1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Type.h"
25 #include "llvm/MC/SubtargetFeature.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MachineValueType.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstdint>
32 #include <utility>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "armtti"
37 
38 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
39                                      const Function *Callee) const {
40   const TargetMachine &TM = getTLI()->getTargetMachine();
41   const FeatureBitset &CallerBits =
42       TM.getSubtargetImpl(*Caller)->getFeatureBits();
43   const FeatureBitset &CalleeBits =
44       TM.getSubtargetImpl(*Callee)->getFeatureBits();
45 
46   // To inline a callee, all features not in the whitelist must match exactly.
47   bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) ==
48                     (CalleeBits & ~InlineFeatureWhitelist);
49   // For features in the whitelist, the callee's features must be a subset of
50   // the callers'.
51   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) ==
52                      (CalleeBits & InlineFeatureWhitelist);
53   return MatchExact && MatchSubset;
54 }
55 
56 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
57   assert(Ty->isIntegerTy());
58 
59  unsigned Bits = Ty->getPrimitiveSizeInBits();
60  if (Bits == 0 || Imm.getActiveBits() >= 64)
61    return 4;
62 
63   int64_t SImmVal = Imm.getSExtValue();
64   uint64_t ZImmVal = Imm.getZExtValue();
65   if (!ST->isThumb()) {
66     if ((SImmVal >= 0 && SImmVal < 65536) ||
67         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
68         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
69       return 1;
70     return ST->hasV6T2Ops() ? 2 : 3;
71   }
72   if (ST->isThumb2()) {
73     if ((SImmVal >= 0 && SImmVal < 65536) ||
74         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
75         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
76       return 1;
77     return ST->hasV6T2Ops() ? 2 : 3;
78   }
79   // Thumb1, any i8 imm cost 1.
80   if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
81     return 1;
82   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
83     return 2;
84   // Load from constantpool.
85   return 3;
86 }
87 
88 // Constants smaller than 256 fit in the immediate field of
89 // Thumb1 instructions so we return a zero cost and 1 otherwise.
90 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
91                                       const APInt &Imm, Type *Ty) {
92   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
93     return 0;
94 
95   return 1;
96 }
97 
98 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
99                               Type *Ty) {
100   // Division by a constant can be turned into multiplication, but only if we
101   // know it's constant. So it's not so much that the immediate is cheap (it's
102   // not), but that the alternative is worse.
103   // FIXME: this is probably unneeded with GlobalISel.
104   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
105        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
106       Idx == 1)
107     return 0;
108 
109   if (Opcode == Instruction::And) {
110     // UXTB/UXTH
111     if (Imm == 255 || Imm == 65535)
112       return 0;
113     // Conversion to BIC is free, and means we can use ~Imm instead.
114     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
115   }
116 
117   if (Opcode == Instruction::Add)
118     // Conversion to SUB is free, and means we can use -Imm instead.
119     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
120 
121   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
122       Ty->getIntegerBitWidth() == 32) {
123     int64_t NegImm = -Imm.getSExtValue();
124     if (ST->isThumb2() && NegImm < 1<<12)
125       // icmp X, #-C -> cmn X, #C
126       return 0;
127     if (ST->isThumb() && NegImm < 1<<8)
128       // icmp X, #-C -> adds X, #C
129       return 0;
130   }
131 
132   // xor a, -1 can always be folded to MVN
133   if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
134     return 0;
135 
136   return getIntImmCost(Imm, Ty);
137 }
138 
139 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
140                                  const Instruction *I) {
141   int ISD = TLI->InstructionOpcodeToISD(Opcode);
142   assert(ISD && "Invalid opcode");
143 
144   // Single to/from double precision conversions.
145   static const CostTblEntry NEONFltDblTbl[] = {
146     // Vector fptrunc/fpext conversions.
147     { ISD::FP_ROUND,   MVT::v2f64, 2 },
148     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
149     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
150   };
151 
152   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
153                                           ISD == ISD::FP_EXTEND)) {
154     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
155     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
156       return LT.first * Entry->Cost;
157   }
158 
159   EVT SrcTy = TLI->getValueType(DL, Src);
160   EVT DstTy = TLI->getValueType(DL, Dst);
161 
162   if (!SrcTy.isSimple() || !DstTy.isSimple())
163     return BaseT::getCastInstrCost(Opcode, Dst, Src);
164 
165   // Some arithmetic, load and store operations have specific instructions
166   // to cast up/down their types automatically at no extra cost.
167   // TODO: Get these tables to know at least what the related operations are.
168   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
169     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
170     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
171     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
172     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
173     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
174     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
175 
176     // The number of vmovl instructions for the extension.
177     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
178     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
179     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
180     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
181     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
182     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
183     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
184     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
185     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
186     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
187 
188     // Operations that we legalize using splitting.
189     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
190     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
191 
192     // Vector float <-> i32 conversions.
193     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
194     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
195 
196     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
197     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
198     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
199     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
200     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
201     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
202     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
203     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
204     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
205     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
206     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
207     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
208     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
209     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
210     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
211     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
212     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
213     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
214     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
215     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
216 
217     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
218     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
219     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
220     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
221     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
222     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
223 
224     // Vector double <-> i32 conversions.
225     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
226     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
227 
228     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
229     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
230     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
231     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
232     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
233     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
234 
235     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
236     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
237     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
238     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
239     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
240     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
241   };
242 
243   if (SrcTy.isVector() && ST->hasNEON()) {
244     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
245                                                    DstTy.getSimpleVT(),
246                                                    SrcTy.getSimpleVT()))
247       return Entry->Cost;
248   }
249 
250   // Scalar float to integer conversions.
251   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
252     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
253     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
254     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
255     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
256     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
257     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
258     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
259     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
260     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
261     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
262     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
263     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
264     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
265     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
266     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
267     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
268     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
269     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
270     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
271     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
272   };
273   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
274     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
275                                                    DstTy.getSimpleVT(),
276                                                    SrcTy.getSimpleVT()))
277       return Entry->Cost;
278   }
279 
280   // Scalar integer to float conversions.
281   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
282     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
283     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
284     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
285     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
286     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
287     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
288     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
289     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
290     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
291     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
292     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
293     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
294     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
295     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
296     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
297     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
298     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
299     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
300     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
301     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
302   };
303 
304   if (SrcTy.isInteger() && ST->hasNEON()) {
305     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
306                                                    ISD, DstTy.getSimpleVT(),
307                                                    SrcTy.getSimpleVT()))
308       return Entry->Cost;
309   }
310 
311   // Scalar integer conversion costs.
312   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
313     // i16 -> i64 requires two dependent operations.
314     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
315 
316     // Truncates on i64 are assumed to be free.
317     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
318     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
319     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
320     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
321   };
322 
323   if (SrcTy.isInteger()) {
324     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
325                                                    DstTy.getSimpleVT(),
326                                                    SrcTy.getSimpleVT()))
327       return Entry->Cost;
328   }
329 
330   return BaseT::getCastInstrCost(Opcode, Dst, Src);
331 }
332 
333 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
334                                    unsigned Index) {
335   // Penalize inserting into an D-subregister. We end up with a three times
336   // lower estimated throughput on swift.
337   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
338       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
339     return 3;
340 
341   if ((Opcode == Instruction::InsertElement ||
342        Opcode == Instruction::ExtractElement)) {
343     // Cross-class copies are expensive on many microarchitectures,
344     // so assume they are expensive by default.
345     if (ValTy->getVectorElementType()->isIntegerTy())
346       return 3;
347 
348     // Even if it's not a cross class copy, this likely leads to mixing
349     // of NEON and VFP code and should be therefore penalized.
350     if (ValTy->isVectorTy() &&
351         ValTy->getScalarSizeInBits() <= 32)
352       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
353   }
354 
355   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
356 }
357 
358 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
359                                    const Instruction *I) {
360   int ISD = TLI->InstructionOpcodeToISD(Opcode);
361   // On NEON a vector select gets lowered to vbsl.
362   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
363     // Lowering of some vector selects is currently far from perfect.
364     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
365       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
366       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
367       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
368     };
369 
370     EVT SelCondTy = TLI->getValueType(DL, CondTy);
371     EVT SelValTy = TLI->getValueType(DL, ValTy);
372     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
373       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
374                                                      SelCondTy.getSimpleVT(),
375                                                      SelValTy.getSimpleVT()))
376         return Entry->Cost;
377     }
378 
379     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
380     return LT.first;
381   }
382 
383   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
384 }
385 
386 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
387                                           const SCEV *Ptr) {
388   // Address computations in vectorized code with non-consecutive addresses will
389   // likely result in more instructions compared to scalar code where the
390   // computation can more often be merged into the index mode. The resulting
391   // extra micro-ops can significantly decrease throughput.
392   unsigned NumVectorInstToHideOverhead = 10;
393   int MaxMergeDistance = 64;
394 
395   if (Ty->isVectorTy() && SE &&
396       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
397     return NumVectorInstToHideOverhead;
398 
399   // In many cases the address computation is not merged into the instruction
400   // addressing mode.
401   return 1;
402 }
403 
404 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
405                                Type *SubTp) {
406   if (Kind == TTI::SK_Broadcast) {
407     static const CostTblEntry NEONDupTbl[] = {
408         // VDUP handles these cases.
409         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
410         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
411         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
412         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
413         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
414         {ISD::VECTOR_SHUFFLE, MVT::v8i8,  1},
415 
416         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
417         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
418         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
419         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
420 
421     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
422 
423     if (const auto *Entry = CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE,
424                                             LT.second))
425       return LT.first * Entry->Cost;
426 
427     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
428   }
429   if (Kind == TTI::SK_Reverse) {
430     static const CostTblEntry NEONShuffleTbl[] = {
431         // Reverse shuffle cost one instruction if we are shuffling within a
432         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
433         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
434         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
435         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
436         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
437         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
438         {ISD::VECTOR_SHUFFLE, MVT::v8i8,  1},
439 
440         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
441         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
442         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
443         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
444 
445     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
446 
447     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
448                                             LT.second))
449       return LT.first * Entry->Cost;
450 
451     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
452   }
453   if (Kind == TTI::SK_Select) {
454     static const CostTblEntry NEONSelShuffleTbl[] = {
455         // Select shuffle cost table for ARM. Cost is the number of instructions
456         // required to create the shuffled vector.
457 
458         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
459         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
460         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
461         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
462 
463         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
464         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
465         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
466 
467         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
468 
469         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
470 
471     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
472     if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
473                                             ISD::VECTOR_SHUFFLE, LT.second))
474       return LT.first * Entry->Cost;
475     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
476   }
477   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
478 }
479 
480 int ARMTTIImpl::getArithmeticInstrCost(
481     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
482     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
483     TTI::OperandValueProperties Opd2PropInfo,
484     ArrayRef<const Value *> Args) {
485   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
486   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
487 
488   const unsigned FunctionCallDivCost = 20;
489   const unsigned ReciprocalDivCost = 10;
490   static const CostTblEntry CostTbl[] = {
491     // Division.
492     // These costs are somewhat random. Choose a cost of 20 to indicate that
493     // vectorizing devision (added function call) is going to be very expensive.
494     // Double registers types.
495     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
496     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
497     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
498     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
499     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
500     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
501     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
502     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
503     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
504     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
505     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
506     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
507     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
508     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
509     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
510     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
511     // Quad register types.
512     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
513     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
514     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
515     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
516     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
517     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
518     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
519     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
520     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
521     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
522     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
523     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
524     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
525     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
526     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
527     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
528     // Multiplication.
529   };
530 
531   if (ST->hasNEON())
532     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
533       return LT.first * Entry->Cost;
534 
535   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
536                                            Opd1PropInfo, Opd2PropInfo);
537 
538   // This is somewhat of a hack. The problem that we are facing is that SROA
539   // creates a sequence of shift, and, or instructions to construct values.
540   // These sequences are recognized by the ISel and have zero-cost. Not so for
541   // the vectorized code. Because we have support for v2i64 but not i64 those
542   // sequences look particularly beneficial to vectorize.
543   // To work around this we increase the cost of v2i64 operations to make them
544   // seem less beneficial.
545   if (LT.second == MVT::v2i64 &&
546       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
547     Cost += 4;
548 
549   return Cost;
550 }
551 
552 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
553                                 unsigned AddressSpace, const Instruction *I) {
554   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
555 
556   if (Src->isVectorTy() && Alignment != 16 &&
557       Src->getVectorElementType()->isDoubleTy()) {
558     // Unaligned loads/stores are extremely inefficient.
559     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
560     return LT.first * 4;
561   }
562   return LT.first;
563 }
564 
565 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
566                                            unsigned Factor,
567                                            ArrayRef<unsigned> Indices,
568                                            unsigned Alignment,
569                                            unsigned AddressSpace,
570                                            bool UseMaskForCond,
571                                            bool UseMaskForGaps) {
572   assert(Factor >= 2 && "Invalid interleave factor");
573   assert(isa<VectorType>(VecTy) && "Expect a vector type");
574 
575   // vldN/vstN doesn't support vector types of i64/f64 element.
576   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
577 
578   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
579       !UseMaskForCond && !UseMaskForGaps) {
580     unsigned NumElts = VecTy->getVectorNumElements();
581     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
582 
583     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
584     // Accesses having vector types that are a multiple of 128 bits can be
585     // matched to more than one vldN/vstN instruction.
586     if (NumElts % Factor == 0 &&
587         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
588       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
589   }
590 
591   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
592                                            Alignment, AddressSpace,
593                                            UseMaskForCond, UseMaskForGaps);
594 }
595 
596 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
597                                          TTI::UnrollingPreferences &UP) {
598   // Only currently enable these preferences for M-Class cores.
599   if (!ST->isMClass())
600     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
601 
602   // Disable loop unrolling for Oz and Os.
603   UP.OptSizeThreshold = 0;
604   UP.PartialOptSizeThreshold = 0;
605   if (L->getHeader()->getParent()->optForSize())
606     return;
607 
608   // Only enable on Thumb-2 targets.
609   if (!ST->isThumb2())
610     return;
611 
612   SmallVector<BasicBlock*, 4> ExitingBlocks;
613   L->getExitingBlocks(ExitingBlocks);
614   LLVM_DEBUG(dbgs() << "Loop has:\n"
615                     << "Blocks: " << L->getNumBlocks() << "\n"
616                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
617 
618   // Only allow another exit other than the latch. This acts as an early exit
619   // as it mirrors the profitability calculation of the runtime unroller.
620   if (ExitingBlocks.size() > 2)
621     return;
622 
623   // Limit the CFG of the loop body for targets with a branch predictor.
624   // Allowing 4 blocks permits if-then-else diamonds in the body.
625   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
626     return;
627 
628   // Scan the loop: don't unroll loops with calls as this could prevent
629   // inlining.
630   unsigned Cost = 0;
631   for (auto *BB : L->getBlocks()) {
632     for (auto &I : *BB) {
633       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
634         ImmutableCallSite CS(&I);
635         if (const Function *F = CS.getCalledFunction()) {
636           if (!isLoweredToCall(F))
637             continue;
638         }
639         return;
640       }
641       SmallVector<const Value*, 4> Operands(I.value_op_begin(),
642                                             I.value_op_end());
643       Cost += getUserCost(&I, Operands);
644     }
645   }
646 
647   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
648 
649   UP.Partial = true;
650   UP.Runtime = true;
651   UP.UnrollRemainder = true;
652   UP.DefaultUnrollRuntimeCount = 4;
653   UP.UnrollAndJam = true;
654   UP.UnrollAndJamInnerLoopThreshold = 60;
655 
656   // Force unrolling small loops can be very useful because of the branch
657   // taken cost of the backedge.
658   if (Cost < 12)
659     UP.Force = true;
660 }
661