpected opcode!"); 6639 // VST1LN 6640 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6641 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6642 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6643 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6644 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6645 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6646 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6647 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6648 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6649 6650 // VST2LN 6651 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6652 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6653 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6654 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6655 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6656 6657 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6658 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6659 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6660 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6661 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6662 6663 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6664 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6665 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6666 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6667 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6668 6669 // VST3LN 6670 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6671 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6672 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6673 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6674 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6675 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6676 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6677 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6678 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6679 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6680 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6681 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6682 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6683 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6684 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6685 6686 // VST3 6687 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6688 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6689 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6690 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6691 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6692 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6693 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6694 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6695 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6696 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6697 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6698 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6699 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6700 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6701 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6702 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6703 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6704 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6705 6706 // VST4LN 6707 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6708 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6709 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6710 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6711 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6712 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6713 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6714 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6715 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6716 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6717 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6718 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6719 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6720 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6721 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6722 6723 // VST4 6724 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6725 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6726 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6727 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6728 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6729 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6730 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6731 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6732 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6733 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6734 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6735 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6736 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6737 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6738 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6739 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6740 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6741 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6742 } 6743 } 6744 6745 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6746 switch(Opc) { 6747 default: llvm_unreachable("unexpected opcode!"); 6748 // VLD1LN 6749 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6750 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6751 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6752 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6753 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6754 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6755 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6756 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6757 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6758 6759 // VLD2LN 6760 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6761 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6762 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6763 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6764 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6765 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6766 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6767 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6768 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6769 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6770 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6771 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6772 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6773 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6774 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6775 6776 // VLD3DUP 6777 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6778 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6779 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6780 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6781 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6782 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6783 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6784 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6785 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6786 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6787 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6788 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6789 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6790 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6791 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6792 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6793 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6794 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6795 6796 // VLD3LN 6797 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6798 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6799 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6800 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6801 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6802 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6803 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6804 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6805 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6806 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6807 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6808 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6809 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6810 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6811 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6812 6813 // VLD3 6814 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6815 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6816 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6817 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6818 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6819 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6820 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6821 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6822 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6823 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6824 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6825 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6826 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6827 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6828 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6829 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6830 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6831 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6832 6833 // VLD4LN 6834 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6835 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6836 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6837 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6838 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6839 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6840 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6841 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6842 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6843 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6844 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6845 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6846 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6847 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6848 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6849 6850 // VLD4DUP 6851 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6852 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6853 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6854 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6855 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6856 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6857 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6858 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6859 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6860 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6861 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6862 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6863 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6864 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6865 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6866 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6867 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6868 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6869 6870 // VLD4 6871 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6872 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6873 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6874 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6875 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6876 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6877 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6878 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6879 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6880 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6881 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6882 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6883 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6884 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6885 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6886 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6887 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6888 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6889 } 6890 } 6891 6892 bool ARMAsmParser::processInstruction(MCInst &Inst, 6893 const OperandVector &Operands, 6894 MCStreamer &Out) { 6895 // Check if we have the wide qualifier, because if it's present we 6896 // must avoid selecting a 16-bit thumb instruction. 6897 bool HasWideQualifier = false; 6898 for (auto &Op : Operands) { 6899 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 6900 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 6901 HasWideQualifier = true; 6902 break; 6903 } 6904 } 6905 6906 switch (Inst.getOpcode()) { 6907 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6908 case ARM::LDRT_POST: 6909 case ARM::LDRBT_POST: { 6910 const unsigned Opcode = 6911 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6912 : ARM::LDRBT_POST_IMM; 6913 MCInst TmpInst; 6914 TmpInst.setOpcode(Opcode); 6915 TmpInst.addOperand(Inst.getOperand(0)); 6916 TmpInst.addOperand(Inst.getOperand(1)); 6917 TmpInst.addOperand(Inst.getOperand(1)); 6918 TmpInst.addOperand(MCOperand::createReg(0)); 6919 TmpInst.addOperand(MCOperand::createImm(0)); 6920 TmpInst.addOperand(Inst.getOperand(2)); 6921 TmpInst.addOperand(Inst.getOperand(3)); 6922 Inst = TmpInst; 6923 return true; 6924 } 6925 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6926 case ARM::STRT_POST: 6927 case ARM::STRBT_POST: { 6928 const unsigned Opcode = 6929 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6930 : ARM::STRBT_POST_IMM; 6931 MCInst TmpInst; 6932 TmpInst.setOpcode(Opcode); 6933 TmpInst.addOperand(Inst.getOperand(1)); 6934 TmpInst.addOperand(Inst.getOperand(0)); 6935 TmpInst.addOperand(Inst.getOperand(1)); 6936 TmpInst.addOperand(MCOperand::createReg(0)); 6937 TmpInst.addOperand(MCOperand::createImm(0)); 6938 TmpInst.addOperand(Inst.getOperand(2)); 6939 TmpInst.addOperand(Inst.getOperand(3)); 6940 Inst = TmpInst; 6941 return true; 6942 } 6943 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6944 case ARM::ADDri: { 6945 if (Inst.getOperand(1).getReg() != ARM::PC || 6946 Inst.getOperand(5).getReg() != 0 || 6947 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6948 return false; 6949 MCInst TmpInst; 6950 TmpInst.setOpcode(ARM::ADR); 6951 TmpInst.addOperand(Inst.getOperand(0)); 6952 if (Inst.getOperand(2).isImm()) { 6953 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6954 // before passing it to the ADR instruction. 6955 unsigned Enc = Inst.getOperand(2).getImm(); 6956 TmpInst.addOperand(MCOperand::createImm( 6957 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6958 } else { 6959 // Turn PC-relative expression into absolute expression. 6960 // Reading PC provides the start of the current instruction + 8 and 6961 // the transform to adr is biased by that. 6962 MCSymbol *Dot = getContext().createTempSymbol(); 6963 Out.EmitLabel(Dot); 6964 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6965 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6966 MCSymbolRefExpr::VK_None, 6967 getContext()); 6968 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6969 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6970 getContext()); 6971 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6972 getContext()); 6973 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6974 } 6975 TmpInst.addOperand(Inst.getOperand(3)); 6976 TmpInst.addOperand(Inst.getOperand(4)); 6977 Inst = TmpInst; 6978 return true; 6979 } 6980 // Aliases for alternate PC+imm syntax of LDR instructions. 6981 case ARM::t2LDRpcrel: 6982 // Select the narrow version if the immediate will fit. 6983 if (Inst.getOperand(1).getImm() > 0 && 6984 Inst.getOperand(1).getImm() <= 0xff && 6985 !HasWideQualifier) 6986 Inst.setOpcode(ARM::tLDRpci); 6987 else 6988 Inst.setOpcode(ARM::t2LDRpci); 6989 return true; 6990 case ARM::t2LDRBpcrel: 6991 Inst.setOpcode(ARM::t2LDRBpci); 6992 return true; 6993 case ARM::t2LDRHpcrel: 6994 Inst.setOpcode(ARM::t2LDRHpci); 6995 return true; 6996 case ARM::t2LDRSBpcrel: 6997 Inst.setOpcode(ARM::t2LDRSBpci); 6998 return true; 6999 case ARM::t2LDRSHpcrel: 7000 Inst.setOpcode(ARM::t2LDRSHpci); 7001 return true; 7002 case ARM::LDRConstPool: 7003 case ARM::tLDRConstPool: 7004 case ARM::t2LDRConstPool: { 7005 // Pseudo instruction ldr rt, =immediate is converted to a 7006 // MOV rt, immediate if immediate is known and representable 7007 // otherwise we create a constant pool entry that we load from. 7008 MCInst TmpInst; 7009 if (Inst.getOpcode() == ARM::LDRConstPool) 7010 TmpInst.setOpcode(ARM::LDRi12); 7011 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7012 TmpInst.setOpcode(ARM::tLDRpci); 7013 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7014 TmpInst.setOpcode(ARM::t2LDRpci); 7015 const ARMOperand &PoolOperand = 7016 (HasWideQualifier ? 7017 static_cast<ARMOperand &>(*Operands[4]) : 7018 static_cast<ARMOperand &>(*Operands[3])); 7019 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7020 // If SubExprVal is a constant we may be able to use a MOV 7021 if (isa<MCConstantExpr>(SubExprVal) && 7022 Inst.getOperand(0).getReg() != ARM::PC && 7023 Inst.getOperand(0).getReg() != ARM::SP) { 7024 int64_t Value = 7025 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7026 bool UseMov = true; 7027 bool MovHasS = true; 7028 if (Inst.getOpcode() == ARM::LDRConstPool) { 7029 // ARM Constant 7030 if (ARM_AM::getSOImmVal(Value) != -1) { 7031 Value = ARM_AM::getSOImmVal(Value); 7032 TmpInst.setOpcode(ARM::MOVi); 7033 } 7034 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7035 Value = ARM_AM::getSOImmVal(~Value); 7036 TmpInst.setOpcode(ARM::MVNi); 7037 } 7038 else if (hasV6T2Ops() && 7039 Value >=0 && Value < 65536) { 7040 TmpInst.setOpcode(ARM::MOVi16); 7041 MovHasS = false; 7042 } 7043 else 7044 UseMov = false; 7045 } 7046 else { 7047 // Thumb/Thumb2 Constant 7048 if (hasThumb2() && 7049 ARM_AM::getT2SOImmVal(Value) != -1) 7050 TmpInst.setOpcode(ARM::t2MOVi); 7051 else if (hasThumb2() && 7052 ARM_AM::getT2SOImmVal(~Value) != -1) { 7053 TmpInst.setOpcode(ARM::t2MVNi); 7054 Value = ~Value; 7055 } 7056 else if (hasV8MBaseline() && 7057 Value >=0 && Value < 65536) { 7058 TmpInst.setOpcode(ARM::t2MOVi16); 7059 MovHasS = false; 7060 } 7061 else 7062 UseMov = false; 7063 } 7064 if (UseMov) { 7065 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7066 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7067 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7068 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7069 if (MovHasS) 7070 TmpInst.addOperand(MCOperand::createReg(0)); // S 7071 Inst = TmpInst; 7072 return true; 7073 } 7074 } 7075 // No opportunity to use MOV/MVN create constant pool 7076 const MCExpr *CPLoc = 7077 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7078 PoolOperand.getStartLoc()); 7079 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7080 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7081 if (TmpInst.getOpcode() == ARM::LDRi12) 7082 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7083 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7084 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7085 Inst = TmpInst; 7086 return true; 7087 } 7088 // Handle NEON VST complex aliases. 7089 case ARM::VST1LNdWB_register_Asm_8: 7090 case ARM::VST1LNdWB_register_Asm_16: 7091 case ARM::VST1LNdWB_register_Asm_32: { 7092 MCInst TmpInst; 7093 // Shuffle the operands around so the lane index operand is in the 7094 // right place. 7095 unsigned Spacing; 7096 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7097 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7098 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7099 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7100 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7101 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7102 TmpInst.addOperand(Inst.getOperand(1)); // lane 7103 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7104 TmpInst.addOperand(Inst.getOperand(6)); 7105 Inst = TmpInst; 7106 return true; 7107 } 7108 7109 case ARM::VST2LNdWB_register_Asm_8: 7110 case ARM::VST2LNdWB_register_Asm_16: 7111 case ARM::VST2LNdWB_register_Asm_32: 7112 case ARM::VST2LNqWB_register_Asm_16: 7113 case ARM::VST2LNqWB_register_Asm_32: { 7114 MCInst TmpInst; 7115 // Shuffle the operands around so the lane index operand is in the 7116 // right place. 7117 unsigned Spacing; 7118 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7119 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7120 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7121 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7122 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7123 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7124 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7125 Spacing)); 7126 TmpInst.addOperand(Inst.getOperand(1)); // lane 7127 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7128 TmpInst.addOperand(Inst.getOperand(6)); 7129 Inst = TmpInst; 7130 return true; 7131 } 7132 7133 case ARM::VST3LNdWB_register_Asm_8: 7134 case ARM::VST3LNdWB_register_Asm_16: 7135 case ARM::VST3LNdWB_register_Asm_32: 7136 case ARM::VST3LNqWB_register_Asm_16: 7137 case ARM::VST3LNqWB_register_Asm_32: { 7138 MCInst TmpInst; 7139 // Shuffle the operands around so the lane index operand is in the 7140 // right place. 7141 unsigned Spacing; 7142 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7143 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7144 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7145 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7146 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7147 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7148 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7149 Spacing)); 7150 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7151 Spacing * 2)); 7152 TmpInst.addOperand(Inst.getOperand(1)); // lane 7153 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7154 TmpInst.addOperand(Inst.getOperand(6)); 7155 Inst = TmpInst; 7156 return true; 7157 } 7158 7159 case ARM::VST4LNdWB_register_Asm_8: 7160 case ARM::VST4LNdWB_register_Asm_16: 7161 case ARM::VST4LNdWB_register_Asm_32: 7162 case ARM::VST4LNqWB_register_Asm_16: 7163 case ARM::VST4LNqWB_register_Asm_32: { 7164 MCInst TmpInst; 7165 // Shuffle the operands around so the lane index operand is in the 7166 // right place. 7167 unsigned Spacing; 7168 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7169 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7170 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7171 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7172 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7173 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7174 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7175 Spacing)); 7176 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7177 Spacing * 2)); 7178 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7179 Spacing * 3)); 7180 TmpInst.addOperand(Inst.getOperand(1)); // lane 7181 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7182 TmpInst.addOperand(Inst.getOperand(6)); 7183 Inst = TmpInst; 7184 return true; 7185 } 7186 7187 case ARM::VST1LNdWB_fixed_Asm_8: 7188 case ARM::VST1LNdWB_fixed_Asm_16: 7189 case ARM::VST1LNdWB_fixed_Asm_32: { 7190 MCInst TmpInst; 7191 // Shuffle the operands around so the lane index operand is in the 7192 // right place. 7193 unsigned Spacing; 7194 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7195 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7196 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7197 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7198 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7199 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7200 TmpInst.addOperand(Inst.getOperand(1)); // lane 7201 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7202 TmpInst.addOperand(Inst.getOperand(5)); 7203 Inst = TmpInst; 7204 return true; 7205 } 7206 7207 case ARM::VST2LNdWB_fixed_Asm_8: 7208 case ARM::VST2LNdWB_fixed_Asm_16: 7209 case ARM::VST2LNdWB_fixed_Asm_32: 7210 case ARM::VST2LNqWB_fixed_Asm_16: 7211 case ARM::VST2LNqWB_fixed_Asm_32: { 7212 MCInst TmpInst; 7213 // Shuffle the operands around so the lane index operand is in the 7214 // right place. 7215 unsigned Spacing; 7216 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7217 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7218 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7219 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7220 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7221 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7222 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7223 Spacing)); 7224 TmpInst.addOperand(Inst.getOperand(1)); // lane 7225 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7226 TmpInst.addOperand(Inst.getOperand(5)); 7227 Inst = TmpInst; 7228 return true; 7229 } 7230 7231 case ARM::VST3LNdWB_fixed_Asm_8: 7232 case ARM::VST3LNdWB_fixed_Asm_16: 7233 case ARM::VST3LNdWB_fixed_Asm_32: 7234 case ARM::VST3LNqWB_fixed_Asm_16: 7235 case ARM::VST3LNqWB_fixed_Asm_32: { 7236 MCInst TmpInst; 7237 // Shuffle the operands around so the lane index operand is in the 7238 // right place. 7239 unsigned Spacing; 7240 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7241 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7242 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7243 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7244 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7245 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7246 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7247 Spacing)); 7248 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7249 Spacing * 2)); 7250 TmpInst.addOperand(Inst.getOperand(1)); // lane 7251 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7252 TmpInst.addOperand(Inst.getOperand(5)); 7253 Inst = TmpInst; 7254 return true; 7255 } 7256 7257 case ARM::VST4LNdWB_fixed_Asm_8: 7258 case ARM::VST4LNdWB_fixed_Asm_16: 7259 case ARM::VST4LNdWB_fixed_Asm_32: 7260 case ARM::VST4LNqWB_fixed_Asm_16: 7261 case ARM::VST4LNqWB_fixed_Asm_32: { 7262 MCInst TmpInst; 7263 // Shuffle the operands around so the lane index operand is in the 7264 // right place. 7265 unsigned Spacing; 7266 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7267 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7268 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7269 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7270 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7271 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7272 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7273 Spacing)); 7274 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7275 Spacing * 2)); 7276 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7277 Spacing * 3)); 7278 TmpInst.addOperand(Inst.getOperand(1)); // lane 7279 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7280 TmpInst.addOperand(Inst.getOperand(5)); 7281 Inst = TmpInst; 7282 return true; 7283 } 7284 7285 case ARM::VST1LNdAsm_8: 7286 case ARM::VST1LNdAsm_16: 7287 case ARM::VST1LNdAsm_32: { 7288 MCInst TmpInst; 7289 // Shuffle the operands around so the lane index operand is in the 7290 // right place. 7291 unsigned Spacing; 7292 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7293 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7294 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7295 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7296 TmpInst.addOperand(Inst.getOperand(1)); // lane 7297 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7298 TmpInst.addOperand(Inst.getOperand(5)); 7299 Inst = TmpInst; 7300 return true; 7301 } 7302 7303 case ARM::VST2LNdAsm_8: 7304 case ARM::VST2LNdAsm_16: 7305 case ARM::VST2LNdAsm_32: 7306 case ARM::VST2LNqAsm_16: 7307 case ARM::VST2LNqAsm_32: { 7308 MCInst TmpInst; 7309 // Shuffle the operands around so the lane index operand is in the 7310 // right place. 7311 unsigned Spacing; 7312 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7313 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7314 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7315 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7317 Spacing)); 7318 TmpInst.addOperand(Inst.getOperand(1)); // lane 7319 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7320 TmpInst.addOperand(Inst.getOperand(5)); 7321 Inst = TmpInst; 7322 return true; 7323 } 7324 7325 case ARM::VST3LNdAsm_8: 7326 case ARM::VST3LNdAsm_16: 7327 case ARM::VST3LNdAsm_32: 7328 case ARM::VST3LNqAsm_16: 7329 case ARM::VST3LNqAsm_32: { 7330 MCInst TmpInst; 7331 // Shuffle the operands around so the lane index operand is in the 7332 // right place. 7333 unsigned Spacing; 7334 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7335 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7336 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7339 Spacing)); 7340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7341 Spacing * 2)); 7342 TmpInst.addOperand(Inst.getOperand(1)); // lane 7343 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7344 TmpInst.addOperand(Inst.getOperand(5)); 7345 Inst = TmpInst; 7346 return true; 7347 } 7348 7349 case ARM::VST4LNdAsm_8: 7350 case ARM::VST4LNdAsm_16: 7351 case ARM::VST4LNdAsm_32: 7352 case ARM::VST4LNqAsm_16: 7353 case ARM::VST4LNqAsm_32: { 7354 MCInst TmpInst; 7355 // Shuffle the operands around so the lane index operand is in the 7356 // right place. 7357 unsigned Spacing; 7358 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7359 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7360 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7361 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7362 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7363 Spacing)); 7364 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7365 Spacing * 2)); 7366 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7367 Spacing * 3)); 7368 TmpInst.addOperand(Inst.getOperand(1)); // lane 7369 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7370 TmpInst.addOperand(Inst.getOperand(5)); 7371 Inst = TmpInst; 7372 return true; 7373 } 7374 7375 // Handle NEON VLD complex aliases. 7376 case ARM::VLD1LNdWB_register_Asm_8: 7377 case ARM::VLD1LNdWB_register_Asm_16: 7378 case ARM::VLD1LNdWB_register_Asm_32: { 7379 MCInst TmpInst; 7380 // Shuffle the operands around so the lane index operand is in the 7381 // right place. 7382 unsigned Spacing; 7383 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7384 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7385 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7386 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7387 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7388 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7389 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7390 TmpInst.addOperand(Inst.getOperand(1)); // lane 7391 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7392 TmpInst.addOperand(Inst.getOperand(6)); 7393 Inst = TmpInst; 7394 return true; 7395 } 7396 7397 case ARM::VLD2LNdWB_register_Asm_8: 7398 case ARM::VLD2LNdWB_register_Asm_16: 7399 case ARM::VLD2LNdWB_register_Asm_32: 7400 case ARM::VLD2LNqWB_register_Asm_16: 7401 case ARM::VLD2LNqWB_register_Asm_32: { 7402 MCInst TmpInst; 7403 // Shuffle the operands around so the lane index operand is in the 7404 // right place. 7405 unsigned Spacing; 7406 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7407 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7408 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7409 Spacing)); 7410 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7411 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7412 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7413 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7414 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7415 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7416 Spacing)); 7417 TmpInst.addOperand(Inst.getOperand(1)); // lane 7418 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7419 TmpInst.addOperand(Inst.getOperand(6)); 7420 Inst = TmpInst; 7421 return true; 7422 } 7423 7424 case ARM::VLD3LNdWB_register_Asm_8: 7425 case ARM::VLD3LNdWB_register_Asm_16: 7426 case ARM::VLD3LNdWB_register_Asm_32: 7427 case ARM::VLD3LNqWB_register_Asm_16: 7428 case ARM::VLD3LNqWB_register_Asm_32: { 7429 MCInst TmpInst; 7430 // Shuffle the operands around so the lane index operand is in the 7431 // right place. 7432 unsigned Spacing; 7433 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7434 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7435 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7436 Spacing)); 7437 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7438 Spacing * 2)); 7439 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7440 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7441 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7442 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7443 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7444 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7445 Spacing)); 7446 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7447 Spacing * 2)); 7448 TmpInst.addOperand(Inst.getOperand(1)); // lane 7449 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7450 TmpInst.addOperand(Inst.getOperand(6)); 7451 Inst = TmpInst; 7452 return true; 7453 } 7454 7455 case ARM::VLD4LNdWB_register_Asm_8: 7456 case ARM::VLD4LNdWB_register_Asm_16: 7457 case ARM::VLD4LNdWB_register_Asm_32: 7458 case ARM::VLD4LNqWB_register_Asm_16: 7459 case ARM::VLD4LNqWB_register_Asm_32: { 7460 MCInst TmpInst; 7461 // Shuffle the operands around so the lane index operand is in the 7462 // right place. 7463 unsigned Spacing; 7464 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7465 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7466 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7467 Spacing)); 7468 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7469 Spacing * 2)); 7470 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7471 Spacing * 3)); 7472 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7473 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7474 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7475 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7476 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7477 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7478 Spacing)); 7479 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7480 Spacing * 2)); 7481 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7482 Spacing * 3)); 7483 TmpInst.addOperand(Inst.getOperand(1)); // lane 7484 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7485 TmpInst.addOperand(Inst.getOperand(6)); 7486 Inst = TmpInst; 7487 return true; 7488 } 7489 7490 case ARM::VLD1LNdWB_fixed_Asm_8: 7491 case ARM::VLD1LNdWB_fixed_Asm_16: 7492 case ARM::VLD1LNdWB_fixed_Asm_32: { 7493 MCInst TmpInst; 7494 // Shuffle the operands around so the lane index operand is in the 7495 // right place. 7496 unsigned Spacing; 7497 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7498 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7499 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7500 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7501 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7502 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7503 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7504 TmpInst.addOperand(Inst.getOperand(1)); // lane 7505 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7506 TmpInst.addOperand(Inst.getOperand(5)); 7507 Inst = TmpInst; 7508 return true; 7509 } 7510 7511 case ARM::VLD2LNdWB_fixed_Asm_8: 7512 case ARM::VLD2LNdWB_fixed_Asm_16: 7513 case ARM::VLD2LNdWB_fixed_Asm_32: 7514 case ARM::VLD2LNqWB_fixed_Asm_16: 7515 case ARM::VLD2LNqWB_fixed_Asm_32: { 7516 MCInst TmpInst; 7517 // Shuffle the operands around so the lane index operand is in the 7518 // right place. 7519 unsigned Spacing; 7520 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7521 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7522 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7523 Spacing)); 7524 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7525 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7526 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7527 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7528 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7529 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7530 Spacing)); 7531 TmpInst.addOperand(Inst.getOperand(1)); // lane 7532 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7533 TmpInst.addOperand(Inst.getOperand(5)); 7534 Inst = TmpInst; 7535 return true; 7536 } 7537 7538 case ARM::VLD3LNdWB_fixed_Asm_8: 7539 case ARM::VLD3LNdWB_fixed_Asm_16: 7540 case ARM::VLD3LNdWB_fixed_Asm_32: 7541 case ARM::VLD3LNqWB_fixed_Asm_16: 7542 case ARM::VLD3LNqWB_fixed_Asm_32: { 7543 MCInst TmpInst; 7544 // Shuffle the operands around so the lane index operand is in the 7545 // right place. 7546 unsigned Spacing; 7547 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7548 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7549 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7550 Spacing)); 7551 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7552 Spacing * 2)); 7553 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7554 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7555 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7556 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7557 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7558 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7559 Spacing)); 7560 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7561 Spacing * 2)); 7562 TmpInst.addOperand(Inst.getOperand(1)); // lane 7563 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7564 TmpInst.addOperand(Inst.getOperand(5)); 7565 Inst = TmpInst; 7566 return true; 7567 } 7568 7569 case ARM::VLD4LNdWB_fixed_Asm_8: 7570 case ARM::VLD4LNdWB_fixed_Asm_16: 7571 case ARM::VLD4LNdWB_fixed_Asm_32: 7572 case ARM::VLD4LNqWB_fixed_Asm_16: 7573 case ARM::VLD4LNqWB_fixed_Asm_32: { 7574 MCInst TmpInst; 7575 // Shuffle the operands around so the lane index operand is in the 7576 // right place. 7577 unsigned Spacing; 7578 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7579 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7580 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7581 Spacing)); 7582 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7583 Spacing * 2)); 7584 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7585 Spacing * 3)); 7586 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7587 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7588 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7589 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7590 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7591 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7592 Spacing)); 7593 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7594 Spacing * 2)); 7595 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7596 Spacing * 3)); 7597 TmpInst.addOperand(Inst.getOperand(1)); // lane 7598 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7599 TmpInst.addOperand(Inst.getOperand(5)); 7600 Inst = TmpInst; 7601 return true; 7602 } 7603 7604 case ARM::VLD1LNdAsm_8: 7605 case ARM::VLD1LNdAsm_16: 7606 case ARM::VLD1LNdAsm_32: { 7607 MCInst TmpInst; 7608 // Shuffle the operands around so the lane index operand is in the 7609 // right place. 7610 unsigned Spacing; 7611 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7612 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7613 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7614 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7615 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7616 TmpInst.addOperand(Inst.getOperand(1)); // lane 7617 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7618 TmpInst.addOperand(Inst.getOperand(5)); 7619 Inst = TmpInst; 7620 return true; 7621 } 7622 7623 case ARM::VLD2LNdAsm_8: 7624 case ARM::VLD2LNdAsm_16: 7625 case ARM::VLD2LNdAsm_32: 7626 case ARM::VLD2LNqAsm_16: 7627 case ARM::VLD2LNqAsm_32: { 7628 MCInst TmpInst; 7629 // Shuffle the operands around so the lane index operand is in the 7630 // right place. 7631 unsigned Spacing; 7632 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7633 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7634 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7635 Spacing)); 7636 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7637 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7638 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7640 Spacing)); 7641 TmpInst.addOperand(Inst.getOperand(1)); // lane 7642 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7643 TmpInst.addOperand(Inst.getOperand(5)); 7644 Inst = TmpInst; 7645 return true; 7646 } 7647 7648 case ARM::VLD3LNdAsm_8: 7649 case ARM::VLD3LNdAsm_16: 7650 case ARM::VLD3LNdAsm_32: 7651 case ARM::VLD3LNqAsm_16: 7652 case ARM::VLD3LNqAsm_32: { 7653 MCInst TmpInst; 7654 // Shuffle the operands around so the lane index operand is in the 7655 // right place. 7656 unsigned Spacing; 7657 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7658 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7659 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7660 Spacing)); 7661 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7662 Spacing * 2)); 7663 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7664 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7665 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7666 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7667 Spacing)); 7668 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7669 Spacing * 2)); 7670 TmpInst.addOperand(Inst.getOperand(1)); // lane 7671 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7672 TmpInst.addOperand(Inst.getOperand(5)); 7673 Inst = TmpInst; 7674 return true; 7675 } 7676 7677 case ARM::VLD4LNdAsm_8: 7678 case ARM::VLD4LNdAsm_16: 7679 case ARM::VLD4LNdAsm_32: 7680 case ARM::VLD4LNqAsm_16: 7681 case ARM::VLD4LNqAsm_32: { 7682 MCInst TmpInst; 7683 // Shuffle the operands around so the lane index operand is in the 7684 // right place. 7685 unsigned Spacing; 7686 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7687 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7688 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7689 Spacing)); 7690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7691 Spacing * 2)); 7692 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7693 Spacing * 3)); 7694 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7695 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7696 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7697 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7698 Spacing)); 7699 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7700 Spacing * 2)); 7701 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7702 Spacing * 3)); 7703 TmpInst.addOperand(Inst.getOperand(1)); // lane 7704 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7705 TmpInst.addOperand(Inst.getOperand(5)); 7706 Inst = TmpInst; 7707 return true; 7708 } 7709 7710 // VLD3DUP single 3-element structure to all lanes instructions. 7711 case ARM::VLD3DUPdAsm_8: 7712 case ARM::VLD3DUPdAsm_16: 7713 case ARM::VLD3DUPdAsm_32: 7714 case ARM::VLD3DUPqAsm_8: 7715 case ARM::VLD3DUPqAsm_16: 7716 case ARM::VLD3DUPqAsm_32: { 7717 MCInst TmpInst; 7718 unsigned Spacing; 7719 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7720 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7721 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7722 Spacing)); 7723 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7724 Spacing * 2)); 7725 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7726 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7727 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7728 TmpInst.addOperand(Inst.getOperand(4)); 7729 Inst = TmpInst; 7730 return true; 7731 } 7732 7733 case ARM::VLD3DUPdWB_fixed_Asm_8: 7734 case ARM::VLD3DUPdWB_fixed_Asm_16: 7735 case ARM::VLD3DUPdWB_fixed_Asm_32: 7736 case ARM::VLD3DUPqWB_fixed_Asm_8: 7737 case ARM::VLD3DUPqWB_fixed_Asm_16: 7738 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7739 MCInst TmpInst; 7740 unsigned Spacing; 7741 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7742 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7743 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7744 Spacing)); 7745 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7746 Spacing * 2)); 7747 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7748 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7749 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7750 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7751 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7752 TmpInst.addOperand(Inst.getOperand(4)); 7753 Inst = TmpInst; 7754 return true; 7755 } 7756 7757 case ARM::VLD3DUPdWB_register_Asm_8: 7758 case ARM::VLD3DUPdWB_register_Asm_16: 7759 case ARM::VLD3DUPdWB_register_Asm_32: 7760 case ARM::VLD3DUPqWB_register_Asm_8: 7761 case ARM::VLD3DUPqWB_register_Asm_16: 7762 case ARM::VLD3DUPqWB_register_Asm_32: { 7763 MCInst TmpInst; 7764 unsigned Spacing; 7765 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7766 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7767 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7768 Spacing)); 7769 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7770 Spacing * 2)); 7771 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7772 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7773 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7774 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7775 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7776 TmpInst.addOperand(Inst.getOperand(5)); 7777 Inst = TmpInst; 7778 return true; 7779 } 7780 7781 // VLD3 multiple 3-element structure instructions. 7782 case ARM::VLD3dAsm_8: 7783 case ARM::VLD3dAsm_16: 7784 case ARM::VLD3dAsm_32: 7785 case ARM::VLD3qAsm_8: 7786 case ARM::VLD3qAsm_16: 7787 case ARM::VLD3qAsm_32: { 7788 MCInst TmpInst; 7789 unsigned Spacing; 7790 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7791 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7793 Spacing)); 7794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7795 Spacing * 2)); 7796 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7797 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7798 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7799 TmpInst.addOperand(Inst.getOperand(4)); 7800 Inst = TmpInst; 7801 return true; 7802 } 7803 7804 case ARM::VLD3dWB_fixed_Asm_8: 7805 case ARM::VLD3dWB_fixed_Asm_16: 7806 case ARM::VLD3dWB_fixed_Asm_32: 7807 case ARM::VLD3qWB_fixed_Asm_8: 7808 case ARM::VLD3qWB_fixed_Asm_16: 7809 case ARM::VLD3qWB_fixed_Asm_32: { 7810 MCInst TmpInst; 7811 unsigned Spacing; 7812 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7813 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7814 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7815 Spacing)); 7816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7817 Spacing * 2)); 7818 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7819 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7820 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7821 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7822 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7823 TmpInst.addOperand(Inst.getOperand(4)); 7824 Inst = TmpInst; 7825 return true; 7826 } 7827 7828 case ARM::VLD3dWB_register_Asm_8: 7829 case ARM::VLD3dWB_register_Asm_16: 7830 case ARM::VLD3dWB_register_Asm_32: 7831 case ARM::VLD3qWB_register_Asm_8: 7832 case ARM::VLD3qWB_register_Asm_16: 7833 case ARM::VLD3qWB_register_Asm_32: { 7834 MCInst TmpInst; 7835 unsigned Spacing; 7836 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7837 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7838 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7839 Spacing)); 7840 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7841 Spacing * 2)); 7842 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7843 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7844 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7845 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7846 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7847 TmpInst.addOperand(Inst.getOperand(5)); 7848 Inst = TmpInst; 7849 return true; 7850 } 7851 7852 // VLD4DUP single 3-element structure to all lanes instructions. 7853 case ARM::VLD4DUPdAsm_8: 7854 case ARM::VLD4DUPdAsm_16: 7855 case ARM::VLD4DUPdAsm_32: 7856 case ARM::VLD4DUPqAsm_8: 7857 case ARM::VLD4DUPqAsm_16: 7858 case ARM::VLD4DUPqAsm_32: { 7859 MCInst TmpInst; 7860 unsigned Spacing; 7861 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7862 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7863 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7864 Spacing)); 7865 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7866 Spacing * 2)); 7867 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7868 Spacing * 3)); 7869 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7870 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7871 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7872 TmpInst.addOperand(Inst.getOperand(4)); 7873 Inst = TmpInst; 7874 return true; 7875 } 7876 7877 case ARM::VLD4DUPdWB_fixed_Asm_8: 7878 case ARM::VLD4DUPdWB_fixed_Asm_16: 7879 case ARM::VLD4DUPdWB_fixed_Asm_32: 7880 case ARM::VLD4DUPqWB_fixed_Asm_8: 7881 case ARM::VLD4DUPqWB_fixed_Asm_16: 7882 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7883 MCInst TmpInst; 7884 unsigned Spacing; 7885 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7886 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7887 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7888 Spacing)); 7889 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7890 Spacing * 2)); 7891 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7892 Spacing * 3)); 7893 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7894 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7895 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7896 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7897 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7898 TmpInst.addOperand(Inst.getOperand(4)); 7899 Inst = TmpInst; 7900 return true; 7901 } 7902 7903 case ARM::VLD4DUPdWB_register_Asm_8: 7904 case ARM::VLD4DUPdWB_register_Asm_16: 7905 case ARM::VLD4DUPdWB_register_Asm_32: 7906 case ARM::VLD4DUPqWB_register_Asm_8: 7907 case ARM::VLD4DUPqWB_register_Asm_16: 7908 case ARM::VLD4DUPqWB_register_Asm_32: { 7909 MCInst TmpInst; 7910 unsigned Spacing; 7911 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7912 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7913 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7914 Spacing)); 7915 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7916 Spacing * 2)); 7917 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7918 Spacing * 3)); 7919 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7920 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7921 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7922 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7923 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7924 TmpInst.addOperand(Inst.getOperand(5)); 7925 Inst = TmpInst; 7926 return true; 7927 } 7928 7929 // VLD4 multiple 4-element structure instructions. 7930 case ARM::VLD4dAsm_8: 7931 case ARM::VLD4dAsm_16: 7932 case ARM::VLD4dAsm_32: 7933 case ARM::VLD4qAsm_8: 7934 case ARM::VLD4qAsm_16: 7935 case ARM::VLD4qAsm_32: { 7936 MCInst TmpInst; 7937 unsigned Spacing; 7938 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7939 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7940 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7941 Spacing)); 7942 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7943 Spacing * 2)); 7944 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7945 Spacing * 3)); 7946 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7947 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7948 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7949 TmpInst.addOperand(Inst.getOperand(4)); 7950 Inst = TmpInst; 7951 return true; 7952 } 7953 7954 case ARM::VLD4dWB_fixed_Asm_8: 7955 case ARM::VLD4dWB_fixed_Asm_16: 7956 case ARM::VLD4dWB_fixed_Asm_32: 7957 case ARM::VLD4qWB_fixed_Asm_8: 7958 case ARM::VLD4qWB_fixed_Asm_16: 7959 case ARM::VLD4qWB_fixed_Asm_32: { 7960 MCInst TmpInst; 7961 unsigned Spacing; 7962 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7963 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7965 Spacing)); 7966 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7967 Spacing * 2)); 7968 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7969 Spacing * 3)); 7970 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7971 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7972 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7973 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7974 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7975 TmpInst.addOperand(Inst.getOperand(4)); 7976 Inst = TmpInst; 7977 return true; 7978 } 7979 7980 case ARM::VLD4dWB_register_Asm_8: 7981 case ARM::VLD4dWB_register_Asm_16: 7982 case ARM::VLD4dWB_register_Asm_32: 7983 case ARM::VLD4qWB_register_Asm_8: 7984 case ARM::VLD4qWB_register_Asm_16: 7985 case ARM::VLD4qWB_register_Asm_32: { 7986 MCInst TmpInst; 7987 unsigned Spacing; 7988 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7989 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7991 Spacing)); 7992 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7993 Spacing * 2)); 7994 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7995 Spacing * 3)); 7996 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7997 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7998 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7999 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8000 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8001 TmpInst.addOperand(Inst.getOperand(5)); 8002 Inst = TmpInst; 8003 return true; 8004 } 8005 8006 // VST3 multiple 3-element structure instructions. 8007 case ARM::VST3dAsm_8: 8008 case ARM::VST3dAsm_16: 8009 case ARM::VST3dAsm_32: 8010 case ARM::VST3qAsm_8: 8011 case ARM::VST3qAsm_16: 8012 case ARM::VST3qAsm_32: { 8013 MCInst TmpInst; 8014 unsigned Spacing; 8015 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8016 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8017 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8018 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8019 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8020 Spacing)); 8021 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8022 Spacing * 2)); 8023 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8024 TmpInst.addOperand(Inst.getOperand(4)); 8025 Inst = TmpInst; 8026 return true; 8027 } 8028 8029 case ARM::VST3dWB_fixed_Asm_8: 8030 case ARM::VST3dWB_fixed_Asm_16: 8031 case ARM::VST3dWB_fixed_Asm_32: 8032 case ARM::VST3qWB_fixed_Asm_8: 8033 case ARM::VST3qWB_fixed_Asm_16: 8034 case ARM::VST3qWB_fixed_Asm_32: { 8035 MCInst TmpInst; 8036 unsigned Spacing; 8037 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8038 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8039 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8040 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8041 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8042 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8043 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8044 Spacing)); 8045 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8046 Spacing * 2)); 8047 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8048 TmpInst.addOperand(Inst.getOperand(4)); 8049 Inst = TmpInst; 8050 return true; 8051 } 8052 8053 case ARM::VST3dWB_register_Asm_8: 8054 case ARM::VST3dWB_register_Asm_16: 8055 case ARM::VST3dWB_register_Asm_32: 8056 case ARM::VST3qWB_register_Asm_8: 8057 case ARM::VST3qWB_register_Asm_16: 8058 case ARM::VST3qWB_register_Asm_32: { 8059 MCInst TmpInst; 8060 unsigned Spacing; 8061 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8062 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8063 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8064 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8065 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8066 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8067 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8068 Spacing)); 8069 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8070 Spacing * 2)); 8071 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8072 TmpInst.addOperand(Inst.getOperand(5)); 8073 Inst = TmpInst; 8074 return true; 8075 } 8076 8077 // VST4 multiple 3-element structure instructions. 8078 case ARM::VST4dAsm_8: 8079 case ARM::VST4dAsm_16: 8080 case ARM::VST4dAsm_32: 8081 case ARM::VST4qAsm_8: 8082 case ARM::VST4qAsm_16: 8083 case ARM::VST4qAsm_32: { 8084 MCInst TmpInst; 8085 unsigned Spacing; 8086 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8087 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8088 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8089 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8090 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8091 Spacing)); 8092 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8093 Spacing * 2)); 8094 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8095 Spacing * 3)); 8096 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8097 TmpInst.addOperand(Inst.getOperand(4)); 8098 Inst = TmpInst; 8099 return true; 8100 } 8101 8102 case ARM::VST4dWB_fixed_Asm_8: 8103 case ARM::VST4dWB_fixed_Asm_16: 8104 case ARM::VST4dWB_fixed_Asm_32: 8105 case ARM::VST4qWB_fixed_Asm_8: 8106 case ARM::VST4qWB_fixed_Asm_16: 8107 case ARM::VST4qWB_fixed_Asm_32: { 8108 MCInst TmpInst; 8109 unsigned Spacing; 8110 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8111 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8112 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8113 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8114 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8115 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8116 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8117 Spacing)); 8118 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8119 Spacing * 2)); 8120 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8121 Spacing * 3)); 8122 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8123 TmpInst.addOperand(Inst.getOperand(4)); 8124 Inst = TmpInst; 8125 return true; 8126 } 8127 8128 case ARM::VST4dWB_register_Asm_8: 8129 case ARM::VST4dWB_register_Asm_16: 8130 case ARM::VST4dWB_register_Asm_32: 8131 case ARM::VST4qWB_register_Asm_8: 8132 case ARM::VST4qWB_register_Asm_16: 8133 case ARM::VST4qWB_register_Asm_32: { 8134 MCInst TmpInst; 8135 unsigned Spacing; 8136 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8137 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8138 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8139 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8140 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8141 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8142 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8143 Spacing)); 8144 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8145 Spacing * 2)); 8146 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8147 Spacing * 3)); 8148 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8149 TmpInst.addOperand(Inst.getOperand(5)); 8150 Inst = TmpInst; 8151 return true; 8152 } 8153 8154 // Handle encoding choice for the shift-immediate instructions. 8155 case ARM::t2LSLri: 8156 case ARM::t2LSRri: 8157 case ARM::t2ASRri: 8158 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8159 isARMLowRegister(Inst.getOperand(1).getReg()) && 8160 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8161 !HasWideQualifier) { 8162 unsigned NewOpc; 8163 switch (Inst.getOpcode()) { 8164 default: llvm_unreachable("unexpected opcode"); 8165 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8166 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8167 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8168 } 8169 // The Thumb1 operands aren't in the same order. Awesome, eh? 8170 MCInst TmpInst; 8171 TmpInst.setOpcode(NewOpc); 8172 TmpInst.addOperand(Inst.getOperand(0)); 8173 TmpInst.addOperand(Inst.getOperand(5)); 8174 TmpInst.addOperand(Inst.getOperand(1)); 8175 TmpInst.addOperand(Inst.getOperand(2)); 8176 TmpInst.addOperand(Inst.getOperand(3)); 8177 TmpInst.addOperand(Inst.getOperand(4)); 8178 Inst = TmpInst; 8179 return true; 8180 } 8181 return false; 8182 8183 // Handle the Thumb2 mode MOV complex aliases. 8184 case ARM::t2MOVsr: 8185 case ARM::t2MOVSsr: { 8186 // Which instruction to expand to depends on the CCOut operand and 8187 // whether we're in an IT block if the register operands are low 8188 // registers. 8189 bool isNarrow = false; 8190 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8191 isARMLowRegister(Inst.getOperand(1).getReg()) && 8192 isARMLowRegister(Inst.getOperand(2).getReg()) && 8193 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8194 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8195 !HasWideQualifier) 8196 isNarrow = true; 8197 MCInst TmpInst; 8198 unsigned newOpc; 8199 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8200 default: llvm_unreachable("unexpected opcode!"); 8201 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8202 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8203 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8204 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8205 } 8206 TmpInst.setOpcode(newOpc); 8207 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8208 if (isNarrow) 8209 TmpInst.addOperand(MCOperand::createReg( 8210 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8211 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8212 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8213 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8214 TmpInst.addOperand(Inst.getOperand(5)); 8215 if (!isNarrow) 8216 TmpInst.addOperand(MCOperand::createReg( 8217 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8218 Inst = TmpInst; 8219 return true; 8220 } 8221 case ARM::t2MOVsi: 8222 case ARM::t2MOVSsi: { 8223 // Which instruction to expand to depends on the CCOut operand and 8224 // whether we're in an IT block if the register operands are low 8225 // registers. 8226 bool isNarrow = false; 8227 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8228 isARMLowRegister(Inst.getOperand(1).getReg()) && 8229 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8230 !HasWideQualifier) 8231 isNarrow = true; 8232 MCInst TmpInst; 8233 unsigned newOpc; 8234 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8235 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8236 bool isMov = false; 8237 // MOV rd, rm, LSL #0 is actually a MOV instruction 8238 if (Shift == ARM_AM::lsl && Amount == 0) { 8239 isMov = true; 8240 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8241 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8242 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8243 // instead. 8244 if (inITBlock()) { 8245 isNarrow = false; 8246 } 8247 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8248 } else { 8249 switch(Shift) { 8250 default: llvm_unreachable("unexpected opcode!"); 8251 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8252 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8253 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8254 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8255 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8256 } 8257 } 8258 if (Amount == 32) Amount = 0; 8259 TmpInst.setOpcode(newOpc); 8260 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8261 if (isNarrow && !isMov) 8262 TmpInst.addOperand(MCOperand::createReg( 8263 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8264 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8265 if (newOpc != ARM::t2RRX && !isMov) 8266 TmpInst.addOperand(MCOperand::createImm(Amount)); 8267 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8268 TmpInst.addOperand(Inst.getOperand(4)); 8269 if (!isNarrow) 8270 TmpInst.addOperand(MCOperand::createReg( 8271 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8272 Inst = TmpInst; 8273 return true; 8274 } 8275 // Handle the ARM mode MOV complex aliases. 8276 case ARM::ASRr: 8277 case ARM::LSRr: 8278 case ARM::LSLr: 8279 case ARM::RORr: { 8280 ARM_AM::ShiftOpc ShiftTy; 8281 switch(Inst.getOpcode()) { 8282 default: llvm_unreachable("unexpected opcode!"); 8283 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8284 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8285 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8286 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8287 } 8288 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8289 MCInst TmpInst; 8290 TmpInst.setOpcode(ARM::MOVsr); 8291 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8292 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8293 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8294 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8295 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8296 TmpInst.addOperand(Inst.getOperand(4)); 8297 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8298 Inst = TmpInst; 8299 return true; 8300 } 8301 case ARM::ASRi: 8302 case ARM::LSRi: 8303 case ARM::LSLi: 8304 case ARM::RORi: { 8305 ARM_AM::ShiftOpc ShiftTy; 8306 switch(Inst.getOpcode()) { 8307 default: llvm_unreachable("unexpected opcode!"); 8308 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8309 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8310 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8311 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8312 } 8313 // A shift by zero is a plain MOVr, not a MOVsi. 8314 unsigned Amt = Inst.getOperand(2).getImm(); 8315 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8316 // A shift by 32 should be encoded as 0 when permitted 8317 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8318 Amt = 0; 8319 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8320 MCInst TmpInst; 8321 TmpInst.setOpcode(Opc); 8322 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8323 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8324 if (Opc == ARM::MOVsi) 8325 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8326 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8327 TmpInst.addOperand(Inst.getOperand(4)); 8328 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8329 Inst = TmpInst; 8330 return true; 8331 } 8332 case ARM::RRXi: { 8333 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8334 MCInst TmpInst; 8335 TmpInst.setOpcode(ARM::MOVsi); 8336 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8337 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8338 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8339 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8340 TmpInst.addOperand(Inst.getOperand(3)); 8341 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8342 Inst = TmpInst; 8343 return true; 8344 } 8345 case ARM::t2LDMIA_UPD: { 8346 // If this is a load of a single register, then we should use 8347 // a post-indexed LDR instruction instead, per the ARM ARM. 8348 if (Inst.getNumOperands() != 5) 8349 return false; 8350 MCInst TmpInst; 8351 TmpInst.setOpcode(ARM::t2LDR_POST); 8352 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8353 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8354 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8355 TmpInst.addOperand(MCOperand::createImm(4)); 8356 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8357 TmpInst.addOperand(Inst.getOperand(3)); 8358 Inst = TmpInst; 8359 return true; 8360 } 8361 case ARM::t2STMDB_UPD: { 8362 // If this is a store of a single register, then we should use 8363 // a pre-indexed STR instruction instead, per the ARM ARM. 8364 if (Inst.getNumOperands() != 5) 8365 return false; 8366 MCInst TmpInst; 8367 TmpInst.setOpcode(ARM::t2STR_PRE); 8368 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8369 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8370 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8371 TmpInst.addOperand(MCOperand::createImm(-4)); 8372 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8373 TmpInst.addOperand(Inst.getOperand(3)); 8374 Inst = TmpInst; 8375 return true; 8376 } 8377 case ARM::LDMIA_UPD: 8378 // If this is a load of a single register via a 'pop', then we should use 8379 // a post-indexed LDR instruction instead, per the ARM ARM. 8380 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8381 Inst.getNumOperands() == 5) { 8382 MCInst TmpInst; 8383 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8384 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8385 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8386 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8387 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8388 TmpInst.addOperand(MCOperand::createImm(4)); 8389 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8390 TmpInst.addOperand(Inst.getOperand(3)); 8391 Inst = TmpInst; 8392 return true; 8393 } 8394 break; 8395 case ARM::STMDB_UPD: 8396 // If this is a store of a single register via a 'push', then we should use 8397 // a pre-indexed STR instruction instead, per the ARM ARM. 8398 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8399 Inst.getNumOperands() == 5) { 8400 MCInst TmpInst; 8401 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8402 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8403 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8404 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8405 TmpInst.addOperand(MCOperand::createImm(-4)); 8406 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8407 TmpInst.addOperand(Inst.getOperand(3)); 8408 Inst = TmpInst; 8409 } 8410 break; 8411 case ARM::t2ADDri12: 8412 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8413 // mnemonic was used (not "addw"), encoding T3 is preferred. 8414 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8415 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8416 break; 8417 Inst.setOpcode(ARM::t2ADDri); 8418 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8419 break; 8420 case ARM::t2SUBri12: 8421 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8422 // mnemonic was used (not "subw"), encoding T3 is preferred. 8423 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8424 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8425 break; 8426 Inst.setOpcode(ARM::t2SUBri); 8427 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8428 break; 8429 case ARM::tADDi8: 8430 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8431 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8432 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8433 // to encoding T1 if <Rd> is omitted." 8434 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8435 Inst.setOpcode(ARM::tADDi3); 8436 return true; 8437 } 8438 break; 8439 case ARM::tSUBi8: 8440 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8441 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8442 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8443 // to encoding T1 if <Rd> is omitted." 8444 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8445 Inst.setOpcode(ARM::tSUBi3); 8446 return true; 8447 } 8448 break; 8449 case ARM::t2ADDri: 8450 case ARM::t2SUBri: { 8451 // If the destination and first source operand are the same, and 8452 // the flags are compatible with the current IT status, use encoding T2 8453 // instead of T3. For compatibility with the system 'as'. Make sure the 8454 // wide encoding wasn't explicit. 8455 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8456 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8457 (Inst.getOperand(2).isImm() && 8458 (unsigned)Inst.getOperand(2).getImm() > 255) || 8459 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8460 HasWideQualifier) 8461 break; 8462 MCInst TmpInst; 8463 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8464 ARM::tADDi8 : ARM::tSUBi8); 8465 TmpInst.addOperand(Inst.getOperand(0)); 8466 TmpInst.addOperand(Inst.getOperand(5)); 8467 TmpInst.addOperand(Inst.getOperand(0)); 8468 TmpInst.addOperand(Inst.getOperand(2)); 8469 TmpInst.addOperand(Inst.getOperand(3)); 8470 TmpInst.addOperand(Inst.getOperand(4)); 8471 Inst = TmpInst; 8472 return true; 8473 } 8474 case ARM::t2ADDrr: { 8475 // If the destination and first source operand are the same, and 8476 // there's no setting of the flags, use encoding T2 instead of T3. 8477 // Note that this is only for ADD, not SUB. This mirrors the system 8478 // 'as' behaviour. Also take advantage of ADD being commutative. 8479 // Make sure the wide encoding wasn't explicit. 8480 bool Swap = false; 8481 auto DestReg = Inst.getOperand(0).getReg(); 8482 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8483 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8484 Transform = true; 8485 Swap = true; 8486 } 8487 if (!Transform || 8488 Inst.getOperand(5).getReg() != 0 || 8489 HasWideQualifier) 8490 break; 8491 MCInst TmpInst; 8492 TmpInst.setOpcode(ARM::tADDhirr); 8493 TmpInst.addOperand(Inst.getOperand(0)); 8494 TmpInst.addOperand(Inst.getOperand(0)); 8495 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8496 TmpInst.addOperand(Inst.getOperand(3)); 8497 TmpInst.addOperand(Inst.getOperand(4)); 8498 Inst = TmpInst; 8499 return true; 8500 } 8501 case ARM::tADDrSP: 8502 // If the non-SP source operand and the destination operand are not the 8503 // same, we need to use the 32-bit encoding if it's available. 8504 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8505 Inst.setOpcode(ARM::t2ADDrr); 8506 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8507 return true; 8508 } 8509 break; 8510 case ARM::tB: 8511 // A Thumb conditional branch outside of an IT block is a tBcc. 8512 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8513 Inst.setOpcode(ARM::tBcc); 8514 return true; 8515 } 8516 break; 8517 case ARM::t2B: 8518 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8519 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8520 Inst.setOpcode(ARM::t2Bcc); 8521 return true; 8522 } 8523 break; 8524 case ARM::t2Bcc: 8525 // If the conditional is AL or we're in an IT block, we really want t2B. 8526 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8527 Inst.setOpcode(ARM::t2B); 8528 return true; 8529 } 8530 break; 8531 case ARM::tBcc: 8532 // If the conditional is AL, we really want tB. 8533 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8534 Inst.setOpcode(ARM::tB); 8535 return true; 8536 } 8537 break; 8538 case ARM::tLDMIA: { 8539 // If the register list contains any high registers, or if the writeback 8540 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8541 // instead if we're in Thumb2. Otherwise, this should have generated 8542 // an error in validateInstruction(). 8543 unsigned Rn = Inst.getOperand(0).getReg(); 8544 bool hasWritebackToken = 8545 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8546 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8547 bool listContainsBase; 8548 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8549 (!listContainsBase && !hasWritebackToken) || 8550 (listContainsBase && hasWritebackToken)) { 8551 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8552 assert(isThumbTwo()); 8553 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8554 // If we're switching to the updating version, we need to insert 8555 // the writeback tied operand. 8556 if (hasWritebackToken) 8557 Inst.insert(Inst.begin(), 8558 MCOperand::createReg(Inst.getOperand(0).getReg())); 8559 return true; 8560 } 8561 break; 8562 } 8563 case ARM::tSTMIA_UPD: { 8564 // If the register list contains any high registers, we need to use 8565 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8566 // should have generated an error in validateInstruction(). 8567 unsigned Rn = Inst.getOperand(0).getReg(); 8568 bool listContainsBase; 8569 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8570 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8571 assert(isThumbTwo()); 8572 Inst.setOpcode(ARM::t2STMIA_UPD); 8573 return true; 8574 } 8575 break; 8576 } 8577 case ARM::tPOP: { 8578 bool listContainsBase; 8579 // If the register list contains any high registers, we need to use 8580 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8581 // should have generated an error in validateInstruction(). 8582 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8583 return false; 8584 assert(isThumbTwo()); 8585 Inst.setOpcode(ARM::t2LDMIA_UPD); 8586 // Add the base register and writeback operands. 8587 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8588 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8589 return true; 8590 } 8591 case ARM::tPUSH: { 8592 bool listContainsBase; 8593 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8594 return false; 8595 assert(isThumbTwo()); 8596 Inst.setOpcode(ARM::t2STMDB_UPD); 8597 // Add the base register and writeback operands. 8598 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8599 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8600 return true; 8601 } 8602 case ARM::t2MOVi: 8603 // If we can use the 16-bit encoding and the user didn't explicitly 8604 // request the 32-bit variant, transform it here. 8605 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8606 (Inst.getOperand(1).isImm() && 8607 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8608 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8609 !HasWideQualifier) { 8610 // The operands aren't in the same order for tMOVi8... 8611 MCInst TmpInst; 8612 TmpInst.setOpcode(ARM::tMOVi8); 8613 TmpInst.addOperand(Inst.getOperand(0)); 8614 TmpInst.addOperand(Inst.getOperand(4)); 8615 TmpInst.addOperand(Inst.getOperand(1)); 8616 TmpInst.addOperand(Inst.getOperand(2)); 8617 TmpInst.addOperand(Inst.getOperand(3)); 8618 Inst = TmpInst; 8619 return true; 8620 } 8621 break; 8622 8623 case ARM::t2MOVr: 8624 // If we can use the 16-bit encoding and the user didn't explicitly 8625 // request the 32-bit variant, transform it here. 8626 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8627 isARMLowRegister(Inst.getOperand(1).getReg()) && 8628 Inst.getOperand(2).getImm() == ARMCC::AL && 8629 Inst.getOperand(4).getReg() == ARM::CPSR && 8630 !HasWideQualifier) { 8631 // The operands aren't the same for tMOV[S]r... (no cc_out) 8632 MCInst TmpInst; 8633 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8634 TmpInst.addOperand(Inst.getOperand(0)); 8635 TmpInst.addOperand(Inst.getOperand(1)); 8636 TmpInst.addOperand(Inst.getOperand(2)); 8637 TmpInst.addOperand(Inst.getOperand(3)); 8638 Inst = TmpInst; 8639 return true; 8640 } 8641 break; 8642 8643 case ARM::t2SXTH: 8644 case ARM::t2SXTB: 8645 case ARM::t2UXTH: 8646 case ARM::t2UXTB: 8647 // If we can use the 16-bit encoding and the user didn't explicitly 8648 // request the 32-bit variant, transform it here. 8649 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8650 isARMLowRegister(Inst.getOperand(1).getReg()) && 8651 Inst.getOperand(2).getImm() == 0 && 8652 !HasWideQualifier) { 8653 unsigned NewOpc; 8654 switch (Inst.getOpcode()) { 8655 default: llvm_unreachable("Illegal opcode!"); 8656 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8657 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8658 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8659 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8660 } 8661 // The operands aren't the same for thumb1 (no rotate operand). 8662 MCInst TmpInst; 8663 TmpInst.setOpcode(NewOpc); 8664 TmpInst.addOperand(Inst.getOperand(0)); 8665 TmpInst.addOperand(Inst.getOperand(1)); 8666 TmpInst.addOperand(Inst.getOperand(3)); 8667 TmpInst.addOperand(Inst.getOperand(4)); 8668 Inst = TmpInst; 8669 return true; 8670 } 8671 break; 8672 8673 case ARM::MOVsi: { 8674 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8675 // rrx shifts and asr/lsr of #32 is encoded as 0 8676 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8677 return false; 8678 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8679 // Shifting by zero is accepted as a vanilla 'MOVr' 8680 MCInst TmpInst; 8681 TmpInst.setOpcode(ARM::MOVr); 8682 TmpInst.addOperand(Inst.getOperand(0)); 8683 TmpInst.addOperand(Inst.getOperand(1)); 8684 TmpInst.addOperand(Inst.getOperand(3)); 8685 TmpInst.addOperand(Inst.getOperand(4)); 8686 TmpInst.addOperand(Inst.getOperand(5)); 8687 Inst = TmpInst; 8688 return true; 8689 } 8690 return false; 8691 } 8692 case ARM::ANDrsi: 8693 case ARM::ORRrsi: 8694 case ARM::EORrsi: 8695 case ARM::BICrsi: 8696 case ARM::SUBrsi: 8697 case ARM::ADDrsi: { 8698 unsigned newOpc; 8699 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8700 if (SOpc == ARM_AM::rrx) return false; 8701 switch (Inst.getOpcode()) { 8702 default: llvm_unreachable("unexpected opcode!"); 8703 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8704 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8705 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8706 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8707 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8708 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8709 } 8710 // If the shift is by zero, use the non-shifted instruction definition. 8711 // The exception is for right shifts, where 0 == 32 8712 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8713 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8714 MCInst TmpInst; 8715 TmpInst.setOpcode(newOpc); 8716 TmpInst.addOperand(Inst.getOperand(0)); 8717 TmpInst.addOperand(Inst.getOperand(1)); 8718 TmpInst.addOperand(Inst.getOperand(2)); 8719 TmpInst.addOperand(Inst.getOperand(4)); 8720 TmpInst.addOperand(Inst.getOperand(5)); 8721 TmpInst.addOperand(Inst.getOperand(6)); 8722 Inst = TmpInst; 8723 return true; 8724 } 8725 return false; 8726 } 8727 case ARM::ITasm: 8728 case ARM::t2IT: { 8729 MCOperand &MO = Inst.getOperand(1); 8730 unsigned Mask = MO.getImm(); 8731 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8732 8733 // Set up the IT block state according to the IT instruction we just 8734 // matched. 8735 assert(!inITBlock() && "nested IT blocks?!"); 8736 startExplicitITBlock(Cond, Mask); 8737 MO.setImm(getITMaskEncoding()); 8738 break; 8739 } 8740 case ARM::t2LSLrr: 8741 case ARM::t2LSRrr: 8742 case ARM::t2ASRrr: 8743 case ARM::t2SBCrr: 8744 case ARM::t2RORrr: 8745 case ARM::t2BICrr: 8746 // Assemblers should use the narrow encodings of these instructions when permissible. 8747 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8748 isARMLowRegister(Inst.getOperand(2).getReg())) && 8749 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8750 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8751 !HasWideQualifier) { 8752 unsigned NewOpc; 8753 switch (Inst.getOpcode()) { 8754 default: llvm_unreachable("unexpected opcode"); 8755 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8756 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8757 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8758 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8759 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8760 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8761 } 8762 MCInst TmpInst; 8763 TmpInst.setOpcode(NewOpc); 8764 TmpInst.addOperand(Inst.getOperand(0)); 8765 TmpInst.addOperand(Inst.getOperand(5)); 8766 TmpInst.addOperand(Inst.getOperand(1)); 8767 TmpInst.addOperand(Inst.getOperand(2)); 8768 TmpInst.addOperand(Inst.getOperand(3)); 8769 TmpInst.addOperand(Inst.getOperand(4)); 8770 Inst = TmpInst; 8771 return true; 8772 } 8773 return false; 8774 8775 case ARM::t2ANDrr: 8776 case ARM::t2EORrr: 8777 case ARM::t2ADCrr: 8778 case ARM::t2ORRrr: 8779 // Assemblers should use the narrow encodings of these instructions when permissible. 8780 // These instructions are special in that they are commutable, so shorter encodings 8781 // are available more often. 8782 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8783 isARMLowRegister(Inst.getOperand(2).getReg())) && 8784 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8785 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8786 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8787 !HasWideQualifier) { 8788 unsigned NewOpc; 8789 switch (Inst.getOpcode()) { 8790 default: llvm_unreachable("unexpected opcode"); 8791 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8792 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8793 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8794 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8795 } 8796 MCInst TmpInst; 8797 TmpInst.setOpcode(NewOpc); 8798 TmpInst.addOperand(Inst.getOperand(0)); 8799 TmpInst.addOperand(Inst.getOperand(5)); 8800 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8801 TmpInst.addOperand(Inst.getOperand(1)); 8802 TmpInst.addOperand(Inst.getOperand(2)); 8803 } else { 8804 TmpInst.addOperand(Inst.getOperand(2)); 8805 TmpInst.addOperand(Inst.getOperand(1)); 8806 } 8807 TmpInst.addOperand(Inst.getOperand(3)); 8808 TmpInst.addOperand(Inst.getOperand(4)); 8809 Inst = TmpInst; 8810 return true; 8811 } 8812 return false; 8813 } 8814 return false; 8815 } 8816 8817 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8818 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8819 // suffix depending on whether they're in an IT block or not. 8820 unsigned Opc = Inst.getOpcode(); 8821 const MCInstrDesc &MCID = MII.get(Opc); 8822 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8823 assert(MCID.hasOptionalDef() && 8824 "optionally flag setting instruction missing optional def operand"); 8825 assert(MCID.NumOperands == Inst.getNumOperands() && 8826 "operand count mismatch!"); 8827 // Find the optional-def operand (cc_out). 8828 unsigned OpNo; 8829 for (OpNo = 0; 8830 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8831 ++OpNo) 8832 ; 8833 // If we're parsing Thumb1, reject it completely. 8834 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8835 return Match_RequiresFlagSetting; 8836 // If we're parsing Thumb2, which form is legal depends on whether we're 8837 // in an IT block. 8838 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8839 !inITBlock()) 8840 return Match_RequiresITBlock; 8841 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8842 inITBlock()) 8843 return Match_RequiresNotITBlock; 8844 // LSL with zero immediate is not allowed in an IT block 8845 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 8846 return Match_RequiresNotITBlock; 8847 } else if (isThumbOne()) { 8848 // Some high-register supporting Thumb1 encodings only allow both registers 8849 // to be from r0-r7 when in Thumb2. 8850 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8851 isARMLowRegister(Inst.getOperand(1).getReg()) && 8852 isARMLowRegister(Inst.getOperand(2).getReg())) 8853 return Match_RequiresThumb2; 8854 // Others only require ARMv6 or later. 8855 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8856 isARMLowRegister(Inst.getOperand(0).getReg()) && 8857 isARMLowRegister(Inst.getOperand(1).getReg())) 8858 return Match_RequiresV6; 8859 } 8860 8861 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 8862 // than the loop below can handle, so it uses the GPRnopc register class and 8863 // we do SP handling here. 8864 if (Opc == ARM::t2MOVr && !hasV8Ops()) 8865 { 8866 // SP as both source and destination is not allowed 8867 if (Inst.getOperand(0).getReg() == ARM::SP && 8868 Inst.getOperand(1).getReg() == ARM::SP) 8869 return Match_RequiresV8; 8870 // When flags-setting SP as either source or destination is not allowed 8871 if (Inst.getOperand(4).getReg() == ARM::CPSR && 8872 (Inst.getOperand(0).getReg() == ARM::SP || 8873 Inst.getOperand(1).getReg() == ARM::SP)) 8874 return Match_RequiresV8; 8875 } 8876 8877 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 8878 // ARMv8-A. 8879 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 8880 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 8881 return Match_InvalidOperand; 8882 8883 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8884 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8885 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8886 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8887 return Match_RequiresV8; 8888 else if (Inst.getOperand(I).getReg() == ARM::PC) 8889 return Match_InvalidOperand; 8890 } 8891 8892 return Match_Success; 8893 } 8894 8895 namespace llvm { 8896 8897 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 8898 return true; // In an assembly source, no need to second-guess 8899 } 8900 8901 } // end namespace llvm 8902 8903 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8904 // the last instruction in the block. 8905 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8906 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8907 8908 // All branch & call instructions terminate IT blocks with the exception of 8909 // SVC. 8910 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 8911 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 8912 return true; 8913 8914 // Any arithmetic instruction which writes to the PC also terminates the IT 8915 // block. 8916 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 8917 MCOperand &Op = Inst.getOperand(OpIdx); 8918 if (Op.isReg() && Op.getReg() == ARM::PC) 8919 return true; 8920 } 8921 8922 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 8923 return true; 8924 8925 // Instructions with variable operand lists, which write to the variable 8926 // operands. We only care about Thumb instructions here, as ARM instructions 8927 // obviously can't be in an IT block. 8928 switch (Inst.getOpcode()) { 8929 case ARM::tLDMIA: 8930 case ARM::t2LDMIA: 8931 case ARM::t2LDMIA_UPD: 8932 case ARM::t2LDMDB: 8933 case ARM::t2LDMDB_UPD: 8934 if (listContainsReg(Inst, 3, ARM::PC)) 8935 return true; 8936 break; 8937 case ARM::tPOP: 8938 if (listContainsReg(Inst, 2, ARM::PC)) 8939 return true; 8940 break; 8941 } 8942 8943 return false; 8944 } 8945 8946 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 8947 SmallVectorImpl<NearMissInfo> &NearMisses, 8948 bool MatchingInlineAsm, 8949 bool &EmitInITBlock, 8950 MCStreamer &Out) { 8951 // If we can't use an implicit IT block here, just match as normal. 8952 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 8953 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 8954 8955 // Try to match the instruction in an extension of the current IT block (if 8956 // there is one). 8957 if (inImplicitITBlock()) { 8958 extendImplicitITBlock(ITState.Cond); 8959 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 8960 Match_Success) { 8961 // The match succeded, but we still have to check that the instruction is 8962 // valid in this implicit IT block. 8963 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8964 if (MCID.isPredicable()) { 8965 ARMCC::CondCodes InstCond = 8966 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8967 .getImm(); 8968 ARMCC::CondCodes ITCond = currentITCond(); 8969 if (InstCond == ITCond) { 8970 EmitInITBlock = true; 8971 return Match_Success; 8972 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 8973 invertCurrentITCondition(); 8974 EmitInITBlock = true; 8975 return Match_Success; 8976 } 8977 } 8978 } 8979 rewindImplicitITPosition(); 8980 } 8981 8982 // Finish the current IT block, and try to match outside any IT block. 8983 flushPendingInstructions(Out); 8984 unsigned PlainMatchResult = 8985 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 8986 if (PlainMatchResult == Match_Success) { 8987 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8988 if (MCID.isPredicable()) { 8989 ARMCC::CondCodes InstCond = 8990 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8991 .getImm(); 8992 // Some forms of the branch instruction have their own condition code 8993 // fields, so can be conditionally executed without an IT block. 8994 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 8995 EmitInITBlock = false; 8996 return Match_Success; 8997 } 8998 if (InstCond == ARMCC::AL) { 8999 EmitInITBlock = false; 9000 return Match_Success; 9001 } 9002 } else { 9003 EmitInITBlock = false; 9004 return Match_Success; 9005 } 9006 } 9007 9008 // Try to match in a new IT block. The matcher doesn't check the actual 9009 // condition, so we create an IT block with a dummy condition, and fix it up 9010 // once we know the actual condition. 9011 startImplicitITBlock(); 9012 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9013 Match_Success) { 9014 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9015 if (MCID.isPredicable()) { 9016 ITState.Cond = 9017 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9018 .getImm(); 9019 EmitInITBlock = true; 9020 return Match_Success; 9021 } 9022 } 9023 discardImplicitITBlock(); 9024 9025 // If none of these succeed, return the error we got when trying to match 9026 // outside any IT blocks. 9027 EmitInITBlock = false; 9028 return PlainMatchResult; 9029 } 9030 9031 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS, 9032 unsigned VariantID = 0); 9033 9034 static const char *getSubtargetFeatureName(uint64_t Val); 9035 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9036 OperandVector &Operands, 9037 MCStreamer &Out, uint64_t &ErrorInfo, 9038 bool MatchingInlineAsm) { 9039 MCInst Inst; 9040 unsigned MatchResult; 9041 bool PendConditionalInstruction = false; 9042 9043 SmallVector<NearMissInfo, 4> NearMisses; 9044 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9045 PendConditionalInstruction, Out); 9046 9047 switch (MatchResult) { 9048 case Match_Success: 9049 // Context sensitive operand constraints aren't handled by the matcher, 9050 // so check them here. 9051 if (validateInstruction(Inst, Operands)) { 9052 // Still progress the IT block, otherwise one wrong condition causes 9053 // nasty cascading errors. 9054 forwardITPosition(); 9055 return true; 9056 } 9057 9058 { // processInstruction() updates inITBlock state, we need to save it away 9059 bool wasInITBlock = inITBlock(); 9060 9061 // Some instructions need post-processing to, for example, tweak which 9062 // encoding is selected. Loop on it while changes happen so the 9063 // individual transformations can chain off each other. E.g., 9064 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9065 while (processInstruction(Inst, Operands, Out)) 9066 ; 9067 9068 // Only after the instruction is fully processed, we can validate it 9069 if (wasInITBlock && hasV8Ops() && isThumb() && 9070 !isV8EligibleForIT(&Inst)) { 9071 Warning(IDLoc, "deprecated instruction in IT block"); 9072 } 9073 } 9074 9075 // Only move forward at the very end so that everything in validate 9076 // and process gets a consistent answer about whether we're in an IT 9077 // block. 9078 forwardITPosition(); 9079 9080 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9081 // doesn't actually encode. 9082 if (Inst.getOpcode() == ARM::ITasm) 9083 return false; 9084 9085 Inst.setLoc(IDLoc); 9086 if (PendConditionalInstruction) { 9087 PendingConditionalInsts.push_back(Inst); 9088 if (isITBlockFull() || isITBlockTerminator(Inst)) 9089 flushPendingInstructions(Out); 9090 } else { 9091 Out.EmitInstruction(Inst, getSTI()); 9092 } 9093 return false; 9094 case Match_NearMisses: 9095 ReportNearMisses(NearMisses, IDLoc, Operands); 9096 return true; 9097 case Match_MnemonicFail: { 9098 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9099 std::string Suggestion = ARMMnemonicSpellCheck( 9100 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9101 return Error(IDLoc, "invalid instruction" + Suggestion, 9102 ((ARMOperand &)*Operands[0]).getLocRange()); 9103 } 9104 } 9105 9106 llvm_unreachable("Implement any new match types added!"); 9107 } 9108 9109 /// parseDirective parses the arm specific directives 9110 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9111 const MCObjectFileInfo::Environment Format = 9112 getContext().getObjectFileInfo()->getObjectFileType(); 9113 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9114 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9115 9116 StringRef IDVal = DirectiveID.getIdentifier(); 9117 if (IDVal == ".word") 9118 parseLiteralValues(4, DirectiveID.getLoc()); 9119 else if (IDVal == ".short" || IDVal == ".hword") 9120 parseLiteralValues(2, DirectiveID.getLoc()); 9121 else if (IDVal == ".thumb") 9122 parseDirectiveThumb(DirectiveID.getLoc()); 9123 else if (IDVal == ".arm") 9124 parseDirectiveARM(DirectiveID.getLoc()); 9125 else if (IDVal == ".thumb_func") 9126 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9127 else if (IDVal == ".code") 9128 parseDirectiveCode(DirectiveID.getLoc()); 9129 else if (IDVal == ".syntax") 9130 parseDirectiveSyntax(DirectiveID.getLoc()); 9131 else if (IDVal == ".unreq") 9132 parseDirectiveUnreq(DirectiveID.getLoc()); 9133 else if (IDVal == ".fnend") 9134 parseDirectiveFnEnd(DirectiveID.getLoc()); 9135 else if (IDVal == ".cantunwind") 9136 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9137 else if (IDVal == ".personality") 9138 parseDirectivePersonality(DirectiveID.getLoc()); 9139 else if (IDVal == ".handlerdata") 9140 parseDirectiveHandlerData(DirectiveID.getLoc()); 9141 else if (IDVal == ".setfp") 9142 parseDirectiveSetFP(DirectiveID.getLoc()); 9143 else if (IDVal == ".pad") 9144 parseDirectivePad(DirectiveID.getLoc()); 9145 else if (IDVal == ".save") 9146 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9147 else if (IDVal == ".vsave") 9148 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9149 else if (IDVal == ".ltorg" || IDVal == ".pool") 9150 parseDirectiveLtorg(DirectiveID.getLoc()); 9151 else if (IDVal == ".even") 9152 parseDirectiveEven(DirectiveID.getLoc()); 9153 else if (IDVal == ".personalityindex") 9154 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9155 else if (IDVal == ".unwind_raw") 9156 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9157 else if (IDVal == ".movsp") 9158 parseDirectiveMovSP(DirectiveID.getLoc()); 9159 else if (IDVal == ".arch_extension") 9160 parseDirectiveArchExtension(DirectiveID.getLoc()); 9161 else if (IDVal == ".align") 9162 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9163 else if (IDVal == ".thumb_set") 9164 parseDirectiveThumbSet(DirectiveID.getLoc()); 9165 else if (!IsMachO && !IsCOFF) { 9166 if (IDVal == ".arch") 9167 parseDirectiveArch(DirectiveID.getLoc()); 9168 else if (IDVal == ".cpu") 9169 parseDirectiveCPU(DirectiveID.getLoc()); 9170 else if (IDVal == ".eabi_attribute") 9171 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9172 else if (IDVal == ".fpu") 9173 parseDirectiveFPU(DirectiveID.getLoc()); 9174 else if (IDVal == ".fnstart") 9175 parseDirectiveFnStart(DirectiveID.getLoc()); 9176 else if (IDVal == ".inst") 9177 parseDirectiveInst(DirectiveID.getLoc()); 9178 else if (IDVal == ".inst.n") 9179 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9180 else if (IDVal == ".inst.w") 9181 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9182 else if (IDVal == ".object_arch") 9183 parseDirectiveObjectArch(DirectiveID.getLoc()); 9184 else if (IDVal == ".tlsdescseq") 9185 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9186 else 9187 return true; 9188 } else 9189 return true; 9190 return false; 9191 } 9192 9193 /// parseLiteralValues 9194 /// ::= .hword expression [, expression]* 9195 /// ::= .short expression [, expression]* 9196 /// ::= .word expression [, expression]* 9197 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9198 auto parseOne = [&]() -> bool { 9199 const MCExpr *Value; 9200 if (getParser().parseExpression(Value)) 9201 return true; 9202 getParser().getStreamer().EmitValue(Value, Size, L); 9203 return false; 9204 }; 9205 return (parseMany(parseOne)); 9206 } 9207 9208 /// parseDirectiveThumb 9209 /// ::= .thumb 9210 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9211 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9212 check(!hasThumb(), L, "target does not support Thumb mode")) 9213 return true; 9214 9215 if (!isThumb()) 9216 SwitchMode(); 9217 9218 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9219 return false; 9220 } 9221 9222 /// parseDirectiveARM 9223 /// ::= .arm 9224 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9225 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9226 check(!hasARM(), L, "target does not support ARM mode")) 9227 return true; 9228 9229 if (isThumb()) 9230 SwitchMode(); 9231 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9232 return false; 9233 } 9234 9235 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9236 // We need to flush the current implicit IT block on a label, because it is 9237 // not legal to branch into an IT block. 9238 flushPendingInstructions(getStreamer()); 9239 if (NextSymbolIsThumb) { 9240 getParser().getStreamer().EmitThumbFunc(Symbol); 9241 NextSymbolIsThumb = false; 9242 } 9243 } 9244 9245 /// parseDirectiveThumbFunc 9246 /// ::= .thumbfunc symbol_name 9247 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9248 MCAsmParser &Parser = getParser(); 9249 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9250 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9251 9252 // Darwin asm has (optionally) function name after .thumb_func direction 9253 // ELF doesn't 9254 9255 if (IsMachO) { 9256 if (Parser.getTok().is(AsmToken::Identifier) || 9257 Parser.getTok().is(AsmToken::String)) { 9258 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9259 Parser.getTok().getIdentifier()); 9260 getParser().getStreamer().EmitThumbFunc(Func); 9261 Parser.Lex(); 9262 if (parseToken(AsmToken::EndOfStatement, 9263 "unexpected token in '.thumb_func' directive")) 9264 return true; 9265 return false; 9266 } 9267 } 9268 9269 if (parseToken(AsmToken::EndOfStatement, 9270 "unexpected token in '.thumb_func' directive")) 9271 return true; 9272 9273 NextSymbolIsThumb = true; 9274 return false; 9275 } 9276 9277 /// parseDirectiveSyntax 9278 /// ::= .syntax unified | divided 9279 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9280 MCAsmParser &Parser = getParser(); 9281 const AsmToken &Tok = Parser.getTok(); 9282 if (Tok.isNot(AsmToken::Identifier)) { 9283 Error(L, "unexpected token in .syntax directive"); 9284 return false; 9285 } 9286 9287 StringRef Mode = Tok.getString(); 9288 Parser.Lex(); 9289 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9290 "'.syntax divided' arm assembly not supported") || 9291 check(Mode != "unified" && Mode != "UNIFIED", L, 9292 "unrecognized syntax mode in .syntax directive") || 9293 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9294 return true; 9295 9296 // TODO tell the MC streamer the mode 9297 // getParser().getStreamer().Emit???(); 9298 return false; 9299 } 9300 9301 /// parseDirectiveCode 9302 /// ::= .code 16 | 32 9303 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9304 MCAsmParser &Parser = getParser(); 9305 const AsmToken &Tok = Parser.getTok(); 9306 if (Tok.isNot(AsmToken::Integer)) 9307 return Error(L, "unexpected token in .code directive"); 9308 int64_t Val = Parser.getTok().getIntVal(); 9309 if (Val != 16 && Val != 32) { 9310 Error(L, "invalid operand to .code directive"); 9311 return false; 9312 } 9313 Parser.Lex(); 9314 9315 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9316 return true; 9317 9318 if (Val == 16) { 9319 if (!hasThumb()) 9320 return Error(L, "target does not support Thumb mode"); 9321 9322 if (!isThumb()) 9323 SwitchMode(); 9324 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9325 } else { 9326 if (!hasARM()) 9327 return Error(L, "target does not support ARM mode"); 9328 9329 if (isThumb()) 9330 SwitchMode(); 9331 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9332 } 9333 9334 return false; 9335 } 9336 9337 /// parseDirectiveReq 9338 /// ::= name .req registername 9339 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9340 MCAsmParser &Parser = getParser(); 9341 Parser.Lex(); // Eat the '.req' token. 9342 unsigned Reg; 9343 SMLoc SRegLoc, ERegLoc; 9344 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9345 "register name expected") || 9346 parseToken(AsmToken::EndOfStatement, 9347 "unexpected input in .req directive.")) 9348 return true; 9349 9350 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9351 return Error(SRegLoc, 9352 "redefinition of '" + Name + "' does not match original."); 9353 9354 return false; 9355 } 9356 9357 /// parseDirectiveUneq 9358 /// ::= .unreq registername 9359 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9360 MCAsmParser &Parser = getParser(); 9361 if (Parser.getTok().isNot(AsmToken::Identifier)) 9362 return Error(L, "unexpected input in .unreq directive."); 9363 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9364 Parser.Lex(); // Eat the identifier. 9365 if (parseToken(AsmToken::EndOfStatement, 9366 "unexpected input in '.unreq' directive")) 9367 return true; 9368 return false; 9369 } 9370 9371 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9372 // before, if supported by the new target, or emit mapping symbols for the mode 9373 // switch. 9374 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9375 if (WasThumb != isThumb()) { 9376 if (WasThumb && hasThumb()) { 9377 // Stay in Thumb mode 9378 SwitchMode(); 9379 } else if (!WasThumb && hasARM()) { 9380 // Stay in ARM mode 9381 SwitchMode(); 9382 } else { 9383 // Mode switch forced, because the new arch doesn't support the old mode. 9384 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9385 : MCAF_Code32); 9386 // Warn about the implcit mode switch. GAS does not switch modes here, 9387 // but instead stays in the old mode, reporting an error on any following 9388 // instructions as the mode does not exist on the target. 9389 Warning(Loc, Twine("new target does not support ") + 9390 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9391 (!WasThumb ? "thumb" : "arm") + " mode"); 9392 } 9393 } 9394 } 9395 9396 /// parseDirectiveArch 9397 /// ::= .arch token 9398 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9399 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9400 ARM::ArchKind ID = ARM::parseArch(Arch); 9401 9402 if (ID == ARM::ArchKind::INVALID) 9403 return Error(L, "Unknown arch name"); 9404 9405 bool WasThumb = isThumb(); 9406 Triple T; 9407 MCSubtargetInfo &STI = copySTI(); 9408 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9409 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9410 FixModeAfterArchChange(WasThumb, L); 9411 9412 getTargetStreamer().emitArch(ID); 9413 return false; 9414 } 9415 9416 /// parseDirectiveEabiAttr 9417 /// ::= .eabi_attribute int, int [, "str"] 9418 /// ::= .eabi_attribute Tag_name, int [, "str"] 9419 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9420 MCAsmParser &Parser = getParser(); 9421 int64_t Tag; 9422 SMLoc TagLoc; 9423 TagLoc = Parser.getTok().getLoc(); 9424 if (Parser.getTok().is(AsmToken::Identifier)) { 9425 StringRef Name = Parser.getTok().getIdentifier(); 9426 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9427 if (Tag == -1) { 9428 Error(TagLoc, "attribute name not recognised: " + Name); 9429 return false; 9430 } 9431 Parser.Lex(); 9432 } else { 9433 const MCExpr *AttrExpr; 9434 9435 TagLoc = Parser.getTok().getLoc(); 9436 if (Parser.parseExpression(AttrExpr)) 9437 return true; 9438 9439 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9440 if (check(!CE, TagLoc, "expected numeric constant")) 9441 return true; 9442 9443 Tag = CE->getValue(); 9444 } 9445 9446 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9447 return true; 9448 9449 StringRef StringValue = ""; 9450 bool IsStringValue = false; 9451 9452 int64_t IntegerValue = 0; 9453 bool IsIntegerValue = false; 9454 9455 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9456 IsStringValue = true; 9457 else if (Tag == ARMBuildAttrs::compatibility) { 9458 IsStringValue = true; 9459 IsIntegerValue = true; 9460 } else if (Tag < 32 || Tag % 2 == 0) 9461 IsIntegerValue = true; 9462 else if (Tag % 2 == 1) 9463 IsStringValue = true; 9464 else 9465 llvm_unreachable("invalid tag type"); 9466 9467 if (IsIntegerValue) { 9468 const MCExpr *ValueExpr; 9469 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9470 if (Parser.parseExpression(ValueExpr)) 9471 return true; 9472 9473 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9474 if (!CE) 9475 return Error(ValueExprLoc, "expected numeric constant"); 9476 IntegerValue = CE->getValue(); 9477 } 9478 9479 if (Tag == ARMBuildAttrs::compatibility) { 9480 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9481 return true; 9482 } 9483 9484 if (IsStringValue) { 9485 if (Parser.getTok().isNot(AsmToken::String)) 9486 return Error(Parser.getTok().getLoc(), "bad string constant"); 9487 9488 StringValue = Parser.getTok().getStringContents(); 9489 Parser.Lex(); 9490 } 9491 9492 if (Parser.parseToken(AsmToken::EndOfStatement, 9493 "unexpected token in '.eabi_attribute' directive")) 9494 return true; 9495 9496 if (IsIntegerValue && IsStringValue) { 9497 assert(Tag == ARMBuildAttrs::compatibility); 9498 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9499 } else if (IsIntegerValue) 9500 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9501 else if (IsStringValue) 9502 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9503 return false; 9504 } 9505 9506 /// parseDirectiveCPU 9507 /// ::= .cpu str 9508 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9509 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9510 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9511 9512 // FIXME: This is using table-gen data, but should be moved to 9513 // ARMTargetParser once that is table-gen'd. 9514 if (!getSTI().isCPUStringValid(CPU)) 9515 return Error(L, "Unknown CPU name"); 9516 9517 bool WasThumb = isThumb(); 9518 MCSubtargetInfo &STI = copySTI(); 9519 STI.setDefaultFeatures(CPU, ""); 9520 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9521 FixModeAfterArchChange(WasThumb, L); 9522 9523 return false; 9524 } 9525 9526 /// parseDirectiveFPU 9527 /// ::= .fpu str 9528 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9529 SMLoc FPUNameLoc = getTok().getLoc(); 9530 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9531 9532 unsigned ID = ARM::parseFPU(FPU); 9533 std::vector<StringRef> Features; 9534 if (!ARM::getFPUFeatures(ID, Features)) 9535 return Error(FPUNameLoc, "Unknown FPU name"); 9536 9537 MCSubtargetInfo &STI = copySTI(); 9538 for (auto Feature : Features) 9539 STI.ApplyFeatureFlag(Feature); 9540 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9541 9542 getTargetStreamer().emitFPU(ID); 9543 return false; 9544 } 9545 9546 /// parseDirectiveFnStart 9547 /// ::= .fnstart 9548 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9549 if (parseToken(AsmToken::EndOfStatement, 9550 "unexpected token in '.fnstart' directive")) 9551 return true; 9552 9553 if (UC.hasFnStart()) { 9554 Error(L, ".fnstart starts before the end of previous one"); 9555 UC.emitFnStartLocNotes(); 9556 return true; 9557 } 9558 9559 // Reset the unwind directives parser state 9560 UC.reset(); 9561 9562 getTargetStreamer().emitFnStart(); 9563 9564 UC.recordFnStart(L); 9565 return false; 9566 } 9567 9568 /// parseDirectiveFnEnd 9569 /// ::= .fnend 9570 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9571 if (parseToken(AsmToken::EndOfStatement, 9572 "unexpected token in '.fnend' directive")) 9573 return true; 9574 // Check the ordering of unwind directives 9575 if (!UC.hasFnStart()) 9576 return Error(L, ".fnstart must precede .fnend directive"); 9577 9578 // Reset the unwind directives parser state 9579 getTargetStreamer().emitFnEnd(); 9580 9581 UC.reset(); 9582 return false; 9583 } 9584 9585 /// parseDirectiveCantUnwind 9586 /// ::= .cantunwind 9587 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9588 if (parseToken(AsmToken::EndOfStatement, 9589 "unexpected token in '.cantunwind' directive")) 9590 return true; 9591 9592 UC.recordCantUnwind(L); 9593 // Check the ordering of unwind directives 9594 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9595 return true; 9596 9597 if (UC.hasHandlerData()) { 9598 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9599 UC.emitHandlerDataLocNotes(); 9600 return true; 9601 } 9602 if (UC.hasPersonality()) { 9603 Error(L, ".cantunwind can't be used with .personality directive"); 9604 UC.emitPersonalityLocNotes(); 9605 return true; 9606 } 9607 9608 getTargetStreamer().emitCantUnwind(); 9609 return false; 9610 } 9611 9612 /// parseDirectivePersonality 9613 /// ::= .personality name 9614 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9615 MCAsmParser &Parser = getParser(); 9616 bool HasExistingPersonality = UC.hasPersonality(); 9617 9618 // Parse the name of the personality routine 9619 if (Parser.getTok().isNot(AsmToken::Identifier)) 9620 return Error(L, "unexpected input in .personality directive."); 9621 StringRef Name(Parser.getTok().getIdentifier()); 9622 Parser.Lex(); 9623 9624 if (parseToken(AsmToken::EndOfStatement, 9625 "unexpected token in '.personality' directive")) 9626 return true; 9627 9628 UC.recordPersonality(L); 9629 9630 // Check the ordering of unwind directives 9631 if (!UC.hasFnStart()) 9632 return Error(L, ".fnstart must precede .personality directive"); 9633 if (UC.cantUnwind()) { 9634 Error(L, ".personality can't be used with .cantunwind directive"); 9635 UC.emitCantUnwindLocNotes(); 9636 return true; 9637 } 9638 if (UC.hasHandlerData()) { 9639 Error(L, ".personality must precede .handlerdata directive"); 9640 UC.emitHandlerDataLocNotes(); 9641 return true; 9642 } 9643 if (HasExistingPersonality) { 9644 Error(L, "multiple personality directives"); 9645 UC.emitPersonalityLocNotes(); 9646 return true; 9647 } 9648 9649 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9650 getTargetStreamer().emitPersonality(PR); 9651 return false; 9652 } 9653 9654 /// parseDirectiveHandlerData 9655 /// ::= .handlerdata 9656 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9657 if (parseToken(AsmToken::EndOfStatement, 9658 "unexpected token in '.handlerdata' directive")) 9659 return true; 9660 9661 UC.recordHandlerData(L); 9662 // Check the ordering of unwind directives 9663 if (!UC.hasFnStart()) 9664 return Error(L, ".fnstart must precede .personality directive"); 9665 if (UC.cantUnwind()) { 9666 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9667 UC.emitCantUnwindLocNotes(); 9668 return true; 9669 } 9670 9671 getTargetStreamer().emitHandlerData(); 9672 return false; 9673 } 9674 9675 /// parseDirectiveSetFP 9676 /// ::= .setfp fpreg, spreg [, offset] 9677 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9678 MCAsmParser &Parser = getParser(); 9679 // Check the ordering of unwind directives 9680 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9681 check(UC.hasHandlerData(), L, 9682 ".setfp must precede .handlerdata directive")) 9683 return true; 9684 9685 // Parse fpreg 9686 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9687 int FPReg = tryParseRegister(); 9688 9689 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9690 Parser.parseToken(AsmToken::Comma, "comma expected")) 9691 return true; 9692 9693 // Parse spreg 9694 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9695 int SPReg = tryParseRegister(); 9696 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9697 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9698 "register should be either $sp or the latest fp register")) 9699 return true; 9700 9701 // Update the frame pointer register 9702 UC.saveFPReg(FPReg); 9703 9704 // Parse offset 9705 int64_t Offset = 0; 9706 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9707 if (Parser.getTok().isNot(AsmToken::Hash) && 9708 Parser.getTok().isNot(AsmToken::Dollar)) 9709 return Error(Parser.getTok().getLoc(), "'#' expected"); 9710 Parser.Lex(); // skip hash token. 9711 9712 const MCExpr *OffsetExpr; 9713 SMLoc ExLoc = Parser.getTok().getLoc(); 9714 SMLoc EndLoc; 9715 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9716 return Error(ExLoc, "malformed setfp offset"); 9717 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9718 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9719 return true; 9720 Offset = CE->getValue(); 9721 } 9722 9723 if (Parser.parseToken(AsmToken::EndOfStatement)) 9724 return true; 9725 9726 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9727 static_cast<unsigned>(SPReg), Offset); 9728 return false; 9729 } 9730 9731 /// parseDirective 9732 /// ::= .pad offset 9733 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9734 MCAsmParser &Parser = getParser(); 9735 // Check the ordering of unwind directives 9736 if (!UC.hasFnStart()) 9737 return Error(L, ".fnstart must precede .pad directive"); 9738 if (UC.hasHandlerData()) 9739 return Error(L, ".pad must precede .handlerdata directive"); 9740 9741 // Parse the offset 9742 if (Parser.getTok().isNot(AsmToken::Hash) && 9743 Parser.getTok().isNot(AsmToken::Dollar)) 9744 return Error(Parser.getTok().getLoc(), "'#' expected"); 9745 Parser.Lex(); // skip hash token. 9746 9747 const MCExpr *OffsetExpr; 9748 SMLoc ExLoc = Parser.getTok().getLoc(); 9749 SMLoc EndLoc; 9750 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9751 return Error(ExLoc, "malformed pad offset"); 9752 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9753 if (!CE) 9754 return Error(ExLoc, "pad offset must be an immediate"); 9755 9756 if (parseToken(AsmToken::EndOfStatement, 9757 "unexpected token in '.pad' directive")) 9758 return true; 9759 9760 getTargetStreamer().emitPad(CE->getValue()); 9761 return false; 9762 } 9763 9764 /// parseDirectiveRegSave 9765 /// ::= .save { registers } 9766 /// ::= .vsave { registers } 9767 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9768 // Check the ordering of unwind directives 9769 if (!UC.hasFnStart()) 9770 return Error(L, ".fnstart must precede .save or .vsave directives"); 9771 if (UC.hasHandlerData()) 9772 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9773 9774 // RAII object to make sure parsed operands are deleted. 9775 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9776 9777 // Parse the register list 9778 if (parseRegisterList(Operands) || 9779 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9780 return true; 9781 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9782 if (!IsVector && !Op.isRegList()) 9783 return Error(L, ".save expects GPR registers"); 9784 if (IsVector && !Op.isDPRRegList()) 9785 return Error(L, ".vsave expects DPR registers"); 9786 9787 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9788 return false; 9789 } 9790 9791 /// parseDirectiveInst 9792 /// ::= .inst opcode [, ...] 9793 /// ::= .inst.n opcode [, ...] 9794 /// ::= .inst.w opcode [, ...] 9795 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9796 int Width = 4; 9797 9798 if (isThumb()) { 9799 switch (Suffix) { 9800 case 'n': 9801 Width = 2; 9802 break; 9803 case 'w': 9804 break; 9805 default: 9806 return Error(Loc, "cannot determine Thumb instruction size, " 9807 "use inst.n/inst.w instead"); 9808 } 9809 } else { 9810 if (Suffix) 9811 return Error(Loc, "width suffixes are invalid in ARM mode"); 9812 } 9813 9814 auto parseOne = [&]() -> bool { 9815 const MCExpr *Expr; 9816 if (getParser().parseExpression(Expr)) 9817 return true; 9818 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9819 if (!Value) { 9820 return Error(Loc, "expected constant expression"); 9821 } 9822 9823 switch (Width) { 9824 case 2: 9825 if (Value->getValue() > 0xffff) 9826 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 9827 break; 9828 case 4: 9829 if (Value->getValue() > 0xffffffff) 9830 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 9831 " operand is too big"); 9832 break; 9833 default: 9834 llvm_unreachable("only supported widths are 2 and 4"); 9835 } 9836 9837 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9838 return false; 9839 }; 9840 9841 if (parseOptionalToken(AsmToken::EndOfStatement)) 9842 return Error(Loc, "expected expression following directive"); 9843 if (parseMany(parseOne)) 9844 return true; 9845 return false; 9846 } 9847 9848 /// parseDirectiveLtorg 9849 /// ::= .ltorg | .pool 9850 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9851 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9852 return true; 9853 getTargetStreamer().emitCurrentConstantPool(); 9854 return false; 9855 } 9856 9857 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9858 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 9859 9860 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9861 return true; 9862 9863 if (!Section) { 9864 getStreamer().InitSections(false); 9865 Section = getStreamer().getCurrentSectionOnly(); 9866 } 9867 9868 assert(Section && "must have section to emit alignment"); 9869 if (Section->UseCodeAlign()) 9870 getStreamer().EmitCodeAlignment(2); 9871 else 9872 getStreamer().EmitValueToAlignment(2); 9873 9874 return false; 9875 } 9876 9877 /// parseDirectivePersonalityIndex 9878 /// ::= .personalityindex index 9879 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9880 MCAsmParser &Parser = getParser(); 9881 bool HasExistingPersonality = UC.hasPersonality(); 9882 9883 const MCExpr *IndexExpression; 9884 SMLoc IndexLoc = Parser.getTok().getLoc(); 9885 if (Parser.parseExpression(IndexExpression) || 9886 parseToken(AsmToken::EndOfStatement, 9887 "unexpected token in '.personalityindex' directive")) { 9888 return true; 9889 } 9890 9891 UC.recordPersonalityIndex(L); 9892 9893 if (!UC.hasFnStart()) { 9894 return Error(L, ".fnstart must precede .personalityindex directive"); 9895 } 9896 if (UC.cantUnwind()) { 9897 Error(L, ".personalityindex cannot be used with .cantunwind"); 9898 UC.emitCantUnwindLocNotes(); 9899 return true; 9900 } 9901 if (UC.hasHandlerData()) { 9902 Error(L, ".personalityindex must precede .handlerdata directive"); 9903 UC.emitHandlerDataLocNotes(); 9904 return true; 9905 } 9906 if (HasExistingPersonality) { 9907 Error(L, "multiple personality directives"); 9908 UC.emitPersonalityLocNotes(); 9909 return true; 9910 } 9911 9912 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9913 if (!CE) 9914 return Error(IndexLoc, "index must be a constant number"); 9915 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 9916 return Error(IndexLoc, 9917 "personality routine index should be in range [0-3]"); 9918 9919 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9920 return false; 9921 } 9922 9923 /// parseDirectiveUnwindRaw 9924 /// ::= .unwind_raw offset, opcode [, opcode...] 9925 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9926 MCAsmParser &Parser = getParser(); 9927 int64_t StackOffset; 9928 const MCExpr *OffsetExpr; 9929 SMLoc OffsetLoc = getLexer().getLoc(); 9930 9931 if (!UC.hasFnStart()) 9932 return Error(L, ".fnstart must precede .unwind_raw directives"); 9933 if (getParser().parseExpression(OffsetExpr)) 9934 return Error(OffsetLoc, "expected expression"); 9935 9936 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9937 if (!CE) 9938 return Error(OffsetLoc, "offset must be a constant"); 9939 9940 StackOffset = CE->getValue(); 9941 9942 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 9943 return true; 9944 9945 SmallVector<uint8_t, 16> Opcodes; 9946 9947 auto parseOne = [&]() -> bool { 9948 const MCExpr *OE; 9949 SMLoc OpcodeLoc = getLexer().getLoc(); 9950 if (check(getLexer().is(AsmToken::EndOfStatement) || 9951 Parser.parseExpression(OE), 9952 OpcodeLoc, "expected opcode expression")) 9953 return true; 9954 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9955 if (!OC) 9956 return Error(OpcodeLoc, "opcode value must be a constant"); 9957 const int64_t Opcode = OC->getValue(); 9958 if (Opcode & ~0xff) 9959 return Error(OpcodeLoc, "invalid opcode"); 9960 Opcodes.push_back(uint8_t(Opcode)); 9961 return false; 9962 }; 9963 9964 // Must have at least 1 element 9965 SMLoc OpcodeLoc = getLexer().getLoc(); 9966 if (parseOptionalToken(AsmToken::EndOfStatement)) 9967 return Error(OpcodeLoc, "expected opcode expression"); 9968 if (parseMany(parseOne)) 9969 return true; 9970 9971 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9972 return false; 9973 } 9974 9975 /// parseDirectiveTLSDescSeq 9976 /// ::= .tlsdescseq tls-variable 9977 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9978 MCAsmParser &Parser = getParser(); 9979 9980 if (getLexer().isNot(AsmToken::Identifier)) 9981 return TokError("expected variable after '.tlsdescseq' directive"); 9982 9983 const MCSymbolRefExpr *SRE = 9984 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9985 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9986 Lex(); 9987 9988 if (parseToken(AsmToken::EndOfStatement, 9989 "unexpected token in '.tlsdescseq' directive")) 9990 return true; 9991 9992 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9993 return false; 9994 } 9995 9996 /// parseDirectiveMovSP 9997 /// ::= .movsp reg [, #offset] 9998 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9999 MCAsmParser &Parser = getParser(); 10000 if (!UC.hasFnStart()) 10001 return Error(L, ".fnstart must precede .movsp directives"); 10002 if (UC.getFPReg() != ARM::SP) 10003 return Error(L, "unexpected .movsp directive"); 10004 10005 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10006 int SPReg = tryParseRegister(); 10007 if (SPReg == -1) 10008 return Error(SPRegLoc, "register expected"); 10009 if (SPReg == ARM::SP || SPReg == ARM::PC) 10010 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10011 10012 int64_t Offset = 0; 10013 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10014 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10015 return true; 10016 10017 const MCExpr *OffsetExpr; 10018 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10019 10020 if (Parser.parseExpression(OffsetExpr)) 10021 return Error(OffsetLoc, "malformed offset expression"); 10022 10023 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10024 if (!CE) 10025 return Error(OffsetLoc, "offset must be an immediate constant"); 10026 10027 Offset = CE->getValue(); 10028 } 10029 10030 if (parseToken(AsmToken::EndOfStatement, 10031 "unexpected token in '.movsp' directive")) 10032 return true; 10033 10034 getTargetStreamer().emitMovSP(SPReg, Offset); 10035 UC.saveFPReg(SPReg); 10036 10037 return false; 10038 } 10039 10040 /// parseDirectiveObjectArch 10041 /// ::= .object_arch name 10042 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10043 MCAsmParser &Parser = getParser(); 10044 if (getLexer().isNot(AsmToken::Identifier)) 10045 return Error(getLexer().getLoc(), "unexpected token"); 10046 10047 StringRef Arch = Parser.getTok().getString(); 10048 SMLoc ArchLoc = Parser.getTok().getLoc(); 10049 Lex(); 10050 10051 ARM::ArchKind ID = ARM::parseArch(Arch); 10052 10053 if (ID == ARM::ArchKind::INVALID) 10054 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10055 if (parseToken(AsmToken::EndOfStatement)) 10056 return true; 10057 10058 getTargetStreamer().emitObjectArch(ID); 10059 return false; 10060 } 10061 10062 /// parseDirectiveAlign 10063 /// ::= .align 10064 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10065 // NOTE: if this is not the end of the statement, fall back to the target 10066 // agnostic handling for this directive which will correctly handle this. 10067 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10068 // '.align' is target specifically handled to mean 2**2 byte alignment. 10069 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10070 assert(Section && "must have section to emit alignment"); 10071 if (Section->UseCodeAlign()) 10072 getStreamer().EmitCodeAlignment(4, 0); 10073 else 10074 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10075 return false; 10076 } 10077 return true; 10078 } 10079 10080 /// parseDirectiveThumbSet 10081 /// ::= .thumb_set name, value 10082 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10083 MCAsmParser &Parser = getParser(); 10084 10085 StringRef Name; 10086 if (check(Parser.parseIdentifier(Name), 10087 "expected identifier after '.thumb_set'") || 10088 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10089 return true; 10090 10091 MCSymbol *Sym; 10092 const MCExpr *Value; 10093 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10094 Parser, Sym, Value)) 10095 return true; 10096 10097 getTargetStreamer().emitThumbSet(Sym, Value); 10098 return false; 10099 } 10100 10101 /// Force static initialization. 10102 extern "C" void LLVMInitializeARMAsmParser() { 10103 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10104 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10105 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10106 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10107 } 10108 10109 #define GET_REGISTER_MATCHER 10110 #define GET_SUBTARGET_FEATURE_NAME 10111 #define GET_MATCHER_IMPLEMENTATION 10112 #define GET_MNEMONIC_SPELL_CHECKER 10113 #include "ARMGenAsmMatcher.inc" 10114 10115 // Some diagnostics need to vary with subtarget features, so they are handled 10116 // here. For example, the DPR class has either 16 or 32 registers, depending 10117 // on the FPU available. 10118 const char * 10119 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10120 switch (MatchError) { 10121 // rGPR contains sp starting with ARMv8. 10122 case Match_rGPR: 10123 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10124 : "operand must be a register in range [r0, r12] or r14"; 10125 // DPR contains 16 registers for some FPUs, and 32 for others. 10126 case Match_DPR: 10127 return hasD16() ? "operand must be a register in range [d0, d15]" 10128 : "operand must be a register in range [d0, d31]"; 10129 case Match_DPR_RegList: 10130 return hasD16() ? "operand must be a list of registers in range [d0, d15]" 10131 : "operand must be a list of registers in range [d0, d31]"; 10132 10133 // For all other diags, use the static string from tablegen. 10134 default: 10135 return getMatchKindDiag(MatchError); 10136 } 10137 } 10138 10139 // Process the list of near-misses, throwing away ones we don't want to report 10140 // to the user, and converting the rest to a source location and string that 10141 // should be reported. 10142 void 10143 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10144 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10145 SMLoc IDLoc, OperandVector &Operands) { 10146 // TODO: If operand didn't match, sub in a dummy one and run target 10147 // predicate, so that we can avoid reporting near-misses that are invalid? 10148 // TODO: Many operand types dont have SuperClasses set, so we report 10149 // redundant ones. 10150 // TODO: Some operands are superclasses of registers (e.g. 10151 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10152 // TODO: This is not all ARM-specific, can some of it be factored out? 10153 10154 // Record some information about near-misses that we have already seen, so 10155 // that we can avoid reporting redundant ones. For example, if there are 10156 // variants of an instruction that take 8- and 16-bit immediates, we want 10157 // to only report the widest one. 10158 std::multimap<unsigned, unsigned> OperandMissesSeen; 10159 SmallSet<uint64_t, 4> FeatureMissesSeen; 10160 bool ReportedTooFewOperands = false; 10161 10162 // Process the near-misses in reverse order, so that we see more general ones 10163 // first, and so can avoid emitting more specific ones. 10164 for (NearMissInfo &I : reverse(NearMissesIn)) { 10165 switch (I.getKind()) { 10166 case NearMissInfo::NearMissOperand: { 10167 SMLoc OperandLoc = 10168 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10169 const char *OperandDiag = 10170 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10171 10172 // If we have already emitted a message for a superclass, don't also report 10173 // the sub-class. We consider all operand classes that we don't have a 10174 // specialised diagnostic for to be equal for the propose of this check, 10175 // so that we don't report the generic error multiple times on the same 10176 // operand. 10177 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10178 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10179 if (std::any_of(PrevReports.first, PrevReports.second, 10180 [DupCheckMatchClass]( 10181 const std::pair<unsigned, unsigned> Pair) { 10182 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10183 return Pair.second == DupCheckMatchClass; 10184 else 10185 return isSubclass((MatchClassKind)DupCheckMatchClass, 10186 (MatchClassKind)Pair.second); 10187 })) 10188 break; 10189 OperandMissesSeen.insert( 10190 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10191 10192 NearMissMessage Message; 10193 Message.Loc = OperandLoc; 10194 if (OperandDiag) { 10195 Message.Message = OperandDiag; 10196 } else if (I.getOperandClass() == InvalidMatchClass) { 10197 Message.Message = "too many operands for instruction"; 10198 } else { 10199 Message.Message = "invalid operand for instruction"; 10200 DEBUG(dbgs() << "Missing diagnostic string for operand class " << 10201 getMatchClassName((MatchClassKind)I.getOperandClass()) 10202 << I.getOperandClass() << ", error " << I.getOperandError() 10203 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10204 } 10205 NearMissesOut.emplace_back(Message); 10206 break; 10207 } 10208 case NearMissInfo::NearMissFeature: { 10209 uint64_t MissingFeatures = I.getFeatures(); 10210 // Don't report the same set of features twice. 10211 if (FeatureMissesSeen.count(MissingFeatures)) 10212 break; 10213 FeatureMissesSeen.insert(MissingFeatures); 10214 10215 // Special case: don't report a feature set which includes arm-mode for 10216 // targets that don't have ARM mode. 10217 if ((MissingFeatures & Feature_IsARM) && !hasARM()) 10218 break; 10219 // Don't report any near-misses that both require switching instruction 10220 // set, and adding other subtarget features. 10221 if (isThumb() && (MissingFeatures & Feature_IsARM) && 10222 (MissingFeatures & ~Feature_IsARM)) 10223 break; 10224 if (!isThumb() && (MissingFeatures & Feature_IsThumb) && 10225 (MissingFeatures & ~Feature_IsThumb)) 10226 break; 10227 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) && 10228 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb))) 10229 break; 10230 10231 NearMissMessage Message; 10232 Message.Loc = IDLoc; 10233 raw_svector_ostream OS(Message.Message); 10234 10235 OS << "instruction requires:"; 10236 uint64_t Mask = 1; 10237 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1); 10238 ++MaskPos) { 10239 if (MissingFeatures & Mask) { 10240 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask); 10241 } 10242 Mask <<= 1; 10243 } 10244 NearMissesOut.emplace_back(Message); 10245 10246 break; 10247 } 10248 case NearMissInfo::NearMissPredicate: { 10249 NearMissMessage Message; 10250 Message.Loc = IDLoc; 10251 switch (I.getPredicateError()) { 10252 case Match_RequiresNotITBlock: 10253 Message.Message = "flag setting instruction only valid outside IT block"; 10254 break; 10255 case Match_RequiresITBlock: 10256 Message.Message = "instruction only valid inside IT block"; 10257 break; 10258 case Match_RequiresV6: 10259 Message.Message = "instruction variant requires ARMv6 or later"; 10260 break; 10261 case Match_RequiresThumb2: 10262 Message.Message = "instruction variant requires Thumb2"; 10263 break; 10264 case Match_RequiresV8: 10265 Message.Message = "instruction variant requires ARMv8 or later"; 10266 break; 10267 case Match_RequiresFlagSetting: 10268 Message.Message = "no flag-preserving variant of this instruction available"; 10269 break; 10270 case Match_InvalidOperand: 10271 Message.Message = "invalid operand for instruction"; 10272 break; 10273 default: 10274 llvm_unreachable("Unhandled target predicate error"); 10275 break; 10276 } 10277 NearMissesOut.emplace_back(Message); 10278 break; 10279 } 10280 case NearMissInfo::NearMissTooFewOperands: { 10281 if (!ReportedTooFewOperands) { 10282 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10283 NearMissesOut.emplace_back(NearMissMessage{ 10284 EndLoc, StringRef("too few operands for instruction")}); 10285 ReportedTooFewOperands = true; 10286 } 10287 break; 10288 } 10289 case NearMissInfo::NoNearMiss: 10290 // This should never leave the matcher. 10291 llvm_unreachable("not a near-miss"); 10292 break; 10293 } 10294 } 10295 } 10296 10297 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10298 SMLoc IDLoc, OperandVector &Operands) { 10299 SmallVector<NearMissMessage, 4> Messages; 10300 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10301 10302 if (Messages.size() == 0) { 10303 // No near-misses were found, so the best we can do is "invalid 10304 // instruction". 10305 Error(IDLoc, "invalid instruction"); 10306 } else if (Messages.size() == 1) { 10307 // One near miss was found, report it as the sole error. 10308 Error(Messages[0].Loc, Messages[0].Message); 10309 } else { 10310 // More than one near miss, so report a generic "invalid instruction" 10311 // error, followed by notes for each of the near-misses. 10312 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10313 for (auto &M : Messages) { 10314 Note(M.Loc, M.Message); 10315 } 10316 } 10317 } 10318 10319 // FIXME: This structure should be moved inside ARMTargetParser 10320 // when we start to table-generate them, and we can use the ARM 10321 // flags below, that were generated by table-gen. 10322 static const struct { 10323 const unsigned Kind; 10324 const uint64_t ArchCheck; 10325 const FeatureBitset Features; 10326 } Extensions[] = { 10327 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10328 { ARM::AEK_CRYPTO, Feature_HasV8, 10329 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10330 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10331 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10332 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10333 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10334 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10335 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10336 // FIXME: Only available in A-class, isel not predicated 10337 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10338 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10339 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10340 // FIXME: Unsupported extensions. 10341 { ARM::AEK_OS, Feature_None, {} }, 10342 { ARM::AEK_IWMMXT, Feature_None, {} }, 10343 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10344 { ARM::AEK_MAVERICK, Feature_None, {} }, 10345 { ARM::AEK_XSCALE, Feature_None, {} }, 10346 }; 10347 10348 /// parseDirectiveArchExtension 10349 /// ::= .arch_extension [no]feature 10350 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10351 MCAsmParser &Parser = getParser(); 10352 10353 if (getLexer().isNot(AsmToken::Identifier)) 10354 return Error(getLexer().getLoc(), "expected architecture extension name"); 10355 10356 StringRef Name = Parser.getTok().getString(); 10357 SMLoc ExtLoc = Parser.getTok().getLoc(); 10358 Lex(); 10359 10360 if (parseToken(AsmToken::EndOfStatement, 10361 "unexpected token in '.arch_extension' directive")) 10362 return true; 10363 10364 bool EnableFeature = true; 10365 if (Name.startswith_lower("no")) { 10366 EnableFeature = false; 10367 Name = Name.substr(2); 10368 } 10369 unsigned FeatureKind = ARM::parseArchExt(Name); 10370 if (FeatureKind == ARM::AEK_INVALID) 10371 return Error(ExtLoc, "unknown architectural extension: " + Name); 10372 10373 for (const auto &Extension : Extensions) { 10374 if (Extension.Kind != FeatureKind) 10375 continue; 10376 10377 if (Extension.Features.none()) 10378 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10379 10380 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10381 return Error(ExtLoc, "architectural extension '" + Name + 10382 "' is not " 10383 "allowed for the current base architecture"); 10384 10385 MCSubtargetInfo &STI = copySTI(); 10386 FeatureBitset ToggleFeatures = EnableFeature 10387 ? (~STI.getFeatureBits() & Extension.Features) 10388 : ( STI.getFeatureBits() & Extension.Features); 10389 10390 uint64_t Features = 10391 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10392 setAvailableFeatures(Features); 10393 return false; 10394 } 10395 10396 return Error(ExtLoc, "unknown architectural extension: " + Name); 10397 } 10398 10399 // Define this matcher function after the auto-generated include so we 10400 // have the match class enum definitions. 10401 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10402 unsigned Kind) { 10403 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10404 // If the kind is a token for a literal immediate, check if our asm 10405 // operand matches. This is for InstAliases which have a fixed-value 10406 // immediate in the syntax. 10407 switch (Kind) { 10408 default: break; 10409 case MCK__35_0: 10410 if (Op.isImm()) 10411 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10412 if (CE->getValue() == 0) 10413 return Match_Success; 10414 break; 10415 case MCK_ModImm: 10416 if (Op.isImm()) { 10417 const MCExpr *SOExpr = Op.getImm(); 10418 int64_t Value; 10419 if (!SOExpr->evaluateAsAbsolute(Value)) 10420 return Match_Success; 10421 assert((Value >= std::numeric_limits<int32_t>::min() && 10422 Value <= std::numeric_limits<uint32_t>::max()) && 10423 "expression value must be representable in 32 bits"); 10424 } 10425 break; 10426 case MCK_rGPR: 10427 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10428 return Match_Success; 10429 return Match_rGPR; 10430 case MCK_GPRPair: 10431 if (Op.isReg() && 10432 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10433 return Match_Success; 10434 break; 10435 } 10436 return Match_InvalidOperand; 10437 } 10438