1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/IntrinsicsARM.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/MC/SubtargetFeature.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/MachineValueType.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstdint> 34 #include <utility> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "armtti" 39 40 static cl::opt<bool> EnableMaskedLoadStores( 41 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 42 cl::desc("Enable the generation of masked loads and stores")); 43 44 static cl::opt<bool> DisableLowOverheadLoops( 45 "disable-arm-loloops", cl::Hidden, cl::init(false), 46 cl::desc("Disable the generation of low-overhead loops")); 47 48 extern cl::opt<bool> DisableTailPredication; 49 50 extern cl::opt<bool> EnableMaskedGatherScatters; 51 52 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 53 const Function *Callee) const { 54 const TargetMachine &TM = getTLI()->getTargetMachine(); 55 const FeatureBitset &CallerBits = 56 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 57 const FeatureBitset &CalleeBits = 58 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 59 60 // To inline a callee, all features not in the whitelist must match exactly. 61 bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == 62 (CalleeBits & ~InlineFeatureWhitelist); 63 // For features in the whitelist, the callee's features must be a subset of 64 // the callers'. 65 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == 66 (CalleeBits & InlineFeatureWhitelist); 67 return MatchExact && MatchSubset; 68 } 69 70 bool ARMTTIImpl::shouldFavorBackedgeIndex(const Loop *L) const { 71 if (L->getHeader()->getParent()->hasOptSize()) 72 return false; 73 if (ST->hasMVEIntegerOps()) 74 return false; 75 return ST->isMClass() && ST->isThumb2() && L->getNumBlocks() == 1; 76 } 77 78 bool ARMTTIImpl::shouldFavorPostInc() const { 79 if (ST->hasMVEIntegerOps()) 80 return true; 81 return false; 82 } 83 84 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 85 TTI::TargetCostKind CostKind) { 86 assert(Ty->isIntegerTy()); 87 88 unsigned Bits = Ty->getPrimitiveSizeInBits(); 89 if (Bits == 0 || Imm.getActiveBits() >= 64) 90 return 4; 91 92 int64_t SImmVal = Imm.getSExtValue(); 93 uint64_t ZImmVal = Imm.getZExtValue(); 94 if (!ST->isThumb()) { 95 if ((SImmVal >= 0 && SImmVal < 65536) || 96 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 97 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 98 return 1; 99 return ST->hasV6T2Ops() ? 2 : 3; 100 } 101 if (ST->isThumb2()) { 102 if ((SImmVal >= 0 && SImmVal < 65536) || 103 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 104 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 105 return 1; 106 return ST->hasV6T2Ops() ? 2 : 3; 107 } 108 // Thumb1, any i8 imm cost 1. 109 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 110 return 1; 111 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 112 return 2; 113 // Load from constantpool. 114 return 3; 115 } 116 117 // Constants smaller than 256 fit in the immediate field of 118 // Thumb1 instructions so we return a zero cost and 1 otherwise. 119 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 120 const APInt &Imm, Type *Ty) { 121 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 122 return 0; 123 124 return 1; 125 } 126 127 int ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, 128 Type *Ty, TTI::TargetCostKind CostKind) { 129 // Division by a constant can be turned into multiplication, but only if we 130 // know it's constant. So it's not so much that the immediate is cheap (it's 131 // not), but that the alternative is worse. 132 // FIXME: this is probably unneeded with GlobalISel. 133 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 134 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 135 Idx == 1) 136 return 0; 137 138 if (Opcode == Instruction::And) { 139 // UXTB/UXTH 140 if (Imm == 255 || Imm == 65535) 141 return 0; 142 // Conversion to BIC is free, and means we can use ~Imm instead. 143 return std::min(getIntImmCost(Imm, Ty, CostKind), 144 getIntImmCost(~Imm, Ty, CostKind)); 145 } 146 147 if (Opcode == Instruction::Add) 148 // Conversion to SUB is free, and means we can use -Imm instead. 149 return std::min(getIntImmCost(Imm, Ty, CostKind), 150 getIntImmCost(-Imm, Ty, CostKind)); 151 152 if (Opcode == Instruction::ICmp && Imm.isNegative() && 153 Ty->getIntegerBitWidth() == 32) { 154 int64_t NegImm = -Imm.getSExtValue(); 155 if (ST->isThumb2() && NegImm < 1<<12) 156 // icmp X, #-C -> cmn X, #C 157 return 0; 158 if (ST->isThumb() && NegImm < 1<<8) 159 // icmp X, #-C -> adds X, #C 160 return 0; 161 } 162 163 // xor a, -1 can always be folded to MVN 164 if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) 165 return 0; 166 167 return getIntImmCost(Imm, Ty, CostKind); 168 } 169 170 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 171 TTI::TargetCostKind CostKind, 172 const Instruction *I) { 173 int ISD = TLI->InstructionOpcodeToISD(Opcode); 174 assert(ISD && "Invalid opcode"); 175 176 // TODO: Allow non-throughput costs that aren't binary. 177 auto AdjustCost = [&CostKind](int Cost) { 178 if (CostKind != TTI::TCK_RecipThroughput) 179 return Cost == 0 ? 0 : 1; 180 return Cost; 181 }; 182 183 // Single to/from double precision conversions. 184 static const CostTblEntry NEONFltDblTbl[] = { 185 // Vector fptrunc/fpext conversions. 186 { ISD::FP_ROUND, MVT::v2f64, 2 }, 187 { ISD::FP_EXTEND, MVT::v2f32, 2 }, 188 { ISD::FP_EXTEND, MVT::v4f32, 4 } 189 }; 190 191 if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || 192 ISD == ISD::FP_EXTEND)) { 193 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 194 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 195 return AdjustCost(LT.first * Entry->Cost); 196 } 197 198 EVT SrcTy = TLI->getValueType(DL, Src); 199 EVT DstTy = TLI->getValueType(DL, Dst); 200 201 if (!SrcTy.isSimple() || !DstTy.isSimple()) 202 return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I)); 203 204 // The extend of a load is free 205 if (I && isa<LoadInst>(I->getOperand(0))) { 206 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 207 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 208 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 209 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 210 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 211 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 212 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 213 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 214 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 215 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 216 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 217 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 218 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 219 }; 220 if (const auto *Entry = ConvertCostTableLookup( 221 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 222 return AdjustCost(Entry->Cost); 223 224 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 225 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 226 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 227 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 228 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 229 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 230 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 231 }; 232 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 233 if (const auto *Entry = 234 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 235 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 236 return AdjustCost(Entry->Cost); 237 } 238 } 239 240 // NEON vector operations that can extend their inputs. 241 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 242 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 243 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 244 // vaddl 245 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 246 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 247 // vsubl 248 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 249 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 250 // vmull 251 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 252 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 253 // vshll 254 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 255 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 256 }; 257 258 auto *User = cast<Instruction>(*I->user_begin()); 259 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 260 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 261 DstTy.getSimpleVT(), 262 SrcTy.getSimpleVT())) { 263 return AdjustCost(Entry->Cost); 264 } 265 } 266 267 // Some arithmetic, load and store operations have specific instructions 268 // to cast up/down their types automatically at no extra cost. 269 // TODO: Get these tables to know at least what the related operations are. 270 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 271 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 272 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 273 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 274 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 275 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 276 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 277 278 // The number of vmovl instructions for the extension. 279 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 280 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 281 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 282 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 283 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 284 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 285 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 286 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 287 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 288 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 289 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 290 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 291 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 292 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 293 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 294 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 295 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 296 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 297 298 // Operations that we legalize using splitting. 299 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 300 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 301 302 // Vector float <-> i32 conversions. 303 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 304 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 305 306 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 307 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 308 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 309 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 310 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 311 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 312 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 313 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 314 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 315 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 316 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 317 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 318 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 319 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 320 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 321 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 322 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 323 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 324 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 325 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 326 327 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 328 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 329 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 330 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 331 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 332 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 333 334 // Vector double <-> i32 conversions. 335 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 336 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 337 338 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 339 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 340 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 341 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 342 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 343 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 344 345 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 346 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 347 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 348 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 349 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 350 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 351 }; 352 353 if (SrcTy.isVector() && ST->hasNEON()) { 354 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 355 DstTy.getSimpleVT(), 356 SrcTy.getSimpleVT())) 357 return AdjustCost(Entry->Cost); 358 } 359 360 // Scalar float to integer conversions. 361 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 362 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 363 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 364 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 365 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 366 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 367 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 368 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 369 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 370 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 371 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 372 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 373 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 374 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 375 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 376 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 377 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 378 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 379 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 380 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 381 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 382 }; 383 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 384 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 385 DstTy.getSimpleVT(), 386 SrcTy.getSimpleVT())) 387 return AdjustCost(Entry->Cost); 388 } 389 390 // Scalar integer to float conversions. 391 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 392 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 393 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 394 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 395 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 396 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 397 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 398 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 399 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 400 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 401 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 402 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 403 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 404 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 405 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 406 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 407 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 408 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 409 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 410 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 411 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 412 }; 413 414 if (SrcTy.isInteger() && ST->hasNEON()) { 415 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 416 ISD, DstTy.getSimpleVT(), 417 SrcTy.getSimpleVT())) 418 return AdjustCost(Entry->Cost); 419 } 420 421 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 422 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 423 // are linearised so take more. 424 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 425 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 426 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 427 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 428 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 429 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 430 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 431 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 432 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 433 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 434 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 435 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 436 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 437 }; 438 439 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 440 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 441 ISD, DstTy.getSimpleVT(), 442 SrcTy.getSimpleVT())) 443 return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor()); 444 } 445 446 // Scalar integer conversion costs. 447 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 448 // i16 -> i64 requires two dependent operations. 449 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 450 451 // Truncates on i64 are assumed to be free. 452 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 453 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 454 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 455 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 456 }; 457 458 if (SrcTy.isInteger()) { 459 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 460 DstTy.getSimpleVT(), 461 SrcTy.getSimpleVT())) 462 return AdjustCost(Entry->Cost); 463 } 464 465 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 466 ? ST->getMVEVectorCostFactor() 467 : 1; 468 return AdjustCost( 469 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I)); 470 } 471 472 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 473 unsigned Index) { 474 // Penalize inserting into an D-subregister. We end up with a three times 475 // lower estimated throughput on swift. 476 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 477 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 478 return 3; 479 480 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 481 Opcode == Instruction::ExtractElement)) { 482 // Cross-class copies are expensive on many microarchitectures, 483 // so assume they are expensive by default. 484 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 485 return 3; 486 487 // Even if it's not a cross class copy, this likely leads to mixing 488 // of NEON and VFP code and should be therefore penalized. 489 if (ValTy->isVectorTy() && 490 ValTy->getScalarSizeInBits() <= 32) 491 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 492 } 493 494 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 495 Opcode == Instruction::ExtractElement)) { 496 // We say MVE moves costs at least the MVEVectorCostFactor, even though 497 // they are scalar instructions. This helps prevent mixing scalar and 498 // vector, to prevent vectorising where we end up just scalarising the 499 // result anyway. 500 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 501 ST->getMVEVectorCostFactor()) * 502 cast<FixedVectorType>(ValTy)->getNumElements() / 2; 503 } 504 505 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 506 } 507 508 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 509 TTI::TargetCostKind CostKind, 510 const Instruction *I) { 511 int ISD = TLI->InstructionOpcodeToISD(Opcode); 512 // On NEON a vector select gets lowered to vbsl. 513 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { 514 // Lowering of some vector selects is currently far from perfect. 515 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 516 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 517 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 518 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 519 }; 520 521 EVT SelCondTy = TLI->getValueType(DL, CondTy); 522 EVT SelValTy = TLI->getValueType(DL, ValTy); 523 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 524 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 525 SelCondTy.getSimpleVT(), 526 SelValTy.getSimpleVT())) 527 return Entry->Cost; 528 } 529 530 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 531 return LT.first; 532 } 533 534 int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy() 535 ? ST->getMVEVectorCostFactor() 536 : 1; 537 return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, 538 I); 539 } 540 541 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 542 const SCEV *Ptr) { 543 // Address computations in vectorized code with non-consecutive addresses will 544 // likely result in more instructions compared to scalar code where the 545 // computation can more often be merged into the index mode. The resulting 546 // extra micro-ops can significantly decrease throughput. 547 unsigned NumVectorInstToHideOverhead = 10; 548 int MaxMergeDistance = 64; 549 550 if (ST->hasNEON()) { 551 if (Ty->isVectorTy() && SE && 552 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 553 return NumVectorInstToHideOverhead; 554 555 // In many cases the address computation is not merged into the instruction 556 // addressing mode. 557 return 1; 558 } 559 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 560 } 561 562 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 563 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 564 // If a VCTP is part of a chain, it's already profitable and shouldn't be 565 // optimized, else LSR may block tail-predication. 566 switch (II->getIntrinsicID()) { 567 case Intrinsic::arm_mve_vctp8: 568 case Intrinsic::arm_mve_vctp16: 569 case Intrinsic::arm_mve_vctp32: 570 case Intrinsic::arm_mve_vctp64: 571 return true; 572 default: 573 break; 574 } 575 } 576 return false; 577 } 578 579 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) { 580 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 581 return false; 582 583 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) { 584 // Don't support v2i1 yet. 585 if (VecTy->getNumElements() == 2) 586 return false; 587 588 // We don't support extending fp types. 589 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 590 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 591 return false; 592 } 593 594 unsigned EltWidth = DataTy->getScalarSizeInBits(); 595 return (EltWidth == 32 && (!Alignment || *Alignment >= 4)) || 596 (EltWidth == 16 && (!Alignment || *Alignment >= 2)) || 597 (EltWidth == 8); 598 } 599 600 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, MaybeAlign Alignment) { 601 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 602 return false; 603 604 // This method is called in 2 places: 605 // - from the vectorizer with a scalar type, in which case we need to get 606 // this as good as we can with the limited info we have (and rely on the cost 607 // model for the rest). 608 // - from the masked intrinsic lowering pass with the actual vector type. 609 // For MVE, we have a custom lowering pass that will already have custom 610 // legalised any gathers that we can to MVE intrinsics, and want to expand all 611 // the rest. The pass runs before the masked intrinsic lowering pass, so if we 612 // are here, we know we want to expand. 613 if (isa<VectorType>(Ty)) 614 return false; 615 616 unsigned EltWidth = Ty->getScalarSizeInBits(); 617 return ((EltWidth == 32 && (!Alignment || *Alignment >= 4)) || 618 (EltWidth == 16 && (!Alignment || *Alignment >= 2)) || EltWidth == 8); 619 } 620 621 int ARMTTIImpl::getMemcpyCost(const Instruction *I) { 622 const MemCpyInst *MI = dyn_cast<MemCpyInst>(I); 623 assert(MI && "MemcpyInst expected"); 624 ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength()); 625 626 // To model the cost of a library call, we assume 1 for the call, and 627 // 3 for the argument setup. 628 const unsigned LibCallCost = 4; 629 630 // If 'size' is not a constant, a library call will be generated. 631 if (!C) 632 return LibCallCost; 633 634 const unsigned Size = C->getValue().getZExtValue(); 635 const Align DstAlign = *MI->getDestAlign(); 636 const Align SrcAlign = *MI->getSourceAlign(); 637 const Function *F = I->getParent()->getParent(); 638 const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 639 std::vector<EVT> MemOps; 640 641 // MemOps will be poplulated with a list of data types that needs to be 642 // loaded and stored. That's why we multiply the number of elements by 2 to 643 // get the cost for this memcpy. 644 if (getTLI()->findOptimalMemOpLowering( 645 MemOps, Limit, 646 MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 647 /*IsVolatile*/ true), 648 MI->getDestAddressSpace(), MI->getSourceAddressSpace(), 649 F->getAttributes())) 650 return MemOps.size() * 2; 651 652 // If we can't find an optimal memop lowering, return the default cost 653 return LibCallCost; 654 } 655 656 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 657 int Index, VectorType *SubTp) { 658 if (ST->hasNEON()) { 659 if (Kind == TTI::SK_Broadcast) { 660 static const CostTblEntry NEONDupTbl[] = { 661 // VDUP handles these cases. 662 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 663 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 664 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 665 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 666 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 667 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 668 669 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 670 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 671 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 672 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 673 674 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 675 676 if (const auto *Entry = 677 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 678 return LT.first * Entry->Cost; 679 } 680 if (Kind == TTI::SK_Reverse) { 681 static const CostTblEntry NEONShuffleTbl[] = { 682 // Reverse shuffle cost one instruction if we are shuffling within a 683 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 684 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 685 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 686 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 687 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 688 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 689 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 690 691 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 692 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 693 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 694 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 695 696 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 697 698 if (const auto *Entry = 699 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 700 return LT.first * Entry->Cost; 701 } 702 if (Kind == TTI::SK_Select) { 703 static const CostTblEntry NEONSelShuffleTbl[] = { 704 // Select shuffle cost table for ARM. Cost is the number of 705 // instructions 706 // required to create the shuffled vector. 707 708 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 709 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 710 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 711 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 712 713 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 714 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 715 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 716 717 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 718 719 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 720 721 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 722 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 723 ISD::VECTOR_SHUFFLE, LT.second)) 724 return LT.first * Entry->Cost; 725 } 726 } 727 if (ST->hasMVEIntegerOps()) { 728 if (Kind == TTI::SK_Broadcast) { 729 static const CostTblEntry MVEDupTbl[] = { 730 // VDUP handles these cases. 731 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 732 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 733 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 734 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 735 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 736 737 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 738 739 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 740 LT.second)) 741 return LT.first * Entry->Cost * ST->getMVEVectorCostFactor(); 742 } 743 } 744 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 745 ? ST->getMVEVectorCostFactor() 746 : 1; 747 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 748 } 749 750 int ARMTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 751 TTI::TargetCostKind CostKind, 752 TTI::OperandValueKind Op1Info, 753 TTI::OperandValueKind Op2Info, 754 TTI::OperandValueProperties Opd1PropInfo, 755 TTI::OperandValueProperties Opd2PropInfo, 756 ArrayRef<const Value *> Args, 757 const Instruction *CxtI) { 758 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 759 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 760 761 if (ST->hasNEON()) { 762 const unsigned FunctionCallDivCost = 20; 763 const unsigned ReciprocalDivCost = 10; 764 static const CostTblEntry CostTbl[] = { 765 // Division. 766 // These costs are somewhat random. Choose a cost of 20 to indicate that 767 // vectorizing devision (added function call) is going to be very expensive. 768 // Double registers types. 769 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 770 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 771 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 772 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 773 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 774 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 775 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 776 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 777 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 778 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 779 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 780 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 781 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 782 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 783 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 784 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 785 // Quad register types. 786 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 787 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 788 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 789 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 790 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 791 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 792 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 793 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 794 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 795 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 796 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 797 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 798 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 799 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 800 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 801 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 802 // Multiplication. 803 }; 804 805 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 806 return LT.first * Entry->Cost; 807 808 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 809 Op2Info, 810 Opd1PropInfo, Opd2PropInfo); 811 812 // This is somewhat of a hack. The problem that we are facing is that SROA 813 // creates a sequence of shift, and, or instructions to construct values. 814 // These sequences are recognized by the ISel and have zero-cost. Not so for 815 // the vectorized code. Because we have support for v2i64 but not i64 those 816 // sequences look particularly beneficial to vectorize. 817 // To work around this we increase the cost of v2i64 operations to make them 818 // seem less beneficial. 819 if (LT.second == MVT::v2i64 && 820 Op2Info == TargetTransformInfo::OK_UniformConstantValue) 821 Cost += 4; 822 823 return Cost; 824 } 825 826 // If this operation is a shift on arm/thumb2, it might well be folded into 827 // the following instruction, hence having a cost of 0. 828 auto LooksLikeAFreeShift = [&]() { 829 if (ST->isThumb1Only() || Ty->isVectorTy()) 830 return false; 831 832 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 833 return false; 834 if (Op2Info != TargetTransformInfo::OK_UniformConstantValue) 835 return false; 836 837 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 838 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 839 case Instruction::Add: 840 case Instruction::Sub: 841 case Instruction::And: 842 case Instruction::Xor: 843 case Instruction::Or: 844 case Instruction::ICmp: 845 return true; 846 default: 847 return false; 848 } 849 }; 850 if (LooksLikeAFreeShift()) 851 return 0; 852 853 int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy() 854 ? ST->getMVEVectorCostFactor() 855 : 1; 856 857 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 858 // without treating floats as more expensive that scalars or increasing the 859 // costs for custom operations. The results is also multiplied by the 860 // MVEVectorCostFactor where appropriate. 861 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 862 return LT.first * BaseCost; 863 864 // Else this is expand, assume that we need to scalarize this op. 865 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { 866 unsigned Num = VTy->getNumElements(); 867 unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType(), 868 CostKind); 869 // Return the cost of multiple scalar invocation plus the cost of 870 // inserting and extracting the values. 871 return BaseT::getScalarizationOverhead(VTy, Args) + Num * Cost; 872 } 873 874 return BaseCost; 875 } 876 877 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 878 MaybeAlign Alignment, unsigned AddressSpace, 879 TTI::TargetCostKind CostKind, 880 const Instruction *I) { 881 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 882 883 if (ST->hasNEON() && Src->isVectorTy() && 884 (Alignment && *Alignment != Align(16)) && 885 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 886 // Unaligned loads/stores are extremely inefficient. 887 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 888 return LT.first * 4; 889 } 890 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 891 ? ST->getMVEVectorCostFactor() 892 : 1; 893 return BaseCost * LT.first; 894 } 895 896 int ARMTTIImpl::getInterleavedMemoryOpCost( 897 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 898 unsigned Alignment, unsigned AddressSpace, 899 TTI::TargetCostKind CostKind, 900 bool UseMaskForCond, bool UseMaskForGaps) { 901 assert(Factor >= 2 && "Invalid interleave factor"); 902 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 903 904 // vldN/vstN doesn't support vector types of i64/f64 element. 905 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 906 907 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 908 !UseMaskForCond && !UseMaskForGaps) { 909 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 910 auto *SubVecTy = 911 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 912 913 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 914 // Accesses having vector types that are a multiple of 128 bits can be 915 // matched to more than one vldN/vstN instruction. 916 int BaseCost = ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor() : 1; 917 if (NumElts % Factor == 0 && 918 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, DL)) 919 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 920 921 // Some smaller than legal interleaved patterns are cheap as we can make 922 // use of the vmovn or vrev patterns to interleave a standard load. This is 923 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 924 // promoted differently). The cost of 2 here is then a load and vrev or 925 // vmovn. 926 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 927 VecTy->isIntOrIntVectorTy() && DL.getTypeSizeInBits(SubVecTy) <= 64) 928 return 2 * BaseCost; 929 } 930 931 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 932 Alignment, AddressSpace, CostKind, 933 UseMaskForCond, UseMaskForGaps); 934 } 935 936 unsigned ARMTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 937 Value *Ptr, bool VariableMask, 938 unsigned Alignment, 939 TTI::TargetCostKind CostKind, 940 const Instruction *I) { 941 using namespace PatternMatch; 942 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 943 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 944 Alignment, CostKind, I); 945 946 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 947 auto *VTy = cast<FixedVectorType>(DataTy); 948 949 // TODO: Splitting, once we do that. 950 951 unsigned NumElems = VTy->getNumElements(); 952 unsigned EltSize = VTy->getScalarSizeInBits(); 953 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy); 954 955 // For now, it is assumed that for the MVE gather instructions the loads are 956 // all effectively serialised. This means the cost is the scalar cost 957 // multiplied by the number of elements being loaded. This is possibly very 958 // conservative, but even so we still end up vectorising loops because the 959 // cost per iteration for many loops is lower than for scalar loops. 960 unsigned VectorCost = NumElems * LT.first; 961 // The scalarization cost should be a lot higher. We use the number of vector 962 // elements plus the scalarization overhead. 963 unsigned ScalarCost = 964 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, {}); 965 966 if (Alignment < EltSize / 8) 967 return ScalarCost; 968 969 unsigned ExtSize = EltSize; 970 // Check whether there's a single user that asks for an extended type 971 if (I != nullptr) { 972 // Dependent of the caller of this function, a gather instruction will 973 // either have opcode Instruction::Load or be a call to the masked_gather 974 // intrinsic 975 if ((I->getOpcode() == Instruction::Load || 976 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 977 I->hasOneUse()) { 978 const User *Us = *I->users().begin(); 979 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 980 // only allow valid type combinations 981 unsigned TypeSize = 982 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 983 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 984 (TypeSize == 16 && EltSize == 8)) && 985 TypeSize * NumElems == 128) { 986 ExtSize = TypeSize; 987 } 988 } 989 } 990 // Check whether the input data needs to be truncated 991 TruncInst *T; 992 if ((I->getOpcode() == Instruction::Store || 993 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 994 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 995 // Only allow valid type combinations 996 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 997 if (((EltSize == 16 && TypeSize == 32) || 998 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 999 TypeSize * NumElems == 128) 1000 ExtSize = TypeSize; 1001 } 1002 } 1003 1004 if (ExtSize * NumElems != 128 || NumElems < 4) 1005 return ScalarCost; 1006 1007 // Any (aligned) i32 gather will not need to be scalarised. 1008 if (ExtSize == 32) 1009 return VectorCost; 1010 // For smaller types, we need to ensure that the gep's inputs are correctly 1011 // extended from a small enough value. Other sizes (including i64) are 1012 // scalarized for now. 1013 if (ExtSize != 8 && ExtSize != 16) 1014 return ScalarCost; 1015 1016 if (auto BC = dyn_cast<BitCastInst>(Ptr)) 1017 Ptr = BC->getOperand(0); 1018 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1019 if (GEP->getNumOperands() != 2) 1020 return ScalarCost; 1021 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1022 // Scale needs to be correct (which is only relevant for i16s). 1023 if (Scale != 1 && Scale * 8 != ExtSize) 1024 return ScalarCost; 1025 // And we need to zext (not sext) the indexes from a small enough type. 1026 if (auto ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1027 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1028 return VectorCost; 1029 } 1030 return ScalarCost; 1031 } 1032 return ScalarCost; 1033 } 1034 1035 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1036 if (!F->isIntrinsic()) 1037 BaseT::isLoweredToCall(F); 1038 1039 // Assume all Arm-specific intrinsics map to an instruction. 1040 if (F->getName().startswith("llvm.arm")) 1041 return false; 1042 1043 switch (F->getIntrinsicID()) { 1044 default: break; 1045 case Intrinsic::powi: 1046 case Intrinsic::sin: 1047 case Intrinsic::cos: 1048 case Intrinsic::pow: 1049 case Intrinsic::log: 1050 case Intrinsic::log10: 1051 case Intrinsic::log2: 1052 case Intrinsic::exp: 1053 case Intrinsic::exp2: 1054 return true; 1055 case Intrinsic::sqrt: 1056 case Intrinsic::fabs: 1057 case Intrinsic::copysign: 1058 case Intrinsic::floor: 1059 case Intrinsic::ceil: 1060 case Intrinsic::trunc: 1061 case Intrinsic::rint: 1062 case Intrinsic::nearbyint: 1063 case Intrinsic::round: 1064 case Intrinsic::canonicalize: 1065 case Intrinsic::lround: 1066 case Intrinsic::llround: 1067 case Intrinsic::lrint: 1068 case Intrinsic::llrint: 1069 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 1070 return true; 1071 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 1072 return true; 1073 // Some operations can be handled by vector instructions and assume 1074 // unsupported vectors will be expanded into supported scalar ones. 1075 // TODO Handle scalar operations properly. 1076 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 1077 case Intrinsic::masked_store: 1078 case Intrinsic::masked_load: 1079 case Intrinsic::masked_gather: 1080 case Intrinsic::masked_scatter: 1081 return !ST->hasMVEIntegerOps(); 1082 case Intrinsic::sadd_with_overflow: 1083 case Intrinsic::uadd_with_overflow: 1084 case Intrinsic::ssub_with_overflow: 1085 case Intrinsic::usub_with_overflow: 1086 case Intrinsic::sadd_sat: 1087 case Intrinsic::uadd_sat: 1088 case Intrinsic::ssub_sat: 1089 case Intrinsic::usub_sat: 1090 return false; 1091 } 1092 1093 return BaseT::isLoweredToCall(F); 1094 } 1095 1096 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1097 AssumptionCache &AC, 1098 TargetLibraryInfo *LibInfo, 1099 HardwareLoopInfo &HWLoopInfo) { 1100 // Low-overhead branches are only supported in the 'low-overhead branch' 1101 // extension of v8.1-m. 1102 if (!ST->hasLOB() || DisableLowOverheadLoops) { 1103 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 1104 return false; 1105 } 1106 1107 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 1108 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 1109 return false; 1110 } 1111 1112 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1113 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1114 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 1115 return false; 1116 } 1117 1118 const SCEV *TripCountSCEV = 1119 SE.getAddExpr(BackedgeTakenCount, 1120 SE.getOne(BackedgeTakenCount->getType())); 1121 1122 // We need to store the trip count in LR, a 32-bit register. 1123 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 1124 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 1125 return false; 1126 } 1127 1128 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 1129 // point in generating a hardware loop if that's going to happen. 1130 auto MaybeCall = [this](Instruction &I) { 1131 const ARMTargetLowering *TLI = getTLI(); 1132 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 1133 EVT VT = TLI->getValueType(DL, I.getType(), true); 1134 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 1135 return true; 1136 1137 // Check if an intrinsic will be lowered to a call and assume that any 1138 // other CallInst will generate a bl. 1139 if (auto *Call = dyn_cast<CallInst>(&I)) { 1140 if (isa<IntrinsicInst>(Call)) { 1141 if (const Function *F = Call->getCalledFunction()) 1142 return isLoweredToCall(F); 1143 } 1144 return true; 1145 } 1146 1147 // FPv5 provides conversions between integer, double-precision, 1148 // single-precision, and half-precision formats. 1149 switch (I.getOpcode()) { 1150 default: 1151 break; 1152 case Instruction::FPToSI: 1153 case Instruction::FPToUI: 1154 case Instruction::SIToFP: 1155 case Instruction::UIToFP: 1156 case Instruction::FPTrunc: 1157 case Instruction::FPExt: 1158 return !ST->hasFPARMv8Base(); 1159 } 1160 1161 // FIXME: Unfortunately the approach of checking the Operation Action does 1162 // not catch all cases of Legalization that use library calls. Our 1163 // Legalization step categorizes some transformations into library calls as 1164 // Custom, Expand or even Legal when doing type legalization. So for now 1165 // we have to special case for instance the SDIV of 64bit integers and the 1166 // use of floating point emulation. 1167 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 1168 switch (ISD) { 1169 default: 1170 break; 1171 case ISD::SDIV: 1172 case ISD::UDIV: 1173 case ISD::SREM: 1174 case ISD::UREM: 1175 case ISD::SDIVREM: 1176 case ISD::UDIVREM: 1177 return true; 1178 } 1179 } 1180 1181 // Assume all other non-float operations are supported. 1182 if (!VT.isFloatingPoint()) 1183 return false; 1184 1185 // We'll need a library call to handle most floats when using soft. 1186 if (TLI->useSoftFloat()) { 1187 switch (I.getOpcode()) { 1188 default: 1189 return true; 1190 case Instruction::Alloca: 1191 case Instruction::Load: 1192 case Instruction::Store: 1193 case Instruction::Select: 1194 case Instruction::PHI: 1195 return false; 1196 } 1197 } 1198 1199 // We'll need a libcall to perform double precision operations on a single 1200 // precision only FPU. 1201 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 1202 return true; 1203 1204 // Likewise for half precision arithmetic. 1205 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 1206 return true; 1207 1208 return false; 1209 }; 1210 1211 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 1212 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 1213 switch (Call->getIntrinsicID()) { 1214 default: 1215 break; 1216 case Intrinsic::set_loop_iterations: 1217 case Intrinsic::test_set_loop_iterations: 1218 case Intrinsic::loop_decrement: 1219 case Intrinsic::loop_decrement_reg: 1220 return true; 1221 } 1222 } 1223 return false; 1224 }; 1225 1226 // Scan the instructions to see if there's any that we know will turn into a 1227 // call or if this loop is already a low-overhead loop. 1228 auto ScanLoop = [&](Loop *L) { 1229 for (auto *BB : L->getBlocks()) { 1230 for (auto &I : *BB) { 1231 if (MaybeCall(I) || IsHardwareLoopIntrinsic(I)) { 1232 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 1233 return false; 1234 } 1235 } 1236 } 1237 return true; 1238 }; 1239 1240 // Visit inner loops. 1241 for (auto Inner : *L) 1242 if (!ScanLoop(Inner)) 1243 return false; 1244 1245 if (!ScanLoop(L)) 1246 return false; 1247 1248 // TODO: Check whether the trip count calculation is expensive. If L is the 1249 // inner loop but we know it has a low trip count, calculating that trip 1250 // count (in the parent loop) may be detrimental. 1251 1252 LLVMContext &C = L->getHeader()->getContext(); 1253 HWLoopInfo.CounterInReg = true; 1254 HWLoopInfo.IsNestingLegal = false; 1255 HWLoopInfo.PerformEntryTest = true; 1256 HWLoopInfo.CountType = Type::getInt32Ty(C); 1257 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 1258 return true; 1259 } 1260 1261 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 1262 // We don't allow icmp's, and because we only look at single block loops, 1263 // we simply count the icmps, i.e. there should only be 1 for the backedge. 1264 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 1265 return false; 1266 1267 if (isa<FCmpInst>(&I)) 1268 return false; 1269 1270 // We could allow extending/narrowing FP loads/stores, but codegen is 1271 // too inefficient so reject this for now. 1272 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 1273 return false; 1274 1275 // Extends have to be extending-loads 1276 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 1277 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 1278 return false; 1279 1280 // Truncs have to be narrowing-stores 1281 if (isa<TruncInst>(&I) ) 1282 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 1283 return false; 1284 1285 return true; 1286 } 1287 1288 // To set up a tail-predicated loop, we need to know the total number of 1289 // elements processed by that loop. Thus, we need to determine the element 1290 // size and: 1291 // 1) it should be uniform for all operations in the vector loop, so we 1292 // e.g. don't want any widening/narrowing operations. 1293 // 2) it should be smaller than i64s because we don't have vector operations 1294 // that work on i64s. 1295 // 3) we don't want elements to be reversed or shuffled, to make sure the 1296 // tail-predication masks/predicates the right lanes. 1297 // 1298 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 1299 const DataLayout &DL, 1300 const LoopAccessInfo *LAI) { 1301 PredicatedScalarEvolution PSE = LAI->getPSE(); 1302 int ICmpCount = 0; 1303 int Stride = 0; 1304 1305 LLVM_DEBUG(dbgs() << "tail-predication: checking allowed instructions\n"); 1306 SmallVector<Instruction *, 16> LoadStores; 1307 for (BasicBlock *BB : L->blocks()) { 1308 for (Instruction &I : BB->instructionsWithoutDebug()) { 1309 if (isa<PHINode>(&I)) 1310 continue; 1311 if (!canTailPredicateInstruction(I, ICmpCount)) { 1312 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 1313 return false; 1314 } 1315 1316 Type *T = I.getType(); 1317 if (T->isPointerTy()) 1318 T = T->getPointerElementType(); 1319 1320 if (T->getScalarSizeInBits() > 32) { 1321 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 1322 return false; 1323 } 1324 1325 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 1326 Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1); 1327 int64_t NextStride = getPtrStride(PSE, Ptr, L); 1328 // TODO: for now only allow consecutive strides of 1. We could support 1329 // other strides as long as it is uniform, but let's keep it simple for 1330 // now. 1331 if (Stride == 0 && NextStride == 1) { 1332 Stride = NextStride; 1333 continue; 1334 } 1335 if (Stride != NextStride) { 1336 LLVM_DEBUG(dbgs() << "Different strides found, can't " 1337 "tail-predicate\n."); 1338 return false; 1339 } 1340 } 1341 } 1342 } 1343 1344 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 1345 return true; 1346 } 1347 1348 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, 1349 ScalarEvolution &SE, 1350 AssumptionCache &AC, 1351 TargetLibraryInfo *TLI, 1352 DominatorTree *DT, 1353 const LoopAccessInfo *LAI) { 1354 if (DisableTailPredication) 1355 return false; 1356 1357 // Creating a predicated vector loop is the first step for generating a 1358 // tail-predicated hardware loop, for which we need the MVE masked 1359 // load/stores instructions: 1360 if (!ST->hasMVEIntegerOps()) 1361 return false; 1362 1363 // For now, restrict this to single block loops. 1364 if (L->getNumBlocks() > 1) { 1365 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 1366 "loop.\n"); 1367 return false; 1368 } 1369 1370 assert(L->empty() && "preferPredicateOverEpilogue: inner-loop expected"); 1371 1372 HardwareLoopInfo HWLoopInfo(L); 1373 if (!HWLoopInfo.canAnalyze(*LI)) { 1374 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 1375 "analyzable.\n"); 1376 return false; 1377 } 1378 1379 // This checks if we have the low-overhead branch architecture 1380 // extension, and if we will create a hardware-loop: 1381 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { 1382 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 1383 "profitable.\n"); 1384 return false; 1385 } 1386 1387 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { 1388 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 1389 "a candidate.\n"); 1390 return false; 1391 } 1392 1393 return canTailPredicateLoop(L, LI, SE, DL, LAI); 1394 } 1395 1396 bool ARMTTIImpl::emitGetActiveLaneMask(Loop *L, LoopInfo *LI, 1397 ScalarEvolution &SE, bool TailFolded) const { 1398 // TODO: if this loop is tail-folded, we want to emit the 1399 // llvm.get.active.lane.mask intrinsic so that this can be picked up in the 1400 // MVETailPredication pass that needs to know the number of elements 1401 // processed by this vector loop. 1402 return false; 1403 } 1404 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1405 TTI::UnrollingPreferences &UP) { 1406 // Only currently enable these preferences for M-Class cores. 1407 if (!ST->isMClass()) 1408 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); 1409 1410 // Disable loop unrolling for Oz and Os. 1411 UP.OptSizeThreshold = 0; 1412 UP.PartialOptSizeThreshold = 0; 1413 if (L->getHeader()->getParent()->hasOptSize()) 1414 return; 1415 1416 // Only enable on Thumb-2 targets. 1417 if (!ST->isThumb2()) 1418 return; 1419 1420 SmallVector<BasicBlock*, 4> ExitingBlocks; 1421 L->getExitingBlocks(ExitingBlocks); 1422 LLVM_DEBUG(dbgs() << "Loop has:\n" 1423 << "Blocks: " << L->getNumBlocks() << "\n" 1424 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 1425 1426 // Only allow another exit other than the latch. This acts as an early exit 1427 // as it mirrors the profitability calculation of the runtime unroller. 1428 if (ExitingBlocks.size() > 2) 1429 return; 1430 1431 // Limit the CFG of the loop body for targets with a branch predictor. 1432 // Allowing 4 blocks permits if-then-else diamonds in the body. 1433 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 1434 return; 1435 1436 // Scan the loop: don't unroll loops with calls as this could prevent 1437 // inlining. 1438 unsigned Cost = 0; 1439 for (auto *BB : L->getBlocks()) { 1440 for (auto &I : *BB) { 1441 // Don't unroll vectorised loop. MVE does not benefit from it as much as 1442 // scalar code. 1443 if (I.getType()->isVectorTy()) 1444 return; 1445 1446 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1447 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 1448 if (!isLoweredToCall(F)) 1449 continue; 1450 } 1451 return; 1452 } 1453 1454 SmallVector<const Value*, 4> Operands(I.value_op_begin(), 1455 I.value_op_end()); 1456 Cost += getUserCost(&I, Operands, TargetTransformInfo::TCK_CodeSize); 1457 } 1458 } 1459 1460 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 1461 1462 UP.Partial = true; 1463 UP.Runtime = true; 1464 UP.UpperBound = true; 1465 UP.UnrollRemainder = true; 1466 UP.DefaultUnrollRuntimeCount = 4; 1467 UP.UnrollAndJam = true; 1468 UP.UnrollAndJamInnerLoopThreshold = 60; 1469 1470 // Force unrolling small loops can be very useful because of the branch 1471 // taken cost of the backedge. 1472 if (Cost < 12) 1473 UP.Force = true; 1474 } 1475 1476 bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 1477 TTI::ReductionFlags Flags) const { 1478 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type"); 1479 unsigned ScalarBits = Ty->getScalarSizeInBits(); 1480 if (!ST->hasMVEIntegerOps()) 1481 return false; 1482 1483 switch (Opcode) { 1484 case Instruction::FAdd: 1485 case Instruction::FMul: 1486 case Instruction::And: 1487 case Instruction::Or: 1488 case Instruction::Xor: 1489 case Instruction::Mul: 1490 case Instruction::FCmp: 1491 return false; 1492 case Instruction::ICmp: 1493 case Instruction::Add: 1494 return ScalarBits < 64 && 1495 (ScalarBits * cast<FixedVectorType>(Ty)->getNumElements()) % 128 == 1496 0; 1497 default: 1498 llvm_unreachable("Unhandled reduction opcode"); 1499 } 1500 return false; 1501 } 1502