1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/MC/SubtargetFeature.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/MachineValueType.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <utility>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "armtti"
38 
39 static cl::opt<bool> EnableMaskedLoadStores(
40   "enable-arm-maskedldst", cl::Hidden, cl::init(false),
41   cl::desc("Enable the generation of masked loads and stores"));
42 
43 static cl::opt<bool> DisableLowOverheadLoops(
44   "disable-arm-loloops", cl::Hidden, cl::init(false),
45   cl::desc("Disable the generation of low-overhead loops"));
46 
47 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
48                                      const Function *Callee) const {
49   const TargetMachine &TM = getTLI()->getTargetMachine();
50   const FeatureBitset &CallerBits =
51       TM.getSubtargetImpl(*Caller)->getFeatureBits();
52   const FeatureBitset &CalleeBits =
53       TM.getSubtargetImpl(*Callee)->getFeatureBits();
54 
55   // To inline a callee, all features not in the whitelist must match exactly.
56   bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) ==
57                     (CalleeBits & ~InlineFeatureWhitelist);
58   // For features in the whitelist, the callee's features must be a subset of
59   // the callers'.
60   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) ==
61                      (CalleeBits & InlineFeatureWhitelist);
62   return MatchExact && MatchSubset;
63 }
64 
65 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
66   assert(Ty->isIntegerTy());
67 
68  unsigned Bits = Ty->getPrimitiveSizeInBits();
69  if (Bits == 0 || Imm.getActiveBits() >= 64)
70    return 4;
71 
72   int64_t SImmVal = Imm.getSExtValue();
73   uint64_t ZImmVal = Imm.getZExtValue();
74   if (!ST->isThumb()) {
75     if ((SImmVal >= 0 && SImmVal < 65536) ||
76         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
77         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
78       return 1;
79     return ST->hasV6T2Ops() ? 2 : 3;
80   }
81   if (ST->isThumb2()) {
82     if ((SImmVal >= 0 && SImmVal < 65536) ||
83         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
84         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
85       return 1;
86     return ST->hasV6T2Ops() ? 2 : 3;
87   }
88   // Thumb1, any i8 imm cost 1.
89   if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
90     return 1;
91   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
92     return 2;
93   // Load from constantpool.
94   return 3;
95 }
96 
97 // Constants smaller than 256 fit in the immediate field of
98 // Thumb1 instructions so we return a zero cost and 1 otherwise.
99 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
100                                       const APInt &Imm, Type *Ty) {
101   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
102     return 0;
103 
104   return 1;
105 }
106 
107 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
108                               Type *Ty) {
109   // Division by a constant can be turned into multiplication, but only if we
110   // know it's constant. So it's not so much that the immediate is cheap (it's
111   // not), but that the alternative is worse.
112   // FIXME: this is probably unneeded with GlobalISel.
113   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
114        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
115       Idx == 1)
116     return 0;
117 
118   if (Opcode == Instruction::And) {
119     // UXTB/UXTH
120     if (Imm == 255 || Imm == 65535)
121       return 0;
122     // Conversion to BIC is free, and means we can use ~Imm instead.
123     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
124   }
125 
126   if (Opcode == Instruction::Add)
127     // Conversion to SUB is free, and means we can use -Imm instead.
128     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
129 
130   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
131       Ty->getIntegerBitWidth() == 32) {
132     int64_t NegImm = -Imm.getSExtValue();
133     if (ST->isThumb2() && NegImm < 1<<12)
134       // icmp X, #-C -> cmn X, #C
135       return 0;
136     if (ST->isThumb() && NegImm < 1<<8)
137       // icmp X, #-C -> adds X, #C
138       return 0;
139   }
140 
141   // xor a, -1 can always be folded to MVN
142   if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
143     return 0;
144 
145   return getIntImmCost(Imm, Ty);
146 }
147 
148 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
149                                  const Instruction *I) {
150   int ISD = TLI->InstructionOpcodeToISD(Opcode);
151   assert(ISD && "Invalid opcode");
152 
153   // Single to/from double precision conversions.
154   static const CostTblEntry NEONFltDblTbl[] = {
155     // Vector fptrunc/fpext conversions.
156     { ISD::FP_ROUND,   MVT::v2f64, 2 },
157     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
158     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
159   };
160 
161   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
162                                           ISD == ISD::FP_EXTEND)) {
163     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
164     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
165       return LT.first * Entry->Cost;
166   }
167 
168   EVT SrcTy = TLI->getValueType(DL, Src);
169   EVT DstTy = TLI->getValueType(DL, Dst);
170 
171   if (!SrcTy.isSimple() || !DstTy.isSimple())
172     return BaseT::getCastInstrCost(Opcode, Dst, Src);
173 
174   // The extend of a load is free
175   if (I && isa<LoadInst>(I->getOperand(0))) {
176     static const TypeConversionCostTblEntry LoadConversionTbl[] = {
177         {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
178         {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
179         {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
180         {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
181         {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
182         {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
183         {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
184         {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
185         {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
186         {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
187         {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
188         {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
189     };
190     if (const auto *Entry = ConvertCostTableLookup(
191             LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
192       return Entry->Cost;
193 
194     static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
195         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
196         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
197         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
198         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
199         {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
200         {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
201     };
202     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
203       if (const auto *Entry =
204               ConvertCostTableLookup(MVELoadConversionTbl, ISD,
205                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
206         return Entry->Cost;
207     }
208   }
209 
210   // Some arithmetic, load and store operations have specific instructions
211   // to cast up/down their types automatically at no extra cost.
212   // TODO: Get these tables to know at least what the related operations are.
213   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
214     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
215     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
216     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
217     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
218     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
219     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
220 
221     // The number of vmovl instructions for the extension.
222     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
223     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
224     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
225     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
226     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
227     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
228     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
229     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
230     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
231     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
232 
233     // Operations that we legalize using splitting.
234     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
235     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
236 
237     // Vector float <-> i32 conversions.
238     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
239     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
240 
241     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
242     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
243     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
244     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
245     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
246     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
247     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
248     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
249     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
250     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
251     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
252     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
253     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
254     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
255     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
256     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
257     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
258     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
259     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
260     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
261 
262     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
263     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
264     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
265     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
266     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
267     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
268 
269     // Vector double <-> i32 conversions.
270     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
271     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
272 
273     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
274     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
275     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
276     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
277     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
278     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
279 
280     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
281     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
282     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
283     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
284     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
285     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
286   };
287 
288   if (SrcTy.isVector() && ST->hasNEON()) {
289     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
290                                                    DstTy.getSimpleVT(),
291                                                    SrcTy.getSimpleVT()))
292       return Entry->Cost;
293   }
294 
295   // Scalar float to integer conversions.
296   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
297     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
298     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
299     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
300     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
301     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
302     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
303     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
304     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
305     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
306     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
307     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
308     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
309     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
310     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
311     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
312     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
313     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
314     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
315     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
316     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
317   };
318   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
319     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
320                                                    DstTy.getSimpleVT(),
321                                                    SrcTy.getSimpleVT()))
322       return Entry->Cost;
323   }
324 
325   // Scalar integer to float conversions.
326   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
327     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
328     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
329     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
330     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
331     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
332     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
333     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
334     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
335     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
336     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
337     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
338     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
339     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
340     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
341     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
342     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
343     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
344     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
345     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
346     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
347   };
348 
349   if (SrcTy.isInteger() && ST->hasNEON()) {
350     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
351                                                    ISD, DstTy.getSimpleVT(),
352                                                    SrcTy.getSimpleVT()))
353       return Entry->Cost;
354   }
355 
356   // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
357   // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
358   // are linearised so take more.
359   static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
360     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
361     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
362     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
363     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
364     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
365     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
366     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
367     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
368     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
369     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
370     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
371     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
372   };
373 
374   if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
375     if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
376                                                    ISD, DstTy.getSimpleVT(),
377                                                    SrcTy.getSimpleVT()))
378       return Entry->Cost * ST->getMVEVectorCostFactor();
379   }
380 
381   // Scalar integer conversion costs.
382   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
383     // i16 -> i64 requires two dependent operations.
384     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
385 
386     // Truncates on i64 are assumed to be free.
387     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
388     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
389     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
390     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
391   };
392 
393   if (SrcTy.isInteger()) {
394     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
395                                                    DstTy.getSimpleVT(),
396                                                    SrcTy.getSimpleVT()))
397       return Entry->Cost;
398   }
399 
400   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
401                      ? ST->getMVEVectorCostFactor()
402                      : 1;
403   return BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src);
404 }
405 
406 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
407                                    unsigned Index) {
408   // Penalize inserting into an D-subregister. We end up with a three times
409   // lower estimated throughput on swift.
410   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
411       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
412     return 3;
413 
414   if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
415                         Opcode == Instruction::ExtractElement)) {
416     // Cross-class copies are expensive on many microarchitectures,
417     // so assume they are expensive by default.
418     if (ValTy->getVectorElementType()->isIntegerTy())
419       return 3;
420 
421     // Even if it's not a cross class copy, this likely leads to mixing
422     // of NEON and VFP code and should be therefore penalized.
423     if (ValTy->isVectorTy() &&
424         ValTy->getScalarSizeInBits() <= 32)
425       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
426   }
427 
428   if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
429                                  Opcode == Instruction::ExtractElement)) {
430     // We say MVE moves costs at least the MVEVectorCostFactor, even though
431     // they are scalar instructions. This helps prevent mixing scalar and
432     // vector, to prevent vectorising where we end up just scalarising the
433     // result anyway.
434     return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index),
435                     ST->getMVEVectorCostFactor()) *
436            ValTy->getVectorNumElements() / 2;
437   }
438 
439   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
440 }
441 
442 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
443                                    const Instruction *I) {
444   int ISD = TLI->InstructionOpcodeToISD(Opcode);
445   // On NEON a vector select gets lowered to vbsl.
446   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
447     // Lowering of some vector selects is currently far from perfect.
448     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
449       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
450       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
451       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
452     };
453 
454     EVT SelCondTy = TLI->getValueType(DL, CondTy);
455     EVT SelValTy = TLI->getValueType(DL, ValTy);
456     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
457       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
458                                                      SelCondTy.getSimpleVT(),
459                                                      SelValTy.getSimpleVT()))
460         return Entry->Cost;
461     }
462 
463     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
464     return LT.first;
465   }
466 
467   int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy()
468                      ? ST->getMVEVectorCostFactor()
469                      : 1;
470   return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
471 }
472 
473 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
474                                           const SCEV *Ptr) {
475   // Address computations in vectorized code with non-consecutive addresses will
476   // likely result in more instructions compared to scalar code where the
477   // computation can more often be merged into the index mode. The resulting
478   // extra micro-ops can significantly decrease throughput.
479   unsigned NumVectorInstToHideOverhead = 10;
480   int MaxMergeDistance = 64;
481 
482   if (ST->hasNEON()) {
483     if (Ty->isVectorTy() && SE &&
484         !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
485       return NumVectorInstToHideOverhead;
486 
487     // In many cases the address computation is not merged into the instruction
488     // addressing mode.
489     return 1;
490   }
491   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
492 }
493 
494 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy) {
495   if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
496     return false;
497 
498   if (DataTy->isVectorTy()) {
499     // We don't yet support narrowing or widening masked loads/stores. Expand
500     // them for the moment.
501     unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
502     if (VecWidth != 128)
503       return false;
504   }
505 
506   unsigned EltWidth = DataTy->getScalarSizeInBits();
507   return EltWidth == 32 || EltWidth == 16 || EltWidth == 8;
508 }
509 
510 int ARMTTIImpl::getMemcpyCost(const Instruction *I) {
511   const MemCpyInst *MI = dyn_cast<MemCpyInst>(I);
512   assert(MI && "MemcpyInst expected");
513   ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength());
514 
515   // To model the cost of a library call, we assume 1 for the call, and
516   // 3 for the argument setup.
517   const unsigned LibCallCost = 4;
518 
519   // If 'size' is not a constant, a library call will be generated.
520   if (!C)
521     return LibCallCost;
522 
523   const unsigned Size = C->getValue().getZExtValue();
524   const unsigned DstAlign = MI->getDestAlignment();
525   const unsigned SrcAlign = MI->getSourceAlignment();
526   const Function *F = I->getParent()->getParent();
527   const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
528   std::vector<EVT> MemOps;
529 
530   // MemOps will be poplulated with a list of data types that needs to be
531   // loaded and stored. That's why we multiply the number of elements by 2 to
532   // get the cost for this memcpy.
533   if (getTLI()->findOptimalMemOpLowering(
534           MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/,
535           false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/,
536           MI->getDestAddressSpace(), MI->getSourceAddressSpace(),
537           F->getAttributes()))
538     return MemOps.size() * 2;
539 
540   // If we can't find an optimal memop lowering, return the default cost
541   return LibCallCost;
542 }
543 
544 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
545                                Type *SubTp) {
546   if (ST->hasNEON()) {
547     if (Kind == TTI::SK_Broadcast) {
548       static const CostTblEntry NEONDupTbl[] = {
549           // VDUP handles these cases.
550           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
551           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
552           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
553           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
554           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
555           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
556 
557           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
558           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
559           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
560           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
561 
562       std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
563 
564       if (const auto *Entry =
565               CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
566         return LT.first * Entry->Cost;
567     }
568     if (Kind == TTI::SK_Reverse) {
569       static const CostTblEntry NEONShuffleTbl[] = {
570           // Reverse shuffle cost one instruction if we are shuffling within a
571           // double word (vrev) or two if we shuffle a quad word (vrev, vext).
572           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
573           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
574           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
575           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
576           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
577           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
578 
579           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
580           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
581           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
582           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
583 
584       std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
585 
586       if (const auto *Entry =
587               CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
588         return LT.first * Entry->Cost;
589     }
590     if (Kind == TTI::SK_Select) {
591       static const CostTblEntry NEONSelShuffleTbl[] = {
592           // Select shuffle cost table for ARM. Cost is the number of
593           // instructions
594           // required to create the shuffled vector.
595 
596           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
597           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
598           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
599           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
600 
601           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
602           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
603           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
604 
605           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
606 
607           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
608 
609       std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
610       if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
611                                               ISD::VECTOR_SHUFFLE, LT.second))
612         return LT.first * Entry->Cost;
613     }
614   }
615   if (ST->hasMVEIntegerOps()) {
616     if (Kind == TTI::SK_Broadcast) {
617       static const CostTblEntry MVEDupTbl[] = {
618           // VDUP handles these cases.
619           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
620           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
621           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
622           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
623           {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
624 
625       std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
626 
627       if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
628                                               LT.second))
629         return LT.first * Entry->Cost * ST->getMVEVectorCostFactor();
630     }
631   }
632   int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
633                      ? ST->getMVEVectorCostFactor()
634                      : 1;
635   return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
636 }
637 
638 int ARMTTIImpl::getArithmeticInstrCost(
639     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
640     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
641     TTI::OperandValueProperties Opd2PropInfo,
642     ArrayRef<const Value *> Args) {
643   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
644   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
645 
646   const unsigned FunctionCallDivCost = 20;
647   const unsigned ReciprocalDivCost = 10;
648   static const CostTblEntry CostTbl[] = {
649     // Division.
650     // These costs are somewhat random. Choose a cost of 20 to indicate that
651     // vectorizing devision (added function call) is going to be very expensive.
652     // Double registers types.
653     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
654     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
655     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
656     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
657     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
658     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
659     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
660     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
661     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
662     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
663     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
664     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
665     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
666     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
667     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
668     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
669     // Quad register types.
670     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
671     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
672     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
673     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
674     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
675     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
676     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
677     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
678     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
679     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
680     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
681     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
682     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
683     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
684     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
685     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
686     // Multiplication.
687   };
688 
689   if (ST->hasNEON()) {
690     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
691       return LT.first * Entry->Cost;
692 
693     int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
694                                              Opd1PropInfo, Opd2PropInfo);
695 
696     // This is somewhat of a hack. The problem that we are facing is that SROA
697     // creates a sequence of shift, and, or instructions to construct values.
698     // These sequences are recognized by the ISel and have zero-cost. Not so for
699     // the vectorized code. Because we have support for v2i64 but not i64 those
700     // sequences look particularly beneficial to vectorize.
701     // To work around this we increase the cost of v2i64 operations to make them
702     // seem less beneficial.
703     if (LT.second == MVT::v2i64 &&
704         Op2Info == TargetTransformInfo::OK_UniformConstantValue)
705       Cost += 4;
706 
707     return Cost;
708   }
709 
710   int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy()
711                      ? ST->getMVEVectorCostFactor()
712                      : 1;
713 
714   // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
715   // without treating floats as more expensive that scalars or increasing the
716   // costs for custom operations. The results is also multiplied by the
717   // MVEVectorCostFactor where appropriate.
718   if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
719     return LT.first * BaseCost;
720 
721   // Else this is expand, assume that we need to scalarize this op.
722   if (Ty->isVectorTy()) {
723     unsigned Num = Ty->getVectorNumElements();
724     unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
725     // Return the cost of multiple scalar invocation plus the cost of
726     // inserting and extracting the values.
727     return BaseT::getScalarizationOverhead(Ty, Args) + Num * Cost;
728   }
729 
730   return BaseCost;
731 }
732 
733 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
734                                 unsigned AddressSpace, const Instruction *I) {
735   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
736 
737   if (ST->hasNEON() && Src->isVectorTy() && Alignment != 16 &&
738       Src->getVectorElementType()->isDoubleTy()) {
739     // Unaligned loads/stores are extremely inefficient.
740     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
741     return LT.first * 4;
742   }
743   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
744                      ? ST->getMVEVectorCostFactor()
745                      : 1;
746   return BaseCost * LT.first;
747 }
748 
749 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
750                                            unsigned Factor,
751                                            ArrayRef<unsigned> Indices,
752                                            unsigned Alignment,
753                                            unsigned AddressSpace,
754                                            bool UseMaskForCond,
755                                            bool UseMaskForGaps) {
756   assert(Factor >= 2 && "Invalid interleave factor");
757   assert(isa<VectorType>(VecTy) && "Expect a vector type");
758 
759   // vldN/vstN doesn't support vector types of i64/f64 element.
760   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
761 
762   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
763       !UseMaskForCond && !UseMaskForGaps) {
764     unsigned NumElts = VecTy->getVectorNumElements();
765     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
766 
767     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
768     // Accesses having vector types that are a multiple of 128 bits can be
769     // matched to more than one vldN/vstN instruction.
770     if (NumElts % Factor == 0 &&
771         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
772       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
773   }
774 
775   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
776                                            Alignment, AddressSpace,
777                                            UseMaskForCond, UseMaskForGaps);
778 }
779 
780 bool ARMTTIImpl::isLoweredToCall(const Function *F) {
781   if (!F->isIntrinsic())
782     BaseT::isLoweredToCall(F);
783 
784   // Assume all Arm-specific intrinsics map to an instruction.
785   if (F->getName().startswith("llvm.arm"))
786     return false;
787 
788   switch (F->getIntrinsicID()) {
789   default: break;
790   case Intrinsic::powi:
791   case Intrinsic::sin:
792   case Intrinsic::cos:
793   case Intrinsic::pow:
794   case Intrinsic::log:
795   case Intrinsic::log10:
796   case Intrinsic::log2:
797   case Intrinsic::exp:
798   case Intrinsic::exp2:
799     return true;
800   case Intrinsic::sqrt:
801   case Intrinsic::fabs:
802   case Intrinsic::copysign:
803   case Intrinsic::floor:
804   case Intrinsic::ceil:
805   case Intrinsic::trunc:
806   case Intrinsic::rint:
807   case Intrinsic::nearbyint:
808   case Intrinsic::round:
809   case Intrinsic::canonicalize:
810   case Intrinsic::lround:
811   case Intrinsic::llround:
812   case Intrinsic::lrint:
813   case Intrinsic::llrint:
814     if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
815       return true;
816     if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
817       return true;
818     // Some operations can be handled by vector instructions and assume
819     // unsupported vectors will be expanded into supported scalar ones.
820     // TODO Handle scalar operations properly.
821     return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
822   case Intrinsic::masked_store:
823   case Intrinsic::masked_load:
824   case Intrinsic::masked_gather:
825   case Intrinsic::masked_scatter:
826     return !ST->hasMVEIntegerOps();
827   case Intrinsic::sadd_with_overflow:
828   case Intrinsic::uadd_with_overflow:
829   case Intrinsic::ssub_with_overflow:
830   case Intrinsic::usub_with_overflow:
831   case Intrinsic::sadd_sat:
832   case Intrinsic::uadd_sat:
833   case Intrinsic::ssub_sat:
834   case Intrinsic::usub_sat:
835     return false;
836   }
837 
838   return BaseT::isLoweredToCall(F);
839 }
840 
841 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
842                                           AssumptionCache &AC,
843                                           TargetLibraryInfo *LibInfo,
844                                           HardwareLoopInfo &HWLoopInfo) {
845   // Low-overhead branches are only supported in the 'low-overhead branch'
846   // extension of v8.1-m.
847   if (!ST->hasLOB() || DisableLowOverheadLoops)
848     return false;
849 
850   if (!SE.hasLoopInvariantBackedgeTakenCount(L))
851     return false;
852 
853   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
854   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
855     return false;
856 
857   const SCEV *TripCountSCEV =
858     SE.getAddExpr(BackedgeTakenCount,
859                   SE.getOne(BackedgeTakenCount->getType()));
860 
861   // We need to store the trip count in LR, a 32-bit register.
862   if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32)
863     return false;
864 
865   // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
866   // point in generating a hardware loop if that's going to happen.
867   auto MaybeCall = [this](Instruction &I) {
868     const ARMTargetLowering *TLI = getTLI();
869     unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
870     EVT VT = TLI->getValueType(DL, I.getType(), true);
871     if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
872       return true;
873 
874     // Check if an intrinsic will be lowered to a call and assume that any
875     // other CallInst will generate a bl.
876     if (auto *Call = dyn_cast<CallInst>(&I)) {
877       if (isa<IntrinsicInst>(Call)) {
878         if (const Function *F = Call->getCalledFunction())
879           return isLoweredToCall(F);
880       }
881       return true;
882     }
883 
884     // FPv5 provides conversions between integer, double-precision,
885     // single-precision, and half-precision formats.
886     switch (I.getOpcode()) {
887     default:
888       break;
889     case Instruction::FPToSI:
890     case Instruction::FPToUI:
891     case Instruction::SIToFP:
892     case Instruction::UIToFP:
893     case Instruction::FPTrunc:
894     case Instruction::FPExt:
895       return !ST->hasFPARMv8Base();
896     }
897 
898     // FIXME: Unfortunately the approach of checking the Operation Action does
899     // not catch all cases of Legalization that use library calls. Our
900     // Legalization step categorizes some transformations into library calls as
901     // Custom, Expand or even Legal when doing type legalization. So for now
902     // we have to special case for instance the SDIV of 64bit integers and the
903     // use of floating point emulation.
904     if (VT.isInteger() && VT.getSizeInBits() >= 64) {
905       switch (ISD) {
906       default:
907         break;
908       case ISD::SDIV:
909       case ISD::UDIV:
910       case ISD::SREM:
911       case ISD::UREM:
912       case ISD::SDIVREM:
913       case ISD::UDIVREM:
914         return true;
915       }
916     }
917 
918     // Assume all other non-float operations are supported.
919     if (!VT.isFloatingPoint())
920       return false;
921 
922     // We'll need a library call to handle most floats when using soft.
923     if (TLI->useSoftFloat()) {
924       switch (I.getOpcode()) {
925       default:
926         return true;
927       case Instruction::Alloca:
928       case Instruction::Load:
929       case Instruction::Store:
930       case Instruction::Select:
931       case Instruction::PHI:
932         return false;
933       }
934     }
935 
936     // We'll need a libcall to perform double precision operations on a single
937     // precision only FPU.
938     if (I.getType()->isDoubleTy() && !ST->hasFP64())
939       return true;
940 
941     // Likewise for half precision arithmetic.
942     if (I.getType()->isHalfTy() && !ST->hasFullFP16())
943       return true;
944 
945     return false;
946   };
947 
948   auto IsHardwareLoopIntrinsic = [](Instruction &I) {
949     if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
950       switch (Call->getIntrinsicID()) {
951       default:
952         break;
953       case Intrinsic::set_loop_iterations:
954       case Intrinsic::test_set_loop_iterations:
955       case Intrinsic::loop_decrement:
956       case Intrinsic::loop_decrement_reg:
957         return true;
958       }
959     }
960     return false;
961   };
962 
963   // Scan the instructions to see if there's any that we know will turn into a
964   // call or if this loop is already a low-overhead loop.
965   auto ScanLoop = [&](Loop *L) {
966     for (auto *BB : L->getBlocks()) {
967       for (auto &I : *BB) {
968         if (MaybeCall(I) || IsHardwareLoopIntrinsic(I))
969           return false;
970       }
971     }
972     return true;
973   };
974 
975   // Visit inner loops.
976   for (auto Inner : *L)
977     if (!ScanLoop(Inner))
978       return false;
979 
980   if (!ScanLoop(L))
981     return false;
982 
983   // TODO: Check whether the trip count calculation is expensive. If L is the
984   // inner loop but we know it has a low trip count, calculating that trip
985   // count (in the parent loop) may be detrimental.
986 
987   LLVMContext &C = L->getHeader()->getContext();
988   HWLoopInfo.CounterInReg = true;
989   HWLoopInfo.IsNestingLegal = false;
990   HWLoopInfo.PerformEntryTest = true;
991   HWLoopInfo.CountType = Type::getInt32Ty(C);
992   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
993   return true;
994 }
995 
996 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
997                                          TTI::UnrollingPreferences &UP) {
998   // Only currently enable these preferences for M-Class cores.
999   if (!ST->isMClass())
1000     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
1001 
1002   // Disable loop unrolling for Oz and Os.
1003   UP.OptSizeThreshold = 0;
1004   UP.PartialOptSizeThreshold = 0;
1005   if (L->getHeader()->getParent()->hasOptSize())
1006     return;
1007 
1008   // Only enable on Thumb-2 targets.
1009   if (!ST->isThumb2())
1010     return;
1011 
1012   SmallVector<BasicBlock*, 4> ExitingBlocks;
1013   L->getExitingBlocks(ExitingBlocks);
1014   LLVM_DEBUG(dbgs() << "Loop has:\n"
1015                     << "Blocks: " << L->getNumBlocks() << "\n"
1016                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
1017 
1018   // Only allow another exit other than the latch. This acts as an early exit
1019   // as it mirrors the profitability calculation of the runtime unroller.
1020   if (ExitingBlocks.size() > 2)
1021     return;
1022 
1023   // Limit the CFG of the loop body for targets with a branch predictor.
1024   // Allowing 4 blocks permits if-then-else diamonds in the body.
1025   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
1026     return;
1027 
1028   // Scan the loop: don't unroll loops with calls as this could prevent
1029   // inlining.
1030   unsigned Cost = 0;
1031   for (auto *BB : L->getBlocks()) {
1032     for (auto &I : *BB) {
1033       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
1034         ImmutableCallSite CS(&I);
1035         if (const Function *F = CS.getCalledFunction()) {
1036           if (!isLoweredToCall(F))
1037             continue;
1038         }
1039         return;
1040       }
1041       // Don't unroll vectorised loop. MVE does not benefit from it as much as
1042       // scalar code.
1043       if (I.getType()->isVectorTy())
1044         return;
1045 
1046       SmallVector<const Value*, 4> Operands(I.value_op_begin(),
1047                                             I.value_op_end());
1048       Cost += getUserCost(&I, Operands);
1049     }
1050   }
1051 
1052   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
1053 
1054   UP.Partial = true;
1055   UP.Runtime = true;
1056   UP.UpperBound = true;
1057   UP.UnrollRemainder = true;
1058   UP.DefaultUnrollRuntimeCount = 4;
1059   UP.UnrollAndJam = true;
1060   UP.UnrollAndJamInnerLoopThreshold = 60;
1061 
1062   // Force unrolling small loops can be very useful because of the branch
1063   // taken cost of the backedge.
1064   if (Cost < 12)
1065     UP.Force = true;
1066 }
1067 
1068 bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
1069                                        TTI::ReductionFlags Flags) const {
1070   assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
1071   unsigned ScalarBits = Ty->getScalarSizeInBits();
1072   if (!ST->hasMVEIntegerOps())
1073     return false;
1074 
1075   switch (Opcode) {
1076   case Instruction::FAdd:
1077   case Instruction::FMul:
1078   case Instruction::And:
1079   case Instruction::Or:
1080   case Instruction::Xor:
1081   case Instruction::Mul:
1082   case Instruction::FCmp:
1083     return false;
1084   case Instruction::ICmp:
1085   case Instruction::Add:
1086     return ScalarBits < 64 && ScalarBits * Ty->getVectorNumElements() == 128;
1087   default:
1088     llvm_unreachable("Unhandled reduction opcode");
1089   }
1090   return false;
1091 }
1092