1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/IntrinsicsARM.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/MC/SubtargetFeature.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MachineValueType.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Transforms/InstCombine/InstCombiner.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "armtti" 44 45 static cl::opt<bool> EnableMaskedLoadStores( 46 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 47 cl::desc("Enable the generation of masked loads and stores")); 48 49 static cl::opt<bool> DisableLowOverheadLoops( 50 "disable-arm-loloops", cl::Hidden, cl::init(false), 51 cl::desc("Disable the generation of low-overhead loops")); 52 53 static cl::opt<bool> 54 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true), 55 cl::desc("Enable the generation of WLS loops")); 56 57 extern cl::opt<TailPredication::Mode> EnableTailPredication; 58 59 extern cl::opt<bool> EnableMaskedGatherScatters; 60 61 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; 62 63 /// Convert a vector load intrinsic into a simple llvm load instruction. 64 /// This is beneficial when the underlying object being addressed comes 65 /// from a constant, since we get constant-folding for free. 66 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, 67 InstCombiner::BuilderTy &Builder) { 68 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); 69 70 if (!IntrAlign) 71 return nullptr; 72 73 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign 74 ? MemAlign 75 : IntrAlign->getLimitedValue(); 76 77 if (!isPowerOf2_32(Alignment)) 78 return nullptr; 79 80 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), 81 PointerType::get(II.getType(), 0)); 82 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment)); 83 } 84 85 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 86 const Function *Callee) const { 87 const TargetMachine &TM = getTLI()->getTargetMachine(); 88 const FeatureBitset &CallerBits = 89 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 90 const FeatureBitset &CalleeBits = 91 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 92 93 // To inline a callee, all features not in the allowed list must match exactly. 94 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == 95 (CalleeBits & ~InlineFeaturesAllowed); 96 // For features in the allowed list, the callee's features must be a subset of 97 // the callers'. 98 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == 99 (CalleeBits & InlineFeaturesAllowed); 100 return MatchExact && MatchSubset; 101 } 102 103 TTI::AddressingModeKind 104 ARMTTIImpl::getPreferredAddressingMode(const Loop *L, 105 ScalarEvolution *SE) const { 106 if (ST->hasMVEIntegerOps()) 107 return TTI::AMK_PostIndexed; 108 109 if (L->getHeader()->getParent()->hasOptSize()) 110 return TTI::AMK_None; 111 112 if (ST->isMClass() && ST->isThumb2() && 113 L->getNumBlocks() == 1) 114 return TTI::AMK_PreIndexed; 115 116 return TTI::AMK_None; 117 } 118 119 Optional<Instruction *> 120 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 121 using namespace PatternMatch; 122 Intrinsic::ID IID = II.getIntrinsicID(); 123 switch (IID) { 124 default: 125 break; 126 case Intrinsic::arm_neon_vld1: { 127 Align MemAlign = 128 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 129 &IC.getAssumptionCache(), &IC.getDominatorTree()); 130 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) { 131 return IC.replaceInstUsesWith(II, V); 132 } 133 break; 134 } 135 136 case Intrinsic::arm_neon_vld2: 137 case Intrinsic::arm_neon_vld3: 138 case Intrinsic::arm_neon_vld4: 139 case Intrinsic::arm_neon_vld2lane: 140 case Intrinsic::arm_neon_vld3lane: 141 case Intrinsic::arm_neon_vld4lane: 142 case Intrinsic::arm_neon_vst1: 143 case Intrinsic::arm_neon_vst2: 144 case Intrinsic::arm_neon_vst3: 145 case Intrinsic::arm_neon_vst4: 146 case Intrinsic::arm_neon_vst2lane: 147 case Intrinsic::arm_neon_vst3lane: 148 case Intrinsic::arm_neon_vst4lane: { 149 Align MemAlign = 150 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 151 &IC.getAssumptionCache(), &IC.getDominatorTree()); 152 unsigned AlignArg = II.arg_size() - 1; 153 Value *AlignArgOp = II.getArgOperand(AlignArg); 154 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue(); 155 if (Align && *Align < MemAlign) { 156 return IC.replaceOperand( 157 II, AlignArg, 158 ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(), 159 false)); 160 } 161 break; 162 } 163 164 case Intrinsic::arm_mve_pred_i2v: { 165 Value *Arg = II.getArgOperand(0); 166 Value *ArgArg; 167 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 168 PatternMatch::m_Value(ArgArg))) && 169 II.getType() == ArgArg->getType()) { 170 return IC.replaceInstUsesWith(II, ArgArg); 171 } 172 Constant *XorMask; 173 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 174 PatternMatch::m_Value(ArgArg)), 175 PatternMatch::m_Constant(XorMask))) && 176 II.getType() == ArgArg->getType()) { 177 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) { 178 if (CI->getValue().trunc(16).isAllOnes()) { 179 auto TrueVector = IC.Builder.CreateVectorSplat( 180 cast<FixedVectorType>(II.getType())->getNumElements(), 181 IC.Builder.getTrue()); 182 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector); 183 } 184 } 185 } 186 KnownBits ScalarKnown(32); 187 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16), 188 ScalarKnown, 0)) { 189 return &II; 190 } 191 break; 192 } 193 case Intrinsic::arm_mve_pred_v2i: { 194 Value *Arg = II.getArgOperand(0); 195 Value *ArgArg; 196 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( 197 PatternMatch::m_Value(ArgArg)))) { 198 return IC.replaceInstUsesWith(II, ArgArg); 199 } 200 if (!II.getMetadata(LLVMContext::MD_range)) { 201 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 202 Metadata *M[] = { 203 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)), 204 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))}; 205 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M)); 206 return &II; 207 } 208 break; 209 } 210 case Intrinsic::arm_mve_vadc: 211 case Intrinsic::arm_mve_vadc_predicated: { 212 unsigned CarryOp = 213 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; 214 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && 215 "Bad type for intrinsic!"); 216 217 KnownBits CarryKnown(32); 218 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29), 219 CarryKnown)) { 220 return &II; 221 } 222 break; 223 } 224 case Intrinsic::arm_mve_vmldava: { 225 Instruction *I = cast<Instruction>(&II); 226 if (I->hasOneUse()) { 227 auto *User = cast<Instruction>(*I->user_begin()); 228 Value *OpZ; 229 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) && 230 match(I->getOperand(3), m_Zero())) { 231 Value *OpX = I->getOperand(4); 232 Value *OpY = I->getOperand(5); 233 Type *OpTy = OpX->getType(); 234 235 IC.Builder.SetInsertPoint(User); 236 Value *V = 237 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy}, 238 {I->getOperand(0), I->getOperand(1), 239 I->getOperand(2), OpZ, OpX, OpY}); 240 241 IC.replaceInstUsesWith(*User, V); 242 return IC.eraseInstFromFunction(*User); 243 } 244 } 245 return None; 246 } 247 } 248 return None; 249 } 250 251 Optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic( 252 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 253 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 254 std::function<void(Instruction *, unsigned, APInt, APInt &)> 255 SimplifyAndSetOp) const { 256 257 // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the 258 // opcode specifying a Top/Bottom instruction, which can change between 259 // instructions. 260 auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) { 261 unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements(); 262 unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue(); 263 264 // The only odd/even lanes of operand 0 will only be demanded depending 265 // on whether this is a top/bottom instruction. 266 APInt DemandedElts = 267 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) 268 : APInt::getHighBitsSet(2, 1)); 269 SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts); 270 // The other lanes will be defined from the inserted elements. 271 UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1) 272 : APInt::getHighBitsSet(2, 1)); 273 return None; 274 }; 275 276 switch (II.getIntrinsicID()) { 277 default: 278 break; 279 case Intrinsic::arm_mve_vcvt_narrow: 280 SimplifyNarrowInstrTopBottom(2); 281 break; 282 case Intrinsic::arm_mve_vqmovn: 283 SimplifyNarrowInstrTopBottom(4); 284 break; 285 case Intrinsic::arm_mve_vshrn: 286 SimplifyNarrowInstrTopBottom(7); 287 break; 288 } 289 290 return None; 291 } 292 293 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 294 TTI::TargetCostKind CostKind) { 295 assert(Ty->isIntegerTy()); 296 297 unsigned Bits = Ty->getPrimitiveSizeInBits(); 298 if (Bits == 0 || Imm.getActiveBits() >= 64) 299 return 4; 300 301 int64_t SImmVal = Imm.getSExtValue(); 302 uint64_t ZImmVal = Imm.getZExtValue(); 303 if (!ST->isThumb()) { 304 if ((SImmVal >= 0 && SImmVal < 65536) || 305 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 306 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 307 return 1; 308 return ST->hasV6T2Ops() ? 2 : 3; 309 } 310 if (ST->isThumb2()) { 311 if ((SImmVal >= 0 && SImmVal < 65536) || 312 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 313 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 314 return 1; 315 return ST->hasV6T2Ops() ? 2 : 3; 316 } 317 // Thumb1, any i8 imm cost 1. 318 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 319 return 1; 320 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 321 return 2; 322 // Load from constantpool. 323 return 3; 324 } 325 326 // Constants smaller than 256 fit in the immediate field of 327 // Thumb1 instructions so we return a zero cost and 1 otherwise. 328 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 329 const APInt &Imm, Type *Ty) { 330 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 331 return 0; 332 333 return 1; 334 } 335 336 // Checks whether Inst is part of a min(max()) or max(min()) pattern 337 // that will match to an SSAT instruction. Returns the instruction being 338 // saturated, or null if no saturation pattern was found. 339 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { 340 Value *LHS, *RHS; 341 ConstantInt *C; 342 SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor; 343 344 if (InstSPF == SPF_SMAX && 345 PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) && 346 C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) { 347 348 auto isSSatMin = [&](Value *MinInst) { 349 if (isa<SelectInst>(MinInst)) { 350 Value *MinLHS, *MinRHS; 351 ConstantInt *MinC; 352 SelectPatternFlavor MinSPF = 353 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor; 354 if (MinSPF == SPF_SMIN && 355 PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) && 356 MinC->getValue() == ((-Imm) - 1)) 357 return true; 358 } 359 return false; 360 }; 361 362 if (isSSatMin(Inst->getOperand(1))) 363 return cast<Instruction>(Inst->getOperand(1))->getOperand(1); 364 if (Inst->hasNUses(2) && 365 (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin())))) 366 return Inst->getOperand(1); 367 } 368 return nullptr; 369 } 370 371 // Look for a FP Saturation pattern, where the instruction can be simplified to 372 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free. 373 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) { 374 if (Imm.getBitWidth() != 64 || 375 Imm != APInt::getHighBitsSet(64, 33)) // -2147483648 376 return false; 377 Value *FP = isSSATMinMaxPattern(Inst, Imm); 378 if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse()) 379 FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm); 380 if (!FP) 381 return false; 382 return isa<FPToSIInst>(FP); 383 } 384 385 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 386 const APInt &Imm, Type *Ty, 387 TTI::TargetCostKind CostKind, 388 Instruction *Inst) { 389 // Division by a constant can be turned into multiplication, but only if we 390 // know it's constant. So it's not so much that the immediate is cheap (it's 391 // not), but that the alternative is worse. 392 // FIXME: this is probably unneeded with GlobalISel. 393 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 394 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 395 Idx == 1) 396 return 0; 397 398 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at 399 // splitting any large offsets. 400 if (Opcode == Instruction::GetElementPtr && Idx != 0) 401 return 0; 402 403 if (Opcode == Instruction::And) { 404 // UXTB/UXTH 405 if (Imm == 255 || Imm == 65535) 406 return 0; 407 // Conversion to BIC is free, and means we can use ~Imm instead. 408 return std::min(getIntImmCost(Imm, Ty, CostKind), 409 getIntImmCost(~Imm, Ty, CostKind)); 410 } 411 412 if (Opcode == Instruction::Add) 413 // Conversion to SUB is free, and means we can use -Imm instead. 414 return std::min(getIntImmCost(Imm, Ty, CostKind), 415 getIntImmCost(-Imm, Ty, CostKind)); 416 417 if (Opcode == Instruction::ICmp && Imm.isNegative() && 418 Ty->getIntegerBitWidth() == 32) { 419 int64_t NegImm = -Imm.getSExtValue(); 420 if (ST->isThumb2() && NegImm < 1<<12) 421 // icmp X, #-C -> cmn X, #C 422 return 0; 423 if (ST->isThumb() && NegImm < 1<<8) 424 // icmp X, #-C -> adds X, #C 425 return 0; 426 } 427 428 // xor a, -1 can always be folded to MVN 429 if (Opcode == Instruction::Xor && Imm.isAllOnes()) 430 return 0; 431 432 // Ensures negative constant of min(max()) or max(min()) patterns that 433 // match to SSAT instructions don't get hoisted 434 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && 435 Ty->getIntegerBitWidth() <= 32) { 436 if (isSSATMinMaxPattern(Inst, Imm) || 437 (isa<ICmpInst>(Inst) && Inst->hasOneUse() && 438 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm))) 439 return 0; 440 } 441 442 if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm)) 443 return 0; 444 445 // We can convert <= -1 to < 0, which is generally quite cheap. 446 if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnesValue()) { 447 ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate(); 448 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) 449 return std::min(getIntImmCost(Imm, Ty, CostKind), 450 getIntImmCost(Imm + 1, Ty, CostKind)); 451 } 452 453 return getIntImmCost(Imm, Ty, CostKind); 454 } 455 456 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, 457 TTI::TargetCostKind CostKind, 458 const Instruction *I) { 459 if (CostKind == TTI::TCK_RecipThroughput && 460 (ST->hasNEON() || ST->hasMVEIntegerOps())) { 461 // FIXME: The vectorizer is highly sensistive to the cost of these 462 // instructions, which suggests that it may be using the costs incorrectly. 463 // But, for now, just make them free to avoid performance regressions for 464 // vector targets. 465 return 0; 466 } 467 return BaseT::getCFInstrCost(Opcode, CostKind, I); 468 } 469 470 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 471 Type *Src, 472 TTI::CastContextHint CCH, 473 TTI::TargetCostKind CostKind, 474 const Instruction *I) { 475 int ISD = TLI->InstructionOpcodeToISD(Opcode); 476 assert(ISD && "Invalid opcode"); 477 478 // TODO: Allow non-throughput costs that aren't binary. 479 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 480 if (CostKind != TTI::TCK_RecipThroughput) 481 return Cost == 0 ? 0 : 1; 482 return Cost; 483 }; 484 auto IsLegalFPType = [this](EVT VT) { 485 EVT EltVT = VT.getScalarType(); 486 return (EltVT == MVT::f32 && ST->hasVFP2Base()) || 487 (EltVT == MVT::f64 && ST->hasFP64()) || 488 (EltVT == MVT::f16 && ST->hasFullFP16()); 489 }; 490 491 EVT SrcTy = TLI->getValueType(DL, Src); 492 EVT DstTy = TLI->getValueType(DL, Dst); 493 494 if (!SrcTy.isSimple() || !DstTy.isSimple()) 495 return AdjustCost( 496 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 497 498 // Extending masked load/Truncating masked stores is expensive because we 499 // currently don't split them. This means that we'll likely end up 500 // loading/storing each element individually (hence the high cost). 501 if ((ST->hasMVEIntegerOps() && 502 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || 503 Opcode == Instruction::SExt)) || 504 (ST->hasMVEFloatOps() && 505 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && 506 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) 507 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) 508 return 2 * DstTy.getVectorNumElements() * 509 ST->getMVEVectorCostFactor(CostKind); 510 511 // The extend of other kinds of load is free 512 if (CCH == TTI::CastContextHint::Normal || 513 CCH == TTI::CastContextHint::Masked) { 514 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 515 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 516 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 517 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 518 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 519 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 520 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 521 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 522 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 523 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 524 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 525 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 526 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 527 }; 528 if (const auto *Entry = ConvertCostTableLookup( 529 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 530 return AdjustCost(Entry->Cost); 531 532 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 533 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 534 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 535 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 536 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 537 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 538 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 539 // The following extend from a legal type to an illegal type, so need to 540 // split the load. This introduced an extra load operation, but the 541 // extend is still "free". 542 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 543 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 544 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 545 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 546 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 547 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 548 }; 549 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 550 if (const auto *Entry = 551 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 552 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 553 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 554 } 555 556 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { 557 // FPExtends are similar but also require the VCVT instructions. 558 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1}, 559 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3}, 560 }; 561 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 562 if (const auto *Entry = 563 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD, 564 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 565 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 566 } 567 568 // The truncate of a store is free. This is the mirror of extends above. 569 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { 570 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0}, 571 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0}, 572 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0}, 573 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1}, 574 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1}, 575 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3}, 576 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1}, 577 }; 578 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 579 if (const auto *Entry = 580 ConvertCostTableLookup(MVEStoreConversionTbl, ISD, 581 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 582 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 583 } 584 585 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { 586 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1}, 587 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3}, 588 }; 589 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 590 if (const auto *Entry = 591 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD, 592 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 593 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 594 } 595 } 596 597 // NEON vector operations that can extend their inputs. 598 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 599 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 600 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 601 // vaddl 602 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 603 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 604 // vsubl 605 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 606 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 607 // vmull 608 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 609 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 610 // vshll 611 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 612 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 613 }; 614 615 auto *User = cast<Instruction>(*I->user_begin()); 616 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 617 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 618 DstTy.getSimpleVT(), 619 SrcTy.getSimpleVT())) { 620 return AdjustCost(Entry->Cost); 621 } 622 } 623 624 // Single to/from double precision conversions. 625 if (Src->isVectorTy() && ST->hasNEON() && 626 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && 627 DstTy.getScalarType() == MVT::f32) || 628 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && 629 DstTy.getScalarType() == MVT::f64))) { 630 static const CostTblEntry NEONFltDblTbl[] = { 631 // Vector fptrunc/fpext conversions. 632 {ISD::FP_ROUND, MVT::v2f64, 2}, 633 {ISD::FP_EXTEND, MVT::v2f32, 2}, 634 {ISD::FP_EXTEND, MVT::v4f32, 4}}; 635 636 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 637 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 638 return AdjustCost(LT.first * Entry->Cost); 639 } 640 641 // Some arithmetic, load and store operations have specific instructions 642 // to cast up/down their types automatically at no extra cost. 643 // TODO: Get these tables to know at least what the related operations are. 644 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 645 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 646 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 647 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 648 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 649 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 650 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 651 652 // The number of vmovl instructions for the extension. 653 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 654 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 655 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 656 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 657 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 658 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 659 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 660 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 661 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 662 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 663 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 664 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 665 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 666 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 667 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 668 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 669 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 670 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 671 672 // Operations that we legalize using splitting. 673 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 674 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 675 676 // Vector float <-> i32 conversions. 677 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 678 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 679 680 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 681 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 682 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 683 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 684 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 685 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 686 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 687 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 688 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 689 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 690 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 691 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 692 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 693 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 694 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 695 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 696 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 697 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 698 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 699 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 700 701 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 702 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 703 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 704 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 705 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 706 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 707 708 // Vector double <-> i32 conversions. 709 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 710 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 711 712 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 713 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 714 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 715 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 716 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 717 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 718 719 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 720 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 721 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 722 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 723 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 724 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 725 }; 726 727 if (SrcTy.isVector() && ST->hasNEON()) { 728 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 729 DstTy.getSimpleVT(), 730 SrcTy.getSimpleVT())) 731 return AdjustCost(Entry->Cost); 732 } 733 734 // Scalar float to integer conversions. 735 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 736 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 737 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 738 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 739 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 740 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 741 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 742 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 743 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 744 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 745 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 746 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 747 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 748 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 749 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 750 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 751 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 752 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 753 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 754 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 755 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 756 }; 757 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 758 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 759 DstTy.getSimpleVT(), 760 SrcTy.getSimpleVT())) 761 return AdjustCost(Entry->Cost); 762 } 763 764 // Scalar integer to float conversions. 765 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 766 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 767 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 768 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 769 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 770 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 771 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 772 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 773 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 774 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 775 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 776 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 777 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 778 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 779 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 780 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 781 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 782 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 783 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 784 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 785 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 786 }; 787 788 if (SrcTy.isInteger() && ST->hasNEON()) { 789 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 790 ISD, DstTy.getSimpleVT(), 791 SrcTy.getSimpleVT())) 792 return AdjustCost(Entry->Cost); 793 } 794 795 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 796 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 797 // are linearised so take more. 798 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 799 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 800 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 801 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 802 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 803 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 804 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 805 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 806 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 807 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 808 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 809 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 810 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 811 }; 812 813 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 814 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 815 ISD, DstTy.getSimpleVT(), 816 SrcTy.getSimpleVT())) 817 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 818 } 819 820 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { 821 // As general rule, fp converts that were not matched above are scalarized 822 // and cost 1 vcvt for each lane, so long as the instruction is available. 823 // If not it will become a series of function calls. 824 const InstructionCost CallCost = 825 getCallInstrCost(nullptr, Dst, {Src}, CostKind); 826 int Lanes = 1; 827 if (SrcTy.isFixedLengthVector()) 828 Lanes = SrcTy.getVectorNumElements(); 829 830 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) 831 return Lanes; 832 else 833 return Lanes * CallCost; 834 } 835 836 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && 837 SrcTy.isFixedLengthVector()) { 838 // Treat a truncate with larger than legal source (128bits for MVE) as 839 // expensive, 2 instructions per lane. 840 if ((SrcTy.getScalarType() == MVT::i8 || 841 SrcTy.getScalarType() == MVT::i16 || 842 SrcTy.getScalarType() == MVT::i32) && 843 SrcTy.getSizeInBits() > 128 && 844 SrcTy.getSizeInBits() > DstTy.getSizeInBits()) 845 return SrcTy.getVectorNumElements() * 2; 846 } 847 848 // Scalar integer conversion costs. 849 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 850 // i16 -> i64 requires two dependent operations. 851 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 852 853 // Truncates on i64 are assumed to be free. 854 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 855 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 856 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 857 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 858 }; 859 860 if (SrcTy.isInteger()) { 861 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 862 DstTy.getSimpleVT(), 863 SrcTy.getSimpleVT())) 864 return AdjustCost(Entry->Cost); 865 } 866 867 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 868 ? ST->getMVEVectorCostFactor(CostKind) 869 : 1; 870 return AdjustCost( 871 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 872 } 873 874 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 875 unsigned Index) { 876 // Penalize inserting into an D-subregister. We end up with a three times 877 // lower estimated throughput on swift. 878 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 879 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 880 return 3; 881 882 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 883 Opcode == Instruction::ExtractElement)) { 884 // Cross-class copies are expensive on many microarchitectures, 885 // so assume they are expensive by default. 886 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 887 return 3; 888 889 // Even if it's not a cross class copy, this likely leads to mixing 890 // of NEON and VFP code and should be therefore penalized. 891 if (ValTy->isVectorTy() && 892 ValTy->getScalarSizeInBits() <= 32) 893 return std::max<InstructionCost>( 894 BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 895 } 896 897 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 898 Opcode == Instruction::ExtractElement)) { 899 // Integer cross-lane moves are more expensive than float, which can 900 // sometimes just be vmovs. Integer involve being passes to GPR registers, 901 // causing more of a delay. 902 std::pair<InstructionCost, MVT> LT = 903 getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType()); 904 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); 905 } 906 907 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 908 } 909 910 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 911 Type *CondTy, 912 CmpInst::Predicate VecPred, 913 TTI::TargetCostKind CostKind, 914 const Instruction *I) { 915 int ISD = TLI->InstructionOpcodeToISD(Opcode); 916 917 // Thumb scalar code size cost for select. 918 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && 919 ST->isThumb() && !ValTy->isVectorTy()) { 920 // Assume expensive structs. 921 if (TLI->getValueType(DL, ValTy, true) == MVT::Other) 922 return TTI::TCC_Expensive; 923 924 // Select costs can vary because they: 925 // - may require one or more conditional mov (including an IT), 926 // - can't operate directly on immediates, 927 // - require live flags, which we can't copy around easily. 928 InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first; 929 930 // Possible IT instruction for Thumb2, or more for Thumb1. 931 ++Cost; 932 933 // i1 values may need rematerialising by using mov immediates and/or 934 // flag setting instructions. 935 if (ValTy->isIntegerTy(1)) 936 ++Cost; 937 938 return Cost; 939 } 940 941 // If this is a vector min/max/abs, use the cost of that intrinsic directly 942 // instead. Hopefully when min/max intrinsics are more prevalent this code 943 // will not be needed. 944 const Instruction *Sel = I; 945 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && 946 Sel->hasOneUse()) 947 Sel = cast<Instruction>(Sel->user_back()); 948 if (Sel && ValTy->isVectorTy() && 949 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { 950 const Value *LHS, *RHS; 951 SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor; 952 unsigned IID = 0; 953 switch (SPF) { 954 case SPF_ABS: 955 IID = Intrinsic::abs; 956 break; 957 case SPF_SMIN: 958 IID = Intrinsic::smin; 959 break; 960 case SPF_SMAX: 961 IID = Intrinsic::smax; 962 break; 963 case SPF_UMIN: 964 IID = Intrinsic::umin; 965 break; 966 case SPF_UMAX: 967 IID = Intrinsic::umax; 968 break; 969 case SPF_FMINNUM: 970 IID = Intrinsic::minnum; 971 break; 972 case SPF_FMAXNUM: 973 IID = Intrinsic::maxnum; 974 break; 975 default: 976 break; 977 } 978 if (IID) { 979 // The ICmp is free, the select gets the cost of the min/max/etc 980 if (Sel != I) 981 return 0; 982 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); 983 return getIntrinsicInstrCost(CostAttrs, CostKind); 984 } 985 } 986 987 // On NEON a vector select gets lowered to vbsl. 988 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { 989 // Lowering of some vector selects is currently far from perfect. 990 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 991 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 992 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 993 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 994 }; 995 996 EVT SelCondTy = TLI->getValueType(DL, CondTy); 997 EVT SelValTy = TLI->getValueType(DL, ValTy); 998 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 999 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 1000 SelCondTy.getSimpleVT(), 1001 SelValTy.getSimpleVT())) 1002 return Entry->Cost; 1003 } 1004 1005 std::pair<InstructionCost, MVT> LT = 1006 TLI->getTypeLegalizationCost(DL, ValTy); 1007 return LT.first; 1008 } 1009 1010 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && 1011 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 1012 cast<FixedVectorType>(ValTy)->getNumElements() > 1) { 1013 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy); 1014 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy); 1015 if (!VecCondTy) 1016 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy)); 1017 1018 // If we don't have mve.fp any fp operations will need to be scalarized. 1019 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { 1020 // One scalaization insert, one scalarization extract and the cost of the 1021 // fcmps. 1022 return BaseT::getScalarizationOverhead(VecValTy, false, true) + 1023 BaseT::getScalarizationOverhead(VecCondTy, true, false) + 1024 VecValTy->getNumElements() * 1025 getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 1026 VecCondTy->getScalarType(), VecPred, CostKind, 1027 I); 1028 } 1029 1030 std::pair<InstructionCost, MVT> LT = 1031 TLI->getTypeLegalizationCost(DL, ValTy); 1032 int BaseCost = ST->getMVEVectorCostFactor(CostKind); 1033 // There are two types - the input that specifies the type of the compare 1034 // and the output vXi1 type. Because we don't know how the output will be 1035 // split, we may need an expensive shuffle to get two in sync. This has the 1036 // effect of making larger than legal compares (v8i32 for example) 1037 // expensive. 1038 if (LT.second.getVectorNumElements() > 2) { 1039 if (LT.first > 1) 1040 return LT.first * BaseCost + 1041 BaseT::getScalarizationOverhead(VecCondTy, true, false); 1042 return BaseCost; 1043 } 1044 } 1045 1046 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1047 // for "multiple beats" potentially needed by MVE instructions. 1048 int BaseCost = 1; 1049 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) 1050 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1051 1052 return BaseCost * 1053 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1054 } 1055 1056 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, 1057 ScalarEvolution *SE, 1058 const SCEV *Ptr) { 1059 // Address computations in vectorized code with non-consecutive addresses will 1060 // likely result in more instructions compared to scalar code where the 1061 // computation can more often be merged into the index mode. The resulting 1062 // extra micro-ops can significantly decrease throughput. 1063 unsigned NumVectorInstToHideOverhead = 10; 1064 int MaxMergeDistance = 64; 1065 1066 if (ST->hasNEON()) { 1067 if (Ty->isVectorTy() && SE && 1068 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1069 return NumVectorInstToHideOverhead; 1070 1071 // In many cases the address computation is not merged into the instruction 1072 // addressing mode. 1073 return 1; 1074 } 1075 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 1076 } 1077 1078 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 1079 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1080 // If a VCTP is part of a chain, it's already profitable and shouldn't be 1081 // optimized, else LSR may block tail-predication. 1082 switch (II->getIntrinsicID()) { 1083 case Intrinsic::arm_mve_vctp8: 1084 case Intrinsic::arm_mve_vctp16: 1085 case Intrinsic::arm_mve_vctp32: 1086 case Intrinsic::arm_mve_vctp64: 1087 return true; 1088 default: 1089 break; 1090 } 1091 } 1092 return false; 1093 } 1094 1095 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 1096 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 1097 return false; 1098 1099 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) { 1100 // Don't support v2i1 yet. 1101 if (VecTy->getNumElements() == 2) 1102 return false; 1103 1104 // We don't support extending fp types. 1105 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 1106 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 1107 return false; 1108 } 1109 1110 unsigned EltWidth = DataTy->getScalarSizeInBits(); 1111 return (EltWidth == 32 && Alignment >= 4) || 1112 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); 1113 } 1114 1115 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) { 1116 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 1117 return false; 1118 1119 unsigned EltWidth = Ty->getScalarSizeInBits(); 1120 return ((EltWidth == 32 && Alignment >= 4) || 1121 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); 1122 } 1123 1124 /// Given a memcpy/memset/memmove instruction, return the number of memory 1125 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a 1126 /// call is used. 1127 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { 1128 MemOp MOp; 1129 unsigned DstAddrSpace = ~0u; 1130 unsigned SrcAddrSpace = ~0u; 1131 const Function *F = I->getParent()->getParent(); 1132 1133 if (const auto *MC = dyn_cast<MemTransferInst>(I)) { 1134 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength()); 1135 // If 'size' is not a constant, a library call will be generated. 1136 if (!C) 1137 return -1; 1138 1139 const unsigned Size = C->getValue().getZExtValue(); 1140 const Align DstAlign = *MC->getDestAlign(); 1141 const Align SrcAlign = *MC->getSourceAlign(); 1142 1143 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 1144 /*IsVolatile*/ false); 1145 DstAddrSpace = MC->getDestAddressSpace(); 1146 SrcAddrSpace = MC->getSourceAddressSpace(); 1147 } 1148 else if (const auto *MS = dyn_cast<MemSetInst>(I)) { 1149 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength()); 1150 // If 'size' is not a constant, a library call will be generated. 1151 if (!C) 1152 return -1; 1153 1154 const unsigned Size = C->getValue().getZExtValue(); 1155 const Align DstAlign = *MS->getDestAlign(); 1156 1157 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, 1158 /*IsZeroMemset*/ false, /*IsVolatile*/ false); 1159 DstAddrSpace = MS->getDestAddressSpace(); 1160 } 1161 else 1162 llvm_unreachable("Expected a memcpy/move or memset!"); 1163 1164 unsigned Limit, Factor = 2; 1165 switch(I->getIntrinsicID()) { 1166 case Intrinsic::memcpy: 1167 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize()); 1168 break; 1169 case Intrinsic::memmove: 1170 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 1171 break; 1172 case Intrinsic::memset: 1173 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize()); 1174 Factor = 1; 1175 break; 1176 default: 1177 llvm_unreachable("Expected a memcpy/move or memset!"); 1178 } 1179 1180 // MemOps will be poplulated with a list of data types that needs to be 1181 // loaded and stored. That's why we multiply the number of elements by 2 to 1182 // get the cost for this memcpy. 1183 std::vector<EVT> MemOps; 1184 if (getTLI()->findOptimalMemOpLowering( 1185 MemOps, Limit, MOp, DstAddrSpace, 1186 SrcAddrSpace, F->getAttributes())) 1187 return MemOps.size() * Factor; 1188 1189 // If we can't find an optimal memop lowering, return the default cost 1190 return -1; 1191 } 1192 1193 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) { 1194 int NumOps = getNumMemOps(cast<IntrinsicInst>(I)); 1195 1196 // To model the cost of a library call, we assume 1 for the call, and 1197 // 3 for the argument setup. 1198 if (NumOps == -1) 1199 return 4; 1200 return NumOps; 1201 } 1202 1203 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1204 VectorType *Tp, ArrayRef<int> Mask, 1205 int Index, VectorType *SubTp, 1206 ArrayRef<const Value *> Args) { 1207 Kind = improveShuffleKindFromMask(Kind, Mask); 1208 if (ST->hasNEON()) { 1209 if (Kind == TTI::SK_Broadcast) { 1210 static const CostTblEntry NEONDupTbl[] = { 1211 // VDUP handles these cases. 1212 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1213 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1214 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1215 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1216 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1217 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1218 1219 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1220 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1221 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1222 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 1223 1224 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1225 if (const auto *Entry = 1226 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1227 return LT.first * Entry->Cost; 1228 } 1229 if (Kind == TTI::SK_Reverse) { 1230 static const CostTblEntry NEONShuffleTbl[] = { 1231 // Reverse shuffle cost one instruction if we are shuffling within a 1232 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 1233 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1234 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1235 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1236 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1237 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1238 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1239 1240 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1241 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1242 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 1243 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 1244 1245 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1246 if (const auto *Entry = 1247 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1248 return LT.first * Entry->Cost; 1249 } 1250 if (Kind == TTI::SK_Select) { 1251 static const CostTblEntry NEONSelShuffleTbl[] = { 1252 // Select shuffle cost table for ARM. Cost is the number of 1253 // instructions 1254 // required to create the shuffled vector. 1255 1256 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1257 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1258 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1259 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1260 1261 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1262 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1263 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 1264 1265 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 1266 1267 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 1268 1269 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1270 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 1271 ISD::VECTOR_SHUFFLE, LT.second)) 1272 return LT.first * Entry->Cost; 1273 } 1274 } 1275 if (ST->hasMVEIntegerOps()) { 1276 if (Kind == TTI::SK_Broadcast) { 1277 static const CostTblEntry MVEDupTbl[] = { 1278 // VDUP handles these cases. 1279 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1280 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1281 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 1282 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1283 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 1284 1285 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1286 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 1287 LT.second)) 1288 return LT.first * Entry->Cost * 1289 ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput); 1290 } 1291 1292 if (!Mask.empty()) { 1293 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1294 if (LT.second.isVector() && 1295 Mask.size() <= LT.second.getVectorNumElements() && 1296 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) || 1297 isVREVMask(Mask, LT.second, 64))) 1298 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first; 1299 } 1300 } 1301 1302 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 1303 ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) 1304 : 1; 1305 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 1306 } 1307 1308 InstructionCost ARMTTIImpl::getArithmeticInstrCost( 1309 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1310 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 1311 TTI::OperandValueProperties Opd1PropInfo, 1312 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1313 const Instruction *CxtI) { 1314 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 1315 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) { 1316 // Make operations on i1 relatively expensive as this often involves 1317 // combining predicates. AND and XOR should be easier to handle with IT 1318 // blocks. 1319 switch (ISDOpcode) { 1320 default: 1321 break; 1322 case ISD::AND: 1323 case ISD::XOR: 1324 return 2; 1325 case ISD::OR: 1326 return 3; 1327 } 1328 } 1329 1330 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1331 1332 if (ST->hasNEON()) { 1333 const unsigned FunctionCallDivCost = 20; 1334 const unsigned ReciprocalDivCost = 10; 1335 static const CostTblEntry CostTbl[] = { 1336 // Division. 1337 // These costs are somewhat random. Choose a cost of 20 to indicate that 1338 // vectorizing devision (added function call) is going to be very expensive. 1339 // Double registers types. 1340 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1341 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1342 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1343 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1344 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1345 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1346 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1347 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1348 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 1349 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 1350 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1351 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1352 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 1353 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 1354 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1355 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1356 // Quad register types. 1357 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1358 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1359 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1360 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1361 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1362 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1363 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1364 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1365 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1366 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1367 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1368 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1369 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1370 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1371 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1372 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1373 // Multiplication. 1374 }; 1375 1376 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 1377 return LT.first * Entry->Cost; 1378 1379 InstructionCost Cost = BaseT::getArithmeticInstrCost( 1380 Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); 1381 1382 // This is somewhat of a hack. The problem that we are facing is that SROA 1383 // creates a sequence of shift, and, or instructions to construct values. 1384 // These sequences are recognized by the ISel and have zero-cost. Not so for 1385 // the vectorized code. Because we have support for v2i64 but not i64 those 1386 // sequences look particularly beneficial to vectorize. 1387 // To work around this we increase the cost of v2i64 operations to make them 1388 // seem less beneficial. 1389 if (LT.second == MVT::v2i64 && 1390 Op2Info == TargetTransformInfo::OK_UniformConstantValue) 1391 Cost += 4; 1392 1393 return Cost; 1394 } 1395 1396 // If this operation is a shift on arm/thumb2, it might well be folded into 1397 // the following instruction, hence having a cost of 0. 1398 auto LooksLikeAFreeShift = [&]() { 1399 if (ST->isThumb1Only() || Ty->isVectorTy()) 1400 return false; 1401 1402 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 1403 return false; 1404 if (Op2Info != TargetTransformInfo::OK_UniformConstantValue) 1405 return false; 1406 1407 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 1408 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 1409 case Instruction::Add: 1410 case Instruction::Sub: 1411 case Instruction::And: 1412 case Instruction::Xor: 1413 case Instruction::Or: 1414 case Instruction::ICmp: 1415 return true; 1416 default: 1417 return false; 1418 } 1419 }; 1420 if (LooksLikeAFreeShift()) 1421 return 0; 1422 1423 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1424 // for "multiple beats" potentially needed by MVE instructions. 1425 int BaseCost = 1; 1426 if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) 1427 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1428 1429 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 1430 // without treating floats as more expensive that scalars or increasing the 1431 // costs for custom operations. The results is also multiplied by the 1432 // MVEVectorCostFactor where appropriate. 1433 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 1434 return LT.first * BaseCost; 1435 1436 // Else this is expand, assume that we need to scalarize this op. 1437 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { 1438 unsigned Num = VTy->getNumElements(); 1439 InstructionCost Cost = 1440 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 1441 // Return the cost of multiple scalar invocation plus the cost of 1442 // inserting and extracting the values. 1443 SmallVector<Type *> Tys(Args.size(), Ty); 1444 return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 1445 } 1446 1447 return BaseCost; 1448 } 1449 1450 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1451 MaybeAlign Alignment, 1452 unsigned AddressSpace, 1453 TTI::TargetCostKind CostKind, 1454 const Instruction *I) { 1455 // TODO: Handle other cost kinds. 1456 if (CostKind != TTI::TCK_RecipThroughput) 1457 return 1; 1458 1459 // Type legalization can't handle structs 1460 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1461 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1462 CostKind); 1463 1464 if (ST->hasNEON() && Src->isVectorTy() && 1465 (Alignment && *Alignment != Align(16)) && 1466 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 1467 // Unaligned loads/stores are extremely inefficient. 1468 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 1469 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 1470 return LT.first * 4; 1471 } 1472 1473 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. 1474 // Same for stores. 1475 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I && 1476 ((Opcode == Instruction::Load && I->hasOneUse() && 1477 isa<FPExtInst>(*I->user_begin())) || 1478 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) { 1479 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src); 1480 Type *DstTy = 1481 Opcode == Instruction::Load 1482 ? (*I->user_begin())->getType() 1483 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType(); 1484 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && 1485 DstTy->getScalarType()->isFloatTy()) 1486 return ST->getMVEVectorCostFactor(CostKind); 1487 } 1488 1489 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 1490 ? ST->getMVEVectorCostFactor(CostKind) 1491 : 1; 1492 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1493 CostKind, I); 1494 } 1495 1496 InstructionCost 1497 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1498 unsigned AddressSpace, 1499 TTI::TargetCostKind CostKind) { 1500 if (ST->hasMVEIntegerOps()) { 1501 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment)) 1502 return ST->getMVEVectorCostFactor(CostKind); 1503 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment)) 1504 return ST->getMVEVectorCostFactor(CostKind); 1505 } 1506 if (!isa<FixedVectorType>(Src)) 1507 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1508 CostKind); 1509 // Scalar cost, which is currently very high due to the efficiency of the 1510 // generated code. 1511 return cast<FixedVectorType>(Src)->getNumElements() * 8; 1512 } 1513 1514 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( 1515 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1516 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1517 bool UseMaskForCond, bool UseMaskForGaps) { 1518 assert(Factor >= 2 && "Invalid interleave factor"); 1519 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 1520 1521 // vldN/vstN doesn't support vector types of i64/f64 element. 1522 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 1523 1524 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 1525 !UseMaskForCond && !UseMaskForGaps) { 1526 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1527 auto *SubVecTy = 1528 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1529 1530 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 1531 // Accesses having vector types that are a multiple of 128 bits can be 1532 // matched to more than one vldN/vstN instruction. 1533 int BaseCost = 1534 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1535 if (NumElts % Factor == 0 && 1536 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL)) 1537 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1538 1539 // Some smaller than legal interleaved patterns are cheap as we can make 1540 // use of the vmovn or vrev patterns to interleave a standard load. This is 1541 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 1542 // promoted differently). The cost of 2 here is then a load and vrev or 1543 // vmovn. 1544 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 1545 VecTy->isIntOrIntVectorTy() && 1546 DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64) 1547 return 2 * BaseCost; 1548 } 1549 1550 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1551 Alignment, AddressSpace, CostKind, 1552 UseMaskForCond, UseMaskForGaps); 1553 } 1554 1555 InstructionCost ARMTTIImpl::getGatherScatterOpCost( 1556 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1557 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1558 using namespace PatternMatch; 1559 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 1560 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1561 Alignment, CostKind, I); 1562 1563 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 1564 auto *VTy = cast<FixedVectorType>(DataTy); 1565 1566 // TODO: Splitting, once we do that. 1567 1568 unsigned NumElems = VTy->getNumElements(); 1569 unsigned EltSize = VTy->getScalarSizeInBits(); 1570 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy); 1571 1572 // For now, it is assumed that for the MVE gather instructions the loads are 1573 // all effectively serialised. This means the cost is the scalar cost 1574 // multiplied by the number of elements being loaded. This is possibly very 1575 // conservative, but even so we still end up vectorising loops because the 1576 // cost per iteration for many loops is lower than for scalar loops. 1577 InstructionCost VectorCost = 1578 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); 1579 // The scalarization cost should be a lot higher. We use the number of vector 1580 // elements plus the scalarization overhead. 1581 InstructionCost ScalarCost = 1582 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) + 1583 BaseT::getScalarizationOverhead(VTy, false, true); 1584 1585 if (EltSize < 8 || Alignment < EltSize / 8) 1586 return ScalarCost; 1587 1588 unsigned ExtSize = EltSize; 1589 // Check whether there's a single user that asks for an extended type 1590 if (I != nullptr) { 1591 // Dependent of the caller of this function, a gather instruction will 1592 // either have opcode Instruction::Load or be a call to the masked_gather 1593 // intrinsic 1594 if ((I->getOpcode() == Instruction::Load || 1595 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 1596 I->hasOneUse()) { 1597 const User *Us = *I->users().begin(); 1598 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 1599 // only allow valid type combinations 1600 unsigned TypeSize = 1601 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 1602 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 1603 (TypeSize == 16 && EltSize == 8)) && 1604 TypeSize * NumElems == 128) { 1605 ExtSize = TypeSize; 1606 } 1607 } 1608 } 1609 // Check whether the input data needs to be truncated 1610 TruncInst *T; 1611 if ((I->getOpcode() == Instruction::Store || 1612 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 1613 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 1614 // Only allow valid type combinations 1615 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 1616 if (((EltSize == 16 && TypeSize == 32) || 1617 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 1618 TypeSize * NumElems == 128) 1619 ExtSize = TypeSize; 1620 } 1621 } 1622 1623 if (ExtSize * NumElems != 128 || NumElems < 4) 1624 return ScalarCost; 1625 1626 // Any (aligned) i32 gather will not need to be scalarised. 1627 if (ExtSize == 32) 1628 return VectorCost; 1629 // For smaller types, we need to ensure that the gep's inputs are correctly 1630 // extended from a small enough value. Other sizes (including i64) are 1631 // scalarized for now. 1632 if (ExtSize != 8 && ExtSize != 16) 1633 return ScalarCost; 1634 1635 if (const auto *BC = dyn_cast<BitCastInst>(Ptr)) 1636 Ptr = BC->getOperand(0); 1637 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1638 if (GEP->getNumOperands() != 2) 1639 return ScalarCost; 1640 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1641 // Scale needs to be correct (which is only relevant for i16s). 1642 if (Scale != 1 && Scale * 8 != ExtSize) 1643 return ScalarCost; 1644 // And we need to zext (not sext) the indexes from a small enough type. 1645 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1646 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1647 return VectorCost; 1648 } 1649 return ScalarCost; 1650 } 1651 return ScalarCost; 1652 } 1653 1654 InstructionCost 1655 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 1656 Optional<FastMathFlags> FMF, 1657 TTI::TargetCostKind CostKind) { 1658 if (TTI::requiresOrderedReduction(FMF)) 1659 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1660 1661 EVT ValVT = TLI->getValueType(DL, ValTy); 1662 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1663 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD) 1664 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1665 1666 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1667 1668 static const CostTblEntry CostTblAdd[]{ 1669 {ISD::ADD, MVT::v16i8, 1}, 1670 {ISD::ADD, MVT::v8i16, 1}, 1671 {ISD::ADD, MVT::v4i32, 1}, 1672 }; 1673 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second)) 1674 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; 1675 1676 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1677 } 1678 1679 InstructionCost 1680 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned, 1681 Type *ResTy, VectorType *ValTy, 1682 TTI::TargetCostKind CostKind) { 1683 EVT ValVT = TLI->getValueType(DL, ValTy); 1684 EVT ResVT = TLI->getValueType(DL, ResTy); 1685 1686 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1687 std::pair<InstructionCost, MVT> LT = 1688 TLI->getTypeLegalizationCost(DL, ValTy); 1689 1690 // The legal cases are: 1691 // VADDV u/s 8/16/32 1692 // VMLAV u/s 8/16/32 1693 // VADDLV u/s 32 1694 // VMLALV u/s 16/32 1695 // Codegen currently cannot always handle larger than legal vectors very 1696 // well, especially for predicated reductions where the mask needs to be 1697 // split, so restrict to 128bit or smaller input types. 1698 unsigned RevVTSize = ResVT.getSizeInBits(); 1699 if (ValVT.getSizeInBits() <= 128 && 1700 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1701 (LT.second == MVT::v8i16 && RevVTSize <= (IsMLA ? 64u : 32u)) || 1702 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1703 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1704 } 1705 1706 return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy, 1707 CostKind); 1708 } 1709 1710 InstructionCost 1711 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1712 TTI::TargetCostKind CostKind) { 1713 switch (ICA.getID()) { 1714 case Intrinsic::get_active_lane_mask: 1715 // Currently we make a somewhat optimistic assumption that 1716 // active_lane_mask's are always free. In reality it may be freely folded 1717 // into a tail predicated loop, expanded into a VCPT or expanded into a lot 1718 // of add/icmp code. We may need to improve this in the future, but being 1719 // able to detect if it is free or not involves looking at a lot of other 1720 // code. We currently assume that the vectorizer inserted these, and knew 1721 // what it was doing in adding one. 1722 if (ST->hasMVEIntegerOps()) 1723 return 0; 1724 break; 1725 case Intrinsic::sadd_sat: 1726 case Intrinsic::ssub_sat: 1727 case Intrinsic::uadd_sat: 1728 case Intrinsic::usub_sat: { 1729 if (!ST->hasMVEIntegerOps()) 1730 break; 1731 Type *VT = ICA.getReturnType(); 1732 1733 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1734 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1735 LT.second == MVT::v16i8) { 1736 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we 1737 // need to extend the type, as it uses shr(qadd(shl, shl)). 1738 unsigned Instrs = 1739 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4; 1740 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; 1741 } 1742 break; 1743 } 1744 case Intrinsic::abs: 1745 case Intrinsic::smin: 1746 case Intrinsic::smax: 1747 case Intrinsic::umin: 1748 case Intrinsic::umax: { 1749 if (!ST->hasMVEIntegerOps()) 1750 break; 1751 Type *VT = ICA.getReturnType(); 1752 1753 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1754 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1755 LT.second == MVT::v16i8) 1756 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1757 break; 1758 } 1759 case Intrinsic::minnum: 1760 case Intrinsic::maxnum: { 1761 if (!ST->hasMVEFloatOps()) 1762 break; 1763 Type *VT = ICA.getReturnType(); 1764 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1765 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) 1766 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1767 break; 1768 } 1769 case Intrinsic::fptosi_sat: 1770 case Intrinsic::fptoui_sat: { 1771 if (ICA.getArgTypes().empty()) 1772 break; 1773 bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat; 1774 auto LT = TLI->getTypeLegalizationCost(DL, ICA.getArgTypes()[0]); 1775 EVT MTy = TLI->getValueType(DL, ICA.getReturnType()); 1776 // Check for the legal types, with the corect subtarget features. 1777 if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) || 1778 (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) || 1779 (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32)) 1780 return LT.first; 1781 1782 // Equally for MVE vector types 1783 if (ST->hasMVEFloatOps() && 1784 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) && 1785 LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()) 1786 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1787 1788 // Otherwise we use a legal convert followed by a min+max 1789 if (((ST->hasVFP2Base() && LT.second == MVT::f32) || 1790 (ST->hasFP64() && LT.second == MVT::f64) || 1791 (ST->hasFullFP16() && LT.second == MVT::f16) || 1792 (ST->hasMVEFloatOps() && 1793 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) && 1794 LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) { 1795 Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(), 1796 LT.second.getScalarSizeInBits()); 1797 InstructionCost Cost = 1798 LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1799 IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin 1800 : Intrinsic::umin, 1801 LegalTy, {LegalTy, LegalTy}); 1802 Cost += getIntrinsicInstrCost(Attrs1, CostKind); 1803 IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax 1804 : Intrinsic::umax, 1805 LegalTy, {LegalTy, LegalTy}); 1806 Cost += getIntrinsicInstrCost(Attrs2, CostKind); 1807 return LT.first * Cost; 1808 } 1809 break; 1810 } 1811 } 1812 1813 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1814 } 1815 1816 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1817 if (!F->isIntrinsic()) 1818 return BaseT::isLoweredToCall(F); 1819 1820 // Assume all Arm-specific intrinsics map to an instruction. 1821 if (F->getName().startswith("llvm.arm")) 1822 return false; 1823 1824 switch (F->getIntrinsicID()) { 1825 default: break; 1826 case Intrinsic::powi: 1827 case Intrinsic::sin: 1828 case Intrinsic::cos: 1829 case Intrinsic::pow: 1830 case Intrinsic::log: 1831 case Intrinsic::log10: 1832 case Intrinsic::log2: 1833 case Intrinsic::exp: 1834 case Intrinsic::exp2: 1835 return true; 1836 case Intrinsic::sqrt: 1837 case Intrinsic::fabs: 1838 case Intrinsic::copysign: 1839 case Intrinsic::floor: 1840 case Intrinsic::ceil: 1841 case Intrinsic::trunc: 1842 case Intrinsic::rint: 1843 case Intrinsic::nearbyint: 1844 case Intrinsic::round: 1845 case Intrinsic::canonicalize: 1846 case Intrinsic::lround: 1847 case Intrinsic::llround: 1848 case Intrinsic::lrint: 1849 case Intrinsic::llrint: 1850 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 1851 return true; 1852 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 1853 return true; 1854 // Some operations can be handled by vector instructions and assume 1855 // unsupported vectors will be expanded into supported scalar ones. 1856 // TODO Handle scalar operations properly. 1857 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 1858 case Intrinsic::masked_store: 1859 case Intrinsic::masked_load: 1860 case Intrinsic::masked_gather: 1861 case Intrinsic::masked_scatter: 1862 return !ST->hasMVEIntegerOps(); 1863 case Intrinsic::sadd_with_overflow: 1864 case Intrinsic::uadd_with_overflow: 1865 case Intrinsic::ssub_with_overflow: 1866 case Intrinsic::usub_with_overflow: 1867 case Intrinsic::sadd_sat: 1868 case Intrinsic::uadd_sat: 1869 case Intrinsic::ssub_sat: 1870 case Intrinsic::usub_sat: 1871 return false; 1872 } 1873 1874 return BaseT::isLoweredToCall(F); 1875 } 1876 1877 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) { 1878 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 1879 EVT VT = TLI->getValueType(DL, I.getType(), true); 1880 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 1881 return true; 1882 1883 // Check if an intrinsic will be lowered to a call and assume that any 1884 // other CallInst will generate a bl. 1885 if (auto *Call = dyn_cast<CallInst>(&I)) { 1886 if (auto *II = dyn_cast<IntrinsicInst>(Call)) { 1887 switch(II->getIntrinsicID()) { 1888 case Intrinsic::memcpy: 1889 case Intrinsic::memset: 1890 case Intrinsic::memmove: 1891 return getNumMemOps(II) == -1; 1892 default: 1893 if (const Function *F = Call->getCalledFunction()) 1894 return isLoweredToCall(F); 1895 } 1896 } 1897 return true; 1898 } 1899 1900 // FPv5 provides conversions between integer, double-precision, 1901 // single-precision, and half-precision formats. 1902 switch (I.getOpcode()) { 1903 default: 1904 break; 1905 case Instruction::FPToSI: 1906 case Instruction::FPToUI: 1907 case Instruction::SIToFP: 1908 case Instruction::UIToFP: 1909 case Instruction::FPTrunc: 1910 case Instruction::FPExt: 1911 return !ST->hasFPARMv8Base(); 1912 } 1913 1914 // FIXME: Unfortunately the approach of checking the Operation Action does 1915 // not catch all cases of Legalization that use library calls. Our 1916 // Legalization step categorizes some transformations into library calls as 1917 // Custom, Expand or even Legal when doing type legalization. So for now 1918 // we have to special case for instance the SDIV of 64bit integers and the 1919 // use of floating point emulation. 1920 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 1921 switch (ISD) { 1922 default: 1923 break; 1924 case ISD::SDIV: 1925 case ISD::UDIV: 1926 case ISD::SREM: 1927 case ISD::UREM: 1928 case ISD::SDIVREM: 1929 case ISD::UDIVREM: 1930 return true; 1931 } 1932 } 1933 1934 // Assume all other non-float operations are supported. 1935 if (!VT.isFloatingPoint()) 1936 return false; 1937 1938 // We'll need a library call to handle most floats when using soft. 1939 if (TLI->useSoftFloat()) { 1940 switch (I.getOpcode()) { 1941 default: 1942 return true; 1943 case Instruction::Alloca: 1944 case Instruction::Load: 1945 case Instruction::Store: 1946 case Instruction::Select: 1947 case Instruction::PHI: 1948 return false; 1949 } 1950 } 1951 1952 // We'll need a libcall to perform double precision operations on a single 1953 // precision only FPU. 1954 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 1955 return true; 1956 1957 // Likewise for half precision arithmetic. 1958 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 1959 return true; 1960 1961 return false; 1962 } 1963 1964 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1965 AssumptionCache &AC, 1966 TargetLibraryInfo *LibInfo, 1967 HardwareLoopInfo &HWLoopInfo) { 1968 // Low-overhead branches are only supported in the 'low-overhead branch' 1969 // extension of v8.1-m. 1970 if (!ST->hasLOB() || DisableLowOverheadLoops) { 1971 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 1972 return false; 1973 } 1974 1975 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 1976 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 1977 return false; 1978 } 1979 1980 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1981 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1982 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 1983 return false; 1984 } 1985 1986 const SCEV *TripCountSCEV = 1987 SE.getAddExpr(BackedgeTakenCount, 1988 SE.getOne(BackedgeTakenCount->getType())); 1989 1990 // We need to store the trip count in LR, a 32-bit register. 1991 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 1992 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 1993 return false; 1994 } 1995 1996 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 1997 // point in generating a hardware loop if that's going to happen. 1998 1999 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 2000 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 2001 switch (Call->getIntrinsicID()) { 2002 default: 2003 break; 2004 case Intrinsic::start_loop_iterations: 2005 case Intrinsic::test_start_loop_iterations: 2006 case Intrinsic::loop_decrement: 2007 case Intrinsic::loop_decrement_reg: 2008 return true; 2009 } 2010 } 2011 return false; 2012 }; 2013 2014 // Scan the instructions to see if there's any that we know will turn into a 2015 // call or if this loop is already a low-overhead loop or will become a tail 2016 // predicated loop. 2017 bool IsTailPredLoop = false; 2018 auto ScanLoop = [&](Loop *L) { 2019 for (auto *BB : L->getBlocks()) { 2020 for (auto &I : *BB) { 2021 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || 2022 isa<InlineAsm>(I)) { 2023 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 2024 return false; 2025 } 2026 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2027 IsTailPredLoop |= 2028 II->getIntrinsicID() == Intrinsic::get_active_lane_mask || 2029 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || 2030 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || 2031 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || 2032 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; 2033 } 2034 } 2035 return true; 2036 }; 2037 2038 // Visit inner loops. 2039 for (auto Inner : *L) 2040 if (!ScanLoop(Inner)) 2041 return false; 2042 2043 if (!ScanLoop(L)) 2044 return false; 2045 2046 // TODO: Check whether the trip count calculation is expensive. If L is the 2047 // inner loop but we know it has a low trip count, calculating that trip 2048 // count (in the parent loop) may be detrimental. 2049 2050 LLVMContext &C = L->getHeader()->getContext(); 2051 HWLoopInfo.CounterInReg = true; 2052 HWLoopInfo.IsNestingLegal = false; 2053 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; 2054 HWLoopInfo.CountType = Type::getInt32Ty(C); 2055 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 2056 return true; 2057 } 2058 2059 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 2060 // We don't allow icmp's, and because we only look at single block loops, 2061 // we simply count the icmps, i.e. there should only be 1 for the backedge. 2062 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 2063 return false; 2064 // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are 2065 // not currently canonical, but soon will be. Code without them uses icmp, and 2066 // so is not tail predicated as per the condition above. In order to get the 2067 // same performance we treat min and max the same as an icmp for tailpred 2068 // purposes for the moment (we often rely on non-tailpred and higher VF's to 2069 // pick more optimial instructions like VQDMULH. They need to be recognized 2070 // directly by the vectorizer). 2071 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2072 if ((II->getIntrinsicID() == Intrinsic::smin || 2073 II->getIntrinsicID() == Intrinsic::smax || 2074 II->getIntrinsicID() == Intrinsic::umin || 2075 II->getIntrinsicID() == Intrinsic::umax) && 2076 ++ICmpCount > 1) 2077 return false; 2078 2079 if (isa<FCmpInst>(&I)) 2080 return false; 2081 2082 // We could allow extending/narrowing FP loads/stores, but codegen is 2083 // too inefficient so reject this for now. 2084 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 2085 return false; 2086 2087 // Extends have to be extending-loads 2088 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 2089 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 2090 return false; 2091 2092 // Truncs have to be narrowing-stores 2093 if (isa<TruncInst>(&I) ) 2094 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 2095 return false; 2096 2097 return true; 2098 } 2099 2100 // To set up a tail-predicated loop, we need to know the total number of 2101 // elements processed by that loop. Thus, we need to determine the element 2102 // size and: 2103 // 1) it should be uniform for all operations in the vector loop, so we 2104 // e.g. don't want any widening/narrowing operations. 2105 // 2) it should be smaller than i64s because we don't have vector operations 2106 // that work on i64s. 2107 // 3) we don't want elements to be reversed or shuffled, to make sure the 2108 // tail-predication masks/predicates the right lanes. 2109 // 2110 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 2111 const DataLayout &DL, 2112 const LoopAccessInfo *LAI) { 2113 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n"); 2114 2115 // If there are live-out values, it is probably a reduction. We can predicate 2116 // most reduction operations freely under MVE using a combination of 2117 // prefer-predicated-reduction-select and inloop reductions. We limit this to 2118 // floating point and integer reductions, but don't check for operators 2119 // specifically here. If the value ends up not being a reduction (and so the 2120 // vectorizer cannot tailfold the loop), we should fall back to standard 2121 // vectorization automatically. 2122 SmallVector< Instruction *, 8 > LiveOuts; 2123 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); 2124 bool ReductionsDisabled = 2125 EnableTailPredication == TailPredication::EnabledNoReductions || 2126 EnableTailPredication == TailPredication::ForceEnabledNoReductions; 2127 2128 for (auto *I : LiveOuts) { 2129 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && 2130 !I->getType()->isHalfTy()) { 2131 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " 2132 "live-out value\n"); 2133 return false; 2134 } 2135 if (ReductionsDisabled) { 2136 LLVM_DEBUG(dbgs() << "Reductions not enabled\n"); 2137 return false; 2138 } 2139 } 2140 2141 // Next, check that all instructions can be tail-predicated. 2142 PredicatedScalarEvolution PSE = LAI->getPSE(); 2143 SmallVector<Instruction *, 16> LoadStores; 2144 int ICmpCount = 0; 2145 2146 for (BasicBlock *BB : L->blocks()) { 2147 for (Instruction &I : BB->instructionsWithoutDebug()) { 2148 if (isa<PHINode>(&I)) 2149 continue; 2150 if (!canTailPredicateInstruction(I, ICmpCount)) { 2151 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 2152 return false; 2153 } 2154 2155 Type *T = I.getType(); 2156 if (T->getScalarSizeInBits() > 32) { 2157 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 2158 return false; 2159 } 2160 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 2161 Value *Ptr = getLoadStorePointerOperand(&I); 2162 Type *AccessTy = getLoadStoreType(&I); 2163 int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L); 2164 if (NextStride == 1) { 2165 // TODO: for now only allow consecutive strides of 1. We could support 2166 // other strides as long as it is uniform, but let's keep it simple 2167 // for now. 2168 continue; 2169 } else if (NextStride == -1 || 2170 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || 2171 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { 2172 LLVM_DEBUG(dbgs() 2173 << "Consecutive strides of 2 found, vld2/vstr2 can't " 2174 "be tail-predicated\n."); 2175 return false; 2176 // TODO: don't tail predicate if there is a reversed load? 2177 } else if (EnableMaskedGatherScatters) { 2178 // Gather/scatters do allow loading from arbitrary strides, at 2179 // least if they are loop invariant. 2180 // TODO: Loop variant strides should in theory work, too, but 2181 // this requires further testing. 2182 const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr); 2183 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) { 2184 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 2185 if (PSE.getSE()->isLoopInvariant(Step, L)) 2186 continue; 2187 } 2188 } 2189 LLVM_DEBUG(dbgs() << "Bad stride found, can't " 2190 "tail-predicate\n."); 2191 return false; 2192 } 2193 } 2194 } 2195 2196 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 2197 return true; 2198 } 2199 2200 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, 2201 ScalarEvolution &SE, 2202 AssumptionCache &AC, 2203 TargetLibraryInfo *TLI, 2204 DominatorTree *DT, 2205 const LoopAccessInfo *LAI) { 2206 if (!EnableTailPredication) { 2207 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n"); 2208 return false; 2209 } 2210 2211 // Creating a predicated vector loop is the first step for generating a 2212 // tail-predicated hardware loop, for which we need the MVE masked 2213 // load/stores instructions: 2214 if (!ST->hasMVEIntegerOps()) 2215 return false; 2216 2217 // For now, restrict this to single block loops. 2218 if (L->getNumBlocks() > 1) { 2219 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 2220 "loop.\n"); 2221 return false; 2222 } 2223 2224 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected"); 2225 2226 HardwareLoopInfo HWLoopInfo(L); 2227 if (!HWLoopInfo.canAnalyze(*LI)) { 2228 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2229 "analyzable.\n"); 2230 return false; 2231 } 2232 2233 // This checks if we have the low-overhead branch architecture 2234 // extension, and if we will create a hardware-loop: 2235 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { 2236 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2237 "profitable.\n"); 2238 return false; 2239 } 2240 2241 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { 2242 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2243 "a candidate.\n"); 2244 return false; 2245 } 2246 2247 return canTailPredicateLoop(L, LI, SE, DL, LAI); 2248 } 2249 2250 bool ARMTTIImpl::emitGetActiveLaneMask() const { 2251 if (!ST->hasMVEIntegerOps() || !EnableTailPredication) 2252 return false; 2253 2254 // Intrinsic @llvm.get.active.lane.mask is supported. 2255 // It is used in the MVETailPredication pass, which requires the number of 2256 // elements processed by this vector loop to setup the tail-predicated 2257 // loop. 2258 return true; 2259 } 2260 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2261 TTI::UnrollingPreferences &UP, 2262 OptimizationRemarkEmitter *ORE) { 2263 // Enable Upper bound unrolling universally, not dependant upon the conditions 2264 // below. 2265 UP.UpperBound = true; 2266 2267 // Only currently enable these preferences for M-Class cores. 2268 if (!ST->isMClass()) 2269 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); 2270 2271 // Disable loop unrolling for Oz and Os. 2272 UP.OptSizeThreshold = 0; 2273 UP.PartialOptSizeThreshold = 0; 2274 if (L->getHeader()->getParent()->hasOptSize()) 2275 return; 2276 2277 SmallVector<BasicBlock*, 4> ExitingBlocks; 2278 L->getExitingBlocks(ExitingBlocks); 2279 LLVM_DEBUG(dbgs() << "Loop has:\n" 2280 << "Blocks: " << L->getNumBlocks() << "\n" 2281 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 2282 2283 // Only allow another exit other than the latch. This acts as an early exit 2284 // as it mirrors the profitability calculation of the runtime unroller. 2285 if (ExitingBlocks.size() > 2) 2286 return; 2287 2288 // Limit the CFG of the loop body for targets with a branch predictor. 2289 // Allowing 4 blocks permits if-then-else diamonds in the body. 2290 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 2291 return; 2292 2293 // Don't unroll vectorized loops, including the remainder loop 2294 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 2295 return; 2296 2297 // Scan the loop: don't unroll loops with calls as this could prevent 2298 // inlining. 2299 InstructionCost Cost = 0; 2300 for (auto *BB : L->getBlocks()) { 2301 for (auto &I : *BB) { 2302 // Don't unroll vectorised loop. MVE does not benefit from it as much as 2303 // scalar code. 2304 if (I.getType()->isVectorTy()) 2305 return; 2306 2307 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2308 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2309 if (!isLoweredToCall(F)) 2310 continue; 2311 } 2312 return; 2313 } 2314 2315 SmallVector<const Value*, 4> Operands(I.operand_values()); 2316 Cost += 2317 getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency); 2318 } 2319 } 2320 2321 // On v6m cores, there are very few registers available. We can easily end up 2322 // spilling and reloading more registers in an unrolled loop. Look at the 2323 // number of LCSSA phis as a rough measure of how many registers will need to 2324 // be live out of the loop, reducing the default unroll count if more than 1 2325 // value is needed. In the long run, all of this should be being learnt by a 2326 // machine. 2327 unsigned UnrollCount = 4; 2328 if (ST->isThumb1Only()) { 2329 unsigned ExitingValues = 0; 2330 SmallVector<BasicBlock *, 4> ExitBlocks; 2331 L->getExitBlocks(ExitBlocks); 2332 for (auto *Exit : ExitBlocks) { 2333 // Count the number of LCSSA phis. Exclude values coming from GEP's as 2334 // only the last is expected to be needed for address operands. 2335 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) { 2336 return PH.getNumOperands() != 1 || 2337 !isa<GetElementPtrInst>(PH.getOperand(0)); 2338 }); 2339 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; 2340 } 2341 if (ExitingValues) 2342 UnrollCount /= ExitingValues; 2343 if (UnrollCount <= 1) 2344 return; 2345 } 2346 2347 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 2348 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n"); 2349 2350 UP.Partial = true; 2351 UP.Runtime = true; 2352 UP.UnrollRemainder = true; 2353 UP.DefaultUnrollRuntimeCount = UnrollCount; 2354 UP.UnrollAndJam = true; 2355 UP.UnrollAndJamInnerLoopThreshold = 60; 2356 2357 // Force unrolling small loops can be very useful because of the branch 2358 // taken cost of the backedge. 2359 if (Cost < 12) 2360 UP.Force = true; 2361 } 2362 2363 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2364 TTI::PeelingPreferences &PP) { 2365 BaseT::getPeelingPreferences(L, SE, PP); 2366 } 2367 2368 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty, 2369 TTI::ReductionFlags Flags) const { 2370 if (!ST->hasMVEIntegerOps()) 2371 return false; 2372 2373 unsigned ScalarBits = Ty->getScalarSizeInBits(); 2374 switch (Opcode) { 2375 case Instruction::Add: 2376 return ScalarBits <= 64; 2377 default: 2378 return false; 2379 } 2380 } 2381 2382 bool ARMTTIImpl::preferPredicatedReductionSelect( 2383 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { 2384 if (!ST->hasMVEIntegerOps()) 2385 return false; 2386 return true; 2387 } 2388