1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/MC/SubtargetFeature.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/MachineValueType.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <utility>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "armtti"
38 
39 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
40                                      const Function *Callee) const {
41   const TargetMachine &TM = getTLI()->getTargetMachine();
42   const FeatureBitset &CallerBits =
43       TM.getSubtargetImpl(*Caller)->getFeatureBits();
44   const FeatureBitset &CalleeBits =
45       TM.getSubtargetImpl(*Callee)->getFeatureBits();
46 
47   // To inline a callee, all features not in the whitelist must match exactly.
48   bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) ==
49                     (CalleeBits & ~InlineFeatureWhitelist);
50   // For features in the whitelist, the callee's features must be a subset of
51   // the callers'.
52   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) ==
53                      (CalleeBits & InlineFeatureWhitelist);
54   return MatchExact && MatchSubset;
55 }
56 
57 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
58   assert(Ty->isIntegerTy());
59 
60  unsigned Bits = Ty->getPrimitiveSizeInBits();
61  if (Bits == 0 || Imm.getActiveBits() >= 64)
62    return 4;
63 
64   int64_t SImmVal = Imm.getSExtValue();
65   uint64_t ZImmVal = Imm.getZExtValue();
66   if (!ST->isThumb()) {
67     if ((SImmVal >= 0 && SImmVal < 65536) ||
68         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
69         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
70       return 1;
71     return ST->hasV6T2Ops() ? 2 : 3;
72   }
73   if (ST->isThumb2()) {
74     if ((SImmVal >= 0 && SImmVal < 65536) ||
75         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
76         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
77       return 1;
78     return ST->hasV6T2Ops() ? 2 : 3;
79   }
80   // Thumb1, any i8 imm cost 1.
81   if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
82     return 1;
83   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
84     return 2;
85   // Load from constantpool.
86   return 3;
87 }
88 
89 // Constants smaller than 256 fit in the immediate field of
90 // Thumb1 instructions so we return a zero cost and 1 otherwise.
91 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
92                                       const APInt &Imm, Type *Ty) {
93   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
94     return 0;
95 
96   return 1;
97 }
98 
99 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
100                               Type *Ty) {
101   // Division by a constant can be turned into multiplication, but only if we
102   // know it's constant. So it's not so much that the immediate is cheap (it's
103   // not), but that the alternative is worse.
104   // FIXME: this is probably unneeded with GlobalISel.
105   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
106        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
107       Idx == 1)
108     return 0;
109 
110   if (Opcode == Instruction::And) {
111     // UXTB/UXTH
112     if (Imm == 255 || Imm == 65535)
113       return 0;
114     // Conversion to BIC is free, and means we can use ~Imm instead.
115     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
116   }
117 
118   if (Opcode == Instruction::Add)
119     // Conversion to SUB is free, and means we can use -Imm instead.
120     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
121 
122   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
123       Ty->getIntegerBitWidth() == 32) {
124     int64_t NegImm = -Imm.getSExtValue();
125     if (ST->isThumb2() && NegImm < 1<<12)
126       // icmp X, #-C -> cmn X, #C
127       return 0;
128     if (ST->isThumb() && NegImm < 1<<8)
129       // icmp X, #-C -> adds X, #C
130       return 0;
131   }
132 
133   // xor a, -1 can always be folded to MVN
134   if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
135     return 0;
136 
137   return getIntImmCost(Imm, Ty);
138 }
139 
140 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
141                                  const Instruction *I) {
142   int ISD = TLI->InstructionOpcodeToISD(Opcode);
143   assert(ISD && "Invalid opcode");
144 
145   // Single to/from double precision conversions.
146   static const CostTblEntry NEONFltDblTbl[] = {
147     // Vector fptrunc/fpext conversions.
148     { ISD::FP_ROUND,   MVT::v2f64, 2 },
149     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
150     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
151   };
152 
153   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
154                                           ISD == ISD::FP_EXTEND)) {
155     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
156     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
157       return LT.first * Entry->Cost;
158   }
159 
160   EVT SrcTy = TLI->getValueType(DL, Src);
161   EVT DstTy = TLI->getValueType(DL, Dst);
162 
163   if (!SrcTy.isSimple() || !DstTy.isSimple())
164     return BaseT::getCastInstrCost(Opcode, Dst, Src);
165 
166   // Some arithmetic, load and store operations have specific instructions
167   // to cast up/down their types automatically at no extra cost.
168   // TODO: Get these tables to know at least what the related operations are.
169   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
170     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
171     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
172     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
173     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
174     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
175     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
176 
177     // The number of vmovl instructions for the extension.
178     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
179     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
180     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
181     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
182     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
183     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
184     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
185     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
186     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
187     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
188 
189     // Operations that we legalize using splitting.
190     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
191     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
192 
193     // Vector float <-> i32 conversions.
194     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
195     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
196 
197     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
198     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
199     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
200     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
201     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
202     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
203     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
204     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
205     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
206     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
207     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
208     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
209     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
210     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
211     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
212     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
213     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
214     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
215     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
216     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
217 
218     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
219     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
220     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
221     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
222     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
223     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
224 
225     // Vector double <-> i32 conversions.
226     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
227     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
228 
229     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
230     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
231     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
232     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
233     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
234     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
235 
236     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
237     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
238     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
239     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
240     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
241     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
242   };
243 
244   if (SrcTy.isVector() && ST->hasNEON()) {
245     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
246                                                    DstTy.getSimpleVT(),
247                                                    SrcTy.getSimpleVT()))
248       return Entry->Cost;
249   }
250 
251   // Scalar float to integer conversions.
252   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
253     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
254     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
255     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
256     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
257     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
258     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
259     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
260     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
261     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
262     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
263     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
264     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
265     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
266     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
267     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
268     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
269     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
270     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
271     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
272     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
273   };
274   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
275     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
276                                                    DstTy.getSimpleVT(),
277                                                    SrcTy.getSimpleVT()))
278       return Entry->Cost;
279   }
280 
281   // Scalar integer to float conversions.
282   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
283     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
284     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
285     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
286     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
287     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
288     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
289     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
290     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
291     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
292     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
293     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
294     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
295     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
296     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
297     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
298     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
299     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
300     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
301     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
302     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
303   };
304 
305   if (SrcTy.isInteger() && ST->hasNEON()) {
306     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
307                                                    ISD, DstTy.getSimpleVT(),
308                                                    SrcTy.getSimpleVT()))
309       return Entry->Cost;
310   }
311 
312   // Scalar integer conversion costs.
313   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
314     // i16 -> i64 requires two dependent operations.
315     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
316 
317     // Truncates on i64 are assumed to be free.
318     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
319     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
320     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
321     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
322   };
323 
324   if (SrcTy.isInteger()) {
325     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
326                                                    DstTy.getSimpleVT(),
327                                                    SrcTy.getSimpleVT()))
328       return Entry->Cost;
329   }
330 
331   return BaseT::getCastInstrCost(Opcode, Dst, Src);
332 }
333 
334 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
335                                    unsigned Index) {
336   // Penalize inserting into an D-subregister. We end up with a three times
337   // lower estimated throughput on swift.
338   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
339       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
340     return 3;
341 
342   if ((Opcode == Instruction::InsertElement ||
343        Opcode == Instruction::ExtractElement)) {
344     // Cross-class copies are expensive on many microarchitectures,
345     // so assume they are expensive by default.
346     if (ValTy->getVectorElementType()->isIntegerTy())
347       return 3;
348 
349     // Even if it's not a cross class copy, this likely leads to mixing
350     // of NEON and VFP code and should be therefore penalized.
351     if (ValTy->isVectorTy() &&
352         ValTy->getScalarSizeInBits() <= 32)
353       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
354   }
355 
356   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
357 }
358 
359 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
360                                    const Instruction *I) {
361   int ISD = TLI->InstructionOpcodeToISD(Opcode);
362   // On NEON a vector select gets lowered to vbsl.
363   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
364     // Lowering of some vector selects is currently far from perfect.
365     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
366       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
367       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
368       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
369     };
370 
371     EVT SelCondTy = TLI->getValueType(DL, CondTy);
372     EVT SelValTy = TLI->getValueType(DL, ValTy);
373     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
374       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
375                                                      SelCondTy.getSimpleVT(),
376                                                      SelValTy.getSimpleVT()))
377         return Entry->Cost;
378     }
379 
380     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
381     return LT.first;
382   }
383 
384   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
385 }
386 
387 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
388                                           const SCEV *Ptr) {
389   // Address computations in vectorized code with non-consecutive addresses will
390   // likely result in more instructions compared to scalar code where the
391   // computation can more often be merged into the index mode. The resulting
392   // extra micro-ops can significantly decrease throughput.
393   unsigned NumVectorInstToHideOverhead = 10;
394   int MaxMergeDistance = 64;
395 
396   if (Ty->isVectorTy() && SE &&
397       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
398     return NumVectorInstToHideOverhead;
399 
400   // In many cases the address computation is not merged into the instruction
401   // addressing mode.
402   return 1;
403 }
404 
405 int ARMTTIImpl::getMemcpyCost(const Instruction *I) {
406   const MemCpyInst *MI = dyn_cast<MemCpyInst>(I);
407   assert(MI && "MemcpyInst expected");
408   ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength());
409 
410   // To model the cost of a library call, we assume 1 for the call, and
411   // 3 for the argument setup.
412   const unsigned LibCallCost = 4;
413 
414   // If 'size' is not a constant, a library call will be generated.
415   if (!C)
416     return LibCallCost;
417 
418   const unsigned Size = C->getValue().getZExtValue();
419   const unsigned DstAlign = MI->getDestAlignment();
420   const unsigned SrcAlign = MI->getSourceAlignment();
421   const Function *F = I->getParent()->getParent();
422   const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
423   std::vector<EVT> MemOps;
424 
425   // MemOps will be poplulated with a list of data types that needs to be
426   // loaded and stored. That's why we multiply the number of elements by 2 to
427   // get the cost for this memcpy.
428   if (getTLI()->findOptimalMemOpLowering(
429           MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/,
430           false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/,
431           MI->getDestAddressSpace(), MI->getSourceAddressSpace(),
432           F->getAttributes()))
433     return MemOps.size() * 2;
434 
435   // If we can't find an optimal memop lowering, return the default cost
436   return LibCallCost;
437 }
438 
439 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
440                                Type *SubTp) {
441   if (Kind == TTI::SK_Broadcast) {
442     static const CostTblEntry NEONDupTbl[] = {
443         // VDUP handles these cases.
444         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
445         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
446         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
447         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
448         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
449         {ISD::VECTOR_SHUFFLE, MVT::v8i8,  1},
450 
451         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
452         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
453         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
454         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
455 
456     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
457 
458     if (const auto *Entry = CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE,
459                                             LT.second))
460       return LT.first * Entry->Cost;
461 
462     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
463   }
464   if (Kind == TTI::SK_Reverse) {
465     static const CostTblEntry NEONShuffleTbl[] = {
466         // Reverse shuffle cost one instruction if we are shuffling within a
467         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
468         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
469         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
470         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
471         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
472         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
473         {ISD::VECTOR_SHUFFLE, MVT::v8i8,  1},
474 
475         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
476         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
477         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
478         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
479 
480     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
481 
482     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
483                                             LT.second))
484       return LT.first * Entry->Cost;
485 
486     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
487   }
488   if (Kind == TTI::SK_Select) {
489     static const CostTblEntry NEONSelShuffleTbl[] = {
490         // Select shuffle cost table for ARM. Cost is the number of instructions
491         // required to create the shuffled vector.
492 
493         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
494         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
495         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
496         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
497 
498         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
499         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
500         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
501 
502         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
503 
504         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
505 
506     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
507     if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
508                                             ISD::VECTOR_SHUFFLE, LT.second))
509       return LT.first * Entry->Cost;
510     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
511   }
512   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
513 }
514 
515 int ARMTTIImpl::getArithmeticInstrCost(
516     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
517     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
518     TTI::OperandValueProperties Opd2PropInfo,
519     ArrayRef<const Value *> Args) {
520   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
521   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
522 
523   const unsigned FunctionCallDivCost = 20;
524   const unsigned ReciprocalDivCost = 10;
525   static const CostTblEntry CostTbl[] = {
526     // Division.
527     // These costs are somewhat random. Choose a cost of 20 to indicate that
528     // vectorizing devision (added function call) is going to be very expensive.
529     // Double registers types.
530     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
531     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
532     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
533     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
534     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
535     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
536     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
537     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
538     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
539     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
540     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
541     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
542     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
543     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
544     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
545     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
546     // Quad register types.
547     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
548     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
549     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
550     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
551     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
552     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
553     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
554     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
555     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
556     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
557     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
558     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
559     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
560     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
561     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
562     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
563     // Multiplication.
564   };
565 
566   if (ST->hasNEON())
567     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
568       return LT.first * Entry->Cost;
569 
570   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
571                                            Opd1PropInfo, Opd2PropInfo);
572 
573   // This is somewhat of a hack. The problem that we are facing is that SROA
574   // creates a sequence of shift, and, or instructions to construct values.
575   // These sequences are recognized by the ISel and have zero-cost. Not so for
576   // the vectorized code. Because we have support for v2i64 but not i64 those
577   // sequences look particularly beneficial to vectorize.
578   // To work around this we increase the cost of v2i64 operations to make them
579   // seem less beneficial.
580   if (LT.second == MVT::v2i64 &&
581       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
582     Cost += 4;
583 
584   return Cost;
585 }
586 
587 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
588                                 unsigned AddressSpace, const Instruction *I) {
589   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
590 
591   if (Src->isVectorTy() && Alignment != 16 &&
592       Src->getVectorElementType()->isDoubleTy()) {
593     // Unaligned loads/stores are extremely inefficient.
594     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
595     return LT.first * 4;
596   }
597   return LT.first;
598 }
599 
600 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
601                                            unsigned Factor,
602                                            ArrayRef<unsigned> Indices,
603                                            unsigned Alignment,
604                                            unsigned AddressSpace,
605                                            bool UseMaskForCond,
606                                            bool UseMaskForGaps) {
607   assert(Factor >= 2 && "Invalid interleave factor");
608   assert(isa<VectorType>(VecTy) && "Expect a vector type");
609 
610   // vldN/vstN doesn't support vector types of i64/f64 element.
611   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
612 
613   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
614       !UseMaskForCond && !UseMaskForGaps) {
615     unsigned NumElts = VecTy->getVectorNumElements();
616     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
617 
618     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
619     // Accesses having vector types that are a multiple of 128 bits can be
620     // matched to more than one vldN/vstN instruction.
621     if (NumElts % Factor == 0 &&
622         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
623       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
624   }
625 
626   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
627                                            Alignment, AddressSpace,
628                                            UseMaskForCond, UseMaskForGaps);
629 }
630 
631 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
632                                          TTI::UnrollingPreferences &UP) {
633   // Only currently enable these preferences for M-Class cores.
634   if (!ST->isMClass())
635     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
636 
637   // Disable loop unrolling for Oz and Os.
638   UP.OptSizeThreshold = 0;
639   UP.PartialOptSizeThreshold = 0;
640   if (L->getHeader()->getParent()->hasOptSize())
641     return;
642 
643   // Only enable on Thumb-2 targets.
644   if (!ST->isThumb2())
645     return;
646 
647   SmallVector<BasicBlock*, 4> ExitingBlocks;
648   L->getExitingBlocks(ExitingBlocks);
649   LLVM_DEBUG(dbgs() << "Loop has:\n"
650                     << "Blocks: " << L->getNumBlocks() << "\n"
651                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
652 
653   // Only allow another exit other than the latch. This acts as an early exit
654   // as it mirrors the profitability calculation of the runtime unroller.
655   if (ExitingBlocks.size() > 2)
656     return;
657 
658   // Limit the CFG of the loop body for targets with a branch predictor.
659   // Allowing 4 blocks permits if-then-else diamonds in the body.
660   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
661     return;
662 
663   // Scan the loop: don't unroll loops with calls as this could prevent
664   // inlining.
665   unsigned Cost = 0;
666   for (auto *BB : L->getBlocks()) {
667     for (auto &I : *BB) {
668       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
669         ImmutableCallSite CS(&I);
670         if (const Function *F = CS.getCalledFunction()) {
671           if (!isLoweredToCall(F))
672             continue;
673         }
674         return;
675       }
676       SmallVector<const Value*, 4> Operands(I.value_op_begin(),
677                                             I.value_op_end());
678       Cost += getUserCost(&I, Operands);
679     }
680   }
681 
682   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
683 
684   UP.Partial = true;
685   UP.Runtime = true;
686   UP.UnrollRemainder = true;
687   UP.DefaultUnrollRuntimeCount = 4;
688   UP.UnrollAndJam = true;
689   UP.UnrollAndJamInnerLoopThreshold = 60;
690 
691   // Force unrolling small loops can be very useful because of the branch
692   // taken cost of the backedge.
693   if (Cost < 12)
694     UP.Force = true;
695 }
696