1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/IntrinsicsARM.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/MC/SubtargetFeature.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <utility>
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "armtti"
44 
45 static cl::opt<bool> EnableMaskedLoadStores(
46   "enable-arm-maskedldst", cl::Hidden, cl::init(true),
47   cl::desc("Enable the generation of masked loads and stores"));
48 
49 static cl::opt<bool> DisableLowOverheadLoops(
50   "disable-arm-loloops", cl::Hidden, cl::init(false),
51   cl::desc("Disable the generation of low-overhead loops"));
52 
53 static cl::opt<bool>
54     AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
55                   cl::desc("Enable the generation of WLS loops"));
56 
57 extern cl::opt<TailPredication::Mode> EnableTailPredication;
58 
59 extern cl::opt<bool> EnableMaskedGatherScatters;
60 
61 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
62 
63 /// Convert a vector load intrinsic into a simple llvm load instruction.
64 /// This is beneficial when the underlying object being addressed comes
65 /// from a constant, since we get constant-folding for free.
66 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
67                                InstCombiner::BuilderTy &Builder) {
68   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
69 
70   if (!IntrAlign)
71     return nullptr;
72 
73   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
74                            ? MemAlign
75                            : IntrAlign->getLimitedValue();
76 
77   if (!isPowerOf2_32(Alignment))
78     return nullptr;
79 
80   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
81                                           PointerType::get(II.getType(), 0));
82   return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
83 }
84 
85 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
86                                      const Function *Callee) const {
87   const TargetMachine &TM = getTLI()->getTargetMachine();
88   const FeatureBitset &CallerBits =
89       TM.getSubtargetImpl(*Caller)->getFeatureBits();
90   const FeatureBitset &CalleeBits =
91       TM.getSubtargetImpl(*Callee)->getFeatureBits();
92 
93   // To inline a callee, all features not in the allowed list must match exactly.
94   bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
95                     (CalleeBits & ~InlineFeaturesAllowed);
96   // For features in the allowed list, the callee's features must be a subset of
97   // the callers'.
98   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
99                      (CalleeBits & InlineFeaturesAllowed);
100   return MatchExact && MatchSubset;
101 }
102 
103 TTI::AddressingModeKind
104 ARMTTIImpl::getPreferredAddressingMode(const Loop *L,
105                                        ScalarEvolution *SE) const {
106   if (ST->hasMVEIntegerOps())
107     return TTI::AMK_PostIndexed;
108 
109   if (L->getHeader()->getParent()->hasOptSize())
110     return TTI::AMK_None;
111 
112   if (ST->isMClass() && ST->isThumb2() &&
113       L->getNumBlocks() == 1)
114     return TTI::AMK_PreIndexed;
115 
116   return TTI::AMK_None;
117 }
118 
119 Optional<Instruction *>
120 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
121   using namespace PatternMatch;
122   Intrinsic::ID IID = II.getIntrinsicID();
123   switch (IID) {
124   default:
125     break;
126   case Intrinsic::arm_neon_vld1: {
127     Align MemAlign =
128         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
129                           &IC.getAssumptionCache(), &IC.getDominatorTree());
130     if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
131       return IC.replaceInstUsesWith(II, V);
132     }
133     break;
134   }
135 
136   case Intrinsic::arm_neon_vld2:
137   case Intrinsic::arm_neon_vld3:
138   case Intrinsic::arm_neon_vld4:
139   case Intrinsic::arm_neon_vld2lane:
140   case Intrinsic::arm_neon_vld3lane:
141   case Intrinsic::arm_neon_vld4lane:
142   case Intrinsic::arm_neon_vst1:
143   case Intrinsic::arm_neon_vst2:
144   case Intrinsic::arm_neon_vst3:
145   case Intrinsic::arm_neon_vst4:
146   case Intrinsic::arm_neon_vst2lane:
147   case Intrinsic::arm_neon_vst3lane:
148   case Intrinsic::arm_neon_vst4lane: {
149     Align MemAlign =
150         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
151                           &IC.getAssumptionCache(), &IC.getDominatorTree());
152     unsigned AlignArg = II.arg_size() - 1;
153     Value *AlignArgOp = II.getArgOperand(AlignArg);
154     MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
155     if (Align && *Align < MemAlign) {
156       return IC.replaceOperand(
157           II, AlignArg,
158           ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
159                            false));
160     }
161     break;
162   }
163 
164   case Intrinsic::arm_mve_pred_i2v: {
165     Value *Arg = II.getArgOperand(0);
166     Value *ArgArg;
167     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
168                        PatternMatch::m_Value(ArgArg))) &&
169         II.getType() == ArgArg->getType()) {
170       return IC.replaceInstUsesWith(II, ArgArg);
171     }
172     Constant *XorMask;
173     if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
174                              PatternMatch::m_Value(ArgArg)),
175                          PatternMatch::m_Constant(XorMask))) &&
176         II.getType() == ArgArg->getType()) {
177       if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
178         if (CI->getValue().trunc(16).isAllOnes()) {
179           auto TrueVector = IC.Builder.CreateVectorSplat(
180               cast<FixedVectorType>(II.getType())->getNumElements(),
181               IC.Builder.getTrue());
182           return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
183         }
184       }
185     }
186     KnownBits ScalarKnown(32);
187     if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
188                                 ScalarKnown, 0)) {
189       return &II;
190     }
191     break;
192   }
193   case Intrinsic::arm_mve_pred_v2i: {
194     Value *Arg = II.getArgOperand(0);
195     Value *ArgArg;
196     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
197                        PatternMatch::m_Value(ArgArg)))) {
198       return IC.replaceInstUsesWith(II, ArgArg);
199     }
200     if (!II.getMetadata(LLVMContext::MD_range)) {
201       Type *IntTy32 = Type::getInt32Ty(II.getContext());
202       Metadata *M[] = {
203           ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
204           ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))};
205       II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
206       return &II;
207     }
208     break;
209   }
210   case Intrinsic::arm_mve_vadc:
211   case Intrinsic::arm_mve_vadc_predicated: {
212     unsigned CarryOp =
213         (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
214     assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
215            "Bad type for intrinsic!");
216 
217     KnownBits CarryKnown(32);
218     if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
219                                 CarryKnown)) {
220       return &II;
221     }
222     break;
223   }
224   case Intrinsic::arm_mve_vmldava: {
225     Instruction *I = cast<Instruction>(&II);
226     if (I->hasOneUse()) {
227       auto *User = cast<Instruction>(*I->user_begin());
228       Value *OpZ;
229       if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
230           match(I->getOperand(3), m_Zero())) {
231         Value *OpX = I->getOperand(4);
232         Value *OpY = I->getOperand(5);
233         Type *OpTy = OpX->getType();
234 
235         IC.Builder.SetInsertPoint(User);
236         Value *V =
237             IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
238                                        {I->getOperand(0), I->getOperand(1),
239                                         I->getOperand(2), OpZ, OpX, OpY});
240 
241         IC.replaceInstUsesWith(*User, V);
242         return IC.eraseInstFromFunction(*User);
243       }
244     }
245     return None;
246   }
247   }
248   return None;
249 }
250 
251 Optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic(
252     InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
253     APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
254     std::function<void(Instruction *, unsigned, APInt, APInt &)>
255         SimplifyAndSetOp) const {
256 
257   // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the
258   // opcode specifying a Top/Bottom instruction, which can change between
259   // instructions.
260   auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) {
261     unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements();
262     unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue();
263 
264     // The only odd/even lanes of operand 0 will only be demanded depending
265     // on whether this is a top/bottom instruction.
266     APInt DemandedElts =
267         APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
268                                        : APInt::getHighBitsSet(2, 1));
269     SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts);
270     // The other lanes will be defined from the inserted elements.
271     UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1)
272                                                  : APInt::getHighBitsSet(2, 1));
273     return None;
274   };
275 
276   switch (II.getIntrinsicID()) {
277   default:
278     break;
279   case Intrinsic::arm_mve_vcvt_narrow:
280     SimplifyNarrowInstrTopBottom(2);
281     break;
282   case Intrinsic::arm_mve_vqmovn:
283     SimplifyNarrowInstrTopBottom(4);
284     break;
285   case Intrinsic::arm_mve_vshrn:
286     SimplifyNarrowInstrTopBottom(7);
287     break;
288   }
289 
290   return None;
291 }
292 
293 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
294                                           TTI::TargetCostKind CostKind) {
295   assert(Ty->isIntegerTy());
296 
297  unsigned Bits = Ty->getPrimitiveSizeInBits();
298  if (Bits == 0 || Imm.getActiveBits() >= 64)
299    return 4;
300 
301   int64_t SImmVal = Imm.getSExtValue();
302   uint64_t ZImmVal = Imm.getZExtValue();
303   if (!ST->isThumb()) {
304     if ((SImmVal >= 0 && SImmVal < 65536) ||
305         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
306         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
307       return 1;
308     return ST->hasV6T2Ops() ? 2 : 3;
309   }
310   if (ST->isThumb2()) {
311     if ((SImmVal >= 0 && SImmVal < 65536) ||
312         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
313         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
314       return 1;
315     return ST->hasV6T2Ops() ? 2 : 3;
316   }
317   // Thumb1, any i8 imm cost 1.
318   if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
319     return 1;
320   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
321     return 2;
322   // Load from constantpool.
323   return 3;
324 }
325 
326 // Constants smaller than 256 fit in the immediate field of
327 // Thumb1 instructions so we return a zero cost and 1 otherwise.
328 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
329                                                   const APInt &Imm, Type *Ty) {
330   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
331     return 0;
332 
333   return 1;
334 }
335 
336 // Checks whether Inst is part of a min(max()) or max(min()) pattern
337 // that will match to an SSAT instruction. Returns the instruction being
338 // saturated, or null if no saturation pattern was found.
339 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
340   Value *LHS, *RHS;
341   ConstantInt *C;
342   SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
343 
344   if (InstSPF == SPF_SMAX &&
345       PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
346       C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) {
347 
348     auto isSSatMin = [&](Value *MinInst) {
349       if (isa<SelectInst>(MinInst)) {
350         Value *MinLHS, *MinRHS;
351         ConstantInt *MinC;
352         SelectPatternFlavor MinSPF =
353             matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
354         if (MinSPF == SPF_SMIN &&
355             PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
356             MinC->getValue() == ((-Imm) - 1))
357           return true;
358       }
359       return false;
360     };
361 
362     if (isSSatMin(Inst->getOperand(1)))
363       return cast<Instruction>(Inst->getOperand(1))->getOperand(1);
364     if (Inst->hasNUses(2) &&
365         (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin()))))
366       return Inst->getOperand(1);
367   }
368   return nullptr;
369 }
370 
371 // Look for a FP Saturation pattern, where the instruction can be simplified to
372 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free.
373 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) {
374   if (Imm.getBitWidth() != 64 ||
375       Imm != APInt::getHighBitsSet(64, 33)) // -2147483648
376     return false;
377   Value *FP = isSSATMinMaxPattern(Inst, Imm);
378   if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse())
379     FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm);
380   if (!FP)
381     return false;
382   return isa<FPToSIInst>(FP);
383 }
384 
385 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
386                                               const APInt &Imm, Type *Ty,
387                                               TTI::TargetCostKind CostKind,
388                                               Instruction *Inst) {
389   // Division by a constant can be turned into multiplication, but only if we
390   // know it's constant. So it's not so much that the immediate is cheap (it's
391   // not), but that the alternative is worse.
392   // FIXME: this is probably unneeded with GlobalISel.
393   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
394        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
395       Idx == 1)
396     return 0;
397 
398   // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
399   // splitting any large offsets.
400   if (Opcode == Instruction::GetElementPtr && Idx != 0)
401     return 0;
402 
403   if (Opcode == Instruction::And) {
404     // UXTB/UXTH
405     if (Imm == 255 || Imm == 65535)
406       return 0;
407     // Conversion to BIC is free, and means we can use ~Imm instead.
408     return std::min(getIntImmCost(Imm, Ty, CostKind),
409                     getIntImmCost(~Imm, Ty, CostKind));
410   }
411 
412   if (Opcode == Instruction::Add)
413     // Conversion to SUB is free, and means we can use -Imm instead.
414     return std::min(getIntImmCost(Imm, Ty, CostKind),
415                     getIntImmCost(-Imm, Ty, CostKind));
416 
417   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
418       Ty->getIntegerBitWidth() == 32) {
419     int64_t NegImm = -Imm.getSExtValue();
420     if (ST->isThumb2() && NegImm < 1<<12)
421       // icmp X, #-C -> cmn X, #C
422       return 0;
423     if (ST->isThumb() && NegImm < 1<<8)
424       // icmp X, #-C -> adds X, #C
425       return 0;
426   }
427 
428   // xor a, -1 can always be folded to MVN
429   if (Opcode == Instruction::Xor && Imm.isAllOnes())
430     return 0;
431 
432   // Ensures negative constant of min(max()) or max(min()) patterns that
433   // match to SSAT instructions don't get hoisted
434   if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
435       Ty->getIntegerBitWidth() <= 32) {
436     if (isSSATMinMaxPattern(Inst, Imm) ||
437         (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
438          isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
439       return 0;
440   }
441 
442   if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm))
443     return 0;
444 
445   // We can convert <= -1 to < 0, which is generally quite cheap.
446   if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnesValue()) {
447     ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate();
448     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE)
449       return std::min(getIntImmCost(Imm, Ty, CostKind),
450                       getIntImmCost(Imm + 1, Ty, CostKind));
451   }
452 
453   return getIntImmCost(Imm, Ty, CostKind);
454 }
455 
456 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode,
457                                            TTI::TargetCostKind CostKind,
458                                            const Instruction *I) {
459   if (CostKind == TTI::TCK_RecipThroughput &&
460       (ST->hasNEON() || ST->hasMVEIntegerOps())) {
461     // FIXME: The vectorizer is highly sensistive to the cost of these
462     // instructions, which suggests that it may be using the costs incorrectly.
463     // But, for now, just make them free to avoid performance regressions for
464     // vector targets.
465     return 0;
466   }
467   return BaseT::getCFInstrCost(Opcode, CostKind, I);
468 }
469 
470 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
471                                              Type *Src,
472                                              TTI::CastContextHint CCH,
473                                              TTI::TargetCostKind CostKind,
474                                              const Instruction *I) {
475   int ISD = TLI->InstructionOpcodeToISD(Opcode);
476   assert(ISD && "Invalid opcode");
477 
478   // TODO: Allow non-throughput costs that aren't binary.
479   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
480     if (CostKind != TTI::TCK_RecipThroughput)
481       return Cost == 0 ? 0 : 1;
482     return Cost;
483   };
484   auto IsLegalFPType = [this](EVT VT) {
485     EVT EltVT = VT.getScalarType();
486     return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
487             (EltVT == MVT::f64 && ST->hasFP64()) ||
488             (EltVT == MVT::f16 && ST->hasFullFP16());
489   };
490 
491   EVT SrcTy = TLI->getValueType(DL, Src);
492   EVT DstTy = TLI->getValueType(DL, Dst);
493 
494   if (!SrcTy.isSimple() || !DstTy.isSimple())
495     return AdjustCost(
496         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
497 
498   // Extending masked load/Truncating masked stores is expensive because we
499   // currently don't split them. This means that we'll likely end up
500   // loading/storing each element individually (hence the high cost).
501   if ((ST->hasMVEIntegerOps() &&
502        (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
503         Opcode == Instruction::SExt)) ||
504       (ST->hasMVEFloatOps() &&
505        (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
506        IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
507     if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
508       return 2 * DstTy.getVectorNumElements() *
509              ST->getMVEVectorCostFactor(CostKind);
510 
511   // The extend of other kinds of load is free
512   if (CCH == TTI::CastContextHint::Normal ||
513       CCH == TTI::CastContextHint::Masked) {
514     static const TypeConversionCostTblEntry LoadConversionTbl[] = {
515         {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
516         {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
517         {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
518         {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
519         {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
520         {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
521         {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
522         {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
523         {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
524         {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
525         {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
526         {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
527     };
528     if (const auto *Entry = ConvertCostTableLookup(
529             LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
530       return AdjustCost(Entry->Cost);
531 
532     static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
533         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
534         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
535         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
536         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
537         {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
538         {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
539         // The following extend from a legal type to an illegal type, so need to
540         // split the load. This introduced an extra load operation, but the
541         // extend is still "free".
542         {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
543         {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
544         {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
545         {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
546         {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
547         {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
548     };
549     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
550       if (const auto *Entry =
551               ConvertCostTableLookup(MVELoadConversionTbl, ISD,
552                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
553         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
554     }
555 
556     static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
557         // FPExtends are similar but also require the VCVT instructions.
558         {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
559         {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
560     };
561     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
562       if (const auto *Entry =
563               ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
564                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
565         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
566     }
567 
568     // The truncate of a store is free. This is the mirror of extends above.
569     static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
570         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
571         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
572         {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
573         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
574         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
575         {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
576         {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
577     };
578     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
579       if (const auto *Entry =
580               ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
581                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
582         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
583     }
584 
585     static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
586         {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
587         {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
588     };
589     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
590       if (const auto *Entry =
591               ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
592                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
593         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
594     }
595   }
596 
597   // NEON vector operations that can extend their inputs.
598   if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
599       I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
600     static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
601       // vaddl
602       { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
603       { ISD::ADD, MVT::v8i16, MVT::v8i8,  0 },
604       // vsubl
605       { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
606       { ISD::SUB, MVT::v8i16, MVT::v8i8,  0 },
607       // vmull
608       { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
609       { ISD::MUL, MVT::v8i16, MVT::v8i8,  0 },
610       // vshll
611       { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
612       { ISD::SHL, MVT::v8i16, MVT::v8i8,  0 },
613     };
614 
615     auto *User = cast<Instruction>(*I->user_begin());
616     int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
617     if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
618                                              DstTy.getSimpleVT(),
619                                              SrcTy.getSimpleVT())) {
620       return AdjustCost(Entry->Cost);
621     }
622   }
623 
624   // Single to/from double precision conversions.
625   if (Src->isVectorTy() && ST->hasNEON() &&
626       ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
627         DstTy.getScalarType() == MVT::f32) ||
628        (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
629         DstTy.getScalarType() == MVT::f64))) {
630     static const CostTblEntry NEONFltDblTbl[] = {
631         // Vector fptrunc/fpext conversions.
632         {ISD::FP_ROUND, MVT::v2f64, 2},
633         {ISD::FP_EXTEND, MVT::v2f32, 2},
634         {ISD::FP_EXTEND, MVT::v4f32, 4}};
635 
636     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
637     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
638       return AdjustCost(LT.first * Entry->Cost);
639   }
640 
641   // Some arithmetic, load and store operations have specific instructions
642   // to cast up/down their types automatically at no extra cost.
643   // TODO: Get these tables to know at least what the related operations are.
644   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
645     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
646     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
647     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
648     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
649     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
650     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
651 
652     // The number of vmovl instructions for the extension.
653     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
654     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
655     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
656     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
657     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
658     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
659     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
660     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
661     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
662     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
663     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
664     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
665     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
666     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
667     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
668     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
669     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
670     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
671 
672     // Operations that we legalize using splitting.
673     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
674     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
675 
676     // Vector float <-> i32 conversions.
677     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
678     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
679 
680     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
681     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
682     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
683     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
684     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
685     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
686     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
687     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
688     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
689     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
690     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
691     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
692     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
693     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
694     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
695     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
696     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
697     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
698     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
699     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
700 
701     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
702     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
703     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
704     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
705     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
706     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
707 
708     // Vector double <-> i32 conversions.
709     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
710     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
711 
712     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
713     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
714     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
715     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
716     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
717     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
718 
719     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
720     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
721     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
722     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
723     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
724     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
725   };
726 
727   if (SrcTy.isVector() && ST->hasNEON()) {
728     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
729                                                    DstTy.getSimpleVT(),
730                                                    SrcTy.getSimpleVT()))
731       return AdjustCost(Entry->Cost);
732   }
733 
734   // Scalar float to integer conversions.
735   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
736     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
737     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
738     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
739     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
740     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
741     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
742     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
743     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
744     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
745     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
746     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
747     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
748     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
749     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
750     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
751     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
752     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
753     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
754     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
755     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
756   };
757   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
758     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
759                                                    DstTy.getSimpleVT(),
760                                                    SrcTy.getSimpleVT()))
761       return AdjustCost(Entry->Cost);
762   }
763 
764   // Scalar integer to float conversions.
765   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
766     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
767     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
768     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
769     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
770     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
771     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
772     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
773     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
774     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
775     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
776     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
777     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
778     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
779     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
780     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
781     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
782     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
783     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
784     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
785     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
786   };
787 
788   if (SrcTy.isInteger() && ST->hasNEON()) {
789     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
790                                                    ISD, DstTy.getSimpleVT(),
791                                                    SrcTy.getSimpleVT()))
792       return AdjustCost(Entry->Cost);
793   }
794 
795   // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
796   // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
797   // are linearised so take more.
798   static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
799     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
800     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
801     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
802     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
803     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
804     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
805     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
806     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
807     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
808     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
809     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
810     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
811   };
812 
813   if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
814     if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
815                                                    ISD, DstTy.getSimpleVT(),
816                                                    SrcTy.getSimpleVT()))
817       return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
818   }
819 
820   if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
821     // As general rule, fp converts that were not matched above are scalarized
822     // and cost 1 vcvt for each lane, so long as the instruction is available.
823     // If not it will become a series of function calls.
824     const InstructionCost CallCost =
825         getCallInstrCost(nullptr, Dst, {Src}, CostKind);
826     int Lanes = 1;
827     if (SrcTy.isFixedLengthVector())
828       Lanes = SrcTy.getVectorNumElements();
829 
830     if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
831       return Lanes;
832     else
833       return Lanes * CallCost;
834   }
835 
836   if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
837       SrcTy.isFixedLengthVector()) {
838     // Treat a truncate with larger than legal source (128bits for MVE) as
839     // expensive, 2 instructions per lane.
840     if ((SrcTy.getScalarType() == MVT::i8 ||
841          SrcTy.getScalarType() == MVT::i16 ||
842          SrcTy.getScalarType() == MVT::i32) &&
843         SrcTy.getSizeInBits() > 128 &&
844         SrcTy.getSizeInBits() > DstTy.getSizeInBits())
845       return SrcTy.getVectorNumElements() * 2;
846   }
847 
848   // Scalar integer conversion costs.
849   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
850     // i16 -> i64 requires two dependent operations.
851     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
852 
853     // Truncates on i64 are assumed to be free.
854     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
855     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
856     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
857     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
858   };
859 
860   if (SrcTy.isInteger()) {
861     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
862                                                    DstTy.getSimpleVT(),
863                                                    SrcTy.getSimpleVT()))
864       return AdjustCost(Entry->Cost);
865   }
866 
867   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
868                      ? ST->getMVEVectorCostFactor(CostKind)
869                      : 1;
870   return AdjustCost(
871       BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
872 }
873 
874 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
875                                                unsigned Index) {
876   // Penalize inserting into an D-subregister. We end up with a three times
877   // lower estimated throughput on swift.
878   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
879       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
880     return 3;
881 
882   if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
883                         Opcode == Instruction::ExtractElement)) {
884     // Cross-class copies are expensive on many microarchitectures,
885     // so assume they are expensive by default.
886     if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
887       return 3;
888 
889     // Even if it's not a cross class copy, this likely leads to mixing
890     // of NEON and VFP code and should be therefore penalized.
891     if (ValTy->isVectorTy() &&
892         ValTy->getScalarSizeInBits() <= 32)
893       return std::max<InstructionCost>(
894           BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
895   }
896 
897   if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
898                                  Opcode == Instruction::ExtractElement)) {
899     // Integer cross-lane moves are more expensive than float, which can
900     // sometimes just be vmovs. Integer involve being passes to GPR registers,
901     // causing more of a delay.
902     std::pair<InstructionCost, MVT> LT =
903         getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType());
904     return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
905   }
906 
907   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
908 }
909 
910 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
911                                                Type *CondTy,
912                                                CmpInst::Predicate VecPred,
913                                                TTI::TargetCostKind CostKind,
914                                                const Instruction *I) {
915   int ISD = TLI->InstructionOpcodeToISD(Opcode);
916 
917   // Thumb scalar code size cost for select.
918   if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
919       ST->isThumb() && !ValTy->isVectorTy()) {
920     // Assume expensive structs.
921     if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
922       return TTI::TCC_Expensive;
923 
924     // Select costs can vary because they:
925     // - may require one or more conditional mov (including an IT),
926     // - can't operate directly on immediates,
927     // - require live flags, which we can't copy around easily.
928     InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first;
929 
930     // Possible IT instruction for Thumb2, or more for Thumb1.
931     ++Cost;
932 
933     // i1 values may need rematerialising by using mov immediates and/or
934     // flag setting instructions.
935     if (ValTy->isIntegerTy(1))
936       ++Cost;
937 
938     return Cost;
939   }
940 
941   // If this is a vector min/max/abs, use the cost of that intrinsic directly
942   // instead. Hopefully when min/max intrinsics are more prevalent this code
943   // will not be needed.
944   const Instruction *Sel = I;
945   if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
946       Sel->hasOneUse())
947     Sel = cast<Instruction>(Sel->user_back());
948   if (Sel && ValTy->isVectorTy() &&
949       (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
950     const Value *LHS, *RHS;
951     SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor;
952     unsigned IID = 0;
953     switch (SPF) {
954     case SPF_ABS:
955       IID = Intrinsic::abs;
956       break;
957     case SPF_SMIN:
958       IID = Intrinsic::smin;
959       break;
960     case SPF_SMAX:
961       IID = Intrinsic::smax;
962       break;
963     case SPF_UMIN:
964       IID = Intrinsic::umin;
965       break;
966     case SPF_UMAX:
967       IID = Intrinsic::umax;
968       break;
969     case SPF_FMINNUM:
970       IID = Intrinsic::minnum;
971       break;
972     case SPF_FMAXNUM:
973       IID = Intrinsic::maxnum;
974       break;
975     default:
976       break;
977     }
978     if (IID) {
979       // The ICmp is free, the select gets the cost of the min/max/etc
980       if (Sel != I)
981         return 0;
982       IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
983       return getIntrinsicInstrCost(CostAttrs, CostKind);
984     }
985   }
986 
987   // On NEON a vector select gets lowered to vbsl.
988   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
989     // Lowering of some vector selects is currently far from perfect.
990     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
991       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
992       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
993       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
994     };
995 
996     EVT SelCondTy = TLI->getValueType(DL, CondTy);
997     EVT SelValTy = TLI->getValueType(DL, ValTy);
998     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
999       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
1000                                                      SelCondTy.getSimpleVT(),
1001                                                      SelValTy.getSimpleVT()))
1002         return Entry->Cost;
1003     }
1004 
1005     std::pair<InstructionCost, MVT> LT =
1006         TLI->getTypeLegalizationCost(DL, ValTy);
1007     return LT.first;
1008   }
1009 
1010   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
1011       (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
1012       cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
1013     FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
1014     FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
1015     if (!VecCondTy)
1016       VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
1017 
1018     // If we don't have mve.fp any fp operations will need to be scalarized.
1019     if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
1020       // One scalaization insert, one scalarization extract and the cost of the
1021       // fcmps.
1022       return BaseT::getScalarizationOverhead(VecValTy, false, true) +
1023              BaseT::getScalarizationOverhead(VecCondTy, true, false) +
1024              VecValTy->getNumElements() *
1025                  getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
1026                                     VecCondTy->getScalarType(), VecPred, CostKind,
1027                                     I);
1028     }
1029 
1030     std::pair<InstructionCost, MVT> LT =
1031         TLI->getTypeLegalizationCost(DL, ValTy);
1032     int BaseCost = ST->getMVEVectorCostFactor(CostKind);
1033     // There are two types - the input that specifies the type of the compare
1034     // and the output vXi1 type. Because we don't know how the output will be
1035     // split, we may need an expensive shuffle to get two in sync. This has the
1036     // effect of making larger than legal compares (v8i32 for example)
1037     // expensive.
1038     if (LT.second.getVectorNumElements() > 2) {
1039       if (LT.first > 1)
1040         return LT.first * BaseCost +
1041                BaseT::getScalarizationOverhead(VecCondTy, true, false);
1042       return BaseCost;
1043     }
1044   }
1045 
1046   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1047   // for "multiple beats" potentially needed by MVE instructions.
1048   int BaseCost = 1;
1049   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
1050     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1051 
1052   return BaseCost *
1053          BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1054 }
1055 
1056 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty,
1057                                                       ScalarEvolution *SE,
1058                                                       const SCEV *Ptr) {
1059   // Address computations in vectorized code with non-consecutive addresses will
1060   // likely result in more instructions compared to scalar code where the
1061   // computation can more often be merged into the index mode. The resulting
1062   // extra micro-ops can significantly decrease throughput.
1063   unsigned NumVectorInstToHideOverhead = 10;
1064   int MaxMergeDistance = 64;
1065 
1066   if (ST->hasNEON()) {
1067     if (Ty->isVectorTy() && SE &&
1068         !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1069       return NumVectorInstToHideOverhead;
1070 
1071     // In many cases the address computation is not merged into the instruction
1072     // addressing mode.
1073     return 1;
1074   }
1075   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
1076 }
1077 
1078 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
1079   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1080     // If a VCTP is part of a chain, it's already profitable and shouldn't be
1081     // optimized, else LSR may block tail-predication.
1082     switch (II->getIntrinsicID()) {
1083     case Intrinsic::arm_mve_vctp8:
1084     case Intrinsic::arm_mve_vctp16:
1085     case Intrinsic::arm_mve_vctp32:
1086     case Intrinsic::arm_mve_vctp64:
1087       return true;
1088     default:
1089       break;
1090     }
1091   }
1092   return false;
1093 }
1094 
1095 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
1096   if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
1097     return false;
1098 
1099   if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
1100     // Don't support v2i1 yet.
1101     if (VecTy->getNumElements() == 2)
1102       return false;
1103 
1104     // We don't support extending fp types.
1105      unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
1106     if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
1107       return false;
1108   }
1109 
1110   unsigned EltWidth = DataTy->getScalarSizeInBits();
1111   return (EltWidth == 32 && Alignment >= 4) ||
1112          (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
1113 }
1114 
1115 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
1116   if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
1117     return false;
1118 
1119   // This method is called in 2 places:
1120   //  - from the vectorizer with a scalar type, in which case we need to get
1121   //  this as good as we can with the limited info we have (and rely on the cost
1122   //  model for the rest).
1123   //  - from the masked intrinsic lowering pass with the actual vector type.
1124   // For MVE, we have a custom lowering pass that will already have custom
1125   // legalised any gathers that we can to MVE intrinsics, and want to expand all
1126   // the rest. The pass runs before the masked intrinsic lowering pass, so if we
1127   // are here, we know we want to expand.
1128   if (isa<VectorType>(Ty))
1129     return false;
1130 
1131   unsigned EltWidth = Ty->getScalarSizeInBits();
1132   return ((EltWidth == 32 && Alignment >= 4) ||
1133           (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
1134 }
1135 
1136 /// Given a memcpy/memset/memmove instruction, return the number of memory
1137 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
1138 /// call is used.
1139 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
1140   MemOp MOp;
1141   unsigned DstAddrSpace = ~0u;
1142   unsigned SrcAddrSpace = ~0u;
1143   const Function *F = I->getParent()->getParent();
1144 
1145   if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
1146     ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
1147     // If 'size' is not a constant, a library call will be generated.
1148     if (!C)
1149       return -1;
1150 
1151     const unsigned Size = C->getValue().getZExtValue();
1152     const Align DstAlign = *MC->getDestAlign();
1153     const Align SrcAlign = *MC->getSourceAlign();
1154 
1155     MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
1156                       /*IsVolatile*/ false);
1157     DstAddrSpace = MC->getDestAddressSpace();
1158     SrcAddrSpace = MC->getSourceAddressSpace();
1159   }
1160   else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
1161     ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
1162     // If 'size' is not a constant, a library call will be generated.
1163     if (!C)
1164       return -1;
1165 
1166     const unsigned Size = C->getValue().getZExtValue();
1167     const Align DstAlign = *MS->getDestAlign();
1168 
1169     MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
1170                      /*IsZeroMemset*/ false, /*IsVolatile*/ false);
1171     DstAddrSpace = MS->getDestAddressSpace();
1172   }
1173   else
1174     llvm_unreachable("Expected a memcpy/move or memset!");
1175 
1176   unsigned Limit, Factor = 2;
1177   switch(I->getIntrinsicID()) {
1178     case Intrinsic::memcpy:
1179       Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
1180       break;
1181     case Intrinsic::memmove:
1182       Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
1183       break;
1184     case Intrinsic::memset:
1185       Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
1186       Factor = 1;
1187       break;
1188     default:
1189       llvm_unreachable("Expected a memcpy/move or memset!");
1190   }
1191 
1192   // MemOps will be poplulated with a list of data types that needs to be
1193   // loaded and stored. That's why we multiply the number of elements by 2 to
1194   // get the cost for this memcpy.
1195   std::vector<EVT> MemOps;
1196   if (getTLI()->findOptimalMemOpLowering(
1197           MemOps, Limit, MOp, DstAddrSpace,
1198           SrcAddrSpace, F->getAttributes()))
1199     return MemOps.size() * Factor;
1200 
1201   // If we can't find an optimal memop lowering, return the default cost
1202   return -1;
1203 }
1204 
1205 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) {
1206   int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
1207 
1208   // To model the cost of a library call, we assume 1 for the call, and
1209   // 3 for the argument setup.
1210   if (NumOps == -1)
1211     return 4;
1212   return NumOps;
1213 }
1214 
1215 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1216                                            VectorType *Tp, ArrayRef<int> Mask,
1217                                            int Index, VectorType *SubTp) {
1218   Kind = improveShuffleKindFromMask(Kind, Mask);
1219   if (ST->hasNEON()) {
1220     if (Kind == TTI::SK_Broadcast) {
1221       static const CostTblEntry NEONDupTbl[] = {
1222           // VDUP handles these cases.
1223           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1224           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1225           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1226           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1227           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1228           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1229 
1230           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1231           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1232           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1233           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
1234 
1235       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1236       if (const auto *Entry =
1237               CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
1238         return LT.first * Entry->Cost;
1239     }
1240     if (Kind == TTI::SK_Reverse) {
1241       static const CostTblEntry NEONShuffleTbl[] = {
1242           // Reverse shuffle cost one instruction if we are shuffling within a
1243           // double word (vrev) or two if we shuffle a quad word (vrev, vext).
1244           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1245           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1246           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1247           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1248           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1249           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1250 
1251           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1252           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1253           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
1254           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
1255 
1256       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1257       if (const auto *Entry =
1258               CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
1259         return LT.first * Entry->Cost;
1260     }
1261     if (Kind == TTI::SK_Select) {
1262       static const CostTblEntry NEONSelShuffleTbl[] = {
1263           // Select shuffle cost table for ARM. Cost is the number of
1264           // instructions
1265           // required to create the shuffled vector.
1266 
1267           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1268           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1269           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1270           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1271 
1272           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1273           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1274           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
1275 
1276           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
1277 
1278           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
1279 
1280       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1281       if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
1282                                               ISD::VECTOR_SHUFFLE, LT.second))
1283         return LT.first * Entry->Cost;
1284     }
1285   }
1286   if (ST->hasMVEIntegerOps()) {
1287     if (Kind == TTI::SK_Broadcast) {
1288       static const CostTblEntry MVEDupTbl[] = {
1289           // VDUP handles these cases.
1290           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1291           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1292           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
1293           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1294           {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
1295 
1296       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1297       if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
1298                                               LT.second))
1299         return LT.first * Entry->Cost *
1300                ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput);
1301     }
1302 
1303     if (!Mask.empty()) {
1304       std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1305       if (Mask.size() <= LT.second.getVectorNumElements() &&
1306           (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
1307            isVREVMask(Mask, LT.second, 64)))
1308         return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
1309     }
1310   }
1311 
1312   int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
1313                      ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput)
1314                      : 1;
1315   return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
1316 }
1317 
1318 InstructionCost ARMTTIImpl::getArithmeticInstrCost(
1319     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1320     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
1321     TTI::OperandValueProperties Opd1PropInfo,
1322     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1323     const Instruction *CxtI) {
1324   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
1325   if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
1326     // Make operations on i1 relatively expensive as this often involves
1327     // combining predicates. AND and XOR should be easier to handle with IT
1328     // blocks.
1329     switch (ISDOpcode) {
1330     default:
1331       break;
1332     case ISD::AND:
1333     case ISD::XOR:
1334       return 2;
1335     case ISD::OR:
1336       return 3;
1337     }
1338   }
1339 
1340   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1341 
1342   if (ST->hasNEON()) {
1343     const unsigned FunctionCallDivCost = 20;
1344     const unsigned ReciprocalDivCost = 10;
1345     static const CostTblEntry CostTbl[] = {
1346       // Division.
1347       // These costs are somewhat random. Choose a cost of 20 to indicate that
1348       // vectorizing devision (added function call) is going to be very expensive.
1349       // Double registers types.
1350       { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1351       { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1352       { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
1353       { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
1354       { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1355       { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1356       { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
1357       { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
1358       { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
1359       { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
1360       { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
1361       { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
1362       { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
1363       { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
1364       { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
1365       { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
1366       // Quad register types.
1367       { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1368       { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1369       { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
1370       { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
1371       { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1372       { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1373       { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
1374       { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
1375       { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1376       { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1377       { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
1378       { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
1379       { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1380       { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1381       { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
1382       { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
1383       // Multiplication.
1384     };
1385 
1386     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
1387       return LT.first * Entry->Cost;
1388 
1389     InstructionCost Cost = BaseT::getArithmeticInstrCost(
1390         Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
1391 
1392     // This is somewhat of a hack. The problem that we are facing is that SROA
1393     // creates a sequence of shift, and, or instructions to construct values.
1394     // These sequences are recognized by the ISel and have zero-cost. Not so for
1395     // the vectorized code. Because we have support for v2i64 but not i64 those
1396     // sequences look particularly beneficial to vectorize.
1397     // To work around this we increase the cost of v2i64 operations to make them
1398     // seem less beneficial.
1399     if (LT.second == MVT::v2i64 &&
1400         Op2Info == TargetTransformInfo::OK_UniformConstantValue)
1401       Cost += 4;
1402 
1403     return Cost;
1404   }
1405 
1406   // If this operation is a shift on arm/thumb2, it might well be folded into
1407   // the following instruction, hence having a cost of 0.
1408   auto LooksLikeAFreeShift = [&]() {
1409     if (ST->isThumb1Only() || Ty->isVectorTy())
1410       return false;
1411 
1412     if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
1413       return false;
1414     if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
1415       return false;
1416 
1417     // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
1418     switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
1419     case Instruction::Add:
1420     case Instruction::Sub:
1421     case Instruction::And:
1422     case Instruction::Xor:
1423     case Instruction::Or:
1424     case Instruction::ICmp:
1425       return true;
1426     default:
1427       return false;
1428     }
1429   };
1430   if (LooksLikeAFreeShift())
1431     return 0;
1432 
1433   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1434   // for "multiple beats" potentially needed by MVE instructions.
1435   int BaseCost = 1;
1436   if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
1437     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1438 
1439   // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
1440   // without treating floats as more expensive that scalars or increasing the
1441   // costs for custom operations. The results is also multiplied by the
1442   // MVEVectorCostFactor where appropriate.
1443   if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
1444     return LT.first * BaseCost;
1445 
1446   // Else this is expand, assume that we need to scalarize this op.
1447   if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
1448     unsigned Num = VTy->getNumElements();
1449     InstructionCost Cost =
1450         getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
1451     // Return the cost of multiple scalar invocation plus the cost of
1452     // inserting and extracting the values.
1453     SmallVector<Type *> Tys(Args.size(), Ty);
1454     return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
1455   }
1456 
1457   return BaseCost;
1458 }
1459 
1460 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1461                                             MaybeAlign Alignment,
1462                                             unsigned AddressSpace,
1463                                             TTI::TargetCostKind CostKind,
1464                                             const Instruction *I) {
1465   // TODO: Handle other cost kinds.
1466   if (CostKind != TTI::TCK_RecipThroughput)
1467     return 1;
1468 
1469   // Type legalization can't handle structs
1470   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1471     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1472                                   CostKind);
1473 
1474   if (ST->hasNEON() && Src->isVectorTy() &&
1475       (Alignment && *Alignment != Align(16)) &&
1476       cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
1477     // Unaligned loads/stores are extremely inefficient.
1478     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
1479     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1480     return LT.first * 4;
1481   }
1482 
1483   // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
1484   // Same for stores.
1485   if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
1486       ((Opcode == Instruction::Load && I->hasOneUse() &&
1487         isa<FPExtInst>(*I->user_begin())) ||
1488        (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
1489     FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
1490     Type *DstTy =
1491         Opcode == Instruction::Load
1492             ? (*I->user_begin())->getType()
1493             : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
1494     if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
1495         DstTy->getScalarType()->isFloatTy())
1496       return ST->getMVEVectorCostFactor(CostKind);
1497   }
1498 
1499   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
1500                      ? ST->getMVEVectorCostFactor(CostKind)
1501                      : 1;
1502   return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1503                                            CostKind, I);
1504 }
1505 
1506 InstructionCost
1507 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1508                                   unsigned AddressSpace,
1509                                   TTI::TargetCostKind CostKind) {
1510   if (ST->hasMVEIntegerOps()) {
1511     if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
1512       return ST->getMVEVectorCostFactor(CostKind);
1513     if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
1514       return ST->getMVEVectorCostFactor(CostKind);
1515   }
1516   if (!isa<FixedVectorType>(Src))
1517     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1518                                         CostKind);
1519   // Scalar cost, which is currently very high due to the efficiency of the
1520   // generated code.
1521   return cast<FixedVectorType>(Src)->getNumElements() * 8;
1522 }
1523 
1524 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost(
1525     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1526     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1527     bool UseMaskForCond, bool UseMaskForGaps) {
1528   assert(Factor >= 2 && "Invalid interleave factor");
1529   assert(isa<VectorType>(VecTy) && "Expect a vector type");
1530 
1531   // vldN/vstN doesn't support vector types of i64/f64 element.
1532   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
1533 
1534   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
1535       !UseMaskForCond && !UseMaskForGaps) {
1536     unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1537     auto *SubVecTy =
1538         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1539 
1540     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
1541     // Accesses having vector types that are a multiple of 128 bits can be
1542     // matched to more than one vldN/vstN instruction.
1543     int BaseCost =
1544         ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1545     if (NumElts % Factor == 0 &&
1546         TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
1547       return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
1548 
1549     // Some smaller than legal interleaved patterns are cheap as we can make
1550     // use of the vmovn or vrev patterns to interleave a standard load. This is
1551     // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
1552     // promoted differently). The cost of 2 here is then a load and vrev or
1553     // vmovn.
1554     if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
1555         VecTy->isIntOrIntVectorTy() &&
1556         DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64)
1557       return 2 * BaseCost;
1558   }
1559 
1560   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1561                                            Alignment, AddressSpace, CostKind,
1562                                            UseMaskForCond, UseMaskForGaps);
1563 }
1564 
1565 InstructionCost ARMTTIImpl::getGatherScatterOpCost(
1566     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1567     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1568   using namespace PatternMatch;
1569   if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
1570     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1571                                          Alignment, CostKind, I);
1572 
1573   assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
1574   auto *VTy = cast<FixedVectorType>(DataTy);
1575 
1576   // TODO: Splitting, once we do that.
1577 
1578   unsigned NumElems = VTy->getNumElements();
1579   unsigned EltSize = VTy->getScalarSizeInBits();
1580   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy);
1581 
1582   // For now, it is assumed that for the MVE gather instructions the loads are
1583   // all effectively serialised. This means the cost is the scalar cost
1584   // multiplied by the number of elements being loaded. This is possibly very
1585   // conservative, but even so we still end up vectorising loops because the
1586   // cost per iteration for many loops is lower than for scalar loops.
1587   InstructionCost VectorCost =
1588       NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
1589   // The scalarization cost should be a lot higher. We use the number of vector
1590   // elements plus the scalarization overhead.
1591   InstructionCost ScalarCost =
1592       NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) +
1593       BaseT::getScalarizationOverhead(VTy, false, true);
1594 
1595   if (EltSize < 8 || Alignment < EltSize / 8)
1596     return ScalarCost;
1597 
1598   unsigned ExtSize = EltSize;
1599   // Check whether there's a single user that asks for an extended type
1600   if (I != nullptr) {
1601     // Dependent of the caller of this function, a gather instruction will
1602     // either have opcode Instruction::Load or be a call to the masked_gather
1603     // intrinsic
1604     if ((I->getOpcode() == Instruction::Load ||
1605          match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
1606         I->hasOneUse()) {
1607       const User *Us = *I->users().begin();
1608       if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
1609         // only allow valid type combinations
1610         unsigned TypeSize =
1611             cast<Instruction>(Us)->getType()->getScalarSizeInBits();
1612         if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
1613              (TypeSize == 16 && EltSize == 8)) &&
1614             TypeSize * NumElems == 128) {
1615           ExtSize = TypeSize;
1616         }
1617       }
1618     }
1619     // Check whether the input data needs to be truncated
1620     TruncInst *T;
1621     if ((I->getOpcode() == Instruction::Store ||
1622          match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
1623         (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
1624       // Only allow valid type combinations
1625       unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
1626       if (((EltSize == 16 && TypeSize == 32) ||
1627            (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
1628           TypeSize * NumElems == 128)
1629         ExtSize = TypeSize;
1630     }
1631   }
1632 
1633   if (ExtSize * NumElems != 128 || NumElems < 4)
1634     return ScalarCost;
1635 
1636   // Any (aligned) i32 gather will not need to be scalarised.
1637   if (ExtSize == 32)
1638     return VectorCost;
1639   // For smaller types, we need to ensure that the gep's inputs are correctly
1640   // extended from a small enough value. Other sizes (including i64) are
1641   // scalarized for now.
1642   if (ExtSize != 8 && ExtSize != 16)
1643     return ScalarCost;
1644 
1645   if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
1646     Ptr = BC->getOperand(0);
1647   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1648     if (GEP->getNumOperands() != 2)
1649       return ScalarCost;
1650     unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
1651     // Scale needs to be correct (which is only relevant for i16s).
1652     if (Scale != 1 && Scale * 8 != ExtSize)
1653       return ScalarCost;
1654     // And we need to zext (not sext) the indexes from a small enough type.
1655     if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
1656       if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
1657         return VectorCost;
1658     }
1659     return ScalarCost;
1660   }
1661   return ScalarCost;
1662 }
1663 
1664 InstructionCost
1665 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
1666                                        Optional<FastMathFlags> FMF,
1667                                        TTI::TargetCostKind CostKind) {
1668   if (TTI::requiresOrderedReduction(FMF))
1669     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1670 
1671   EVT ValVT = TLI->getValueType(DL, ValTy);
1672   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1673   if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD)
1674     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1675 
1676   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1677 
1678   static const CostTblEntry CostTblAdd[]{
1679       {ISD::ADD, MVT::v16i8, 1},
1680       {ISD::ADD, MVT::v8i16, 1},
1681       {ISD::ADD, MVT::v4i32, 1},
1682   };
1683   if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
1684     return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1685 
1686   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1687 }
1688 
1689 InstructionCost
1690 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
1691                                         Type *ResTy, VectorType *ValTy,
1692                                         TTI::TargetCostKind CostKind) {
1693   EVT ValVT = TLI->getValueType(DL, ValTy);
1694   EVT ResVT = TLI->getValueType(DL, ResTy);
1695 
1696   if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1697     std::pair<InstructionCost, MVT> LT =
1698         TLI->getTypeLegalizationCost(DL, ValTy);
1699 
1700     // The legal cases are:
1701     //   VADDV u/s 8/16/32
1702     //   VMLAV u/s 8/16/32
1703     //   VADDLV u/s 32
1704     //   VMLALV u/s 16/32
1705     // Codegen currently cannot always handle larger than legal vectors very
1706     // well, especially for predicated reductions where the mask needs to be
1707     // split, so restrict to 128bit or smaller input types.
1708     unsigned RevVTSize = ResVT.getSizeInBits();
1709     if (ValVT.getSizeInBits() <= 128 &&
1710         ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1711          (LT.second == MVT::v8i16 && RevVTSize <= (IsMLA ? 64u : 32u)) ||
1712          (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1713       return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1714   }
1715 
1716   return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy,
1717                                             CostKind);
1718 }
1719 
1720 InstructionCost
1721 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1722                                   TTI::TargetCostKind CostKind) {
1723   switch (ICA.getID()) {
1724   case Intrinsic::get_active_lane_mask:
1725     // Currently we make a somewhat optimistic assumption that
1726     // active_lane_mask's are always free. In reality it may be freely folded
1727     // into a tail predicated loop, expanded into a VCPT or expanded into a lot
1728     // of add/icmp code. We may need to improve this in the future, but being
1729     // able to detect if it is free or not involves looking at a lot of other
1730     // code. We currently assume that the vectorizer inserted these, and knew
1731     // what it was doing in adding one.
1732     if (ST->hasMVEIntegerOps())
1733       return 0;
1734     break;
1735   case Intrinsic::sadd_sat:
1736   case Intrinsic::ssub_sat:
1737   case Intrinsic::uadd_sat:
1738   case Intrinsic::usub_sat: {
1739     if (!ST->hasMVEIntegerOps())
1740       break;
1741     Type *VT = ICA.getReturnType();
1742 
1743     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1744     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1745         LT.second == MVT::v16i8) {
1746       // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
1747       // need to extend the type, as it uses shr(qadd(shl, shl)).
1748       unsigned Instrs =
1749           LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
1750       return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
1751     }
1752     break;
1753   }
1754   case Intrinsic::abs:
1755   case Intrinsic::smin:
1756   case Intrinsic::smax:
1757   case Intrinsic::umin:
1758   case Intrinsic::umax: {
1759     if (!ST->hasMVEIntegerOps())
1760       break;
1761     Type *VT = ICA.getReturnType();
1762 
1763     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1764     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1765         LT.second == MVT::v16i8)
1766       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1767     break;
1768   }
1769   case Intrinsic::minnum:
1770   case Intrinsic::maxnum: {
1771     if (!ST->hasMVEFloatOps())
1772       break;
1773     Type *VT = ICA.getReturnType();
1774     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT);
1775     if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
1776       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1777     break;
1778   }
1779   }
1780 
1781   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1782 }
1783 
1784 bool ARMTTIImpl::isLoweredToCall(const Function *F) {
1785   if (!F->isIntrinsic())
1786     BaseT::isLoweredToCall(F);
1787 
1788   // Assume all Arm-specific intrinsics map to an instruction.
1789   if (F->getName().startswith("llvm.arm"))
1790     return false;
1791 
1792   switch (F->getIntrinsicID()) {
1793   default: break;
1794   case Intrinsic::powi:
1795   case Intrinsic::sin:
1796   case Intrinsic::cos:
1797   case Intrinsic::pow:
1798   case Intrinsic::log:
1799   case Intrinsic::log10:
1800   case Intrinsic::log2:
1801   case Intrinsic::exp:
1802   case Intrinsic::exp2:
1803     return true;
1804   case Intrinsic::sqrt:
1805   case Intrinsic::fabs:
1806   case Intrinsic::copysign:
1807   case Intrinsic::floor:
1808   case Intrinsic::ceil:
1809   case Intrinsic::trunc:
1810   case Intrinsic::rint:
1811   case Intrinsic::nearbyint:
1812   case Intrinsic::round:
1813   case Intrinsic::canonicalize:
1814   case Intrinsic::lround:
1815   case Intrinsic::llround:
1816   case Intrinsic::lrint:
1817   case Intrinsic::llrint:
1818     if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
1819       return true;
1820     if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
1821       return true;
1822     // Some operations can be handled by vector instructions and assume
1823     // unsupported vectors will be expanded into supported scalar ones.
1824     // TODO Handle scalar operations properly.
1825     return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
1826   case Intrinsic::masked_store:
1827   case Intrinsic::masked_load:
1828   case Intrinsic::masked_gather:
1829   case Intrinsic::masked_scatter:
1830     return !ST->hasMVEIntegerOps();
1831   case Intrinsic::sadd_with_overflow:
1832   case Intrinsic::uadd_with_overflow:
1833   case Intrinsic::ssub_with_overflow:
1834   case Intrinsic::usub_with_overflow:
1835   case Intrinsic::sadd_sat:
1836   case Intrinsic::uadd_sat:
1837   case Intrinsic::ssub_sat:
1838   case Intrinsic::usub_sat:
1839     return false;
1840   }
1841 
1842   return BaseT::isLoweredToCall(F);
1843 }
1844 
1845 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
1846   unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
1847   EVT VT = TLI->getValueType(DL, I.getType(), true);
1848   if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
1849     return true;
1850 
1851   // Check if an intrinsic will be lowered to a call and assume that any
1852   // other CallInst will generate a bl.
1853   if (auto *Call = dyn_cast<CallInst>(&I)) {
1854     if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
1855       switch(II->getIntrinsicID()) {
1856         case Intrinsic::memcpy:
1857         case Intrinsic::memset:
1858         case Intrinsic::memmove:
1859           return getNumMemOps(II) == -1;
1860         default:
1861           if (const Function *F = Call->getCalledFunction())
1862             return isLoweredToCall(F);
1863       }
1864     }
1865     return true;
1866   }
1867 
1868   // FPv5 provides conversions between integer, double-precision,
1869   // single-precision, and half-precision formats.
1870   switch (I.getOpcode()) {
1871   default:
1872     break;
1873   case Instruction::FPToSI:
1874   case Instruction::FPToUI:
1875   case Instruction::SIToFP:
1876   case Instruction::UIToFP:
1877   case Instruction::FPTrunc:
1878   case Instruction::FPExt:
1879     return !ST->hasFPARMv8Base();
1880   }
1881 
1882   // FIXME: Unfortunately the approach of checking the Operation Action does
1883   // not catch all cases of Legalization that use library calls. Our
1884   // Legalization step categorizes some transformations into library calls as
1885   // Custom, Expand or even Legal when doing type legalization. So for now
1886   // we have to special case for instance the SDIV of 64bit integers and the
1887   // use of floating point emulation.
1888   if (VT.isInteger() && VT.getSizeInBits() >= 64) {
1889     switch (ISD) {
1890     default:
1891       break;
1892     case ISD::SDIV:
1893     case ISD::UDIV:
1894     case ISD::SREM:
1895     case ISD::UREM:
1896     case ISD::SDIVREM:
1897     case ISD::UDIVREM:
1898       return true;
1899     }
1900   }
1901 
1902   // Assume all other non-float operations are supported.
1903   if (!VT.isFloatingPoint())
1904     return false;
1905 
1906   // We'll need a library call to handle most floats when using soft.
1907   if (TLI->useSoftFloat()) {
1908     switch (I.getOpcode()) {
1909     default:
1910       return true;
1911     case Instruction::Alloca:
1912     case Instruction::Load:
1913     case Instruction::Store:
1914     case Instruction::Select:
1915     case Instruction::PHI:
1916       return false;
1917     }
1918   }
1919 
1920   // We'll need a libcall to perform double precision operations on a single
1921   // precision only FPU.
1922   if (I.getType()->isDoubleTy() && !ST->hasFP64())
1923     return true;
1924 
1925   // Likewise for half precision arithmetic.
1926   if (I.getType()->isHalfTy() && !ST->hasFullFP16())
1927     return true;
1928 
1929   return false;
1930 }
1931 
1932 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1933                                           AssumptionCache &AC,
1934                                           TargetLibraryInfo *LibInfo,
1935                                           HardwareLoopInfo &HWLoopInfo) {
1936   // Low-overhead branches are only supported in the 'low-overhead branch'
1937   // extension of v8.1-m.
1938   if (!ST->hasLOB() || DisableLowOverheadLoops) {
1939     LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
1940     return false;
1941   }
1942 
1943   if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
1944     LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
1945     return false;
1946   }
1947 
1948   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1949   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1950     LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
1951     return false;
1952   }
1953 
1954   const SCEV *TripCountSCEV =
1955     SE.getAddExpr(BackedgeTakenCount,
1956                   SE.getOne(BackedgeTakenCount->getType()));
1957 
1958   // We need to store the trip count in LR, a 32-bit register.
1959   if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
1960     LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
1961     return false;
1962   }
1963 
1964   // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
1965   // point in generating a hardware loop if that's going to happen.
1966 
1967   auto IsHardwareLoopIntrinsic = [](Instruction &I) {
1968     if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
1969       switch (Call->getIntrinsicID()) {
1970       default:
1971         break;
1972       case Intrinsic::start_loop_iterations:
1973       case Intrinsic::test_start_loop_iterations:
1974       case Intrinsic::loop_decrement:
1975       case Intrinsic::loop_decrement_reg:
1976         return true;
1977       }
1978     }
1979     return false;
1980   };
1981 
1982   // Scan the instructions to see if there's any that we know will turn into a
1983   // call or if this loop is already a low-overhead loop or will become a tail
1984   // predicated loop.
1985   bool IsTailPredLoop = false;
1986   auto ScanLoop = [&](Loop *L) {
1987     for (auto *BB : L->getBlocks()) {
1988       for (auto &I : *BB) {
1989         if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
1990             isa<InlineAsm>(I)) {
1991           LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
1992           return false;
1993         }
1994         if (auto *II = dyn_cast<IntrinsicInst>(&I))
1995           IsTailPredLoop |=
1996               II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
1997               II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
1998               II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
1999               II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
2000               II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
2001       }
2002     }
2003     return true;
2004   };
2005 
2006   // Visit inner loops.
2007   for (auto Inner : *L)
2008     if (!ScanLoop(Inner))
2009       return false;
2010 
2011   if (!ScanLoop(L))
2012     return false;
2013 
2014   // TODO: Check whether the trip count calculation is expensive. If L is the
2015   // inner loop but we know it has a low trip count, calculating that trip
2016   // count (in the parent loop) may be detrimental.
2017 
2018   LLVMContext &C = L->getHeader()->getContext();
2019   HWLoopInfo.CounterInReg = true;
2020   HWLoopInfo.IsNestingLegal = false;
2021   HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
2022   HWLoopInfo.CountType = Type::getInt32Ty(C);
2023   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
2024   return true;
2025 }
2026 
2027 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
2028   // We don't allow icmp's, and because we only look at single block loops,
2029   // we simply count the icmps, i.e. there should only be 1 for the backedge.
2030   if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
2031     return false;
2032   // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are
2033   // not currently canonical, but soon will be. Code without them uses icmp, and
2034   // so is not tail predicated as per the condition above. In order to get the
2035   // same performance we treat min and max the same as an icmp for tailpred
2036   // purposes for the moment (we often rely on non-tailpred and higher VF's to
2037   // pick more optimial instructions like VQDMULH. They need to be recognized
2038   // directly by the vectorizer).
2039   if (auto *II = dyn_cast<IntrinsicInst>(&I))
2040     if ((II->getIntrinsicID() == Intrinsic::smin ||
2041          II->getIntrinsicID() == Intrinsic::smax ||
2042          II->getIntrinsicID() == Intrinsic::umin ||
2043          II->getIntrinsicID() == Intrinsic::umax) &&
2044         ++ICmpCount > 1)
2045       return false;
2046 
2047   if (isa<FCmpInst>(&I))
2048     return false;
2049 
2050   // We could allow extending/narrowing FP loads/stores, but codegen is
2051   // too inefficient so reject this for now.
2052   if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
2053     return false;
2054 
2055   // Extends have to be extending-loads
2056   if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
2057     if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
2058       return false;
2059 
2060   // Truncs have to be narrowing-stores
2061   if (isa<TruncInst>(&I) )
2062     if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
2063       return false;
2064 
2065   return true;
2066 }
2067 
2068 // To set up a tail-predicated loop, we need to know the total number of
2069 // elements processed by that loop. Thus, we need to determine the element
2070 // size and:
2071 // 1) it should be uniform for all operations in the vector loop, so we
2072 //    e.g. don't want any widening/narrowing operations.
2073 // 2) it should be smaller than i64s because we don't have vector operations
2074 //    that work on i64s.
2075 // 3) we don't want elements to be reversed or shuffled, to make sure the
2076 //    tail-predication masks/predicates the right lanes.
2077 //
2078 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
2079                                  const DataLayout &DL,
2080                                  const LoopAccessInfo *LAI) {
2081   LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
2082 
2083   // If there are live-out values, it is probably a reduction. We can predicate
2084   // most reduction operations freely under MVE using a combination of
2085   // prefer-predicated-reduction-select and inloop reductions. We limit this to
2086   // floating point and integer reductions, but don't check for operators
2087   // specifically here. If the value ends up not being a reduction (and so the
2088   // vectorizer cannot tailfold the loop), we should fall back to standard
2089   // vectorization automatically.
2090   SmallVector< Instruction *, 8 > LiveOuts;
2091   LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
2092   bool ReductionsDisabled =
2093       EnableTailPredication == TailPredication::EnabledNoReductions ||
2094       EnableTailPredication == TailPredication::ForceEnabledNoReductions;
2095 
2096   for (auto *I : LiveOuts) {
2097     if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
2098         !I->getType()->isHalfTy()) {
2099       LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
2100                            "live-out value\n");
2101       return false;
2102     }
2103     if (ReductionsDisabled) {
2104       LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
2105       return false;
2106     }
2107   }
2108 
2109   // Next, check that all instructions can be tail-predicated.
2110   PredicatedScalarEvolution PSE = LAI->getPSE();
2111   SmallVector<Instruction *, 16> LoadStores;
2112   int ICmpCount = 0;
2113 
2114   for (BasicBlock *BB : L->blocks()) {
2115     for (Instruction &I : BB->instructionsWithoutDebug()) {
2116       if (isa<PHINode>(&I))
2117         continue;
2118       if (!canTailPredicateInstruction(I, ICmpCount)) {
2119         LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
2120         return false;
2121       }
2122 
2123       Type *T  = I.getType();
2124       if (T->isPointerTy())
2125         T = T->getPointerElementType();
2126 
2127       if (T->getScalarSizeInBits() > 32) {
2128         LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
2129         return false;
2130       }
2131       if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
2132         Value *Ptr = getLoadStorePointerOperand(&I);
2133         Type *AccessTy = getLoadStoreType(&I);
2134         int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L);
2135         if (NextStride == 1) {
2136           // TODO: for now only allow consecutive strides of 1. We could support
2137           // other strides as long as it is uniform, but let's keep it simple
2138           // for now.
2139           continue;
2140         } else if (NextStride == -1 ||
2141                    (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
2142                    (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
2143           LLVM_DEBUG(dbgs()
2144                      << "Consecutive strides of 2 found, vld2/vstr2 can't "
2145                         "be tail-predicated\n.");
2146           return false;
2147           // TODO: don't tail predicate if there is a reversed load?
2148         } else if (EnableMaskedGatherScatters) {
2149           // Gather/scatters do allow loading from arbitrary strides, at
2150           // least if they are loop invariant.
2151           // TODO: Loop variant strides should in theory work, too, but
2152           // this requires further testing.
2153           const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr);
2154           if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
2155             const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
2156             if (PSE.getSE()->isLoopInvariant(Step, L))
2157               continue;
2158           }
2159         }
2160         LLVM_DEBUG(dbgs() << "Bad stride found, can't "
2161                              "tail-predicate\n.");
2162         return false;
2163       }
2164     }
2165   }
2166 
2167   LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
2168   return true;
2169 }
2170 
2171 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
2172                                              ScalarEvolution &SE,
2173                                              AssumptionCache &AC,
2174                                              TargetLibraryInfo *TLI,
2175                                              DominatorTree *DT,
2176                                              const LoopAccessInfo *LAI) {
2177   if (!EnableTailPredication) {
2178     LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
2179     return false;
2180   }
2181 
2182   // Creating a predicated vector loop is the first step for generating a
2183   // tail-predicated hardware loop, for which we need the MVE masked
2184   // load/stores instructions:
2185   if (!ST->hasMVEIntegerOps())
2186     return false;
2187 
2188   // For now, restrict this to single block loops.
2189   if (L->getNumBlocks() > 1) {
2190     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
2191                          "loop.\n");
2192     return false;
2193   }
2194 
2195   assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
2196 
2197   HardwareLoopInfo HWLoopInfo(L);
2198   if (!HWLoopInfo.canAnalyze(*LI)) {
2199     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2200                          "analyzable.\n");
2201     return false;
2202   }
2203 
2204   // This checks if we have the low-overhead branch architecture
2205   // extension, and if we will create a hardware-loop:
2206   if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
2207     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2208                          "profitable.\n");
2209     return false;
2210   }
2211 
2212   if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
2213     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2214                          "a candidate.\n");
2215     return false;
2216   }
2217 
2218   return canTailPredicateLoop(L, LI, SE, DL, LAI);
2219 }
2220 
2221 bool ARMTTIImpl::emitGetActiveLaneMask() const {
2222   if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
2223     return false;
2224 
2225   // Intrinsic @llvm.get.active.lane.mask is supported.
2226   // It is used in the MVETailPredication pass, which requires the number of
2227   // elements processed by this vector loop to setup the tail-predicated
2228   // loop.
2229   return true;
2230 }
2231 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2232                                          TTI::UnrollingPreferences &UP,
2233                                          OptimizationRemarkEmitter *ORE) {
2234   // Enable Upper bound unrolling universally, not dependant upon the conditions
2235   // below.
2236   UP.UpperBound = true;
2237 
2238   // Only currently enable these preferences for M-Class cores.
2239   if (!ST->isMClass())
2240     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
2241 
2242   // Disable loop unrolling for Oz and Os.
2243   UP.OptSizeThreshold = 0;
2244   UP.PartialOptSizeThreshold = 0;
2245   if (L->getHeader()->getParent()->hasOptSize())
2246     return;
2247 
2248   SmallVector<BasicBlock*, 4> ExitingBlocks;
2249   L->getExitingBlocks(ExitingBlocks);
2250   LLVM_DEBUG(dbgs() << "Loop has:\n"
2251                     << "Blocks: " << L->getNumBlocks() << "\n"
2252                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
2253 
2254   // Only allow another exit other than the latch. This acts as an early exit
2255   // as it mirrors the profitability calculation of the runtime unroller.
2256   if (ExitingBlocks.size() > 2)
2257     return;
2258 
2259   // Limit the CFG of the loop body for targets with a branch predictor.
2260   // Allowing 4 blocks permits if-then-else diamonds in the body.
2261   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
2262     return;
2263 
2264   // Don't unroll vectorized loops, including the remainder loop
2265   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
2266     return;
2267 
2268   // Scan the loop: don't unroll loops with calls as this could prevent
2269   // inlining.
2270   InstructionCost Cost = 0;
2271   for (auto *BB : L->getBlocks()) {
2272     for (auto &I : *BB) {
2273       // Don't unroll vectorised loop. MVE does not benefit from it as much as
2274       // scalar code.
2275       if (I.getType()->isVectorTy())
2276         return;
2277 
2278       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2279         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2280           if (!isLoweredToCall(F))
2281             continue;
2282         }
2283         return;
2284       }
2285 
2286       SmallVector<const Value*, 4> Operands(I.operand_values());
2287       Cost +=
2288         getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
2289     }
2290   }
2291 
2292   // On v6m cores, there are very few registers available. We can easily end up
2293   // spilling and reloading more registers in an unrolled loop. Look at the
2294   // number of LCSSA phis as a rough measure of how many registers will need to
2295   // be live out of the loop, reducing the default unroll count if more than 1
2296   // value is needed.  In the long run, all of this should be being learnt by a
2297   // machine.
2298   unsigned UnrollCount = 4;
2299   if (ST->isThumb1Only()) {
2300     unsigned ExitingValues = 0;
2301     SmallVector<BasicBlock *, 4> ExitBlocks;
2302     L->getExitBlocks(ExitBlocks);
2303     for (auto *Exit : ExitBlocks) {
2304       // Count the number of LCSSA phis. Exclude values coming from GEP's as
2305       // only the last is expected to be needed for address operands.
2306       unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
2307         return PH.getNumOperands() != 1 ||
2308                !isa<GetElementPtrInst>(PH.getOperand(0));
2309       });
2310       ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
2311     }
2312     if (ExitingValues)
2313       UnrollCount /= ExitingValues;
2314     if (UnrollCount <= 1)
2315       return;
2316   }
2317 
2318   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
2319   LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
2320 
2321   UP.Partial = true;
2322   UP.Runtime = true;
2323   UP.UnrollRemainder = true;
2324   UP.DefaultUnrollRuntimeCount = UnrollCount;
2325   UP.UnrollAndJam = true;
2326   UP.UnrollAndJamInnerLoopThreshold = 60;
2327 
2328   // Force unrolling small loops can be very useful because of the branch
2329   // taken cost of the backedge.
2330   if (Cost < 12)
2331     UP.Force = true;
2332 }
2333 
2334 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2335                                        TTI::PeelingPreferences &PP) {
2336   BaseT::getPeelingPreferences(L, SE, PP);
2337 }
2338 
2339 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
2340                                        TTI::ReductionFlags Flags) const {
2341   if (!ST->hasMVEIntegerOps())
2342     return false;
2343 
2344   unsigned ScalarBits = Ty->getScalarSizeInBits();
2345   switch (Opcode) {
2346   case Instruction::Add:
2347     return ScalarBits <= 64;
2348   default:
2349     return false;
2350   }
2351 }
2352 
2353 bool ARMTTIImpl::preferPredicatedReductionSelect(
2354     unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
2355   if (!ST->hasMVEIntegerOps())
2356     return false;
2357   return true;
2358 }
2359