1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/IntrinsicsARM.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/MC/SubtargetFeature.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/MachineValueType.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstdint> 34 #include <utility> 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "armtti" 39 40 static cl::opt<bool> EnableMaskedLoadStores( 41 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 42 cl::desc("Enable the generation of masked loads and stores")); 43 44 static cl::opt<bool> DisableLowOverheadLoops( 45 "disable-arm-loloops", cl::Hidden, cl::init(false), 46 cl::desc("Disable the generation of low-overhead loops")); 47 48 extern cl::opt<bool> DisableTailPredication; 49 50 extern cl::opt<bool> EnableMaskedGatherScatters; 51 52 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 53 const Function *Callee) const { 54 const TargetMachine &TM = getTLI()->getTargetMachine(); 55 const FeatureBitset &CallerBits = 56 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 57 const FeatureBitset &CalleeBits = 58 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 59 60 // To inline a callee, all features not in the whitelist must match exactly. 61 bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == 62 (CalleeBits & ~InlineFeatureWhitelist); 63 // For features in the whitelist, the callee's features must be a subset of 64 // the callers'. 65 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == 66 (CalleeBits & InlineFeatureWhitelist); 67 return MatchExact && MatchSubset; 68 } 69 70 bool ARMTTIImpl::shouldFavorBackedgeIndex(const Loop *L) const { 71 if (L->getHeader()->getParent()->hasOptSize()) 72 return false; 73 if (ST->hasMVEIntegerOps()) 74 return false; 75 return ST->isMClass() && ST->isThumb2() && L->getNumBlocks() == 1; 76 } 77 78 bool ARMTTIImpl::shouldFavorPostInc() const { 79 if (ST->hasMVEIntegerOps()) 80 return true; 81 return false; 82 } 83 84 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 85 TTI::TargetCostKind CostKind) { 86 assert(Ty->isIntegerTy()); 87 88 unsigned Bits = Ty->getPrimitiveSizeInBits(); 89 if (Bits == 0 || Imm.getActiveBits() >= 64) 90 return 4; 91 92 int64_t SImmVal = Imm.getSExtValue(); 93 uint64_t ZImmVal = Imm.getZExtValue(); 94 if (!ST->isThumb()) { 95 if ((SImmVal >= 0 && SImmVal < 65536) || 96 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 97 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 98 return 1; 99 return ST->hasV6T2Ops() ? 2 : 3; 100 } 101 if (ST->isThumb2()) { 102 if ((SImmVal >= 0 && SImmVal < 65536) || 103 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 104 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 105 return 1; 106 return ST->hasV6T2Ops() ? 2 : 3; 107 } 108 // Thumb1, any i8 imm cost 1. 109 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 110 return 1; 111 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 112 return 2; 113 // Load from constantpool. 114 return 3; 115 } 116 117 // Constants smaller than 256 fit in the immediate field of 118 // Thumb1 instructions so we return a zero cost and 1 otherwise. 119 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 120 const APInt &Imm, Type *Ty) { 121 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 122 return 0; 123 124 return 1; 125 } 126 127 int ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, 128 Type *Ty, TTI::TargetCostKind CostKind) { 129 // Division by a constant can be turned into multiplication, but only if we 130 // know it's constant. So it's not so much that the immediate is cheap (it's 131 // not), but that the alternative is worse. 132 // FIXME: this is probably unneeded with GlobalISel. 133 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 134 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 135 Idx == 1) 136 return 0; 137 138 if (Opcode == Instruction::And) { 139 // UXTB/UXTH 140 if (Imm == 255 || Imm == 65535) 141 return 0; 142 // Conversion to BIC is free, and means we can use ~Imm instead. 143 return std::min(getIntImmCost(Imm, Ty, CostKind), 144 getIntImmCost(~Imm, Ty, CostKind)); 145 } 146 147 if (Opcode == Instruction::Add) 148 // Conversion to SUB is free, and means we can use -Imm instead. 149 return std::min(getIntImmCost(Imm, Ty, CostKind), 150 getIntImmCost(-Imm, Ty, CostKind)); 151 152 if (Opcode == Instruction::ICmp && Imm.isNegative() && 153 Ty->getIntegerBitWidth() == 32) { 154 int64_t NegImm = -Imm.getSExtValue(); 155 if (ST->isThumb2() && NegImm < 1<<12) 156 // icmp X, #-C -> cmn X, #C 157 return 0; 158 if (ST->isThumb() && NegImm < 1<<8) 159 // icmp X, #-C -> adds X, #C 160 return 0; 161 } 162 163 // xor a, -1 can always be folded to MVN 164 if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) 165 return 0; 166 167 return getIntImmCost(Imm, Ty, CostKind); 168 } 169 170 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 171 TTI::TargetCostKind CostKind, 172 const Instruction *I) { 173 int ISD = TLI->InstructionOpcodeToISD(Opcode); 174 assert(ISD && "Invalid opcode"); 175 176 // Single to/from double precision conversions. 177 static const CostTblEntry NEONFltDblTbl[] = { 178 // Vector fptrunc/fpext conversions. 179 { ISD::FP_ROUND, MVT::v2f64, 2 }, 180 { ISD::FP_EXTEND, MVT::v2f32, 2 }, 181 { ISD::FP_EXTEND, MVT::v4f32, 4 } 182 }; 183 184 if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || 185 ISD == ISD::FP_EXTEND)) { 186 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 187 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 188 return LT.first * Entry->Cost; 189 } 190 191 EVT SrcTy = TLI->getValueType(DL, Src); 192 EVT DstTy = TLI->getValueType(DL, Dst); 193 194 if (!SrcTy.isSimple() || !DstTy.isSimple()) 195 return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 196 197 // The extend of a load is free 198 if (I && isa<LoadInst>(I->getOperand(0))) { 199 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 200 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 201 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 202 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 203 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 204 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 205 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 206 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 207 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 208 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 209 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 210 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 211 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 212 }; 213 if (const auto *Entry = ConvertCostTableLookup( 214 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 215 return Entry->Cost; 216 217 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 218 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 219 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 220 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 221 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 222 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 223 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 224 }; 225 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 226 if (const auto *Entry = 227 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 228 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 229 return Entry->Cost; 230 } 231 } 232 233 // NEON vector operations that can extend their inputs. 234 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 235 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 236 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 237 // vaddl 238 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 239 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 240 // vsubl 241 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 242 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 243 // vmull 244 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 245 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 246 // vshll 247 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 248 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 249 }; 250 251 auto *User = cast<Instruction>(*I->user_begin()); 252 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 253 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 254 DstTy.getSimpleVT(), 255 SrcTy.getSimpleVT())) { 256 return Entry->Cost; 257 } 258 } 259 260 // Some arithmetic, load and store operations have specific instructions 261 // to cast up/down their types automatically at no extra cost. 262 // TODO: Get these tables to know at least what the related operations are. 263 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 264 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 265 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 266 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 267 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 268 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 269 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 270 271 // The number of vmovl instructions for the extension. 272 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 273 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 274 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 275 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 276 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 277 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 278 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 279 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 280 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 281 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 282 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 283 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 284 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 285 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 286 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 287 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 288 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 289 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 290 291 // Operations that we legalize using splitting. 292 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 293 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 294 295 // Vector float <-> i32 conversions. 296 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 297 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 298 299 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 300 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 301 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 302 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 303 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 304 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 305 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 306 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 307 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 308 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 309 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 310 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 311 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 312 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 313 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 314 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 315 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 316 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 317 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 318 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 319 320 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 321 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 322 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 323 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 324 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 325 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 326 327 // Vector double <-> i32 conversions. 328 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 329 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 330 331 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 332 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 333 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 334 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 335 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 336 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 337 338 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 339 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 340 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 341 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 342 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 343 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 344 }; 345 346 if (SrcTy.isVector() && ST->hasNEON()) { 347 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 348 DstTy.getSimpleVT(), 349 SrcTy.getSimpleVT())) 350 return Entry->Cost; 351 } 352 353 // Scalar float to integer conversions. 354 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 355 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 356 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 357 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 358 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 359 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 360 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 361 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 362 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 363 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 364 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 365 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 366 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 367 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 368 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 369 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 370 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 371 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 372 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 373 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 374 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 375 }; 376 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 377 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 378 DstTy.getSimpleVT(), 379 SrcTy.getSimpleVT())) 380 return Entry->Cost; 381 } 382 383 // Scalar integer to float conversions. 384 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 385 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 386 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 387 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 388 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 389 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 390 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 391 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 392 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 393 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 394 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 395 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 396 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 397 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 398 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 399 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 400 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 401 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 402 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 403 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 404 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 405 }; 406 407 if (SrcTy.isInteger() && ST->hasNEON()) { 408 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 409 ISD, DstTy.getSimpleVT(), 410 SrcTy.getSimpleVT())) 411 return Entry->Cost; 412 } 413 414 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 415 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 416 // are linearised so take more. 417 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 418 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 419 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 420 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 421 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 422 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 423 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 424 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 425 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 426 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 427 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 428 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 429 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 430 }; 431 432 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 433 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 434 ISD, DstTy.getSimpleVT(), 435 SrcTy.getSimpleVT())) 436 return Entry->Cost * ST->getMVEVectorCostFactor(); 437 } 438 439 // Scalar integer conversion costs. 440 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 441 // i16 -> i64 requires two dependent operations. 442 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 443 444 // Truncates on i64 are assumed to be free. 445 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 446 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 447 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 448 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 449 }; 450 451 if (SrcTy.isInteger()) { 452 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 453 DstTy.getSimpleVT(), 454 SrcTy.getSimpleVT())) 455 return Entry->Cost; 456 } 457 458 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 459 ? ST->getMVEVectorCostFactor() 460 : 1; 461 return BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 462 } 463 464 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 465 unsigned Index) { 466 // Penalize inserting into an D-subregister. We end up with a three times 467 // lower estimated throughput on swift. 468 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 469 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 470 return 3; 471 472 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 473 Opcode == Instruction::ExtractElement)) { 474 // Cross-class copies are expensive on many microarchitectures, 475 // so assume they are expensive by default. 476 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 477 return 3; 478 479 // Even if it's not a cross class copy, this likely leads to mixing 480 // of NEON and VFP code and should be therefore penalized. 481 if (ValTy->isVectorTy() && 482 ValTy->getScalarSizeInBits() <= 32) 483 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 484 } 485 486 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 487 Opcode == Instruction::ExtractElement)) { 488 // We say MVE moves costs at least the MVEVectorCostFactor, even though 489 // they are scalar instructions. This helps prevent mixing scalar and 490 // vector, to prevent vectorising where we end up just scalarising the 491 // result anyway. 492 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 493 ST->getMVEVectorCostFactor()) * 494 cast<VectorType>(ValTy)->getNumElements() / 2; 495 } 496 497 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 498 } 499 500 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 501 TTI::TargetCostKind CostKind, 502 const Instruction *I) { 503 int ISD = TLI->InstructionOpcodeToISD(Opcode); 504 // On NEON a vector select gets lowered to vbsl. 505 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { 506 // Lowering of some vector selects is currently far from perfect. 507 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 508 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 509 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 510 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 511 }; 512 513 EVT SelCondTy = TLI->getValueType(DL, CondTy); 514 EVT SelValTy = TLI->getValueType(DL, ValTy); 515 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 516 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 517 SelCondTy.getSimpleVT(), 518 SelValTy.getSimpleVT())) 519 return Entry->Cost; 520 } 521 522 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 523 return LT.first; 524 } 525 526 int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy() 527 ? ST->getMVEVectorCostFactor() 528 : 1; 529 return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, 530 I); 531 } 532 533 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 534 const SCEV *Ptr) { 535 // Address computations in vectorized code with non-consecutive addresses will 536 // likely result in more instructions compared to scalar code where the 537 // computation can more often be merged into the index mode. The resulting 538 // extra micro-ops can significantly decrease throughput. 539 unsigned NumVectorInstToHideOverhead = 10; 540 int MaxMergeDistance = 64; 541 542 if (ST->hasNEON()) { 543 if (Ty->isVectorTy() && SE && 544 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 545 return NumVectorInstToHideOverhead; 546 547 // In many cases the address computation is not merged into the instruction 548 // addressing mode. 549 return 1; 550 } 551 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 552 } 553 554 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 555 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 556 // If a VCTP is part of a chain, it's already profitable and shouldn't be 557 // optimized, else LSR may block tail-predication. 558 switch (II->getIntrinsicID()) { 559 case Intrinsic::arm_mve_vctp8: 560 case Intrinsic::arm_mve_vctp16: 561 case Intrinsic::arm_mve_vctp32: 562 case Intrinsic::arm_mve_vctp64: 563 return true; 564 default: 565 break; 566 } 567 } 568 return false; 569 } 570 571 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) { 572 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 573 return false; 574 575 if (auto *VecTy = dyn_cast<VectorType>(DataTy)) { 576 // Don't support v2i1 yet. 577 if (VecTy->getNumElements() == 2) 578 return false; 579 580 // We don't support extending fp types. 581 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 582 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 583 return false; 584 } 585 586 unsigned EltWidth = DataTy->getScalarSizeInBits(); 587 return (EltWidth == 32 && (!Alignment || Alignment >= 4)) || 588 (EltWidth == 16 && (!Alignment || Alignment >= 2)) || 589 (EltWidth == 8); 590 } 591 592 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, MaybeAlign Alignment) { 593 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 594 return false; 595 596 // This method is called in 2 places: 597 // - from the vectorizer with a scalar type, in which case we need to get 598 // this as good as we can with the limited info we have (and rely on the cost 599 // model for the rest). 600 // - from the masked intrinsic lowering pass with the actual vector type. 601 // For MVE, we have a custom lowering pass that will already have custom 602 // legalised any gathers that we can to MVE intrinsics, and want to expand all 603 // the rest. The pass runs before the masked intrinsic lowering pass, so if we 604 // are here, we know we want to expand. 605 if (isa<VectorType>(Ty)) 606 return false; 607 608 unsigned EltWidth = Ty->getScalarSizeInBits(); 609 return ((EltWidth == 32 && (!Alignment || Alignment >= 4)) || 610 (EltWidth == 16 && (!Alignment || Alignment >= 2)) || EltWidth == 8); 611 } 612 613 int ARMTTIImpl::getMemcpyCost(const Instruction *I) { 614 const MemCpyInst *MI = dyn_cast<MemCpyInst>(I); 615 assert(MI && "MemcpyInst expected"); 616 ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength()); 617 618 // To model the cost of a library call, we assume 1 for the call, and 619 // 3 for the argument setup. 620 const unsigned LibCallCost = 4; 621 622 // If 'size' is not a constant, a library call will be generated. 623 if (!C) 624 return LibCallCost; 625 626 const unsigned Size = C->getValue().getZExtValue(); 627 const Align DstAlign = *MI->getDestAlign(); 628 const Align SrcAlign = *MI->getSourceAlign(); 629 const Function *F = I->getParent()->getParent(); 630 const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 631 std::vector<EVT> MemOps; 632 633 // MemOps will be poplulated with a list of data types that needs to be 634 // loaded and stored. That's why we multiply the number of elements by 2 to 635 // get the cost for this memcpy. 636 if (getTLI()->findOptimalMemOpLowering( 637 MemOps, Limit, 638 MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 639 /*IsVolatile*/ true), 640 MI->getDestAddressSpace(), MI->getSourceAddressSpace(), 641 F->getAttributes())) 642 return MemOps.size() * 2; 643 644 // If we can't find an optimal memop lowering, return the default cost 645 return LibCallCost; 646 } 647 648 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 649 int Index, VectorType *SubTp) { 650 if (ST->hasNEON()) { 651 if (Kind == TTI::SK_Broadcast) { 652 static const CostTblEntry NEONDupTbl[] = { 653 // VDUP handles these cases. 654 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 655 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 656 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 657 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 658 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 659 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 660 661 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 662 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 663 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 664 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 665 666 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 667 668 if (const auto *Entry = 669 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 670 return LT.first * Entry->Cost; 671 } 672 if (Kind == TTI::SK_Reverse) { 673 static const CostTblEntry NEONShuffleTbl[] = { 674 // Reverse shuffle cost one instruction if we are shuffling within a 675 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 676 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 677 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 678 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 679 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 680 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 681 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 682 683 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 684 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 685 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 686 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 687 688 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 689 690 if (const auto *Entry = 691 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 692 return LT.first * Entry->Cost; 693 } 694 if (Kind == TTI::SK_Select) { 695 static const CostTblEntry NEONSelShuffleTbl[] = { 696 // Select shuffle cost table for ARM. Cost is the number of 697 // instructions 698 // required to create the shuffled vector. 699 700 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 701 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 702 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 703 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 704 705 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 706 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 707 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 708 709 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 710 711 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 712 713 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 714 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 715 ISD::VECTOR_SHUFFLE, LT.second)) 716 return LT.first * Entry->Cost; 717 } 718 } 719 if (ST->hasMVEIntegerOps()) { 720 if (Kind == TTI::SK_Broadcast) { 721 static const CostTblEntry MVEDupTbl[] = { 722 // VDUP handles these cases. 723 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 724 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 725 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 726 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 727 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 728 729 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 730 731 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 732 LT.second)) 733 return LT.first * Entry->Cost * ST->getMVEVectorCostFactor(); 734 } 735 } 736 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 737 ? ST->getMVEVectorCostFactor() 738 : 1; 739 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 740 } 741 742 int ARMTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 743 TTI::TargetCostKind CostKind, 744 TTI::OperandValueKind Op1Info, 745 TTI::OperandValueKind Op2Info, 746 TTI::OperandValueProperties Opd1PropInfo, 747 TTI::OperandValueProperties Opd2PropInfo, 748 ArrayRef<const Value *> Args, 749 const Instruction *CxtI) { 750 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 751 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 752 753 if (ST->hasNEON()) { 754 const unsigned FunctionCallDivCost = 20; 755 const unsigned ReciprocalDivCost = 10; 756 static const CostTblEntry CostTbl[] = { 757 // Division. 758 // These costs are somewhat random. Choose a cost of 20 to indicate that 759 // vectorizing devision (added function call) is going to be very expensive. 760 // Double registers types. 761 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 762 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 763 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 764 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 765 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 766 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 767 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 768 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 769 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 770 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 771 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 772 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 773 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 774 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 775 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 776 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 777 // Quad register types. 778 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 779 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 780 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 781 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 782 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 783 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 784 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 785 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 786 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 787 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 788 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 789 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 790 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 791 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 792 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 793 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 794 // Multiplication. 795 }; 796 797 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 798 return LT.first * Entry->Cost; 799 800 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 801 Op2Info, 802 Opd1PropInfo, Opd2PropInfo); 803 804 // This is somewhat of a hack. The problem that we are facing is that SROA 805 // creates a sequence of shift, and, or instructions to construct values. 806 // These sequences are recognized by the ISel and have zero-cost. Not so for 807 // the vectorized code. Because we have support for v2i64 but not i64 those 808 // sequences look particularly beneficial to vectorize. 809 // To work around this we increase the cost of v2i64 operations to make them 810 // seem less beneficial. 811 if (LT.second == MVT::v2i64 && 812 Op2Info == TargetTransformInfo::OK_UniformConstantValue) 813 Cost += 4; 814 815 return Cost; 816 } 817 818 // If this operation is a shift on arm/thumb2, it might well be folded into 819 // the following instruction, hence having a cost of 0. 820 auto LooksLikeAFreeShift = [&]() { 821 if (ST->isThumb1Only() || Ty->isVectorTy()) 822 return false; 823 824 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 825 return false; 826 if (Op2Info != TargetTransformInfo::OK_UniformConstantValue) 827 return false; 828 829 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 830 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 831 case Instruction::Add: 832 case Instruction::Sub: 833 case Instruction::And: 834 case Instruction::Xor: 835 case Instruction::Or: 836 case Instruction::ICmp: 837 return true; 838 default: 839 return false; 840 } 841 }; 842 if (LooksLikeAFreeShift()) 843 return 0; 844 845 int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy() 846 ? ST->getMVEVectorCostFactor() 847 : 1; 848 849 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 850 // without treating floats as more expensive that scalars or increasing the 851 // costs for custom operations. The results is also multiplied by the 852 // MVEVectorCostFactor where appropriate. 853 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 854 return LT.first * BaseCost; 855 856 // Else this is expand, assume that we need to scalarize this op. 857 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 858 unsigned Num = VTy->getNumElements(); 859 unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType(), 860 CostKind); 861 // Return the cost of multiple scalar invocation plus the cost of 862 // inserting and extracting the values. 863 return BaseT::getScalarizationOverhead(VTy, Args) + Num * Cost; 864 } 865 866 return BaseCost; 867 } 868 869 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 870 MaybeAlign Alignment, unsigned AddressSpace, 871 TTI::TargetCostKind CostKind, 872 const Instruction *I) { 873 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 874 875 if (ST->hasNEON() && Src->isVectorTy() && 876 (Alignment && *Alignment != Align(16)) && 877 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 878 // Unaligned loads/stores are extremely inefficient. 879 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 880 return LT.first * 4; 881 } 882 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 883 ? ST->getMVEVectorCostFactor() 884 : 1; 885 return BaseCost * LT.first; 886 } 887 888 int ARMTTIImpl::getInterleavedMemoryOpCost( 889 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 890 unsigned Alignment, unsigned AddressSpace, 891 TTI::TargetCostKind CostKind, 892 bool UseMaskForCond, bool UseMaskForGaps) { 893 assert(Factor >= 2 && "Invalid interleave factor"); 894 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 895 896 // vldN/vstN doesn't support vector types of i64/f64 element. 897 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 898 899 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 900 !UseMaskForCond && !UseMaskForGaps) { 901 unsigned NumElts = cast<VectorType>(VecTy)->getNumElements(); 902 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); 903 904 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 905 // Accesses having vector types that are a multiple of 128 bits can be 906 // matched to more than one vldN/vstN instruction. 907 int BaseCost = ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor() : 1; 908 if (NumElts % Factor == 0 && 909 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, DL)) 910 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 911 912 // Some smaller than legal interleaved patterns are cheap as we can make 913 // use of the vmovn or vrev patterns to interleave a standard load. This is 914 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 915 // promoted differently). The cost of 2 here is then a load and vrev or 916 // vmovn. 917 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 918 VecTy->isIntOrIntVectorTy() && DL.getTypeSizeInBits(SubVecTy) <= 64) 919 return 2 * BaseCost; 920 } 921 922 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 923 Alignment, AddressSpace, CostKind, 924 UseMaskForCond, UseMaskForGaps); 925 } 926 927 unsigned ARMTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 928 Value *Ptr, bool VariableMask, 929 unsigned Alignment, 930 TTI::TargetCostKind CostKind, 931 const Instruction *I) { 932 using namespace PatternMatch; 933 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 934 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 935 Alignment, CostKind, I); 936 937 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 938 VectorType *VTy = cast<VectorType>(DataTy); 939 940 // TODO: Splitting, once we do that. 941 942 unsigned NumElems = VTy->getNumElements(); 943 unsigned EltSize = VTy->getScalarSizeInBits(); 944 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy); 945 946 // For now, it is assumed that for the MVE gather instructions the loads are 947 // all effectively serialised. This means the cost is the scalar cost 948 // multiplied by the number of elements being loaded. This is possibly very 949 // conservative, but even so we still end up vectorising loops because the 950 // cost per iteration for many loops is lower than for scalar loops. 951 unsigned VectorCost = NumElems * LT.first; 952 // The scalarization cost should be a lot higher. We use the number of vector 953 // elements plus the scalarization overhead. 954 unsigned ScalarCost = 955 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, {}); 956 957 if (Alignment < EltSize / 8) 958 return ScalarCost; 959 960 unsigned ExtSize = EltSize; 961 // Check whether there's a single user that asks for an extended type 962 if (I != nullptr) { 963 // Dependent of the caller of this function, a gather instruction will 964 // either have opcode Instruction::Load or be a call to the masked_gather 965 // intrinsic 966 if ((I->getOpcode() == Instruction::Load || 967 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 968 I->hasOneUse()) { 969 const User *Us = *I->users().begin(); 970 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 971 // only allow valid type combinations 972 unsigned TypeSize = 973 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 974 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 975 (TypeSize == 16 && EltSize == 8)) && 976 TypeSize * NumElems == 128) { 977 ExtSize = TypeSize; 978 } 979 } 980 } 981 // Check whether the input data needs to be truncated 982 TruncInst *T; 983 if ((I->getOpcode() == Instruction::Store || 984 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 985 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 986 // Only allow valid type combinations 987 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 988 if (((EltSize == 16 && TypeSize == 32) || 989 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 990 TypeSize * NumElems == 128) 991 ExtSize = TypeSize; 992 } 993 } 994 995 if (ExtSize * NumElems != 128 || NumElems < 4) 996 return ScalarCost; 997 998 // Any (aligned) i32 gather will not need to be scalarised. 999 if (ExtSize == 32) 1000 return VectorCost; 1001 // For smaller types, we need to ensure that the gep's inputs are correctly 1002 // extended from a small enough value. Other sizes (including i64) are 1003 // scalarized for now. 1004 if (ExtSize != 8 && ExtSize != 16) 1005 return ScalarCost; 1006 1007 if (auto BC = dyn_cast<BitCastInst>(Ptr)) 1008 Ptr = BC->getOperand(0); 1009 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1010 if (GEP->getNumOperands() != 2) 1011 return ScalarCost; 1012 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1013 // Scale needs to be correct (which is only relevant for i16s). 1014 if (Scale != 1 && Scale * 8 != ExtSize) 1015 return ScalarCost; 1016 // And we need to zext (not sext) the indexes from a small enough type. 1017 if (auto ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1018 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1019 return VectorCost; 1020 } 1021 return ScalarCost; 1022 } 1023 return ScalarCost; 1024 } 1025 1026 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1027 if (!F->isIntrinsic()) 1028 BaseT::isLoweredToCall(F); 1029 1030 // Assume all Arm-specific intrinsics map to an instruction. 1031 if (F->getName().startswith("llvm.arm")) 1032 return false; 1033 1034 switch (F->getIntrinsicID()) { 1035 default: break; 1036 case Intrinsic::powi: 1037 case Intrinsic::sin: 1038 case Intrinsic::cos: 1039 case Intrinsic::pow: 1040 case Intrinsic::log: 1041 case Intrinsic::log10: 1042 case Intrinsic::log2: 1043 case Intrinsic::exp: 1044 case Intrinsic::exp2: 1045 return true; 1046 case Intrinsic::sqrt: 1047 case Intrinsic::fabs: 1048 case Intrinsic::copysign: 1049 case Intrinsic::floor: 1050 case Intrinsic::ceil: 1051 case Intrinsic::trunc: 1052 case Intrinsic::rint: 1053 case Intrinsic::nearbyint: 1054 case Intrinsic::round: 1055 case Intrinsic::canonicalize: 1056 case Intrinsic::lround: 1057 case Intrinsic::llround: 1058 case Intrinsic::lrint: 1059 case Intrinsic::llrint: 1060 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 1061 return true; 1062 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 1063 return true; 1064 // Some operations can be handled by vector instructions and assume 1065 // unsupported vectors will be expanded into supported scalar ones. 1066 // TODO Handle scalar operations properly. 1067 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 1068 case Intrinsic::masked_store: 1069 case Intrinsic::masked_load: 1070 case Intrinsic::masked_gather: 1071 case Intrinsic::masked_scatter: 1072 return !ST->hasMVEIntegerOps(); 1073 case Intrinsic::sadd_with_overflow: 1074 case Intrinsic::uadd_with_overflow: 1075 case Intrinsic::ssub_with_overflow: 1076 case Intrinsic::usub_with_overflow: 1077 case Intrinsic::sadd_sat: 1078 case Intrinsic::uadd_sat: 1079 case Intrinsic::ssub_sat: 1080 case Intrinsic::usub_sat: 1081 return false; 1082 } 1083 1084 return BaseT::isLoweredToCall(F); 1085 } 1086 1087 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1088 AssumptionCache &AC, 1089 TargetLibraryInfo *LibInfo, 1090 HardwareLoopInfo &HWLoopInfo) { 1091 // Low-overhead branches are only supported in the 'low-overhead branch' 1092 // extension of v8.1-m. 1093 if (!ST->hasLOB() || DisableLowOverheadLoops) { 1094 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 1095 return false; 1096 } 1097 1098 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 1099 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 1100 return false; 1101 } 1102 1103 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1104 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1105 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 1106 return false; 1107 } 1108 1109 const SCEV *TripCountSCEV = 1110 SE.getAddExpr(BackedgeTakenCount, 1111 SE.getOne(BackedgeTakenCount->getType())); 1112 1113 // We need to store the trip count in LR, a 32-bit register. 1114 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 1115 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 1116 return false; 1117 } 1118 1119 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 1120 // point in generating a hardware loop if that's going to happen. 1121 auto MaybeCall = [this](Instruction &I) { 1122 const ARMTargetLowering *TLI = getTLI(); 1123 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 1124 EVT VT = TLI->getValueType(DL, I.getType(), true); 1125 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 1126 return true; 1127 1128 // Check if an intrinsic will be lowered to a call and assume that any 1129 // other CallInst will generate a bl. 1130 if (auto *Call = dyn_cast<CallInst>(&I)) { 1131 if (isa<IntrinsicInst>(Call)) { 1132 if (const Function *F = Call->getCalledFunction()) 1133 return isLoweredToCall(F); 1134 } 1135 return true; 1136 } 1137 1138 // FPv5 provides conversions between integer, double-precision, 1139 // single-precision, and half-precision formats. 1140 switch (I.getOpcode()) { 1141 default: 1142 break; 1143 case Instruction::FPToSI: 1144 case Instruction::FPToUI: 1145 case Instruction::SIToFP: 1146 case Instruction::UIToFP: 1147 case Instruction::FPTrunc: 1148 case Instruction::FPExt: 1149 return !ST->hasFPARMv8Base(); 1150 } 1151 1152 // FIXME: Unfortunately the approach of checking the Operation Action does 1153 // not catch all cases of Legalization that use library calls. Our 1154 // Legalization step categorizes some transformations into library calls as 1155 // Custom, Expand or even Legal when doing type legalization. So for now 1156 // we have to special case for instance the SDIV of 64bit integers and the 1157 // use of floating point emulation. 1158 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 1159 switch (ISD) { 1160 default: 1161 break; 1162 case ISD::SDIV: 1163 case ISD::UDIV: 1164 case ISD::SREM: 1165 case ISD::UREM: 1166 case ISD::SDIVREM: 1167 case ISD::UDIVREM: 1168 return true; 1169 } 1170 } 1171 1172 // Assume all other non-float operations are supported. 1173 if (!VT.isFloatingPoint()) 1174 return false; 1175 1176 // We'll need a library call to handle most floats when using soft. 1177 if (TLI->useSoftFloat()) { 1178 switch (I.getOpcode()) { 1179 default: 1180 return true; 1181 case Instruction::Alloca: 1182 case Instruction::Load: 1183 case Instruction::Store: 1184 case Instruction::Select: 1185 case Instruction::PHI: 1186 return false; 1187 } 1188 } 1189 1190 // We'll need a libcall to perform double precision operations on a single 1191 // precision only FPU. 1192 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 1193 return true; 1194 1195 // Likewise for half precision arithmetic. 1196 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 1197 return true; 1198 1199 return false; 1200 }; 1201 1202 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 1203 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 1204 switch (Call->getIntrinsicID()) { 1205 default: 1206 break; 1207 case Intrinsic::set_loop_iterations: 1208 case Intrinsic::test_set_loop_iterations: 1209 case Intrinsic::loop_decrement: 1210 case Intrinsic::loop_decrement_reg: 1211 return true; 1212 } 1213 } 1214 return false; 1215 }; 1216 1217 // Scan the instructions to see if there's any that we know will turn into a 1218 // call or if this loop is already a low-overhead loop. 1219 auto ScanLoop = [&](Loop *L) { 1220 for (auto *BB : L->getBlocks()) { 1221 for (auto &I : *BB) { 1222 if (MaybeCall(I) || IsHardwareLoopIntrinsic(I)) { 1223 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 1224 return false; 1225 } 1226 } 1227 } 1228 return true; 1229 }; 1230 1231 // Visit inner loops. 1232 for (auto Inner : *L) 1233 if (!ScanLoop(Inner)) 1234 return false; 1235 1236 if (!ScanLoop(L)) 1237 return false; 1238 1239 // TODO: Check whether the trip count calculation is expensive. If L is the 1240 // inner loop but we know it has a low trip count, calculating that trip 1241 // count (in the parent loop) may be detrimental. 1242 1243 LLVMContext &C = L->getHeader()->getContext(); 1244 HWLoopInfo.CounterInReg = true; 1245 HWLoopInfo.IsNestingLegal = false; 1246 HWLoopInfo.PerformEntryTest = true; 1247 HWLoopInfo.CountType = Type::getInt32Ty(C); 1248 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 1249 return true; 1250 } 1251 1252 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 1253 // We don't allow icmp's, and because we only look at single block loops, 1254 // we simply count the icmps, i.e. there should only be 1 for the backedge. 1255 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 1256 return false; 1257 1258 if (isa<FCmpInst>(&I)) 1259 return false; 1260 1261 // We could allow extending/narrowing FP loads/stores, but codegen is 1262 // too inefficient so reject this for now. 1263 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 1264 return false; 1265 1266 // Extends have to be extending-loads 1267 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 1268 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 1269 return false; 1270 1271 // Truncs have to be narrowing-stores 1272 if (isa<TruncInst>(&I) ) 1273 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 1274 return false; 1275 1276 return true; 1277 } 1278 1279 // To set up a tail-predicated loop, we need to know the total number of 1280 // elements processed by that loop. Thus, we need to determine the element 1281 // size and: 1282 // 1) it should be uniform for all operations in the vector loop, so we 1283 // e.g. don't want any widening/narrowing operations. 1284 // 2) it should be smaller than i64s because we don't have vector operations 1285 // that work on i64s. 1286 // 3) we don't want elements to be reversed or shuffled, to make sure the 1287 // tail-predication masks/predicates the right lanes. 1288 // 1289 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 1290 const DataLayout &DL, 1291 const LoopAccessInfo *LAI) { 1292 PredicatedScalarEvolution PSE = LAI->getPSE(); 1293 int ICmpCount = 0; 1294 int Stride = 0; 1295 1296 LLVM_DEBUG(dbgs() << "tail-predication: checking allowed instructions\n"); 1297 SmallVector<Instruction *, 16> LoadStores; 1298 for (BasicBlock *BB : L->blocks()) { 1299 for (Instruction &I : BB->instructionsWithoutDebug()) { 1300 if (isa<PHINode>(&I)) 1301 continue; 1302 if (!canTailPredicateInstruction(I, ICmpCount)) { 1303 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 1304 return false; 1305 } 1306 1307 Type *T = I.getType(); 1308 if (T->isPointerTy()) 1309 T = T->getPointerElementType(); 1310 1311 if (T->getScalarSizeInBits() > 32) { 1312 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 1313 return false; 1314 } 1315 1316 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 1317 Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1); 1318 int64_t NextStride = getPtrStride(PSE, Ptr, L); 1319 // TODO: for now only allow consecutive strides of 1. We could support 1320 // other strides as long as it is uniform, but let's keep it simple for 1321 // now. 1322 if (Stride == 0 && NextStride == 1) { 1323 Stride = NextStride; 1324 continue; 1325 } 1326 if (Stride != NextStride) { 1327 LLVM_DEBUG(dbgs() << "Different strides found, can't " 1328 "tail-predicate\n."); 1329 return false; 1330 } 1331 } 1332 } 1333 } 1334 1335 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 1336 return true; 1337 } 1338 1339 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, 1340 ScalarEvolution &SE, 1341 AssumptionCache &AC, 1342 TargetLibraryInfo *TLI, 1343 DominatorTree *DT, 1344 const LoopAccessInfo *LAI) { 1345 if (DisableTailPredication) 1346 return false; 1347 1348 // Creating a predicated vector loop is the first step for generating a 1349 // tail-predicated hardware loop, for which we need the MVE masked 1350 // load/stores instructions: 1351 if (!ST->hasMVEIntegerOps()) 1352 return false; 1353 1354 // For now, restrict this to single block loops. 1355 if (L->getNumBlocks() > 1) { 1356 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 1357 "loop.\n"); 1358 return false; 1359 } 1360 1361 assert(L->empty() && "preferPredicateOverEpilogue: inner-loop expected"); 1362 1363 HardwareLoopInfo HWLoopInfo(L); 1364 if (!HWLoopInfo.canAnalyze(*LI)) { 1365 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 1366 "analyzable.\n"); 1367 return false; 1368 } 1369 1370 // This checks if we have the low-overhead branch architecture 1371 // extension, and if we will create a hardware-loop: 1372 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { 1373 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 1374 "profitable.\n"); 1375 return false; 1376 } 1377 1378 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { 1379 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 1380 "a candidate.\n"); 1381 return false; 1382 } 1383 1384 return canTailPredicateLoop(L, LI, SE, DL, LAI); 1385 } 1386 1387 1388 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1389 TTI::UnrollingPreferences &UP) { 1390 // Only currently enable these preferences for M-Class cores. 1391 if (!ST->isMClass()) 1392 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); 1393 1394 // Disable loop unrolling for Oz and Os. 1395 UP.OptSizeThreshold = 0; 1396 UP.PartialOptSizeThreshold = 0; 1397 if (L->getHeader()->getParent()->hasOptSize()) 1398 return; 1399 1400 // Only enable on Thumb-2 targets. 1401 if (!ST->isThumb2()) 1402 return; 1403 1404 SmallVector<BasicBlock*, 4> ExitingBlocks; 1405 L->getExitingBlocks(ExitingBlocks); 1406 LLVM_DEBUG(dbgs() << "Loop has:\n" 1407 << "Blocks: " << L->getNumBlocks() << "\n" 1408 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 1409 1410 // Only allow another exit other than the latch. This acts as an early exit 1411 // as it mirrors the profitability calculation of the runtime unroller. 1412 if (ExitingBlocks.size() > 2) 1413 return; 1414 1415 // Limit the CFG of the loop body for targets with a branch predictor. 1416 // Allowing 4 blocks permits if-then-else diamonds in the body. 1417 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 1418 return; 1419 1420 // Scan the loop: don't unroll loops with calls as this could prevent 1421 // inlining. 1422 unsigned Cost = 0; 1423 for (auto *BB : L->getBlocks()) { 1424 for (auto &I : *BB) { 1425 // Don't unroll vectorised loop. MVE does not benefit from it as much as 1426 // scalar code. 1427 if (I.getType()->isVectorTy()) 1428 return; 1429 1430 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1431 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 1432 if (!isLoweredToCall(F)) 1433 continue; 1434 } 1435 return; 1436 } 1437 1438 SmallVector<const Value*, 4> Operands(I.value_op_begin(), 1439 I.value_op_end()); 1440 Cost += getUserCost(&I, Operands, TargetTransformInfo::TCK_CodeSize); 1441 } 1442 } 1443 1444 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 1445 1446 UP.Partial = true; 1447 UP.Runtime = true; 1448 UP.UpperBound = true; 1449 UP.UnrollRemainder = true; 1450 UP.DefaultUnrollRuntimeCount = 4; 1451 UP.UnrollAndJam = true; 1452 UP.UnrollAndJamInnerLoopThreshold = 60; 1453 1454 // Force unrolling small loops can be very useful because of the branch 1455 // taken cost of the backedge. 1456 if (Cost < 12) 1457 UP.Force = true; 1458 } 1459 1460 bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 1461 TTI::ReductionFlags Flags) const { 1462 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type"); 1463 unsigned ScalarBits = Ty->getScalarSizeInBits(); 1464 if (!ST->hasMVEIntegerOps()) 1465 return false; 1466 1467 switch (Opcode) { 1468 case Instruction::FAdd: 1469 case Instruction::FMul: 1470 case Instruction::And: 1471 case Instruction::Or: 1472 case Instruction::Xor: 1473 case Instruction::Mul: 1474 case Instruction::FCmp: 1475 return false; 1476 case Instruction::ICmp: 1477 case Instruction::Add: 1478 return ScalarBits < 64 && 1479 (ScalarBits * cast<VectorType>(Ty)->getNumElements()) % 128 == 0; 1480 default: 1481 llvm_unreachable("Unhandled reduction opcode"); 1482 } 1483 return false; 1484 } 1485