1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/IntrinsicsARM.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/MC/SubtargetFeature.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <utility>
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "armtti"
44 
45 static cl::opt<bool> EnableMaskedLoadStores(
46   "enable-arm-maskedldst", cl::Hidden, cl::init(true),
47   cl::desc("Enable the generation of masked loads and stores"));
48 
49 static cl::opt<bool> DisableLowOverheadLoops(
50   "disable-arm-loloops", cl::Hidden, cl::init(false),
51   cl::desc("Disable the generation of low-overhead loops"));
52 
53 static cl::opt<bool>
54     AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
55                   cl::desc("Enable the generation of WLS loops"));
56 
57 extern cl::opt<TailPredication::Mode> EnableTailPredication;
58 
59 extern cl::opt<bool> EnableMaskedGatherScatters;
60 
61 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
62 
63 /// Convert a vector load intrinsic into a simple llvm load instruction.
64 /// This is beneficial when the underlying object being addressed comes
65 /// from a constant, since we get constant-folding for free.
66 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
67                                InstCombiner::BuilderTy &Builder) {
68   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
69 
70   if (!IntrAlign)
71     return nullptr;
72 
73   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
74                            ? MemAlign
75                            : IntrAlign->getLimitedValue();
76 
77   if (!isPowerOf2_32(Alignment))
78     return nullptr;
79 
80   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
81                                           PointerType::get(II.getType(), 0));
82   return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
83 }
84 
85 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
86                                      const Function *Callee) const {
87   const TargetMachine &TM = getTLI()->getTargetMachine();
88   const FeatureBitset &CallerBits =
89       TM.getSubtargetImpl(*Caller)->getFeatureBits();
90   const FeatureBitset &CalleeBits =
91       TM.getSubtargetImpl(*Callee)->getFeatureBits();
92 
93   // To inline a callee, all features not in the allowed list must match exactly.
94   bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
95                     (CalleeBits & ~InlineFeaturesAllowed);
96   // For features in the allowed list, the callee's features must be a subset of
97   // the callers'.
98   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
99                      (CalleeBits & InlineFeaturesAllowed);
100   return MatchExact && MatchSubset;
101 }
102 
103 TTI::AddressingModeKind
104 ARMTTIImpl::getPreferredAddressingMode(const Loop *L,
105                                        ScalarEvolution *SE) const {
106   if (ST->hasMVEIntegerOps())
107     return TTI::AMK_PostIndexed;
108 
109   if (L->getHeader()->getParent()->hasOptSize())
110     return TTI::AMK_None;
111 
112   if (ST->isMClass() && ST->isThumb2() &&
113       L->getNumBlocks() == 1)
114     return TTI::AMK_PreIndexed;
115 
116   return TTI::AMK_None;
117 }
118 
119 Optional<Instruction *>
120 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
121   using namespace PatternMatch;
122   Intrinsic::ID IID = II.getIntrinsicID();
123   switch (IID) {
124   default:
125     break;
126   case Intrinsic::arm_neon_vld1: {
127     Align MemAlign =
128         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
129                           &IC.getAssumptionCache(), &IC.getDominatorTree());
130     if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
131       return IC.replaceInstUsesWith(II, V);
132     }
133     break;
134   }
135 
136   case Intrinsic::arm_neon_vld2:
137   case Intrinsic::arm_neon_vld3:
138   case Intrinsic::arm_neon_vld4:
139   case Intrinsic::arm_neon_vld2lane:
140   case Intrinsic::arm_neon_vld3lane:
141   case Intrinsic::arm_neon_vld4lane:
142   case Intrinsic::arm_neon_vst1:
143   case Intrinsic::arm_neon_vst2:
144   case Intrinsic::arm_neon_vst3:
145   case Intrinsic::arm_neon_vst4:
146   case Intrinsic::arm_neon_vst2lane:
147   case Intrinsic::arm_neon_vst3lane:
148   case Intrinsic::arm_neon_vst4lane: {
149     Align MemAlign =
150         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
151                           &IC.getAssumptionCache(), &IC.getDominatorTree());
152     unsigned AlignArg = II.arg_size() - 1;
153     Value *AlignArgOp = II.getArgOperand(AlignArg);
154     MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
155     if (Align && *Align < MemAlign) {
156       return IC.replaceOperand(
157           II, AlignArg,
158           ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
159                            false));
160     }
161     break;
162   }
163 
164   case Intrinsic::arm_mve_pred_i2v: {
165     Value *Arg = II.getArgOperand(0);
166     Value *ArgArg;
167     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
168                        PatternMatch::m_Value(ArgArg))) &&
169         II.getType() == ArgArg->getType()) {
170       return IC.replaceInstUsesWith(II, ArgArg);
171     }
172     Constant *XorMask;
173     if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
174                              PatternMatch::m_Value(ArgArg)),
175                          PatternMatch::m_Constant(XorMask))) &&
176         II.getType() == ArgArg->getType()) {
177       if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
178         if (CI->getValue().trunc(16).isAllOnes()) {
179           auto TrueVector = IC.Builder.CreateVectorSplat(
180               cast<FixedVectorType>(II.getType())->getNumElements(),
181               IC.Builder.getTrue());
182           return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
183         }
184       }
185     }
186     KnownBits ScalarKnown(32);
187     if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
188                                 ScalarKnown, 0)) {
189       return &II;
190     }
191     break;
192   }
193   case Intrinsic::arm_mve_pred_v2i: {
194     Value *Arg = II.getArgOperand(0);
195     Value *ArgArg;
196     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
197                        PatternMatch::m_Value(ArgArg)))) {
198       return IC.replaceInstUsesWith(II, ArgArg);
199     }
200     if (!II.getMetadata(LLVMContext::MD_range)) {
201       Type *IntTy32 = Type::getInt32Ty(II.getContext());
202       Metadata *M[] = {
203           ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
204           ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))};
205       II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
206       return &II;
207     }
208     break;
209   }
210   case Intrinsic::arm_mve_vadc:
211   case Intrinsic::arm_mve_vadc_predicated: {
212     unsigned CarryOp =
213         (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
214     assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
215            "Bad type for intrinsic!");
216 
217     KnownBits CarryKnown(32);
218     if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
219                                 CarryKnown)) {
220       return &II;
221     }
222     break;
223   }
224   case Intrinsic::arm_mve_vmldava: {
225     Instruction *I = cast<Instruction>(&II);
226     if (I->hasOneUse()) {
227       auto *User = cast<Instruction>(*I->user_begin());
228       Value *OpZ;
229       if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
230           match(I->getOperand(3), m_Zero())) {
231         Value *OpX = I->getOperand(4);
232         Value *OpY = I->getOperand(5);
233         Type *OpTy = OpX->getType();
234 
235         IC.Builder.SetInsertPoint(User);
236         Value *V =
237             IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
238                                        {I->getOperand(0), I->getOperand(1),
239                                         I->getOperand(2), OpZ, OpX, OpY});
240 
241         IC.replaceInstUsesWith(*User, V);
242         return IC.eraseInstFromFunction(*User);
243       }
244     }
245     return None;
246   }
247   }
248   return None;
249 }
250 
251 Optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic(
252     InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
253     APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
254     std::function<void(Instruction *, unsigned, APInt, APInt &)>
255         SimplifyAndSetOp) const {
256 
257   // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the
258   // opcode specifying a Top/Bottom instruction, which can change between
259   // instructions.
260   auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) {
261     unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements();
262     unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue();
263 
264     // The only odd/even lanes of operand 0 will only be demanded depending
265     // on whether this is a top/bottom instruction.
266     APInt DemandedElts =
267         APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
268                                        : APInt::getHighBitsSet(2, 1));
269     SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts);
270     // The other lanes will be defined from the inserted elements.
271     UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1)
272                                                  : APInt::getHighBitsSet(2, 1));
273     return None;
274   };
275 
276   switch (II.getIntrinsicID()) {
277   default:
278     break;
279   case Intrinsic::arm_mve_vcvt_narrow:
280     SimplifyNarrowInstrTopBottom(2);
281     break;
282   case Intrinsic::arm_mve_vqmovn:
283     SimplifyNarrowInstrTopBottom(4);
284     break;
285   case Intrinsic::arm_mve_vshrn:
286     SimplifyNarrowInstrTopBottom(7);
287     break;
288   }
289 
290   return None;
291 }
292 
293 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
294                                           TTI::TargetCostKind CostKind) {
295   assert(Ty->isIntegerTy());
296 
297  unsigned Bits = Ty->getPrimitiveSizeInBits();
298  if (Bits == 0 || Imm.getActiveBits() >= 64)
299    return 4;
300 
301   int64_t SImmVal = Imm.getSExtValue();
302   uint64_t ZImmVal = Imm.getZExtValue();
303   if (!ST->isThumb()) {
304     if ((SImmVal >= 0 && SImmVal < 65536) ||
305         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
306         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
307       return 1;
308     return ST->hasV6T2Ops() ? 2 : 3;
309   }
310   if (ST->isThumb2()) {
311     if ((SImmVal >= 0 && SImmVal < 65536) ||
312         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
313         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
314       return 1;
315     return ST->hasV6T2Ops() ? 2 : 3;
316   }
317   // Thumb1, any i8 imm cost 1.
318   if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
319     return 1;
320   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
321     return 2;
322   // Load from constantpool.
323   return 3;
324 }
325 
326 // Constants smaller than 256 fit in the immediate field of
327 // Thumb1 instructions so we return a zero cost and 1 otherwise.
328 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
329                                                   const APInt &Imm, Type *Ty) {
330   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
331     return 0;
332 
333   return 1;
334 }
335 
336 // Checks whether Inst is part of a min(max()) or max(min()) pattern
337 // that will match to an SSAT instruction. Returns the instruction being
338 // saturated, or null if no saturation pattern was found.
339 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
340   Value *LHS, *RHS;
341   ConstantInt *C;
342   SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
343 
344   if (InstSPF == SPF_SMAX &&
345       PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
346       C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) {
347 
348     auto isSSatMin = [&](Value *MinInst) {
349       if (isa<SelectInst>(MinInst)) {
350         Value *MinLHS, *MinRHS;
351         ConstantInt *MinC;
352         SelectPatternFlavor MinSPF =
353             matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
354         if (MinSPF == SPF_SMIN &&
355             PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
356             MinC->getValue() == ((-Imm) - 1))
357           return true;
358       }
359       return false;
360     };
361 
362     if (isSSatMin(Inst->getOperand(1)))
363       return cast<Instruction>(Inst->getOperand(1))->getOperand(1);
364     if (Inst->hasNUses(2) &&
365         (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin()))))
366       return Inst->getOperand(1);
367   }
368   return nullptr;
369 }
370 
371 // Look for a FP Saturation pattern, where the instruction can be simplified to
372 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free.
373 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) {
374   if (Imm.getBitWidth() != 64 ||
375       Imm != APInt::getHighBitsSet(64, 33)) // -2147483648
376     return false;
377   Value *FP = isSSATMinMaxPattern(Inst, Imm);
378   if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse())
379     FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm);
380   if (!FP)
381     return false;
382   return isa<FPToSIInst>(FP);
383 }
384 
385 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
386                                               const APInt &Imm, Type *Ty,
387                                               TTI::TargetCostKind CostKind,
388                                               Instruction *Inst) {
389   // Division by a constant can be turned into multiplication, but only if we
390   // know it's constant. So it's not so much that the immediate is cheap (it's
391   // not), but that the alternative is worse.
392   // FIXME: this is probably unneeded with GlobalISel.
393   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
394        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
395       Idx == 1)
396     return 0;
397 
398   // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
399   // splitting any large offsets.
400   if (Opcode == Instruction::GetElementPtr && Idx != 0)
401     return 0;
402 
403   if (Opcode == Instruction::And) {
404     // UXTB/UXTH
405     if (Imm == 255 || Imm == 65535)
406       return 0;
407     // Conversion to BIC is free, and means we can use ~Imm instead.
408     return std::min(getIntImmCost(Imm, Ty, CostKind),
409                     getIntImmCost(~Imm, Ty, CostKind));
410   }
411 
412   if (Opcode == Instruction::Add)
413     // Conversion to SUB is free, and means we can use -Imm instead.
414     return std::min(getIntImmCost(Imm, Ty, CostKind),
415                     getIntImmCost(-Imm, Ty, CostKind));
416 
417   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
418       Ty->getIntegerBitWidth() == 32) {
419     int64_t NegImm = -Imm.getSExtValue();
420     if (ST->isThumb2() && NegImm < 1<<12)
421       // icmp X, #-C -> cmn X, #C
422       return 0;
423     if (ST->isThumb() && NegImm < 1<<8)
424       // icmp X, #-C -> adds X, #C
425       return 0;
426   }
427 
428   // xor a, -1 can always be folded to MVN
429   if (Opcode == Instruction::Xor && Imm.isAllOnes())
430     return 0;
431 
432   // Ensures negative constant of min(max()) or max(min()) patterns that
433   // match to SSAT instructions don't get hoisted
434   if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
435       Ty->getIntegerBitWidth() <= 32) {
436     if (isSSATMinMaxPattern(Inst, Imm) ||
437         (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
438          isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
439       return 0;
440   }
441 
442   if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm))
443     return 0;
444 
445   // We can convert <= -1 to < 0, which is generally quite cheap.
446   if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnesValue()) {
447     ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate();
448     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE)
449       return std::min(getIntImmCost(Imm, Ty, CostKind),
450                       getIntImmCost(Imm + 1, Ty, CostKind));
451   }
452 
453   return getIntImmCost(Imm, Ty, CostKind);
454 }
455 
456 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode,
457                                            TTI::TargetCostKind CostKind,
458                                            const Instruction *I) {
459   if (CostKind == TTI::TCK_RecipThroughput &&
460       (ST->hasNEON() || ST->hasMVEIntegerOps())) {
461     // FIXME: The vectorizer is highly sensistive to the cost of these
462     // instructions, which suggests that it may be using the costs incorrectly.
463     // But, for now, just make them free to avoid performance regressions for
464     // vector targets.
465     return 0;
466   }
467   return BaseT::getCFInstrCost(Opcode, CostKind, I);
468 }
469 
470 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
471                                              Type *Src,
472                                              TTI::CastContextHint CCH,
473                                              TTI::TargetCostKind CostKind,
474                                              const Instruction *I) {
475   int ISD = TLI->InstructionOpcodeToISD(Opcode);
476   assert(ISD && "Invalid opcode");
477 
478   // TODO: Allow non-throughput costs that aren't binary.
479   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
480     if (CostKind != TTI::TCK_RecipThroughput)
481       return Cost == 0 ? 0 : 1;
482     return Cost;
483   };
484   auto IsLegalFPType = [this](EVT VT) {
485     EVT EltVT = VT.getScalarType();
486     return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
487             (EltVT == MVT::f64 && ST->hasFP64()) ||
488             (EltVT == MVT::f16 && ST->hasFullFP16());
489   };
490 
491   EVT SrcTy = TLI->getValueType(DL, Src);
492   EVT DstTy = TLI->getValueType(DL, Dst);
493 
494   if (!SrcTy.isSimple() || !DstTy.isSimple())
495     return AdjustCost(
496         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
497 
498   // Extending masked load/Truncating masked stores is expensive because we
499   // currently don't split them. This means that we'll likely end up
500   // loading/storing each element individually (hence the high cost).
501   if ((ST->hasMVEIntegerOps() &&
502        (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
503         Opcode == Instruction::SExt)) ||
504       (ST->hasMVEFloatOps() &&
505        (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
506        IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
507     if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
508       return 2 * DstTy.getVectorNumElements() *
509              ST->getMVEVectorCostFactor(CostKind);
510 
511   // The extend of other kinds of load is free
512   if (CCH == TTI::CastContextHint::Normal ||
513       CCH == TTI::CastContextHint::Masked) {
514     static const TypeConversionCostTblEntry LoadConversionTbl[] = {
515         {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
516         {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
517         {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
518         {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
519         {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
520         {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
521         {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
522         {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
523         {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
524         {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
525         {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
526         {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
527     };
528     if (const auto *Entry = ConvertCostTableLookup(
529             LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
530       return AdjustCost(Entry->Cost);
531 
532     static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
533         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
534         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
535         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
536         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
537         {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
538         {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
539         // The following extend from a legal type to an illegal type, so need to
540         // split the load. This introduced an extra load operation, but the
541         // extend is still "free".
542         {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
543         {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
544         {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
545         {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
546         {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
547         {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
548     };
549     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
550       if (const auto *Entry =
551               ConvertCostTableLookup(MVELoadConversionTbl, ISD,
552                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
553         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
554     }
555 
556     static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
557         // FPExtends are similar but also require the VCVT instructions.
558         {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
559         {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
560     };
561     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
562       if (const auto *Entry =
563               ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
564                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
565         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
566     }
567 
568     // The truncate of a store is free. This is the mirror of extends above.
569     static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
570         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
571         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
572         {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
573         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
574         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
575         {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
576         {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
577     };
578     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
579       if (const auto *Entry =
580               ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
581                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
582         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
583     }
584 
585     static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
586         {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
587         {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
588     };
589     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
590       if (const auto *Entry =
591               ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
592                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
593         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
594     }
595   }
596 
597   // NEON vector operations that can extend their inputs.
598   if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
599       I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
600     static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
601       // vaddl
602       { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
603       { ISD::ADD, MVT::v8i16, MVT::v8i8,  0 },
604       // vsubl
605       { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
606       { ISD::SUB, MVT::v8i16, MVT::v8i8,  0 },
607       // vmull
608       { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
609       { ISD::MUL, MVT::v8i16, MVT::v8i8,  0 },
610       // vshll
611       { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
612       { ISD::SHL, MVT::v8i16, MVT::v8i8,  0 },
613     };
614 
615     auto *User = cast<Instruction>(*I->user_begin());
616     int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
617     if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
618                                              DstTy.getSimpleVT(),
619                                              SrcTy.getSimpleVT())) {
620       return AdjustCost(Entry->Cost);
621     }
622   }
623 
624   // Single to/from double precision conversions.
625   if (Src->isVectorTy() && ST->hasNEON() &&
626       ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
627         DstTy.getScalarType() == MVT::f32) ||
628        (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
629         DstTy.getScalarType() == MVT::f64))) {
630     static const CostTblEntry NEONFltDblTbl[] = {
631         // Vector fptrunc/fpext conversions.
632         {ISD::FP_ROUND, MVT::v2f64, 2},
633         {ISD::FP_EXTEND, MVT::v2f32, 2},
634         {ISD::FP_EXTEND, MVT::v4f32, 4}};
635 
636     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
637     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
638       return AdjustCost(LT.first * Entry->Cost);
639   }
640 
641   // Some arithmetic, load and store operations have specific instructions
642   // to cast up/down their types automatically at no extra cost.
643   // TODO: Get these tables to know at least what the related operations are.
644   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
645     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
646     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
647     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
648     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
649     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
650     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
651 
652     // The number of vmovl instructions for the extension.
653     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
654     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
655     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
656     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
657     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
658     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
659     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
660     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
661     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
662     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
663     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
664     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
665     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
666     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
667     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
668     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
669     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
670     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
671 
672     // Operations that we legalize using splitting.
673     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
674     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
675 
676     // Vector float <-> i32 conversions.
677     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
678     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
679 
680     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
681     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
682     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
683     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
684     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
685     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
686     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
687     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
688     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
689     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
690     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
691     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
692     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
693     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
694     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
695     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
696     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
697     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
698     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
699     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
700 
701     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
702     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
703     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
704     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
705     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
706     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
707 
708     // Vector double <-> i32 conversions.
709     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
710     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
711 
712     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
713     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
714     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
715     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
716     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
717     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
718 
719     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
720     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
721     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
722     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
723     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
724     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
725   };
726 
727   if (SrcTy.isVector() && ST->hasNEON()) {
728     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
729                                                    DstTy.getSimpleVT(),
730                                                    SrcTy.getSimpleVT()))
731       return AdjustCost(Entry->Cost);
732   }
733 
734   // Scalar float to integer conversions.
735   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
736     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
737     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
738     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
739     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
740     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
741     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
742     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
743     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
744     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
745     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
746     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
747     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
748     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
749     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
750     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
751     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
752     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
753     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
754     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
755     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
756   };
757   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
758     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
759                                                    DstTy.getSimpleVT(),
760                                                    SrcTy.getSimpleVT()))
761       return AdjustCost(Entry->Cost);
762   }
763 
764   // Scalar integer to float conversions.
765   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
766     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
767     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
768     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
769     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
770     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
771     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
772     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
773     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
774     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
775     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
776     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
777     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
778     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
779     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
780     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
781     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
782     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
783     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
784     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
785     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
786   };
787 
788   if (SrcTy.isInteger() && ST->hasNEON()) {
789     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
790                                                    ISD, DstTy.getSimpleVT(),
791                                                    SrcTy.getSimpleVT()))
792       return AdjustCost(Entry->Cost);
793   }
794 
795   // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
796   // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
797   // are linearised so take more.
798   static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
799     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
800     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
801     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
802     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
803     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
804     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
805     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
806     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
807     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
808     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
809     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
810     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
811   };
812 
813   if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
814     if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
815                                                    ISD, DstTy.getSimpleVT(),
816                                                    SrcTy.getSimpleVT()))
817       return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
818   }
819 
820   if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
821     // As general rule, fp converts that were not matched above are scalarized
822     // and cost 1 vcvt for each lane, so long as the instruction is available.
823     // If not it will become a series of function calls.
824     const InstructionCost CallCost =
825         getCallInstrCost(nullptr, Dst, {Src}, CostKind);
826     int Lanes = 1;
827     if (SrcTy.isFixedLengthVector())
828       Lanes = SrcTy.getVectorNumElements();
829 
830     if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
831       return Lanes;
832     else
833       return Lanes * CallCost;
834   }
835 
836   if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
837       SrcTy.isFixedLengthVector()) {
838     // Treat a truncate with larger than legal source (128bits for MVE) as
839     // expensive, 2 instructions per lane.
840     if ((SrcTy.getScalarType() == MVT::i8 ||
841          SrcTy.getScalarType() == MVT::i16 ||
842          SrcTy.getScalarType() == MVT::i32) &&
843         SrcTy.getSizeInBits() > 128 &&
844         SrcTy.getSizeInBits() > DstTy.getSizeInBits())
845       return SrcTy.getVectorNumElements() * 2;
846   }
847 
848   // Scalar integer conversion costs.
849   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
850     // i16 -> i64 requires two dependent operations.
851     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
852 
853     // Truncates on i64 are assumed to be free.
854     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
855     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
856     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
857     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
858   };
859 
860   if (SrcTy.isInteger()) {
861     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
862                                                    DstTy.getSimpleVT(),
863                                                    SrcTy.getSimpleVT()))
864       return AdjustCost(Entry->Cost);
865   }
866 
867   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
868                      ? ST->getMVEVectorCostFactor(CostKind)
869                      : 1;
870   return AdjustCost(
871       BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
872 }
873 
874 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
875                                                unsigned Index) {
876   // Penalize inserting into an D-subregister. We end up with a three times
877   // lower estimated throughput on swift.
878   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
879       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
880     return 3;
881 
882   if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
883                         Opcode == Instruction::ExtractElement)) {
884     // Cross-class copies are expensive on many microarchitectures,
885     // so assume they are expensive by default.
886     if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
887       return 3;
888 
889     // Even if it's not a cross class copy, this likely leads to mixing
890     // of NEON and VFP code and should be therefore penalized.
891     if (ValTy->isVectorTy() &&
892         ValTy->getScalarSizeInBits() <= 32)
893       return std::max<InstructionCost>(
894           BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
895   }
896 
897   if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
898                                  Opcode == Instruction::ExtractElement)) {
899     // Integer cross-lane moves are more expensive than float, which can
900     // sometimes just be vmovs. Integer involve being passes to GPR registers,
901     // causing more of a delay.
902     std::pair<InstructionCost, MVT> LT =
903         getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType());
904     return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
905   }
906 
907   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
908 }
909 
910 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
911                                                Type *CondTy,
912                                                CmpInst::Predicate VecPred,
913                                                TTI::TargetCostKind CostKind,
914                                                const Instruction *I) {
915   int ISD = TLI->InstructionOpcodeToISD(Opcode);
916 
917   // Thumb scalar code size cost for select.
918   if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
919       ST->isThumb() && !ValTy->isVectorTy()) {
920     // Assume expensive structs.
921     if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
922       return TTI::TCC_Expensive;
923 
924     // Select costs can vary because they:
925     // - may require one or more conditional mov (including an IT),
926     // - can't operate directly on immediates,
927     // - require live flags, which we can't copy around easily.
928     InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first;
929 
930     // Possible IT instruction for Thumb2, or more for Thumb1.
931     ++Cost;
932 
933     // i1 values may need rematerialising by using mov immediates and/or
934     // flag setting instructions.
935     if (ValTy->isIntegerTy(1))
936       ++Cost;
937 
938     return Cost;
939   }
940 
941   // If this is a vector min/max/abs, use the cost of that intrinsic directly
942   // instead. Hopefully when min/max intrinsics are more prevalent this code
943   // will not be needed.
944   const Instruction *Sel = I;
945   if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
946       Sel->hasOneUse())
947     Sel = cast<Instruction>(Sel->user_back());
948   if (Sel && ValTy->isVectorTy() &&
949       (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
950     const Value *LHS, *RHS;
951     SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor;
952     unsigned IID = 0;
953     switch (SPF) {
954     case SPF_ABS:
955       IID = Intrinsic::abs;
956       break;
957     case SPF_SMIN:
958       IID = Intrinsic::smin;
959       break;
960     case SPF_SMAX:
961       IID = Intrinsic::smax;
962       break;
963     case SPF_UMIN:
964       IID = Intrinsic::umin;
965       break;
966     case SPF_UMAX:
967       IID = Intrinsic::umax;
968       break;
969     case SPF_FMINNUM:
970       IID = Intrinsic::minnum;
971       break;
972     case SPF_FMAXNUM:
973       IID = Intrinsic::maxnum;
974       break;
975     default:
976       break;
977     }
978     if (IID) {
979       // The ICmp is free, the select gets the cost of the min/max/etc
980       if (Sel != I)
981         return 0;
982       IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
983       return getIntrinsicInstrCost(CostAttrs, CostKind);
984     }
985   }
986 
987   // On NEON a vector select gets lowered to vbsl.
988   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
989     // Lowering of some vector selects is currently far from perfect.
990     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
991       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
992       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
993       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
994     };
995 
996     EVT SelCondTy = TLI->getValueType(DL, CondTy);
997     EVT SelValTy = TLI->getValueType(DL, ValTy);
998     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
999       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
1000                                                      SelCondTy.getSimpleVT(),
1001                                                      SelValTy.getSimpleVT()))
1002         return Entry->Cost;
1003     }
1004 
1005     std::pair<InstructionCost, MVT> LT =
1006         TLI->getTypeLegalizationCost(DL, ValTy);
1007     return LT.first;
1008   }
1009 
1010   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
1011       (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
1012       cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
1013     FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
1014     FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
1015     if (!VecCondTy)
1016       VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
1017 
1018     // If we don't have mve.fp any fp operations will need to be scalarized.
1019     if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
1020       // One scalaization insert, one scalarization extract and the cost of the
1021       // fcmps.
1022       return BaseT::getScalarizationOverhead(VecValTy, false, true) +
1023              BaseT::getScalarizationOverhead(VecCondTy, true, false) +
1024              VecValTy->getNumElements() *
1025                  getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
1026                                     VecCondTy->getScalarType(), VecPred, CostKind,
1027                                     I);
1028     }
1029 
1030     std::pair<InstructionCost, MVT> LT =
1031         TLI->getTypeLegalizationCost(DL, ValTy);
1032     int BaseCost = ST->getMVEVectorCostFactor(CostKind);
1033     // There are two types - the input that specifies the type of the compare
1034     // and the output vXi1 type. Because we don't know how the output will be
1035     // split, we may need an expensive shuffle to get two in sync. This has the
1036     // effect of making larger than legal compares (v8i32 for example)
1037     // expensive.
1038     if (LT.second.getVectorNumElements() > 2) {
1039       if (LT.first > 1)
1040         return LT.first * BaseCost +
1041                BaseT::getScalarizationOverhead(VecCondTy, true, false);
1042       return BaseCost;
1043     }
1044   }
1045 
1046   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1047   // for "multiple beats" potentially needed by MVE instructions.
1048   int BaseCost = 1;
1049   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
1050     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1051 
1052   return BaseCost *
1053          BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1054 }
1055 
1056 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty,
1057                                                       ScalarEvolution *SE,
1058                                                       const SCEV *Ptr) {
1059   // Address computations in vectorized code with non-consecutive addresses will
1060   // likely result in more instructions compared to scalar code where the
1061   // computation can more often be merged into the index mode. The resulting
1062   // extra micro-ops can significantly decrease throughput.
1063   unsigned NumVectorInstToHideOverhead = 10;
1064   int MaxMergeDistance = 64;
1065 
1066   if (ST->hasNEON()) {
1067     if (Ty->isVectorTy() && SE &&
1068         !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1069       return NumVectorInstToHideOverhead;
1070 
1071     // In many cases the address computation is not merged into the instruction
1072     // addressing mode.
1073     return 1;
1074   }
1075   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
1076 }
1077 
1078 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
1079   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1080     // If a VCTP is part of a chain, it's already profitable and shouldn't be
1081     // optimized, else LSR may block tail-predication.
1082     switch (II->getIntrinsicID()) {
1083     case Intrinsic::arm_mve_vctp8:
1084     case Intrinsic::arm_mve_vctp16:
1085     case Intrinsic::arm_mve_vctp32:
1086     case Intrinsic::arm_mve_vctp64:
1087       return true;
1088     default:
1089       break;
1090     }
1091   }
1092   return false;
1093 }
1094 
1095 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
1096   if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
1097     return false;
1098 
1099   if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
1100     // Don't support v2i1 yet.
1101     if (VecTy->getNumElements() == 2)
1102       return false;
1103 
1104     // We don't support extending fp types.
1105      unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
1106     if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
1107       return false;
1108   }
1109 
1110   unsigned EltWidth = DataTy->getScalarSizeInBits();
1111   return (EltWidth == 32 && Alignment >= 4) ||
1112          (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
1113 }
1114 
1115 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
1116   if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
1117     return false;
1118 
1119   unsigned EltWidth = Ty->getScalarSizeInBits();
1120   return ((EltWidth == 32 && Alignment >= 4) ||
1121           (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
1122 }
1123 
1124 /// Given a memcpy/memset/memmove instruction, return the number of memory
1125 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
1126 /// call is used.
1127 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
1128   MemOp MOp;
1129   unsigned DstAddrSpace = ~0u;
1130   unsigned SrcAddrSpace = ~0u;
1131   const Function *F = I->getParent()->getParent();
1132 
1133   if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
1134     ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
1135     // If 'size' is not a constant, a library call will be generated.
1136     if (!C)
1137       return -1;
1138 
1139     const unsigned Size = C->getValue().getZExtValue();
1140     const Align DstAlign = *MC->getDestAlign();
1141     const Align SrcAlign = *MC->getSourceAlign();
1142 
1143     MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
1144                       /*IsVolatile*/ false);
1145     DstAddrSpace = MC->getDestAddressSpace();
1146     SrcAddrSpace = MC->getSourceAddressSpace();
1147   }
1148   else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
1149     ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
1150     // If 'size' is not a constant, a library call will be generated.
1151     if (!C)
1152       return -1;
1153 
1154     const unsigned Size = C->getValue().getZExtValue();
1155     const Align DstAlign = *MS->getDestAlign();
1156 
1157     MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
1158                      /*IsZeroMemset*/ false, /*IsVolatile*/ false);
1159     DstAddrSpace = MS->getDestAddressSpace();
1160   }
1161   else
1162     llvm_unreachable("Expected a memcpy/move or memset!");
1163 
1164   unsigned Limit, Factor = 2;
1165   switch(I->getIntrinsicID()) {
1166     case Intrinsic::memcpy:
1167       Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
1168       break;
1169     case Intrinsic::memmove:
1170       Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
1171       break;
1172     case Intrinsic::memset:
1173       Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
1174       Factor = 1;
1175       break;
1176     default:
1177       llvm_unreachable("Expected a memcpy/move or memset!");
1178   }
1179 
1180   // MemOps will be poplulated with a list of data types that needs to be
1181   // loaded and stored. That's why we multiply the number of elements by 2 to
1182   // get the cost for this memcpy.
1183   std::vector<EVT> MemOps;
1184   if (getTLI()->findOptimalMemOpLowering(
1185           MemOps, Limit, MOp, DstAddrSpace,
1186           SrcAddrSpace, F->getAttributes()))
1187     return MemOps.size() * Factor;
1188 
1189   // If we can't find an optimal memop lowering, return the default cost
1190   return -1;
1191 }
1192 
1193 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) {
1194   int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
1195 
1196   // To model the cost of a library call, we assume 1 for the call, and
1197   // 3 for the argument setup.
1198   if (NumOps == -1)
1199     return 4;
1200   return NumOps;
1201 }
1202 
1203 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1204                                            VectorType *Tp, ArrayRef<int> Mask,
1205                                            int Index, VectorType *SubTp,
1206                                            ArrayRef<const Value *> Args) {
1207   Kind = improveShuffleKindFromMask(Kind, Mask);
1208   if (ST->hasNEON()) {
1209     if (Kind == TTI::SK_Broadcast) {
1210       static const CostTblEntry NEONDupTbl[] = {
1211           // VDUP handles these cases.
1212           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1213           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1214           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1215           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1216           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1217           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1218 
1219           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1220           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1221           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1222           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
1223 
1224       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1225       if (const auto *Entry =
1226               CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
1227         return LT.first * Entry->Cost;
1228     }
1229     if (Kind == TTI::SK_Reverse) {
1230       static const CostTblEntry NEONShuffleTbl[] = {
1231           // Reverse shuffle cost one instruction if we are shuffling within a
1232           // double word (vrev) or two if we shuffle a quad word (vrev, vext).
1233           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1234           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1235           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1236           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1237           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1238           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1239 
1240           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1241           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1242           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
1243           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
1244 
1245       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1246       if (const auto *Entry =
1247               CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
1248         return LT.first * Entry->Cost;
1249     }
1250     if (Kind == TTI::SK_Select) {
1251       static const CostTblEntry NEONSelShuffleTbl[] = {
1252           // Select shuffle cost table for ARM. Cost is the number of
1253           // instructions
1254           // required to create the shuffled vector.
1255 
1256           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1257           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1258           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1259           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1260 
1261           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1262           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1263           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
1264 
1265           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
1266 
1267           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
1268 
1269       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1270       if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
1271                                               ISD::VECTOR_SHUFFLE, LT.second))
1272         return LT.first * Entry->Cost;
1273     }
1274   }
1275   if (ST->hasMVEIntegerOps()) {
1276     if (Kind == TTI::SK_Broadcast) {
1277       static const CostTblEntry MVEDupTbl[] = {
1278           // VDUP handles these cases.
1279           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1280           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1281           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
1282           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1283           {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
1284 
1285       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1286       if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
1287                                               LT.second))
1288         return LT.first * Entry->Cost *
1289                ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput);
1290     }
1291 
1292     if (!Mask.empty()) {
1293       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1294       if (LT.second.isVector() &&
1295           Mask.size() <= LT.second.getVectorNumElements() &&
1296           (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
1297            isVREVMask(Mask, LT.second, 64)))
1298         return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
1299     }
1300   }
1301 
1302   int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
1303                      ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput)
1304                      : 1;
1305   return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
1306 }
1307 
1308 InstructionCost ARMTTIImpl::getArithmeticInstrCost(
1309     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1310     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
1311     TTI::OperandValueProperties Opd1PropInfo,
1312     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1313     const Instruction *CxtI) {
1314   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
1315   if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
1316     // Make operations on i1 relatively expensive as this often involves
1317     // combining predicates. AND and XOR should be easier to handle with IT
1318     // blocks.
1319     switch (ISDOpcode) {
1320     default:
1321       break;
1322     case ISD::AND:
1323     case ISD::XOR:
1324       return 2;
1325     case ISD::OR:
1326       return 3;
1327     }
1328   }
1329 
1330   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1331 
1332   if (ST->hasNEON()) {
1333     const unsigned FunctionCallDivCost = 20;
1334     const unsigned ReciprocalDivCost = 10;
1335     static const CostTblEntry CostTbl[] = {
1336       // Division.
1337       // These costs are somewhat random. Choose a cost of 20 to indicate that
1338       // vectorizing devision (added function call) is going to be very expensive.
1339       // Double registers types.
1340       { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1341       { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1342       { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
1343       { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
1344       { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1345       { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1346       { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
1347       { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
1348       { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
1349       { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
1350       { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
1351       { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
1352       { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
1353       { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
1354       { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
1355       { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
1356       // Quad register types.
1357       { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1358       { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1359       { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
1360       { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
1361       { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1362       { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1363       { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
1364       { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
1365       { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1366       { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1367       { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
1368       { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
1369       { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1370       { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1371       { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
1372       { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
1373       // Multiplication.
1374     };
1375 
1376     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
1377       return LT.first * Entry->Cost;
1378 
1379     InstructionCost Cost = BaseT::getArithmeticInstrCost(
1380         Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
1381 
1382     // This is somewhat of a hack. The problem that we are facing is that SROA
1383     // creates a sequence of shift, and, or instructions to construct values.
1384     // These sequences are recognized by the ISel and have zero-cost. Not so for
1385     // the vectorized code. Because we have support for v2i64 but not i64 those
1386     // sequences look particularly beneficial to vectorize.
1387     // To work around this we increase the cost of v2i64 operations to make them
1388     // seem less beneficial.
1389     if (LT.second == MVT::v2i64 &&
1390         Op2Info == TargetTransformInfo::OK_UniformConstantValue)
1391       Cost += 4;
1392 
1393     return Cost;
1394   }
1395 
1396   // If this operation is a shift on arm/thumb2, it might well be folded into
1397   // the following instruction, hence having a cost of 0.
1398   auto LooksLikeAFreeShift = [&]() {
1399     if (ST->isThumb1Only() || Ty->isVectorTy())
1400       return false;
1401 
1402     if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
1403       return false;
1404     if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
1405       return false;
1406 
1407     // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
1408     switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
1409     case Instruction::Add:
1410     case Instruction::Sub:
1411     case Instruction::And:
1412     case Instruction::Xor:
1413     case Instruction::Or:
1414     case Instruction::ICmp:
1415       return true;
1416     default:
1417       return false;
1418     }
1419   };
1420   if (LooksLikeAFreeShift())
1421     return 0;
1422 
1423   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1424   // for "multiple beats" potentially needed by MVE instructions.
1425   int BaseCost = 1;
1426   if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
1427     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1428 
1429   // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
1430   // without treating floats as more expensive that scalars or increasing the
1431   // costs for custom operations. The results is also multiplied by the
1432   // MVEVectorCostFactor where appropriate.
1433   if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
1434     return LT.first * BaseCost;
1435 
1436   // Else this is expand, assume that we need to scalarize this op.
1437   if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
1438     unsigned Num = VTy->getNumElements();
1439     InstructionCost Cost =
1440         getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
1441     // Return the cost of multiple scalar invocation plus the cost of
1442     // inserting and extracting the values.
1443     SmallVector<Type *> Tys(Args.size(), Ty);
1444     return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
1445   }
1446 
1447   return BaseCost;
1448 }
1449 
1450 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1451                                             MaybeAlign Alignment,
1452                                             unsigned AddressSpace,
1453                                             TTI::TargetCostKind CostKind,
1454                                             const Instruction *I) {
1455   // TODO: Handle other cost kinds.
1456   if (CostKind != TTI::TCK_RecipThroughput)
1457     return 1;
1458 
1459   // Type legalization can't handle structs
1460   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1461     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1462                                   CostKind);
1463 
1464   if (ST->hasNEON() && Src->isVectorTy() &&
1465       (Alignment && *Alignment != Align(16)) &&
1466       cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
1467     // Unaligned loads/stores are extremely inefficient.
1468     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
1469     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1470     return LT.first * 4;
1471   }
1472 
1473   // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
1474   // Same for stores.
1475   if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
1476       ((Opcode == Instruction::Load && I->hasOneUse() &&
1477         isa<FPExtInst>(*I->user_begin())) ||
1478        (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
1479     FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
1480     Type *DstTy =
1481         Opcode == Instruction::Load
1482             ? (*I->user_begin())->getType()
1483             : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
1484     if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
1485         DstTy->getScalarType()->isFloatTy())
1486       return ST->getMVEVectorCostFactor(CostKind);
1487   }
1488 
1489   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
1490                      ? ST->getMVEVectorCostFactor(CostKind)
1491                      : 1;
1492   return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1493                                            CostKind, I);
1494 }
1495 
1496 InstructionCost
1497 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1498                                   unsigned AddressSpace,
1499                                   TTI::TargetCostKind CostKind) {
1500   if (ST->hasMVEIntegerOps()) {
1501     if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
1502       return ST->getMVEVectorCostFactor(CostKind);
1503     if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
1504       return ST->getMVEVectorCostFactor(CostKind);
1505   }
1506   if (!isa<FixedVectorType>(Src))
1507     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1508                                         CostKind);
1509   // Scalar cost, which is currently very high due to the efficiency of the
1510   // generated code.
1511   return cast<FixedVectorType>(Src)->getNumElements() * 8;
1512 }
1513 
1514 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost(
1515     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1516     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1517     bool UseMaskForCond, bool UseMaskForGaps) {
1518   assert(Factor >= 2 && "Invalid interleave factor");
1519   assert(isa<VectorType>(VecTy) && "Expect a vector type");
1520 
1521   // vldN/vstN doesn't support vector types of i64/f64 element.
1522   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
1523 
1524   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
1525       !UseMaskForCond && !UseMaskForGaps) {
1526     unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1527     auto *SubVecTy =
1528         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1529 
1530     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
1531     // Accesses having vector types that are a multiple of 128 bits can be
1532     // matched to more than one vldN/vstN instruction.
1533     int BaseCost =
1534         ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1535     if (NumElts % Factor == 0 &&
1536         TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
1537       return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
1538 
1539     // Some smaller than legal interleaved patterns are cheap as we can make
1540     // use of the vmovn or vrev patterns to interleave a standard load. This is
1541     // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
1542     // promoted differently). The cost of 2 here is then a load and vrev or
1543     // vmovn.
1544     if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
1545         VecTy->isIntOrIntVectorTy() &&
1546         DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64)
1547       return 2 * BaseCost;
1548   }
1549 
1550   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1551                                            Alignment, AddressSpace, CostKind,
1552                                            UseMaskForCond, UseMaskForGaps);
1553 }
1554 
1555 InstructionCost ARMTTIImpl::getGatherScatterOpCost(
1556     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1557     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1558   using namespace PatternMatch;
1559   if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
1560     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1561                                          Alignment, CostKind, I);
1562 
1563   assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
1564   auto *VTy = cast<FixedVectorType>(DataTy);
1565 
1566   // TODO: Splitting, once we do that.
1567 
1568   unsigned NumElems = VTy->getNumElements();
1569   unsigned EltSize = VTy->getScalarSizeInBits();
1570   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy);
1571 
1572   // For now, it is assumed that for the MVE gather instructions the loads are
1573   // all effectively serialised. This means the cost is the scalar cost
1574   // multiplied by the number of elements being loaded. This is possibly very
1575   // conservative, but even so we still end up vectorising loops because the
1576   // cost per iteration for many loops is lower than for scalar loops.
1577   InstructionCost VectorCost =
1578       NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
1579   // The scalarization cost should be a lot higher. We use the number of vector
1580   // elements plus the scalarization overhead.
1581   InstructionCost ScalarCost =
1582       NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) +
1583       BaseT::getScalarizationOverhead(VTy, false, true);
1584 
1585   if (EltSize < 8 || Alignment < EltSize / 8)
1586     return ScalarCost;
1587 
1588   unsigned ExtSize = EltSize;
1589   // Check whether there's a single user that asks for an extended type
1590   if (I != nullptr) {
1591     // Dependent of the caller of this function, a gather instruction will
1592     // either have opcode Instruction::Load or be a call to the masked_gather
1593     // intrinsic
1594     if ((I->getOpcode() == Instruction::Load ||
1595          match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
1596         I->hasOneUse()) {
1597       const User *Us = *I->users().begin();
1598       if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
1599         // only allow valid type combinations
1600         unsigned TypeSize =
1601             cast<Instruction>(Us)->getType()->getScalarSizeInBits();
1602         if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
1603              (TypeSize == 16 && EltSize == 8)) &&
1604             TypeSize * NumElems == 128) {
1605           ExtSize = TypeSize;
1606         }
1607       }
1608     }
1609     // Check whether the input data needs to be truncated
1610     TruncInst *T;
1611     if ((I->getOpcode() == Instruction::Store ||
1612          match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
1613         (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
1614       // Only allow valid type combinations
1615       unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
1616       if (((EltSize == 16 && TypeSize == 32) ||
1617            (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
1618           TypeSize * NumElems == 128)
1619         ExtSize = TypeSize;
1620     }
1621   }
1622 
1623   if (ExtSize * NumElems != 128 || NumElems < 4)
1624     return ScalarCost;
1625 
1626   // Any (aligned) i32 gather will not need to be scalarised.
1627   if (ExtSize == 32)
1628     return VectorCost;
1629   // For smaller types, we need to ensure that the gep's inputs are correctly
1630   // extended from a small enough value. Other sizes (including i64) are
1631   // scalarized for now.
1632   if (ExtSize != 8 && ExtSize != 16)
1633     return ScalarCost;
1634 
1635   if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
1636     Ptr = BC->getOperand(0);
1637   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1638     if (GEP->getNumOperands() != 2)
1639       return ScalarCost;
1640     unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
1641     // Scale needs to be correct (which is only relevant for i16s).
1642     if (Scale != 1 && Scale * 8 != ExtSize)
1643       return ScalarCost;
1644     // And we need to zext (not sext) the indexes from a small enough type.
1645     if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
1646       if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
1647         return VectorCost;
1648     }
1649     return ScalarCost;
1650   }
1651   return ScalarCost;
1652 }
1653 
1654 InstructionCost
1655 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
1656                                        Optional<FastMathFlags> FMF,
1657                                        TTI::TargetCostKind CostKind) {
1658   if (TTI::requiresOrderedReduction(FMF))
1659     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1660 
1661   EVT ValVT = TLI->getValueType(DL, ValTy);
1662   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1663   if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD)
1664     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1665 
1666   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1667 
1668   static const CostTblEntry CostTblAdd[]{
1669       {ISD::ADD, MVT::v16i8, 1},
1670       {ISD::ADD, MVT::v8i16, 1},
1671       {ISD::ADD, MVT::v4i32, 1},
1672   };
1673   if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
1674     return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1675 
1676   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1677 }
1678 
1679 InstructionCost
1680 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
1681                                         Type *ResTy, VectorType *ValTy,
1682                                         TTI::TargetCostKind CostKind) {
1683   EVT ValVT = TLI->getValueType(DL, ValTy);
1684   EVT ResVT = TLI->getValueType(DL, ResTy);
1685 
1686   if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1687     std::pair<InstructionCost, MVT> LT =
1688         TLI->getTypeLegalizationCost(DL, ValTy);
1689 
1690     // The legal cases are:
1691     //   VADDV u/s 8/16/32
1692     //   VMLAV u/s 8/16/32
1693     //   VADDLV u/s 32
1694     //   VMLALV u/s 16/32
1695     // Codegen currently cannot always handle larger than legal vectors very
1696     // well, especially for predicated reductions where the mask needs to be
1697     // split, so restrict to 128bit or smaller input types.
1698     unsigned RevVTSize = ResVT.getSizeInBits();
1699     if (ValVT.getSizeInBits() <= 128 &&
1700         ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1701          (LT.second == MVT::v8i16 && RevVTSize <= (IsMLA ? 64u : 32u)) ||
1702          (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1703       return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1704   }
1705 
1706   return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy,
1707                                             CostKind);
1708 }
1709 
1710 InstructionCost
1711 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1712                                   TTI::TargetCostKind CostKind) {
1713   switch (ICA.getID()) {
1714   case Intrinsic::get_active_lane_mask:
1715     // Currently we make a somewhat optimistic assumption that
1716     // active_lane_mask's are always free. In reality it may be freely folded
1717     // into a tail predicated loop, expanded into a VCPT or expanded into a lot
1718     // of add/icmp code. We may need to improve this in the future, but being
1719     // able to detect if it is free or not involves looking at a lot of other
1720     // code. We currently assume that the vectorizer inserted these, and knew
1721     // what it was doing in adding one.
1722     if (ST->hasMVEIntegerOps())
1723       return 0;
1724     break;
1725   case Intrinsic::sadd_sat:
1726   case Intrinsic::ssub_sat:
1727   case Intrinsic::uadd_sat:
1728   case Intrinsic::usub_sat: {
1729     if (!ST->hasMVEIntegerOps())
1730       break;
1731     Type *VT = ICA.getReturnType();
1732 
1733     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1734     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1735         LT.second == MVT::v16i8) {
1736       // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
1737       // need to extend the type, as it uses shr(qadd(shl, shl)).
1738       unsigned Instrs =
1739           LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
1740       return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
1741     }
1742     break;
1743   }
1744   case Intrinsic::abs:
1745   case Intrinsic::smin:
1746   case Intrinsic::smax:
1747   case Intrinsic::umin:
1748   case Intrinsic::umax: {
1749     if (!ST->hasMVEIntegerOps())
1750       break;
1751     Type *VT = ICA.getReturnType();
1752 
1753     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1754     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1755         LT.second == MVT::v16i8)
1756       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1757     break;
1758   }
1759   case Intrinsic::minnum:
1760   case Intrinsic::maxnum: {
1761     if (!ST->hasMVEFloatOps())
1762       break;
1763     Type *VT = ICA.getReturnType();
1764     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1765     if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
1766       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1767     break;
1768   }
1769   case Intrinsic::fptosi_sat:
1770   case Intrinsic::fptoui_sat: {
1771     if (ICA.getArgTypes().empty())
1772       break;
1773     bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
1774     auto LT = TLI->getTypeLegalizationCost(DL, ICA.getArgTypes()[0]);
1775     EVT MTy = TLI->getValueType(DL, ICA.getReturnType());
1776     // Check for the legal types, with the corect subtarget features.
1777     if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) ||
1778         (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) ||
1779         (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32))
1780       return LT.first;
1781 
1782     // Equally for MVE vector types
1783     if (ST->hasMVEFloatOps() &&
1784         (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) &&
1785         LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits())
1786       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1787 
1788     // Otherwise we use a legal convert followed by a min+max
1789     if (((ST->hasVFP2Base() && LT.second == MVT::f32) ||
1790          (ST->hasFP64() && LT.second == MVT::f64) ||
1791          (ST->hasFullFP16() && LT.second == MVT::f16) ||
1792          (ST->hasMVEFloatOps() &&
1793           (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) &&
1794         LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
1795       Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(),
1796                                       LT.second.getScalarSizeInBits());
1797       InstructionCost Cost =
1798           LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1799       IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin
1800                                               : Intrinsic::umin,
1801                                      LegalTy, {LegalTy, LegalTy});
1802       Cost += getIntrinsicInstrCost(Attrs1, CostKind);
1803       IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax
1804                                               : Intrinsic::umax,
1805                                      LegalTy, {LegalTy, LegalTy});
1806       Cost += getIntrinsicInstrCost(Attrs2, CostKind);
1807       return LT.first * Cost;
1808     }
1809     break;
1810   }
1811   }
1812 
1813   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1814 }
1815 
1816 bool ARMTTIImpl::isLoweredToCall(const Function *F) {
1817   if (!F->isIntrinsic())
1818     return BaseT::isLoweredToCall(F);
1819 
1820   // Assume all Arm-specific intrinsics map to an instruction.
1821   if (F->getName().startswith("llvm.arm"))
1822     return false;
1823 
1824   switch (F->getIntrinsicID()) {
1825   default: break;
1826   case Intrinsic::powi:
1827   case Intrinsic::sin:
1828   case Intrinsic::cos:
1829   case Intrinsic::pow:
1830   case Intrinsic::log:
1831   case Intrinsic::log10:
1832   case Intrinsic::log2:
1833   case Intrinsic::exp:
1834   case Intrinsic::exp2:
1835     return true;
1836   case Intrinsic::sqrt:
1837   case Intrinsic::fabs:
1838   case Intrinsic::copysign:
1839   case Intrinsic::floor:
1840   case Intrinsic::ceil:
1841   case Intrinsic::trunc:
1842   case Intrinsic::rint:
1843   case Intrinsic::nearbyint:
1844   case Intrinsic::round:
1845   case Intrinsic::canonicalize:
1846   case Intrinsic::lround:
1847   case Intrinsic::llround:
1848   case Intrinsic::lrint:
1849   case Intrinsic::llrint:
1850     if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
1851       return true;
1852     if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
1853       return true;
1854     // Some operations can be handled by vector instructions and assume
1855     // unsupported vectors will be expanded into supported scalar ones.
1856     // TODO Handle scalar operations properly.
1857     return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
1858   case Intrinsic::masked_store:
1859   case Intrinsic::masked_load:
1860   case Intrinsic::masked_gather:
1861   case Intrinsic::masked_scatter:
1862     return !ST->hasMVEIntegerOps();
1863   case Intrinsic::sadd_with_overflow:
1864   case Intrinsic::uadd_with_overflow:
1865   case Intrinsic::ssub_with_overflow:
1866   case Intrinsic::usub_with_overflow:
1867   case Intrinsic::sadd_sat:
1868   case Intrinsic::uadd_sat:
1869   case Intrinsic::ssub_sat:
1870   case Intrinsic::usub_sat:
1871     return false;
1872   }
1873 
1874   return BaseT::isLoweredToCall(F);
1875 }
1876 
1877 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
1878   unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
1879   EVT VT = TLI->getValueType(DL, I.getType(), true);
1880   if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
1881     return true;
1882 
1883   // Check if an intrinsic will be lowered to a call and assume that any
1884   // other CallInst will generate a bl.
1885   if (auto *Call = dyn_cast<CallInst>(&I)) {
1886     if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
1887       switch(II->getIntrinsicID()) {
1888         case Intrinsic::memcpy:
1889         case Intrinsic::memset:
1890         case Intrinsic::memmove:
1891           return getNumMemOps(II) == -1;
1892         default:
1893           if (const Function *F = Call->getCalledFunction())
1894             return isLoweredToCall(F);
1895       }
1896     }
1897     return true;
1898   }
1899 
1900   // FPv5 provides conversions between integer, double-precision,
1901   // single-precision, and half-precision formats.
1902   switch (I.getOpcode()) {
1903   default:
1904     break;
1905   case Instruction::FPToSI:
1906   case Instruction::FPToUI:
1907   case Instruction::SIToFP:
1908   case Instruction::UIToFP:
1909   case Instruction::FPTrunc:
1910   case Instruction::FPExt:
1911     return !ST->hasFPARMv8Base();
1912   }
1913 
1914   // FIXME: Unfortunately the approach of checking the Operation Action does
1915   // not catch all cases of Legalization that use library calls. Our
1916   // Legalization step categorizes some transformations into library calls as
1917   // Custom, Expand or even Legal when doing type legalization. So for now
1918   // we have to special case for instance the SDIV of 64bit integers and the
1919   // use of floating point emulation.
1920   if (VT.isInteger() && VT.getSizeInBits() >= 64) {
1921     switch (ISD) {
1922     default:
1923       break;
1924     case ISD::SDIV:
1925     case ISD::UDIV:
1926     case ISD::SREM:
1927     case ISD::UREM:
1928     case ISD::SDIVREM:
1929     case ISD::UDIVREM:
1930       return true;
1931     }
1932   }
1933 
1934   // Assume all other non-float operations are supported.
1935   if (!VT.isFloatingPoint())
1936     return false;
1937 
1938   // We'll need a library call to handle most floats when using soft.
1939   if (TLI->useSoftFloat()) {
1940     switch (I.getOpcode()) {
1941     default:
1942       return true;
1943     case Instruction::Alloca:
1944     case Instruction::Load:
1945     case Instruction::Store:
1946     case Instruction::Select:
1947     case Instruction::PHI:
1948       return false;
1949     }
1950   }
1951 
1952   // We'll need a libcall to perform double precision operations on a single
1953   // precision only FPU.
1954   if (I.getType()->isDoubleTy() && !ST->hasFP64())
1955     return true;
1956 
1957   // Likewise for half precision arithmetic.
1958   if (I.getType()->isHalfTy() && !ST->hasFullFP16())
1959     return true;
1960 
1961   return false;
1962 }
1963 
1964 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1965                                           AssumptionCache &AC,
1966                                           TargetLibraryInfo *LibInfo,
1967                                           HardwareLoopInfo &HWLoopInfo) {
1968   // Low-overhead branches are only supported in the 'low-overhead branch'
1969   // extension of v8.1-m.
1970   if (!ST->hasLOB() || DisableLowOverheadLoops) {
1971     LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
1972     return false;
1973   }
1974 
1975   if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
1976     LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
1977     return false;
1978   }
1979 
1980   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1981   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1982     LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
1983     return false;
1984   }
1985 
1986   const SCEV *TripCountSCEV =
1987     SE.getAddExpr(BackedgeTakenCount,
1988                   SE.getOne(BackedgeTakenCount->getType()));
1989 
1990   // We need to store the trip count in LR, a 32-bit register.
1991   if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
1992     LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
1993     return false;
1994   }
1995 
1996   // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
1997   // point in generating a hardware loop if that's going to happen.
1998 
1999   auto IsHardwareLoopIntrinsic = [](Instruction &I) {
2000     if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
2001       switch (Call->getIntrinsicID()) {
2002       default:
2003         break;
2004       case Intrinsic::start_loop_iterations:
2005       case Intrinsic::test_start_loop_iterations:
2006       case Intrinsic::loop_decrement:
2007       case Intrinsic::loop_decrement_reg:
2008         return true;
2009       }
2010     }
2011     return false;
2012   };
2013 
2014   // Scan the instructions to see if there's any that we know will turn into a
2015   // call or if this loop is already a low-overhead loop or will become a tail
2016   // predicated loop.
2017   bool IsTailPredLoop = false;
2018   auto ScanLoop = [&](Loop *L) {
2019     for (auto *BB : L->getBlocks()) {
2020       for (auto &I : *BB) {
2021         if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
2022             isa<InlineAsm>(I)) {
2023           LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
2024           return false;
2025         }
2026         if (auto *II = dyn_cast<IntrinsicInst>(&I))
2027           IsTailPredLoop |=
2028               II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
2029               II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
2030               II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
2031               II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
2032               II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
2033       }
2034     }
2035     return true;
2036   };
2037 
2038   // Visit inner loops.
2039   for (auto Inner : *L)
2040     if (!ScanLoop(Inner))
2041       return false;
2042 
2043   if (!ScanLoop(L))
2044     return false;
2045 
2046   // TODO: Check whether the trip count calculation is expensive. If L is the
2047   // inner loop but we know it has a low trip count, calculating that trip
2048   // count (in the parent loop) may be detrimental.
2049 
2050   LLVMContext &C = L->getHeader()->getContext();
2051   HWLoopInfo.CounterInReg = true;
2052   HWLoopInfo.IsNestingLegal = false;
2053   HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
2054   HWLoopInfo.CountType = Type::getInt32Ty(C);
2055   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
2056   return true;
2057 }
2058 
2059 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
2060   // We don't allow icmp's, and because we only look at single block loops,
2061   // we simply count the icmps, i.e. there should only be 1 for the backedge.
2062   if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
2063     return false;
2064   // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are
2065   // not currently canonical, but soon will be. Code without them uses icmp, and
2066   // so is not tail predicated as per the condition above. In order to get the
2067   // same performance we treat min and max the same as an icmp for tailpred
2068   // purposes for the moment (we often rely on non-tailpred and higher VF's to
2069   // pick more optimial instructions like VQDMULH. They need to be recognized
2070   // directly by the vectorizer).
2071   if (auto *II = dyn_cast<IntrinsicInst>(&I))
2072     if ((II->getIntrinsicID() == Intrinsic::smin ||
2073          II->getIntrinsicID() == Intrinsic::smax ||
2074          II->getIntrinsicID() == Intrinsic::umin ||
2075          II->getIntrinsicID() == Intrinsic::umax) &&
2076         ++ICmpCount > 1)
2077       return false;
2078 
2079   if (isa<FCmpInst>(&I))
2080     return false;
2081 
2082   // We could allow extending/narrowing FP loads/stores, but codegen is
2083   // too inefficient so reject this for now.
2084   if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
2085     return false;
2086 
2087   // Extends have to be extending-loads
2088   if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
2089     if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
2090       return false;
2091 
2092   // Truncs have to be narrowing-stores
2093   if (isa<TruncInst>(&I) )
2094     if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
2095       return false;
2096 
2097   return true;
2098 }
2099 
2100 // To set up a tail-predicated loop, we need to know the total number of
2101 // elements processed by that loop. Thus, we need to determine the element
2102 // size and:
2103 // 1) it should be uniform for all operations in the vector loop, so we
2104 //    e.g. don't want any widening/narrowing operations.
2105 // 2) it should be smaller than i64s because we don't have vector operations
2106 //    that work on i64s.
2107 // 3) we don't want elements to be reversed or shuffled, to make sure the
2108 //    tail-predication masks/predicates the right lanes.
2109 //
2110 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
2111                                  const DataLayout &DL,
2112                                  const LoopAccessInfo *LAI) {
2113   LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
2114 
2115   // If there are live-out values, it is probably a reduction. We can predicate
2116   // most reduction operations freely under MVE using a combination of
2117   // prefer-predicated-reduction-select and inloop reductions. We limit this to
2118   // floating point and integer reductions, but don't check for operators
2119   // specifically here. If the value ends up not being a reduction (and so the
2120   // vectorizer cannot tailfold the loop), we should fall back to standard
2121   // vectorization automatically.
2122   SmallVector< Instruction *, 8 > LiveOuts;
2123   LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
2124   bool ReductionsDisabled =
2125       EnableTailPredication == TailPredication::EnabledNoReductions ||
2126       EnableTailPredication == TailPredication::ForceEnabledNoReductions;
2127 
2128   for (auto *I : LiveOuts) {
2129     if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
2130         !I->getType()->isHalfTy()) {
2131       LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
2132                            "live-out value\n");
2133       return false;
2134     }
2135     if (ReductionsDisabled) {
2136       LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
2137       return false;
2138     }
2139   }
2140 
2141   // Next, check that all instructions can be tail-predicated.
2142   PredicatedScalarEvolution PSE = LAI->getPSE();
2143   SmallVector<Instruction *, 16> LoadStores;
2144   int ICmpCount = 0;
2145 
2146   for (BasicBlock *BB : L->blocks()) {
2147     for (Instruction &I : BB->instructionsWithoutDebug()) {
2148       if (isa<PHINode>(&I))
2149         continue;
2150       if (!canTailPredicateInstruction(I, ICmpCount)) {
2151         LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
2152         return false;
2153       }
2154 
2155       Type *T  = I.getType();
2156       if (T->getScalarSizeInBits() > 32) {
2157         LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
2158         return false;
2159       }
2160       if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
2161         Value *Ptr = getLoadStorePointerOperand(&I);
2162         Type *AccessTy = getLoadStoreType(&I);
2163         int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L);
2164         if (NextStride == 1) {
2165           // TODO: for now only allow consecutive strides of 1. We could support
2166           // other strides as long as it is uniform, but let's keep it simple
2167           // for now.
2168           continue;
2169         } else if (NextStride == -1 ||
2170                    (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
2171                    (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
2172           LLVM_DEBUG(dbgs()
2173                      << "Consecutive strides of 2 found, vld2/vstr2 can't "
2174                         "be tail-predicated\n.");
2175           return false;
2176           // TODO: don't tail predicate if there is a reversed load?
2177         } else if (EnableMaskedGatherScatters) {
2178           // Gather/scatters do allow loading from arbitrary strides, at
2179           // least if they are loop invariant.
2180           // TODO: Loop variant strides should in theory work, too, but
2181           // this requires further testing.
2182           const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr);
2183           if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
2184             const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
2185             if (PSE.getSE()->isLoopInvariant(Step, L))
2186               continue;
2187           }
2188         }
2189         LLVM_DEBUG(dbgs() << "Bad stride found, can't "
2190                              "tail-predicate\n.");
2191         return false;
2192       }
2193     }
2194   }
2195 
2196   LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
2197   return true;
2198 }
2199 
2200 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
2201                                              ScalarEvolution &SE,
2202                                              AssumptionCache &AC,
2203                                              TargetLibraryInfo *TLI,
2204                                              DominatorTree *DT,
2205                                              const LoopAccessInfo *LAI) {
2206   if (!EnableTailPredication) {
2207     LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
2208     return false;
2209   }
2210 
2211   // Creating a predicated vector loop is the first step for generating a
2212   // tail-predicated hardware loop, for which we need the MVE masked
2213   // load/stores instructions:
2214   if (!ST->hasMVEIntegerOps())
2215     return false;
2216 
2217   // For now, restrict this to single block loops.
2218   if (L->getNumBlocks() > 1) {
2219     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
2220                          "loop.\n");
2221     return false;
2222   }
2223 
2224   assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
2225 
2226   HardwareLoopInfo HWLoopInfo(L);
2227   if (!HWLoopInfo.canAnalyze(*LI)) {
2228     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2229                          "analyzable.\n");
2230     return false;
2231   }
2232 
2233   // This checks if we have the low-overhead branch architecture
2234   // extension, and if we will create a hardware-loop:
2235   if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
2236     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2237                          "profitable.\n");
2238     return false;
2239   }
2240 
2241   if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
2242     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2243                          "a candidate.\n");
2244     return false;
2245   }
2246 
2247   return canTailPredicateLoop(L, LI, SE, DL, LAI);
2248 }
2249 
2250 bool ARMTTIImpl::emitGetActiveLaneMask() const {
2251   if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
2252     return false;
2253 
2254   // Intrinsic @llvm.get.active.lane.mask is supported.
2255   // It is used in the MVETailPredication pass, which requires the number of
2256   // elements processed by this vector loop to setup the tail-predicated
2257   // loop.
2258   return true;
2259 }
2260 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2261                                          TTI::UnrollingPreferences &UP,
2262                                          OptimizationRemarkEmitter *ORE) {
2263   // Enable Upper bound unrolling universally, not dependant upon the conditions
2264   // below.
2265   UP.UpperBound = true;
2266 
2267   // Only currently enable these preferences for M-Class cores.
2268   if (!ST->isMClass())
2269     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
2270 
2271   // Disable loop unrolling for Oz and Os.
2272   UP.OptSizeThreshold = 0;
2273   UP.PartialOptSizeThreshold = 0;
2274   if (L->getHeader()->getParent()->hasOptSize())
2275     return;
2276 
2277   SmallVector<BasicBlock*, 4> ExitingBlocks;
2278   L->getExitingBlocks(ExitingBlocks);
2279   LLVM_DEBUG(dbgs() << "Loop has:\n"
2280                     << "Blocks: " << L->getNumBlocks() << "\n"
2281                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
2282 
2283   // Only allow another exit other than the latch. This acts as an early exit
2284   // as it mirrors the profitability calculation of the runtime unroller.
2285   if (ExitingBlocks.size() > 2)
2286     return;
2287 
2288   // Limit the CFG of the loop body for targets with a branch predictor.
2289   // Allowing 4 blocks permits if-then-else diamonds in the body.
2290   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
2291     return;
2292 
2293   // Don't unroll vectorized loops, including the remainder loop
2294   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
2295     return;
2296 
2297   // Scan the loop: don't unroll loops with calls as this could prevent
2298   // inlining.
2299   InstructionCost Cost = 0;
2300   for (auto *BB : L->getBlocks()) {
2301     for (auto &I : *BB) {
2302       // Don't unroll vectorised loop. MVE does not benefit from it as much as
2303       // scalar code.
2304       if (I.getType()->isVectorTy())
2305         return;
2306 
2307       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2308         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2309           if (!isLoweredToCall(F))
2310             continue;
2311         }
2312         return;
2313       }
2314 
2315       SmallVector<const Value*, 4> Operands(I.operand_values());
2316       Cost +=
2317         getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
2318     }
2319   }
2320 
2321   // On v6m cores, there are very few registers available. We can easily end up
2322   // spilling and reloading more registers in an unrolled loop. Look at the
2323   // number of LCSSA phis as a rough measure of how many registers will need to
2324   // be live out of the loop, reducing the default unroll count if more than 1
2325   // value is needed.  In the long run, all of this should be being learnt by a
2326   // machine.
2327   unsigned UnrollCount = 4;
2328   if (ST->isThumb1Only()) {
2329     unsigned ExitingValues = 0;
2330     SmallVector<BasicBlock *, 4> ExitBlocks;
2331     L->getExitBlocks(ExitBlocks);
2332     for (auto *Exit : ExitBlocks) {
2333       // Count the number of LCSSA phis. Exclude values coming from GEP's as
2334       // only the last is expected to be needed for address operands.
2335       unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
2336         return PH.getNumOperands() != 1 ||
2337                !isa<GetElementPtrInst>(PH.getOperand(0));
2338       });
2339       ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
2340     }
2341     if (ExitingValues)
2342       UnrollCount /= ExitingValues;
2343     if (UnrollCount <= 1)
2344       return;
2345   }
2346 
2347   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
2348   LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
2349 
2350   UP.Partial = true;
2351   UP.Runtime = true;
2352   UP.UnrollRemainder = true;
2353   UP.DefaultUnrollRuntimeCount = UnrollCount;
2354   UP.UnrollAndJam = true;
2355   UP.UnrollAndJamInnerLoopThreshold = 60;
2356 
2357   // Force unrolling small loops can be very useful because of the branch
2358   // taken cost of the backedge.
2359   if (Cost < 12)
2360     UP.Force = true;
2361 }
2362 
2363 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2364                                        TTI::PeelingPreferences &PP) {
2365   BaseT::getPeelingPreferences(L, SE, PP);
2366 }
2367 
2368 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
2369                                        TTI::ReductionFlags Flags) const {
2370   if (!ST->hasMVEIntegerOps())
2371     return false;
2372 
2373   unsigned ScalarBits = Ty->getScalarSizeInBits();
2374   switch (Opcode) {
2375   case Instruction::Add:
2376     return ScalarBits <= 64;
2377   default:
2378     return false;
2379   }
2380 }
2381 
2382 bool ARMTTIImpl::preferPredicatedReductionSelect(
2383     unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
2384   if (!ST->hasMVEIntegerOps())
2385     return false;
2386   return true;
2387 }
2388