1 //===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ARMTargetTransformInfo.h"
11 #include "llvm/Support/Debug.h"
12 #include "llvm/Target/CostTable.h"
13 #include "llvm/Target/TargetLowering.h"
14 using namespace llvm;
15 
16 #define DEBUG_TYPE "armtti"
17 
18 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
19   assert(Ty->isIntegerTy());
20 
21  unsigned Bits = Ty->getPrimitiveSizeInBits();
22  if (Bits == 0 || Bits > 64)
23    return 4;
24 
25   int64_t SImmVal = Imm.getSExtValue();
26   uint64_t ZImmVal = Imm.getZExtValue();
27   if (!ST->isThumb()) {
28     if ((SImmVal >= 0 && SImmVal < 65536) ||
29         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
30         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
31       return 1;
32     return ST->hasV6T2Ops() ? 2 : 3;
33   }
34   if (ST->isThumb2()) {
35     if ((SImmVal >= 0 && SImmVal < 65536) ||
36         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
37         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
38       return 1;
39     return ST->hasV6T2Ops() ? 2 : 3;
40   }
41   // Thumb1.
42   if (SImmVal >= 0 && SImmVal < 256)
43     return 1;
44   if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
45     return 2;
46   // Load from constantpool.
47   return 3;
48 }
49 
50 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
51                               Type *Ty) {
52   // Division by a constant can be turned into multiplication, but only if we
53   // know it's constant. So it's not so much that the immediate is cheap (it's
54   // not), but that the alternative is worse.
55   // FIXME: this is probably unneeded with GlobalISel.
56   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
57        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
58       Idx == 1)
59     return 0;
60 
61   return getIntImmCost(Imm, Ty);
62 }
63 
64 
65 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
66   int ISD = TLI->InstructionOpcodeToISD(Opcode);
67   assert(ISD && "Invalid opcode");
68 
69   // Single to/from double precision conversions.
70   static const CostTblEntry NEONFltDblTbl[] = {
71     // Vector fptrunc/fpext conversions.
72     { ISD::FP_ROUND,   MVT::v2f64, 2 },
73     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
74     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
75   };
76 
77   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
78                                           ISD == ISD::FP_EXTEND)) {
79     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
80     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
81       return LT.first * Entry->Cost;
82   }
83 
84   EVT SrcTy = TLI->getValueType(DL, Src);
85   EVT DstTy = TLI->getValueType(DL, Dst);
86 
87   if (!SrcTy.isSimple() || !DstTy.isSimple())
88     return BaseT::getCastInstrCost(Opcode, Dst, Src);
89 
90   // Some arithmetic, load and store operations have specific instructions
91   // to cast up/down their types automatically at no extra cost.
92   // TODO: Get these tables to know at least what the related operations are.
93   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
94     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
95     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
96     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
97     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
98     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
99     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
100 
101     // The number of vmovl instructions for the extension.
102     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
103     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
104     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
105     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
106     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
107     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
108     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
109     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
110     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
111     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
112 
113     // Operations that we legalize using splitting.
114     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
115     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
116 
117     // Vector float <-> i32 conversions.
118     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
119     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
120 
121     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
122     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
123     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
124     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
125     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
126     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
127     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
128     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
129     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
130     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
131     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
132     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
133     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
134     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
135     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
136     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
137     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
138     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
139     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
140     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
141 
142     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
143     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
144     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
145     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
146     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
147     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
148 
149     // Vector double <-> i32 conversions.
150     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
151     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
152 
153     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
154     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
155     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
156     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
157     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
158     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
159 
160     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
161     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
162     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
163     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
164     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
165     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
166   };
167 
168   if (SrcTy.isVector() && ST->hasNEON()) {
169     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
170                                                    DstTy.getSimpleVT(),
171                                                    SrcTy.getSimpleVT()))
172       return Entry->Cost;
173   }
174 
175   // Scalar float to integer conversions.
176   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
177     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
178     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
179     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
180     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
181     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
182     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
183     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
184     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
185     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
186     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
187     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
188     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
189     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
190     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
191     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
192     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
193     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
194     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
195     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
196     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
197   };
198   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
199     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
200                                                    DstTy.getSimpleVT(),
201                                                    SrcTy.getSimpleVT()))
202       return Entry->Cost;
203   }
204 
205   // Scalar integer to float conversions.
206   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
207     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
208     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
209     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
210     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
211     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
212     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
213     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
214     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
215     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
216     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
217     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
218     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
219     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
220     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
221     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
222     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
223     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
224     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
225     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
226     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
227   };
228 
229   if (SrcTy.isInteger() && ST->hasNEON()) {
230     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
231                                                    ISD, DstTy.getSimpleVT(),
232                                                    SrcTy.getSimpleVT()))
233       return Entry->Cost;
234   }
235 
236   // Scalar integer conversion costs.
237   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
238     // i16 -> i64 requires two dependent operations.
239     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
240 
241     // Truncates on i64 are assumed to be free.
242     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
243     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
244     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
245     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
246   };
247 
248   if (SrcTy.isInteger()) {
249     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
250                                                    DstTy.getSimpleVT(),
251                                                    SrcTy.getSimpleVT()))
252       return Entry->Cost;
253   }
254 
255   return BaseT::getCastInstrCost(Opcode, Dst, Src);
256 }
257 
258 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
259                                    unsigned Index) {
260   // Penalize inserting into an D-subregister. We end up with a three times
261   // lower estimated throughput on swift.
262   if (ST->isSwift() &&
263       Opcode == Instruction::InsertElement &&
264       ValTy->isVectorTy() &&
265       ValTy->getScalarSizeInBits() <= 32)
266     return 3;
267 
268   if ((Opcode == Instruction::InsertElement ||
269        Opcode == Instruction::ExtractElement)) {
270     // Cross-class copies are expensive on many microarchitectures,
271     // so assume they are expensive by default.
272     if (ValTy->getVectorElementType()->isIntegerTy())
273       return 3;
274 
275     // Even if it's not a cross class copy, this likely leads to mixing
276     // of NEON and VFP code and should be therefore penalized.
277     if (ValTy->isVectorTy() &&
278         ValTy->getScalarSizeInBits() <= 32)
279       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
280   }
281 
282   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
283 }
284 
285 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
286 
287   int ISD = TLI->InstructionOpcodeToISD(Opcode);
288   // On NEON a a vector select gets lowered to vbsl.
289   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
290     // Lowering of some vector selects is currently far from perfect.
291     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
292       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
293       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
294       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
295     };
296 
297     EVT SelCondTy = TLI->getValueType(DL, CondTy);
298     EVT SelValTy = TLI->getValueType(DL, ValTy);
299     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
300       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
301                                                      SelCondTy.getSimpleVT(),
302                                                      SelValTy.getSimpleVT()))
303         return Entry->Cost;
304     }
305 
306     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
307     return LT.first;
308   }
309 
310   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
311 }
312 
313 int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
314   // Address computations in vectorized code with non-consecutive addresses will
315   // likely result in more instructions compared to scalar code where the
316   // computation can more often be merged into the index mode. The resulting
317   // extra micro-ops can significantly decrease throughput.
318   unsigned NumVectorInstToHideOverhead = 10;
319 
320   if (Ty->isVectorTy() && IsComplex)
321     return NumVectorInstToHideOverhead;
322 
323   // In many cases the address computation is not merged into the instruction
324   // addressing mode.
325   return 1;
326 }
327 
328 int ARMTTIImpl::getFPOpCost(Type *Ty) {
329   // Use similar logic that's in ARMISelLowering:
330   // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access
331   // to VFP.
332 
333   if (ST->hasVFP2() && !ST->isThumb1Only()) {
334     if (Ty->isFloatTy()) {
335       return TargetTransformInfo::TCC_Basic;
336     }
337 
338     if (Ty->isDoubleTy()) {
339       return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive :
340         TargetTransformInfo::TCC_Basic;
341     }
342   }
343 
344   return TargetTransformInfo::TCC_Expensive;
345 }
346 
347 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
348                                Type *SubTp) {
349   // We only handle costs of reverse and alternate shuffles for now.
350   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
351     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
352 
353   if (Kind == TTI::SK_Reverse) {
354     static const CostTblEntry NEONShuffleTbl[] = {
355         // Reverse shuffle cost one instruction if we are shuffling within a
356         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
357         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
358         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
359         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
360         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
361 
362         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
363         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
364         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
365         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
366 
367     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
368 
369     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
370                                             LT.second))
371       return LT.first * Entry->Cost;
372 
373     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
374   }
375   if (Kind == TTI::SK_Alternate) {
376     static const CostTblEntry NEONAltShuffleTbl[] = {
377         // Alt shuffle cost table for ARM. Cost is the number of instructions
378         // required to create the shuffled vector.
379 
380         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
381         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
382         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
383         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
384 
385         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
386         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
387         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
388 
389         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
390 
391         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
392 
393     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
394     if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl,
395                                             ISD::VECTOR_SHUFFLE, LT.second))
396       return LT.first * Entry->Cost;
397     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
398   }
399   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
400 }
401 
402 int ARMTTIImpl::getArithmeticInstrCost(
403     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
404     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
405     TTI::OperandValueProperties Opd2PropInfo) {
406 
407   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
408   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
409 
410   const unsigned FunctionCallDivCost = 20;
411   const unsigned ReciprocalDivCost = 10;
412   static const CostTblEntry CostTbl[] = {
413     // Division.
414     // These costs are somewhat random. Choose a cost of 20 to indicate that
415     // vectorizing devision (added function call) is going to be very expensive.
416     // Double registers types.
417     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
418     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
419     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
420     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
421     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
422     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
423     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
424     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
425     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
426     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
427     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
428     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
429     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
430     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
431     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
432     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
433     // Quad register types.
434     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
435     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
436     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
437     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
438     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
439     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
440     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
441     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
442     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
443     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
444     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
445     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
446     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
447     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
448     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
449     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
450     // Multiplication.
451   };
452 
453   if (ST->hasNEON())
454     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
455       return LT.first * Entry->Cost;
456 
457   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
458                                            Opd1PropInfo, Opd2PropInfo);
459 
460   // This is somewhat of a hack. The problem that we are facing is that SROA
461   // creates a sequence of shift, and, or instructions to construct values.
462   // These sequences are recognized by the ISel and have zero-cost. Not so for
463   // the vectorized code. Because we have support for v2i64 but not i64 those
464   // sequences look particularly beneficial to vectorize.
465   // To work around this we increase the cost of v2i64 operations to make them
466   // seem less beneficial.
467   if (LT.second == MVT::v2i64 &&
468       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
469     Cost += 4;
470 
471   return Cost;
472 }
473 
474 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
475                                 unsigned AddressSpace) {
476   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
477 
478   if (Src->isVectorTy() && Alignment != 16 &&
479       Src->getVectorElementType()->isDoubleTy()) {
480     // Unaligned loads/stores are extremely inefficient.
481     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
482     return LT.first * 4;
483   }
484   return LT.first;
485 }
486 
487 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
488                                            unsigned Factor,
489                                            ArrayRef<unsigned> Indices,
490                                            unsigned Alignment,
491                                            unsigned AddressSpace) {
492   assert(Factor >= 2 && "Invalid interleave factor");
493   assert(isa<VectorType>(VecTy) && "Expect a vector type");
494 
495   // vldN/vstN doesn't support vector types of i64/f64 element.
496   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
497 
498   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
499     unsigned NumElts = VecTy->getVectorNumElements();
500     Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
501     unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
502 
503     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
504     if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
505       return Factor;
506   }
507 
508   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
509                                            Alignment, AddressSpace);
510 }
511