1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/CallSite.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/Type.h" 26 #include "llvm/MC/SubtargetFeature.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/MachineValueType.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstdint> 33 #include <utility> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "armtti" 38 39 static cl::opt<bool> EnableMaskedLoadStores( 40 "enable-arm-maskedldst", cl::Hidden, cl::init(false), 41 cl::desc("Enable the generation of masked loads and stores")); 42 43 static cl::opt<bool> DisableLowOverheadLoops( 44 "disable-arm-loloops", cl::Hidden, cl::init(false), 45 cl::desc("Disable the generation of low-overhead loops")); 46 47 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 48 const Function *Callee) const { 49 const TargetMachine &TM = getTLI()->getTargetMachine(); 50 const FeatureBitset &CallerBits = 51 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 52 const FeatureBitset &CalleeBits = 53 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 54 55 // To inline a callee, all features not in the whitelist must match exactly. 56 bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == 57 (CalleeBits & ~InlineFeatureWhitelist); 58 // For features in the whitelist, the callee's features must be a subset of 59 // the callers'. 60 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == 61 (CalleeBits & InlineFeatureWhitelist); 62 return MatchExact && MatchSubset; 63 } 64 65 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 66 assert(Ty->isIntegerTy()); 67 68 unsigned Bits = Ty->getPrimitiveSizeInBits(); 69 if (Bits == 0 || Imm.getActiveBits() >= 64) 70 return 4; 71 72 int64_t SImmVal = Imm.getSExtValue(); 73 uint64_t ZImmVal = Imm.getZExtValue(); 74 if (!ST->isThumb()) { 75 if ((SImmVal >= 0 && SImmVal < 65536) || 76 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 77 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 78 return 1; 79 return ST->hasV6T2Ops() ? 2 : 3; 80 } 81 if (ST->isThumb2()) { 82 if ((SImmVal >= 0 && SImmVal < 65536) || 83 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 84 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 85 return 1; 86 return ST->hasV6T2Ops() ? 2 : 3; 87 } 88 // Thumb1, any i8 imm cost 1. 89 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 90 return 1; 91 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 92 return 2; 93 // Load from constantpool. 94 return 3; 95 } 96 97 // Constants smaller than 256 fit in the immediate field of 98 // Thumb1 instructions so we return a zero cost and 1 otherwise. 99 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 100 const APInt &Imm, Type *Ty) { 101 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 102 return 0; 103 104 return 1; 105 } 106 107 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 108 Type *Ty) { 109 // Division by a constant can be turned into multiplication, but only if we 110 // know it's constant. So it's not so much that the immediate is cheap (it's 111 // not), but that the alternative is worse. 112 // FIXME: this is probably unneeded with GlobalISel. 113 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 114 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 115 Idx == 1) 116 return 0; 117 118 if (Opcode == Instruction::And) { 119 // UXTB/UXTH 120 if (Imm == 255 || Imm == 65535) 121 return 0; 122 // Conversion to BIC is free, and means we can use ~Imm instead. 123 return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty)); 124 } 125 126 if (Opcode == Instruction::Add) 127 // Conversion to SUB is free, and means we can use -Imm instead. 128 return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty)); 129 130 if (Opcode == Instruction::ICmp && Imm.isNegative() && 131 Ty->getIntegerBitWidth() == 32) { 132 int64_t NegImm = -Imm.getSExtValue(); 133 if (ST->isThumb2() && NegImm < 1<<12) 134 // icmp X, #-C -> cmn X, #C 135 return 0; 136 if (ST->isThumb() && NegImm < 1<<8) 137 // icmp X, #-C -> adds X, #C 138 return 0; 139 } 140 141 // xor a, -1 can always be folded to MVN 142 if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) 143 return 0; 144 145 return getIntImmCost(Imm, Ty); 146 } 147 148 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 149 const Instruction *I) { 150 int ISD = TLI->InstructionOpcodeToISD(Opcode); 151 assert(ISD && "Invalid opcode"); 152 153 // Single to/from double precision conversions. 154 static const CostTblEntry NEONFltDblTbl[] = { 155 // Vector fptrunc/fpext conversions. 156 { ISD::FP_ROUND, MVT::v2f64, 2 }, 157 { ISD::FP_EXTEND, MVT::v2f32, 2 }, 158 { ISD::FP_EXTEND, MVT::v4f32, 4 } 159 }; 160 161 if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || 162 ISD == ISD::FP_EXTEND)) { 163 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 164 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 165 return LT.first * Entry->Cost; 166 } 167 168 EVT SrcTy = TLI->getValueType(DL, Src); 169 EVT DstTy = TLI->getValueType(DL, Dst); 170 171 if (!SrcTy.isSimple() || !DstTy.isSimple()) 172 return BaseT::getCastInstrCost(Opcode, Dst, Src); 173 174 // The extend of a load is free 175 if (I && isa<LoadInst>(I->getOperand(0))) { 176 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 177 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 178 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 179 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 180 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 181 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 182 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 183 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 184 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 185 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 186 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 187 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 188 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 189 }; 190 if (const auto *Entry = ConvertCostTableLookup( 191 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 192 return Entry->Cost; 193 194 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 195 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 196 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 197 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 198 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 199 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 200 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 201 }; 202 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 203 if (const auto *Entry = 204 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 205 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 206 return Entry->Cost; 207 } 208 } 209 210 // Some arithmetic, load and store operations have specific instructions 211 // to cast up/down their types automatically at no extra cost. 212 // TODO: Get these tables to know at least what the related operations are. 213 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 214 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, 215 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, 216 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 217 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 218 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 219 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 220 221 // The number of vmovl instructions for the extension. 222 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 223 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 224 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 225 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 226 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 227 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 228 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 229 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 230 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 231 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 232 233 // Operations that we legalize using splitting. 234 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 235 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 236 237 // Vector float <-> i32 conversions. 238 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 239 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 240 241 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 242 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 243 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 244 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 245 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 246 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 247 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 248 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 249 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 250 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 251 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 252 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 253 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 254 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 255 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 256 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 257 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 258 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 259 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 260 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 261 262 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 263 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 264 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 265 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 266 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 267 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 268 269 // Vector double <-> i32 conversions. 270 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 271 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 272 273 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 274 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 275 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 276 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 277 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 278 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 279 280 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 281 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 282 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 283 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 284 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 285 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 286 }; 287 288 if (SrcTy.isVector() && ST->hasNEON()) { 289 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 290 DstTy.getSimpleVT(), 291 SrcTy.getSimpleVT())) 292 return Entry->Cost; 293 } 294 295 // Scalar float to integer conversions. 296 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 297 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 298 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 299 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 300 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 301 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 302 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 303 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 304 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 305 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 306 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 307 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 308 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 309 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 310 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 311 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 312 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 313 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 314 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 315 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 316 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 317 }; 318 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 319 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 320 DstTy.getSimpleVT(), 321 SrcTy.getSimpleVT())) 322 return Entry->Cost; 323 } 324 325 // Scalar integer to float conversions. 326 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 327 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 328 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 329 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 330 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 331 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 332 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 333 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 334 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 335 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 336 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 337 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 338 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 339 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 340 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 341 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 342 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 343 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 344 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 345 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 346 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 347 }; 348 349 if (SrcTy.isInteger() && ST->hasNEON()) { 350 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 351 ISD, DstTy.getSimpleVT(), 352 SrcTy.getSimpleVT())) 353 return Entry->Cost; 354 } 355 356 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 357 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 358 // are linearised so take more. 359 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 360 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 361 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 362 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 363 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 364 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 365 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 366 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 367 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 368 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 369 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 370 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 371 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 372 }; 373 374 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 375 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 376 ISD, DstTy.getSimpleVT(), 377 SrcTy.getSimpleVT())) 378 return Entry->Cost * ST->getMVEVectorCostFactor(); 379 } 380 381 // Scalar integer conversion costs. 382 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 383 // i16 -> i64 requires two dependent operations. 384 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 385 386 // Truncates on i64 are assumed to be free. 387 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 388 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 389 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 390 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 391 }; 392 393 if (SrcTy.isInteger()) { 394 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 395 DstTy.getSimpleVT(), 396 SrcTy.getSimpleVT())) 397 return Entry->Cost; 398 } 399 400 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 401 ? ST->getMVEVectorCostFactor() 402 : 1; 403 return BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src); 404 } 405 406 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 407 unsigned Index) { 408 // Penalize inserting into an D-subregister. We end up with a three times 409 // lower estimated throughput on swift. 410 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 411 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 412 return 3; 413 414 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 415 Opcode == Instruction::ExtractElement)) { 416 // Cross-class copies are expensive on many microarchitectures, 417 // so assume they are expensive by default. 418 if (ValTy->getVectorElementType()->isIntegerTy()) 419 return 3; 420 421 // Even if it's not a cross class copy, this likely leads to mixing 422 // of NEON and VFP code and should be therefore penalized. 423 if (ValTy->isVectorTy() && 424 ValTy->getScalarSizeInBits() <= 32) 425 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 426 } 427 428 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 429 Opcode == Instruction::ExtractElement)) { 430 // We say MVE moves costs at least the MVEVectorCostFactor, even though 431 // they are scalar instructions. This helps prevent mixing scalar and 432 // vector, to prevent vectorising where we end up just scalarising the 433 // result anyway. 434 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 435 ST->getMVEVectorCostFactor()) * 436 ValTy->getVectorNumElements() / 2; 437 } 438 439 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 440 } 441 442 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 443 const Instruction *I) { 444 int ISD = TLI->InstructionOpcodeToISD(Opcode); 445 // On NEON a vector select gets lowered to vbsl. 446 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { 447 // Lowering of some vector selects is currently far from perfect. 448 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 449 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 450 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 451 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 452 }; 453 454 EVT SelCondTy = TLI->getValueType(DL, CondTy); 455 EVT SelValTy = TLI->getValueType(DL, ValTy); 456 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 457 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 458 SelCondTy.getSimpleVT(), 459 SelValTy.getSimpleVT())) 460 return Entry->Cost; 461 } 462 463 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 464 return LT.first; 465 } 466 467 int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy() 468 ? ST->getMVEVectorCostFactor() 469 : 1; 470 return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 471 } 472 473 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 474 const SCEV *Ptr) { 475 // Address computations in vectorized code with non-consecutive addresses will 476 // likely result in more instructions compared to scalar code where the 477 // computation can more often be merged into the index mode. The resulting 478 // extra micro-ops can significantly decrease throughput. 479 unsigned NumVectorInstToHideOverhead = 10; 480 int MaxMergeDistance = 64; 481 482 if (ST->hasNEON()) { 483 if (Ty->isVectorTy() && SE && 484 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 485 return NumVectorInstToHideOverhead; 486 487 // In many cases the address computation is not merged into the instruction 488 // addressing mode. 489 return 1; 490 } 491 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 492 } 493 494 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy) { 495 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 496 return false; 497 498 if (DataTy->isVectorTy()) { 499 // We don't yet support narrowing or widening masked loads/stores. Expand 500 // them for the moment. 501 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 502 if (VecWidth != 128) 503 return false; 504 } 505 506 unsigned EltWidth = DataTy->getScalarSizeInBits(); 507 return EltWidth == 32 || EltWidth == 16 || EltWidth == 8; 508 } 509 510 int ARMTTIImpl::getMemcpyCost(const Instruction *I) { 511 const MemCpyInst *MI = dyn_cast<MemCpyInst>(I); 512 assert(MI && "MemcpyInst expected"); 513 ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength()); 514 515 // To model the cost of a library call, we assume 1 for the call, and 516 // 3 for the argument setup. 517 const unsigned LibCallCost = 4; 518 519 // If 'size' is not a constant, a library call will be generated. 520 if (!C) 521 return LibCallCost; 522 523 const unsigned Size = C->getValue().getZExtValue(); 524 const unsigned DstAlign = MI->getDestAlignment(); 525 const unsigned SrcAlign = MI->getSourceAlignment(); 526 const Function *F = I->getParent()->getParent(); 527 const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 528 std::vector<EVT> MemOps; 529 530 // MemOps will be poplulated with a list of data types that needs to be 531 // loaded and stored. That's why we multiply the number of elements by 2 to 532 // get the cost for this memcpy. 533 if (getTLI()->findOptimalMemOpLowering( 534 MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/, 535 false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/, 536 MI->getDestAddressSpace(), MI->getSourceAddressSpace(), 537 F->getAttributes())) 538 return MemOps.size() * 2; 539 540 // If we can't find an optimal memop lowering, return the default cost 541 return LibCallCost; 542 } 543 544 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 545 Type *SubTp) { 546 if (ST->hasNEON()) { 547 if (Kind == TTI::SK_Broadcast) { 548 static const CostTblEntry NEONDupTbl[] = { 549 // VDUP handles these cases. 550 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 551 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 552 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 553 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 554 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 555 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 556 557 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 558 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 559 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 560 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 561 562 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 563 564 if (const auto *Entry = 565 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 566 return LT.first * Entry->Cost; 567 } 568 if (Kind == TTI::SK_Reverse) { 569 static const CostTblEntry NEONShuffleTbl[] = { 570 // Reverse shuffle cost one instruction if we are shuffling within a 571 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 572 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 573 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 574 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 575 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 576 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 577 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 578 579 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 580 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 581 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 582 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 583 584 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 585 586 if (const auto *Entry = 587 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 588 return LT.first * Entry->Cost; 589 } 590 if (Kind == TTI::SK_Select) { 591 static const CostTblEntry NEONSelShuffleTbl[] = { 592 // Select shuffle cost table for ARM. Cost is the number of 593 // instructions 594 // required to create the shuffled vector. 595 596 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 597 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 598 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 599 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 600 601 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 602 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 603 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 604 605 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 606 607 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 608 609 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 610 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 611 ISD::VECTOR_SHUFFLE, LT.second)) 612 return LT.first * Entry->Cost; 613 } 614 } 615 if (ST->hasMVEIntegerOps()) { 616 if (Kind == TTI::SK_Broadcast) { 617 static const CostTblEntry MVEDupTbl[] = { 618 // VDUP handles these cases. 619 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 620 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 621 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 622 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 623 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 624 625 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 626 627 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 628 LT.second)) 629 return LT.first * Entry->Cost * ST->getMVEVectorCostFactor(); 630 } 631 } 632 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 633 ? ST->getMVEVectorCostFactor() 634 : 1; 635 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 636 } 637 638 int ARMTTIImpl::getArithmeticInstrCost( 639 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 640 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 641 TTI::OperandValueProperties Opd2PropInfo, 642 ArrayRef<const Value *> Args) { 643 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 644 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 645 646 const unsigned FunctionCallDivCost = 20; 647 const unsigned ReciprocalDivCost = 10; 648 static const CostTblEntry CostTbl[] = { 649 // Division. 650 // These costs are somewhat random. Choose a cost of 20 to indicate that 651 // vectorizing devision (added function call) is going to be very expensive. 652 // Double registers types. 653 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 654 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 655 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 656 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 657 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 658 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 659 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 660 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 661 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 662 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 663 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 664 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 665 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 666 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 667 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 668 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 669 // Quad register types. 670 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 671 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 672 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 673 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 674 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 675 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 676 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 677 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 678 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 679 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 680 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 681 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 682 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 683 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 684 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 685 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 686 // Multiplication. 687 }; 688 689 if (ST->hasNEON()) { 690 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 691 return LT.first * Entry->Cost; 692 693 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 694 Opd1PropInfo, Opd2PropInfo); 695 696 // This is somewhat of a hack. The problem that we are facing is that SROA 697 // creates a sequence of shift, and, or instructions to construct values. 698 // These sequences are recognized by the ISel and have zero-cost. Not so for 699 // the vectorized code. Because we have support for v2i64 but not i64 those 700 // sequences look particularly beneficial to vectorize. 701 // To work around this we increase the cost of v2i64 operations to make them 702 // seem less beneficial. 703 if (LT.second == MVT::v2i64 && 704 Op2Info == TargetTransformInfo::OK_UniformConstantValue) 705 Cost += 4; 706 707 return Cost; 708 } 709 710 int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy() 711 ? ST->getMVEVectorCostFactor() 712 : 1; 713 714 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 715 // without treating floats as more expensive that scalars or increasing the 716 // costs for custom operations. The results is also multiplied by the 717 // MVEVectorCostFactor where appropriate. 718 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 719 return LT.first * BaseCost; 720 721 // Else this is expand, assume that we need to scalarize this op. 722 if (Ty->isVectorTy()) { 723 unsigned Num = Ty->getVectorNumElements(); 724 unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); 725 // Return the cost of multiple scalar invocation plus the cost of 726 // inserting and extracting the values. 727 return BaseT::getScalarizationOverhead(Ty, Args) + Num * Cost; 728 } 729 730 return BaseCost; 731 } 732 733 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 734 unsigned AddressSpace, const Instruction *I) { 735 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 736 737 if (ST->hasNEON() && Src->isVectorTy() && Alignment != 16 && 738 Src->getVectorElementType()->isDoubleTy()) { 739 // Unaligned loads/stores are extremely inefficient. 740 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 741 return LT.first * 4; 742 } 743 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 744 ? ST->getMVEVectorCostFactor() 745 : 1; 746 return BaseCost * LT.first; 747 } 748 749 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 750 unsigned Factor, 751 ArrayRef<unsigned> Indices, 752 unsigned Alignment, 753 unsigned AddressSpace, 754 bool UseMaskForCond, 755 bool UseMaskForGaps) { 756 assert(Factor >= 2 && "Invalid interleave factor"); 757 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 758 759 // vldN/vstN doesn't support vector types of i64/f64 element. 760 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 761 762 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 763 !UseMaskForCond && !UseMaskForGaps) { 764 unsigned NumElts = VecTy->getVectorNumElements(); 765 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); 766 767 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 768 // Accesses having vector types that are a multiple of 128 bits can be 769 // matched to more than one vldN/vstN instruction. 770 if (NumElts % Factor == 0 && 771 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 772 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 773 } 774 775 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 776 Alignment, AddressSpace, 777 UseMaskForCond, UseMaskForGaps); 778 } 779 780 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 781 if (!F->isIntrinsic()) 782 BaseT::isLoweredToCall(F); 783 784 // Assume all Arm-specific intrinsics map to an instruction. 785 if (F->getName().startswith("llvm.arm")) 786 return false; 787 788 switch (F->getIntrinsicID()) { 789 default: break; 790 case Intrinsic::powi: 791 case Intrinsic::sin: 792 case Intrinsic::cos: 793 case Intrinsic::pow: 794 case Intrinsic::log: 795 case Intrinsic::log10: 796 case Intrinsic::log2: 797 case Intrinsic::exp: 798 case Intrinsic::exp2: 799 return true; 800 case Intrinsic::sqrt: 801 case Intrinsic::fabs: 802 case Intrinsic::copysign: 803 case Intrinsic::floor: 804 case Intrinsic::ceil: 805 case Intrinsic::trunc: 806 case Intrinsic::rint: 807 case Intrinsic::nearbyint: 808 case Intrinsic::round: 809 case Intrinsic::canonicalize: 810 case Intrinsic::lround: 811 case Intrinsic::llround: 812 case Intrinsic::lrint: 813 case Intrinsic::llrint: 814 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 815 return true; 816 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 817 return true; 818 // Some operations can be handled by vector instructions and assume 819 // unsupported vectors will be expanded into supported scalar ones. 820 // TODO Handle scalar operations properly. 821 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 822 case Intrinsic::masked_store: 823 case Intrinsic::masked_load: 824 case Intrinsic::masked_gather: 825 case Intrinsic::masked_scatter: 826 return !ST->hasMVEIntegerOps(); 827 case Intrinsic::sadd_with_overflow: 828 case Intrinsic::uadd_with_overflow: 829 case Intrinsic::ssub_with_overflow: 830 case Intrinsic::usub_with_overflow: 831 case Intrinsic::sadd_sat: 832 case Intrinsic::uadd_sat: 833 case Intrinsic::ssub_sat: 834 case Intrinsic::usub_sat: 835 return false; 836 } 837 838 return BaseT::isLoweredToCall(F); 839 } 840 841 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 842 AssumptionCache &AC, 843 TargetLibraryInfo *LibInfo, 844 HardwareLoopInfo &HWLoopInfo) { 845 // Low-overhead branches are only supported in the 'low-overhead branch' 846 // extension of v8.1-m. 847 if (!ST->hasLOB() || DisableLowOverheadLoops) 848 return false; 849 850 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) 851 return false; 852 853 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 854 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 855 return false; 856 857 const SCEV *TripCountSCEV = 858 SE.getAddExpr(BackedgeTakenCount, 859 SE.getOne(BackedgeTakenCount->getType())); 860 861 // We need to store the trip count in LR, a 32-bit register. 862 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) 863 return false; 864 865 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 866 // point in generating a hardware loop if that's going to happen. 867 auto MaybeCall = [this](Instruction &I) { 868 const ARMTargetLowering *TLI = getTLI(); 869 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 870 EVT VT = TLI->getValueType(DL, I.getType(), true); 871 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 872 return true; 873 874 // Check if an intrinsic will be lowered to a call and assume that any 875 // other CallInst will generate a bl. 876 if (auto *Call = dyn_cast<CallInst>(&I)) { 877 if (isa<IntrinsicInst>(Call)) { 878 if (const Function *F = Call->getCalledFunction()) 879 return isLoweredToCall(F); 880 } 881 return true; 882 } 883 884 // FPv5 provides conversions between integer, double-precision, 885 // single-precision, and half-precision formats. 886 switch (I.getOpcode()) { 887 default: 888 break; 889 case Instruction::FPToSI: 890 case Instruction::FPToUI: 891 case Instruction::SIToFP: 892 case Instruction::UIToFP: 893 case Instruction::FPTrunc: 894 case Instruction::FPExt: 895 return !ST->hasFPARMv8Base(); 896 } 897 898 // FIXME: Unfortunately the approach of checking the Operation Action does 899 // not catch all cases of Legalization that use library calls. Our 900 // Legalization step categorizes some transformations into library calls as 901 // Custom, Expand or even Legal when doing type legalization. So for now 902 // we have to special case for instance the SDIV of 64bit integers and the 903 // use of floating point emulation. 904 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 905 switch (ISD) { 906 default: 907 break; 908 case ISD::SDIV: 909 case ISD::UDIV: 910 case ISD::SREM: 911 case ISD::UREM: 912 case ISD::SDIVREM: 913 case ISD::UDIVREM: 914 return true; 915 } 916 } 917 918 // Assume all other non-float operations are supported. 919 if (!VT.isFloatingPoint()) 920 return false; 921 922 // We'll need a library call to handle most floats when using soft. 923 if (TLI->useSoftFloat()) { 924 switch (I.getOpcode()) { 925 default: 926 return true; 927 case Instruction::Alloca: 928 case Instruction::Load: 929 case Instruction::Store: 930 case Instruction::Select: 931 case Instruction::PHI: 932 return false; 933 } 934 } 935 936 // We'll need a libcall to perform double precision operations on a single 937 // precision only FPU. 938 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 939 return true; 940 941 // Likewise for half precision arithmetic. 942 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 943 return true; 944 945 return false; 946 }; 947 948 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 949 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 950 switch (Call->getIntrinsicID()) { 951 default: 952 break; 953 case Intrinsic::set_loop_iterations: 954 case Intrinsic::test_set_loop_iterations: 955 case Intrinsic::loop_decrement: 956 case Intrinsic::loop_decrement_reg: 957 return true; 958 } 959 } 960 return false; 961 }; 962 963 // Scan the instructions to see if there's any that we know will turn into a 964 // call or if this loop is already a low-overhead loop. 965 auto ScanLoop = [&](Loop *L) { 966 for (auto *BB : L->getBlocks()) { 967 for (auto &I : *BB) { 968 if (MaybeCall(I) || IsHardwareLoopIntrinsic(I)) 969 return false; 970 } 971 } 972 return true; 973 }; 974 975 // Visit inner loops. 976 for (auto Inner : *L) 977 if (!ScanLoop(Inner)) 978 return false; 979 980 if (!ScanLoop(L)) 981 return false; 982 983 // TODO: Check whether the trip count calculation is expensive. If L is the 984 // inner loop but we know it has a low trip count, calculating that trip 985 // count (in the parent loop) may be detrimental. 986 987 LLVMContext &C = L->getHeader()->getContext(); 988 HWLoopInfo.CounterInReg = true; 989 HWLoopInfo.IsNestingLegal = false; 990 HWLoopInfo.PerformEntryTest = true; 991 HWLoopInfo.CountType = Type::getInt32Ty(C); 992 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 993 return true; 994 } 995 996 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 997 TTI::UnrollingPreferences &UP) { 998 // Only currently enable these preferences for M-Class cores. 999 if (!ST->isMClass()) 1000 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); 1001 1002 // Disable loop unrolling for Oz and Os. 1003 UP.OptSizeThreshold = 0; 1004 UP.PartialOptSizeThreshold = 0; 1005 if (L->getHeader()->getParent()->hasOptSize()) 1006 return; 1007 1008 // Only enable on Thumb-2 targets. 1009 if (!ST->isThumb2()) 1010 return; 1011 1012 SmallVector<BasicBlock*, 4> ExitingBlocks; 1013 L->getExitingBlocks(ExitingBlocks); 1014 LLVM_DEBUG(dbgs() << "Loop has:\n" 1015 << "Blocks: " << L->getNumBlocks() << "\n" 1016 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 1017 1018 // Only allow another exit other than the latch. This acts as an early exit 1019 // as it mirrors the profitability calculation of the runtime unroller. 1020 if (ExitingBlocks.size() > 2) 1021 return; 1022 1023 // Limit the CFG of the loop body for targets with a branch predictor. 1024 // Allowing 4 blocks permits if-then-else diamonds in the body. 1025 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 1026 return; 1027 1028 // Scan the loop: don't unroll loops with calls as this could prevent 1029 // inlining. 1030 unsigned Cost = 0; 1031 for (auto *BB : L->getBlocks()) { 1032 for (auto &I : *BB) { 1033 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1034 ImmutableCallSite CS(&I); 1035 if (const Function *F = CS.getCalledFunction()) { 1036 if (!isLoweredToCall(F)) 1037 continue; 1038 } 1039 return; 1040 } 1041 // Don't unroll vectorised loop. MVE does not benefit from it as much as 1042 // scalar code. 1043 if (I.getType()->isVectorTy()) 1044 return; 1045 1046 SmallVector<const Value*, 4> Operands(I.value_op_begin(), 1047 I.value_op_end()); 1048 Cost += getUserCost(&I, Operands); 1049 } 1050 } 1051 1052 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 1053 1054 UP.Partial = true; 1055 UP.Runtime = true; 1056 UP.UpperBound = true; 1057 UP.UnrollRemainder = true; 1058 UP.DefaultUnrollRuntimeCount = 4; 1059 UP.UnrollAndJam = true; 1060 UP.UnrollAndJamInnerLoopThreshold = 60; 1061 1062 // Force unrolling small loops can be very useful because of the branch 1063 // taken cost of the backedge. 1064 if (Cost < 12) 1065 UP.Force = true; 1066 } 1067 1068 bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 1069 TTI::ReductionFlags Flags) const { 1070 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type"); 1071 unsigned ScalarBits = Ty->getScalarSizeInBits(); 1072 if (!ST->hasMVEIntegerOps()) 1073 return false; 1074 1075 switch (Opcode) { 1076 case Instruction::FAdd: 1077 case Instruction::FMul: 1078 case Instruction::And: 1079 case Instruction::Or: 1080 case Instruction::Xor: 1081 case Instruction::Mul: 1082 case Instruction::FCmp: 1083 return false; 1084 case Instruction::ICmp: 1085 case Instruction::Add: 1086 return ScalarBits < 64 && ScalarBits * Ty->getVectorNumElements() == 128; 1087 default: 1088 llvm_unreachable("Unhandled reduction opcode"); 1089 } 1090 return false; 1091 } 1092