1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetParser.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Support/raw_ostream.h" 51 52 using namespace llvm; 53 54 namespace { 55 56 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 57 58 static cl::opt<ImplicitItModeTy> ImplicitItMode( 59 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 60 cl::desc("Allow conditional instructions outdside of an IT block"), 61 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 62 "Accept in both ISAs, emit implicit ITs in Thumb"), 63 clEnumValN(ImplicitItModeTy::Never, "never", 64 "Warn in ARM, reject in Thumb"), 65 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 66 "Accept in ARM, reject in Thumb"), 67 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 68 "Warn in ARM, emit implicit ITs in Thumb"))); 69 70 class ARMOperand; 71 72 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 73 74 class UnwindContext { 75 MCAsmParser &Parser; 76 77 typedef SmallVector<SMLoc, 4> Locs; 78 79 Locs FnStartLocs; 80 Locs CantUnwindLocs; 81 Locs PersonalityLocs; 82 Locs PersonalityIndexLocs; 83 Locs HandlerDataLocs; 84 int FPReg; 85 86 public: 87 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 88 89 bool hasFnStart() const { return !FnStartLocs.empty(); } 90 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 91 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 92 bool hasPersonality() const { 93 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 94 } 95 96 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 97 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 98 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 99 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 100 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 101 102 void saveFPReg(int Reg) { FPReg = Reg; } 103 int getFPReg() const { return FPReg; } 104 105 void emitFnStartLocNotes() const { 106 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 107 FI != FE; ++FI) 108 Parser.Note(*FI, ".fnstart was specified here"); 109 } 110 void emitCantUnwindLocNotes() const { 111 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 112 UE = CantUnwindLocs.end(); UI != UE; ++UI) 113 Parser.Note(*UI, ".cantunwind was specified here"); 114 } 115 void emitHandlerDataLocNotes() const { 116 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 117 HE = HandlerDataLocs.end(); HI != HE; ++HI) 118 Parser.Note(*HI, ".handlerdata was specified here"); 119 } 120 void emitPersonalityLocNotes() const { 121 for (Locs::const_iterator PI = PersonalityLocs.begin(), 122 PE = PersonalityLocs.end(), 123 PII = PersonalityIndexLocs.begin(), 124 PIE = PersonalityIndexLocs.end(); 125 PI != PE || PII != PIE;) { 126 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 127 Parser.Note(*PI++, ".personality was specified here"); 128 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 129 Parser.Note(*PII++, ".personalityindex was specified here"); 130 else 131 llvm_unreachable(".personality and .personalityindex cannot be " 132 "at the same location"); 133 } 134 } 135 136 void reset() { 137 FnStartLocs = Locs(); 138 CantUnwindLocs = Locs(); 139 PersonalityLocs = Locs(); 140 HandlerDataLocs = Locs(); 141 PersonalityIndexLocs = Locs(); 142 FPReg = ARM::SP; 143 } 144 }; 145 146 class ARMAsmParser : public MCTargetAsmParser { 147 const MCInstrInfo &MII; 148 const MCRegisterInfo *MRI; 149 UnwindContext UC; 150 151 ARMTargetStreamer &getTargetStreamer() { 152 assert(getParser().getStreamer().getTargetStreamer() && 153 "do not have a target streamer"); 154 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 155 return static_cast<ARMTargetStreamer &>(TS); 156 } 157 158 // Map of register aliases registers via the .req directive. 159 StringMap<unsigned> RegisterReqs; 160 161 bool NextSymbolIsThumb; 162 163 bool useImplicitITThumb() const { 164 return ImplicitItMode == ImplicitItModeTy::Always || 165 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 166 } 167 168 bool useImplicitITARM() const { 169 return ImplicitItMode == ImplicitItModeTy::Always || 170 ImplicitItMode == ImplicitItModeTy::ARMOnly; 171 } 172 173 struct { 174 ARMCC::CondCodes Cond; // Condition for IT block. 175 unsigned Mask:4; // Condition mask for instructions. 176 // Starting at first 1 (from lsb). 177 // '1' condition as indicated in IT. 178 // '0' inverse of condition (else). 179 // Count of instructions in IT block is 180 // 4 - trailingzeroes(mask) 181 // Note that this does not have the same encoding 182 // as in the IT instruction, which also depends 183 // on the low bit of the condition code. 184 185 unsigned CurPosition; // Current position in parsing of IT 186 // block. In range [0,4], with 0 being the IT 187 // instruction itself. Initialized according to 188 // count of instructions in block. ~0U if no 189 // active IT block. 190 191 bool IsExplicit; // true - The IT instruction was present in the 192 // input, we should not modify it. 193 // false - The IT instruction was added 194 // implicitly, we can extend it if that 195 // would be legal. 196 } ITState; 197 198 llvm::SmallVector<MCInst, 4> PendingConditionalInsts; 199 200 void flushPendingInstructions(MCStreamer &Out) override { 201 if (!inImplicitITBlock()) { 202 assert(PendingConditionalInsts.size() == 0); 203 return; 204 } 205 206 // Emit the IT instruction 207 unsigned Mask = getITMaskEncoding(); 208 MCInst ITInst; 209 ITInst.setOpcode(ARM::t2IT); 210 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 211 ITInst.addOperand(MCOperand::createImm(Mask)); 212 Out.EmitInstruction(ITInst, getSTI()); 213 214 // Emit the conditonal instructions 215 assert(PendingConditionalInsts.size() <= 4); 216 for (const MCInst &Inst : PendingConditionalInsts) { 217 Out.EmitInstruction(Inst, getSTI()); 218 } 219 PendingConditionalInsts.clear(); 220 221 // Clear the IT state 222 ITState.Mask = 0; 223 ITState.CurPosition = ~0U; 224 } 225 226 bool inITBlock() { return ITState.CurPosition != ~0U; } 227 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 228 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 229 bool lastInITBlock() { 230 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 231 } 232 void forwardITPosition() { 233 if (!inITBlock()) return; 234 // Move to the next instruction in the IT block, if there is one. If not, 235 // mark the block as done, except for implicit IT blocks, which we leave 236 // open until we find an instruction that can't be added to it. 237 unsigned TZ = countTrailingZeros(ITState.Mask); 238 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 239 ITState.CurPosition = ~0U; // Done with the IT block after this. 240 } 241 242 // Rewind the state of the current IT block, removing the last slot from it. 243 void rewindImplicitITPosition() { 244 assert(inImplicitITBlock()); 245 assert(ITState.CurPosition > 1); 246 ITState.CurPosition--; 247 unsigned TZ = countTrailingZeros(ITState.Mask); 248 unsigned NewMask = 0; 249 NewMask |= ITState.Mask & (0xC << TZ); 250 NewMask |= 0x2 << TZ; 251 ITState.Mask = NewMask; 252 } 253 254 // Rewind the state of the current IT block, removing the last slot from it. 255 // If we were at the first slot, this closes the IT block. 256 void discardImplicitITBlock() { 257 assert(inImplicitITBlock()); 258 assert(ITState.CurPosition == 1); 259 ITState.CurPosition = ~0U; 260 return; 261 } 262 263 // Get the encoding of the IT mask, as it will appear in an IT instruction. 264 unsigned getITMaskEncoding() { 265 assert(inITBlock()); 266 unsigned Mask = ITState.Mask; 267 unsigned TZ = countTrailingZeros(Mask); 268 if ((ITState.Cond & 1) == 0) { 269 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 270 Mask ^= (0xE << TZ) & 0xF; 271 } 272 return Mask; 273 } 274 275 // Get the condition code corresponding to the current IT block slot. 276 ARMCC::CondCodes currentITCond() { 277 unsigned MaskBit; 278 if (ITState.CurPosition == 1) 279 MaskBit = 1; 280 else 281 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 282 283 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 284 } 285 286 // Invert the condition of the current IT block slot without changing any 287 // other slots in the same block. 288 void invertCurrentITCondition() { 289 if (ITState.CurPosition == 1) { 290 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 291 } else { 292 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 293 } 294 } 295 296 // Returns true if the current IT block is full (all 4 slots used). 297 bool isITBlockFull() { 298 return inITBlock() && (ITState.Mask & 1); 299 } 300 301 // Extend the current implicit IT block to have one more slot with the given 302 // condition code. 303 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 304 assert(inImplicitITBlock()); 305 assert(!isITBlockFull()); 306 assert(Cond == ITState.Cond || 307 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 308 unsigned TZ = countTrailingZeros(ITState.Mask); 309 unsigned NewMask = 0; 310 // Keep any existing condition bits. 311 NewMask |= ITState.Mask & (0xE << TZ); 312 // Insert the new condition bit. 313 NewMask |= (Cond == ITState.Cond) << TZ; 314 // Move the trailing 1 down one bit. 315 NewMask |= 1 << (TZ - 1); 316 ITState.Mask = NewMask; 317 } 318 319 // Create a new implicit IT block with a dummy condition code. 320 void startImplicitITBlock() { 321 assert(!inITBlock()); 322 ITState.Cond = ARMCC::AL; 323 ITState.Mask = 8; 324 ITState.CurPosition = 1; 325 ITState.IsExplicit = false; 326 return; 327 } 328 329 // Create a new explicit IT block with the given condition and mask. The mask 330 // should be in the parsed format, with a 1 implying 't', regardless of the 331 // low bit of the condition. 332 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 333 assert(!inITBlock()); 334 ITState.Cond = Cond; 335 ITState.Mask = Mask; 336 ITState.CurPosition = 0; 337 ITState.IsExplicit = true; 338 return; 339 } 340 341 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 342 return getParser().Note(L, Msg, Range); 343 } 344 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 345 return getParser().Warning(L, Msg, Range); 346 } 347 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 348 return getParser().Error(L, Msg, Range); 349 } 350 351 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 352 unsigned ListNo, bool IsARPop = false); 353 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 354 unsigned ListNo); 355 356 int tryParseRegister(); 357 bool tryParseRegisterWithWriteBack(OperandVector &); 358 int tryParseShiftRegister(OperandVector &); 359 bool parseRegisterList(OperandVector &); 360 bool parseMemory(OperandVector &); 361 bool parseOperand(OperandVector &, StringRef Mnemonic); 362 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 363 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 364 unsigned &ShiftAmount); 365 bool parseLiteralValues(unsigned Size, SMLoc L); 366 bool parseDirectiveThumb(SMLoc L); 367 bool parseDirectiveARM(SMLoc L); 368 bool parseDirectiveThumbFunc(SMLoc L); 369 bool parseDirectiveCode(SMLoc L); 370 bool parseDirectiveSyntax(SMLoc L); 371 bool parseDirectiveReq(StringRef Name, SMLoc L); 372 bool parseDirectiveUnreq(SMLoc L); 373 bool parseDirectiveArch(SMLoc L); 374 bool parseDirectiveEabiAttr(SMLoc L); 375 bool parseDirectiveCPU(SMLoc L); 376 bool parseDirectiveFPU(SMLoc L); 377 bool parseDirectiveFnStart(SMLoc L); 378 bool parseDirectiveFnEnd(SMLoc L); 379 bool parseDirectiveCantUnwind(SMLoc L); 380 bool parseDirectivePersonality(SMLoc L); 381 bool parseDirectiveHandlerData(SMLoc L); 382 bool parseDirectiveSetFP(SMLoc L); 383 bool parseDirectivePad(SMLoc L); 384 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 385 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 386 bool parseDirectiveLtorg(SMLoc L); 387 bool parseDirectiveEven(SMLoc L); 388 bool parseDirectivePersonalityIndex(SMLoc L); 389 bool parseDirectiveUnwindRaw(SMLoc L); 390 bool parseDirectiveTLSDescSeq(SMLoc L); 391 bool parseDirectiveMovSP(SMLoc L); 392 bool parseDirectiveObjectArch(SMLoc L); 393 bool parseDirectiveArchExtension(SMLoc L); 394 bool parseDirectiveAlign(SMLoc L); 395 bool parseDirectiveThumbSet(SMLoc L); 396 397 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 398 bool &CarrySetting, unsigned &ProcessorIMod, 399 StringRef &ITMask); 400 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 401 bool &CanAcceptCarrySet, 402 bool &CanAcceptPredicationCode); 403 404 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 405 OperandVector &Operands); 406 bool isThumb() const { 407 // FIXME: Can tablegen auto-generate this? 408 return getSTI().getFeatureBits()[ARM::ModeThumb]; 409 } 410 bool isThumbOne() const { 411 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 412 } 413 bool isThumbTwo() const { 414 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 415 } 416 bool hasThumb() const { 417 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 418 } 419 bool hasThumb2() const { 420 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 421 } 422 bool hasV6Ops() const { 423 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 424 } 425 bool hasV6T2Ops() const { 426 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 427 } 428 bool hasV6MOps() const { 429 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 430 } 431 bool hasV7Ops() const { 432 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 433 } 434 bool hasV8Ops() const { 435 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 436 } 437 bool hasV8MBaseline() const { 438 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 439 } 440 bool hasV8MMainline() const { 441 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 442 } 443 bool has8MSecExt() const { 444 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 445 } 446 bool hasARM() const { 447 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 448 } 449 bool hasDSP() const { 450 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 451 } 452 bool hasD16() const { 453 return getSTI().getFeatureBits()[ARM::FeatureD16]; 454 } 455 bool hasV8_1aOps() const { 456 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 457 } 458 bool hasRAS() const { 459 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 460 } 461 462 void SwitchMode() { 463 MCSubtargetInfo &STI = copySTI(); 464 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 465 setAvailableFeatures(FB); 466 } 467 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 468 bool isMClass() const { 469 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 470 } 471 472 /// @name Auto-generated Match Functions 473 /// { 474 475 #define GET_ASSEMBLER_HEADER 476 #include "ARMGenAsmMatcher.inc" 477 478 /// } 479 480 OperandMatchResultTy parseITCondCode(OperandVector &); 481 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 482 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 483 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 484 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 485 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 486 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 487 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 488 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 489 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 490 int High); 491 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 492 return parsePKHImm(O, "lsl", 0, 31); 493 } 494 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 495 return parsePKHImm(O, "asr", 1, 32); 496 } 497 OperandMatchResultTy parseSetEndImm(OperandVector &); 498 OperandMatchResultTy parseShifterImm(OperandVector &); 499 OperandMatchResultTy parseRotImm(OperandVector &); 500 OperandMatchResultTy parseModImm(OperandVector &); 501 OperandMatchResultTy parseBitfield(OperandVector &); 502 OperandMatchResultTy parsePostIdxReg(OperandVector &); 503 OperandMatchResultTy parseAM3Offset(OperandVector &); 504 OperandMatchResultTy parseFPImm(OperandVector &); 505 OperandMatchResultTy parseVectorList(OperandVector &); 506 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 507 SMLoc &EndLoc); 508 509 // Asm Match Converter Methods 510 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 511 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 512 513 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 514 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 515 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 516 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 517 bool isITBlockTerminator(MCInst &Inst) const; 518 519 public: 520 enum ARMMatchResultTy { 521 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 522 Match_RequiresNotITBlock, 523 Match_RequiresV6, 524 Match_RequiresThumb2, 525 Match_RequiresV8, 526 Match_RequiresFlagSetting, 527 #define GET_OPERAND_DIAGNOSTIC_TYPES 528 #include "ARMGenAsmMatcher.inc" 529 530 }; 531 532 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 533 const MCInstrInfo &MII, const MCTargetOptions &Options) 534 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 535 MCAsmParserExtension::Initialize(Parser); 536 537 // Cache the MCRegisterInfo. 538 MRI = getContext().getRegisterInfo(); 539 540 // Initialize the set of available features. 541 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 542 543 // Not in an ITBlock to start with. 544 ITState.CurPosition = ~0U; 545 546 NextSymbolIsThumb = false; 547 } 548 549 // Implementation of the MCTargetAsmParser interface: 550 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 551 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 552 SMLoc NameLoc, OperandVector &Operands) override; 553 bool ParseDirective(AsmToken DirectiveID) override; 554 555 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 556 unsigned Kind) override; 557 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 558 559 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 560 OperandVector &Operands, MCStreamer &Out, 561 uint64_t &ErrorInfo, 562 bool MatchingInlineAsm) override; 563 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 564 uint64_t &ErrorInfo, bool MatchingInlineAsm, 565 bool &EmitInITBlock, MCStreamer &Out); 566 void onLabelParsed(MCSymbol *Symbol) override; 567 }; 568 } // end anonymous namespace 569 570 namespace { 571 572 /// ARMOperand - Instances of this class represent a parsed ARM machine 573 /// operand. 574 class ARMOperand : public MCParsedAsmOperand { 575 enum KindTy { 576 k_CondCode, 577 k_CCOut, 578 k_ITCondMask, 579 k_CoprocNum, 580 k_CoprocReg, 581 k_CoprocOption, 582 k_Immediate, 583 k_MemBarrierOpt, 584 k_InstSyncBarrierOpt, 585 k_Memory, 586 k_PostIndexRegister, 587 k_MSRMask, 588 k_BankedReg, 589 k_ProcIFlags, 590 k_VectorIndex, 591 k_Register, 592 k_RegisterList, 593 k_DPRRegisterList, 594 k_SPRRegisterList, 595 k_VectorList, 596 k_VectorListAllLanes, 597 k_VectorListIndexed, 598 k_ShiftedRegister, 599 k_ShiftedImmediate, 600 k_ShifterImmediate, 601 k_RotateImmediate, 602 k_ModifiedImmediate, 603 k_ConstantPoolImmediate, 604 k_BitfieldDescriptor, 605 k_Token, 606 } Kind; 607 608 SMLoc StartLoc, EndLoc, AlignmentLoc; 609 SmallVector<unsigned, 8> Registers; 610 611 struct CCOp { 612 ARMCC::CondCodes Val; 613 }; 614 615 struct CopOp { 616 unsigned Val; 617 }; 618 619 struct CoprocOptionOp { 620 unsigned Val; 621 }; 622 623 struct ITMaskOp { 624 unsigned Mask:4; 625 }; 626 627 struct MBOptOp { 628 ARM_MB::MemBOpt Val; 629 }; 630 631 struct ISBOptOp { 632 ARM_ISB::InstSyncBOpt Val; 633 }; 634 635 struct IFlagsOp { 636 ARM_PROC::IFlags Val; 637 }; 638 639 struct MMaskOp { 640 unsigned Val; 641 }; 642 643 struct BankedRegOp { 644 unsigned Val; 645 }; 646 647 struct TokOp { 648 const char *Data; 649 unsigned Length; 650 }; 651 652 struct RegOp { 653 unsigned RegNum; 654 }; 655 656 // A vector register list is a sequential list of 1 to 4 registers. 657 struct VectorListOp { 658 unsigned RegNum; 659 unsigned Count; 660 unsigned LaneIndex; 661 bool isDoubleSpaced; 662 }; 663 664 struct VectorIndexOp { 665 unsigned Val; 666 }; 667 668 struct ImmOp { 669 const MCExpr *Val; 670 }; 671 672 /// Combined record for all forms of ARM address expressions. 673 struct MemoryOp { 674 unsigned BaseRegNum; 675 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 676 // was specified. 677 const MCConstantExpr *OffsetImm; // Offset immediate value 678 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 679 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 680 unsigned ShiftImm; // shift for OffsetReg. 681 unsigned Alignment; // 0 = no alignment specified 682 // n = alignment in bytes (2, 4, 8, 16, or 32) 683 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 684 }; 685 686 struct PostIdxRegOp { 687 unsigned RegNum; 688 bool isAdd; 689 ARM_AM::ShiftOpc ShiftTy; 690 unsigned ShiftImm; 691 }; 692 693 struct ShifterImmOp { 694 bool isASR; 695 unsigned Imm; 696 }; 697 698 struct RegShiftedRegOp { 699 ARM_AM::ShiftOpc ShiftTy; 700 unsigned SrcReg; 701 unsigned ShiftReg; 702 unsigned ShiftImm; 703 }; 704 705 struct RegShiftedImmOp { 706 ARM_AM::ShiftOpc ShiftTy; 707 unsigned SrcReg; 708 unsigned ShiftImm; 709 }; 710 711 struct RotImmOp { 712 unsigned Imm; 713 }; 714 715 struct ModImmOp { 716 unsigned Bits; 717 unsigned Rot; 718 }; 719 720 struct BitfieldOp { 721 unsigned LSB; 722 unsigned Width; 723 }; 724 725 union { 726 struct CCOp CC; 727 struct CopOp Cop; 728 struct CoprocOptionOp CoprocOption; 729 struct MBOptOp MBOpt; 730 struct ISBOptOp ISBOpt; 731 struct ITMaskOp ITMask; 732 struct IFlagsOp IFlags; 733 struct MMaskOp MMask; 734 struct BankedRegOp BankedReg; 735 struct TokOp Tok; 736 struct RegOp Reg; 737 struct VectorListOp VectorList; 738 struct VectorIndexOp VectorIndex; 739 struct ImmOp Imm; 740 struct MemoryOp Memory; 741 struct PostIdxRegOp PostIdxReg; 742 struct ShifterImmOp ShifterImm; 743 struct RegShiftedRegOp RegShiftedReg; 744 struct RegShiftedImmOp RegShiftedImm; 745 struct RotImmOp RotImm; 746 struct ModImmOp ModImm; 747 struct BitfieldOp Bitfield; 748 }; 749 750 public: 751 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 752 753 /// getStartLoc - Get the location of the first token of this operand. 754 SMLoc getStartLoc() const override { return StartLoc; } 755 /// getEndLoc - Get the location of the last token of this operand. 756 SMLoc getEndLoc() const override { return EndLoc; } 757 /// getLocRange - Get the range between the first and last token of this 758 /// operand. 759 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 760 761 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 762 SMLoc getAlignmentLoc() const { 763 assert(Kind == k_Memory && "Invalid access!"); 764 return AlignmentLoc; 765 } 766 767 ARMCC::CondCodes getCondCode() const { 768 assert(Kind == k_CondCode && "Invalid access!"); 769 return CC.Val; 770 } 771 772 unsigned getCoproc() const { 773 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 774 return Cop.Val; 775 } 776 777 StringRef getToken() const { 778 assert(Kind == k_Token && "Invalid access!"); 779 return StringRef(Tok.Data, Tok.Length); 780 } 781 782 unsigned getReg() const override { 783 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 784 return Reg.RegNum; 785 } 786 787 const SmallVectorImpl<unsigned> &getRegList() const { 788 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 789 Kind == k_SPRRegisterList) && "Invalid access!"); 790 return Registers; 791 } 792 793 const MCExpr *getImm() const { 794 assert(isImm() && "Invalid access!"); 795 return Imm.Val; 796 } 797 798 const MCExpr *getConstantPoolImm() const { 799 assert(isConstantPoolImm() && "Invalid access!"); 800 return Imm.Val; 801 } 802 803 unsigned getVectorIndex() const { 804 assert(Kind == k_VectorIndex && "Invalid access!"); 805 return VectorIndex.Val; 806 } 807 808 ARM_MB::MemBOpt getMemBarrierOpt() const { 809 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 810 return MBOpt.Val; 811 } 812 813 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 814 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 815 return ISBOpt.Val; 816 } 817 818 ARM_PROC::IFlags getProcIFlags() const { 819 assert(Kind == k_ProcIFlags && "Invalid access!"); 820 return IFlags.Val; 821 } 822 823 unsigned getMSRMask() const { 824 assert(Kind == k_MSRMask && "Invalid access!"); 825 return MMask.Val; 826 } 827 828 unsigned getBankedReg() const { 829 assert(Kind == k_BankedReg && "Invalid access!"); 830 return BankedReg.Val; 831 } 832 833 bool isCoprocNum() const { return Kind == k_CoprocNum; } 834 bool isCoprocReg() const { return Kind == k_CoprocReg; } 835 bool isCoprocOption() const { return Kind == k_CoprocOption; } 836 bool isCondCode() const { return Kind == k_CondCode; } 837 bool isCCOut() const { return Kind == k_CCOut; } 838 bool isITMask() const { return Kind == k_ITCondMask; } 839 bool isITCondCode() const { return Kind == k_CondCode; } 840 bool isImm() const override { 841 return Kind == k_Immediate; 842 } 843 844 bool isARMBranchTarget() const { 845 if (!isImm()) return false; 846 847 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 848 return CE->getValue() % 4 == 0; 849 return true; 850 } 851 852 853 bool isThumbBranchTarget() const { 854 if (!isImm()) return false; 855 856 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 857 return CE->getValue() % 2 == 0; 858 return true; 859 } 860 861 // checks whether this operand is an unsigned offset which fits is a field 862 // of specified width and scaled by a specific number of bits 863 template<unsigned width, unsigned scale> 864 bool isUnsignedOffset() const { 865 if (!isImm()) return false; 866 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 867 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 868 int64_t Val = CE->getValue(); 869 int64_t Align = 1LL << scale; 870 int64_t Max = Align * ((1LL << width) - 1); 871 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 872 } 873 return false; 874 } 875 // checks whether this operand is an signed offset which fits is a field 876 // of specified width and scaled by a specific number of bits 877 template<unsigned width, unsigned scale> 878 bool isSignedOffset() const { 879 if (!isImm()) return false; 880 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 881 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 882 int64_t Val = CE->getValue(); 883 int64_t Align = 1LL << scale; 884 int64_t Max = Align * ((1LL << (width-1)) - 1); 885 int64_t Min = -Align * (1LL << (width-1)); 886 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 887 } 888 return false; 889 } 890 891 // checks whether this operand is a memory operand computed as an offset 892 // applied to PC. the offset may have 8 bits of magnitude and is represented 893 // with two bits of shift. textually it may be either [pc, #imm], #imm or 894 // relocable expression... 895 bool isThumbMemPC() const { 896 int64_t Val = 0; 897 if (isImm()) { 898 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 899 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 900 if (!CE) return false; 901 Val = CE->getValue(); 902 } 903 else if (isMem()) { 904 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 905 if(Memory.BaseRegNum != ARM::PC) return false; 906 Val = Memory.OffsetImm->getValue(); 907 } 908 else return false; 909 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 910 } 911 bool isFPImm() const { 912 if (!isImm()) return false; 913 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 914 if (!CE) return false; 915 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 916 return Val != -1; 917 } 918 bool isFBits16() const { 919 if (!isImm()) return false; 920 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 921 if (!CE) return false; 922 int64_t Value = CE->getValue(); 923 return Value >= 0 && Value <= 16; 924 } 925 bool isFBits32() const { 926 if (!isImm()) return false; 927 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 928 if (!CE) return false; 929 int64_t Value = CE->getValue(); 930 return Value >= 1 && Value <= 32; 931 } 932 bool isImm8s4() const { 933 if (!isImm()) return false; 934 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 935 if (!CE) return false; 936 int64_t Value = CE->getValue(); 937 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 938 } 939 bool isImm0_1020s4() const { 940 if (!isImm()) return false; 941 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 942 if (!CE) return false; 943 int64_t Value = CE->getValue(); 944 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 945 } 946 bool isImm0_508s4() const { 947 if (!isImm()) return false; 948 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 949 if (!CE) return false; 950 int64_t Value = CE->getValue(); 951 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 952 } 953 bool isImm0_508s4Neg() const { 954 if (!isImm()) return false; 955 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 956 if (!CE) return false; 957 int64_t Value = -CE->getValue(); 958 // explicitly exclude zero. we want that to use the normal 0_508 version. 959 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 960 } 961 bool isImm0_239() const { 962 if (!isImm()) return false; 963 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 964 if (!CE) return false; 965 int64_t Value = CE->getValue(); 966 return Value >= 0 && Value < 240; 967 } 968 bool isImm0_255() const { 969 if (!isImm()) return false; 970 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 971 if (!CE) return false; 972 int64_t Value = CE->getValue(); 973 return Value >= 0 && Value < 256; 974 } 975 bool isImm0_4095() const { 976 if (!isImm()) return false; 977 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 978 if (!CE) return false; 979 int64_t Value = CE->getValue(); 980 return Value >= 0 && Value < 4096; 981 } 982 bool isImm0_4095Neg() const { 983 if (!isImm()) return false; 984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 985 if (!CE) return false; 986 int64_t Value = -CE->getValue(); 987 return Value > 0 && Value < 4096; 988 } 989 bool isImm0_1() const { 990 if (!isImm()) return false; 991 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 992 if (!CE) return false; 993 int64_t Value = CE->getValue(); 994 return Value >= 0 && Value < 2; 995 } 996 bool isImm0_3() const { 997 if (!isImm()) return false; 998 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 999 if (!CE) return false; 1000 int64_t Value = CE->getValue(); 1001 return Value >= 0 && Value < 4; 1002 } 1003 bool isImm0_7() const { 1004 if (!isImm()) return false; 1005 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1006 if (!CE) return false; 1007 int64_t Value = CE->getValue(); 1008 return Value >= 0 && Value < 8; 1009 } 1010 bool isImm0_15() const { 1011 if (!isImm()) return false; 1012 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1013 if (!CE) return false; 1014 int64_t Value = CE->getValue(); 1015 return Value >= 0 && Value < 16; 1016 } 1017 bool isImm0_31() const { 1018 if (!isImm()) return false; 1019 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1020 if (!CE) return false; 1021 int64_t Value = CE->getValue(); 1022 return Value >= 0 && Value < 32; 1023 } 1024 bool isImm0_63() const { 1025 if (!isImm()) return false; 1026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1027 if (!CE) return false; 1028 int64_t Value = CE->getValue(); 1029 return Value >= 0 && Value < 64; 1030 } 1031 bool isImm8() const { 1032 if (!isImm()) return false; 1033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1034 if (!CE) return false; 1035 int64_t Value = CE->getValue(); 1036 return Value == 8; 1037 } 1038 bool isImm16() const { 1039 if (!isImm()) return false; 1040 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1041 if (!CE) return false; 1042 int64_t Value = CE->getValue(); 1043 return Value == 16; 1044 } 1045 bool isImm32() const { 1046 if (!isImm()) return false; 1047 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1048 if (!CE) return false; 1049 int64_t Value = CE->getValue(); 1050 return Value == 32; 1051 } 1052 bool isShrImm8() const { 1053 if (!isImm()) return false; 1054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1055 if (!CE) return false; 1056 int64_t Value = CE->getValue(); 1057 return Value > 0 && Value <= 8; 1058 } 1059 bool isShrImm16() const { 1060 if (!isImm()) return false; 1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1062 if (!CE) return false; 1063 int64_t Value = CE->getValue(); 1064 return Value > 0 && Value <= 16; 1065 } 1066 bool isShrImm32() const { 1067 if (!isImm()) return false; 1068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1069 if (!CE) return false; 1070 int64_t Value = CE->getValue(); 1071 return Value > 0 && Value <= 32; 1072 } 1073 bool isShrImm64() const { 1074 if (!isImm()) return false; 1075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1076 if (!CE) return false; 1077 int64_t Value = CE->getValue(); 1078 return Value > 0 && Value <= 64; 1079 } 1080 bool isImm1_7() const { 1081 if (!isImm()) return false; 1082 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1083 if (!CE) return false; 1084 int64_t Value = CE->getValue(); 1085 return Value > 0 && Value < 8; 1086 } 1087 bool isImm1_15() const { 1088 if (!isImm()) return false; 1089 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1090 if (!CE) return false; 1091 int64_t Value = CE->getValue(); 1092 return Value > 0 && Value < 16; 1093 } 1094 bool isImm1_31() const { 1095 if (!isImm()) return false; 1096 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1097 if (!CE) return false; 1098 int64_t Value = CE->getValue(); 1099 return Value > 0 && Value < 32; 1100 } 1101 bool isImm1_16() const { 1102 if (!isImm()) return false; 1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1104 if (!CE) return false; 1105 int64_t Value = CE->getValue(); 1106 return Value > 0 && Value < 17; 1107 } 1108 bool isImm1_32() const { 1109 if (!isImm()) return false; 1110 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1111 if (!CE) return false; 1112 int64_t Value = CE->getValue(); 1113 return Value > 0 && Value < 33; 1114 } 1115 bool isImm0_32() const { 1116 if (!isImm()) return false; 1117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1118 if (!CE) return false; 1119 int64_t Value = CE->getValue(); 1120 return Value >= 0 && Value < 33; 1121 } 1122 bool isImm0_65535() const { 1123 if (!isImm()) return false; 1124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1125 if (!CE) return false; 1126 int64_t Value = CE->getValue(); 1127 return Value >= 0 && Value < 65536; 1128 } 1129 bool isImm256_65535Expr() const { 1130 if (!isImm()) return false; 1131 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1132 // If it's not a constant expression, it'll generate a fixup and be 1133 // handled later. 1134 if (!CE) return true; 1135 int64_t Value = CE->getValue(); 1136 return Value >= 256 && Value < 65536; 1137 } 1138 bool isImm0_65535Expr() const { 1139 if (!isImm()) return false; 1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1141 // If it's not a constant expression, it'll generate a fixup and be 1142 // handled later. 1143 if (!CE) return true; 1144 int64_t Value = CE->getValue(); 1145 return Value >= 0 && Value < 65536; 1146 } 1147 bool isImm24bit() const { 1148 if (!isImm()) return false; 1149 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1150 if (!CE) return false; 1151 int64_t Value = CE->getValue(); 1152 return Value >= 0 && Value <= 0xffffff; 1153 } 1154 bool isImmThumbSR() const { 1155 if (!isImm()) return false; 1156 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1157 if (!CE) return false; 1158 int64_t Value = CE->getValue(); 1159 return Value > 0 && Value < 33; 1160 } 1161 bool isPKHLSLImm() const { 1162 if (!isImm()) return false; 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 if (!CE) return false; 1165 int64_t Value = CE->getValue(); 1166 return Value >= 0 && Value < 32; 1167 } 1168 bool isPKHASRImm() const { 1169 if (!isImm()) return false; 1170 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1171 if (!CE) return false; 1172 int64_t Value = CE->getValue(); 1173 return Value > 0 && Value <= 32; 1174 } 1175 bool isAdrLabel() const { 1176 // If we have an immediate that's not a constant, treat it as a label 1177 // reference needing a fixup. 1178 if (isImm() && !isa<MCConstantExpr>(getImm())) 1179 return true; 1180 1181 // If it is a constant, it must fit into a modified immediate encoding. 1182 if (!isImm()) return false; 1183 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1184 if (!CE) return false; 1185 int64_t Value = CE->getValue(); 1186 return (ARM_AM::getSOImmVal(Value) != -1 || 1187 ARM_AM::getSOImmVal(-Value) != -1); 1188 } 1189 bool isT2SOImm() const { 1190 if (!isImm()) return false; 1191 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1192 if (!CE) return false; 1193 int64_t Value = CE->getValue(); 1194 return ARM_AM::getT2SOImmVal(Value) != -1; 1195 } 1196 bool isT2SOImmNot() const { 1197 if (!isImm()) return false; 1198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1199 if (!CE) return false; 1200 int64_t Value = CE->getValue(); 1201 return ARM_AM::getT2SOImmVal(Value) == -1 && 1202 ARM_AM::getT2SOImmVal(~Value) != -1; 1203 } 1204 bool isT2SOImmNeg() const { 1205 if (!isImm()) return false; 1206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1207 if (!CE) return false; 1208 int64_t Value = CE->getValue(); 1209 // Only use this when not representable as a plain so_imm. 1210 return ARM_AM::getT2SOImmVal(Value) == -1 && 1211 ARM_AM::getT2SOImmVal(-Value) != -1; 1212 } 1213 bool isSetEndImm() const { 1214 if (!isImm()) return false; 1215 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1216 if (!CE) return false; 1217 int64_t Value = CE->getValue(); 1218 return Value == 1 || Value == 0; 1219 } 1220 bool isReg() const override { return Kind == k_Register; } 1221 bool isRegList() const { return Kind == k_RegisterList; } 1222 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1223 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1224 bool isToken() const override { return Kind == k_Token; } 1225 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1226 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1227 bool isMem() const override { return Kind == k_Memory; } 1228 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1229 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1230 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1231 bool isRotImm() const { return Kind == k_RotateImmediate; } 1232 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1233 bool isModImmNot() const { 1234 if (!isImm()) return false; 1235 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1236 if (!CE) return false; 1237 int64_t Value = CE->getValue(); 1238 return ARM_AM::getSOImmVal(~Value) != -1; 1239 } 1240 bool isModImmNeg() const { 1241 if (!isImm()) return false; 1242 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1243 if (!CE) return false; 1244 int64_t Value = CE->getValue(); 1245 return ARM_AM::getSOImmVal(Value) == -1 && 1246 ARM_AM::getSOImmVal(-Value) != -1; 1247 } 1248 bool isThumbModImmNeg1_7() const { 1249 if (!isImm()) return false; 1250 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1251 if (!CE) return false; 1252 int32_t Value = -(int32_t)CE->getValue(); 1253 return 0 < Value && Value < 8; 1254 } 1255 bool isThumbModImmNeg8_255() const { 1256 if (!isImm()) return false; 1257 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1258 if (!CE) return false; 1259 int32_t Value = -(int32_t)CE->getValue(); 1260 return 7 < Value && Value < 256; 1261 } 1262 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1263 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1264 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1265 bool isPostIdxReg() const { 1266 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1267 } 1268 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1269 if (!isMem()) 1270 return false; 1271 // No offset of any kind. 1272 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1273 (alignOK || Memory.Alignment == Alignment); 1274 } 1275 bool isMemPCRelImm12() const { 1276 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1277 return false; 1278 // Base register must be PC. 1279 if (Memory.BaseRegNum != ARM::PC) 1280 return false; 1281 // Immediate offset in range [-4095, 4095]. 1282 if (!Memory.OffsetImm) return true; 1283 int64_t Val = Memory.OffsetImm->getValue(); 1284 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1285 } 1286 bool isAlignedMemory() const { 1287 return isMemNoOffset(true); 1288 } 1289 bool isAlignedMemoryNone() const { 1290 return isMemNoOffset(false, 0); 1291 } 1292 bool isDupAlignedMemoryNone() const { 1293 return isMemNoOffset(false, 0); 1294 } 1295 bool isAlignedMemory16() const { 1296 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1297 return true; 1298 return isMemNoOffset(false, 0); 1299 } 1300 bool isDupAlignedMemory16() const { 1301 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1302 return true; 1303 return isMemNoOffset(false, 0); 1304 } 1305 bool isAlignedMemory32() const { 1306 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1307 return true; 1308 return isMemNoOffset(false, 0); 1309 } 1310 bool isDupAlignedMemory32() const { 1311 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1312 return true; 1313 return isMemNoOffset(false, 0); 1314 } 1315 bool isAlignedMemory64() const { 1316 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1317 return true; 1318 return isMemNoOffset(false, 0); 1319 } 1320 bool isDupAlignedMemory64() const { 1321 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1322 return true; 1323 return isMemNoOffset(false, 0); 1324 } 1325 bool isAlignedMemory64or128() const { 1326 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1327 return true; 1328 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1329 return true; 1330 return isMemNoOffset(false, 0); 1331 } 1332 bool isDupAlignedMemory64or128() const { 1333 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1334 return true; 1335 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1336 return true; 1337 return isMemNoOffset(false, 0); 1338 } 1339 bool isAlignedMemory64or128or256() const { 1340 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1341 return true; 1342 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1343 return true; 1344 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1345 return true; 1346 return isMemNoOffset(false, 0); 1347 } 1348 bool isAddrMode2() const { 1349 if (!isMem() || Memory.Alignment != 0) return false; 1350 // Check for register offset. 1351 if (Memory.OffsetRegNum) return true; 1352 // Immediate offset in range [-4095, 4095]. 1353 if (!Memory.OffsetImm) return true; 1354 int64_t Val = Memory.OffsetImm->getValue(); 1355 return Val > -4096 && Val < 4096; 1356 } 1357 bool isAM2OffsetImm() const { 1358 if (!isImm()) return false; 1359 // Immediate offset in range [-4095, 4095]. 1360 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1361 if (!CE) return false; 1362 int64_t Val = CE->getValue(); 1363 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1364 } 1365 bool isAddrMode3() const { 1366 // If we have an immediate that's not a constant, treat it as a label 1367 // reference needing a fixup. If it is a constant, it's something else 1368 // and we reject it. 1369 if (isImm() && !isa<MCConstantExpr>(getImm())) 1370 return true; 1371 if (!isMem() || Memory.Alignment != 0) return false; 1372 // No shifts are legal for AM3. 1373 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1374 // Check for register offset. 1375 if (Memory.OffsetRegNum) return true; 1376 // Immediate offset in range [-255, 255]. 1377 if (!Memory.OffsetImm) return true; 1378 int64_t Val = Memory.OffsetImm->getValue(); 1379 // The #-0 offset is encoded as INT32_MIN, and we have to check 1380 // for this too. 1381 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1382 } 1383 bool isAM3Offset() const { 1384 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1385 return false; 1386 if (Kind == k_PostIndexRegister) 1387 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1388 // Immediate offset in range [-255, 255]. 1389 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1390 if (!CE) return false; 1391 int64_t Val = CE->getValue(); 1392 // Special case, #-0 is INT32_MIN. 1393 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1394 } 1395 bool isAddrMode5() const { 1396 // If we have an immediate that's not a constant, treat it as a label 1397 // reference needing a fixup. If it is a constant, it's something else 1398 // and we reject it. 1399 if (isImm() && !isa<MCConstantExpr>(getImm())) 1400 return true; 1401 if (!isMem() || Memory.Alignment != 0) return false; 1402 // Check for register offset. 1403 if (Memory.OffsetRegNum) return false; 1404 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1405 if (!Memory.OffsetImm) return true; 1406 int64_t Val = Memory.OffsetImm->getValue(); 1407 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1408 Val == INT32_MIN; 1409 } 1410 bool isAddrMode5FP16() const { 1411 // If we have an immediate that's not a constant, treat it as a label 1412 // reference needing a fixup. If it is a constant, it's something else 1413 // and we reject it. 1414 if (isImm() && !isa<MCConstantExpr>(getImm())) 1415 return true; 1416 if (!isMem() || Memory.Alignment != 0) return false; 1417 // Check for register offset. 1418 if (Memory.OffsetRegNum) return false; 1419 // Immediate offset in range [-510, 510] and a multiple of 2. 1420 if (!Memory.OffsetImm) return true; 1421 int64_t Val = Memory.OffsetImm->getValue(); 1422 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1423 } 1424 bool isMemTBB() const { 1425 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1426 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1427 return false; 1428 return true; 1429 } 1430 bool isMemTBH() const { 1431 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1432 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1433 Memory.Alignment != 0 ) 1434 return false; 1435 return true; 1436 } 1437 bool isMemRegOffset() const { 1438 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1439 return false; 1440 return true; 1441 } 1442 bool isT2MemRegOffset() const { 1443 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1444 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1445 return false; 1446 // Only lsl #{0, 1, 2, 3} allowed. 1447 if (Memory.ShiftType == ARM_AM::no_shift) 1448 return true; 1449 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1450 return false; 1451 return true; 1452 } 1453 bool isMemThumbRR() const { 1454 // Thumb reg+reg addressing is simple. Just two registers, a base and 1455 // an offset. No shifts, negations or any other complicating factors. 1456 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1457 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1458 return false; 1459 return isARMLowRegister(Memory.BaseRegNum) && 1460 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1461 } 1462 bool isMemThumbRIs4() const { 1463 if (!isMem() || Memory.OffsetRegNum != 0 || 1464 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1465 return false; 1466 // Immediate offset, multiple of 4 in range [0, 124]. 1467 if (!Memory.OffsetImm) return true; 1468 int64_t Val = Memory.OffsetImm->getValue(); 1469 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1470 } 1471 bool isMemThumbRIs2() const { 1472 if (!isMem() || Memory.OffsetRegNum != 0 || 1473 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1474 return false; 1475 // Immediate offset, multiple of 4 in range [0, 62]. 1476 if (!Memory.OffsetImm) return true; 1477 int64_t Val = Memory.OffsetImm->getValue(); 1478 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1479 } 1480 bool isMemThumbRIs1() const { 1481 if (!isMem() || Memory.OffsetRegNum != 0 || 1482 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1483 return false; 1484 // Immediate offset in range [0, 31]. 1485 if (!Memory.OffsetImm) return true; 1486 int64_t Val = Memory.OffsetImm->getValue(); 1487 return Val >= 0 && Val <= 31; 1488 } 1489 bool isMemThumbSPI() const { 1490 if (!isMem() || Memory.OffsetRegNum != 0 || 1491 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1492 return false; 1493 // Immediate offset, multiple of 4 in range [0, 1020]. 1494 if (!Memory.OffsetImm) return true; 1495 int64_t Val = Memory.OffsetImm->getValue(); 1496 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1497 } 1498 bool isMemImm8s4Offset() const { 1499 // If we have an immediate that's not a constant, treat it as a label 1500 // reference needing a fixup. If it is a constant, it's something else 1501 // and we reject it. 1502 if (isImm() && !isa<MCConstantExpr>(getImm())) 1503 return true; 1504 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1505 return false; 1506 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1507 if (!Memory.OffsetImm) return true; 1508 int64_t Val = Memory.OffsetImm->getValue(); 1509 // Special case, #-0 is INT32_MIN. 1510 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1511 } 1512 bool isMemImm0_1020s4Offset() const { 1513 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1514 return false; 1515 // Immediate offset a multiple of 4 in range [0, 1020]. 1516 if (!Memory.OffsetImm) return true; 1517 int64_t Val = Memory.OffsetImm->getValue(); 1518 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1519 } 1520 bool isMemImm8Offset() const { 1521 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1522 return false; 1523 // Base reg of PC isn't allowed for these encodings. 1524 if (Memory.BaseRegNum == ARM::PC) return false; 1525 // Immediate offset in range [-255, 255]. 1526 if (!Memory.OffsetImm) return true; 1527 int64_t Val = Memory.OffsetImm->getValue(); 1528 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1529 } 1530 bool isMemPosImm8Offset() const { 1531 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1532 return false; 1533 // Immediate offset in range [0, 255]. 1534 if (!Memory.OffsetImm) return true; 1535 int64_t Val = Memory.OffsetImm->getValue(); 1536 return Val >= 0 && Val < 256; 1537 } 1538 bool isMemNegImm8Offset() const { 1539 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1540 return false; 1541 // Base reg of PC isn't allowed for these encodings. 1542 if (Memory.BaseRegNum == ARM::PC) return false; 1543 // Immediate offset in range [-255, -1]. 1544 if (!Memory.OffsetImm) return false; 1545 int64_t Val = Memory.OffsetImm->getValue(); 1546 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1547 } 1548 bool isMemUImm12Offset() const { 1549 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1550 return false; 1551 // Immediate offset in range [0, 4095]. 1552 if (!Memory.OffsetImm) return true; 1553 int64_t Val = Memory.OffsetImm->getValue(); 1554 return (Val >= 0 && Val < 4096); 1555 } 1556 bool isMemImm12Offset() const { 1557 // If we have an immediate that's not a constant, treat it as a label 1558 // reference needing a fixup. If it is a constant, it's something else 1559 // and we reject it. 1560 1561 if (isImm() && !isa<MCConstantExpr>(getImm())) 1562 return true; 1563 1564 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1565 return false; 1566 // Immediate offset in range [-4095, 4095]. 1567 if (!Memory.OffsetImm) return true; 1568 int64_t Val = Memory.OffsetImm->getValue(); 1569 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1570 } 1571 bool isConstPoolAsmImm() const { 1572 // Delay processing of Constant Pool Immediate, this will turn into 1573 // a constant. Match no other operand 1574 return (isConstantPoolImm()); 1575 } 1576 bool isPostIdxImm8() const { 1577 if (!isImm()) return false; 1578 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1579 if (!CE) return false; 1580 int64_t Val = CE->getValue(); 1581 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1582 } 1583 bool isPostIdxImm8s4() const { 1584 if (!isImm()) return false; 1585 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1586 if (!CE) return false; 1587 int64_t Val = CE->getValue(); 1588 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1589 (Val == INT32_MIN); 1590 } 1591 1592 bool isMSRMask() const { return Kind == k_MSRMask; } 1593 bool isBankedReg() const { return Kind == k_BankedReg; } 1594 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1595 1596 // NEON operands. 1597 bool isSingleSpacedVectorList() const { 1598 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1599 } 1600 bool isDoubleSpacedVectorList() const { 1601 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1602 } 1603 bool isVecListOneD() const { 1604 if (!isSingleSpacedVectorList()) return false; 1605 return VectorList.Count == 1; 1606 } 1607 1608 bool isVecListDPair() const { 1609 if (!isSingleSpacedVectorList()) return false; 1610 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1611 .contains(VectorList.RegNum)); 1612 } 1613 1614 bool isVecListThreeD() const { 1615 if (!isSingleSpacedVectorList()) return false; 1616 return VectorList.Count == 3; 1617 } 1618 1619 bool isVecListFourD() const { 1620 if (!isSingleSpacedVectorList()) return false; 1621 return VectorList.Count == 4; 1622 } 1623 1624 bool isVecListDPairSpaced() const { 1625 if (Kind != k_VectorList) return false; 1626 if (isSingleSpacedVectorList()) return false; 1627 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1628 .contains(VectorList.RegNum)); 1629 } 1630 1631 bool isVecListThreeQ() const { 1632 if (!isDoubleSpacedVectorList()) return false; 1633 return VectorList.Count == 3; 1634 } 1635 1636 bool isVecListFourQ() const { 1637 if (!isDoubleSpacedVectorList()) return false; 1638 return VectorList.Count == 4; 1639 } 1640 1641 bool isSingleSpacedVectorAllLanes() const { 1642 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1643 } 1644 bool isDoubleSpacedVectorAllLanes() const { 1645 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1646 } 1647 bool isVecListOneDAllLanes() const { 1648 if (!isSingleSpacedVectorAllLanes()) return false; 1649 return VectorList.Count == 1; 1650 } 1651 1652 bool isVecListDPairAllLanes() const { 1653 if (!isSingleSpacedVectorAllLanes()) return false; 1654 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1655 .contains(VectorList.RegNum)); 1656 } 1657 1658 bool isVecListDPairSpacedAllLanes() const { 1659 if (!isDoubleSpacedVectorAllLanes()) return false; 1660 return VectorList.Count == 2; 1661 } 1662 1663 bool isVecListThreeDAllLanes() const { 1664 if (!isSingleSpacedVectorAllLanes()) return false; 1665 return VectorList.Count == 3; 1666 } 1667 1668 bool isVecListThreeQAllLanes() const { 1669 if (!isDoubleSpacedVectorAllLanes()) return false; 1670 return VectorList.Count == 3; 1671 } 1672 1673 bool isVecListFourDAllLanes() const { 1674 if (!isSingleSpacedVectorAllLanes()) return false; 1675 return VectorList.Count == 4; 1676 } 1677 1678 bool isVecListFourQAllLanes() const { 1679 if (!isDoubleSpacedVectorAllLanes()) return false; 1680 return VectorList.Count == 4; 1681 } 1682 1683 bool isSingleSpacedVectorIndexed() const { 1684 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1685 } 1686 bool isDoubleSpacedVectorIndexed() const { 1687 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1688 } 1689 bool isVecListOneDByteIndexed() const { 1690 if (!isSingleSpacedVectorIndexed()) return false; 1691 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1692 } 1693 1694 bool isVecListOneDHWordIndexed() const { 1695 if (!isSingleSpacedVectorIndexed()) return false; 1696 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1697 } 1698 1699 bool isVecListOneDWordIndexed() const { 1700 if (!isSingleSpacedVectorIndexed()) return false; 1701 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1702 } 1703 1704 bool isVecListTwoDByteIndexed() const { 1705 if (!isSingleSpacedVectorIndexed()) return false; 1706 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1707 } 1708 1709 bool isVecListTwoDHWordIndexed() const { 1710 if (!isSingleSpacedVectorIndexed()) return false; 1711 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1712 } 1713 1714 bool isVecListTwoQWordIndexed() const { 1715 if (!isDoubleSpacedVectorIndexed()) return false; 1716 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1717 } 1718 1719 bool isVecListTwoQHWordIndexed() const { 1720 if (!isDoubleSpacedVectorIndexed()) return false; 1721 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1722 } 1723 1724 bool isVecListTwoDWordIndexed() const { 1725 if (!isSingleSpacedVectorIndexed()) return false; 1726 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1727 } 1728 1729 bool isVecListThreeDByteIndexed() const { 1730 if (!isSingleSpacedVectorIndexed()) return false; 1731 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1732 } 1733 1734 bool isVecListThreeDHWordIndexed() const { 1735 if (!isSingleSpacedVectorIndexed()) return false; 1736 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1737 } 1738 1739 bool isVecListThreeQWordIndexed() const { 1740 if (!isDoubleSpacedVectorIndexed()) return false; 1741 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1742 } 1743 1744 bool isVecListThreeQHWordIndexed() const { 1745 if (!isDoubleSpacedVectorIndexed()) return false; 1746 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1747 } 1748 1749 bool isVecListThreeDWordIndexed() const { 1750 if (!isSingleSpacedVectorIndexed()) return false; 1751 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1752 } 1753 1754 bool isVecListFourDByteIndexed() const { 1755 if (!isSingleSpacedVectorIndexed()) return false; 1756 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1757 } 1758 1759 bool isVecListFourDHWordIndexed() const { 1760 if (!isSingleSpacedVectorIndexed()) return false; 1761 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1762 } 1763 1764 bool isVecListFourQWordIndexed() const { 1765 if (!isDoubleSpacedVectorIndexed()) return false; 1766 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1767 } 1768 1769 bool isVecListFourQHWordIndexed() const { 1770 if (!isDoubleSpacedVectorIndexed()) return false; 1771 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1772 } 1773 1774 bool isVecListFourDWordIndexed() const { 1775 if (!isSingleSpacedVectorIndexed()) return false; 1776 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1777 } 1778 1779 bool isVectorIndex8() const { 1780 if (Kind != k_VectorIndex) return false; 1781 return VectorIndex.Val < 8; 1782 } 1783 bool isVectorIndex16() const { 1784 if (Kind != k_VectorIndex) return false; 1785 return VectorIndex.Val < 4; 1786 } 1787 bool isVectorIndex32() const { 1788 if (Kind != k_VectorIndex) return false; 1789 return VectorIndex.Val < 2; 1790 } 1791 1792 bool isNEONi8splat() const { 1793 if (!isImm()) return false; 1794 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1795 // Must be a constant. 1796 if (!CE) return false; 1797 int64_t Value = CE->getValue(); 1798 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1799 // value. 1800 return Value >= 0 && Value < 256; 1801 } 1802 1803 bool isNEONi16splat() const { 1804 if (isNEONByteReplicate(2)) 1805 return false; // Leave that for bytes replication and forbid by default. 1806 if (!isImm()) 1807 return false; 1808 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1809 // Must be a constant. 1810 if (!CE) return false; 1811 unsigned Value = CE->getValue(); 1812 return ARM_AM::isNEONi16splat(Value); 1813 } 1814 1815 bool isNEONi16splatNot() const { 1816 if (!isImm()) 1817 return false; 1818 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1819 // Must be a constant. 1820 if (!CE) return false; 1821 unsigned Value = CE->getValue(); 1822 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1823 } 1824 1825 bool isNEONi32splat() const { 1826 if (isNEONByteReplicate(4)) 1827 return false; // Leave that for bytes replication and forbid by default. 1828 if (!isImm()) 1829 return false; 1830 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1831 // Must be a constant. 1832 if (!CE) return false; 1833 unsigned Value = CE->getValue(); 1834 return ARM_AM::isNEONi32splat(Value); 1835 } 1836 1837 bool isNEONi32splatNot() const { 1838 if (!isImm()) 1839 return false; 1840 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1841 // Must be a constant. 1842 if (!CE) return false; 1843 unsigned Value = CE->getValue(); 1844 return ARM_AM::isNEONi32splat(~Value); 1845 } 1846 1847 bool isNEONByteReplicate(unsigned NumBytes) const { 1848 if (!isImm()) 1849 return false; 1850 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1851 // Must be a constant. 1852 if (!CE) 1853 return false; 1854 int64_t Value = CE->getValue(); 1855 if (!Value) 1856 return false; // Don't bother with zero. 1857 1858 unsigned char B = Value & 0xff; 1859 for (unsigned i = 1; i < NumBytes; ++i) { 1860 Value >>= 8; 1861 if ((Value & 0xff) != B) 1862 return false; 1863 } 1864 return true; 1865 } 1866 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1867 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1868 bool isNEONi32vmov() const { 1869 if (isNEONByteReplicate(4)) 1870 return false; // Let it to be classified as byte-replicate case. 1871 if (!isImm()) 1872 return false; 1873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1874 // Must be a constant. 1875 if (!CE) 1876 return false; 1877 int64_t Value = CE->getValue(); 1878 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1879 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1880 // FIXME: This is probably wrong and a copy and paste from previous example 1881 return (Value >= 0 && Value < 256) || 1882 (Value >= 0x0100 && Value <= 0xff00) || 1883 (Value >= 0x010000 && Value <= 0xff0000) || 1884 (Value >= 0x01000000 && Value <= 0xff000000) || 1885 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1886 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1887 } 1888 bool isNEONi32vmovNeg() const { 1889 if (!isImm()) return false; 1890 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1891 // Must be a constant. 1892 if (!CE) return false; 1893 int64_t Value = ~CE->getValue(); 1894 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1895 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1896 // FIXME: This is probably wrong and a copy and paste from previous example 1897 return (Value >= 0 && Value < 256) || 1898 (Value >= 0x0100 && Value <= 0xff00) || 1899 (Value >= 0x010000 && Value <= 0xff0000) || 1900 (Value >= 0x01000000 && Value <= 0xff000000) || 1901 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1902 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1903 } 1904 1905 bool isNEONi64splat() const { 1906 if (!isImm()) return false; 1907 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1908 // Must be a constant. 1909 if (!CE) return false; 1910 uint64_t Value = CE->getValue(); 1911 // i64 value with each byte being either 0 or 0xff. 1912 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1913 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1914 return true; 1915 } 1916 1917 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1918 // Add as immediates when possible. Null MCExpr = 0. 1919 if (!Expr) 1920 Inst.addOperand(MCOperand::createImm(0)); 1921 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1922 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1923 else 1924 Inst.addOperand(MCOperand::createExpr(Expr)); 1925 } 1926 1927 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1928 assert(N == 1 && "Invalid number of operands!"); 1929 addExpr(Inst, getImm()); 1930 } 1931 1932 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1933 assert(N == 1 && "Invalid number of operands!"); 1934 addExpr(Inst, getImm()); 1935 } 1936 1937 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1938 assert(N == 2 && "Invalid number of operands!"); 1939 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1940 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1941 Inst.addOperand(MCOperand::createReg(RegNum)); 1942 } 1943 1944 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1945 assert(N == 1 && "Invalid number of operands!"); 1946 Inst.addOperand(MCOperand::createImm(getCoproc())); 1947 } 1948 1949 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1950 assert(N == 1 && "Invalid number of operands!"); 1951 Inst.addOperand(MCOperand::createImm(getCoproc())); 1952 } 1953 1954 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1955 assert(N == 1 && "Invalid number of operands!"); 1956 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1957 } 1958 1959 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1960 assert(N == 1 && "Invalid number of operands!"); 1961 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1962 } 1963 1964 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1965 assert(N == 1 && "Invalid number of operands!"); 1966 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1967 } 1968 1969 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1970 assert(N == 1 && "Invalid number of operands!"); 1971 Inst.addOperand(MCOperand::createReg(getReg())); 1972 } 1973 1974 void addRegOperands(MCInst &Inst, unsigned N) const { 1975 assert(N == 1 && "Invalid number of operands!"); 1976 Inst.addOperand(MCOperand::createReg(getReg())); 1977 } 1978 1979 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1980 assert(N == 3 && "Invalid number of operands!"); 1981 assert(isRegShiftedReg() && 1982 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1983 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1984 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1985 Inst.addOperand(MCOperand::createImm( 1986 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1987 } 1988 1989 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1990 assert(N == 2 && "Invalid number of operands!"); 1991 assert(isRegShiftedImm() && 1992 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1993 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1994 // Shift of #32 is encoded as 0 where permitted 1995 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1996 Inst.addOperand(MCOperand::createImm( 1997 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1998 } 1999 2000 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2001 assert(N == 1 && "Invalid number of operands!"); 2002 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2003 ShifterImm.Imm)); 2004 } 2005 2006 void addRegListOperands(MCInst &Inst, unsigned N) const { 2007 assert(N == 1 && "Invalid number of operands!"); 2008 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2009 for (SmallVectorImpl<unsigned>::const_iterator 2010 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2011 Inst.addOperand(MCOperand::createReg(*I)); 2012 } 2013 2014 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2015 addRegListOperands(Inst, N); 2016 } 2017 2018 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2019 addRegListOperands(Inst, N); 2020 } 2021 2022 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2023 assert(N == 1 && "Invalid number of operands!"); 2024 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2025 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2026 } 2027 2028 void addModImmOperands(MCInst &Inst, unsigned N) const { 2029 assert(N == 1 && "Invalid number of operands!"); 2030 2031 // Support for fixups (MCFixup) 2032 if (isImm()) 2033 return addImmOperands(Inst, N); 2034 2035 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2036 } 2037 2038 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2039 assert(N == 1 && "Invalid number of operands!"); 2040 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2041 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2042 Inst.addOperand(MCOperand::createImm(Enc)); 2043 } 2044 2045 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2046 assert(N == 1 && "Invalid number of operands!"); 2047 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2048 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2049 Inst.addOperand(MCOperand::createImm(Enc)); 2050 } 2051 2052 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2053 assert(N == 1 && "Invalid number of operands!"); 2054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2055 uint32_t Val = -CE->getValue(); 2056 Inst.addOperand(MCOperand::createImm(Val)); 2057 } 2058 2059 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2060 assert(N == 1 && "Invalid number of operands!"); 2061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2062 uint32_t Val = -CE->getValue(); 2063 Inst.addOperand(MCOperand::createImm(Val)); 2064 } 2065 2066 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2067 assert(N == 1 && "Invalid number of operands!"); 2068 // Munge the lsb/width into a bitfield mask. 2069 unsigned lsb = Bitfield.LSB; 2070 unsigned width = Bitfield.Width; 2071 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2072 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2073 (32 - (lsb + width))); 2074 Inst.addOperand(MCOperand::createImm(Mask)); 2075 } 2076 2077 void addImmOperands(MCInst &Inst, unsigned N) const { 2078 assert(N == 1 && "Invalid number of operands!"); 2079 addExpr(Inst, getImm()); 2080 } 2081 2082 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2083 assert(N == 1 && "Invalid number of operands!"); 2084 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2085 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2086 } 2087 2088 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2089 assert(N == 1 && "Invalid number of operands!"); 2090 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2091 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2092 } 2093 2094 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2095 assert(N == 1 && "Invalid number of operands!"); 2096 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2097 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2098 Inst.addOperand(MCOperand::createImm(Val)); 2099 } 2100 2101 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2102 assert(N == 1 && "Invalid number of operands!"); 2103 // FIXME: We really want to scale the value here, but the LDRD/STRD 2104 // instruction don't encode operands that way yet. 2105 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2106 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2107 } 2108 2109 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2110 assert(N == 1 && "Invalid number of operands!"); 2111 // The immediate is scaled by four in the encoding and is stored 2112 // in the MCInst as such. Lop off the low two bits here. 2113 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2114 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2115 } 2116 2117 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2118 assert(N == 1 && "Invalid number of operands!"); 2119 // The immediate is scaled by four in the encoding and is stored 2120 // in the MCInst as such. Lop off the low two bits here. 2121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2122 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2123 } 2124 2125 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2126 assert(N == 1 && "Invalid number of operands!"); 2127 // The immediate is scaled by four in the encoding and is stored 2128 // in the MCInst as such. Lop off the low two bits here. 2129 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2130 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2131 } 2132 2133 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2134 assert(N == 1 && "Invalid number of operands!"); 2135 // The constant encodes as the immediate-1, and we store in the instruction 2136 // the bits as encoded, so subtract off one here. 2137 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2138 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2139 } 2140 2141 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2142 assert(N == 1 && "Invalid number of operands!"); 2143 // The constant encodes as the immediate-1, and we store in the instruction 2144 // the bits as encoded, so subtract off one here. 2145 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2146 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2147 } 2148 2149 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2150 assert(N == 1 && "Invalid number of operands!"); 2151 // The constant encodes as the immediate, except for 32, which encodes as 2152 // zero. 2153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2154 unsigned Imm = CE->getValue(); 2155 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2156 } 2157 2158 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2159 assert(N == 1 && "Invalid number of operands!"); 2160 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2161 // the instruction as well. 2162 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2163 int Val = CE->getValue(); 2164 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2165 } 2166 2167 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2168 assert(N == 1 && "Invalid number of operands!"); 2169 // The operand is actually a t2_so_imm, but we have its bitwise 2170 // negation in the assembly source, so twiddle it here. 2171 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2172 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2173 } 2174 2175 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2176 assert(N == 1 && "Invalid number of operands!"); 2177 // The operand is actually a t2_so_imm, but we have its 2178 // negation in the assembly source, so twiddle it here. 2179 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2180 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2181 } 2182 2183 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2184 assert(N == 1 && "Invalid number of operands!"); 2185 // The operand is actually an imm0_4095, but we have its 2186 // negation in the assembly source, so twiddle it here. 2187 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2188 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2189 } 2190 2191 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2192 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2193 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2194 return; 2195 } 2196 2197 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2198 assert(SR && "Unknown value type!"); 2199 Inst.addOperand(MCOperand::createExpr(SR)); 2200 } 2201 2202 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2203 assert(N == 1 && "Invalid number of operands!"); 2204 if (isImm()) { 2205 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2206 if (CE) { 2207 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2208 return; 2209 } 2210 2211 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2212 2213 assert(SR && "Unknown value type!"); 2214 Inst.addOperand(MCOperand::createExpr(SR)); 2215 return; 2216 } 2217 2218 assert(isMem() && "Unknown value type!"); 2219 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2220 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2221 } 2222 2223 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2224 assert(N == 1 && "Invalid number of operands!"); 2225 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2226 } 2227 2228 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2229 assert(N == 1 && "Invalid number of operands!"); 2230 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2231 } 2232 2233 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2234 assert(N == 1 && "Invalid number of operands!"); 2235 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2236 } 2237 2238 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2239 assert(N == 1 && "Invalid number of operands!"); 2240 int32_t Imm = Memory.OffsetImm->getValue(); 2241 Inst.addOperand(MCOperand::createImm(Imm)); 2242 } 2243 2244 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2245 assert(N == 1 && "Invalid number of operands!"); 2246 assert(isImm() && "Not an immediate!"); 2247 2248 // If we have an immediate that's not a constant, treat it as a label 2249 // reference needing a fixup. 2250 if (!isa<MCConstantExpr>(getImm())) { 2251 Inst.addOperand(MCOperand::createExpr(getImm())); 2252 return; 2253 } 2254 2255 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2256 int Val = CE->getValue(); 2257 Inst.addOperand(MCOperand::createImm(Val)); 2258 } 2259 2260 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2261 assert(N == 2 && "Invalid number of operands!"); 2262 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2263 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2264 } 2265 2266 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2267 addAlignedMemoryOperands(Inst, N); 2268 } 2269 2270 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2271 addAlignedMemoryOperands(Inst, N); 2272 } 2273 2274 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2275 addAlignedMemoryOperands(Inst, N); 2276 } 2277 2278 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2279 addAlignedMemoryOperands(Inst, N); 2280 } 2281 2282 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2283 addAlignedMemoryOperands(Inst, N); 2284 } 2285 2286 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2287 addAlignedMemoryOperands(Inst, N); 2288 } 2289 2290 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2291 addAlignedMemoryOperands(Inst, N); 2292 } 2293 2294 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2295 addAlignedMemoryOperands(Inst, N); 2296 } 2297 2298 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2299 addAlignedMemoryOperands(Inst, N); 2300 } 2301 2302 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2303 addAlignedMemoryOperands(Inst, N); 2304 } 2305 2306 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2307 addAlignedMemoryOperands(Inst, N); 2308 } 2309 2310 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2311 assert(N == 3 && "Invalid number of operands!"); 2312 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2313 if (!Memory.OffsetRegNum) { 2314 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2315 // Special case for #-0 2316 if (Val == INT32_MIN) Val = 0; 2317 if (Val < 0) Val = -Val; 2318 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2319 } else { 2320 // For register offset, we encode the shift type and negation flag 2321 // here. 2322 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2323 Memory.ShiftImm, Memory.ShiftType); 2324 } 2325 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2326 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2327 Inst.addOperand(MCOperand::createImm(Val)); 2328 } 2329 2330 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2331 assert(N == 2 && "Invalid number of operands!"); 2332 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2333 assert(CE && "non-constant AM2OffsetImm operand!"); 2334 int32_t Val = CE->getValue(); 2335 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2336 // Special case for #-0 2337 if (Val == INT32_MIN) Val = 0; 2338 if (Val < 0) Val = -Val; 2339 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2340 Inst.addOperand(MCOperand::createReg(0)); 2341 Inst.addOperand(MCOperand::createImm(Val)); 2342 } 2343 2344 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2345 assert(N == 3 && "Invalid number of operands!"); 2346 // If we have an immediate that's not a constant, treat it as a label 2347 // reference needing a fixup. If it is a constant, it's something else 2348 // and we reject it. 2349 if (isImm()) { 2350 Inst.addOperand(MCOperand::createExpr(getImm())); 2351 Inst.addOperand(MCOperand::createReg(0)); 2352 Inst.addOperand(MCOperand::createImm(0)); 2353 return; 2354 } 2355 2356 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2357 if (!Memory.OffsetRegNum) { 2358 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2359 // Special case for #-0 2360 if (Val == INT32_MIN) Val = 0; 2361 if (Val < 0) Val = -Val; 2362 Val = ARM_AM::getAM3Opc(AddSub, Val); 2363 } else { 2364 // For register offset, we encode the shift type and negation flag 2365 // here. 2366 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2367 } 2368 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2369 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2370 Inst.addOperand(MCOperand::createImm(Val)); 2371 } 2372 2373 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2374 assert(N == 2 && "Invalid number of operands!"); 2375 if (Kind == k_PostIndexRegister) { 2376 int32_t Val = 2377 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2378 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2379 Inst.addOperand(MCOperand::createImm(Val)); 2380 return; 2381 } 2382 2383 // Constant offset. 2384 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2385 int32_t Val = CE->getValue(); 2386 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2387 // Special case for #-0 2388 if (Val == INT32_MIN) Val = 0; 2389 if (Val < 0) Val = -Val; 2390 Val = ARM_AM::getAM3Opc(AddSub, Val); 2391 Inst.addOperand(MCOperand::createReg(0)); 2392 Inst.addOperand(MCOperand::createImm(Val)); 2393 } 2394 2395 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2396 assert(N == 2 && "Invalid number of operands!"); 2397 // If we have an immediate that's not a constant, treat it as a label 2398 // reference needing a fixup. If it is a constant, it's something else 2399 // and we reject it. 2400 if (isImm()) { 2401 Inst.addOperand(MCOperand::createExpr(getImm())); 2402 Inst.addOperand(MCOperand::createImm(0)); 2403 return; 2404 } 2405 2406 // The lower two bits are always zero and as such are not encoded. 2407 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2408 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2409 // Special case for #-0 2410 if (Val == INT32_MIN) Val = 0; 2411 if (Val < 0) Val = -Val; 2412 Val = ARM_AM::getAM5Opc(AddSub, Val); 2413 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2414 Inst.addOperand(MCOperand::createImm(Val)); 2415 } 2416 2417 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2418 assert(N == 2 && "Invalid number of operands!"); 2419 // If we have an immediate that's not a constant, treat it as a label 2420 // reference needing a fixup. If it is a constant, it's something else 2421 // and we reject it. 2422 if (isImm()) { 2423 Inst.addOperand(MCOperand::createExpr(getImm())); 2424 Inst.addOperand(MCOperand::createImm(0)); 2425 return; 2426 } 2427 2428 // The lower bit is always zero and as such is not encoded. 2429 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2430 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2431 // Special case for #-0 2432 if (Val == INT32_MIN) Val = 0; 2433 if (Val < 0) Val = -Val; 2434 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2435 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2436 Inst.addOperand(MCOperand::createImm(Val)); 2437 } 2438 2439 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2440 assert(N == 2 && "Invalid number of operands!"); 2441 // If we have an immediate that's not a constant, treat it as a label 2442 // reference needing a fixup. If it is a constant, it's something else 2443 // and we reject it. 2444 if (isImm()) { 2445 Inst.addOperand(MCOperand::createExpr(getImm())); 2446 Inst.addOperand(MCOperand::createImm(0)); 2447 return; 2448 } 2449 2450 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2451 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2452 Inst.addOperand(MCOperand::createImm(Val)); 2453 } 2454 2455 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2456 assert(N == 2 && "Invalid number of operands!"); 2457 // The lower two bits are always zero and as such are not encoded. 2458 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2459 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2460 Inst.addOperand(MCOperand::createImm(Val)); 2461 } 2462 2463 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2464 assert(N == 2 && "Invalid number of operands!"); 2465 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2466 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2467 Inst.addOperand(MCOperand::createImm(Val)); 2468 } 2469 2470 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2471 addMemImm8OffsetOperands(Inst, N); 2472 } 2473 2474 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2475 addMemImm8OffsetOperands(Inst, N); 2476 } 2477 2478 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 2 && "Invalid number of operands!"); 2480 // If this is an immediate, it's a label reference. 2481 if (isImm()) { 2482 addExpr(Inst, getImm()); 2483 Inst.addOperand(MCOperand::createImm(0)); 2484 return; 2485 } 2486 2487 // Otherwise, it's a normal memory reg+offset. 2488 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2489 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2490 Inst.addOperand(MCOperand::createImm(Val)); 2491 } 2492 2493 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2494 assert(N == 2 && "Invalid number of operands!"); 2495 // If this is an immediate, it's a label reference. 2496 if (isImm()) { 2497 addExpr(Inst, getImm()); 2498 Inst.addOperand(MCOperand::createImm(0)); 2499 return; 2500 } 2501 2502 // Otherwise, it's a normal memory reg+offset. 2503 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2504 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2505 Inst.addOperand(MCOperand::createImm(Val)); 2506 } 2507 2508 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2509 assert(N == 1 && "Invalid number of operands!"); 2510 // This is container for the immediate that we will create the constant 2511 // pool from 2512 addExpr(Inst, getConstantPoolImm()); 2513 return; 2514 } 2515 2516 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2517 assert(N == 2 && "Invalid number of operands!"); 2518 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2519 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2520 } 2521 2522 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2523 assert(N == 2 && "Invalid number of operands!"); 2524 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2525 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2526 } 2527 2528 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2529 assert(N == 3 && "Invalid number of operands!"); 2530 unsigned Val = 2531 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2532 Memory.ShiftImm, Memory.ShiftType); 2533 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2534 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2535 Inst.addOperand(MCOperand::createImm(Val)); 2536 } 2537 2538 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2539 assert(N == 3 && "Invalid number of operands!"); 2540 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2541 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2542 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2543 } 2544 2545 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2546 assert(N == 2 && "Invalid number of operands!"); 2547 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2548 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2549 } 2550 2551 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2552 assert(N == 2 && "Invalid number of operands!"); 2553 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2554 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2555 Inst.addOperand(MCOperand::createImm(Val)); 2556 } 2557 2558 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2559 assert(N == 2 && "Invalid number of operands!"); 2560 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2561 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2562 Inst.addOperand(MCOperand::createImm(Val)); 2563 } 2564 2565 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2566 assert(N == 2 && "Invalid number of operands!"); 2567 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2568 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2569 Inst.addOperand(MCOperand::createImm(Val)); 2570 } 2571 2572 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2573 assert(N == 2 && "Invalid number of operands!"); 2574 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2575 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2576 Inst.addOperand(MCOperand::createImm(Val)); 2577 } 2578 2579 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2580 assert(N == 1 && "Invalid number of operands!"); 2581 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2582 assert(CE && "non-constant post-idx-imm8 operand!"); 2583 int Imm = CE->getValue(); 2584 bool isAdd = Imm >= 0; 2585 if (Imm == INT32_MIN) Imm = 0; 2586 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2587 Inst.addOperand(MCOperand::createImm(Imm)); 2588 } 2589 2590 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2591 assert(N == 1 && "Invalid number of operands!"); 2592 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2593 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2594 int Imm = CE->getValue(); 2595 bool isAdd = Imm >= 0; 2596 if (Imm == INT32_MIN) Imm = 0; 2597 // Immediate is scaled by 4. 2598 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2599 Inst.addOperand(MCOperand::createImm(Imm)); 2600 } 2601 2602 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2603 assert(N == 2 && "Invalid number of operands!"); 2604 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2605 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2606 } 2607 2608 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2609 assert(N == 2 && "Invalid number of operands!"); 2610 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2611 // The sign, shift type, and shift amount are encoded in a single operand 2612 // using the AM2 encoding helpers. 2613 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2614 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2615 PostIdxReg.ShiftTy); 2616 Inst.addOperand(MCOperand::createImm(Imm)); 2617 } 2618 2619 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2620 assert(N == 1 && "Invalid number of operands!"); 2621 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2622 } 2623 2624 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2625 assert(N == 1 && "Invalid number of operands!"); 2626 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2627 } 2628 2629 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2630 assert(N == 1 && "Invalid number of operands!"); 2631 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2632 } 2633 2634 void addVecListOperands(MCInst &Inst, unsigned N) const { 2635 assert(N == 1 && "Invalid number of operands!"); 2636 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2637 } 2638 2639 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2640 assert(N == 2 && "Invalid number of operands!"); 2641 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2642 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2643 } 2644 2645 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2646 assert(N == 1 && "Invalid number of operands!"); 2647 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2648 } 2649 2650 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2651 assert(N == 1 && "Invalid number of operands!"); 2652 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2653 } 2654 2655 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2656 assert(N == 1 && "Invalid number of operands!"); 2657 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2658 } 2659 2660 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2661 assert(N == 1 && "Invalid number of operands!"); 2662 // The immediate encodes the type of constant as well as the value. 2663 // Mask in that this is an i8 splat. 2664 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2665 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2666 } 2667 2668 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2669 assert(N == 1 && "Invalid number of operands!"); 2670 // The immediate encodes the type of constant as well as the value. 2671 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2672 unsigned Value = CE->getValue(); 2673 Value = ARM_AM::encodeNEONi16splat(Value); 2674 Inst.addOperand(MCOperand::createImm(Value)); 2675 } 2676 2677 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2678 assert(N == 1 && "Invalid number of operands!"); 2679 // The immediate encodes the type of constant as well as the value. 2680 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2681 unsigned Value = CE->getValue(); 2682 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2683 Inst.addOperand(MCOperand::createImm(Value)); 2684 } 2685 2686 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2687 assert(N == 1 && "Invalid number of operands!"); 2688 // The immediate encodes the type of constant as well as the value. 2689 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2690 unsigned Value = CE->getValue(); 2691 Value = ARM_AM::encodeNEONi32splat(Value); 2692 Inst.addOperand(MCOperand::createImm(Value)); 2693 } 2694 2695 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2696 assert(N == 1 && "Invalid number of operands!"); 2697 // The immediate encodes the type of constant as well as the value. 2698 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2699 unsigned Value = CE->getValue(); 2700 Value = ARM_AM::encodeNEONi32splat(~Value); 2701 Inst.addOperand(MCOperand::createImm(Value)); 2702 } 2703 2704 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2705 assert(N == 1 && "Invalid number of operands!"); 2706 // The immediate encodes the type of constant as well as the value. 2707 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2708 unsigned Value = CE->getValue(); 2709 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2710 Inst.getOpcode() == ARM::VMOVv16i8) && 2711 "All vmvn instructions that wants to replicate non-zero byte " 2712 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2713 unsigned B = ((~Value) & 0xff); 2714 B |= 0xe00; // cmode = 0b1110 2715 Inst.addOperand(MCOperand::createImm(B)); 2716 } 2717 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2718 assert(N == 1 && "Invalid number of operands!"); 2719 // The immediate encodes the type of constant as well as the value. 2720 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2721 unsigned Value = CE->getValue(); 2722 if (Value >= 256 && Value <= 0xffff) 2723 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2724 else if (Value > 0xffff && Value <= 0xffffff) 2725 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2726 else if (Value > 0xffffff) 2727 Value = (Value >> 24) | 0x600; 2728 Inst.addOperand(MCOperand::createImm(Value)); 2729 } 2730 2731 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2732 assert(N == 1 && "Invalid number of operands!"); 2733 // The immediate encodes the type of constant as well as the value. 2734 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2735 unsigned Value = CE->getValue(); 2736 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2737 Inst.getOpcode() == ARM::VMOVv16i8) && 2738 "All instructions that wants to replicate non-zero byte " 2739 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2740 unsigned B = Value & 0xff; 2741 B |= 0xe00; // cmode = 0b1110 2742 Inst.addOperand(MCOperand::createImm(B)); 2743 } 2744 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2745 assert(N == 1 && "Invalid number of operands!"); 2746 // The immediate encodes the type of constant as well as the value. 2747 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2748 unsigned Value = ~CE->getValue(); 2749 if (Value >= 256 && Value <= 0xffff) 2750 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2751 else if (Value > 0xffff && Value <= 0xffffff) 2752 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2753 else if (Value > 0xffffff) 2754 Value = (Value >> 24) | 0x600; 2755 Inst.addOperand(MCOperand::createImm(Value)); 2756 } 2757 2758 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2759 assert(N == 1 && "Invalid number of operands!"); 2760 // The immediate encodes the type of constant as well as the value. 2761 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2762 uint64_t Value = CE->getValue(); 2763 unsigned Imm = 0; 2764 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2765 Imm |= (Value & 1) << i; 2766 } 2767 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2768 } 2769 2770 void print(raw_ostream &OS) const override; 2771 2772 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2773 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2774 Op->ITMask.Mask = Mask; 2775 Op->StartLoc = S; 2776 Op->EndLoc = S; 2777 return Op; 2778 } 2779 2780 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2781 SMLoc S) { 2782 auto Op = make_unique<ARMOperand>(k_CondCode); 2783 Op->CC.Val = CC; 2784 Op->StartLoc = S; 2785 Op->EndLoc = S; 2786 return Op; 2787 } 2788 2789 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2790 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2791 Op->Cop.Val = CopVal; 2792 Op->StartLoc = S; 2793 Op->EndLoc = S; 2794 return Op; 2795 } 2796 2797 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2798 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2799 Op->Cop.Val = CopVal; 2800 Op->StartLoc = S; 2801 Op->EndLoc = S; 2802 return Op; 2803 } 2804 2805 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2806 SMLoc E) { 2807 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2808 Op->Cop.Val = Val; 2809 Op->StartLoc = S; 2810 Op->EndLoc = E; 2811 return Op; 2812 } 2813 2814 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2815 auto Op = make_unique<ARMOperand>(k_CCOut); 2816 Op->Reg.RegNum = RegNum; 2817 Op->StartLoc = S; 2818 Op->EndLoc = S; 2819 return Op; 2820 } 2821 2822 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2823 auto Op = make_unique<ARMOperand>(k_Token); 2824 Op->Tok.Data = Str.data(); 2825 Op->Tok.Length = Str.size(); 2826 Op->StartLoc = S; 2827 Op->EndLoc = S; 2828 return Op; 2829 } 2830 2831 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2832 SMLoc E) { 2833 auto Op = make_unique<ARMOperand>(k_Register); 2834 Op->Reg.RegNum = RegNum; 2835 Op->StartLoc = S; 2836 Op->EndLoc = E; 2837 return Op; 2838 } 2839 2840 static std::unique_ptr<ARMOperand> 2841 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2842 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2843 SMLoc E) { 2844 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2845 Op->RegShiftedReg.ShiftTy = ShTy; 2846 Op->RegShiftedReg.SrcReg = SrcReg; 2847 Op->RegShiftedReg.ShiftReg = ShiftReg; 2848 Op->RegShiftedReg.ShiftImm = ShiftImm; 2849 Op->StartLoc = S; 2850 Op->EndLoc = E; 2851 return Op; 2852 } 2853 2854 static std::unique_ptr<ARMOperand> 2855 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2856 unsigned ShiftImm, SMLoc S, SMLoc E) { 2857 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2858 Op->RegShiftedImm.ShiftTy = ShTy; 2859 Op->RegShiftedImm.SrcReg = SrcReg; 2860 Op->RegShiftedImm.ShiftImm = ShiftImm; 2861 Op->StartLoc = S; 2862 Op->EndLoc = E; 2863 return Op; 2864 } 2865 2866 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2867 SMLoc S, SMLoc E) { 2868 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2869 Op->ShifterImm.isASR = isASR; 2870 Op->ShifterImm.Imm = Imm; 2871 Op->StartLoc = S; 2872 Op->EndLoc = E; 2873 return Op; 2874 } 2875 2876 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2877 SMLoc E) { 2878 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2879 Op->RotImm.Imm = Imm; 2880 Op->StartLoc = S; 2881 Op->EndLoc = E; 2882 return Op; 2883 } 2884 2885 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2886 SMLoc S, SMLoc E) { 2887 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2888 Op->ModImm.Bits = Bits; 2889 Op->ModImm.Rot = Rot; 2890 Op->StartLoc = S; 2891 Op->EndLoc = E; 2892 return Op; 2893 } 2894 2895 static std::unique_ptr<ARMOperand> 2896 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2897 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2898 Op->Imm.Val = Val; 2899 Op->StartLoc = S; 2900 Op->EndLoc = E; 2901 return Op; 2902 } 2903 2904 static std::unique_ptr<ARMOperand> 2905 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2906 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2907 Op->Bitfield.LSB = LSB; 2908 Op->Bitfield.Width = Width; 2909 Op->StartLoc = S; 2910 Op->EndLoc = E; 2911 return Op; 2912 } 2913 2914 static std::unique_ptr<ARMOperand> 2915 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2916 SMLoc StartLoc, SMLoc EndLoc) { 2917 assert (Regs.size() > 0 && "RegList contains no registers?"); 2918 KindTy Kind = k_RegisterList; 2919 2920 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2921 Kind = k_DPRRegisterList; 2922 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2923 contains(Regs.front().second)) 2924 Kind = k_SPRRegisterList; 2925 2926 // Sort based on the register encoding values. 2927 array_pod_sort(Regs.begin(), Regs.end()); 2928 2929 auto Op = make_unique<ARMOperand>(Kind); 2930 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2931 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2932 Op->Registers.push_back(I->second); 2933 Op->StartLoc = StartLoc; 2934 Op->EndLoc = EndLoc; 2935 return Op; 2936 } 2937 2938 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2939 unsigned Count, 2940 bool isDoubleSpaced, 2941 SMLoc S, SMLoc E) { 2942 auto Op = make_unique<ARMOperand>(k_VectorList); 2943 Op->VectorList.RegNum = RegNum; 2944 Op->VectorList.Count = Count; 2945 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2946 Op->StartLoc = S; 2947 Op->EndLoc = E; 2948 return Op; 2949 } 2950 2951 static std::unique_ptr<ARMOperand> 2952 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2953 SMLoc S, SMLoc E) { 2954 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2955 Op->VectorList.RegNum = RegNum; 2956 Op->VectorList.Count = Count; 2957 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2958 Op->StartLoc = S; 2959 Op->EndLoc = E; 2960 return Op; 2961 } 2962 2963 static std::unique_ptr<ARMOperand> 2964 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2965 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2966 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2967 Op->VectorList.RegNum = RegNum; 2968 Op->VectorList.Count = Count; 2969 Op->VectorList.LaneIndex = Index; 2970 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2971 Op->StartLoc = S; 2972 Op->EndLoc = E; 2973 return Op; 2974 } 2975 2976 static std::unique_ptr<ARMOperand> 2977 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2978 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2979 Op->VectorIndex.Val = Idx; 2980 Op->StartLoc = S; 2981 Op->EndLoc = E; 2982 return Op; 2983 } 2984 2985 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2986 SMLoc E) { 2987 auto Op = make_unique<ARMOperand>(k_Immediate); 2988 Op->Imm.Val = Val; 2989 Op->StartLoc = S; 2990 Op->EndLoc = E; 2991 return Op; 2992 } 2993 2994 static std::unique_ptr<ARMOperand> 2995 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2996 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2997 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2998 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2999 auto Op = make_unique<ARMOperand>(k_Memory); 3000 Op->Memory.BaseRegNum = BaseRegNum; 3001 Op->Memory.OffsetImm = OffsetImm; 3002 Op->Memory.OffsetRegNum = OffsetRegNum; 3003 Op->Memory.ShiftType = ShiftType; 3004 Op->Memory.ShiftImm = ShiftImm; 3005 Op->Memory.Alignment = Alignment; 3006 Op->Memory.isNegative = isNegative; 3007 Op->StartLoc = S; 3008 Op->EndLoc = E; 3009 Op->AlignmentLoc = AlignmentLoc; 3010 return Op; 3011 } 3012 3013 static std::unique_ptr<ARMOperand> 3014 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3015 unsigned ShiftImm, SMLoc S, SMLoc E) { 3016 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3017 Op->PostIdxReg.RegNum = RegNum; 3018 Op->PostIdxReg.isAdd = isAdd; 3019 Op->PostIdxReg.ShiftTy = ShiftTy; 3020 Op->PostIdxReg.ShiftImm = ShiftImm; 3021 Op->StartLoc = S; 3022 Op->EndLoc = E; 3023 return Op; 3024 } 3025 3026 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3027 SMLoc S) { 3028 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3029 Op->MBOpt.Val = Opt; 3030 Op->StartLoc = S; 3031 Op->EndLoc = S; 3032 return Op; 3033 } 3034 3035 static std::unique_ptr<ARMOperand> 3036 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3037 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3038 Op->ISBOpt.Val = Opt; 3039 Op->StartLoc = S; 3040 Op->EndLoc = S; 3041 return Op; 3042 } 3043 3044 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3045 SMLoc S) { 3046 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3047 Op->IFlags.Val = IFlags; 3048 Op->StartLoc = S; 3049 Op->EndLoc = S; 3050 return Op; 3051 } 3052 3053 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3054 auto Op = make_unique<ARMOperand>(k_MSRMask); 3055 Op->MMask.Val = MMask; 3056 Op->StartLoc = S; 3057 Op->EndLoc = S; 3058 return Op; 3059 } 3060 3061 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3062 auto Op = make_unique<ARMOperand>(k_BankedReg); 3063 Op->BankedReg.Val = Reg; 3064 Op->StartLoc = S; 3065 Op->EndLoc = S; 3066 return Op; 3067 } 3068 }; 3069 3070 } // end anonymous namespace. 3071 3072 void ARMOperand::print(raw_ostream &OS) const { 3073 switch (Kind) { 3074 case k_CondCode: 3075 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3076 break; 3077 case k_CCOut: 3078 OS << "<ccout " << getReg() << ">"; 3079 break; 3080 case k_ITCondMask: { 3081 static const char *const MaskStr[] = { 3082 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3083 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3084 }; 3085 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3086 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3087 break; 3088 } 3089 case k_CoprocNum: 3090 OS << "<coprocessor number: " << getCoproc() << ">"; 3091 break; 3092 case k_CoprocReg: 3093 OS << "<coprocessor register: " << getCoproc() << ">"; 3094 break; 3095 case k_CoprocOption: 3096 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3097 break; 3098 case k_MSRMask: 3099 OS << "<mask: " << getMSRMask() << ">"; 3100 break; 3101 case k_BankedReg: 3102 OS << "<banked reg: " << getBankedReg() << ">"; 3103 break; 3104 case k_Immediate: 3105 OS << *getImm(); 3106 break; 3107 case k_MemBarrierOpt: 3108 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3109 break; 3110 case k_InstSyncBarrierOpt: 3111 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3112 break; 3113 case k_Memory: 3114 OS << "<memory " 3115 << " base:" << Memory.BaseRegNum; 3116 OS << ">"; 3117 break; 3118 case k_PostIndexRegister: 3119 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3120 << PostIdxReg.RegNum; 3121 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3122 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3123 << PostIdxReg.ShiftImm; 3124 OS << ">"; 3125 break; 3126 case k_ProcIFlags: { 3127 OS << "<ARM_PROC::"; 3128 unsigned IFlags = getProcIFlags(); 3129 for (int i=2; i >= 0; --i) 3130 if (IFlags & (1 << i)) 3131 OS << ARM_PROC::IFlagsToString(1 << i); 3132 OS << ">"; 3133 break; 3134 } 3135 case k_Register: 3136 OS << "<register " << getReg() << ">"; 3137 break; 3138 case k_ShifterImmediate: 3139 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3140 << " #" << ShifterImm.Imm << ">"; 3141 break; 3142 case k_ShiftedRegister: 3143 OS << "<so_reg_reg " 3144 << RegShiftedReg.SrcReg << " " 3145 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3146 << " " << RegShiftedReg.ShiftReg << ">"; 3147 break; 3148 case k_ShiftedImmediate: 3149 OS << "<so_reg_imm " 3150 << RegShiftedImm.SrcReg << " " 3151 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3152 << " #" << RegShiftedImm.ShiftImm << ">"; 3153 break; 3154 case k_RotateImmediate: 3155 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3156 break; 3157 case k_ModifiedImmediate: 3158 OS << "<mod_imm #" << ModImm.Bits << ", #" 3159 << ModImm.Rot << ")>"; 3160 break; 3161 case k_ConstantPoolImmediate: 3162 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3163 break; 3164 case k_BitfieldDescriptor: 3165 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3166 << ", width: " << Bitfield.Width << ">"; 3167 break; 3168 case k_RegisterList: 3169 case k_DPRRegisterList: 3170 case k_SPRRegisterList: { 3171 OS << "<register_list "; 3172 3173 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3174 for (SmallVectorImpl<unsigned>::const_iterator 3175 I = RegList.begin(), E = RegList.end(); I != E; ) { 3176 OS << *I; 3177 if (++I < E) OS << ", "; 3178 } 3179 3180 OS << ">"; 3181 break; 3182 } 3183 case k_VectorList: 3184 OS << "<vector_list " << VectorList.Count << " * " 3185 << VectorList.RegNum << ">"; 3186 break; 3187 case k_VectorListAllLanes: 3188 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3189 << VectorList.RegNum << ">"; 3190 break; 3191 case k_VectorListIndexed: 3192 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3193 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3194 break; 3195 case k_Token: 3196 OS << "'" << getToken() << "'"; 3197 break; 3198 case k_VectorIndex: 3199 OS << "<vectorindex " << getVectorIndex() << ">"; 3200 break; 3201 } 3202 } 3203 3204 /// @name Auto-generated Match Functions 3205 /// { 3206 3207 static unsigned MatchRegisterName(StringRef Name); 3208 3209 /// } 3210 3211 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3212 SMLoc &StartLoc, SMLoc &EndLoc) { 3213 const AsmToken &Tok = getParser().getTok(); 3214 StartLoc = Tok.getLoc(); 3215 EndLoc = Tok.getEndLoc(); 3216 RegNo = tryParseRegister(); 3217 3218 return (RegNo == (unsigned)-1); 3219 } 3220 3221 /// Try to parse a register name. The token must be an Identifier when called, 3222 /// and if it is a register name the token is eaten and the register number is 3223 /// returned. Otherwise return -1. 3224 /// 3225 int ARMAsmParser::tryParseRegister() { 3226 MCAsmParser &Parser = getParser(); 3227 const AsmToken &Tok = Parser.getTok(); 3228 if (Tok.isNot(AsmToken::Identifier)) return -1; 3229 3230 std::string lowerCase = Tok.getString().lower(); 3231 unsigned RegNum = MatchRegisterName(lowerCase); 3232 if (!RegNum) { 3233 RegNum = StringSwitch<unsigned>(lowerCase) 3234 .Case("r13", ARM::SP) 3235 .Case("r14", ARM::LR) 3236 .Case("r15", ARM::PC) 3237 .Case("ip", ARM::R12) 3238 // Additional register name aliases for 'gas' compatibility. 3239 .Case("a1", ARM::R0) 3240 .Case("a2", ARM::R1) 3241 .Case("a3", ARM::R2) 3242 .Case("a4", ARM::R3) 3243 .Case("v1", ARM::R4) 3244 .Case("v2", ARM::R5) 3245 .Case("v3", ARM::R6) 3246 .Case("v4", ARM::R7) 3247 .Case("v5", ARM::R8) 3248 .Case("v6", ARM::R9) 3249 .Case("v7", ARM::R10) 3250 .Case("v8", ARM::R11) 3251 .Case("sb", ARM::R9) 3252 .Case("sl", ARM::R10) 3253 .Case("fp", ARM::R11) 3254 .Default(0); 3255 } 3256 if (!RegNum) { 3257 // Check for aliases registered via .req. Canonicalize to lower case. 3258 // That's more consistent since register names are case insensitive, and 3259 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3260 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3261 // If no match, return failure. 3262 if (Entry == RegisterReqs.end()) 3263 return -1; 3264 Parser.Lex(); // Eat identifier token. 3265 return Entry->getValue(); 3266 } 3267 3268 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3269 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3270 return -1; 3271 3272 Parser.Lex(); // Eat identifier token. 3273 3274 return RegNum; 3275 } 3276 3277 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3278 // If a recoverable error occurs, return 1. If an irrecoverable error 3279 // occurs, return -1. An irrecoverable error is one where tokens have been 3280 // consumed in the process of trying to parse the shifter (i.e., when it is 3281 // indeed a shifter operand, but malformed). 3282 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3283 MCAsmParser &Parser = getParser(); 3284 SMLoc S = Parser.getTok().getLoc(); 3285 const AsmToken &Tok = Parser.getTok(); 3286 if (Tok.isNot(AsmToken::Identifier)) 3287 return -1; 3288 3289 std::string lowerCase = Tok.getString().lower(); 3290 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3291 .Case("asl", ARM_AM::lsl) 3292 .Case("lsl", ARM_AM::lsl) 3293 .Case("lsr", ARM_AM::lsr) 3294 .Case("asr", ARM_AM::asr) 3295 .Case("ror", ARM_AM::ror) 3296 .Case("rrx", ARM_AM::rrx) 3297 .Default(ARM_AM::no_shift); 3298 3299 if (ShiftTy == ARM_AM::no_shift) 3300 return 1; 3301 3302 Parser.Lex(); // Eat the operator. 3303 3304 // The source register for the shift has already been added to the 3305 // operand list, so we need to pop it off and combine it into the shifted 3306 // register operand instead. 3307 std::unique_ptr<ARMOperand> PrevOp( 3308 (ARMOperand *)Operands.pop_back_val().release()); 3309 if (!PrevOp->isReg()) 3310 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3311 int SrcReg = PrevOp->getReg(); 3312 3313 SMLoc EndLoc; 3314 int64_t Imm = 0; 3315 int ShiftReg = 0; 3316 if (ShiftTy == ARM_AM::rrx) { 3317 // RRX Doesn't have an explicit shift amount. The encoder expects 3318 // the shift register to be the same as the source register. Seems odd, 3319 // but OK. 3320 ShiftReg = SrcReg; 3321 } else { 3322 // Figure out if this is shifted by a constant or a register (for non-RRX). 3323 if (Parser.getTok().is(AsmToken::Hash) || 3324 Parser.getTok().is(AsmToken::Dollar)) { 3325 Parser.Lex(); // Eat hash. 3326 SMLoc ImmLoc = Parser.getTok().getLoc(); 3327 const MCExpr *ShiftExpr = nullptr; 3328 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3329 Error(ImmLoc, "invalid immediate shift value"); 3330 return -1; 3331 } 3332 // The expression must be evaluatable as an immediate. 3333 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3334 if (!CE) { 3335 Error(ImmLoc, "invalid immediate shift value"); 3336 return -1; 3337 } 3338 // Range check the immediate. 3339 // lsl, ror: 0 <= imm <= 31 3340 // lsr, asr: 0 <= imm <= 32 3341 Imm = CE->getValue(); 3342 if (Imm < 0 || 3343 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3344 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3345 Error(ImmLoc, "immediate shift value out of range"); 3346 return -1; 3347 } 3348 // shift by zero is a nop. Always send it through as lsl. 3349 // ('as' compatibility) 3350 if (Imm == 0) 3351 ShiftTy = ARM_AM::lsl; 3352 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3353 SMLoc L = Parser.getTok().getLoc(); 3354 EndLoc = Parser.getTok().getEndLoc(); 3355 ShiftReg = tryParseRegister(); 3356 if (ShiftReg == -1) { 3357 Error(L, "expected immediate or register in shift operand"); 3358 return -1; 3359 } 3360 } else { 3361 Error(Parser.getTok().getLoc(), 3362 "expected immediate or register in shift operand"); 3363 return -1; 3364 } 3365 } 3366 3367 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3368 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3369 ShiftReg, Imm, 3370 S, EndLoc)); 3371 else 3372 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3373 S, EndLoc)); 3374 3375 return 0; 3376 } 3377 3378 3379 /// Try to parse a register name. The token must be an Identifier when called. 3380 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3381 /// if there is a "writeback". 'true' if it's not a register. 3382 /// 3383 /// TODO this is likely to change to allow different register types and or to 3384 /// parse for a specific register type. 3385 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3386 MCAsmParser &Parser = getParser(); 3387 const AsmToken &RegTok = Parser.getTok(); 3388 int RegNo = tryParseRegister(); 3389 if (RegNo == -1) 3390 return true; 3391 3392 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3393 RegTok.getEndLoc())); 3394 3395 const AsmToken &ExclaimTok = Parser.getTok(); 3396 if (ExclaimTok.is(AsmToken::Exclaim)) { 3397 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3398 ExclaimTok.getLoc())); 3399 Parser.Lex(); // Eat exclaim token 3400 return false; 3401 } 3402 3403 // Also check for an index operand. This is only legal for vector registers, 3404 // but that'll get caught OK in operand matching, so we don't need to 3405 // explicitly filter everything else out here. 3406 if (Parser.getTok().is(AsmToken::LBrac)) { 3407 SMLoc SIdx = Parser.getTok().getLoc(); 3408 Parser.Lex(); // Eat left bracket token. 3409 3410 const MCExpr *ImmVal; 3411 if (getParser().parseExpression(ImmVal)) 3412 return true; 3413 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3414 if (!MCE) 3415 return TokError("immediate value expected for vector index"); 3416 3417 if (Parser.getTok().isNot(AsmToken::RBrac)) 3418 return Error(Parser.getTok().getLoc(), "']' expected"); 3419 3420 SMLoc E = Parser.getTok().getEndLoc(); 3421 Parser.Lex(); // Eat right bracket token. 3422 3423 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3424 SIdx, E, 3425 getContext())); 3426 } 3427 3428 return false; 3429 } 3430 3431 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3432 /// instruction with a symbolic operand name. 3433 /// We accept "crN" syntax for GAS compatibility. 3434 /// <operand-name> ::= <prefix><number> 3435 /// If CoprocOp is 'c', then: 3436 /// <prefix> ::= c | cr 3437 /// If CoprocOp is 'p', then : 3438 /// <prefix> ::= p 3439 /// <number> ::= integer in range [0, 15] 3440 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3441 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3442 // but efficient. 3443 if (Name.size() < 2 || Name[0] != CoprocOp) 3444 return -1; 3445 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3446 3447 switch (Name.size()) { 3448 default: return -1; 3449 case 1: 3450 switch (Name[0]) { 3451 default: return -1; 3452 case '0': return 0; 3453 case '1': return 1; 3454 case '2': return 2; 3455 case '3': return 3; 3456 case '4': return 4; 3457 case '5': return 5; 3458 case '6': return 6; 3459 case '7': return 7; 3460 case '8': return 8; 3461 case '9': return 9; 3462 } 3463 case 2: 3464 if (Name[0] != '1') 3465 return -1; 3466 switch (Name[1]) { 3467 default: return -1; 3468 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3469 // However, old cores (v5/v6) did use them in that way. 3470 case '0': return 10; 3471 case '1': return 11; 3472 case '2': return 12; 3473 case '3': return 13; 3474 case '4': return 14; 3475 case '5': return 15; 3476 } 3477 } 3478 } 3479 3480 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3481 OperandMatchResultTy 3482 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3483 MCAsmParser &Parser = getParser(); 3484 SMLoc S = Parser.getTok().getLoc(); 3485 const AsmToken &Tok = Parser.getTok(); 3486 if (!Tok.is(AsmToken::Identifier)) 3487 return MatchOperand_NoMatch; 3488 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3489 .Case("eq", ARMCC::EQ) 3490 .Case("ne", ARMCC::NE) 3491 .Case("hs", ARMCC::HS) 3492 .Case("cs", ARMCC::HS) 3493 .Case("lo", ARMCC::LO) 3494 .Case("cc", ARMCC::LO) 3495 .Case("mi", ARMCC::MI) 3496 .Case("pl", ARMCC::PL) 3497 .Case("vs", ARMCC::VS) 3498 .Case("vc", ARMCC::VC) 3499 .Case("hi", ARMCC::HI) 3500 .Case("ls", ARMCC::LS) 3501 .Case("ge", ARMCC::GE) 3502 .Case("lt", ARMCC::LT) 3503 .Case("gt", ARMCC::GT) 3504 .Case("le", ARMCC::LE) 3505 .Case("al", ARMCC::AL) 3506 .Default(~0U); 3507 if (CC == ~0U) 3508 return MatchOperand_NoMatch; 3509 Parser.Lex(); // Eat the token. 3510 3511 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3512 3513 return MatchOperand_Success; 3514 } 3515 3516 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3517 /// token must be an Identifier when called, and if it is a coprocessor 3518 /// number, the token is eaten and the operand is added to the operand list. 3519 OperandMatchResultTy 3520 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3521 MCAsmParser &Parser = getParser(); 3522 SMLoc S = Parser.getTok().getLoc(); 3523 const AsmToken &Tok = Parser.getTok(); 3524 if (Tok.isNot(AsmToken::Identifier)) 3525 return MatchOperand_NoMatch; 3526 3527 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3528 if (Num == -1) 3529 return MatchOperand_NoMatch; 3530 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3531 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3532 return MatchOperand_NoMatch; 3533 3534 Parser.Lex(); // Eat identifier token. 3535 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3536 return MatchOperand_Success; 3537 } 3538 3539 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3540 /// token must be an Identifier when called, and if it is a coprocessor 3541 /// number, the token is eaten and the operand is added to the operand list. 3542 OperandMatchResultTy 3543 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3544 MCAsmParser &Parser = getParser(); 3545 SMLoc S = Parser.getTok().getLoc(); 3546 const AsmToken &Tok = Parser.getTok(); 3547 if (Tok.isNot(AsmToken::Identifier)) 3548 return MatchOperand_NoMatch; 3549 3550 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3551 if (Reg == -1) 3552 return MatchOperand_NoMatch; 3553 3554 Parser.Lex(); // Eat identifier token. 3555 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3556 return MatchOperand_Success; 3557 } 3558 3559 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3560 /// coproc_option : '{' imm0_255 '}' 3561 OperandMatchResultTy 3562 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3563 MCAsmParser &Parser = getParser(); 3564 SMLoc S = Parser.getTok().getLoc(); 3565 3566 // If this isn't a '{', this isn't a coprocessor immediate operand. 3567 if (Parser.getTok().isNot(AsmToken::LCurly)) 3568 return MatchOperand_NoMatch; 3569 Parser.Lex(); // Eat the '{' 3570 3571 const MCExpr *Expr; 3572 SMLoc Loc = Parser.getTok().getLoc(); 3573 if (getParser().parseExpression(Expr)) { 3574 Error(Loc, "illegal expression"); 3575 return MatchOperand_ParseFail; 3576 } 3577 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3578 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3579 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3580 return MatchOperand_ParseFail; 3581 } 3582 int Val = CE->getValue(); 3583 3584 // Check for and consume the closing '}' 3585 if (Parser.getTok().isNot(AsmToken::RCurly)) 3586 return MatchOperand_ParseFail; 3587 SMLoc E = Parser.getTok().getEndLoc(); 3588 Parser.Lex(); // Eat the '}' 3589 3590 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3591 return MatchOperand_Success; 3592 } 3593 3594 // For register list parsing, we need to map from raw GPR register numbering 3595 // to the enumeration values. The enumeration values aren't sorted by 3596 // register number due to our using "sp", "lr" and "pc" as canonical names. 3597 static unsigned getNextRegister(unsigned Reg) { 3598 // If this is a GPR, we need to do it manually, otherwise we can rely 3599 // on the sort ordering of the enumeration since the other reg-classes 3600 // are sane. 3601 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3602 return Reg + 1; 3603 switch(Reg) { 3604 default: llvm_unreachable("Invalid GPR number!"); 3605 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3606 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3607 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3608 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3609 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3610 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3611 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3612 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3613 } 3614 } 3615 3616 // Return the low-subreg of a given Q register. 3617 static unsigned getDRegFromQReg(unsigned QReg) { 3618 switch (QReg) { 3619 default: llvm_unreachable("expected a Q register!"); 3620 case ARM::Q0: return ARM::D0; 3621 case ARM::Q1: return ARM::D2; 3622 case ARM::Q2: return ARM::D4; 3623 case ARM::Q3: return ARM::D6; 3624 case ARM::Q4: return ARM::D8; 3625 case ARM::Q5: return ARM::D10; 3626 case ARM::Q6: return ARM::D12; 3627 case ARM::Q7: return ARM::D14; 3628 case ARM::Q8: return ARM::D16; 3629 case ARM::Q9: return ARM::D18; 3630 case ARM::Q10: return ARM::D20; 3631 case ARM::Q11: return ARM::D22; 3632 case ARM::Q12: return ARM::D24; 3633 case ARM::Q13: return ARM::D26; 3634 case ARM::Q14: return ARM::D28; 3635 case ARM::Q15: return ARM::D30; 3636 } 3637 } 3638 3639 /// Parse a register list. 3640 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3641 MCAsmParser &Parser = getParser(); 3642 if (Parser.getTok().isNot(AsmToken::LCurly)) 3643 return TokError("Token is not a Left Curly Brace"); 3644 SMLoc S = Parser.getTok().getLoc(); 3645 Parser.Lex(); // Eat '{' token. 3646 SMLoc RegLoc = Parser.getTok().getLoc(); 3647 3648 // Check the first register in the list to see what register class 3649 // this is a list of. 3650 int Reg = tryParseRegister(); 3651 if (Reg == -1) 3652 return Error(RegLoc, "register expected"); 3653 3654 // The reglist instructions have at most 16 registers, so reserve 3655 // space for that many. 3656 int EReg = 0; 3657 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3658 3659 // Allow Q regs and just interpret them as the two D sub-registers. 3660 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3661 Reg = getDRegFromQReg(Reg); 3662 EReg = MRI->getEncodingValue(Reg); 3663 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3664 ++Reg; 3665 } 3666 const MCRegisterClass *RC; 3667 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3668 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3669 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3670 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3671 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3672 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3673 else 3674 return Error(RegLoc, "invalid register in register list"); 3675 3676 // Store the register. 3677 EReg = MRI->getEncodingValue(Reg); 3678 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3679 3680 // This starts immediately after the first register token in the list, 3681 // so we can see either a comma or a minus (range separator) as a legal 3682 // next token. 3683 while (Parser.getTok().is(AsmToken::Comma) || 3684 Parser.getTok().is(AsmToken::Minus)) { 3685 if (Parser.getTok().is(AsmToken::Minus)) { 3686 Parser.Lex(); // Eat the minus. 3687 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3688 int EndReg = tryParseRegister(); 3689 if (EndReg == -1) 3690 return Error(AfterMinusLoc, "register expected"); 3691 // Allow Q regs and just interpret them as the two D sub-registers. 3692 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3693 EndReg = getDRegFromQReg(EndReg) + 1; 3694 // If the register is the same as the start reg, there's nothing 3695 // more to do. 3696 if (Reg == EndReg) 3697 continue; 3698 // The register must be in the same register class as the first. 3699 if (!RC->contains(EndReg)) 3700 return Error(AfterMinusLoc, "invalid register in register list"); 3701 // Ranges must go from low to high. 3702 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3703 return Error(AfterMinusLoc, "bad range in register list"); 3704 3705 // Add all the registers in the range to the register list. 3706 while (Reg != EndReg) { 3707 Reg = getNextRegister(Reg); 3708 EReg = MRI->getEncodingValue(Reg); 3709 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3710 } 3711 continue; 3712 } 3713 Parser.Lex(); // Eat the comma. 3714 RegLoc = Parser.getTok().getLoc(); 3715 int OldReg = Reg; 3716 const AsmToken RegTok = Parser.getTok(); 3717 Reg = tryParseRegister(); 3718 if (Reg == -1) 3719 return Error(RegLoc, "register expected"); 3720 // Allow Q regs and just interpret them as the two D sub-registers. 3721 bool isQReg = false; 3722 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3723 Reg = getDRegFromQReg(Reg); 3724 isQReg = true; 3725 } 3726 // The register must be in the same register class as the first. 3727 if (!RC->contains(Reg)) 3728 return Error(RegLoc, "invalid register in register list"); 3729 // List must be monotonically increasing. 3730 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3731 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3732 Warning(RegLoc, "register list not in ascending order"); 3733 else 3734 return Error(RegLoc, "register list not in ascending order"); 3735 } 3736 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3737 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3738 ") in register list"); 3739 continue; 3740 } 3741 // VFP register lists must also be contiguous. 3742 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3743 Reg != OldReg + 1) 3744 return Error(RegLoc, "non-contiguous register range"); 3745 EReg = MRI->getEncodingValue(Reg); 3746 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3747 if (isQReg) { 3748 EReg = MRI->getEncodingValue(++Reg); 3749 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3750 } 3751 } 3752 3753 if (Parser.getTok().isNot(AsmToken::RCurly)) 3754 return Error(Parser.getTok().getLoc(), "'}' expected"); 3755 SMLoc E = Parser.getTok().getEndLoc(); 3756 Parser.Lex(); // Eat '}' token. 3757 3758 // Push the register list operand. 3759 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3760 3761 // The ARM system instruction variants for LDM/STM have a '^' token here. 3762 if (Parser.getTok().is(AsmToken::Caret)) { 3763 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3764 Parser.Lex(); // Eat '^' token. 3765 } 3766 3767 return false; 3768 } 3769 3770 // Helper function to parse the lane index for vector lists. 3771 OperandMatchResultTy ARMAsmParser:: 3772 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3773 MCAsmParser &Parser = getParser(); 3774 Index = 0; // Always return a defined index value. 3775 if (Parser.getTok().is(AsmToken::LBrac)) { 3776 Parser.Lex(); // Eat the '['. 3777 if (Parser.getTok().is(AsmToken::RBrac)) { 3778 // "Dn[]" is the 'all lanes' syntax. 3779 LaneKind = AllLanes; 3780 EndLoc = Parser.getTok().getEndLoc(); 3781 Parser.Lex(); // Eat the ']'. 3782 return MatchOperand_Success; 3783 } 3784 3785 // There's an optional '#' token here. Normally there wouldn't be, but 3786 // inline assemble puts one in, and it's friendly to accept that. 3787 if (Parser.getTok().is(AsmToken::Hash)) 3788 Parser.Lex(); // Eat '#' or '$'. 3789 3790 const MCExpr *LaneIndex; 3791 SMLoc Loc = Parser.getTok().getLoc(); 3792 if (getParser().parseExpression(LaneIndex)) { 3793 Error(Loc, "illegal expression"); 3794 return MatchOperand_ParseFail; 3795 } 3796 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3797 if (!CE) { 3798 Error(Loc, "lane index must be empty or an integer"); 3799 return MatchOperand_ParseFail; 3800 } 3801 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3802 Error(Parser.getTok().getLoc(), "']' expected"); 3803 return MatchOperand_ParseFail; 3804 } 3805 EndLoc = Parser.getTok().getEndLoc(); 3806 Parser.Lex(); // Eat the ']'. 3807 int64_t Val = CE->getValue(); 3808 3809 // FIXME: Make this range check context sensitive for .8, .16, .32. 3810 if (Val < 0 || Val > 7) { 3811 Error(Parser.getTok().getLoc(), "lane index out of range"); 3812 return MatchOperand_ParseFail; 3813 } 3814 Index = Val; 3815 LaneKind = IndexedLane; 3816 return MatchOperand_Success; 3817 } 3818 LaneKind = NoLanes; 3819 return MatchOperand_Success; 3820 } 3821 3822 // parse a vector register list 3823 OperandMatchResultTy 3824 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3825 MCAsmParser &Parser = getParser(); 3826 VectorLaneTy LaneKind; 3827 unsigned LaneIndex; 3828 SMLoc S = Parser.getTok().getLoc(); 3829 // As an extension (to match gas), support a plain D register or Q register 3830 // (without encosing curly braces) as a single or double entry list, 3831 // respectively. 3832 if (Parser.getTok().is(AsmToken::Identifier)) { 3833 SMLoc E = Parser.getTok().getEndLoc(); 3834 int Reg = tryParseRegister(); 3835 if (Reg == -1) 3836 return MatchOperand_NoMatch; 3837 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3838 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3839 if (Res != MatchOperand_Success) 3840 return Res; 3841 switch (LaneKind) { 3842 case NoLanes: 3843 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3844 break; 3845 case AllLanes: 3846 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3847 S, E)); 3848 break; 3849 case IndexedLane: 3850 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3851 LaneIndex, 3852 false, S, E)); 3853 break; 3854 } 3855 return MatchOperand_Success; 3856 } 3857 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3858 Reg = getDRegFromQReg(Reg); 3859 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3860 if (Res != MatchOperand_Success) 3861 return Res; 3862 switch (LaneKind) { 3863 case NoLanes: 3864 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3865 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3866 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3867 break; 3868 case AllLanes: 3869 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3870 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3871 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3872 S, E)); 3873 break; 3874 case IndexedLane: 3875 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3876 LaneIndex, 3877 false, S, E)); 3878 break; 3879 } 3880 return MatchOperand_Success; 3881 } 3882 Error(S, "vector register expected"); 3883 return MatchOperand_ParseFail; 3884 } 3885 3886 if (Parser.getTok().isNot(AsmToken::LCurly)) 3887 return MatchOperand_NoMatch; 3888 3889 Parser.Lex(); // Eat '{' token. 3890 SMLoc RegLoc = Parser.getTok().getLoc(); 3891 3892 int Reg = tryParseRegister(); 3893 if (Reg == -1) { 3894 Error(RegLoc, "register expected"); 3895 return MatchOperand_ParseFail; 3896 } 3897 unsigned Count = 1; 3898 int Spacing = 0; 3899 unsigned FirstReg = Reg; 3900 // The list is of D registers, but we also allow Q regs and just interpret 3901 // them as the two D sub-registers. 3902 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3903 FirstReg = Reg = getDRegFromQReg(Reg); 3904 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3905 // it's ambiguous with four-register single spaced. 3906 ++Reg; 3907 ++Count; 3908 } 3909 3910 SMLoc E; 3911 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3912 return MatchOperand_ParseFail; 3913 3914 while (Parser.getTok().is(AsmToken::Comma) || 3915 Parser.getTok().is(AsmToken::Minus)) { 3916 if (Parser.getTok().is(AsmToken::Minus)) { 3917 if (!Spacing) 3918 Spacing = 1; // Register range implies a single spaced list. 3919 else if (Spacing == 2) { 3920 Error(Parser.getTok().getLoc(), 3921 "sequential registers in double spaced list"); 3922 return MatchOperand_ParseFail; 3923 } 3924 Parser.Lex(); // Eat the minus. 3925 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3926 int EndReg = tryParseRegister(); 3927 if (EndReg == -1) { 3928 Error(AfterMinusLoc, "register expected"); 3929 return MatchOperand_ParseFail; 3930 } 3931 // Allow Q regs and just interpret them as the two D sub-registers. 3932 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3933 EndReg = getDRegFromQReg(EndReg) + 1; 3934 // If the register is the same as the start reg, there's nothing 3935 // more to do. 3936 if (Reg == EndReg) 3937 continue; 3938 // The register must be in the same register class as the first. 3939 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3940 Error(AfterMinusLoc, "invalid register in register list"); 3941 return MatchOperand_ParseFail; 3942 } 3943 // Ranges must go from low to high. 3944 if (Reg > EndReg) { 3945 Error(AfterMinusLoc, "bad range in register list"); 3946 return MatchOperand_ParseFail; 3947 } 3948 // Parse the lane specifier if present. 3949 VectorLaneTy NextLaneKind; 3950 unsigned NextLaneIndex; 3951 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3952 MatchOperand_Success) 3953 return MatchOperand_ParseFail; 3954 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3955 Error(AfterMinusLoc, "mismatched lane index in register list"); 3956 return MatchOperand_ParseFail; 3957 } 3958 3959 // Add all the registers in the range to the register list. 3960 Count += EndReg - Reg; 3961 Reg = EndReg; 3962 continue; 3963 } 3964 Parser.Lex(); // Eat the comma. 3965 RegLoc = Parser.getTok().getLoc(); 3966 int OldReg = Reg; 3967 Reg = tryParseRegister(); 3968 if (Reg == -1) { 3969 Error(RegLoc, "register expected"); 3970 return MatchOperand_ParseFail; 3971 } 3972 // vector register lists must be contiguous. 3973 // It's OK to use the enumeration values directly here rather, as the 3974 // VFP register classes have the enum sorted properly. 3975 // 3976 // The list is of D registers, but we also allow Q regs and just interpret 3977 // them as the two D sub-registers. 3978 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3979 if (!Spacing) 3980 Spacing = 1; // Register range implies a single spaced list. 3981 else if (Spacing == 2) { 3982 Error(RegLoc, 3983 "invalid register in double-spaced list (must be 'D' register')"); 3984 return MatchOperand_ParseFail; 3985 } 3986 Reg = getDRegFromQReg(Reg); 3987 if (Reg != OldReg + 1) { 3988 Error(RegLoc, "non-contiguous register range"); 3989 return MatchOperand_ParseFail; 3990 } 3991 ++Reg; 3992 Count += 2; 3993 // Parse the lane specifier if present. 3994 VectorLaneTy NextLaneKind; 3995 unsigned NextLaneIndex; 3996 SMLoc LaneLoc = Parser.getTok().getLoc(); 3997 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3998 MatchOperand_Success) 3999 return MatchOperand_ParseFail; 4000 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4001 Error(LaneLoc, "mismatched lane index in register list"); 4002 return MatchOperand_ParseFail; 4003 } 4004 continue; 4005 } 4006 // Normal D register. 4007 // Figure out the register spacing (single or double) of the list if 4008 // we don't know it already. 4009 if (!Spacing) 4010 Spacing = 1 + (Reg == OldReg + 2); 4011 4012 // Just check that it's contiguous and keep going. 4013 if (Reg != OldReg + Spacing) { 4014 Error(RegLoc, "non-contiguous register range"); 4015 return MatchOperand_ParseFail; 4016 } 4017 ++Count; 4018 // Parse the lane specifier if present. 4019 VectorLaneTy NextLaneKind; 4020 unsigned NextLaneIndex; 4021 SMLoc EndLoc = Parser.getTok().getLoc(); 4022 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4023 return MatchOperand_ParseFail; 4024 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4025 Error(EndLoc, "mismatched lane index in register list"); 4026 return MatchOperand_ParseFail; 4027 } 4028 } 4029 4030 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4031 Error(Parser.getTok().getLoc(), "'}' expected"); 4032 return MatchOperand_ParseFail; 4033 } 4034 E = Parser.getTok().getEndLoc(); 4035 Parser.Lex(); // Eat '}' token. 4036 4037 switch (LaneKind) { 4038 case NoLanes: 4039 // Two-register operands have been converted to the 4040 // composite register classes. 4041 if (Count == 2) { 4042 const MCRegisterClass *RC = (Spacing == 1) ? 4043 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4044 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4045 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4046 } 4047 4048 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4049 (Spacing == 2), S, E)); 4050 break; 4051 case AllLanes: 4052 // Two-register operands have been converted to the 4053 // composite register classes. 4054 if (Count == 2) { 4055 const MCRegisterClass *RC = (Spacing == 1) ? 4056 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4057 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4058 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4059 } 4060 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4061 (Spacing == 2), 4062 S, E)); 4063 break; 4064 case IndexedLane: 4065 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4066 LaneIndex, 4067 (Spacing == 2), 4068 S, E)); 4069 break; 4070 } 4071 return MatchOperand_Success; 4072 } 4073 4074 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4075 OperandMatchResultTy 4076 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4077 MCAsmParser &Parser = getParser(); 4078 SMLoc S = Parser.getTok().getLoc(); 4079 const AsmToken &Tok = Parser.getTok(); 4080 unsigned Opt; 4081 4082 if (Tok.is(AsmToken::Identifier)) { 4083 StringRef OptStr = Tok.getString(); 4084 4085 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4086 .Case("sy", ARM_MB::SY) 4087 .Case("st", ARM_MB::ST) 4088 .Case("ld", ARM_MB::LD) 4089 .Case("sh", ARM_MB::ISH) 4090 .Case("ish", ARM_MB::ISH) 4091 .Case("shst", ARM_MB::ISHST) 4092 .Case("ishst", ARM_MB::ISHST) 4093 .Case("ishld", ARM_MB::ISHLD) 4094 .Case("nsh", ARM_MB::NSH) 4095 .Case("un", ARM_MB::NSH) 4096 .Case("nshst", ARM_MB::NSHST) 4097 .Case("nshld", ARM_MB::NSHLD) 4098 .Case("unst", ARM_MB::NSHST) 4099 .Case("osh", ARM_MB::OSH) 4100 .Case("oshst", ARM_MB::OSHST) 4101 .Case("oshld", ARM_MB::OSHLD) 4102 .Default(~0U); 4103 4104 // ishld, oshld, nshld and ld are only available from ARMv8. 4105 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4106 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4107 Opt = ~0U; 4108 4109 if (Opt == ~0U) 4110 return MatchOperand_NoMatch; 4111 4112 Parser.Lex(); // Eat identifier token. 4113 } else if (Tok.is(AsmToken::Hash) || 4114 Tok.is(AsmToken::Dollar) || 4115 Tok.is(AsmToken::Integer)) { 4116 if (Parser.getTok().isNot(AsmToken::Integer)) 4117 Parser.Lex(); // Eat '#' or '$'. 4118 SMLoc Loc = Parser.getTok().getLoc(); 4119 4120 const MCExpr *MemBarrierID; 4121 if (getParser().parseExpression(MemBarrierID)) { 4122 Error(Loc, "illegal expression"); 4123 return MatchOperand_ParseFail; 4124 } 4125 4126 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4127 if (!CE) { 4128 Error(Loc, "constant expression expected"); 4129 return MatchOperand_ParseFail; 4130 } 4131 4132 int Val = CE->getValue(); 4133 if (Val & ~0xf) { 4134 Error(Loc, "immediate value out of range"); 4135 return MatchOperand_ParseFail; 4136 } 4137 4138 Opt = ARM_MB::RESERVED_0 + Val; 4139 } else 4140 return MatchOperand_ParseFail; 4141 4142 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4143 return MatchOperand_Success; 4144 } 4145 4146 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4147 OperandMatchResultTy 4148 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4149 MCAsmParser &Parser = getParser(); 4150 SMLoc S = Parser.getTok().getLoc(); 4151 const AsmToken &Tok = Parser.getTok(); 4152 unsigned Opt; 4153 4154 if (Tok.is(AsmToken::Identifier)) { 4155 StringRef OptStr = Tok.getString(); 4156 4157 if (OptStr.equals_lower("sy")) 4158 Opt = ARM_ISB::SY; 4159 else 4160 return MatchOperand_NoMatch; 4161 4162 Parser.Lex(); // Eat identifier token. 4163 } else if (Tok.is(AsmToken::Hash) || 4164 Tok.is(AsmToken::Dollar) || 4165 Tok.is(AsmToken::Integer)) { 4166 if (Parser.getTok().isNot(AsmToken::Integer)) 4167 Parser.Lex(); // Eat '#' or '$'. 4168 SMLoc Loc = Parser.getTok().getLoc(); 4169 4170 const MCExpr *ISBarrierID; 4171 if (getParser().parseExpression(ISBarrierID)) { 4172 Error(Loc, "illegal expression"); 4173 return MatchOperand_ParseFail; 4174 } 4175 4176 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4177 if (!CE) { 4178 Error(Loc, "constant expression expected"); 4179 return MatchOperand_ParseFail; 4180 } 4181 4182 int Val = CE->getValue(); 4183 if (Val & ~0xf) { 4184 Error(Loc, "immediate value out of range"); 4185 return MatchOperand_ParseFail; 4186 } 4187 4188 Opt = ARM_ISB::RESERVED_0 + Val; 4189 } else 4190 return MatchOperand_ParseFail; 4191 4192 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4193 (ARM_ISB::InstSyncBOpt)Opt, S)); 4194 return MatchOperand_Success; 4195 } 4196 4197 4198 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4199 OperandMatchResultTy 4200 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4201 MCAsmParser &Parser = getParser(); 4202 SMLoc S = Parser.getTok().getLoc(); 4203 const AsmToken &Tok = Parser.getTok(); 4204 if (!Tok.is(AsmToken::Identifier)) 4205 return MatchOperand_NoMatch; 4206 StringRef IFlagsStr = Tok.getString(); 4207 4208 // An iflags string of "none" is interpreted to mean that none of the AIF 4209 // bits are set. Not a terribly useful instruction, but a valid encoding. 4210 unsigned IFlags = 0; 4211 if (IFlagsStr != "none") { 4212 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4213 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4214 .Case("a", ARM_PROC::A) 4215 .Case("i", ARM_PROC::I) 4216 .Case("f", ARM_PROC::F) 4217 .Default(~0U); 4218 4219 // If some specific iflag is already set, it means that some letter is 4220 // present more than once, this is not acceptable. 4221 if (Flag == ~0U || (IFlags & Flag)) 4222 return MatchOperand_NoMatch; 4223 4224 IFlags |= Flag; 4225 } 4226 } 4227 4228 Parser.Lex(); // Eat identifier token. 4229 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4230 return MatchOperand_Success; 4231 } 4232 4233 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4234 OperandMatchResultTy 4235 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4236 MCAsmParser &Parser = getParser(); 4237 SMLoc S = Parser.getTok().getLoc(); 4238 const AsmToken &Tok = Parser.getTok(); 4239 if (!Tok.is(AsmToken::Identifier)) 4240 return MatchOperand_NoMatch; 4241 StringRef Mask = Tok.getString(); 4242 4243 if (isMClass()) { 4244 // See ARMv6-M 10.1.1 4245 std::string Name = Mask.lower(); 4246 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4247 // Note: in the documentation: 4248 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4249 // for MSR APSR_nzcvq. 4250 // but we do make it an alias here. This is so to get the "mask encoding" 4251 // bits correct on MSR APSR writes. 4252 // 4253 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4254 // should really only be allowed when writing a special register. Note 4255 // they get dropped in the MRS instruction reading a special register as 4256 // the SYSm field is only 8 bits. 4257 .Case("apsr", 0x800) 4258 .Case("apsr_nzcvq", 0x800) 4259 .Case("apsr_g", 0x400) 4260 .Case("apsr_nzcvqg", 0xc00) 4261 .Case("iapsr", 0x801) 4262 .Case("iapsr_nzcvq", 0x801) 4263 .Case("iapsr_g", 0x401) 4264 .Case("iapsr_nzcvqg", 0xc01) 4265 .Case("eapsr", 0x802) 4266 .Case("eapsr_nzcvq", 0x802) 4267 .Case("eapsr_g", 0x402) 4268 .Case("eapsr_nzcvqg", 0xc02) 4269 .Case("xpsr", 0x803) 4270 .Case("xpsr_nzcvq", 0x803) 4271 .Case("xpsr_g", 0x403) 4272 .Case("xpsr_nzcvqg", 0xc03) 4273 .Case("ipsr", 0x805) 4274 .Case("epsr", 0x806) 4275 .Case("iepsr", 0x807) 4276 .Case("msp", 0x808) 4277 .Case("psp", 0x809) 4278 .Case("primask", 0x810) 4279 .Case("basepri", 0x811) 4280 .Case("basepri_max", 0x812) 4281 .Case("faultmask", 0x813) 4282 .Case("control", 0x814) 4283 .Case("msplim", 0x80a) 4284 .Case("psplim", 0x80b) 4285 .Case("msp_ns", 0x888) 4286 .Case("psp_ns", 0x889) 4287 .Case("msplim_ns", 0x88a) 4288 .Case("psplim_ns", 0x88b) 4289 .Case("primask_ns", 0x890) 4290 .Case("basepri_ns", 0x891) 4291 .Case("basepri_max_ns", 0x892) 4292 .Case("faultmask_ns", 0x893) 4293 .Case("control_ns", 0x894) 4294 .Case("sp_ns", 0x898) 4295 .Default(~0U); 4296 4297 if (FlagsVal == ~0U) 4298 return MatchOperand_NoMatch; 4299 4300 if (!hasDSP() && (FlagsVal & 0x400)) 4301 // The _g and _nzcvqg versions are only valid if the DSP extension is 4302 // available. 4303 return MatchOperand_NoMatch; 4304 4305 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4306 // basepri, basepri_max and faultmask only valid for V7m. 4307 return MatchOperand_NoMatch; 4308 4309 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4310 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4311 return MatchOperand_NoMatch; 4312 4313 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4314 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4315 return MatchOperand_NoMatch; 4316 4317 Parser.Lex(); // Eat identifier token. 4318 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4319 return MatchOperand_Success; 4320 } 4321 4322 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4323 size_t Start = 0, Next = Mask.find('_'); 4324 StringRef Flags = ""; 4325 std::string SpecReg = Mask.slice(Start, Next).lower(); 4326 if (Next != StringRef::npos) 4327 Flags = Mask.slice(Next+1, Mask.size()); 4328 4329 // FlagsVal contains the complete mask: 4330 // 3-0: Mask 4331 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4332 unsigned FlagsVal = 0; 4333 4334 if (SpecReg == "apsr") { 4335 FlagsVal = StringSwitch<unsigned>(Flags) 4336 .Case("nzcvq", 0x8) // same as CPSR_f 4337 .Case("g", 0x4) // same as CPSR_s 4338 .Case("nzcvqg", 0xc) // same as CPSR_fs 4339 .Default(~0U); 4340 4341 if (FlagsVal == ~0U) { 4342 if (!Flags.empty()) 4343 return MatchOperand_NoMatch; 4344 else 4345 FlagsVal = 8; // No flag 4346 } 4347 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4348 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4349 if (Flags == "all" || Flags == "") 4350 Flags = "fc"; 4351 for (int i = 0, e = Flags.size(); i != e; ++i) { 4352 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4353 .Case("c", 1) 4354 .Case("x", 2) 4355 .Case("s", 4) 4356 .Case("f", 8) 4357 .Default(~0U); 4358 4359 // If some specific flag is already set, it means that some letter is 4360 // present more than once, this is not acceptable. 4361 if (Flag == ~0U || (FlagsVal & Flag)) 4362 return MatchOperand_NoMatch; 4363 FlagsVal |= Flag; 4364 } 4365 } else // No match for special register. 4366 return MatchOperand_NoMatch; 4367 4368 // Special register without flags is NOT equivalent to "fc" flags. 4369 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4370 // two lines would enable gas compatibility at the expense of breaking 4371 // round-tripping. 4372 // 4373 // if (!FlagsVal) 4374 // FlagsVal = 0x9; 4375 4376 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4377 if (SpecReg == "spsr") 4378 FlagsVal |= 16; 4379 4380 Parser.Lex(); // Eat identifier token. 4381 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4382 return MatchOperand_Success; 4383 } 4384 4385 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4386 /// use in the MRS/MSR instructions added to support virtualization. 4387 OperandMatchResultTy 4388 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4389 MCAsmParser &Parser = getParser(); 4390 SMLoc S = Parser.getTok().getLoc(); 4391 const AsmToken &Tok = Parser.getTok(); 4392 if (!Tok.is(AsmToken::Identifier)) 4393 return MatchOperand_NoMatch; 4394 StringRef RegName = Tok.getString(); 4395 4396 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4397 // and bit 5 is R. 4398 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4399 .Case("r8_usr", 0x00) 4400 .Case("r9_usr", 0x01) 4401 .Case("r10_usr", 0x02) 4402 .Case("r11_usr", 0x03) 4403 .Case("r12_usr", 0x04) 4404 .Case("sp_usr", 0x05) 4405 .Case("lr_usr", 0x06) 4406 .Case("r8_fiq", 0x08) 4407 .Case("r9_fiq", 0x09) 4408 .Case("r10_fiq", 0x0a) 4409 .Case("r11_fiq", 0x0b) 4410 .Case("r12_fiq", 0x0c) 4411 .Case("sp_fiq", 0x0d) 4412 .Case("lr_fiq", 0x0e) 4413 .Case("lr_irq", 0x10) 4414 .Case("sp_irq", 0x11) 4415 .Case("lr_svc", 0x12) 4416 .Case("sp_svc", 0x13) 4417 .Case("lr_abt", 0x14) 4418 .Case("sp_abt", 0x15) 4419 .Case("lr_und", 0x16) 4420 .Case("sp_und", 0x17) 4421 .Case("lr_mon", 0x1c) 4422 .Case("sp_mon", 0x1d) 4423 .Case("elr_hyp", 0x1e) 4424 .Case("sp_hyp", 0x1f) 4425 .Case("spsr_fiq", 0x2e) 4426 .Case("spsr_irq", 0x30) 4427 .Case("spsr_svc", 0x32) 4428 .Case("spsr_abt", 0x34) 4429 .Case("spsr_und", 0x36) 4430 .Case("spsr_mon", 0x3c) 4431 .Case("spsr_hyp", 0x3e) 4432 .Default(~0U); 4433 4434 if (Encoding == ~0U) 4435 return MatchOperand_NoMatch; 4436 4437 Parser.Lex(); // Eat identifier token. 4438 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4439 return MatchOperand_Success; 4440 } 4441 4442 OperandMatchResultTy 4443 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4444 int High) { 4445 MCAsmParser &Parser = getParser(); 4446 const AsmToken &Tok = Parser.getTok(); 4447 if (Tok.isNot(AsmToken::Identifier)) { 4448 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4449 return MatchOperand_ParseFail; 4450 } 4451 StringRef ShiftName = Tok.getString(); 4452 std::string LowerOp = Op.lower(); 4453 std::string UpperOp = Op.upper(); 4454 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4455 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4456 return MatchOperand_ParseFail; 4457 } 4458 Parser.Lex(); // Eat shift type token. 4459 4460 // There must be a '#' and a shift amount. 4461 if (Parser.getTok().isNot(AsmToken::Hash) && 4462 Parser.getTok().isNot(AsmToken::Dollar)) { 4463 Error(Parser.getTok().getLoc(), "'#' expected"); 4464 return MatchOperand_ParseFail; 4465 } 4466 Parser.Lex(); // Eat hash token. 4467 4468 const MCExpr *ShiftAmount; 4469 SMLoc Loc = Parser.getTok().getLoc(); 4470 SMLoc EndLoc; 4471 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4472 Error(Loc, "illegal expression"); 4473 return MatchOperand_ParseFail; 4474 } 4475 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4476 if (!CE) { 4477 Error(Loc, "constant expression expected"); 4478 return MatchOperand_ParseFail; 4479 } 4480 int Val = CE->getValue(); 4481 if (Val < Low || Val > High) { 4482 Error(Loc, "immediate value out of range"); 4483 return MatchOperand_ParseFail; 4484 } 4485 4486 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4487 4488 return MatchOperand_Success; 4489 } 4490 4491 OperandMatchResultTy 4492 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4493 MCAsmParser &Parser = getParser(); 4494 const AsmToken &Tok = Parser.getTok(); 4495 SMLoc S = Tok.getLoc(); 4496 if (Tok.isNot(AsmToken::Identifier)) { 4497 Error(S, "'be' or 'le' operand expected"); 4498 return MatchOperand_ParseFail; 4499 } 4500 int Val = StringSwitch<int>(Tok.getString().lower()) 4501 .Case("be", 1) 4502 .Case("le", 0) 4503 .Default(-1); 4504 Parser.Lex(); // Eat the token. 4505 4506 if (Val == -1) { 4507 Error(S, "'be' or 'le' operand expected"); 4508 return MatchOperand_ParseFail; 4509 } 4510 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4511 getContext()), 4512 S, Tok.getEndLoc())); 4513 return MatchOperand_Success; 4514 } 4515 4516 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4517 /// instructions. Legal values are: 4518 /// lsl #n 'n' in [0,31] 4519 /// asr #n 'n' in [1,32] 4520 /// n == 32 encoded as n == 0. 4521 OperandMatchResultTy 4522 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4523 MCAsmParser &Parser = getParser(); 4524 const AsmToken &Tok = Parser.getTok(); 4525 SMLoc S = Tok.getLoc(); 4526 if (Tok.isNot(AsmToken::Identifier)) { 4527 Error(S, "shift operator 'asr' or 'lsl' expected"); 4528 return MatchOperand_ParseFail; 4529 } 4530 StringRef ShiftName = Tok.getString(); 4531 bool isASR; 4532 if (ShiftName == "lsl" || ShiftName == "LSL") 4533 isASR = false; 4534 else if (ShiftName == "asr" || ShiftName == "ASR") 4535 isASR = true; 4536 else { 4537 Error(S, "shift operator 'asr' or 'lsl' expected"); 4538 return MatchOperand_ParseFail; 4539 } 4540 Parser.Lex(); // Eat the operator. 4541 4542 // A '#' and a shift amount. 4543 if (Parser.getTok().isNot(AsmToken::Hash) && 4544 Parser.getTok().isNot(AsmToken::Dollar)) { 4545 Error(Parser.getTok().getLoc(), "'#' expected"); 4546 return MatchOperand_ParseFail; 4547 } 4548 Parser.Lex(); // Eat hash token. 4549 SMLoc ExLoc = Parser.getTok().getLoc(); 4550 4551 const MCExpr *ShiftAmount; 4552 SMLoc EndLoc; 4553 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4554 Error(ExLoc, "malformed shift expression"); 4555 return MatchOperand_ParseFail; 4556 } 4557 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4558 if (!CE) { 4559 Error(ExLoc, "shift amount must be an immediate"); 4560 return MatchOperand_ParseFail; 4561 } 4562 4563 int64_t Val = CE->getValue(); 4564 if (isASR) { 4565 // Shift amount must be in [1,32] 4566 if (Val < 1 || Val > 32) { 4567 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4568 return MatchOperand_ParseFail; 4569 } 4570 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4571 if (isThumb() && Val == 32) { 4572 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4573 return MatchOperand_ParseFail; 4574 } 4575 if (Val == 32) Val = 0; 4576 } else { 4577 // Shift amount must be in [1,32] 4578 if (Val < 0 || Val > 31) { 4579 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4580 return MatchOperand_ParseFail; 4581 } 4582 } 4583 4584 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4585 4586 return MatchOperand_Success; 4587 } 4588 4589 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4590 /// of instructions. Legal values are: 4591 /// ror #n 'n' in {0, 8, 16, 24} 4592 OperandMatchResultTy 4593 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4594 MCAsmParser &Parser = getParser(); 4595 const AsmToken &Tok = Parser.getTok(); 4596 SMLoc S = Tok.getLoc(); 4597 if (Tok.isNot(AsmToken::Identifier)) 4598 return MatchOperand_NoMatch; 4599 StringRef ShiftName = Tok.getString(); 4600 if (ShiftName != "ror" && ShiftName != "ROR") 4601 return MatchOperand_NoMatch; 4602 Parser.Lex(); // Eat the operator. 4603 4604 // A '#' and a rotate amount. 4605 if (Parser.getTok().isNot(AsmToken::Hash) && 4606 Parser.getTok().isNot(AsmToken::Dollar)) { 4607 Error(Parser.getTok().getLoc(), "'#' expected"); 4608 return MatchOperand_ParseFail; 4609 } 4610 Parser.Lex(); // Eat hash token. 4611 SMLoc ExLoc = Parser.getTok().getLoc(); 4612 4613 const MCExpr *ShiftAmount; 4614 SMLoc EndLoc; 4615 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4616 Error(ExLoc, "malformed rotate expression"); 4617 return MatchOperand_ParseFail; 4618 } 4619 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4620 if (!CE) { 4621 Error(ExLoc, "rotate amount must be an immediate"); 4622 return MatchOperand_ParseFail; 4623 } 4624 4625 int64_t Val = CE->getValue(); 4626 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4627 // normally, zero is represented in asm by omitting the rotate operand 4628 // entirely. 4629 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4630 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4631 return MatchOperand_ParseFail; 4632 } 4633 4634 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4635 4636 return MatchOperand_Success; 4637 } 4638 4639 OperandMatchResultTy 4640 ARMAsmParser::parseModImm(OperandVector &Operands) { 4641 MCAsmParser &Parser = getParser(); 4642 MCAsmLexer &Lexer = getLexer(); 4643 int64_t Imm1, Imm2; 4644 4645 SMLoc S = Parser.getTok().getLoc(); 4646 4647 // 1) A mod_imm operand can appear in the place of a register name: 4648 // add r0, #mod_imm 4649 // add r0, r0, #mod_imm 4650 // to correctly handle the latter, we bail out as soon as we see an 4651 // identifier. 4652 // 4653 // 2) Similarly, we do not want to parse into complex operands: 4654 // mov r0, #mod_imm 4655 // mov r0, :lower16:(_foo) 4656 if (Parser.getTok().is(AsmToken::Identifier) || 4657 Parser.getTok().is(AsmToken::Colon)) 4658 return MatchOperand_NoMatch; 4659 4660 // Hash (dollar) is optional as per the ARMARM 4661 if (Parser.getTok().is(AsmToken::Hash) || 4662 Parser.getTok().is(AsmToken::Dollar)) { 4663 // Avoid parsing into complex operands (#:) 4664 if (Lexer.peekTok().is(AsmToken::Colon)) 4665 return MatchOperand_NoMatch; 4666 4667 // Eat the hash (dollar) 4668 Parser.Lex(); 4669 } 4670 4671 SMLoc Sx1, Ex1; 4672 Sx1 = Parser.getTok().getLoc(); 4673 const MCExpr *Imm1Exp; 4674 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4675 Error(Sx1, "malformed expression"); 4676 return MatchOperand_ParseFail; 4677 } 4678 4679 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4680 4681 if (CE) { 4682 // Immediate must fit within 32-bits 4683 Imm1 = CE->getValue(); 4684 int Enc = ARM_AM::getSOImmVal(Imm1); 4685 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4686 // We have a match! 4687 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4688 (Enc & 0xF00) >> 7, 4689 Sx1, Ex1)); 4690 return MatchOperand_Success; 4691 } 4692 4693 // We have parsed an immediate which is not for us, fallback to a plain 4694 // immediate. This can happen for instruction aliases. For an example, 4695 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4696 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4697 // instruction with a mod_imm operand. The alias is defined such that the 4698 // parser method is shared, that's why we have to do this here. 4699 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4700 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4701 return MatchOperand_Success; 4702 } 4703 } else { 4704 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4705 // MCFixup). Fallback to a plain immediate. 4706 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4707 return MatchOperand_Success; 4708 } 4709 4710 // From this point onward, we expect the input to be a (#bits, #rot) pair 4711 if (Parser.getTok().isNot(AsmToken::Comma)) { 4712 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4713 return MatchOperand_ParseFail; 4714 } 4715 4716 if (Imm1 & ~0xFF) { 4717 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4718 return MatchOperand_ParseFail; 4719 } 4720 4721 // Eat the comma 4722 Parser.Lex(); 4723 4724 // Repeat for #rot 4725 SMLoc Sx2, Ex2; 4726 Sx2 = Parser.getTok().getLoc(); 4727 4728 // Eat the optional hash (dollar) 4729 if (Parser.getTok().is(AsmToken::Hash) || 4730 Parser.getTok().is(AsmToken::Dollar)) 4731 Parser.Lex(); 4732 4733 const MCExpr *Imm2Exp; 4734 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4735 Error(Sx2, "malformed expression"); 4736 return MatchOperand_ParseFail; 4737 } 4738 4739 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4740 4741 if (CE) { 4742 Imm2 = CE->getValue(); 4743 if (!(Imm2 & ~0x1E)) { 4744 // We have a match! 4745 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4746 return MatchOperand_Success; 4747 } 4748 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4749 return MatchOperand_ParseFail; 4750 } else { 4751 Error(Sx2, "constant expression expected"); 4752 return MatchOperand_ParseFail; 4753 } 4754 } 4755 4756 OperandMatchResultTy 4757 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4758 MCAsmParser &Parser = getParser(); 4759 SMLoc S = Parser.getTok().getLoc(); 4760 // The bitfield descriptor is really two operands, the LSB and the width. 4761 if (Parser.getTok().isNot(AsmToken::Hash) && 4762 Parser.getTok().isNot(AsmToken::Dollar)) { 4763 Error(Parser.getTok().getLoc(), "'#' expected"); 4764 return MatchOperand_ParseFail; 4765 } 4766 Parser.Lex(); // Eat hash token. 4767 4768 const MCExpr *LSBExpr; 4769 SMLoc E = Parser.getTok().getLoc(); 4770 if (getParser().parseExpression(LSBExpr)) { 4771 Error(E, "malformed immediate expression"); 4772 return MatchOperand_ParseFail; 4773 } 4774 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4775 if (!CE) { 4776 Error(E, "'lsb' operand must be an immediate"); 4777 return MatchOperand_ParseFail; 4778 } 4779 4780 int64_t LSB = CE->getValue(); 4781 // The LSB must be in the range [0,31] 4782 if (LSB < 0 || LSB > 31) { 4783 Error(E, "'lsb' operand must be in the range [0,31]"); 4784 return MatchOperand_ParseFail; 4785 } 4786 E = Parser.getTok().getLoc(); 4787 4788 // Expect another immediate operand. 4789 if (Parser.getTok().isNot(AsmToken::Comma)) { 4790 Error(Parser.getTok().getLoc(), "too few operands"); 4791 return MatchOperand_ParseFail; 4792 } 4793 Parser.Lex(); // Eat hash token. 4794 if (Parser.getTok().isNot(AsmToken::Hash) && 4795 Parser.getTok().isNot(AsmToken::Dollar)) { 4796 Error(Parser.getTok().getLoc(), "'#' expected"); 4797 return MatchOperand_ParseFail; 4798 } 4799 Parser.Lex(); // Eat hash token. 4800 4801 const MCExpr *WidthExpr; 4802 SMLoc EndLoc; 4803 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4804 Error(E, "malformed immediate expression"); 4805 return MatchOperand_ParseFail; 4806 } 4807 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4808 if (!CE) { 4809 Error(E, "'width' operand must be an immediate"); 4810 return MatchOperand_ParseFail; 4811 } 4812 4813 int64_t Width = CE->getValue(); 4814 // The LSB must be in the range [1,32-lsb] 4815 if (Width < 1 || Width > 32 - LSB) { 4816 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4817 return MatchOperand_ParseFail; 4818 } 4819 4820 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4821 4822 return MatchOperand_Success; 4823 } 4824 4825 OperandMatchResultTy 4826 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4827 // Check for a post-index addressing register operand. Specifically: 4828 // postidx_reg := '+' register {, shift} 4829 // | '-' register {, shift} 4830 // | register {, shift} 4831 4832 // This method must return MatchOperand_NoMatch without consuming any tokens 4833 // in the case where there is no match, as other alternatives take other 4834 // parse methods. 4835 MCAsmParser &Parser = getParser(); 4836 AsmToken Tok = Parser.getTok(); 4837 SMLoc S = Tok.getLoc(); 4838 bool haveEaten = false; 4839 bool isAdd = true; 4840 if (Tok.is(AsmToken::Plus)) { 4841 Parser.Lex(); // Eat the '+' token. 4842 haveEaten = true; 4843 } else if (Tok.is(AsmToken::Minus)) { 4844 Parser.Lex(); // Eat the '-' token. 4845 isAdd = false; 4846 haveEaten = true; 4847 } 4848 4849 SMLoc E = Parser.getTok().getEndLoc(); 4850 int Reg = tryParseRegister(); 4851 if (Reg == -1) { 4852 if (!haveEaten) 4853 return MatchOperand_NoMatch; 4854 Error(Parser.getTok().getLoc(), "register expected"); 4855 return MatchOperand_ParseFail; 4856 } 4857 4858 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4859 unsigned ShiftImm = 0; 4860 if (Parser.getTok().is(AsmToken::Comma)) { 4861 Parser.Lex(); // Eat the ','. 4862 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4863 return MatchOperand_ParseFail; 4864 4865 // FIXME: Only approximates end...may include intervening whitespace. 4866 E = Parser.getTok().getLoc(); 4867 } 4868 4869 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4870 ShiftImm, S, E)); 4871 4872 return MatchOperand_Success; 4873 } 4874 4875 OperandMatchResultTy 4876 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4877 // Check for a post-index addressing register operand. Specifically: 4878 // am3offset := '+' register 4879 // | '-' register 4880 // | register 4881 // | # imm 4882 // | # + imm 4883 // | # - imm 4884 4885 // This method must return MatchOperand_NoMatch without consuming any tokens 4886 // in the case where there is no match, as other alternatives take other 4887 // parse methods. 4888 MCAsmParser &Parser = getParser(); 4889 AsmToken Tok = Parser.getTok(); 4890 SMLoc S = Tok.getLoc(); 4891 4892 // Do immediates first, as we always parse those if we have a '#'. 4893 if (Parser.getTok().is(AsmToken::Hash) || 4894 Parser.getTok().is(AsmToken::Dollar)) { 4895 Parser.Lex(); // Eat '#' or '$'. 4896 // Explicitly look for a '-', as we need to encode negative zero 4897 // differently. 4898 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4899 const MCExpr *Offset; 4900 SMLoc E; 4901 if (getParser().parseExpression(Offset, E)) 4902 return MatchOperand_ParseFail; 4903 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4904 if (!CE) { 4905 Error(S, "constant expression expected"); 4906 return MatchOperand_ParseFail; 4907 } 4908 // Negative zero is encoded as the flag value INT32_MIN. 4909 int32_t Val = CE->getValue(); 4910 if (isNegative && Val == 0) 4911 Val = INT32_MIN; 4912 4913 Operands.push_back( 4914 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4915 4916 return MatchOperand_Success; 4917 } 4918 4919 4920 bool haveEaten = false; 4921 bool isAdd = true; 4922 if (Tok.is(AsmToken::Plus)) { 4923 Parser.Lex(); // Eat the '+' token. 4924 haveEaten = true; 4925 } else if (Tok.is(AsmToken::Minus)) { 4926 Parser.Lex(); // Eat the '-' token. 4927 isAdd = false; 4928 haveEaten = true; 4929 } 4930 4931 Tok = Parser.getTok(); 4932 int Reg = tryParseRegister(); 4933 if (Reg == -1) { 4934 if (!haveEaten) 4935 return MatchOperand_NoMatch; 4936 Error(Tok.getLoc(), "register expected"); 4937 return MatchOperand_ParseFail; 4938 } 4939 4940 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4941 0, S, Tok.getEndLoc())); 4942 4943 return MatchOperand_Success; 4944 } 4945 4946 /// Convert parsed operands to MCInst. Needed here because this instruction 4947 /// only has two register operands, but multiplication is commutative so 4948 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4949 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4950 const OperandVector &Operands) { 4951 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4952 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4953 // If we have a three-operand form, make sure to set Rn to be the operand 4954 // that isn't the same as Rd. 4955 unsigned RegOp = 4; 4956 if (Operands.size() == 6 && 4957 ((ARMOperand &)*Operands[4]).getReg() == 4958 ((ARMOperand &)*Operands[3]).getReg()) 4959 RegOp = 5; 4960 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4961 Inst.addOperand(Inst.getOperand(0)); 4962 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4963 } 4964 4965 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4966 const OperandVector &Operands) { 4967 int CondOp = -1, ImmOp = -1; 4968 switch(Inst.getOpcode()) { 4969 case ARM::tB: 4970 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4971 4972 case ARM::t2B: 4973 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4974 4975 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4976 } 4977 // first decide whether or not the branch should be conditional 4978 // by looking at it's location relative to an IT block 4979 if(inITBlock()) { 4980 // inside an IT block we cannot have any conditional branches. any 4981 // such instructions needs to be converted to unconditional form 4982 switch(Inst.getOpcode()) { 4983 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4984 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4985 } 4986 } else { 4987 // outside IT blocks we can only have unconditional branches with AL 4988 // condition code or conditional branches with non-AL condition code 4989 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4990 switch(Inst.getOpcode()) { 4991 case ARM::tB: 4992 case ARM::tBcc: 4993 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4994 break; 4995 case ARM::t2B: 4996 case ARM::t2Bcc: 4997 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4998 break; 4999 } 5000 } 5001 5002 // now decide on encoding size based on branch target range 5003 switch(Inst.getOpcode()) { 5004 // classify tB as either t2B or t1B based on range of immediate operand 5005 case ARM::tB: { 5006 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5007 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5008 Inst.setOpcode(ARM::t2B); 5009 break; 5010 } 5011 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5012 case ARM::tBcc: { 5013 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5014 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5015 Inst.setOpcode(ARM::t2Bcc); 5016 break; 5017 } 5018 } 5019 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5020 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5021 } 5022 5023 /// Parse an ARM memory expression, return false if successful else return true 5024 /// or an error. The first token must be a '[' when called. 5025 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5026 MCAsmParser &Parser = getParser(); 5027 SMLoc S, E; 5028 if (Parser.getTok().isNot(AsmToken::LBrac)) 5029 return TokError("Token is not a Left Bracket"); 5030 S = Parser.getTok().getLoc(); 5031 Parser.Lex(); // Eat left bracket token. 5032 5033 const AsmToken &BaseRegTok = Parser.getTok(); 5034 int BaseRegNum = tryParseRegister(); 5035 if (BaseRegNum == -1) 5036 return Error(BaseRegTok.getLoc(), "register expected"); 5037 5038 // The next token must either be a comma, a colon or a closing bracket. 5039 const AsmToken &Tok = Parser.getTok(); 5040 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5041 !Tok.is(AsmToken::RBrac)) 5042 return Error(Tok.getLoc(), "malformed memory operand"); 5043 5044 if (Tok.is(AsmToken::RBrac)) { 5045 E = Tok.getEndLoc(); 5046 Parser.Lex(); // Eat right bracket token. 5047 5048 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5049 ARM_AM::no_shift, 0, 0, false, 5050 S, E)); 5051 5052 // If there's a pre-indexing writeback marker, '!', just add it as a token 5053 // operand. It's rather odd, but syntactically valid. 5054 if (Parser.getTok().is(AsmToken::Exclaim)) { 5055 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5056 Parser.Lex(); // Eat the '!'. 5057 } 5058 5059 return false; 5060 } 5061 5062 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5063 "Lost colon or comma in memory operand?!"); 5064 if (Tok.is(AsmToken::Comma)) { 5065 Parser.Lex(); // Eat the comma. 5066 } 5067 5068 // If we have a ':', it's an alignment specifier. 5069 if (Parser.getTok().is(AsmToken::Colon)) { 5070 Parser.Lex(); // Eat the ':'. 5071 E = Parser.getTok().getLoc(); 5072 SMLoc AlignmentLoc = Tok.getLoc(); 5073 5074 const MCExpr *Expr; 5075 if (getParser().parseExpression(Expr)) 5076 return true; 5077 5078 // The expression has to be a constant. Memory references with relocations 5079 // don't come through here, as they use the <label> forms of the relevant 5080 // instructions. 5081 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5082 if (!CE) 5083 return Error (E, "constant expression expected"); 5084 5085 unsigned Align = 0; 5086 switch (CE->getValue()) { 5087 default: 5088 return Error(E, 5089 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5090 case 16: Align = 2; break; 5091 case 32: Align = 4; break; 5092 case 64: Align = 8; break; 5093 case 128: Align = 16; break; 5094 case 256: Align = 32; break; 5095 } 5096 5097 // Now we should have the closing ']' 5098 if (Parser.getTok().isNot(AsmToken::RBrac)) 5099 return Error(Parser.getTok().getLoc(), "']' expected"); 5100 E = Parser.getTok().getEndLoc(); 5101 Parser.Lex(); // Eat right bracket token. 5102 5103 // Don't worry about range checking the value here. That's handled by 5104 // the is*() predicates. 5105 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5106 ARM_AM::no_shift, 0, Align, 5107 false, S, E, AlignmentLoc)); 5108 5109 // If there's a pre-indexing writeback marker, '!', just add it as a token 5110 // operand. 5111 if (Parser.getTok().is(AsmToken::Exclaim)) { 5112 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5113 Parser.Lex(); // Eat the '!'. 5114 } 5115 5116 return false; 5117 } 5118 5119 // If we have a '#', it's an immediate offset, else assume it's a register 5120 // offset. Be friendly and also accept a plain integer (without a leading 5121 // hash) for gas compatibility. 5122 if (Parser.getTok().is(AsmToken::Hash) || 5123 Parser.getTok().is(AsmToken::Dollar) || 5124 Parser.getTok().is(AsmToken::Integer)) { 5125 if (Parser.getTok().isNot(AsmToken::Integer)) 5126 Parser.Lex(); // Eat '#' or '$'. 5127 E = Parser.getTok().getLoc(); 5128 5129 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5130 const MCExpr *Offset; 5131 if (getParser().parseExpression(Offset)) 5132 return true; 5133 5134 // The expression has to be a constant. Memory references with relocations 5135 // don't come through here, as they use the <label> forms of the relevant 5136 // instructions. 5137 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5138 if (!CE) 5139 return Error (E, "constant expression expected"); 5140 5141 // If the constant was #-0, represent it as INT32_MIN. 5142 int32_t Val = CE->getValue(); 5143 if (isNegative && Val == 0) 5144 CE = MCConstantExpr::create(INT32_MIN, getContext()); 5145 5146 // Now we should have the closing ']' 5147 if (Parser.getTok().isNot(AsmToken::RBrac)) 5148 return Error(Parser.getTok().getLoc(), "']' expected"); 5149 E = Parser.getTok().getEndLoc(); 5150 Parser.Lex(); // Eat right bracket token. 5151 5152 // Don't worry about range checking the value here. That's handled by 5153 // the is*() predicates. 5154 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5155 ARM_AM::no_shift, 0, 0, 5156 false, S, E)); 5157 5158 // If there's a pre-indexing writeback marker, '!', just add it as a token 5159 // operand. 5160 if (Parser.getTok().is(AsmToken::Exclaim)) { 5161 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5162 Parser.Lex(); // Eat the '!'. 5163 } 5164 5165 return false; 5166 } 5167 5168 // The register offset is optionally preceded by a '+' or '-' 5169 bool isNegative = false; 5170 if (Parser.getTok().is(AsmToken::Minus)) { 5171 isNegative = true; 5172 Parser.Lex(); // Eat the '-'. 5173 } else if (Parser.getTok().is(AsmToken::Plus)) { 5174 // Nothing to do. 5175 Parser.Lex(); // Eat the '+'. 5176 } 5177 5178 E = Parser.getTok().getLoc(); 5179 int OffsetRegNum = tryParseRegister(); 5180 if (OffsetRegNum == -1) 5181 return Error(E, "register expected"); 5182 5183 // If there's a shift operator, handle it. 5184 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5185 unsigned ShiftImm = 0; 5186 if (Parser.getTok().is(AsmToken::Comma)) { 5187 Parser.Lex(); // Eat the ','. 5188 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5189 return true; 5190 } 5191 5192 // Now we should have the closing ']' 5193 if (Parser.getTok().isNot(AsmToken::RBrac)) 5194 return Error(Parser.getTok().getLoc(), "']' expected"); 5195 E = Parser.getTok().getEndLoc(); 5196 Parser.Lex(); // Eat right bracket token. 5197 5198 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5199 ShiftType, ShiftImm, 0, isNegative, 5200 S, E)); 5201 5202 // If there's a pre-indexing writeback marker, '!', just add it as a token 5203 // operand. 5204 if (Parser.getTok().is(AsmToken::Exclaim)) { 5205 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5206 Parser.Lex(); // Eat the '!'. 5207 } 5208 5209 return false; 5210 } 5211 5212 /// parseMemRegOffsetShift - one of these two: 5213 /// ( lsl | lsr | asr | ror ) , # shift_amount 5214 /// rrx 5215 /// return true if it parses a shift otherwise it returns false. 5216 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5217 unsigned &Amount) { 5218 MCAsmParser &Parser = getParser(); 5219 SMLoc Loc = Parser.getTok().getLoc(); 5220 const AsmToken &Tok = Parser.getTok(); 5221 if (Tok.isNot(AsmToken::Identifier)) 5222 return true; 5223 StringRef ShiftName = Tok.getString(); 5224 if (ShiftName == "lsl" || ShiftName == "LSL" || 5225 ShiftName == "asl" || ShiftName == "ASL") 5226 St = ARM_AM::lsl; 5227 else if (ShiftName == "lsr" || ShiftName == "LSR") 5228 St = ARM_AM::lsr; 5229 else if (ShiftName == "asr" || ShiftName == "ASR") 5230 St = ARM_AM::asr; 5231 else if (ShiftName == "ror" || ShiftName == "ROR") 5232 St = ARM_AM::ror; 5233 else if (ShiftName == "rrx" || ShiftName == "RRX") 5234 St = ARM_AM::rrx; 5235 else 5236 return Error(Loc, "illegal shift operator"); 5237 Parser.Lex(); // Eat shift type token. 5238 5239 // rrx stands alone. 5240 Amount = 0; 5241 if (St != ARM_AM::rrx) { 5242 Loc = Parser.getTok().getLoc(); 5243 // A '#' and a shift amount. 5244 const AsmToken &HashTok = Parser.getTok(); 5245 if (HashTok.isNot(AsmToken::Hash) && 5246 HashTok.isNot(AsmToken::Dollar)) 5247 return Error(HashTok.getLoc(), "'#' expected"); 5248 Parser.Lex(); // Eat hash token. 5249 5250 const MCExpr *Expr; 5251 if (getParser().parseExpression(Expr)) 5252 return true; 5253 // Range check the immediate. 5254 // lsl, ror: 0 <= imm <= 31 5255 // lsr, asr: 0 <= imm <= 32 5256 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5257 if (!CE) 5258 return Error(Loc, "shift amount must be an immediate"); 5259 int64_t Imm = CE->getValue(); 5260 if (Imm < 0 || 5261 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5262 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5263 return Error(Loc, "immediate shift value out of range"); 5264 // If <ShiftTy> #0, turn it into a no_shift. 5265 if (Imm == 0) 5266 St = ARM_AM::lsl; 5267 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5268 if (Imm == 32) 5269 Imm = 0; 5270 Amount = Imm; 5271 } 5272 5273 return false; 5274 } 5275 5276 /// parseFPImm - A floating point immediate expression operand. 5277 OperandMatchResultTy 5278 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5279 MCAsmParser &Parser = getParser(); 5280 // Anything that can accept a floating point constant as an operand 5281 // needs to go through here, as the regular parseExpression is 5282 // integer only. 5283 // 5284 // This routine still creates a generic Immediate operand, containing 5285 // a bitcast of the 64-bit floating point value. The various operands 5286 // that accept floats can check whether the value is valid for them 5287 // via the standard is*() predicates. 5288 5289 SMLoc S = Parser.getTok().getLoc(); 5290 5291 if (Parser.getTok().isNot(AsmToken::Hash) && 5292 Parser.getTok().isNot(AsmToken::Dollar)) 5293 return MatchOperand_NoMatch; 5294 5295 // Disambiguate the VMOV forms that can accept an FP immediate. 5296 // vmov.f32 <sreg>, #imm 5297 // vmov.f64 <dreg>, #imm 5298 // vmov.f32 <dreg>, #imm @ vector f32x2 5299 // vmov.f32 <qreg>, #imm @ vector f32x4 5300 // 5301 // There are also the NEON VMOV instructions which expect an 5302 // integer constant. Make sure we don't try to parse an FPImm 5303 // for these: 5304 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5305 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5306 bool isVmovf = TyOp.isToken() && 5307 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5308 TyOp.getToken() == ".f16"); 5309 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5310 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5311 Mnemonic.getToken() == "fconsts"); 5312 if (!(isVmovf || isFconst)) 5313 return MatchOperand_NoMatch; 5314 5315 Parser.Lex(); // Eat '#' or '$'. 5316 5317 // Handle negation, as that still comes through as a separate token. 5318 bool isNegative = false; 5319 if (Parser.getTok().is(AsmToken::Minus)) { 5320 isNegative = true; 5321 Parser.Lex(); 5322 } 5323 const AsmToken &Tok = Parser.getTok(); 5324 SMLoc Loc = Tok.getLoc(); 5325 if (Tok.is(AsmToken::Real) && isVmovf) { 5326 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5327 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5328 // If we had a '-' in front, toggle the sign bit. 5329 IntVal ^= (uint64_t)isNegative << 31; 5330 Parser.Lex(); // Eat the token. 5331 Operands.push_back(ARMOperand::CreateImm( 5332 MCConstantExpr::create(IntVal, getContext()), 5333 S, Parser.getTok().getLoc())); 5334 return MatchOperand_Success; 5335 } 5336 // Also handle plain integers. Instructions which allow floating point 5337 // immediates also allow a raw encoded 8-bit value. 5338 if (Tok.is(AsmToken::Integer) && isFconst) { 5339 int64_t Val = Tok.getIntVal(); 5340 Parser.Lex(); // Eat the token. 5341 if (Val > 255 || Val < 0) { 5342 Error(Loc, "encoded floating point value out of range"); 5343 return MatchOperand_ParseFail; 5344 } 5345 float RealVal = ARM_AM::getFPImmFloat(Val); 5346 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5347 5348 Operands.push_back(ARMOperand::CreateImm( 5349 MCConstantExpr::create(Val, getContext()), S, 5350 Parser.getTok().getLoc())); 5351 return MatchOperand_Success; 5352 } 5353 5354 Error(Loc, "invalid floating point immediate"); 5355 return MatchOperand_ParseFail; 5356 } 5357 5358 /// Parse a arm instruction operand. For now this parses the operand regardless 5359 /// of the mnemonic. 5360 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5361 MCAsmParser &Parser = getParser(); 5362 SMLoc S, E; 5363 5364 // Check if the current operand has a custom associated parser, if so, try to 5365 // custom parse the operand, or fallback to the general approach. 5366 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5367 if (ResTy == MatchOperand_Success) 5368 return false; 5369 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5370 // there was a match, but an error occurred, in which case, just return that 5371 // the operand parsing failed. 5372 if (ResTy == MatchOperand_ParseFail) 5373 return true; 5374 5375 switch (getLexer().getKind()) { 5376 default: 5377 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5378 return true; 5379 case AsmToken::Identifier: { 5380 // If we've seen a branch mnemonic, the next operand must be a label. This 5381 // is true even if the label is a register name. So "br r1" means branch to 5382 // label "r1". 5383 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5384 if (!ExpectLabel) { 5385 if (!tryParseRegisterWithWriteBack(Operands)) 5386 return false; 5387 int Res = tryParseShiftRegister(Operands); 5388 if (Res == 0) // success 5389 return false; 5390 else if (Res == -1) // irrecoverable error 5391 return true; 5392 // If this is VMRS, check for the apsr_nzcv operand. 5393 if (Mnemonic == "vmrs" && 5394 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5395 S = Parser.getTok().getLoc(); 5396 Parser.Lex(); 5397 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5398 return false; 5399 } 5400 } 5401 5402 // Fall though for the Identifier case that is not a register or a 5403 // special name. 5404 } 5405 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5406 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5407 case AsmToken::String: // quoted label names. 5408 case AsmToken::Dot: { // . as a branch target 5409 // This was not a register so parse other operands that start with an 5410 // identifier (like labels) as expressions and create them as immediates. 5411 const MCExpr *IdVal; 5412 S = Parser.getTok().getLoc(); 5413 if (getParser().parseExpression(IdVal)) 5414 return true; 5415 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5416 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5417 return false; 5418 } 5419 case AsmToken::LBrac: 5420 return parseMemory(Operands); 5421 case AsmToken::LCurly: 5422 return parseRegisterList(Operands); 5423 case AsmToken::Dollar: 5424 case AsmToken::Hash: { 5425 // #42 -> immediate. 5426 S = Parser.getTok().getLoc(); 5427 Parser.Lex(); 5428 5429 if (Parser.getTok().isNot(AsmToken::Colon)) { 5430 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5431 const MCExpr *ImmVal; 5432 if (getParser().parseExpression(ImmVal)) 5433 return true; 5434 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5435 if (CE) { 5436 int32_t Val = CE->getValue(); 5437 if (isNegative && Val == 0) 5438 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5439 } 5440 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5441 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5442 5443 // There can be a trailing '!' on operands that we want as a separate 5444 // '!' Token operand. Handle that here. For example, the compatibility 5445 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5446 if (Parser.getTok().is(AsmToken::Exclaim)) { 5447 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5448 Parser.getTok().getLoc())); 5449 Parser.Lex(); // Eat exclaim token 5450 } 5451 return false; 5452 } 5453 // w/ a ':' after the '#', it's just like a plain ':'. 5454 LLVM_FALLTHROUGH; 5455 } 5456 case AsmToken::Colon: { 5457 S = Parser.getTok().getLoc(); 5458 // ":lower16:" and ":upper16:" expression prefixes 5459 // FIXME: Check it's an expression prefix, 5460 // e.g. (FOO - :lower16:BAR) isn't legal. 5461 ARMMCExpr::VariantKind RefKind; 5462 if (parsePrefix(RefKind)) 5463 return true; 5464 5465 const MCExpr *SubExprVal; 5466 if (getParser().parseExpression(SubExprVal)) 5467 return true; 5468 5469 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5470 getContext()); 5471 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5472 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5473 return false; 5474 } 5475 case AsmToken::Equal: { 5476 S = Parser.getTok().getLoc(); 5477 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5478 return Error(S, "unexpected token in operand"); 5479 Parser.Lex(); // Eat '=' 5480 const MCExpr *SubExprVal; 5481 if (getParser().parseExpression(SubExprVal)) 5482 return true; 5483 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5484 5485 // execute-only: we assume that assembly programmers know what they are 5486 // doing and allow literal pool creation here 5487 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5488 return false; 5489 } 5490 } 5491 } 5492 5493 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5494 // :lower16: and :upper16:. 5495 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5496 MCAsmParser &Parser = getParser(); 5497 RefKind = ARMMCExpr::VK_ARM_None; 5498 5499 // consume an optional '#' (GNU compatibility) 5500 if (getLexer().is(AsmToken::Hash)) 5501 Parser.Lex(); 5502 5503 // :lower16: and :upper16: modifiers 5504 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5505 Parser.Lex(); // Eat ':' 5506 5507 if (getLexer().isNot(AsmToken::Identifier)) { 5508 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5509 return true; 5510 } 5511 5512 enum { 5513 COFF = (1 << MCObjectFileInfo::IsCOFF), 5514 ELF = (1 << MCObjectFileInfo::IsELF), 5515 MACHO = (1 << MCObjectFileInfo::IsMachO), 5516 WASM = (1 << MCObjectFileInfo::IsWasm), 5517 }; 5518 static const struct PrefixEntry { 5519 const char *Spelling; 5520 ARMMCExpr::VariantKind VariantKind; 5521 uint8_t SupportedFormats; 5522 } PrefixEntries[] = { 5523 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5524 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5525 }; 5526 5527 StringRef IDVal = Parser.getTok().getIdentifier(); 5528 5529 const auto &Prefix = 5530 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5531 [&IDVal](const PrefixEntry &PE) { 5532 return PE.Spelling == IDVal; 5533 }); 5534 if (Prefix == std::end(PrefixEntries)) { 5535 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5536 return true; 5537 } 5538 5539 uint8_t CurrentFormat; 5540 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5541 case MCObjectFileInfo::IsMachO: 5542 CurrentFormat = MACHO; 5543 break; 5544 case MCObjectFileInfo::IsELF: 5545 CurrentFormat = ELF; 5546 break; 5547 case MCObjectFileInfo::IsCOFF: 5548 CurrentFormat = COFF; 5549 break; 5550 case MCObjectFileInfo::IsWasm: 5551 CurrentFormat = WASM; 5552 break; 5553 } 5554 5555 if (~Prefix->SupportedFormats & CurrentFormat) { 5556 Error(Parser.getTok().getLoc(), 5557 "cannot represent relocation in the current file format"); 5558 return true; 5559 } 5560 5561 RefKind = Prefix->VariantKind; 5562 Parser.Lex(); 5563 5564 if (getLexer().isNot(AsmToken::Colon)) { 5565 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5566 return true; 5567 } 5568 Parser.Lex(); // Eat the last ':' 5569 5570 return false; 5571 } 5572 5573 /// \brief Given a mnemonic, split out possible predication code and carry 5574 /// setting letters to form a canonical mnemonic and flags. 5575 // 5576 // FIXME: Would be nice to autogen this. 5577 // FIXME: This is a bit of a maze of special cases. 5578 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5579 unsigned &PredicationCode, 5580 bool &CarrySetting, 5581 unsigned &ProcessorIMod, 5582 StringRef &ITMask) { 5583 PredicationCode = ARMCC::AL; 5584 CarrySetting = false; 5585 ProcessorIMod = 0; 5586 5587 // Ignore some mnemonics we know aren't predicated forms. 5588 // 5589 // FIXME: Would be nice to autogen this. 5590 if ((Mnemonic == "movs" && isThumb()) || 5591 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5592 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5593 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5594 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5595 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5596 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5597 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5598 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5599 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5600 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5601 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5602 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5603 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5604 Mnemonic == "bxns" || Mnemonic == "blxns") 5605 return Mnemonic; 5606 5607 // First, split out any predication code. Ignore mnemonics we know aren't 5608 // predicated but do have a carry-set and so weren't caught above. 5609 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5610 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5611 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5612 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5613 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5614 .Case("eq", ARMCC::EQ) 5615 .Case("ne", ARMCC::NE) 5616 .Case("hs", ARMCC::HS) 5617 .Case("cs", ARMCC::HS) 5618 .Case("lo", ARMCC::LO) 5619 .Case("cc", ARMCC::LO) 5620 .Case("mi", ARMCC::MI) 5621 .Case("pl", ARMCC::PL) 5622 .Case("vs", ARMCC::VS) 5623 .Case("vc", ARMCC::VC) 5624 .Case("hi", ARMCC::HI) 5625 .Case("ls", ARMCC::LS) 5626 .Case("ge", ARMCC::GE) 5627 .Case("lt", ARMCC::LT) 5628 .Case("gt", ARMCC::GT) 5629 .Case("le", ARMCC::LE) 5630 .Case("al", ARMCC::AL) 5631 .Default(~0U); 5632 if (CC != ~0U) { 5633 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5634 PredicationCode = CC; 5635 } 5636 } 5637 5638 // Next, determine if we have a carry setting bit. We explicitly ignore all 5639 // the instructions we know end in 's'. 5640 if (Mnemonic.endswith("s") && 5641 !(Mnemonic == "cps" || Mnemonic == "mls" || 5642 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5643 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5644 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5645 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5646 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5647 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5648 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5649 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5650 Mnemonic == "bxns" || Mnemonic == "blxns" || 5651 (Mnemonic == "movs" && isThumb()))) { 5652 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5653 CarrySetting = true; 5654 } 5655 5656 // The "cps" instruction can have a interrupt mode operand which is glued into 5657 // the mnemonic. Check if this is the case, split it and parse the imod op 5658 if (Mnemonic.startswith("cps")) { 5659 // Split out any imod code. 5660 unsigned IMod = 5661 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5662 .Case("ie", ARM_PROC::IE) 5663 .Case("id", ARM_PROC::ID) 5664 .Default(~0U); 5665 if (IMod != ~0U) { 5666 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5667 ProcessorIMod = IMod; 5668 } 5669 } 5670 5671 // The "it" instruction has the condition mask on the end of the mnemonic. 5672 if (Mnemonic.startswith("it")) { 5673 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5674 Mnemonic = Mnemonic.slice(0, 2); 5675 } 5676 5677 return Mnemonic; 5678 } 5679 5680 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5681 /// inclusion of carry set or predication code operands. 5682 // 5683 // FIXME: It would be nice to autogen this. 5684 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5685 bool &CanAcceptCarrySet, 5686 bool &CanAcceptPredicationCode) { 5687 CanAcceptCarrySet = 5688 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5689 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5690 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5691 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5692 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5693 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5694 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5695 (!isThumb() && 5696 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5697 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5698 5699 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5700 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5701 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5702 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5703 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5704 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5705 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5706 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5707 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5708 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5709 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5710 Mnemonic == "vmovx" || Mnemonic == "vins") { 5711 // These mnemonics are never predicable 5712 CanAcceptPredicationCode = false; 5713 } else if (!isThumb()) { 5714 // Some instructions are only predicable in Thumb mode 5715 CanAcceptPredicationCode = 5716 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5717 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5718 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5719 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5720 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5721 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5722 !Mnemonic.startswith("srs"); 5723 } else if (isThumbOne()) { 5724 if (hasV6MOps()) 5725 CanAcceptPredicationCode = Mnemonic != "movs"; 5726 else 5727 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5728 } else 5729 CanAcceptPredicationCode = true; 5730 } 5731 5732 // \brief Some Thumb instructions have two operand forms that are not 5733 // available as three operand, convert to two operand form if possible. 5734 // 5735 // FIXME: We would really like to be able to tablegen'erate this. 5736 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5737 bool CarrySetting, 5738 OperandVector &Operands) { 5739 if (Operands.size() != 6) 5740 return; 5741 5742 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5743 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5744 if (!Op3.isReg() || !Op4.isReg()) 5745 return; 5746 5747 auto Op3Reg = Op3.getReg(); 5748 auto Op4Reg = Op4.getReg(); 5749 5750 // For most Thumb2 cases we just generate the 3 operand form and reduce 5751 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5752 // won't accept SP or PC so we do the transformation here taking care 5753 // with immediate range in the 'add sp, sp #imm' case. 5754 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5755 if (isThumbTwo()) { 5756 if (Mnemonic != "add") 5757 return; 5758 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5759 (Op5.isReg() && Op5.getReg() == ARM::PC); 5760 if (!TryTransform) { 5761 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5762 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5763 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5764 Op5.isImm() && !Op5.isImm0_508s4()); 5765 } 5766 if (!TryTransform) 5767 return; 5768 } else if (!isThumbOne()) 5769 return; 5770 5771 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5772 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5773 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5774 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5775 return; 5776 5777 // If first 2 operands of a 3 operand instruction are the same 5778 // then transform to 2 operand version of the same instruction 5779 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5780 bool Transform = Op3Reg == Op4Reg; 5781 5782 // For communtative operations, we might be able to transform if we swap 5783 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5784 // as tADDrsp. 5785 const ARMOperand *LastOp = &Op5; 5786 bool Swap = false; 5787 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5788 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5789 Mnemonic == "and" || Mnemonic == "eor" || 5790 Mnemonic == "adc" || Mnemonic == "orr")) { 5791 Swap = true; 5792 LastOp = &Op4; 5793 Transform = true; 5794 } 5795 5796 // If both registers are the same then remove one of them from 5797 // the operand list, with certain exceptions. 5798 if (Transform) { 5799 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5800 // 2 operand forms don't exist. 5801 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5802 LastOp->isReg()) 5803 Transform = false; 5804 5805 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5806 // 3-bits because the ARMARM says not to. 5807 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5808 Transform = false; 5809 } 5810 5811 if (Transform) { 5812 if (Swap) 5813 std::swap(Op4, Op5); 5814 Operands.erase(Operands.begin() + 3); 5815 } 5816 } 5817 5818 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5819 OperandVector &Operands) { 5820 // FIXME: This is all horribly hacky. We really need a better way to deal 5821 // with optional operands like this in the matcher table. 5822 5823 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5824 // another does not. Specifically, the MOVW instruction does not. So we 5825 // special case it here and remove the defaulted (non-setting) cc_out 5826 // operand if that's the instruction we're trying to match. 5827 // 5828 // We do this as post-processing of the explicit operands rather than just 5829 // conditionally adding the cc_out in the first place because we need 5830 // to check the type of the parsed immediate operand. 5831 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5832 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5833 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5834 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5835 return true; 5836 5837 // Register-register 'add' for thumb does not have a cc_out operand 5838 // when there are only two register operands. 5839 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5840 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5841 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5842 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5843 return true; 5844 // Register-register 'add' for thumb does not have a cc_out operand 5845 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5846 // have to check the immediate range here since Thumb2 has a variant 5847 // that can handle a different range and has a cc_out operand. 5848 if (((isThumb() && Mnemonic == "add") || 5849 (isThumbTwo() && Mnemonic == "sub")) && 5850 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5851 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5852 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5853 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5854 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5855 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5856 return true; 5857 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5858 // imm0_4095 variant. That's the least-preferred variant when 5859 // selecting via the generic "add" mnemonic, so to know that we 5860 // should remove the cc_out operand, we have to explicitly check that 5861 // it's not one of the other variants. Ugh. 5862 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5863 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5864 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5865 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5866 // Nest conditions rather than one big 'if' statement for readability. 5867 // 5868 // If both registers are low, we're in an IT block, and the immediate is 5869 // in range, we should use encoding T1 instead, which has a cc_out. 5870 if (inITBlock() && 5871 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5872 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5873 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5874 return false; 5875 // Check against T3. If the second register is the PC, this is an 5876 // alternate form of ADR, which uses encoding T4, so check for that too. 5877 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5878 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5879 return false; 5880 5881 // Otherwise, we use encoding T4, which does not have a cc_out 5882 // operand. 5883 return true; 5884 } 5885 5886 // The thumb2 multiply instruction doesn't have a CCOut register, so 5887 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5888 // use the 16-bit encoding or not. 5889 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5890 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5891 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5892 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5893 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5894 // If the registers aren't low regs, the destination reg isn't the 5895 // same as one of the source regs, or the cc_out operand is zero 5896 // outside of an IT block, we have to use the 32-bit encoding, so 5897 // remove the cc_out operand. 5898 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5899 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5900 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5901 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5902 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5903 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5904 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5905 return true; 5906 5907 // Also check the 'mul' syntax variant that doesn't specify an explicit 5908 // destination register. 5909 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5910 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5911 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5912 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5913 // If the registers aren't low regs or the cc_out operand is zero 5914 // outside of an IT block, we have to use the 32-bit encoding, so 5915 // remove the cc_out operand. 5916 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5917 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5918 !inITBlock())) 5919 return true; 5920 5921 5922 5923 // Register-register 'add/sub' for thumb does not have a cc_out operand 5924 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5925 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5926 // right, this will result in better diagnostics (which operand is off) 5927 // anyway. 5928 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5929 (Operands.size() == 5 || Operands.size() == 6) && 5930 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5931 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5932 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5933 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5934 (Operands.size() == 6 && 5935 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5936 return true; 5937 5938 return false; 5939 } 5940 5941 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5942 OperandVector &Operands) { 5943 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5944 unsigned RegIdx = 3; 5945 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5946 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5947 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5948 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5949 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5950 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5951 RegIdx = 4; 5952 5953 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5954 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5955 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5956 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5957 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5958 return true; 5959 } 5960 return false; 5961 } 5962 5963 static bool isDataTypeToken(StringRef Tok) { 5964 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5965 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5966 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5967 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5968 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5969 Tok == ".f" || Tok == ".d"; 5970 } 5971 5972 // FIXME: This bit should probably be handled via an explicit match class 5973 // in the .td files that matches the suffix instead of having it be 5974 // a literal string token the way it is now. 5975 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5976 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5977 } 5978 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5979 unsigned VariantID); 5980 5981 static bool RequiresVFPRegListValidation(StringRef Inst, 5982 bool &AcceptSinglePrecisionOnly, 5983 bool &AcceptDoublePrecisionOnly) { 5984 if (Inst.size() < 7) 5985 return false; 5986 5987 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5988 StringRef AddressingMode = Inst.substr(4, 2); 5989 if (AddressingMode == "ia" || AddressingMode == "db" || 5990 AddressingMode == "ea" || AddressingMode == "fd") { 5991 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5992 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5993 return true; 5994 } 5995 } 5996 5997 return false; 5998 } 5999 6000 /// Parse an arm instruction mnemonic followed by its operands. 6001 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6002 SMLoc NameLoc, OperandVector &Operands) { 6003 MCAsmParser &Parser = getParser(); 6004 // FIXME: Can this be done via tablegen in some fashion? 6005 bool RequireVFPRegisterListCheck; 6006 bool AcceptSinglePrecisionOnly; 6007 bool AcceptDoublePrecisionOnly; 6008 RequireVFPRegisterListCheck = 6009 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 6010 AcceptDoublePrecisionOnly); 6011 6012 // Apply mnemonic aliases before doing anything else, as the destination 6013 // mnemonic may include suffices and we want to handle them normally. 6014 // The generic tblgen'erated code does this later, at the start of 6015 // MatchInstructionImpl(), but that's too late for aliases that include 6016 // any sort of suffix. 6017 uint64_t AvailableFeatures = getAvailableFeatures(); 6018 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6019 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6020 6021 // First check for the ARM-specific .req directive. 6022 if (Parser.getTok().is(AsmToken::Identifier) && 6023 Parser.getTok().getIdentifier() == ".req") { 6024 parseDirectiveReq(Name, NameLoc); 6025 // We always return 'error' for this, as we're done with this 6026 // statement and don't need to match the 'instruction." 6027 return true; 6028 } 6029 6030 // Create the leading tokens for the mnemonic, split by '.' characters. 6031 size_t Start = 0, Next = Name.find('.'); 6032 StringRef Mnemonic = Name.slice(Start, Next); 6033 6034 // Split out the predication code and carry setting flag from the mnemonic. 6035 unsigned PredicationCode; 6036 unsigned ProcessorIMod; 6037 bool CarrySetting; 6038 StringRef ITMask; 6039 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6040 ProcessorIMod, ITMask); 6041 6042 // In Thumb1, only the branch (B) instruction can be predicated. 6043 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6044 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6045 } 6046 6047 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6048 6049 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6050 // is the mask as it will be for the IT encoding if the conditional 6051 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6052 // where the conditional bit0 is zero, the instruction post-processing 6053 // will adjust the mask accordingly. 6054 if (Mnemonic == "it") { 6055 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6056 if (ITMask.size() > 3) { 6057 return Error(Loc, "too many conditions on IT instruction"); 6058 } 6059 unsigned Mask = 8; 6060 for (unsigned i = ITMask.size(); i != 0; --i) { 6061 char pos = ITMask[i - 1]; 6062 if (pos != 't' && pos != 'e') { 6063 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6064 } 6065 Mask >>= 1; 6066 if (ITMask[i - 1] == 't') 6067 Mask |= 8; 6068 } 6069 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6070 } 6071 6072 // FIXME: This is all a pretty gross hack. We should automatically handle 6073 // optional operands like this via tblgen. 6074 6075 // Next, add the CCOut and ConditionCode operands, if needed. 6076 // 6077 // For mnemonics which can ever incorporate a carry setting bit or predication 6078 // code, our matching model involves us always generating CCOut and 6079 // ConditionCode operands to match the mnemonic "as written" and then we let 6080 // the matcher deal with finding the right instruction or generating an 6081 // appropriate error. 6082 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6083 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6084 6085 // If we had a carry-set on an instruction that can't do that, issue an 6086 // error. 6087 if (!CanAcceptCarrySet && CarrySetting) { 6088 return Error(NameLoc, "instruction '" + Mnemonic + 6089 "' can not set flags, but 's' suffix specified"); 6090 } 6091 // If we had a predication code on an instruction that can't do that, issue an 6092 // error. 6093 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6094 return Error(NameLoc, "instruction '" + Mnemonic + 6095 "' is not predicable, but condition code specified"); 6096 } 6097 6098 // Add the carry setting operand, if necessary. 6099 if (CanAcceptCarrySet) { 6100 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6101 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6102 Loc)); 6103 } 6104 6105 // Add the predication code operand, if necessary. 6106 if (CanAcceptPredicationCode) { 6107 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6108 CarrySetting); 6109 Operands.push_back(ARMOperand::CreateCondCode( 6110 ARMCC::CondCodes(PredicationCode), Loc)); 6111 } 6112 6113 // Add the processor imod operand, if necessary. 6114 if (ProcessorIMod) { 6115 Operands.push_back(ARMOperand::CreateImm( 6116 MCConstantExpr::create(ProcessorIMod, getContext()), 6117 NameLoc, NameLoc)); 6118 } else if (Mnemonic == "cps" && isMClass()) { 6119 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6120 } 6121 6122 // Add the remaining tokens in the mnemonic. 6123 while (Next != StringRef::npos) { 6124 Start = Next; 6125 Next = Name.find('.', Start + 1); 6126 StringRef ExtraToken = Name.slice(Start, Next); 6127 6128 // Some NEON instructions have an optional datatype suffix that is 6129 // completely ignored. Check for that. 6130 if (isDataTypeToken(ExtraToken) && 6131 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6132 continue; 6133 6134 // For for ARM mode generate an error if the .n qualifier is used. 6135 if (ExtraToken == ".n" && !isThumb()) { 6136 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6137 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6138 "arm mode"); 6139 } 6140 6141 // The .n qualifier is always discarded as that is what the tables 6142 // and matcher expect. In ARM mode the .w qualifier has no effect, 6143 // so discard it to avoid errors that can be caused by the matcher. 6144 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6145 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6146 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6147 } 6148 } 6149 6150 // Read the remaining operands. 6151 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6152 // Read the first operand. 6153 if (parseOperand(Operands, Mnemonic)) { 6154 return true; 6155 } 6156 6157 while (parseOptionalToken(AsmToken::Comma)) { 6158 // Parse and remember the operand. 6159 if (parseOperand(Operands, Mnemonic)) { 6160 return true; 6161 } 6162 } 6163 } 6164 6165 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6166 return true; 6167 6168 if (RequireVFPRegisterListCheck) { 6169 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 6170 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 6171 return Error(Op.getStartLoc(), 6172 "VFP/Neon single precision register expected"); 6173 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 6174 return Error(Op.getStartLoc(), 6175 "VFP/Neon double precision register expected"); 6176 } 6177 6178 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6179 6180 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6181 // do and don't have a cc_out optional-def operand. With some spot-checks 6182 // of the operand list, we can figure out which variant we're trying to 6183 // parse and adjust accordingly before actually matching. We shouldn't ever 6184 // try to remove a cc_out operand that was explicitly set on the 6185 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6186 // table driven matcher doesn't fit well with the ARM instruction set. 6187 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6188 Operands.erase(Operands.begin() + 1); 6189 6190 // Some instructions have the same mnemonic, but don't always 6191 // have a predicate. Distinguish them here and delete the 6192 // predicate if needed. 6193 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 6194 Operands.erase(Operands.begin() + 1); 6195 6196 // ARM mode 'blx' need special handling, as the register operand version 6197 // is predicable, but the label operand version is not. So, we can't rely 6198 // on the Mnemonic based checking to correctly figure out when to put 6199 // a k_CondCode operand in the list. If we're trying to match the label 6200 // version, remove the k_CondCode operand here. 6201 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6202 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6203 Operands.erase(Operands.begin() + 1); 6204 6205 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6206 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6207 // a single GPRPair reg operand is used in the .td file to replace the two 6208 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6209 // expressed as a GPRPair, so we have to manually merge them. 6210 // FIXME: We would really like to be able to tablegen'erate this. 6211 if (!isThumb() && Operands.size() > 4 && 6212 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6213 Mnemonic == "stlexd")) { 6214 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6215 unsigned Idx = isLoad ? 2 : 3; 6216 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6217 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6218 6219 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6220 // Adjust only if Op1 and Op2 are GPRs. 6221 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6222 MRC.contains(Op2.getReg())) { 6223 unsigned Reg1 = Op1.getReg(); 6224 unsigned Reg2 = Op2.getReg(); 6225 unsigned Rt = MRI->getEncodingValue(Reg1); 6226 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6227 6228 // Rt2 must be Rt + 1 and Rt must be even. 6229 if (Rt + 1 != Rt2 || (Rt & 1)) { 6230 return Error(Op2.getStartLoc(), 6231 isLoad ? "destination operands must be sequential" 6232 : "source operands must be sequential"); 6233 } 6234 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6235 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6236 Operands[Idx] = 6237 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6238 Operands.erase(Operands.begin() + Idx + 1); 6239 } 6240 } 6241 6242 // GNU Assembler extension (compatibility) 6243 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6244 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6245 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6246 if (Op3.isMem()) { 6247 assert(Op2.isReg() && "expected register argument"); 6248 6249 unsigned SuperReg = MRI->getMatchingSuperReg( 6250 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6251 6252 assert(SuperReg && "expected register pair"); 6253 6254 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6255 6256 Operands.insert( 6257 Operands.begin() + 3, 6258 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6259 } 6260 } 6261 6262 // FIXME: As said above, this is all a pretty gross hack. This instruction 6263 // does not fit with other "subs" and tblgen. 6264 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6265 // so the Mnemonic is the original name "subs" and delete the predicate 6266 // operand so it will match the table entry. 6267 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6268 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6269 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6270 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6271 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6272 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6273 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6274 Operands.erase(Operands.begin() + 1); 6275 } 6276 return false; 6277 } 6278 6279 // Validate context-sensitive operand constraints. 6280 6281 // return 'true' if register list contains non-low GPR registers, 6282 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6283 // 'containsReg' to true. 6284 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6285 unsigned Reg, unsigned HiReg, 6286 bool &containsReg) { 6287 containsReg = false; 6288 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6289 unsigned OpReg = Inst.getOperand(i).getReg(); 6290 if (OpReg == Reg) 6291 containsReg = true; 6292 // Anything other than a low register isn't legal here. 6293 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6294 return true; 6295 } 6296 return false; 6297 } 6298 6299 // Check if the specified regisgter is in the register list of the inst, 6300 // starting at the indicated operand number. 6301 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6302 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6303 unsigned OpReg = Inst.getOperand(i).getReg(); 6304 if (OpReg == Reg) 6305 return true; 6306 } 6307 return false; 6308 } 6309 6310 // Return true if instruction has the interesting property of being 6311 // allowed in IT blocks, but not being predicable. 6312 static bool instIsBreakpoint(const MCInst &Inst) { 6313 return Inst.getOpcode() == ARM::tBKPT || 6314 Inst.getOpcode() == ARM::BKPT || 6315 Inst.getOpcode() == ARM::tHLT || 6316 Inst.getOpcode() == ARM::HLT; 6317 6318 } 6319 6320 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6321 const OperandVector &Operands, 6322 unsigned ListNo, bool IsARPop) { 6323 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6324 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6325 6326 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6327 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6328 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6329 6330 if (!IsARPop && ListContainsSP) 6331 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6332 "SP may not be in the register list"); 6333 else if (ListContainsPC && ListContainsLR) 6334 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6335 "PC and LR may not be in the register list simultaneously"); 6336 return false; 6337 } 6338 6339 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6340 const OperandVector &Operands, 6341 unsigned ListNo) { 6342 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6343 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6344 6345 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6346 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6347 6348 if (ListContainsSP && ListContainsPC) 6349 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6350 "SP and PC may not be in the register list"); 6351 else if (ListContainsSP) 6352 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6353 "SP may not be in the register list"); 6354 else if (ListContainsPC) 6355 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6356 "PC may not be in the register list"); 6357 return false; 6358 } 6359 6360 // FIXME: We would really like to be able to tablegen'erate this. 6361 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6362 const OperandVector &Operands) { 6363 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6364 SMLoc Loc = Operands[0]->getStartLoc(); 6365 6366 // Check the IT block state first. 6367 // NOTE: BKPT and HLT instructions have the interesting property of being 6368 // allowed in IT blocks, but not being predicable. They just always execute. 6369 if (inITBlock() && !instIsBreakpoint(Inst)) { 6370 // The instruction must be predicable. 6371 if (!MCID.isPredicable()) 6372 return Error(Loc, "instructions in IT block must be predicable"); 6373 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6374 if (Cond != currentITCond()) { 6375 // Find the condition code Operand to get its SMLoc information. 6376 SMLoc CondLoc; 6377 for (unsigned I = 1; I < Operands.size(); ++I) 6378 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6379 CondLoc = Operands[I]->getStartLoc(); 6380 return Error(CondLoc, "incorrect condition in IT block; got '" + 6381 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6382 "', but expected '" + 6383 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6384 } 6385 // Check for non-'al' condition codes outside of the IT block. 6386 } else if (isThumbTwo() && MCID.isPredicable() && 6387 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6388 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6389 Inst.getOpcode() != ARM::t2Bcc) { 6390 return Error(Loc, "predicated instructions must be in IT block"); 6391 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6392 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6393 ARMCC::AL) { 6394 return Warning(Loc, "predicated instructions should be in IT block"); 6395 } 6396 6397 // PC-setting instructions in an IT block, but not the last instruction of 6398 // the block, are UNPREDICTABLE. 6399 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6400 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6401 } 6402 6403 const unsigned Opcode = Inst.getOpcode(); 6404 switch (Opcode) { 6405 case ARM::LDRD: 6406 case ARM::LDRD_PRE: 6407 case ARM::LDRD_POST: { 6408 const unsigned RtReg = Inst.getOperand(0).getReg(); 6409 6410 // Rt can't be R14. 6411 if (RtReg == ARM::LR) 6412 return Error(Operands[3]->getStartLoc(), 6413 "Rt can't be R14"); 6414 6415 const unsigned Rt = MRI->getEncodingValue(RtReg); 6416 // Rt must be even-numbered. 6417 if ((Rt & 1) == 1) 6418 return Error(Operands[3]->getStartLoc(), 6419 "Rt must be even-numbered"); 6420 6421 // Rt2 must be Rt + 1. 6422 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6423 if (Rt2 != Rt + 1) 6424 return Error(Operands[3]->getStartLoc(), 6425 "destination operands must be sequential"); 6426 6427 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6428 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6429 // For addressing modes with writeback, the base register needs to be 6430 // different from the destination registers. 6431 if (Rn == Rt || Rn == Rt2) 6432 return Error(Operands[3]->getStartLoc(), 6433 "base register needs to be different from destination " 6434 "registers"); 6435 } 6436 6437 return false; 6438 } 6439 case ARM::t2LDRDi8: 6440 case ARM::t2LDRD_PRE: 6441 case ARM::t2LDRD_POST: { 6442 // Rt2 must be different from Rt. 6443 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6444 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6445 if (Rt2 == Rt) 6446 return Error(Operands[3]->getStartLoc(), 6447 "destination operands can't be identical"); 6448 return false; 6449 } 6450 case ARM::t2BXJ: { 6451 const unsigned RmReg = Inst.getOperand(0).getReg(); 6452 // Rm = SP is no longer unpredictable in v8-A 6453 if (RmReg == ARM::SP && !hasV8Ops()) 6454 return Error(Operands[2]->getStartLoc(), 6455 "r13 (SP) is an unpredictable operand to BXJ"); 6456 return false; 6457 } 6458 case ARM::STRD: { 6459 // Rt2 must be Rt + 1. 6460 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6461 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6462 if (Rt2 != Rt + 1) 6463 return Error(Operands[3]->getStartLoc(), 6464 "source operands must be sequential"); 6465 return false; 6466 } 6467 case ARM::STRD_PRE: 6468 case ARM::STRD_POST: { 6469 // Rt2 must be Rt + 1. 6470 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6471 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6472 if (Rt2 != Rt + 1) 6473 return Error(Operands[3]->getStartLoc(), 6474 "source operands must be sequential"); 6475 return false; 6476 } 6477 case ARM::STR_PRE_IMM: 6478 case ARM::STR_PRE_REG: 6479 case ARM::STR_POST_IMM: 6480 case ARM::STR_POST_REG: 6481 case ARM::STRH_PRE: 6482 case ARM::STRH_POST: 6483 case ARM::STRB_PRE_IMM: 6484 case ARM::STRB_PRE_REG: 6485 case ARM::STRB_POST_IMM: 6486 case ARM::STRB_POST_REG: { 6487 // Rt must be different from Rn. 6488 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6489 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6490 6491 if (Rt == Rn) 6492 return Error(Operands[3]->getStartLoc(), 6493 "source register and base register can't be identical"); 6494 return false; 6495 } 6496 case ARM::LDR_PRE_IMM: 6497 case ARM::LDR_PRE_REG: 6498 case ARM::LDR_POST_IMM: 6499 case ARM::LDR_POST_REG: 6500 case ARM::LDRH_PRE: 6501 case ARM::LDRH_POST: 6502 case ARM::LDRSH_PRE: 6503 case ARM::LDRSH_POST: 6504 case ARM::LDRB_PRE_IMM: 6505 case ARM::LDRB_PRE_REG: 6506 case ARM::LDRB_POST_IMM: 6507 case ARM::LDRB_POST_REG: 6508 case ARM::LDRSB_PRE: 6509 case ARM::LDRSB_POST: { 6510 // Rt must be different from Rn. 6511 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6512 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6513 6514 if (Rt == Rn) 6515 return Error(Operands[3]->getStartLoc(), 6516 "destination register and base register can't be identical"); 6517 return false; 6518 } 6519 case ARM::SBFX: 6520 case ARM::UBFX: { 6521 // Width must be in range [1, 32-lsb]. 6522 unsigned LSB = Inst.getOperand(2).getImm(); 6523 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6524 if (Widthm1 >= 32 - LSB) 6525 return Error(Operands[5]->getStartLoc(), 6526 "bitfield width must be in range [1,32-lsb]"); 6527 return false; 6528 } 6529 // Notionally handles ARM::tLDMIA_UPD too. 6530 case ARM::tLDMIA: { 6531 // If we're parsing Thumb2, the .w variant is available and handles 6532 // most cases that are normally illegal for a Thumb1 LDM instruction. 6533 // We'll make the transformation in processInstruction() if necessary. 6534 // 6535 // Thumb LDM instructions are writeback iff the base register is not 6536 // in the register list. 6537 unsigned Rn = Inst.getOperand(0).getReg(); 6538 bool HasWritebackToken = 6539 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6540 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6541 bool ListContainsBase; 6542 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6543 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6544 "registers must be in range r0-r7"); 6545 // If we should have writeback, then there should be a '!' token. 6546 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6547 return Error(Operands[2]->getStartLoc(), 6548 "writeback operator '!' expected"); 6549 // If we should not have writeback, there must not be a '!'. This is 6550 // true even for the 32-bit wide encodings. 6551 if (ListContainsBase && HasWritebackToken) 6552 return Error(Operands[3]->getStartLoc(), 6553 "writeback operator '!' not allowed when base register " 6554 "in register list"); 6555 6556 if (validatetLDMRegList(Inst, Operands, 3)) 6557 return true; 6558 break; 6559 } 6560 case ARM::LDMIA_UPD: 6561 case ARM::LDMDB_UPD: 6562 case ARM::LDMIB_UPD: 6563 case ARM::LDMDA_UPD: 6564 // ARM variants loading and updating the same register are only officially 6565 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6566 if (!hasV7Ops()) 6567 break; 6568 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6569 return Error(Operands.back()->getStartLoc(), 6570 "writeback register not allowed in register list"); 6571 break; 6572 case ARM::t2LDMIA: 6573 case ARM::t2LDMDB: 6574 if (validatetLDMRegList(Inst, Operands, 3)) 6575 return true; 6576 break; 6577 case ARM::t2STMIA: 6578 case ARM::t2STMDB: 6579 if (validatetSTMRegList(Inst, Operands, 3)) 6580 return true; 6581 break; 6582 case ARM::t2LDMIA_UPD: 6583 case ARM::t2LDMDB_UPD: 6584 case ARM::t2STMIA_UPD: 6585 case ARM::t2STMDB_UPD: { 6586 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6587 return Error(Operands.back()->getStartLoc(), 6588 "writeback register not allowed in register list"); 6589 6590 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6591 if (validatetLDMRegList(Inst, Operands, 3)) 6592 return true; 6593 } else { 6594 if (validatetSTMRegList(Inst, Operands, 3)) 6595 return true; 6596 } 6597 break; 6598 } 6599 case ARM::sysLDMIA_UPD: 6600 case ARM::sysLDMDA_UPD: 6601 case ARM::sysLDMDB_UPD: 6602 case ARM::sysLDMIB_UPD: 6603 if (!listContainsReg(Inst, 3, ARM::PC)) 6604 return Error(Operands[4]->getStartLoc(), 6605 "writeback register only allowed on system LDM " 6606 "if PC in register-list"); 6607 break; 6608 case ARM::sysSTMIA_UPD: 6609 case ARM::sysSTMDA_UPD: 6610 case ARM::sysSTMDB_UPD: 6611 case ARM::sysSTMIB_UPD: 6612 return Error(Operands[2]->getStartLoc(), 6613 "system STM cannot have writeback register"); 6614 case ARM::tMUL: { 6615 // The second source operand must be the same register as the destination 6616 // operand. 6617 // 6618 // In this case, we must directly check the parsed operands because the 6619 // cvtThumbMultiply() function is written in such a way that it guarantees 6620 // this first statement is always true for the new Inst. Essentially, the 6621 // destination is unconditionally copied into the second source operand 6622 // without checking to see if it matches what we actually parsed. 6623 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6624 ((ARMOperand &)*Operands[5]).getReg()) && 6625 (((ARMOperand &)*Operands[3]).getReg() != 6626 ((ARMOperand &)*Operands[4]).getReg())) { 6627 return Error(Operands[3]->getStartLoc(), 6628 "destination register must match source register"); 6629 } 6630 break; 6631 } 6632 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6633 // so only issue a diagnostic for thumb1. The instructions will be 6634 // switched to the t2 encodings in processInstruction() if necessary. 6635 case ARM::tPOP: { 6636 bool ListContainsBase; 6637 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6638 !isThumbTwo()) 6639 return Error(Operands[2]->getStartLoc(), 6640 "registers must be in range r0-r7 or pc"); 6641 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6642 return true; 6643 break; 6644 } 6645 case ARM::tPUSH: { 6646 bool ListContainsBase; 6647 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6648 !isThumbTwo()) 6649 return Error(Operands[2]->getStartLoc(), 6650 "registers must be in range r0-r7 or lr"); 6651 if (validatetSTMRegList(Inst, Operands, 2)) 6652 return true; 6653 break; 6654 } 6655 case ARM::tSTMIA_UPD: { 6656 bool ListContainsBase, InvalidLowList; 6657 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6658 0, ListContainsBase); 6659 if (InvalidLowList && !isThumbTwo()) 6660 return Error(Operands[4]->getStartLoc(), 6661 "registers must be in range r0-r7"); 6662 6663 // This would be converted to a 32-bit stm, but that's not valid if the 6664 // writeback register is in the list. 6665 if (InvalidLowList && ListContainsBase) 6666 return Error(Operands[4]->getStartLoc(), 6667 "writeback operator '!' not allowed when base register " 6668 "in register list"); 6669 6670 if (validatetSTMRegList(Inst, Operands, 4)) 6671 return true; 6672 break; 6673 } 6674 case ARM::tADDrSP: { 6675 // If the non-SP source operand and the destination operand are not the 6676 // same, we need thumb2 (for the wide encoding), or we have an error. 6677 if (!isThumbTwo() && 6678 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6679 return Error(Operands[4]->getStartLoc(), 6680 "source register must be the same as destination"); 6681 } 6682 break; 6683 } 6684 // Final range checking for Thumb unconditional branch instructions. 6685 case ARM::tB: 6686 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6687 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6688 break; 6689 case ARM::t2B: { 6690 int op = (Operands[2]->isImm()) ? 2 : 3; 6691 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6692 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6693 break; 6694 } 6695 // Final range checking for Thumb conditional branch instructions. 6696 case ARM::tBcc: 6697 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6698 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6699 break; 6700 case ARM::t2Bcc: { 6701 int Op = (Operands[2]->isImm()) ? 2 : 3; 6702 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6703 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6704 break; 6705 } 6706 case ARM::tCBZ: 6707 case ARM::tCBNZ: { 6708 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6709 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6710 break; 6711 } 6712 case ARM::MOVi16: 6713 case ARM::MOVTi16: 6714 case ARM::t2MOVi16: 6715 case ARM::t2MOVTi16: 6716 { 6717 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6718 // especially when we turn it into a movw and the expression <symbol> does 6719 // not have a :lower16: or :upper16 as part of the expression. We don't 6720 // want the behavior of silently truncating, which can be unexpected and 6721 // lead to bugs that are difficult to find since this is an easy mistake 6722 // to make. 6723 int i = (Operands[3]->isImm()) ? 3 : 4; 6724 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6725 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6726 if (CE) break; 6727 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6728 if (!E) break; 6729 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6730 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6731 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6732 return Error( 6733 Op.getStartLoc(), 6734 "immediate expression for mov requires :lower16: or :upper16"); 6735 break; 6736 } 6737 case ARM::HINT: 6738 case ARM::t2HINT: { 6739 if (hasRAS()) { 6740 // ESB is not predicable (pred must be AL) 6741 unsigned Imm8 = Inst.getOperand(0).getImm(); 6742 unsigned Pred = Inst.getOperand(1).getImm(); 6743 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6744 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6745 "predicable, but condition " 6746 "code specified"); 6747 } 6748 // Without the RAS extension, this behaves as any other unallocated hint. 6749 break; 6750 } 6751 } 6752 6753 return false; 6754 } 6755 6756 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6757 switch(Opc) { 6758 default: llvm_unreachable("unexpected opcode!"); 6759 // VST1LN 6760 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6761 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6762 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6763 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6764 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6765 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6766 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6767 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6768 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6769 6770 // VST2LN 6771 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6772 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6773 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6774 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6775 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6776 6777 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6778 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6779 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6780 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6781 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6782 6783 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6784 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6785 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6786 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6787 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6788 6789 // VST3LN 6790 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6791 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6792 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6793 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6794 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6795 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6796 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6797 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6798 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6799 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6800 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6801 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6802 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6803 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6804 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6805 6806 // VST3 6807 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6808 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6809 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6810 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6811 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6812 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6813 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6814 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6815 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6816 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6817 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6818 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6819 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6820 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6821 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6822 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6823 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6824 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6825 6826 // VST4LN 6827 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6828 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6829 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6830 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6831 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6832 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6833 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6834 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6835 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6836 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6837 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6838 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6839 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6840 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6841 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6842 6843 // VST4 6844 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6845 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6846 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6847 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6848 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6849 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6850 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6851 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6852 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6853 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6854 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6855 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6856 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6857 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6858 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6859 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6860 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6861 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6862 } 6863 } 6864 6865 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6866 switch(Opc) { 6867 default: llvm_unreachable("unexpected opcode!"); 6868 // VLD1LN 6869 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6870 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6871 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6872 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6873 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6874 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6875 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6876 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6877 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6878 6879 // VLD2LN 6880 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6881 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6882 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6883 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6884 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6885 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6886 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6887 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6888 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6889 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6890 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6891 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6892 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6893 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6894 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6895 6896 // VLD3DUP 6897 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6898 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6899 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6900 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6901 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6902 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6903 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6904 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6905 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6906 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6907 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6908 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6909 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6910 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6911 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6912 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6913 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6914 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6915 6916 // VLD3LN 6917 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6918 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6919 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6920 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6921 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6922 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6923 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6924 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6925 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6926 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6927 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6928 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6929 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6930 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6931 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6932 6933 // VLD3 6934 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6935 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6936 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6937 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6938 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6939 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6940 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6941 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6942 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6943 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6944 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6945 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6946 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6947 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6948 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6949 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6950 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6951 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6952 6953 // VLD4LN 6954 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6955 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6956 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6957 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6958 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6959 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6960 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6961 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6962 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6963 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6964 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6965 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6966 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6967 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6968 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6969 6970 // VLD4DUP 6971 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6972 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6973 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6974 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6975 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6976 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6977 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6978 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6979 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6980 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6981 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6982 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6983 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6984 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6985 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6986 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6987 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6988 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6989 6990 // VLD4 6991 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6992 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6993 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6994 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6995 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6996 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6997 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6998 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6999 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7000 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7001 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7002 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7003 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 7004 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 7005 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 7006 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 7007 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 7008 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 7009 } 7010 } 7011 7012 bool ARMAsmParser::processInstruction(MCInst &Inst, 7013 const OperandVector &Operands, 7014 MCStreamer &Out) { 7015 switch (Inst.getOpcode()) { 7016 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 7017 case ARM::LDRT_POST: 7018 case ARM::LDRBT_POST: { 7019 const unsigned Opcode = 7020 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 7021 : ARM::LDRBT_POST_IMM; 7022 MCInst TmpInst; 7023 TmpInst.setOpcode(Opcode); 7024 TmpInst.addOperand(Inst.getOperand(0)); 7025 TmpInst.addOperand(Inst.getOperand(1)); 7026 TmpInst.addOperand(Inst.getOperand(1)); 7027 TmpInst.addOperand(MCOperand::createReg(0)); 7028 TmpInst.addOperand(MCOperand::createImm(0)); 7029 TmpInst.addOperand(Inst.getOperand(2)); 7030 TmpInst.addOperand(Inst.getOperand(3)); 7031 Inst = TmpInst; 7032 return true; 7033 } 7034 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7035 case ARM::STRT_POST: 7036 case ARM::STRBT_POST: { 7037 const unsigned Opcode = 7038 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7039 : ARM::STRBT_POST_IMM; 7040 MCInst TmpInst; 7041 TmpInst.setOpcode(Opcode); 7042 TmpInst.addOperand(Inst.getOperand(1)); 7043 TmpInst.addOperand(Inst.getOperand(0)); 7044 TmpInst.addOperand(Inst.getOperand(1)); 7045 TmpInst.addOperand(MCOperand::createReg(0)); 7046 TmpInst.addOperand(MCOperand::createImm(0)); 7047 TmpInst.addOperand(Inst.getOperand(2)); 7048 TmpInst.addOperand(Inst.getOperand(3)); 7049 Inst = TmpInst; 7050 return true; 7051 } 7052 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7053 case ARM::ADDri: { 7054 if (Inst.getOperand(1).getReg() != ARM::PC || 7055 Inst.getOperand(5).getReg() != 0 || 7056 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7057 return false; 7058 MCInst TmpInst; 7059 TmpInst.setOpcode(ARM::ADR); 7060 TmpInst.addOperand(Inst.getOperand(0)); 7061 if (Inst.getOperand(2).isImm()) { 7062 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7063 // before passing it to the ADR instruction. 7064 unsigned Enc = Inst.getOperand(2).getImm(); 7065 TmpInst.addOperand(MCOperand::createImm( 7066 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7067 } else { 7068 // Turn PC-relative expression into absolute expression. 7069 // Reading PC provides the start of the current instruction + 8 and 7070 // the transform to adr is biased by that. 7071 MCSymbol *Dot = getContext().createTempSymbol(); 7072 Out.EmitLabel(Dot); 7073 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7074 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7075 MCSymbolRefExpr::VK_None, 7076 getContext()); 7077 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7078 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7079 getContext()); 7080 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7081 getContext()); 7082 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7083 } 7084 TmpInst.addOperand(Inst.getOperand(3)); 7085 TmpInst.addOperand(Inst.getOperand(4)); 7086 Inst = TmpInst; 7087 return true; 7088 } 7089 // Aliases for alternate PC+imm syntax of LDR instructions. 7090 case ARM::t2LDRpcrel: 7091 // Select the narrow version if the immediate will fit. 7092 if (Inst.getOperand(1).getImm() > 0 && 7093 Inst.getOperand(1).getImm() <= 0xff && 7094 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 7095 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 7096 Inst.setOpcode(ARM::tLDRpci); 7097 else 7098 Inst.setOpcode(ARM::t2LDRpci); 7099 return true; 7100 case ARM::t2LDRBpcrel: 7101 Inst.setOpcode(ARM::t2LDRBpci); 7102 return true; 7103 case ARM::t2LDRHpcrel: 7104 Inst.setOpcode(ARM::t2LDRHpci); 7105 return true; 7106 case ARM::t2LDRSBpcrel: 7107 Inst.setOpcode(ARM::t2LDRSBpci); 7108 return true; 7109 case ARM::t2LDRSHpcrel: 7110 Inst.setOpcode(ARM::t2LDRSHpci); 7111 return true; 7112 case ARM::LDRConstPool: 7113 case ARM::tLDRConstPool: 7114 case ARM::t2LDRConstPool: { 7115 // Pseudo instruction ldr rt, =immediate is converted to a 7116 // MOV rt, immediate if immediate is known and representable 7117 // otherwise we create a constant pool entry that we load from. 7118 MCInst TmpInst; 7119 if (Inst.getOpcode() == ARM::LDRConstPool) 7120 TmpInst.setOpcode(ARM::LDRi12); 7121 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7122 TmpInst.setOpcode(ARM::tLDRpci); 7123 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7124 TmpInst.setOpcode(ARM::t2LDRpci); 7125 const ARMOperand &PoolOperand = 7126 (static_cast<ARMOperand &>(*Operands[2]).isToken() && 7127 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w") ? 7128 static_cast<ARMOperand &>(*Operands[4]) : 7129 static_cast<ARMOperand &>(*Operands[3]); 7130 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7131 // If SubExprVal is a constant we may be able to use a MOV 7132 if (isa<MCConstantExpr>(SubExprVal) && 7133 Inst.getOperand(0).getReg() != ARM::PC && 7134 Inst.getOperand(0).getReg() != ARM::SP) { 7135 int64_t Value = 7136 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7137 bool UseMov = true; 7138 bool MovHasS = true; 7139 if (Inst.getOpcode() == ARM::LDRConstPool) { 7140 // ARM Constant 7141 if (ARM_AM::getSOImmVal(Value) != -1) { 7142 Value = ARM_AM::getSOImmVal(Value); 7143 TmpInst.setOpcode(ARM::MOVi); 7144 } 7145 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7146 Value = ARM_AM::getSOImmVal(~Value); 7147 TmpInst.setOpcode(ARM::MVNi); 7148 } 7149 else if (hasV6T2Ops() && 7150 Value >=0 && Value < 65536) { 7151 TmpInst.setOpcode(ARM::MOVi16); 7152 MovHasS = false; 7153 } 7154 else 7155 UseMov = false; 7156 } 7157 else { 7158 // Thumb/Thumb2 Constant 7159 if (hasThumb2() && 7160 ARM_AM::getT2SOImmVal(Value) != -1) 7161 TmpInst.setOpcode(ARM::t2MOVi); 7162 else if (hasThumb2() && 7163 ARM_AM::getT2SOImmVal(~Value) != -1) { 7164 TmpInst.setOpcode(ARM::t2MVNi); 7165 Value = ~Value; 7166 } 7167 else if (hasV8MBaseline() && 7168 Value >=0 && Value < 65536) { 7169 TmpInst.setOpcode(ARM::t2MOVi16); 7170 MovHasS = false; 7171 } 7172 else 7173 UseMov = false; 7174 } 7175 if (UseMov) { 7176 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7177 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7178 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7179 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7180 if (MovHasS) 7181 TmpInst.addOperand(MCOperand::createReg(0)); // S 7182 Inst = TmpInst; 7183 return true; 7184 } 7185 } 7186 // No opportunity to use MOV/MVN create constant pool 7187 const MCExpr *CPLoc = 7188 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7189 PoolOperand.getStartLoc()); 7190 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7191 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7192 if (TmpInst.getOpcode() == ARM::LDRi12) 7193 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7194 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7195 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7196 Inst = TmpInst; 7197 return true; 7198 } 7199 // Handle NEON VST complex aliases. 7200 case ARM::VST1LNdWB_register_Asm_8: 7201 case ARM::VST1LNdWB_register_Asm_16: 7202 case ARM::VST1LNdWB_register_Asm_32: { 7203 MCInst TmpInst; 7204 // Shuffle the operands around so the lane index operand is in the 7205 // right place. 7206 unsigned Spacing; 7207 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7208 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7209 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7210 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7211 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7212 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7213 TmpInst.addOperand(Inst.getOperand(1)); // lane 7214 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7215 TmpInst.addOperand(Inst.getOperand(6)); 7216 Inst = TmpInst; 7217 return true; 7218 } 7219 7220 case ARM::VST2LNdWB_register_Asm_8: 7221 case ARM::VST2LNdWB_register_Asm_16: 7222 case ARM::VST2LNdWB_register_Asm_32: 7223 case ARM::VST2LNqWB_register_Asm_16: 7224 case ARM::VST2LNqWB_register_Asm_32: { 7225 MCInst TmpInst; 7226 // Shuffle the operands around so the lane index operand is in the 7227 // right place. 7228 unsigned Spacing; 7229 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7230 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7231 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7232 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7233 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7234 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7235 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7236 Spacing)); 7237 TmpInst.addOperand(Inst.getOperand(1)); // lane 7238 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7239 TmpInst.addOperand(Inst.getOperand(6)); 7240 Inst = TmpInst; 7241 return true; 7242 } 7243 7244 case ARM::VST3LNdWB_register_Asm_8: 7245 case ARM::VST3LNdWB_register_Asm_16: 7246 case ARM::VST3LNdWB_register_Asm_32: 7247 case ARM::VST3LNqWB_register_Asm_16: 7248 case ARM::VST3LNqWB_register_Asm_32: { 7249 MCInst TmpInst; 7250 // Shuffle the operands around so the lane index operand is in the 7251 // right place. 7252 unsigned Spacing; 7253 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7254 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7255 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7256 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7257 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7258 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7259 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7260 Spacing)); 7261 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7262 Spacing * 2)); 7263 TmpInst.addOperand(Inst.getOperand(1)); // lane 7264 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7265 TmpInst.addOperand(Inst.getOperand(6)); 7266 Inst = TmpInst; 7267 return true; 7268 } 7269 7270 case ARM::VST4LNdWB_register_Asm_8: 7271 case ARM::VST4LNdWB_register_Asm_16: 7272 case ARM::VST4LNdWB_register_Asm_32: 7273 case ARM::VST4LNqWB_register_Asm_16: 7274 case ARM::VST4LNqWB_register_Asm_32: { 7275 MCInst TmpInst; 7276 // Shuffle the operands around so the lane index operand is in the 7277 // right place. 7278 unsigned Spacing; 7279 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7280 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7281 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7282 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7283 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7284 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7285 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7286 Spacing)); 7287 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7288 Spacing * 2)); 7289 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7290 Spacing * 3)); 7291 TmpInst.addOperand(Inst.getOperand(1)); // lane 7292 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7293 TmpInst.addOperand(Inst.getOperand(6)); 7294 Inst = TmpInst; 7295 return true; 7296 } 7297 7298 case ARM::VST1LNdWB_fixed_Asm_8: 7299 case ARM::VST1LNdWB_fixed_Asm_16: 7300 case ARM::VST1LNdWB_fixed_Asm_32: { 7301 MCInst TmpInst; 7302 // Shuffle the operands around so the lane index operand is in the 7303 // right place. 7304 unsigned Spacing; 7305 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7306 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7307 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7308 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7309 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7310 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7311 TmpInst.addOperand(Inst.getOperand(1)); // lane 7312 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7313 TmpInst.addOperand(Inst.getOperand(5)); 7314 Inst = TmpInst; 7315 return true; 7316 } 7317 7318 case ARM::VST2LNdWB_fixed_Asm_8: 7319 case ARM::VST2LNdWB_fixed_Asm_16: 7320 case ARM::VST2LNdWB_fixed_Asm_32: 7321 case ARM::VST2LNqWB_fixed_Asm_16: 7322 case ARM::VST2LNqWB_fixed_Asm_32: { 7323 MCInst TmpInst; 7324 // Shuffle the operands around so the lane index operand is in the 7325 // right place. 7326 unsigned Spacing; 7327 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7328 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7329 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7330 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7331 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7332 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7334 Spacing)); 7335 TmpInst.addOperand(Inst.getOperand(1)); // lane 7336 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7337 TmpInst.addOperand(Inst.getOperand(5)); 7338 Inst = TmpInst; 7339 return true; 7340 } 7341 7342 case ARM::VST3LNdWB_fixed_Asm_8: 7343 case ARM::VST3LNdWB_fixed_Asm_16: 7344 case ARM::VST3LNdWB_fixed_Asm_32: 7345 case ARM::VST3LNqWB_fixed_Asm_16: 7346 case ARM::VST3LNqWB_fixed_Asm_32: { 7347 MCInst TmpInst; 7348 // Shuffle the operands around so the lane index operand is in the 7349 // right place. 7350 unsigned Spacing; 7351 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7352 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7353 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7354 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7355 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7356 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7358 Spacing)); 7359 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7360 Spacing * 2)); 7361 TmpInst.addOperand(Inst.getOperand(1)); // lane 7362 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7363 TmpInst.addOperand(Inst.getOperand(5)); 7364 Inst = TmpInst; 7365 return true; 7366 } 7367 7368 case ARM::VST4LNdWB_fixed_Asm_8: 7369 case ARM::VST4LNdWB_fixed_Asm_16: 7370 case ARM::VST4LNdWB_fixed_Asm_32: 7371 case ARM::VST4LNqWB_fixed_Asm_16: 7372 case ARM::VST4LNqWB_fixed_Asm_32: { 7373 MCInst TmpInst; 7374 // Shuffle the operands around so the lane index operand is in the 7375 // right place. 7376 unsigned Spacing; 7377 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7378 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7379 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7380 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7381 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7382 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7383 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7384 Spacing)); 7385 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7386 Spacing * 2)); 7387 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7388 Spacing * 3)); 7389 TmpInst.addOperand(Inst.getOperand(1)); // lane 7390 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7391 TmpInst.addOperand(Inst.getOperand(5)); 7392 Inst = TmpInst; 7393 return true; 7394 } 7395 7396 case ARM::VST1LNdAsm_8: 7397 case ARM::VST1LNdAsm_16: 7398 case ARM::VST1LNdAsm_32: { 7399 MCInst TmpInst; 7400 // Shuffle the operands around so the lane index operand is in the 7401 // right place. 7402 unsigned Spacing; 7403 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7404 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7405 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7406 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7407 TmpInst.addOperand(Inst.getOperand(1)); // lane 7408 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7409 TmpInst.addOperand(Inst.getOperand(5)); 7410 Inst = TmpInst; 7411 return true; 7412 } 7413 7414 case ARM::VST2LNdAsm_8: 7415 case ARM::VST2LNdAsm_16: 7416 case ARM::VST2LNdAsm_32: 7417 case ARM::VST2LNqAsm_16: 7418 case ARM::VST2LNqAsm_32: { 7419 MCInst TmpInst; 7420 // Shuffle the operands around so the lane index operand is in the 7421 // right place. 7422 unsigned Spacing; 7423 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7424 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7425 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7426 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7427 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7428 Spacing)); 7429 TmpInst.addOperand(Inst.getOperand(1)); // lane 7430 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7431 TmpInst.addOperand(Inst.getOperand(5)); 7432 Inst = TmpInst; 7433 return true; 7434 } 7435 7436 case ARM::VST3LNdAsm_8: 7437 case ARM::VST3LNdAsm_16: 7438 case ARM::VST3LNdAsm_32: 7439 case ARM::VST3LNqAsm_16: 7440 case ARM::VST3LNqAsm_32: { 7441 MCInst TmpInst; 7442 // Shuffle the operands around so the lane index operand is in the 7443 // right place. 7444 unsigned Spacing; 7445 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7446 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7447 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7448 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7449 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7450 Spacing)); 7451 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7452 Spacing * 2)); 7453 TmpInst.addOperand(Inst.getOperand(1)); // lane 7454 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7455 TmpInst.addOperand(Inst.getOperand(5)); 7456 Inst = TmpInst; 7457 return true; 7458 } 7459 7460 case ARM::VST4LNdAsm_8: 7461 case ARM::VST4LNdAsm_16: 7462 case ARM::VST4LNdAsm_32: 7463 case ARM::VST4LNqAsm_16: 7464 case ARM::VST4LNqAsm_32: { 7465 MCInst TmpInst; 7466 // Shuffle the operands around so the lane index operand is in the 7467 // right place. 7468 unsigned Spacing; 7469 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7470 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7471 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7472 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7473 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7474 Spacing)); 7475 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7476 Spacing * 2)); 7477 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7478 Spacing * 3)); 7479 TmpInst.addOperand(Inst.getOperand(1)); // lane 7480 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7481 TmpInst.addOperand(Inst.getOperand(5)); 7482 Inst = TmpInst; 7483 return true; 7484 } 7485 7486 // Handle NEON VLD complex aliases. 7487 case ARM::VLD1LNdWB_register_Asm_8: 7488 case ARM::VLD1LNdWB_register_Asm_16: 7489 case ARM::VLD1LNdWB_register_Asm_32: { 7490 MCInst TmpInst; 7491 // Shuffle the operands around so the lane index operand is in the 7492 // right place. 7493 unsigned Spacing; 7494 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7495 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7496 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7497 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7498 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7499 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7500 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7501 TmpInst.addOperand(Inst.getOperand(1)); // lane 7502 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7503 TmpInst.addOperand(Inst.getOperand(6)); 7504 Inst = TmpInst; 7505 return true; 7506 } 7507 7508 case ARM::VLD2LNdWB_register_Asm_8: 7509 case ARM::VLD2LNdWB_register_Asm_16: 7510 case ARM::VLD2LNdWB_register_Asm_32: 7511 case ARM::VLD2LNqWB_register_Asm_16: 7512 case ARM::VLD2LNqWB_register_Asm_32: { 7513 MCInst TmpInst; 7514 // Shuffle the operands around so the lane index operand is in the 7515 // right place. 7516 unsigned Spacing; 7517 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7518 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7519 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7520 Spacing)); 7521 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7522 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7523 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7524 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7525 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7526 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7527 Spacing)); 7528 TmpInst.addOperand(Inst.getOperand(1)); // lane 7529 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7530 TmpInst.addOperand(Inst.getOperand(6)); 7531 Inst = TmpInst; 7532 return true; 7533 } 7534 7535 case ARM::VLD3LNdWB_register_Asm_8: 7536 case ARM::VLD3LNdWB_register_Asm_16: 7537 case ARM::VLD3LNdWB_register_Asm_32: 7538 case ARM::VLD3LNqWB_register_Asm_16: 7539 case ARM::VLD3LNqWB_register_Asm_32: { 7540 MCInst TmpInst; 7541 // Shuffle the operands around so the lane index operand is in the 7542 // right place. 7543 unsigned Spacing; 7544 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7545 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7546 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7547 Spacing)); 7548 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7549 Spacing * 2)); 7550 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7551 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7552 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7553 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7554 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7555 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7556 Spacing)); 7557 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7558 Spacing * 2)); 7559 TmpInst.addOperand(Inst.getOperand(1)); // lane 7560 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7561 TmpInst.addOperand(Inst.getOperand(6)); 7562 Inst = TmpInst; 7563 return true; 7564 } 7565 7566 case ARM::VLD4LNdWB_register_Asm_8: 7567 case ARM::VLD4LNdWB_register_Asm_16: 7568 case ARM::VLD4LNdWB_register_Asm_32: 7569 case ARM::VLD4LNqWB_register_Asm_16: 7570 case ARM::VLD4LNqWB_register_Asm_32: { 7571 MCInst TmpInst; 7572 // Shuffle the operands around so the lane index operand is in the 7573 // right place. 7574 unsigned Spacing; 7575 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7576 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7577 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7578 Spacing)); 7579 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7580 Spacing * 2)); 7581 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7582 Spacing * 3)); 7583 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7584 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7585 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7586 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7587 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7588 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7589 Spacing)); 7590 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7591 Spacing * 2)); 7592 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7593 Spacing * 3)); 7594 TmpInst.addOperand(Inst.getOperand(1)); // lane 7595 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7596 TmpInst.addOperand(Inst.getOperand(6)); 7597 Inst = TmpInst; 7598 return true; 7599 } 7600 7601 case ARM::VLD1LNdWB_fixed_Asm_8: 7602 case ARM::VLD1LNdWB_fixed_Asm_16: 7603 case ARM::VLD1LNdWB_fixed_Asm_32: { 7604 MCInst TmpInst; 7605 // Shuffle the operands around so the lane index operand is in the 7606 // right place. 7607 unsigned Spacing; 7608 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7609 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7610 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7611 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7612 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7613 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7614 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7615 TmpInst.addOperand(Inst.getOperand(1)); // lane 7616 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7617 TmpInst.addOperand(Inst.getOperand(5)); 7618 Inst = TmpInst; 7619 return true; 7620 } 7621 7622 case ARM::VLD2LNdWB_fixed_Asm_8: 7623 case ARM::VLD2LNdWB_fixed_Asm_16: 7624 case ARM::VLD2LNdWB_fixed_Asm_32: 7625 case ARM::VLD2LNqWB_fixed_Asm_16: 7626 case ARM::VLD2LNqWB_fixed_Asm_32: { 7627 MCInst TmpInst; 7628 // Shuffle the operands around so the lane index operand is in the 7629 // right place. 7630 unsigned Spacing; 7631 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7632 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7633 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7634 Spacing)); 7635 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7636 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7637 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7638 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7639 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7640 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7641 Spacing)); 7642 TmpInst.addOperand(Inst.getOperand(1)); // lane 7643 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7644 TmpInst.addOperand(Inst.getOperand(5)); 7645 Inst = TmpInst; 7646 return true; 7647 } 7648 7649 case ARM::VLD3LNdWB_fixed_Asm_8: 7650 case ARM::VLD3LNdWB_fixed_Asm_16: 7651 case ARM::VLD3LNdWB_fixed_Asm_32: 7652 case ARM::VLD3LNqWB_fixed_Asm_16: 7653 case ARM::VLD3LNqWB_fixed_Asm_32: { 7654 MCInst TmpInst; 7655 // Shuffle the operands around so the lane index operand is in the 7656 // right place. 7657 unsigned Spacing; 7658 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7659 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7660 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7661 Spacing)); 7662 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7663 Spacing * 2)); 7664 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7665 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7666 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7667 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7668 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7669 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7670 Spacing)); 7671 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7672 Spacing * 2)); 7673 TmpInst.addOperand(Inst.getOperand(1)); // lane 7674 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7675 TmpInst.addOperand(Inst.getOperand(5)); 7676 Inst = TmpInst; 7677 return true; 7678 } 7679 7680 case ARM::VLD4LNdWB_fixed_Asm_8: 7681 case ARM::VLD4LNdWB_fixed_Asm_16: 7682 case ARM::VLD4LNdWB_fixed_Asm_32: 7683 case ARM::VLD4LNqWB_fixed_Asm_16: 7684 case ARM::VLD4LNqWB_fixed_Asm_32: { 7685 MCInst TmpInst; 7686 // Shuffle the operands around so the lane index operand is in the 7687 // right place. 7688 unsigned Spacing; 7689 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7690 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7691 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7692 Spacing)); 7693 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7694 Spacing * 2)); 7695 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7696 Spacing * 3)); 7697 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7698 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7699 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7700 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7701 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7702 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7703 Spacing)); 7704 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7705 Spacing * 2)); 7706 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7707 Spacing * 3)); 7708 TmpInst.addOperand(Inst.getOperand(1)); // lane 7709 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7710 TmpInst.addOperand(Inst.getOperand(5)); 7711 Inst = TmpInst; 7712 return true; 7713 } 7714 7715 case ARM::VLD1LNdAsm_8: 7716 case ARM::VLD1LNdAsm_16: 7717 case ARM::VLD1LNdAsm_32: { 7718 MCInst TmpInst; 7719 // Shuffle the operands around so the lane index operand is in the 7720 // right place. 7721 unsigned Spacing; 7722 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7723 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7724 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7725 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7726 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7727 TmpInst.addOperand(Inst.getOperand(1)); // lane 7728 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7729 TmpInst.addOperand(Inst.getOperand(5)); 7730 Inst = TmpInst; 7731 return true; 7732 } 7733 7734 case ARM::VLD2LNdAsm_8: 7735 case ARM::VLD2LNdAsm_16: 7736 case ARM::VLD2LNdAsm_32: 7737 case ARM::VLD2LNqAsm_16: 7738 case ARM::VLD2LNqAsm_32: { 7739 MCInst TmpInst; 7740 // Shuffle the operands around so the lane index operand is in the 7741 // right place. 7742 unsigned Spacing; 7743 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7744 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7745 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7746 Spacing)); 7747 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7748 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7749 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7750 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7751 Spacing)); 7752 TmpInst.addOperand(Inst.getOperand(1)); // lane 7753 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7754 TmpInst.addOperand(Inst.getOperand(5)); 7755 Inst = TmpInst; 7756 return true; 7757 } 7758 7759 case ARM::VLD3LNdAsm_8: 7760 case ARM::VLD3LNdAsm_16: 7761 case ARM::VLD3LNdAsm_32: 7762 case ARM::VLD3LNqAsm_16: 7763 case ARM::VLD3LNqAsm_32: { 7764 MCInst TmpInst; 7765 // Shuffle the operands around so the lane index operand is in the 7766 // right place. 7767 unsigned Spacing; 7768 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7769 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7770 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7771 Spacing)); 7772 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7773 Spacing * 2)); 7774 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7775 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7776 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7777 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7778 Spacing)); 7779 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7780 Spacing * 2)); 7781 TmpInst.addOperand(Inst.getOperand(1)); // lane 7782 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7783 TmpInst.addOperand(Inst.getOperand(5)); 7784 Inst = TmpInst; 7785 return true; 7786 } 7787 7788 case ARM::VLD4LNdAsm_8: 7789 case ARM::VLD4LNdAsm_16: 7790 case ARM::VLD4LNdAsm_32: 7791 case ARM::VLD4LNqAsm_16: 7792 case ARM::VLD4LNqAsm_32: { 7793 MCInst TmpInst; 7794 // Shuffle the operands around so the lane index operand is in the 7795 // right place. 7796 unsigned Spacing; 7797 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7798 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7799 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7800 Spacing)); 7801 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7802 Spacing * 2)); 7803 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7804 Spacing * 3)); 7805 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7806 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7807 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7808 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7809 Spacing)); 7810 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7811 Spacing * 2)); 7812 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7813 Spacing * 3)); 7814 TmpInst.addOperand(Inst.getOperand(1)); // lane 7815 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7816 TmpInst.addOperand(Inst.getOperand(5)); 7817 Inst = TmpInst; 7818 return true; 7819 } 7820 7821 // VLD3DUP single 3-element structure to all lanes instructions. 7822 case ARM::VLD3DUPdAsm_8: 7823 case ARM::VLD3DUPdAsm_16: 7824 case ARM::VLD3DUPdAsm_32: 7825 case ARM::VLD3DUPqAsm_8: 7826 case ARM::VLD3DUPqAsm_16: 7827 case ARM::VLD3DUPqAsm_32: { 7828 MCInst TmpInst; 7829 unsigned Spacing; 7830 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7831 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7832 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7833 Spacing)); 7834 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7835 Spacing * 2)); 7836 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7837 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7838 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7839 TmpInst.addOperand(Inst.getOperand(4)); 7840 Inst = TmpInst; 7841 return true; 7842 } 7843 7844 case ARM::VLD3DUPdWB_fixed_Asm_8: 7845 case ARM::VLD3DUPdWB_fixed_Asm_16: 7846 case ARM::VLD3DUPdWB_fixed_Asm_32: 7847 case ARM::VLD3DUPqWB_fixed_Asm_8: 7848 case ARM::VLD3DUPqWB_fixed_Asm_16: 7849 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7850 MCInst TmpInst; 7851 unsigned Spacing; 7852 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7853 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7854 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7855 Spacing)); 7856 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7857 Spacing * 2)); 7858 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7859 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7860 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7861 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7862 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7863 TmpInst.addOperand(Inst.getOperand(4)); 7864 Inst = TmpInst; 7865 return true; 7866 } 7867 7868 case ARM::VLD3DUPdWB_register_Asm_8: 7869 case ARM::VLD3DUPdWB_register_Asm_16: 7870 case ARM::VLD3DUPdWB_register_Asm_32: 7871 case ARM::VLD3DUPqWB_register_Asm_8: 7872 case ARM::VLD3DUPqWB_register_Asm_16: 7873 case ARM::VLD3DUPqWB_register_Asm_32: { 7874 MCInst TmpInst; 7875 unsigned Spacing; 7876 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7877 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7878 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7879 Spacing)); 7880 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7881 Spacing * 2)); 7882 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7883 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7884 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7885 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7886 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7887 TmpInst.addOperand(Inst.getOperand(5)); 7888 Inst = TmpInst; 7889 return true; 7890 } 7891 7892 // VLD3 multiple 3-element structure instructions. 7893 case ARM::VLD3dAsm_8: 7894 case ARM::VLD3dAsm_16: 7895 case ARM::VLD3dAsm_32: 7896 case ARM::VLD3qAsm_8: 7897 case ARM::VLD3qAsm_16: 7898 case ARM::VLD3qAsm_32: { 7899 MCInst TmpInst; 7900 unsigned Spacing; 7901 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7902 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7903 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7904 Spacing)); 7905 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7906 Spacing * 2)); 7907 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7908 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7909 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7910 TmpInst.addOperand(Inst.getOperand(4)); 7911 Inst = TmpInst; 7912 return true; 7913 } 7914 7915 case ARM::VLD3dWB_fixed_Asm_8: 7916 case ARM::VLD3dWB_fixed_Asm_16: 7917 case ARM::VLD3dWB_fixed_Asm_32: 7918 case ARM::VLD3qWB_fixed_Asm_8: 7919 case ARM::VLD3qWB_fixed_Asm_16: 7920 case ARM::VLD3qWB_fixed_Asm_32: { 7921 MCInst TmpInst; 7922 unsigned Spacing; 7923 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7924 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7925 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7926 Spacing)); 7927 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7928 Spacing * 2)); 7929 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7930 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7931 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7932 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7933 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7934 TmpInst.addOperand(Inst.getOperand(4)); 7935 Inst = TmpInst; 7936 return true; 7937 } 7938 7939 case ARM::VLD3dWB_register_Asm_8: 7940 case ARM::VLD3dWB_register_Asm_16: 7941 case ARM::VLD3dWB_register_Asm_32: 7942 case ARM::VLD3qWB_register_Asm_8: 7943 case ARM::VLD3qWB_register_Asm_16: 7944 case ARM::VLD3qWB_register_Asm_32: { 7945 MCInst TmpInst; 7946 unsigned Spacing; 7947 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7948 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7949 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7950 Spacing)); 7951 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7952 Spacing * 2)); 7953 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7954 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7955 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7956 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7957 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7958 TmpInst.addOperand(Inst.getOperand(5)); 7959 Inst = TmpInst; 7960 return true; 7961 } 7962 7963 // VLD4DUP single 3-element structure to all lanes instructions. 7964 case ARM::VLD4DUPdAsm_8: 7965 case ARM::VLD4DUPdAsm_16: 7966 case ARM::VLD4DUPdAsm_32: 7967 case ARM::VLD4DUPqAsm_8: 7968 case ARM::VLD4DUPqAsm_16: 7969 case ARM::VLD4DUPqAsm_32: { 7970 MCInst TmpInst; 7971 unsigned Spacing; 7972 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7973 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7974 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7975 Spacing)); 7976 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7977 Spacing * 2)); 7978 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7979 Spacing * 3)); 7980 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7981 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7982 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7983 TmpInst.addOperand(Inst.getOperand(4)); 7984 Inst = TmpInst; 7985 return true; 7986 } 7987 7988 case ARM::VLD4DUPdWB_fixed_Asm_8: 7989 case ARM::VLD4DUPdWB_fixed_Asm_16: 7990 case ARM::VLD4DUPdWB_fixed_Asm_32: 7991 case ARM::VLD4DUPqWB_fixed_Asm_8: 7992 case ARM::VLD4DUPqWB_fixed_Asm_16: 7993 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7994 MCInst TmpInst; 7995 unsigned Spacing; 7996 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7997 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7998 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7999 Spacing)); 8000 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8001 Spacing * 2)); 8002 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8003 Spacing * 3)); 8004 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8005 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8006 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8007 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8008 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8009 TmpInst.addOperand(Inst.getOperand(4)); 8010 Inst = TmpInst; 8011 return true; 8012 } 8013 8014 case ARM::VLD4DUPdWB_register_Asm_8: 8015 case ARM::VLD4DUPdWB_register_Asm_16: 8016 case ARM::VLD4DUPdWB_register_Asm_32: 8017 case ARM::VLD4DUPqWB_register_Asm_8: 8018 case ARM::VLD4DUPqWB_register_Asm_16: 8019 case ARM::VLD4DUPqWB_register_Asm_32: { 8020 MCInst TmpInst; 8021 unsigned Spacing; 8022 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8023 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8024 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8025 Spacing)); 8026 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8027 Spacing * 2)); 8028 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8029 Spacing * 3)); 8030 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8031 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8032 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8033 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8034 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8035 TmpInst.addOperand(Inst.getOperand(5)); 8036 Inst = TmpInst; 8037 return true; 8038 } 8039 8040 // VLD4 multiple 4-element structure instructions. 8041 case ARM::VLD4dAsm_8: 8042 case ARM::VLD4dAsm_16: 8043 case ARM::VLD4dAsm_32: 8044 case ARM::VLD4qAsm_8: 8045 case ARM::VLD4qAsm_16: 8046 case ARM::VLD4qAsm_32: { 8047 MCInst TmpInst; 8048 unsigned Spacing; 8049 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8050 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8051 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8052 Spacing)); 8053 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8054 Spacing * 2)); 8055 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8056 Spacing * 3)); 8057 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8058 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8059 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8060 TmpInst.addOperand(Inst.getOperand(4)); 8061 Inst = TmpInst; 8062 return true; 8063 } 8064 8065 case ARM::VLD4dWB_fixed_Asm_8: 8066 case ARM::VLD4dWB_fixed_Asm_16: 8067 case ARM::VLD4dWB_fixed_Asm_32: 8068 case ARM::VLD4qWB_fixed_Asm_8: 8069 case ARM::VLD4qWB_fixed_Asm_16: 8070 case ARM::VLD4qWB_fixed_Asm_32: { 8071 MCInst TmpInst; 8072 unsigned Spacing; 8073 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8074 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8075 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8076 Spacing)); 8077 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8078 Spacing * 2)); 8079 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8080 Spacing * 3)); 8081 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8082 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8083 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8084 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8085 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8086 TmpInst.addOperand(Inst.getOperand(4)); 8087 Inst = TmpInst; 8088 return true; 8089 } 8090 8091 case ARM::VLD4dWB_register_Asm_8: 8092 case ARM::VLD4dWB_register_Asm_16: 8093 case ARM::VLD4dWB_register_Asm_32: 8094 case ARM::VLD4qWB_register_Asm_8: 8095 case ARM::VLD4qWB_register_Asm_16: 8096 case ARM::VLD4qWB_register_Asm_32: { 8097 MCInst TmpInst; 8098 unsigned Spacing; 8099 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8100 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8101 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8102 Spacing)); 8103 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8104 Spacing * 2)); 8105 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8106 Spacing * 3)); 8107 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8108 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8109 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8110 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8111 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8112 TmpInst.addOperand(Inst.getOperand(5)); 8113 Inst = TmpInst; 8114 return true; 8115 } 8116 8117 // VST3 multiple 3-element structure instructions. 8118 case ARM::VST3dAsm_8: 8119 case ARM::VST3dAsm_16: 8120 case ARM::VST3dAsm_32: 8121 case ARM::VST3qAsm_8: 8122 case ARM::VST3qAsm_16: 8123 case ARM::VST3qAsm_32: { 8124 MCInst TmpInst; 8125 unsigned Spacing; 8126 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8127 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8128 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8129 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8130 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8131 Spacing)); 8132 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8133 Spacing * 2)); 8134 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8135 TmpInst.addOperand(Inst.getOperand(4)); 8136 Inst = TmpInst; 8137 return true; 8138 } 8139 8140 case ARM::VST3dWB_fixed_Asm_8: 8141 case ARM::VST3dWB_fixed_Asm_16: 8142 case ARM::VST3dWB_fixed_Asm_32: 8143 case ARM::VST3qWB_fixed_Asm_8: 8144 case ARM::VST3qWB_fixed_Asm_16: 8145 case ARM::VST3qWB_fixed_Asm_32: { 8146 MCInst TmpInst; 8147 unsigned Spacing; 8148 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8149 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8150 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8151 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8152 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8153 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8154 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8155 Spacing)); 8156 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8157 Spacing * 2)); 8158 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8159 TmpInst.addOperand(Inst.getOperand(4)); 8160 Inst = TmpInst; 8161 return true; 8162 } 8163 8164 case ARM::VST3dWB_register_Asm_8: 8165 case ARM::VST3dWB_register_Asm_16: 8166 case ARM::VST3dWB_register_Asm_32: 8167 case ARM::VST3qWB_register_Asm_8: 8168 case ARM::VST3qWB_register_Asm_16: 8169 case ARM::VST3qWB_register_Asm_32: { 8170 MCInst TmpInst; 8171 unsigned Spacing; 8172 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8173 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8174 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8175 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8176 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8177 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8178 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8179 Spacing)); 8180 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8181 Spacing * 2)); 8182 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8183 TmpInst.addOperand(Inst.getOperand(5)); 8184 Inst = TmpInst; 8185 return true; 8186 } 8187 8188 // VST4 multiple 3-element structure instructions. 8189 case ARM::VST4dAsm_8: 8190 case ARM::VST4dAsm_16: 8191 case ARM::VST4dAsm_32: 8192 case ARM::VST4qAsm_8: 8193 case ARM::VST4qAsm_16: 8194 case ARM::VST4qAsm_32: { 8195 MCInst TmpInst; 8196 unsigned Spacing; 8197 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8198 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8199 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8200 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8201 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8202 Spacing)); 8203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8204 Spacing * 2)); 8205 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8206 Spacing * 3)); 8207 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8208 TmpInst.addOperand(Inst.getOperand(4)); 8209 Inst = TmpInst; 8210 return true; 8211 } 8212 8213 case ARM::VST4dWB_fixed_Asm_8: 8214 case ARM::VST4dWB_fixed_Asm_16: 8215 case ARM::VST4dWB_fixed_Asm_32: 8216 case ARM::VST4qWB_fixed_Asm_8: 8217 case ARM::VST4qWB_fixed_Asm_16: 8218 case ARM::VST4qWB_fixed_Asm_32: { 8219 MCInst TmpInst; 8220 unsigned Spacing; 8221 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8222 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8223 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8224 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8225 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8226 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8227 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8228 Spacing)); 8229 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8230 Spacing * 2)); 8231 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8232 Spacing * 3)); 8233 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8234 TmpInst.addOperand(Inst.getOperand(4)); 8235 Inst = TmpInst; 8236 return true; 8237 } 8238 8239 case ARM::VST4dWB_register_Asm_8: 8240 case ARM::VST4dWB_register_Asm_16: 8241 case ARM::VST4dWB_register_Asm_32: 8242 case ARM::VST4qWB_register_Asm_8: 8243 case ARM::VST4qWB_register_Asm_16: 8244 case ARM::VST4qWB_register_Asm_32: { 8245 MCInst TmpInst; 8246 unsigned Spacing; 8247 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8248 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8249 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8250 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8251 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8252 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8253 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8254 Spacing)); 8255 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8256 Spacing * 2)); 8257 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8258 Spacing * 3)); 8259 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8260 TmpInst.addOperand(Inst.getOperand(5)); 8261 Inst = TmpInst; 8262 return true; 8263 } 8264 8265 // Handle encoding choice for the shift-immediate instructions. 8266 case ARM::t2LSLri: 8267 case ARM::t2LSRri: 8268 case ARM::t2ASRri: { 8269 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8270 isARMLowRegister(Inst.getOperand(1).getReg()) && 8271 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8272 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8273 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8274 unsigned NewOpc; 8275 switch (Inst.getOpcode()) { 8276 default: llvm_unreachable("unexpected opcode"); 8277 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8278 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8279 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8280 } 8281 // The Thumb1 operands aren't in the same order. Awesome, eh? 8282 MCInst TmpInst; 8283 TmpInst.setOpcode(NewOpc); 8284 TmpInst.addOperand(Inst.getOperand(0)); 8285 TmpInst.addOperand(Inst.getOperand(5)); 8286 TmpInst.addOperand(Inst.getOperand(1)); 8287 TmpInst.addOperand(Inst.getOperand(2)); 8288 TmpInst.addOperand(Inst.getOperand(3)); 8289 TmpInst.addOperand(Inst.getOperand(4)); 8290 Inst = TmpInst; 8291 return true; 8292 } 8293 return false; 8294 } 8295 8296 // Handle the Thumb2 mode MOV complex aliases. 8297 case ARM::t2MOVsr: 8298 case ARM::t2MOVSsr: { 8299 // Which instruction to expand to depends on the CCOut operand and 8300 // whether we're in an IT block if the register operands are low 8301 // registers. 8302 bool isNarrow = false; 8303 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8304 isARMLowRegister(Inst.getOperand(1).getReg()) && 8305 isARMLowRegister(Inst.getOperand(2).getReg()) && 8306 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8307 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8308 isNarrow = true; 8309 MCInst TmpInst; 8310 unsigned newOpc; 8311 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8312 default: llvm_unreachable("unexpected opcode!"); 8313 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8314 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8315 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8316 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8317 } 8318 TmpInst.setOpcode(newOpc); 8319 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8320 if (isNarrow) 8321 TmpInst.addOperand(MCOperand::createReg( 8322 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8323 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8324 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8325 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8326 TmpInst.addOperand(Inst.getOperand(5)); 8327 if (!isNarrow) 8328 TmpInst.addOperand(MCOperand::createReg( 8329 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8330 Inst = TmpInst; 8331 return true; 8332 } 8333 case ARM::t2MOVsi: 8334 case ARM::t2MOVSsi: { 8335 // Which instruction to expand to depends on the CCOut operand and 8336 // whether we're in an IT block if the register operands are low 8337 // registers. 8338 bool isNarrow = false; 8339 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8340 isARMLowRegister(Inst.getOperand(1).getReg()) && 8341 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8342 isNarrow = true; 8343 MCInst TmpInst; 8344 unsigned newOpc; 8345 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8346 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8347 bool isMov = false; 8348 // MOV rd, rm, LSL #0 is actually a MOV instruction 8349 if (Shift == ARM_AM::lsl && Amount == 0) { 8350 isMov = true; 8351 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8352 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8353 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8354 // instead. 8355 if (inITBlock()) { 8356 isNarrow = false; 8357 } 8358 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8359 } else { 8360 switch(Shift) { 8361 default: llvm_unreachable("unexpected opcode!"); 8362 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8363 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8364 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8365 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8366 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8367 } 8368 } 8369 if (Amount == 32) Amount = 0; 8370 TmpInst.setOpcode(newOpc); 8371 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8372 if (isNarrow && !isMov) 8373 TmpInst.addOperand(MCOperand::createReg( 8374 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8375 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8376 if (newOpc != ARM::t2RRX && !isMov) 8377 TmpInst.addOperand(MCOperand::createImm(Amount)); 8378 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8379 TmpInst.addOperand(Inst.getOperand(4)); 8380 if (!isNarrow) 8381 TmpInst.addOperand(MCOperand::createReg( 8382 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8383 Inst = TmpInst; 8384 return true; 8385 } 8386 // Handle the ARM mode MOV complex aliases. 8387 case ARM::ASRr: 8388 case ARM::LSRr: 8389 case ARM::LSLr: 8390 case ARM::RORr: { 8391 ARM_AM::ShiftOpc ShiftTy; 8392 switch(Inst.getOpcode()) { 8393 default: llvm_unreachable("unexpected opcode!"); 8394 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8395 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8396 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8397 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8398 } 8399 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8400 MCInst TmpInst; 8401 TmpInst.setOpcode(ARM::MOVsr); 8402 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8403 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8404 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8405 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8406 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8407 TmpInst.addOperand(Inst.getOperand(4)); 8408 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8409 Inst = TmpInst; 8410 return true; 8411 } 8412 case ARM::ASRi: 8413 case ARM::LSRi: 8414 case ARM::LSLi: 8415 case ARM::RORi: { 8416 ARM_AM::ShiftOpc ShiftTy; 8417 switch(Inst.getOpcode()) { 8418 default: llvm_unreachable("unexpected opcode!"); 8419 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8420 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8421 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8422 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8423 } 8424 // A shift by zero is a plain MOVr, not a MOVsi. 8425 unsigned Amt = Inst.getOperand(2).getImm(); 8426 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8427 // A shift by 32 should be encoded as 0 when permitted 8428 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8429 Amt = 0; 8430 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8431 MCInst TmpInst; 8432 TmpInst.setOpcode(Opc); 8433 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8434 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8435 if (Opc == ARM::MOVsi) 8436 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8437 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8438 TmpInst.addOperand(Inst.getOperand(4)); 8439 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8440 Inst = TmpInst; 8441 return true; 8442 } 8443 case ARM::RRXi: { 8444 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8445 MCInst TmpInst; 8446 TmpInst.setOpcode(ARM::MOVsi); 8447 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8448 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8449 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8450 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8451 TmpInst.addOperand(Inst.getOperand(3)); 8452 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8453 Inst = TmpInst; 8454 return true; 8455 } 8456 case ARM::t2LDMIA_UPD: { 8457 // If this is a load of a single register, then we should use 8458 // a post-indexed LDR instruction instead, per the ARM ARM. 8459 if (Inst.getNumOperands() != 5) 8460 return false; 8461 MCInst TmpInst; 8462 TmpInst.setOpcode(ARM::t2LDR_POST); 8463 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8464 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8465 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8466 TmpInst.addOperand(MCOperand::createImm(4)); 8467 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8468 TmpInst.addOperand(Inst.getOperand(3)); 8469 Inst = TmpInst; 8470 return true; 8471 } 8472 case ARM::t2STMDB_UPD: { 8473 // If this is a store of a single register, then we should use 8474 // a pre-indexed STR instruction instead, per the ARM ARM. 8475 if (Inst.getNumOperands() != 5) 8476 return false; 8477 MCInst TmpInst; 8478 TmpInst.setOpcode(ARM::t2STR_PRE); 8479 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8480 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8481 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8482 TmpInst.addOperand(MCOperand::createImm(-4)); 8483 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8484 TmpInst.addOperand(Inst.getOperand(3)); 8485 Inst = TmpInst; 8486 return true; 8487 } 8488 case ARM::LDMIA_UPD: 8489 // If this is a load of a single register via a 'pop', then we should use 8490 // a post-indexed LDR instruction instead, per the ARM ARM. 8491 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8492 Inst.getNumOperands() == 5) { 8493 MCInst TmpInst; 8494 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8495 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8496 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8497 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8498 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8499 TmpInst.addOperand(MCOperand::createImm(4)); 8500 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8501 TmpInst.addOperand(Inst.getOperand(3)); 8502 Inst = TmpInst; 8503 return true; 8504 } 8505 break; 8506 case ARM::STMDB_UPD: 8507 // If this is a store of a single register via a 'push', then we should use 8508 // a pre-indexed STR instruction instead, per the ARM ARM. 8509 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8510 Inst.getNumOperands() == 5) { 8511 MCInst TmpInst; 8512 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8513 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8514 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8515 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8516 TmpInst.addOperand(MCOperand::createImm(-4)); 8517 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8518 TmpInst.addOperand(Inst.getOperand(3)); 8519 Inst = TmpInst; 8520 } 8521 break; 8522 case ARM::t2ADDri12: 8523 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8524 // mnemonic was used (not "addw"), encoding T3 is preferred. 8525 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8526 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8527 break; 8528 Inst.setOpcode(ARM::t2ADDri); 8529 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8530 break; 8531 case ARM::t2SUBri12: 8532 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8533 // mnemonic was used (not "subw"), encoding T3 is preferred. 8534 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8535 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8536 break; 8537 Inst.setOpcode(ARM::t2SUBri); 8538 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8539 break; 8540 case ARM::tADDi8: 8541 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8542 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8543 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8544 // to encoding T1 if <Rd> is omitted." 8545 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8546 Inst.setOpcode(ARM::tADDi3); 8547 return true; 8548 } 8549 break; 8550 case ARM::tSUBi8: 8551 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8552 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8553 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8554 // to encoding T1 if <Rd> is omitted." 8555 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8556 Inst.setOpcode(ARM::tSUBi3); 8557 return true; 8558 } 8559 break; 8560 case ARM::t2ADDri: 8561 case ARM::t2SUBri: { 8562 // If the destination and first source operand are the same, and 8563 // the flags are compatible with the current IT status, use encoding T2 8564 // instead of T3. For compatibility with the system 'as'. Make sure the 8565 // wide encoding wasn't explicit. 8566 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8567 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8568 (unsigned)Inst.getOperand(2).getImm() > 255 || 8569 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8570 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8571 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8572 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8573 break; 8574 MCInst TmpInst; 8575 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8576 ARM::tADDi8 : ARM::tSUBi8); 8577 TmpInst.addOperand(Inst.getOperand(0)); 8578 TmpInst.addOperand(Inst.getOperand(5)); 8579 TmpInst.addOperand(Inst.getOperand(0)); 8580 TmpInst.addOperand(Inst.getOperand(2)); 8581 TmpInst.addOperand(Inst.getOperand(3)); 8582 TmpInst.addOperand(Inst.getOperand(4)); 8583 Inst = TmpInst; 8584 return true; 8585 } 8586 case ARM::t2ADDrr: { 8587 // If the destination and first source operand are the same, and 8588 // there's no setting of the flags, use encoding T2 instead of T3. 8589 // Note that this is only for ADD, not SUB. This mirrors the system 8590 // 'as' behaviour. Also take advantage of ADD being commutative. 8591 // Make sure the wide encoding wasn't explicit. 8592 bool Swap = false; 8593 auto DestReg = Inst.getOperand(0).getReg(); 8594 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8595 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8596 Transform = true; 8597 Swap = true; 8598 } 8599 if (!Transform || 8600 Inst.getOperand(5).getReg() != 0 || 8601 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8602 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8603 break; 8604 MCInst TmpInst; 8605 TmpInst.setOpcode(ARM::tADDhirr); 8606 TmpInst.addOperand(Inst.getOperand(0)); 8607 TmpInst.addOperand(Inst.getOperand(0)); 8608 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8609 TmpInst.addOperand(Inst.getOperand(3)); 8610 TmpInst.addOperand(Inst.getOperand(4)); 8611 Inst = TmpInst; 8612 return true; 8613 } 8614 case ARM::tADDrSP: { 8615 // If the non-SP source operand and the destination operand are not the 8616 // same, we need to use the 32-bit encoding if it's available. 8617 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8618 Inst.setOpcode(ARM::t2ADDrr); 8619 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8620 return true; 8621 } 8622 break; 8623 } 8624 case ARM::tB: 8625 // A Thumb conditional branch outside of an IT block is a tBcc. 8626 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8627 Inst.setOpcode(ARM::tBcc); 8628 return true; 8629 } 8630 break; 8631 case ARM::t2B: 8632 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8633 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8634 Inst.setOpcode(ARM::t2Bcc); 8635 return true; 8636 } 8637 break; 8638 case ARM::t2Bcc: 8639 // If the conditional is AL or we're in an IT block, we really want t2B. 8640 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8641 Inst.setOpcode(ARM::t2B); 8642 return true; 8643 } 8644 break; 8645 case ARM::tBcc: 8646 // If the conditional is AL, we really want tB. 8647 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8648 Inst.setOpcode(ARM::tB); 8649 return true; 8650 } 8651 break; 8652 case ARM::tLDMIA: { 8653 // If the register list contains any high registers, or if the writeback 8654 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8655 // instead if we're in Thumb2. Otherwise, this should have generated 8656 // an error in validateInstruction(). 8657 unsigned Rn = Inst.getOperand(0).getReg(); 8658 bool hasWritebackToken = 8659 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8660 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8661 bool listContainsBase; 8662 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8663 (!listContainsBase && !hasWritebackToken) || 8664 (listContainsBase && hasWritebackToken)) { 8665 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8666 assert (isThumbTwo()); 8667 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8668 // If we're switching to the updating version, we need to insert 8669 // the writeback tied operand. 8670 if (hasWritebackToken) 8671 Inst.insert(Inst.begin(), 8672 MCOperand::createReg(Inst.getOperand(0).getReg())); 8673 return true; 8674 } 8675 break; 8676 } 8677 case ARM::tSTMIA_UPD: { 8678 // If the register list contains any high registers, we need to use 8679 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8680 // should have generated an error in validateInstruction(). 8681 unsigned Rn = Inst.getOperand(0).getReg(); 8682 bool listContainsBase; 8683 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8684 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8685 assert (isThumbTwo()); 8686 Inst.setOpcode(ARM::t2STMIA_UPD); 8687 return true; 8688 } 8689 break; 8690 } 8691 case ARM::tPOP: { 8692 bool listContainsBase; 8693 // If the register list contains any high registers, we need to use 8694 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8695 // should have generated an error in validateInstruction(). 8696 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8697 return false; 8698 assert (isThumbTwo()); 8699 Inst.setOpcode(ARM::t2LDMIA_UPD); 8700 // Add the base register and writeback operands. 8701 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8702 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8703 return true; 8704 } 8705 case ARM::tPUSH: { 8706 bool listContainsBase; 8707 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8708 return false; 8709 assert (isThumbTwo()); 8710 Inst.setOpcode(ARM::t2STMDB_UPD); 8711 // Add the base register and writeback operands. 8712 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8713 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8714 return true; 8715 } 8716 case ARM::t2MOVi: { 8717 // If we can use the 16-bit encoding and the user didn't explicitly 8718 // request the 32-bit variant, transform it here. 8719 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8720 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8721 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8722 Inst.getOperand(4).getReg() == ARM::CPSR) || 8723 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8724 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8725 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8726 // The operands aren't in the same order for tMOVi8... 8727 MCInst TmpInst; 8728 TmpInst.setOpcode(ARM::tMOVi8); 8729 TmpInst.addOperand(Inst.getOperand(0)); 8730 TmpInst.addOperand(Inst.getOperand(4)); 8731 TmpInst.addOperand(Inst.getOperand(1)); 8732 TmpInst.addOperand(Inst.getOperand(2)); 8733 TmpInst.addOperand(Inst.getOperand(3)); 8734 Inst = TmpInst; 8735 return true; 8736 } 8737 break; 8738 } 8739 case ARM::t2MOVr: { 8740 // If we can use the 16-bit encoding and the user didn't explicitly 8741 // request the 32-bit variant, transform it here. 8742 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8743 isARMLowRegister(Inst.getOperand(1).getReg()) && 8744 Inst.getOperand(2).getImm() == ARMCC::AL && 8745 Inst.getOperand(4).getReg() == ARM::CPSR && 8746 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8747 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8748 // The operands aren't the same for tMOV[S]r... (no cc_out) 8749 MCInst TmpInst; 8750 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8751 TmpInst.addOperand(Inst.getOperand(0)); 8752 TmpInst.addOperand(Inst.getOperand(1)); 8753 TmpInst.addOperand(Inst.getOperand(2)); 8754 TmpInst.addOperand(Inst.getOperand(3)); 8755 Inst = TmpInst; 8756 return true; 8757 } 8758 break; 8759 } 8760 case ARM::t2SXTH: 8761 case ARM::t2SXTB: 8762 case ARM::t2UXTH: 8763 case ARM::t2UXTB: { 8764 // If we can use the 16-bit encoding and the user didn't explicitly 8765 // request the 32-bit variant, transform it here. 8766 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8767 isARMLowRegister(Inst.getOperand(1).getReg()) && 8768 Inst.getOperand(2).getImm() == 0 && 8769 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8770 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8771 unsigned NewOpc; 8772 switch (Inst.getOpcode()) { 8773 default: llvm_unreachable("Illegal opcode!"); 8774 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8775 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8776 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8777 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8778 } 8779 // The operands aren't the same for thumb1 (no rotate operand). 8780 MCInst TmpInst; 8781 TmpInst.setOpcode(NewOpc); 8782 TmpInst.addOperand(Inst.getOperand(0)); 8783 TmpInst.addOperand(Inst.getOperand(1)); 8784 TmpInst.addOperand(Inst.getOperand(3)); 8785 TmpInst.addOperand(Inst.getOperand(4)); 8786 Inst = TmpInst; 8787 return true; 8788 } 8789 break; 8790 } 8791 case ARM::MOVsi: { 8792 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8793 // rrx shifts and asr/lsr of #32 is encoded as 0 8794 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8795 return false; 8796 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8797 // Shifting by zero is accepted as a vanilla 'MOVr' 8798 MCInst TmpInst; 8799 TmpInst.setOpcode(ARM::MOVr); 8800 TmpInst.addOperand(Inst.getOperand(0)); 8801 TmpInst.addOperand(Inst.getOperand(1)); 8802 TmpInst.addOperand(Inst.getOperand(3)); 8803 TmpInst.addOperand(Inst.getOperand(4)); 8804 TmpInst.addOperand(Inst.getOperand(5)); 8805 Inst = TmpInst; 8806 return true; 8807 } 8808 return false; 8809 } 8810 case ARM::ANDrsi: 8811 case ARM::ORRrsi: 8812 case ARM::EORrsi: 8813 case ARM::BICrsi: 8814 case ARM::SUBrsi: 8815 case ARM::ADDrsi: { 8816 unsigned newOpc; 8817 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8818 if (SOpc == ARM_AM::rrx) return false; 8819 switch (Inst.getOpcode()) { 8820 default: llvm_unreachable("unexpected opcode!"); 8821 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8822 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8823 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8824 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8825 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8826 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8827 } 8828 // If the shift is by zero, use the non-shifted instruction definition. 8829 // The exception is for right shifts, where 0 == 32 8830 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8831 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8832 MCInst TmpInst; 8833 TmpInst.setOpcode(newOpc); 8834 TmpInst.addOperand(Inst.getOperand(0)); 8835 TmpInst.addOperand(Inst.getOperand(1)); 8836 TmpInst.addOperand(Inst.getOperand(2)); 8837 TmpInst.addOperand(Inst.getOperand(4)); 8838 TmpInst.addOperand(Inst.getOperand(5)); 8839 TmpInst.addOperand(Inst.getOperand(6)); 8840 Inst = TmpInst; 8841 return true; 8842 } 8843 return false; 8844 } 8845 case ARM::ITasm: 8846 case ARM::t2IT: { 8847 MCOperand &MO = Inst.getOperand(1); 8848 unsigned Mask = MO.getImm(); 8849 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8850 8851 // Set up the IT block state according to the IT instruction we just 8852 // matched. 8853 assert(!inITBlock() && "nested IT blocks?!"); 8854 startExplicitITBlock(Cond, Mask); 8855 MO.setImm(getITMaskEncoding()); 8856 break; 8857 } 8858 case ARM::t2LSLrr: 8859 case ARM::t2LSRrr: 8860 case ARM::t2ASRrr: 8861 case ARM::t2SBCrr: 8862 case ARM::t2RORrr: 8863 case ARM::t2BICrr: 8864 { 8865 // Assemblers should use the narrow encodings of these instructions when permissible. 8866 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8867 isARMLowRegister(Inst.getOperand(2).getReg())) && 8868 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8869 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8870 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8871 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8872 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8873 ".w"))) { 8874 unsigned NewOpc; 8875 switch (Inst.getOpcode()) { 8876 default: llvm_unreachable("unexpected opcode"); 8877 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8878 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8879 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8880 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8881 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8882 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8883 } 8884 MCInst TmpInst; 8885 TmpInst.setOpcode(NewOpc); 8886 TmpInst.addOperand(Inst.getOperand(0)); 8887 TmpInst.addOperand(Inst.getOperand(5)); 8888 TmpInst.addOperand(Inst.getOperand(1)); 8889 TmpInst.addOperand(Inst.getOperand(2)); 8890 TmpInst.addOperand(Inst.getOperand(3)); 8891 TmpInst.addOperand(Inst.getOperand(4)); 8892 Inst = TmpInst; 8893 return true; 8894 } 8895 return false; 8896 } 8897 case ARM::t2ANDrr: 8898 case ARM::t2EORrr: 8899 case ARM::t2ADCrr: 8900 case ARM::t2ORRrr: 8901 { 8902 // Assemblers should use the narrow encodings of these instructions when permissible. 8903 // These instructions are special in that they are commutable, so shorter encodings 8904 // are available more often. 8905 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8906 isARMLowRegister(Inst.getOperand(2).getReg())) && 8907 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8908 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8909 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8910 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8911 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8912 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8913 ".w"))) { 8914 unsigned NewOpc; 8915 switch (Inst.getOpcode()) { 8916 default: llvm_unreachable("unexpected opcode"); 8917 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8918 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8919 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8920 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8921 } 8922 MCInst TmpInst; 8923 TmpInst.setOpcode(NewOpc); 8924 TmpInst.addOperand(Inst.getOperand(0)); 8925 TmpInst.addOperand(Inst.getOperand(5)); 8926 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8927 TmpInst.addOperand(Inst.getOperand(1)); 8928 TmpInst.addOperand(Inst.getOperand(2)); 8929 } else { 8930 TmpInst.addOperand(Inst.getOperand(2)); 8931 TmpInst.addOperand(Inst.getOperand(1)); 8932 } 8933 TmpInst.addOperand(Inst.getOperand(3)); 8934 TmpInst.addOperand(Inst.getOperand(4)); 8935 Inst = TmpInst; 8936 return true; 8937 } 8938 return false; 8939 } 8940 } 8941 return false; 8942 } 8943 8944 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8945 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8946 // suffix depending on whether they're in an IT block or not. 8947 unsigned Opc = Inst.getOpcode(); 8948 const MCInstrDesc &MCID = MII.get(Opc); 8949 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8950 assert(MCID.hasOptionalDef() && 8951 "optionally flag setting instruction missing optional def operand"); 8952 assert(MCID.NumOperands == Inst.getNumOperands() && 8953 "operand count mismatch!"); 8954 // Find the optional-def operand (cc_out). 8955 unsigned OpNo; 8956 for (OpNo = 0; 8957 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8958 ++OpNo) 8959 ; 8960 // If we're parsing Thumb1, reject it completely. 8961 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8962 return Match_RequiresFlagSetting; 8963 // If we're parsing Thumb2, which form is legal depends on whether we're 8964 // in an IT block. 8965 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8966 !inITBlock()) 8967 return Match_RequiresITBlock; 8968 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8969 inITBlock()) 8970 return Match_RequiresNotITBlock; 8971 // LSL with zero immediate is not allowed in an IT block 8972 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 8973 return Match_RequiresNotITBlock; 8974 } else if (isThumbOne()) { 8975 // Some high-register supporting Thumb1 encodings only allow both registers 8976 // to be from r0-r7 when in Thumb2. 8977 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8978 isARMLowRegister(Inst.getOperand(1).getReg()) && 8979 isARMLowRegister(Inst.getOperand(2).getReg())) 8980 return Match_RequiresThumb2; 8981 // Others only require ARMv6 or later. 8982 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8983 isARMLowRegister(Inst.getOperand(0).getReg()) && 8984 isARMLowRegister(Inst.getOperand(1).getReg())) 8985 return Match_RequiresV6; 8986 } 8987 8988 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 8989 // than the loop below can handle, so it uses the GPRnopc register class and 8990 // we do SP handling here. 8991 if (Opc == ARM::t2MOVr && !hasV8Ops()) 8992 { 8993 // SP as both source and destination is not allowed 8994 if (Inst.getOperand(0).getReg() == ARM::SP && 8995 Inst.getOperand(1).getReg() == ARM::SP) 8996 return Match_RequiresV8; 8997 // When flags-setting SP as either source or destination is not allowed 8998 if (Inst.getOperand(4).getReg() == ARM::CPSR && 8999 (Inst.getOperand(0).getReg() == ARM::SP || 9000 Inst.getOperand(1).getReg() == ARM::SP)) 9001 return Match_RequiresV8; 9002 } 9003 9004 for (unsigned I = 0; I < MCID.NumOperands; ++I) 9005 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 9006 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 9007 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 9008 return Match_RequiresV8; 9009 else if (Inst.getOperand(I).getReg() == ARM::PC) 9010 return Match_InvalidOperand; 9011 } 9012 9013 return Match_Success; 9014 } 9015 9016 namespace llvm { 9017 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 9018 return true; // In an assembly source, no need to second-guess 9019 } 9020 } 9021 9022 // Returns true if Inst is unpredictable if it is in and IT block, but is not 9023 // the last instruction in the block. 9024 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 9025 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9026 9027 // All branch & call instructions terminate IT blocks. 9028 if (MCID.isTerminator() || MCID.isCall() || MCID.isReturn() || 9029 MCID.isBranch() || MCID.isIndirectBranch()) 9030 return true; 9031 9032 // Any arithmetic instruction which writes to the PC also terminates the IT 9033 // block. 9034 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 9035 MCOperand &Op = Inst.getOperand(OpIdx); 9036 if (Op.isReg() && Op.getReg() == ARM::PC) 9037 return true; 9038 } 9039 9040 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 9041 return true; 9042 9043 // Instructions with variable operand lists, which write to the variable 9044 // operands. We only care about Thumb instructions here, as ARM instructions 9045 // obviously can't be in an IT block. 9046 switch (Inst.getOpcode()) { 9047 case ARM::tLDMIA: 9048 case ARM::t2LDMIA: 9049 case ARM::t2LDMIA_UPD: 9050 case ARM::t2LDMDB: 9051 case ARM::t2LDMDB_UPD: 9052 if (listContainsReg(Inst, 3, ARM::PC)) 9053 return true; 9054 break; 9055 case ARM::tPOP: 9056 if (listContainsReg(Inst, 2, ARM::PC)) 9057 return true; 9058 break; 9059 } 9060 9061 return false; 9062 } 9063 9064 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9065 uint64_t &ErrorInfo, 9066 bool MatchingInlineAsm, 9067 bool &EmitInITBlock, 9068 MCStreamer &Out) { 9069 // If we can't use an implicit IT block here, just match as normal. 9070 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9071 return MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9072 9073 // Try to match the instruction in an extension of the current IT block (if 9074 // there is one). 9075 if (inImplicitITBlock()) { 9076 extendImplicitITBlock(ITState.Cond); 9077 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9078 Match_Success) { 9079 // The match succeded, but we still have to check that the instruction is 9080 // valid in this implicit IT block. 9081 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9082 if (MCID.isPredicable()) { 9083 ARMCC::CondCodes InstCond = 9084 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9085 .getImm(); 9086 ARMCC::CondCodes ITCond = currentITCond(); 9087 if (InstCond == ITCond) { 9088 EmitInITBlock = true; 9089 return Match_Success; 9090 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9091 invertCurrentITCondition(); 9092 EmitInITBlock = true; 9093 return Match_Success; 9094 } 9095 } 9096 } 9097 rewindImplicitITPosition(); 9098 } 9099 9100 // Finish the current IT block, and try to match outside any IT block. 9101 flushPendingInstructions(Out); 9102 unsigned PlainMatchResult = 9103 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9104 if (PlainMatchResult == Match_Success) { 9105 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9106 if (MCID.isPredicable()) { 9107 ARMCC::CondCodes InstCond = 9108 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9109 .getImm(); 9110 // Some forms of the branch instruction have their own condition code 9111 // fields, so can be conditionally executed without an IT block. 9112 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9113 EmitInITBlock = false; 9114 return Match_Success; 9115 } 9116 if (InstCond == ARMCC::AL) { 9117 EmitInITBlock = false; 9118 return Match_Success; 9119 } 9120 } else { 9121 EmitInITBlock = false; 9122 return Match_Success; 9123 } 9124 } 9125 9126 // Try to match in a new IT block. The matcher doesn't check the actual 9127 // condition, so we create an IT block with a dummy condition, and fix it up 9128 // once we know the actual condition. 9129 startImplicitITBlock(); 9130 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9131 Match_Success) { 9132 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9133 if (MCID.isPredicable()) { 9134 ITState.Cond = 9135 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9136 .getImm(); 9137 EmitInITBlock = true; 9138 return Match_Success; 9139 } 9140 } 9141 discardImplicitITBlock(); 9142 9143 // If none of these succeed, return the error we got when trying to match 9144 // outside any IT blocks. 9145 EmitInITBlock = false; 9146 return PlainMatchResult; 9147 } 9148 9149 static const char *getSubtargetFeatureName(uint64_t Val); 9150 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9151 OperandVector &Operands, 9152 MCStreamer &Out, uint64_t &ErrorInfo, 9153 bool MatchingInlineAsm) { 9154 MCInst Inst; 9155 unsigned MatchResult; 9156 bool PendConditionalInstruction = false; 9157 9158 MatchResult = MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm, 9159 PendConditionalInstruction, Out); 9160 9161 switch (MatchResult) { 9162 case Match_Success: 9163 // Context sensitive operand constraints aren't handled by the matcher, 9164 // so check them here. 9165 if (validateInstruction(Inst, Operands)) { 9166 // Still progress the IT block, otherwise one wrong condition causes 9167 // nasty cascading errors. 9168 forwardITPosition(); 9169 return true; 9170 } 9171 9172 { // processInstruction() updates inITBlock state, we need to save it away 9173 bool wasInITBlock = inITBlock(); 9174 9175 // Some instructions need post-processing to, for example, tweak which 9176 // encoding is selected. Loop on it while changes happen so the 9177 // individual transformations can chain off each other. E.g., 9178 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9179 while (processInstruction(Inst, Operands, Out)) 9180 ; 9181 9182 // Only after the instruction is fully processed, we can validate it 9183 if (wasInITBlock && hasV8Ops() && isThumb() && 9184 !isV8EligibleForIT(&Inst)) { 9185 Warning(IDLoc, "deprecated instruction in IT block"); 9186 } 9187 } 9188 9189 // Only move forward at the very end so that everything in validate 9190 // and process gets a consistent answer about whether we're in an IT 9191 // block. 9192 forwardITPosition(); 9193 9194 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9195 // doesn't actually encode. 9196 if (Inst.getOpcode() == ARM::ITasm) 9197 return false; 9198 9199 Inst.setLoc(IDLoc); 9200 if (PendConditionalInstruction) { 9201 PendingConditionalInsts.push_back(Inst); 9202 if (isITBlockFull() || isITBlockTerminator(Inst)) 9203 flushPendingInstructions(Out); 9204 } else { 9205 Out.EmitInstruction(Inst, getSTI()); 9206 } 9207 return false; 9208 case Match_MissingFeature: { 9209 assert(ErrorInfo && "Unknown missing feature!"); 9210 // Special case the error message for the very common case where only 9211 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 9212 std::string Msg = "instruction requires:"; 9213 uint64_t Mask = 1; 9214 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 9215 if (ErrorInfo & Mask) { 9216 Msg += " "; 9217 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 9218 } 9219 Mask <<= 1; 9220 } 9221 return Error(IDLoc, Msg); 9222 } 9223 case Match_InvalidOperand: { 9224 SMLoc ErrorLoc = IDLoc; 9225 if (ErrorInfo != ~0ULL) { 9226 if (ErrorInfo >= Operands.size()) 9227 return Error(IDLoc, "too few operands for instruction"); 9228 9229 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9230 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9231 } 9232 9233 return Error(ErrorLoc, "invalid operand for instruction"); 9234 } 9235 case Match_MnemonicFail: 9236 return Error(IDLoc, "invalid instruction", 9237 ((ARMOperand &)*Operands[0]).getLocRange()); 9238 case Match_RequiresNotITBlock: 9239 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 9240 case Match_RequiresITBlock: 9241 return Error(IDLoc, "instruction only valid inside IT block"); 9242 case Match_RequiresV6: 9243 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 9244 case Match_RequiresThumb2: 9245 return Error(IDLoc, "instruction variant requires Thumb2"); 9246 case Match_RequiresV8: 9247 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 9248 case Match_RequiresFlagSetting: 9249 return Error(IDLoc, "no flag-preserving variant of this instruction available"); 9250 case Match_ImmRange0_15: { 9251 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9252 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9253 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 9254 } 9255 case Match_ImmRange0_239: { 9256 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9257 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9258 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 9259 } 9260 case Match_AlignedMemoryRequiresNone: 9261 case Match_DupAlignedMemoryRequiresNone: 9262 case Match_AlignedMemoryRequires16: 9263 case Match_DupAlignedMemoryRequires16: 9264 case Match_AlignedMemoryRequires32: 9265 case Match_DupAlignedMemoryRequires32: 9266 case Match_AlignedMemoryRequires64: 9267 case Match_DupAlignedMemoryRequires64: 9268 case Match_AlignedMemoryRequires64or128: 9269 case Match_DupAlignedMemoryRequires64or128: 9270 case Match_AlignedMemoryRequires64or128or256: 9271 { 9272 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 9273 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9274 switch (MatchResult) { 9275 default: 9276 llvm_unreachable("Missing Match_Aligned type"); 9277 case Match_AlignedMemoryRequiresNone: 9278 case Match_DupAlignedMemoryRequiresNone: 9279 return Error(ErrorLoc, "alignment must be omitted"); 9280 case Match_AlignedMemoryRequires16: 9281 case Match_DupAlignedMemoryRequires16: 9282 return Error(ErrorLoc, "alignment must be 16 or omitted"); 9283 case Match_AlignedMemoryRequires32: 9284 case Match_DupAlignedMemoryRequires32: 9285 return Error(ErrorLoc, "alignment must be 32 or omitted"); 9286 case Match_AlignedMemoryRequires64: 9287 case Match_DupAlignedMemoryRequires64: 9288 return Error(ErrorLoc, "alignment must be 64 or omitted"); 9289 case Match_AlignedMemoryRequires64or128: 9290 case Match_DupAlignedMemoryRequires64or128: 9291 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 9292 case Match_AlignedMemoryRequires64or128or256: 9293 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 9294 } 9295 } 9296 } 9297 9298 llvm_unreachable("Implement any new match types added!"); 9299 } 9300 9301 /// parseDirective parses the arm specific directives 9302 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9303 const MCObjectFileInfo::Environment Format = 9304 getContext().getObjectFileInfo()->getObjectFileType(); 9305 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9306 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9307 9308 StringRef IDVal = DirectiveID.getIdentifier(); 9309 if (IDVal == ".word") 9310 parseLiteralValues(4, DirectiveID.getLoc()); 9311 else if (IDVal == ".short" || IDVal == ".hword") 9312 parseLiteralValues(2, DirectiveID.getLoc()); 9313 else if (IDVal == ".thumb") 9314 parseDirectiveThumb(DirectiveID.getLoc()); 9315 else if (IDVal == ".arm") 9316 parseDirectiveARM(DirectiveID.getLoc()); 9317 else if (IDVal == ".thumb_func") 9318 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9319 else if (IDVal == ".code") 9320 parseDirectiveCode(DirectiveID.getLoc()); 9321 else if (IDVal == ".syntax") 9322 parseDirectiveSyntax(DirectiveID.getLoc()); 9323 else if (IDVal == ".unreq") 9324 parseDirectiveUnreq(DirectiveID.getLoc()); 9325 else if (IDVal == ".fnend") 9326 parseDirectiveFnEnd(DirectiveID.getLoc()); 9327 else if (IDVal == ".cantunwind") 9328 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9329 else if (IDVal == ".personality") 9330 parseDirectivePersonality(DirectiveID.getLoc()); 9331 else if (IDVal == ".handlerdata") 9332 parseDirectiveHandlerData(DirectiveID.getLoc()); 9333 else if (IDVal == ".setfp") 9334 parseDirectiveSetFP(DirectiveID.getLoc()); 9335 else if (IDVal == ".pad") 9336 parseDirectivePad(DirectiveID.getLoc()); 9337 else if (IDVal == ".save") 9338 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9339 else if (IDVal == ".vsave") 9340 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9341 else if (IDVal == ".ltorg" || IDVal == ".pool") 9342 parseDirectiveLtorg(DirectiveID.getLoc()); 9343 else if (IDVal == ".even") 9344 parseDirectiveEven(DirectiveID.getLoc()); 9345 else if (IDVal == ".personalityindex") 9346 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9347 else if (IDVal == ".unwind_raw") 9348 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9349 else if (IDVal == ".movsp") 9350 parseDirectiveMovSP(DirectiveID.getLoc()); 9351 else if (IDVal == ".arch_extension") 9352 parseDirectiveArchExtension(DirectiveID.getLoc()); 9353 else if (IDVal == ".align") 9354 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9355 else if (IDVal == ".thumb_set") 9356 parseDirectiveThumbSet(DirectiveID.getLoc()); 9357 else if (!IsMachO && !IsCOFF) { 9358 if (IDVal == ".arch") 9359 parseDirectiveArch(DirectiveID.getLoc()); 9360 else if (IDVal == ".cpu") 9361 parseDirectiveCPU(DirectiveID.getLoc()); 9362 else if (IDVal == ".eabi_attribute") 9363 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9364 else if (IDVal == ".fpu") 9365 parseDirectiveFPU(DirectiveID.getLoc()); 9366 else if (IDVal == ".fnstart") 9367 parseDirectiveFnStart(DirectiveID.getLoc()); 9368 else if (IDVal == ".inst") 9369 parseDirectiveInst(DirectiveID.getLoc()); 9370 else if (IDVal == ".inst.n") 9371 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9372 else if (IDVal == ".inst.w") 9373 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9374 else if (IDVal == ".object_arch") 9375 parseDirectiveObjectArch(DirectiveID.getLoc()); 9376 else if (IDVal == ".tlsdescseq") 9377 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9378 else 9379 return true; 9380 } else 9381 return true; 9382 return false; 9383 } 9384 9385 /// parseLiteralValues 9386 /// ::= .hword expression [, expression]* 9387 /// ::= .short expression [, expression]* 9388 /// ::= .word expression [, expression]* 9389 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9390 auto parseOne = [&]() -> bool { 9391 const MCExpr *Value; 9392 if (getParser().parseExpression(Value)) 9393 return true; 9394 getParser().getStreamer().EmitValue(Value, Size, L); 9395 return false; 9396 }; 9397 return (parseMany(parseOne)); 9398 } 9399 9400 /// parseDirectiveThumb 9401 /// ::= .thumb 9402 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9403 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9404 check(!hasThumb(), L, "target does not support Thumb mode")) 9405 return true; 9406 9407 if (!isThumb()) 9408 SwitchMode(); 9409 9410 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9411 return false; 9412 } 9413 9414 /// parseDirectiveARM 9415 /// ::= .arm 9416 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9417 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9418 check(!hasARM(), L, "target does not support ARM mode")) 9419 return true; 9420 9421 if (isThumb()) 9422 SwitchMode(); 9423 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9424 return false; 9425 } 9426 9427 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9428 // We need to flush the current implicit IT block on a label, because it is 9429 // not legal to branch into an IT block. 9430 flushPendingInstructions(getStreamer()); 9431 if (NextSymbolIsThumb) { 9432 getParser().getStreamer().EmitThumbFunc(Symbol); 9433 NextSymbolIsThumb = false; 9434 } 9435 } 9436 9437 /// parseDirectiveThumbFunc 9438 /// ::= .thumbfunc symbol_name 9439 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9440 MCAsmParser &Parser = getParser(); 9441 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9442 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9443 9444 // Darwin asm has (optionally) function name after .thumb_func direction 9445 // ELF doesn't 9446 9447 if (IsMachO) { 9448 if (Parser.getTok().is(AsmToken::Identifier) || 9449 Parser.getTok().is(AsmToken::String)) { 9450 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9451 Parser.getTok().getIdentifier()); 9452 getParser().getStreamer().EmitThumbFunc(Func); 9453 Parser.Lex(); 9454 if (parseToken(AsmToken::EndOfStatement, 9455 "unexpected token in '.thumb_func' directive")) 9456 return true; 9457 return false; 9458 } 9459 } 9460 9461 if (parseToken(AsmToken::EndOfStatement, 9462 "unexpected token in '.thumb_func' directive")) 9463 return true; 9464 9465 NextSymbolIsThumb = true; 9466 return false; 9467 } 9468 9469 /// parseDirectiveSyntax 9470 /// ::= .syntax unified | divided 9471 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9472 MCAsmParser &Parser = getParser(); 9473 const AsmToken &Tok = Parser.getTok(); 9474 if (Tok.isNot(AsmToken::Identifier)) { 9475 Error(L, "unexpected token in .syntax directive"); 9476 return false; 9477 } 9478 9479 StringRef Mode = Tok.getString(); 9480 Parser.Lex(); 9481 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9482 "'.syntax divided' arm assembly not supported") || 9483 check(Mode != "unified" && Mode != "UNIFIED", L, 9484 "unrecognized syntax mode in .syntax directive") || 9485 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9486 return true; 9487 9488 // TODO tell the MC streamer the mode 9489 // getParser().getStreamer().Emit???(); 9490 return false; 9491 } 9492 9493 /// parseDirectiveCode 9494 /// ::= .code 16 | 32 9495 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9496 MCAsmParser &Parser = getParser(); 9497 const AsmToken &Tok = Parser.getTok(); 9498 if (Tok.isNot(AsmToken::Integer)) 9499 return Error(L, "unexpected token in .code directive"); 9500 int64_t Val = Parser.getTok().getIntVal(); 9501 if (Val != 16 && Val != 32) { 9502 Error(L, "invalid operand to .code directive"); 9503 return false; 9504 } 9505 Parser.Lex(); 9506 9507 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9508 return true; 9509 9510 if (Val == 16) { 9511 if (!hasThumb()) 9512 return Error(L, "target does not support Thumb mode"); 9513 9514 if (!isThumb()) 9515 SwitchMode(); 9516 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9517 } else { 9518 if (!hasARM()) 9519 return Error(L, "target does not support ARM mode"); 9520 9521 if (isThumb()) 9522 SwitchMode(); 9523 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9524 } 9525 9526 return false; 9527 } 9528 9529 /// parseDirectiveReq 9530 /// ::= name .req registername 9531 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9532 MCAsmParser &Parser = getParser(); 9533 Parser.Lex(); // Eat the '.req' token. 9534 unsigned Reg; 9535 SMLoc SRegLoc, ERegLoc; 9536 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9537 "register name expected") || 9538 parseToken(AsmToken::EndOfStatement, 9539 "unexpected input in .req directive.")) 9540 return true; 9541 9542 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9543 return Error(SRegLoc, 9544 "redefinition of '" + Name + "' does not match original."); 9545 9546 return false; 9547 } 9548 9549 /// parseDirectiveUneq 9550 /// ::= .unreq registername 9551 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9552 MCAsmParser &Parser = getParser(); 9553 if (Parser.getTok().isNot(AsmToken::Identifier)) 9554 return Error(L, "unexpected input in .unreq directive."); 9555 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9556 Parser.Lex(); // Eat the identifier. 9557 if (parseToken(AsmToken::EndOfStatement, 9558 "unexpected input in '.unreq' directive")) 9559 return true; 9560 return false; 9561 } 9562 9563 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9564 // before, if supported by the new target, or emit mapping symbols for the mode 9565 // switch. 9566 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9567 if (WasThumb != isThumb()) { 9568 if (WasThumb && hasThumb()) { 9569 // Stay in Thumb mode 9570 SwitchMode(); 9571 } else if (!WasThumb && hasARM()) { 9572 // Stay in ARM mode 9573 SwitchMode(); 9574 } else { 9575 // Mode switch forced, because the new arch doesn't support the old mode. 9576 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9577 : MCAF_Code32); 9578 // Warn about the implcit mode switch. GAS does not switch modes here, 9579 // but instead stays in the old mode, reporting an error on any following 9580 // instructions as the mode does not exist on the target. 9581 Warning(Loc, Twine("new target does not support ") + 9582 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9583 (!WasThumb ? "thumb" : "arm") + " mode"); 9584 } 9585 } 9586 } 9587 9588 /// parseDirectiveArch 9589 /// ::= .arch token 9590 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9591 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9592 unsigned ID = ARM::parseArch(Arch); 9593 9594 if (ID == ARM::AK_INVALID) 9595 return Error(L, "Unknown arch name"); 9596 9597 bool WasThumb = isThumb(); 9598 Triple T; 9599 MCSubtargetInfo &STI = copySTI(); 9600 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9601 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9602 FixModeAfterArchChange(WasThumb, L); 9603 9604 getTargetStreamer().emitArch(ID); 9605 return false; 9606 } 9607 9608 /// parseDirectiveEabiAttr 9609 /// ::= .eabi_attribute int, int [, "str"] 9610 /// ::= .eabi_attribute Tag_name, int [, "str"] 9611 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9612 MCAsmParser &Parser = getParser(); 9613 int64_t Tag; 9614 SMLoc TagLoc; 9615 TagLoc = Parser.getTok().getLoc(); 9616 if (Parser.getTok().is(AsmToken::Identifier)) { 9617 StringRef Name = Parser.getTok().getIdentifier(); 9618 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9619 if (Tag == -1) { 9620 Error(TagLoc, "attribute name not recognised: " + Name); 9621 return false; 9622 } 9623 Parser.Lex(); 9624 } else { 9625 const MCExpr *AttrExpr; 9626 9627 TagLoc = Parser.getTok().getLoc(); 9628 if (Parser.parseExpression(AttrExpr)) 9629 return true; 9630 9631 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9632 if (check(!CE, TagLoc, "expected numeric constant")) 9633 return true; 9634 9635 Tag = CE->getValue(); 9636 } 9637 9638 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9639 return true; 9640 9641 StringRef StringValue = ""; 9642 bool IsStringValue = false; 9643 9644 int64_t IntegerValue = 0; 9645 bool IsIntegerValue = false; 9646 9647 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9648 IsStringValue = true; 9649 else if (Tag == ARMBuildAttrs::compatibility) { 9650 IsStringValue = true; 9651 IsIntegerValue = true; 9652 } else if (Tag < 32 || Tag % 2 == 0) 9653 IsIntegerValue = true; 9654 else if (Tag % 2 == 1) 9655 IsStringValue = true; 9656 else 9657 llvm_unreachable("invalid tag type"); 9658 9659 if (IsIntegerValue) { 9660 const MCExpr *ValueExpr; 9661 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9662 if (Parser.parseExpression(ValueExpr)) 9663 return true; 9664 9665 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9666 if (!CE) 9667 return Error(ValueExprLoc, "expected numeric constant"); 9668 IntegerValue = CE->getValue(); 9669 } 9670 9671 if (Tag == ARMBuildAttrs::compatibility) { 9672 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9673 return true; 9674 } 9675 9676 if (IsStringValue) { 9677 if (Parser.getTok().isNot(AsmToken::String)) 9678 return Error(Parser.getTok().getLoc(), "bad string constant"); 9679 9680 StringValue = Parser.getTok().getStringContents(); 9681 Parser.Lex(); 9682 } 9683 9684 if (Parser.parseToken(AsmToken::EndOfStatement, 9685 "unexpected token in '.eabi_attribute' directive")) 9686 return true; 9687 9688 if (IsIntegerValue && IsStringValue) { 9689 assert(Tag == ARMBuildAttrs::compatibility); 9690 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9691 } else if (IsIntegerValue) 9692 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9693 else if (IsStringValue) 9694 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9695 return false; 9696 } 9697 9698 /// parseDirectiveCPU 9699 /// ::= .cpu str 9700 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9701 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9702 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9703 9704 // FIXME: This is using table-gen data, but should be moved to 9705 // ARMTargetParser once that is table-gen'd. 9706 if (!getSTI().isCPUStringValid(CPU)) 9707 return Error(L, "Unknown CPU name"); 9708 9709 bool WasThumb = isThumb(); 9710 MCSubtargetInfo &STI = copySTI(); 9711 STI.setDefaultFeatures(CPU, ""); 9712 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9713 FixModeAfterArchChange(WasThumb, L); 9714 9715 return false; 9716 } 9717 /// parseDirectiveFPU 9718 /// ::= .fpu str 9719 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9720 SMLoc FPUNameLoc = getTok().getLoc(); 9721 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9722 9723 unsigned ID = ARM::parseFPU(FPU); 9724 std::vector<StringRef> Features; 9725 if (!ARM::getFPUFeatures(ID, Features)) 9726 return Error(FPUNameLoc, "Unknown FPU name"); 9727 9728 MCSubtargetInfo &STI = copySTI(); 9729 for (auto Feature : Features) 9730 STI.ApplyFeatureFlag(Feature); 9731 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9732 9733 getTargetStreamer().emitFPU(ID); 9734 return false; 9735 } 9736 9737 /// parseDirectiveFnStart 9738 /// ::= .fnstart 9739 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9740 if (parseToken(AsmToken::EndOfStatement, 9741 "unexpected token in '.fnstart' directive")) 9742 return true; 9743 9744 if (UC.hasFnStart()) { 9745 Error(L, ".fnstart starts before the end of previous one"); 9746 UC.emitFnStartLocNotes(); 9747 return true; 9748 } 9749 9750 // Reset the unwind directives parser state 9751 UC.reset(); 9752 9753 getTargetStreamer().emitFnStart(); 9754 9755 UC.recordFnStart(L); 9756 return false; 9757 } 9758 9759 /// parseDirectiveFnEnd 9760 /// ::= .fnend 9761 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9762 if (parseToken(AsmToken::EndOfStatement, 9763 "unexpected token in '.fnend' directive")) 9764 return true; 9765 // Check the ordering of unwind directives 9766 if (!UC.hasFnStart()) 9767 return Error(L, ".fnstart must precede .fnend directive"); 9768 9769 // Reset the unwind directives parser state 9770 getTargetStreamer().emitFnEnd(); 9771 9772 UC.reset(); 9773 return false; 9774 } 9775 9776 /// parseDirectiveCantUnwind 9777 /// ::= .cantunwind 9778 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9779 if (parseToken(AsmToken::EndOfStatement, 9780 "unexpected token in '.cantunwind' directive")) 9781 return true; 9782 9783 UC.recordCantUnwind(L); 9784 // Check the ordering of unwind directives 9785 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9786 return true; 9787 9788 if (UC.hasHandlerData()) { 9789 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9790 UC.emitHandlerDataLocNotes(); 9791 return true; 9792 } 9793 if (UC.hasPersonality()) { 9794 Error(L, ".cantunwind can't be used with .personality directive"); 9795 UC.emitPersonalityLocNotes(); 9796 return true; 9797 } 9798 9799 getTargetStreamer().emitCantUnwind(); 9800 return false; 9801 } 9802 9803 /// parseDirectivePersonality 9804 /// ::= .personality name 9805 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9806 MCAsmParser &Parser = getParser(); 9807 bool HasExistingPersonality = UC.hasPersonality(); 9808 9809 // Parse the name of the personality routine 9810 if (Parser.getTok().isNot(AsmToken::Identifier)) 9811 return Error(L, "unexpected input in .personality directive."); 9812 StringRef Name(Parser.getTok().getIdentifier()); 9813 Parser.Lex(); 9814 9815 if (parseToken(AsmToken::EndOfStatement, 9816 "unexpected token in '.personality' directive")) 9817 return true; 9818 9819 UC.recordPersonality(L); 9820 9821 // Check the ordering of unwind directives 9822 if (!UC.hasFnStart()) 9823 return Error(L, ".fnstart must precede .personality directive"); 9824 if (UC.cantUnwind()) { 9825 Error(L, ".personality can't be used with .cantunwind directive"); 9826 UC.emitCantUnwindLocNotes(); 9827 return true; 9828 } 9829 if (UC.hasHandlerData()) { 9830 Error(L, ".personality must precede .handlerdata directive"); 9831 UC.emitHandlerDataLocNotes(); 9832 return true; 9833 } 9834 if (HasExistingPersonality) { 9835 Error(L, "multiple personality directives"); 9836 UC.emitPersonalityLocNotes(); 9837 return true; 9838 } 9839 9840 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9841 getTargetStreamer().emitPersonality(PR); 9842 return false; 9843 } 9844 9845 /// parseDirectiveHandlerData 9846 /// ::= .handlerdata 9847 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9848 if (parseToken(AsmToken::EndOfStatement, 9849 "unexpected token in '.handlerdata' directive")) 9850 return true; 9851 9852 UC.recordHandlerData(L); 9853 // Check the ordering of unwind directives 9854 if (!UC.hasFnStart()) 9855 return Error(L, ".fnstart must precede .personality directive"); 9856 if (UC.cantUnwind()) { 9857 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9858 UC.emitCantUnwindLocNotes(); 9859 return true; 9860 } 9861 9862 getTargetStreamer().emitHandlerData(); 9863 return false; 9864 } 9865 9866 /// parseDirectiveSetFP 9867 /// ::= .setfp fpreg, spreg [, offset] 9868 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9869 MCAsmParser &Parser = getParser(); 9870 // Check the ordering of unwind directives 9871 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9872 check(UC.hasHandlerData(), L, 9873 ".setfp must precede .handlerdata directive")) 9874 return true; 9875 9876 // Parse fpreg 9877 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9878 int FPReg = tryParseRegister(); 9879 9880 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9881 Parser.parseToken(AsmToken::Comma, "comma expected")) 9882 return true; 9883 9884 // Parse spreg 9885 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9886 int SPReg = tryParseRegister(); 9887 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9888 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9889 "register should be either $sp or the latest fp register")) 9890 return true; 9891 9892 // Update the frame pointer register 9893 UC.saveFPReg(FPReg); 9894 9895 // Parse offset 9896 int64_t Offset = 0; 9897 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9898 if (Parser.getTok().isNot(AsmToken::Hash) && 9899 Parser.getTok().isNot(AsmToken::Dollar)) 9900 return Error(Parser.getTok().getLoc(), "'#' expected"); 9901 Parser.Lex(); // skip hash token. 9902 9903 const MCExpr *OffsetExpr; 9904 SMLoc ExLoc = Parser.getTok().getLoc(); 9905 SMLoc EndLoc; 9906 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9907 return Error(ExLoc, "malformed setfp offset"); 9908 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9909 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9910 return true; 9911 Offset = CE->getValue(); 9912 } 9913 9914 if (Parser.parseToken(AsmToken::EndOfStatement)) 9915 return true; 9916 9917 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9918 static_cast<unsigned>(SPReg), Offset); 9919 return false; 9920 } 9921 9922 /// parseDirective 9923 /// ::= .pad offset 9924 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9925 MCAsmParser &Parser = getParser(); 9926 // Check the ordering of unwind directives 9927 if (!UC.hasFnStart()) 9928 return Error(L, ".fnstart must precede .pad directive"); 9929 if (UC.hasHandlerData()) 9930 return Error(L, ".pad must precede .handlerdata directive"); 9931 9932 // Parse the offset 9933 if (Parser.getTok().isNot(AsmToken::Hash) && 9934 Parser.getTok().isNot(AsmToken::Dollar)) 9935 return Error(Parser.getTok().getLoc(), "'#' expected"); 9936 Parser.Lex(); // skip hash token. 9937 9938 const MCExpr *OffsetExpr; 9939 SMLoc ExLoc = Parser.getTok().getLoc(); 9940 SMLoc EndLoc; 9941 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9942 return Error(ExLoc, "malformed pad offset"); 9943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9944 if (!CE) 9945 return Error(ExLoc, "pad offset must be an immediate"); 9946 9947 if (parseToken(AsmToken::EndOfStatement, 9948 "unexpected token in '.pad' directive")) 9949 return true; 9950 9951 getTargetStreamer().emitPad(CE->getValue()); 9952 return false; 9953 } 9954 9955 /// parseDirectiveRegSave 9956 /// ::= .save { registers } 9957 /// ::= .vsave { registers } 9958 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9959 // Check the ordering of unwind directives 9960 if (!UC.hasFnStart()) 9961 return Error(L, ".fnstart must precede .save or .vsave directives"); 9962 if (UC.hasHandlerData()) 9963 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9964 9965 // RAII object to make sure parsed operands are deleted. 9966 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9967 9968 // Parse the register list 9969 if (parseRegisterList(Operands) || 9970 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9971 return true; 9972 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9973 if (!IsVector && !Op.isRegList()) 9974 return Error(L, ".save expects GPR registers"); 9975 if (IsVector && !Op.isDPRRegList()) 9976 return Error(L, ".vsave expects DPR registers"); 9977 9978 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9979 return false; 9980 } 9981 9982 /// parseDirectiveInst 9983 /// ::= .inst opcode [, ...] 9984 /// ::= .inst.n opcode [, ...] 9985 /// ::= .inst.w opcode [, ...] 9986 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9987 int Width = 4; 9988 9989 if (isThumb()) { 9990 switch (Suffix) { 9991 case 'n': 9992 Width = 2; 9993 break; 9994 case 'w': 9995 break; 9996 default: 9997 return Error(Loc, "cannot determine Thumb instruction size, " 9998 "use inst.n/inst.w instead"); 9999 } 10000 } else { 10001 if (Suffix) 10002 return Error(Loc, "width suffixes are invalid in ARM mode"); 10003 } 10004 10005 auto parseOne = [&]() -> bool { 10006 const MCExpr *Expr; 10007 if (getParser().parseExpression(Expr)) 10008 return true; 10009 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10010 if (!Value) { 10011 return Error(Loc, "expected constant expression"); 10012 } 10013 10014 switch (Width) { 10015 case 2: 10016 if (Value->getValue() > 0xffff) 10017 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 10018 break; 10019 case 4: 10020 if (Value->getValue() > 0xffffffff) 10021 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 10022 " operand is too big"); 10023 break; 10024 default: 10025 llvm_unreachable("only supported widths are 2 and 4"); 10026 } 10027 10028 getTargetStreamer().emitInst(Value->getValue(), Suffix); 10029 return false; 10030 }; 10031 10032 if (parseOptionalToken(AsmToken::EndOfStatement)) 10033 return Error(Loc, "expected expression following directive"); 10034 if (parseMany(parseOne)) 10035 return true; 10036 return false; 10037 } 10038 10039 /// parseDirectiveLtorg 10040 /// ::= .ltorg | .pool 10041 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10042 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10043 return true; 10044 getTargetStreamer().emitCurrentConstantPool(); 10045 return false; 10046 } 10047 10048 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10049 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10050 10051 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10052 return true; 10053 10054 if (!Section) { 10055 getStreamer().InitSections(false); 10056 Section = getStreamer().getCurrentSectionOnly(); 10057 } 10058 10059 assert(Section && "must have section to emit alignment"); 10060 if (Section->UseCodeAlign()) 10061 getStreamer().EmitCodeAlignment(2); 10062 else 10063 getStreamer().EmitValueToAlignment(2); 10064 10065 return false; 10066 } 10067 10068 /// parseDirectivePersonalityIndex 10069 /// ::= .personalityindex index 10070 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10071 MCAsmParser &Parser = getParser(); 10072 bool HasExistingPersonality = UC.hasPersonality(); 10073 10074 const MCExpr *IndexExpression; 10075 SMLoc IndexLoc = Parser.getTok().getLoc(); 10076 if (Parser.parseExpression(IndexExpression) || 10077 parseToken(AsmToken::EndOfStatement, 10078 "unexpected token in '.personalityindex' directive")) { 10079 return true; 10080 } 10081 10082 UC.recordPersonalityIndex(L); 10083 10084 if (!UC.hasFnStart()) { 10085 return Error(L, ".fnstart must precede .personalityindex directive"); 10086 } 10087 if (UC.cantUnwind()) { 10088 Error(L, ".personalityindex cannot be used with .cantunwind"); 10089 UC.emitCantUnwindLocNotes(); 10090 return true; 10091 } 10092 if (UC.hasHandlerData()) { 10093 Error(L, ".personalityindex must precede .handlerdata directive"); 10094 UC.emitHandlerDataLocNotes(); 10095 return true; 10096 } 10097 if (HasExistingPersonality) { 10098 Error(L, "multiple personality directives"); 10099 UC.emitPersonalityLocNotes(); 10100 return true; 10101 } 10102 10103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10104 if (!CE) 10105 return Error(IndexLoc, "index must be a constant number"); 10106 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10107 return Error(IndexLoc, 10108 "personality routine index should be in range [0-3]"); 10109 10110 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10111 return false; 10112 } 10113 10114 /// parseDirectiveUnwindRaw 10115 /// ::= .unwind_raw offset, opcode [, opcode...] 10116 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10117 MCAsmParser &Parser = getParser(); 10118 int64_t StackOffset; 10119 const MCExpr *OffsetExpr; 10120 SMLoc OffsetLoc = getLexer().getLoc(); 10121 10122 if (!UC.hasFnStart()) 10123 return Error(L, ".fnstart must precede .unwind_raw directives"); 10124 if (getParser().parseExpression(OffsetExpr)) 10125 return Error(OffsetLoc, "expected expression"); 10126 10127 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10128 if (!CE) 10129 return Error(OffsetLoc, "offset must be a constant"); 10130 10131 StackOffset = CE->getValue(); 10132 10133 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10134 return true; 10135 10136 SmallVector<uint8_t, 16> Opcodes; 10137 10138 auto parseOne = [&]() -> bool { 10139 const MCExpr *OE; 10140 SMLoc OpcodeLoc = getLexer().getLoc(); 10141 if (check(getLexer().is(AsmToken::EndOfStatement) || 10142 Parser.parseExpression(OE), 10143 OpcodeLoc, "expected opcode expression")) 10144 return true; 10145 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10146 if (!OC) 10147 return Error(OpcodeLoc, "opcode value must be a constant"); 10148 const int64_t Opcode = OC->getValue(); 10149 if (Opcode & ~0xff) 10150 return Error(OpcodeLoc, "invalid opcode"); 10151 Opcodes.push_back(uint8_t(Opcode)); 10152 return false; 10153 }; 10154 10155 // Must have at least 1 element 10156 SMLoc OpcodeLoc = getLexer().getLoc(); 10157 if (parseOptionalToken(AsmToken::EndOfStatement)) 10158 return Error(OpcodeLoc, "expected opcode expression"); 10159 if (parseMany(parseOne)) 10160 return true; 10161 10162 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10163 return false; 10164 } 10165 10166 /// parseDirectiveTLSDescSeq 10167 /// ::= .tlsdescseq tls-variable 10168 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10169 MCAsmParser &Parser = getParser(); 10170 10171 if (getLexer().isNot(AsmToken::Identifier)) 10172 return TokError("expected variable after '.tlsdescseq' directive"); 10173 10174 const MCSymbolRefExpr *SRE = 10175 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10176 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10177 Lex(); 10178 10179 if (parseToken(AsmToken::EndOfStatement, 10180 "unexpected token in '.tlsdescseq' directive")) 10181 return true; 10182 10183 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10184 return false; 10185 } 10186 10187 /// parseDirectiveMovSP 10188 /// ::= .movsp reg [, #offset] 10189 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10190 MCAsmParser &Parser = getParser(); 10191 if (!UC.hasFnStart()) 10192 return Error(L, ".fnstart must precede .movsp directives"); 10193 if (UC.getFPReg() != ARM::SP) 10194 return Error(L, "unexpected .movsp directive"); 10195 10196 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10197 int SPReg = tryParseRegister(); 10198 if (SPReg == -1) 10199 return Error(SPRegLoc, "register expected"); 10200 if (SPReg == ARM::SP || SPReg == ARM::PC) 10201 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10202 10203 int64_t Offset = 0; 10204 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10205 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10206 return true; 10207 10208 const MCExpr *OffsetExpr; 10209 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10210 10211 if (Parser.parseExpression(OffsetExpr)) 10212 return Error(OffsetLoc, "malformed offset expression"); 10213 10214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10215 if (!CE) 10216 return Error(OffsetLoc, "offset must be an immediate constant"); 10217 10218 Offset = CE->getValue(); 10219 } 10220 10221 if (parseToken(AsmToken::EndOfStatement, 10222 "unexpected token in '.movsp' directive")) 10223 return true; 10224 10225 getTargetStreamer().emitMovSP(SPReg, Offset); 10226 UC.saveFPReg(SPReg); 10227 10228 return false; 10229 } 10230 10231 /// parseDirectiveObjectArch 10232 /// ::= .object_arch name 10233 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10234 MCAsmParser &Parser = getParser(); 10235 if (getLexer().isNot(AsmToken::Identifier)) 10236 return Error(getLexer().getLoc(), "unexpected token"); 10237 10238 StringRef Arch = Parser.getTok().getString(); 10239 SMLoc ArchLoc = Parser.getTok().getLoc(); 10240 Lex(); 10241 10242 unsigned ID = ARM::parseArch(Arch); 10243 10244 if (ID == ARM::AK_INVALID) 10245 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10246 if (parseToken(AsmToken::EndOfStatement)) 10247 return true; 10248 10249 getTargetStreamer().emitObjectArch(ID); 10250 return false; 10251 } 10252 10253 /// parseDirectiveAlign 10254 /// ::= .align 10255 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10256 // NOTE: if this is not the end of the statement, fall back to the target 10257 // agnostic handling for this directive which will correctly handle this. 10258 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10259 // '.align' is target specifically handled to mean 2**2 byte alignment. 10260 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10261 assert(Section && "must have section to emit alignment"); 10262 if (Section->UseCodeAlign()) 10263 getStreamer().EmitCodeAlignment(4, 0); 10264 else 10265 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10266 return false; 10267 } 10268 return true; 10269 } 10270 10271 /// parseDirectiveThumbSet 10272 /// ::= .thumb_set name, value 10273 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10274 MCAsmParser &Parser = getParser(); 10275 10276 StringRef Name; 10277 if (check(Parser.parseIdentifier(Name), 10278 "expected identifier after '.thumb_set'") || 10279 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10280 return true; 10281 10282 MCSymbol *Sym; 10283 const MCExpr *Value; 10284 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10285 Parser, Sym, Value)) 10286 return true; 10287 10288 getTargetStreamer().emitThumbSet(Sym, Value); 10289 return false; 10290 } 10291 10292 /// Force static initialization. 10293 extern "C" void LLVMInitializeARMAsmParser() { 10294 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10295 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10296 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10297 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10298 } 10299 10300 #define GET_REGISTER_MATCHER 10301 #define GET_SUBTARGET_FEATURE_NAME 10302 #define GET_MATCHER_IMPLEMENTATION 10303 #include "ARMGenAsmMatcher.inc" 10304 10305 // FIXME: This structure should be moved inside ARMTargetParser 10306 // when we start to table-generate them, and we can use the ARM 10307 // flags below, that were generated by table-gen. 10308 static const struct { 10309 const unsigned Kind; 10310 const uint64_t ArchCheck; 10311 const FeatureBitset Features; 10312 } Extensions[] = { 10313 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10314 { ARM::AEK_CRYPTO, Feature_HasV8, 10315 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10316 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10317 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10318 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10319 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10320 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10321 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10322 // FIXME: Only available in A-class, isel not predicated 10323 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10324 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10325 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10326 // FIXME: Unsupported extensions. 10327 { ARM::AEK_OS, Feature_None, {} }, 10328 { ARM::AEK_IWMMXT, Feature_None, {} }, 10329 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10330 { ARM::AEK_MAVERICK, Feature_None, {} }, 10331 { ARM::AEK_XSCALE, Feature_None, {} }, 10332 }; 10333 10334 /// parseDirectiveArchExtension 10335 /// ::= .arch_extension [no]feature 10336 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10337 MCAsmParser &Parser = getParser(); 10338 10339 if (getLexer().isNot(AsmToken::Identifier)) 10340 return Error(getLexer().getLoc(), "expected architecture extension name"); 10341 10342 StringRef Name = Parser.getTok().getString(); 10343 SMLoc ExtLoc = Parser.getTok().getLoc(); 10344 Lex(); 10345 10346 if (parseToken(AsmToken::EndOfStatement, 10347 "unexpected token in '.arch_extension' directive")) 10348 return true; 10349 10350 bool EnableFeature = true; 10351 if (Name.startswith_lower("no")) { 10352 EnableFeature = false; 10353 Name = Name.substr(2); 10354 } 10355 unsigned FeatureKind = ARM::parseArchExt(Name); 10356 if (FeatureKind == ARM::AEK_INVALID) 10357 return Error(ExtLoc, "unknown architectural extension: " + Name); 10358 10359 for (const auto &Extension : Extensions) { 10360 if (Extension.Kind != FeatureKind) 10361 continue; 10362 10363 if (Extension.Features.none()) 10364 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10365 10366 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10367 return Error(ExtLoc, "architectural extension '" + Name + 10368 "' is not " 10369 "allowed for the current base architecture"); 10370 10371 MCSubtargetInfo &STI = copySTI(); 10372 FeatureBitset ToggleFeatures = EnableFeature 10373 ? (~STI.getFeatureBits() & Extension.Features) 10374 : ( STI.getFeatureBits() & Extension.Features); 10375 10376 uint64_t Features = 10377 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10378 setAvailableFeatures(Features); 10379 return false; 10380 } 10381 10382 return Error(ExtLoc, "unknown architectural extension: " + Name); 10383 } 10384 10385 // Define this matcher function after the auto-generated include so we 10386 // have the match class enum definitions. 10387 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10388 unsigned Kind) { 10389 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10390 // If the kind is a token for a literal immediate, check if our asm 10391 // operand matches. This is for InstAliases which have a fixed-value 10392 // immediate in the syntax. 10393 switch (Kind) { 10394 default: break; 10395 case MCK__35_0: 10396 if (Op.isImm()) 10397 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10398 if (CE->getValue() == 0) 10399 return Match_Success; 10400 break; 10401 case MCK_ModImm: 10402 if (Op.isImm()) { 10403 const MCExpr *SOExpr = Op.getImm(); 10404 int64_t Value; 10405 if (!SOExpr->evaluateAsAbsolute(Value)) 10406 return Match_Success; 10407 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10408 "expression value must be representable in 32 bits"); 10409 } 10410 break; 10411 case MCK_rGPR: 10412 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10413 return Match_Success; 10414 break; 10415 case MCK_GPRPair: 10416 if (Op.isReg() && 10417 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10418 return Match_Success; 10419 break; 10420 } 10421 return Match_InvalidOperand; 10422 } 10423