1 //===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ARMTargetTransformInfo.h"
11 #include "llvm/Support/Debug.h"
12 #include "llvm/Target/CostTable.h"
13 #include "llvm/Target/TargetLowering.h"
14 using namespace llvm;
15 
16 #define DEBUG_TYPE "armtti"
17 
18 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
19   assert(Ty->isIntegerTy());
20 
21  unsigned Bits = Ty->getPrimitiveSizeInBits();
22  if (Bits == 0 || Imm.getActiveBits() >= 64)
23    return 4;
24 
25   int64_t SImmVal = Imm.getSExtValue();
26   uint64_t ZImmVal = Imm.getZExtValue();
27   if (!ST->isThumb()) {
28     if ((SImmVal >= 0 && SImmVal < 65536) ||
29         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
30         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
31       return 1;
32     return ST->hasV6T2Ops() ? 2 : 3;
33   }
34   if (ST->isThumb2()) {
35     if ((SImmVal >= 0 && SImmVal < 65536) ||
36         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
37         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
38       return 1;
39     return ST->hasV6T2Ops() ? 2 : 3;
40   }
41   // Thumb1.
42   if (SImmVal >= 0 && SImmVal < 256)
43     return 1;
44   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
45     return 2;
46   // Load from constantpool.
47   return 3;
48 }
49 
50 
51 // Constants smaller than 256 fit in the immediate field of
52 // Thumb1 instructions so we return a zero cost and 1 otherwise.
53 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
54                                       const APInt &Imm, Type *Ty) {
55   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
56     return 0;
57 
58   return 1;
59 }
60 
61 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
62                               Type *Ty) {
63   // Division by a constant can be turned into multiplication, but only if we
64   // know it's constant. So it's not so much that the immediate is cheap (it's
65   // not), but that the alternative is worse.
66   // FIXME: this is probably unneeded with GlobalISel.
67   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
68        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
69       Idx == 1)
70     return 0;
71 
72   if (Opcode == Instruction::And)
73       // Conversion to BIC is free, and means we can use ~Imm instead.
74       return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
75 
76   if (Opcode == Instruction::Add)
77     // Conversion to SUB is free, and means we can use -Imm instead.
78     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
79 
80   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
81       Ty->getIntegerBitWidth() == 32) {
82     int64_t NegImm = -Imm.getSExtValue();
83     if (ST->isThumb2() && NegImm < 1<<12)
84       // icmp X, #-C -> cmn X, #C
85       return 0;
86     if (ST->isThumb() && NegImm < 1<<8)
87       // icmp X, #-C -> adds X, #C
88       return 0;
89   }
90 
91   return getIntImmCost(Imm, Ty);
92 }
93 
94 
95 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
96   int ISD = TLI->InstructionOpcodeToISD(Opcode);
97   assert(ISD && "Invalid opcode");
98 
99   // Single to/from double precision conversions.
100   static const CostTblEntry NEONFltDblTbl[] = {
101     // Vector fptrunc/fpext conversions.
102     { ISD::FP_ROUND,   MVT::v2f64, 2 },
103     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
104     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
105   };
106 
107   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
108                                           ISD == ISD::FP_EXTEND)) {
109     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
110     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
111       return LT.first * Entry->Cost;
112   }
113 
114   EVT SrcTy = TLI->getValueType(DL, Src);
115   EVT DstTy = TLI->getValueType(DL, Dst);
116 
117   if (!SrcTy.isSimple() || !DstTy.isSimple())
118     return BaseT::getCastInstrCost(Opcode, Dst, Src);
119 
120   // Some arithmetic, load and store operations have specific instructions
121   // to cast up/down their types automatically at no extra cost.
122   // TODO: Get these tables to know at least what the related operations are.
123   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
124     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
125     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
126     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
127     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
128     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
129     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
130 
131     // The number of vmovl instructions for the extension.
132     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
133     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
134     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
135     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
136     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
137     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
138     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
139     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
140     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
141     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
142 
143     // Operations that we legalize using splitting.
144     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
145     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
146 
147     // Vector float <-> i32 conversions.
148     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
149     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
150 
151     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
152     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
153     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
154     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
155     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
156     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
157     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
158     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
159     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
160     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
161     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
162     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
163     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
164     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
165     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
166     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
167     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
168     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
169     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
170     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
171 
172     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
173     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
174     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
175     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
176     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
177     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
178 
179     // Vector double <-> i32 conversions.
180     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
181     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
182 
183     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
184     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
185     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
186     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
187     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
188     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
189 
190     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
191     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
192     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
193     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
194     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
195     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
196   };
197 
198   if (SrcTy.isVector() && ST->hasNEON()) {
199     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
200                                                    DstTy.getSimpleVT(),
201                                                    SrcTy.getSimpleVT()))
202       return Entry->Cost;
203   }
204 
205   // Scalar float to integer conversions.
206   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
207     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
208     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
209     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
210     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
211     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
212     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
213     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
214     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
215     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
216     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
217     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
218     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
219     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
220     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
221     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
222     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
223     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
224     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
225     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
226     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
227   };
228   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
229     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
230                                                    DstTy.getSimpleVT(),
231                                                    SrcTy.getSimpleVT()))
232       return Entry->Cost;
233   }
234 
235   // Scalar integer to float conversions.
236   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
237     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
238     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
239     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
240     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
241     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
242     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
243     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
244     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
245     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
246     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
247     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
248     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
249     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
250     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
251     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
252     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
253     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
254     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
255     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
256     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
257   };
258 
259   if (SrcTy.isInteger() && ST->hasNEON()) {
260     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
261                                                    ISD, DstTy.getSimpleVT(),
262                                                    SrcTy.getSimpleVT()))
263       return Entry->Cost;
264   }
265 
266   // Scalar integer conversion costs.
267   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
268     // i16 -> i64 requires two dependent operations.
269     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
270 
271     // Truncates on i64 are assumed to be free.
272     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
273     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
274     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
275     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
276   };
277 
278   if (SrcTy.isInteger()) {
279     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
280                                                    DstTy.getSimpleVT(),
281                                                    SrcTy.getSimpleVT()))
282       return Entry->Cost;
283   }
284 
285   return BaseT::getCastInstrCost(Opcode, Dst, Src);
286 }
287 
288 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
289                                    unsigned Index) {
290   // Penalize inserting into an D-subregister. We end up with a three times
291   // lower estimated throughput on swift.
292   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
293       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
294     return 3;
295 
296   if ((Opcode == Instruction::InsertElement ||
297        Opcode == Instruction::ExtractElement)) {
298     // Cross-class copies are expensive on many microarchitectures,
299     // so assume they are expensive by default.
300     if (ValTy->getVectorElementType()->isIntegerTy())
301       return 3;
302 
303     // Even if it's not a cross class copy, this likely leads to mixing
304     // of NEON and VFP code and should be therefore penalized.
305     if (ValTy->isVectorTy() &&
306         ValTy->getScalarSizeInBits() <= 32)
307       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
308   }
309 
310   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
311 }
312 
313 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
314 
315   int ISD = TLI->InstructionOpcodeToISD(Opcode);
316   // On NEON a a vector select gets lowered to vbsl.
317   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
318     // Lowering of some vector selects is currently far from perfect.
319     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
320       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
321       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
322       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
323     };
324 
325     EVT SelCondTy = TLI->getValueType(DL, CondTy);
326     EVT SelValTy = TLI->getValueType(DL, ValTy);
327     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
328       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
329                                                      SelCondTy.getSimpleVT(),
330                                                      SelValTy.getSimpleVT()))
331         return Entry->Cost;
332     }
333 
334     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
335     return LT.first;
336   }
337 
338   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
339 }
340 
341 int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
342   // Address computations in vectorized code with non-consecutive addresses will
343   // likely result in more instructions compared to scalar code where the
344   // computation can more often be merged into the index mode. The resulting
345   // extra micro-ops can significantly decrease throughput.
346   unsigned NumVectorInstToHideOverhead = 10;
347 
348   if (Ty->isVectorTy() && IsComplex)
349     return NumVectorInstToHideOverhead;
350 
351   // In many cases the address computation is not merged into the instruction
352   // addressing mode.
353   return 1;
354 }
355 
356 int ARMTTIImpl::getFPOpCost(Type *Ty) {
357   // Use similar logic that's in ARMISelLowering:
358   // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access
359   // to VFP.
360 
361   if (ST->hasVFP2() && !ST->isThumb1Only()) {
362     if (Ty->isFloatTy()) {
363       return TargetTransformInfo::TCC_Basic;
364     }
365 
366     if (Ty->isDoubleTy()) {
367       return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive :
368         TargetTransformInfo::TCC_Basic;
369     }
370   }
371 
372   return TargetTransformInfo::TCC_Expensive;
373 }
374 
375 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
376                                Type *SubTp) {
377   // We only handle costs of reverse and alternate shuffles for now.
378   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
379     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
380 
381   if (Kind == TTI::SK_Reverse) {
382     static const CostTblEntry NEONShuffleTbl[] = {
383         // Reverse shuffle cost one instruction if we are shuffling within a
384         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
385         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
386         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
387         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
388         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
389 
390         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
391         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
392         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
393         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
394 
395     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
396 
397     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
398                                             LT.second))
399       return LT.first * Entry->Cost;
400 
401     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
402   }
403   if (Kind == TTI::SK_Alternate) {
404     static const CostTblEntry NEONAltShuffleTbl[] = {
405         // Alt shuffle cost table for ARM. Cost is the number of instructions
406         // required to create the shuffled vector.
407 
408         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
409         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
410         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
411         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
412 
413         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
414         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
415         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
416 
417         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
418 
419         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
420 
421     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
422     if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl,
423                                             ISD::VECTOR_SHUFFLE, LT.second))
424       return LT.first * Entry->Cost;
425     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
426   }
427   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
428 }
429 
430 int ARMTTIImpl::getArithmeticInstrCost(
431     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
432     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
433     TTI::OperandValueProperties Opd2PropInfo) {
434 
435   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
436   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
437 
438   const unsigned FunctionCallDivCost = 20;
439   const unsigned ReciprocalDivCost = 10;
440   static const CostTblEntry CostTbl[] = {
441     // Division.
442     // These costs are somewhat random. Choose a cost of 20 to indicate that
443     // vectorizing devision (added function call) is going to be very expensive.
444     // Double registers types.
445     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
446     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
447     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
448     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
449     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
450     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
451     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
452     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
453     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
454     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
455     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
456     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
457     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
458     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
459     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
460     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
461     // Quad register types.
462     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
463     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
464     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
465     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
466     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
467     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
468     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
469     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
470     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
471     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
472     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
473     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
474     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
475     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
476     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
477     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
478     // Multiplication.
479   };
480 
481   if (ST->hasNEON())
482     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
483       return LT.first * Entry->Cost;
484 
485   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
486                                            Opd1PropInfo, Opd2PropInfo);
487 
488   // This is somewhat of a hack. The problem that we are facing is that SROA
489   // creates a sequence of shift, and, or instructions to construct values.
490   // These sequences are recognized by the ISel and have zero-cost. Not so for
491   // the vectorized code. Because we have support for v2i64 but not i64 those
492   // sequences look particularly beneficial to vectorize.
493   // To work around this we increase the cost of v2i64 operations to make them
494   // seem less beneficial.
495   if (LT.second == MVT::v2i64 &&
496       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
497     Cost += 4;
498 
499   return Cost;
500 }
501 
502 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
503                                 unsigned AddressSpace) {
504   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
505 
506   if (Src->isVectorTy() && Alignment != 16 &&
507       Src->getVectorElementType()->isDoubleTy()) {
508     // Unaligned loads/stores are extremely inefficient.
509     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
510     return LT.first * 4;
511   }
512   return LT.first;
513 }
514 
515 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
516                                            unsigned Factor,
517                                            ArrayRef<unsigned> Indices,
518                                            unsigned Alignment,
519                                            unsigned AddressSpace) {
520   assert(Factor >= 2 && "Invalid interleave factor");
521   assert(isa<VectorType>(VecTy) && "Expect a vector type");
522 
523   // vldN/vstN doesn't support vector types of i64/f64 element.
524   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
525 
526   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
527     unsigned NumElts = VecTy->getVectorNumElements();
528     Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
529     unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
530 
531     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
532     if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
533       return Factor;
534   }
535 
536   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
537                                            Alignment, AddressSpace);
538 }
539