1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/IntrinsicsARM.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/MC/SubtargetFeature.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MachineValueType.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Transforms/InstCombine/InstCombiner.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 #include <utility> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "armtti" 44 45 static cl::opt<bool> EnableMaskedLoadStores( 46 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 47 cl::desc("Enable the generation of masked loads and stores")); 48 49 static cl::opt<bool> DisableLowOverheadLoops( 50 "disable-arm-loloops", cl::Hidden, cl::init(false), 51 cl::desc("Disable the generation of low-overhead loops")); 52 53 static cl::opt<bool> 54 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true), 55 cl::desc("Enable the generation of WLS loops")); 56 57 extern cl::opt<TailPredication::Mode> EnableTailPredication; 58 59 extern cl::opt<bool> EnableMaskedGatherScatters; 60 61 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; 62 63 /// Convert a vector load intrinsic into a simple llvm load instruction. 64 /// This is beneficial when the underlying object being addressed comes 65 /// from a constant, since we get constant-folding for free. 66 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, 67 InstCombiner::BuilderTy &Builder) { 68 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); 69 70 if (!IntrAlign) 71 return nullptr; 72 73 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign 74 ? MemAlign 75 : IntrAlign->getLimitedValue(); 76 77 if (!isPowerOf2_32(Alignment)) 78 return nullptr; 79 80 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), 81 PointerType::get(II.getType(), 0)); 82 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment)); 83 } 84 85 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 86 const Function *Callee) const { 87 const TargetMachine &TM = getTLI()->getTargetMachine(); 88 const FeatureBitset &CallerBits = 89 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 90 const FeatureBitset &CalleeBits = 91 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 92 93 // To inline a callee, all features not in the allowed list must match exactly. 94 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == 95 (CalleeBits & ~InlineFeaturesAllowed); 96 // For features in the allowed list, the callee's features must be a subset of 97 // the callers'. 98 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == 99 (CalleeBits & InlineFeaturesAllowed); 100 return MatchExact && MatchSubset; 101 } 102 103 TTI::AddressingModeKind 104 ARMTTIImpl::getPreferredAddressingMode(const Loop *L, 105 ScalarEvolution *SE) const { 106 if (ST->hasMVEIntegerOps()) 107 return TTI::AMK_PostIndexed; 108 109 if (L->getHeader()->getParent()->hasOptSize()) 110 return TTI::AMK_None; 111 112 if (ST->isMClass() && ST->isThumb2() && 113 L->getNumBlocks() == 1) 114 return TTI::AMK_PreIndexed; 115 116 return TTI::AMK_None; 117 } 118 119 Optional<Instruction *> 120 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 121 using namespace PatternMatch; 122 Intrinsic::ID IID = II.getIntrinsicID(); 123 switch (IID) { 124 default: 125 break; 126 case Intrinsic::arm_neon_vld1: { 127 Align MemAlign = 128 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 129 &IC.getAssumptionCache(), &IC.getDominatorTree()); 130 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) { 131 return IC.replaceInstUsesWith(II, V); 132 } 133 break; 134 } 135 136 case Intrinsic::arm_neon_vld2: 137 case Intrinsic::arm_neon_vld3: 138 case Intrinsic::arm_neon_vld4: 139 case Intrinsic::arm_neon_vld2lane: 140 case Intrinsic::arm_neon_vld3lane: 141 case Intrinsic::arm_neon_vld4lane: 142 case Intrinsic::arm_neon_vst1: 143 case Intrinsic::arm_neon_vst2: 144 case Intrinsic::arm_neon_vst3: 145 case Intrinsic::arm_neon_vst4: 146 case Intrinsic::arm_neon_vst2lane: 147 case Intrinsic::arm_neon_vst3lane: 148 case Intrinsic::arm_neon_vst4lane: { 149 Align MemAlign = 150 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 151 &IC.getAssumptionCache(), &IC.getDominatorTree()); 152 unsigned AlignArg = II.arg_size() - 1; 153 Value *AlignArgOp = II.getArgOperand(AlignArg); 154 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue(); 155 if (Align && *Align < MemAlign) { 156 return IC.replaceOperand( 157 II, AlignArg, 158 ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(), 159 false)); 160 } 161 break; 162 } 163 164 case Intrinsic::arm_mve_pred_i2v: { 165 Value *Arg = II.getArgOperand(0); 166 Value *ArgArg; 167 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 168 PatternMatch::m_Value(ArgArg))) && 169 II.getType() == ArgArg->getType()) { 170 return IC.replaceInstUsesWith(II, ArgArg); 171 } 172 Constant *XorMask; 173 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 174 PatternMatch::m_Value(ArgArg)), 175 PatternMatch::m_Constant(XorMask))) && 176 II.getType() == ArgArg->getType()) { 177 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) { 178 if (CI->getValue().trunc(16).isAllOnesValue()) { 179 auto TrueVector = IC.Builder.CreateVectorSplat( 180 cast<FixedVectorType>(II.getType())->getNumElements(), 181 IC.Builder.getTrue()); 182 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector); 183 } 184 } 185 } 186 KnownBits ScalarKnown(32); 187 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16), 188 ScalarKnown, 0)) { 189 return &II; 190 } 191 break; 192 } 193 case Intrinsic::arm_mve_pred_v2i: { 194 Value *Arg = II.getArgOperand(0); 195 Value *ArgArg; 196 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( 197 PatternMatch::m_Value(ArgArg)))) { 198 return IC.replaceInstUsesWith(II, ArgArg); 199 } 200 if (!II.getMetadata(LLVMContext::MD_range)) { 201 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 202 Metadata *M[] = { 203 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)), 204 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))}; 205 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M)); 206 return &II; 207 } 208 break; 209 } 210 case Intrinsic::arm_mve_vadc: 211 case Intrinsic::arm_mve_vadc_predicated: { 212 unsigned CarryOp = 213 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; 214 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && 215 "Bad type for intrinsic!"); 216 217 KnownBits CarryKnown(32); 218 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29), 219 CarryKnown)) { 220 return &II; 221 } 222 break; 223 } 224 case Intrinsic::arm_mve_vmldava: { 225 Instruction *I = cast<Instruction>(&II); 226 if (I->hasOneUse()) { 227 auto *User = cast<Instruction>(*I->user_begin()); 228 Value *OpZ; 229 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) && 230 match(I->getOperand(3), m_Zero())) { 231 Value *OpX = I->getOperand(4); 232 Value *OpY = I->getOperand(5); 233 Type *OpTy = OpX->getType(); 234 235 IC.Builder.SetInsertPoint(User); 236 Value *V = 237 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy}, 238 {I->getOperand(0), I->getOperand(1), 239 I->getOperand(2), OpZ, OpX, OpY}); 240 241 IC.replaceInstUsesWith(*User, V); 242 return IC.eraseInstFromFunction(*User); 243 } 244 } 245 return None; 246 } 247 } 248 return None; 249 } 250 251 Optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic( 252 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 253 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 254 std::function<void(Instruction *, unsigned, APInt, APInt &)> 255 SimplifyAndSetOp) const { 256 257 // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the 258 // opcode specifying a Top/Bottom instruction, which can change between 259 // instructions. 260 auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) { 261 unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements(); 262 unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue(); 263 264 // The only odd/even lanes of operand 0 will only be demanded depending 265 // on whether this is a top/bottom instruction. 266 APInt DemandedElts = 267 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) 268 : APInt::getHighBitsSet(2, 1)); 269 SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts); 270 // The other lanes will be defined from the inserted elements. 271 UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1) 272 : APInt::getHighBitsSet(2, 1)); 273 return None; 274 }; 275 276 switch (II.getIntrinsicID()) { 277 default: 278 break; 279 case Intrinsic::arm_mve_vcvt_narrow: 280 SimplifyNarrowInstrTopBottom(2); 281 break; 282 case Intrinsic::arm_mve_vqmovn: 283 SimplifyNarrowInstrTopBottom(4); 284 break; 285 case Intrinsic::arm_mve_vshrn: 286 SimplifyNarrowInstrTopBottom(7); 287 break; 288 } 289 290 return None; 291 } 292 293 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 294 TTI::TargetCostKind CostKind) { 295 assert(Ty->isIntegerTy()); 296 297 unsigned Bits = Ty->getPrimitiveSizeInBits(); 298 if (Bits == 0 || Imm.getActiveBits() >= 64) 299 return 4; 300 301 int64_t SImmVal = Imm.getSExtValue(); 302 uint64_t ZImmVal = Imm.getZExtValue(); 303 if (!ST->isThumb()) { 304 if ((SImmVal >= 0 && SImmVal < 65536) || 305 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 306 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 307 return 1; 308 return ST->hasV6T2Ops() ? 2 : 3; 309 } 310 if (ST->isThumb2()) { 311 if ((SImmVal >= 0 && SImmVal < 65536) || 312 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 313 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 314 return 1; 315 return ST->hasV6T2Ops() ? 2 : 3; 316 } 317 // Thumb1, any i8 imm cost 1. 318 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 319 return 1; 320 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 321 return 2; 322 // Load from constantpool. 323 return 3; 324 } 325 326 // Constants smaller than 256 fit in the immediate field of 327 // Thumb1 instructions so we return a zero cost and 1 otherwise. 328 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 329 const APInt &Imm, Type *Ty) { 330 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 331 return 0; 332 333 return 1; 334 } 335 336 // Checks whether Inst is part of a min(max()) or max(min()) pattern 337 // that will match to an SSAT instruction 338 static bool isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { 339 Value *LHS, *RHS; 340 ConstantInt *C; 341 SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor; 342 343 if (InstSPF == SPF_SMAX && 344 PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) && 345 C->getValue() == Imm && Imm.isNegative() && (-Imm).isPowerOf2()) { 346 347 auto isSSatMin = [&](Value *MinInst) { 348 if (isa<SelectInst>(MinInst)) { 349 Value *MinLHS, *MinRHS; 350 ConstantInt *MinC; 351 SelectPatternFlavor MinSPF = 352 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor; 353 if (MinSPF == SPF_SMIN && 354 PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) && 355 MinC->getValue() == ((-Imm) - 1)) 356 return true; 357 } 358 return false; 359 }; 360 361 if (isSSatMin(Inst->getOperand(1)) || 362 (Inst->hasNUses(2) && (isSSatMin(*Inst->user_begin()) || 363 isSSatMin(*(++Inst->user_begin()))))) 364 return true; 365 } 366 return false; 367 } 368 369 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 370 const APInt &Imm, Type *Ty, 371 TTI::TargetCostKind CostKind, 372 Instruction *Inst) { 373 // Division by a constant can be turned into multiplication, but only if we 374 // know it's constant. So it's not so much that the immediate is cheap (it's 375 // not), but that the alternative is worse. 376 // FIXME: this is probably unneeded with GlobalISel. 377 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 378 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 379 Idx == 1) 380 return 0; 381 382 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at 383 // splitting any large offsets. 384 if (Opcode == Instruction::GetElementPtr && Idx != 0) 385 return 0; 386 387 if (Opcode == Instruction::And) { 388 // UXTB/UXTH 389 if (Imm == 255 || Imm == 65535) 390 return 0; 391 // Conversion to BIC is free, and means we can use ~Imm instead. 392 return std::min(getIntImmCost(Imm, Ty, CostKind), 393 getIntImmCost(~Imm, Ty, CostKind)); 394 } 395 396 if (Opcode == Instruction::Add) 397 // Conversion to SUB is free, and means we can use -Imm instead. 398 return std::min(getIntImmCost(Imm, Ty, CostKind), 399 getIntImmCost(-Imm, Ty, CostKind)); 400 401 if (Opcode == Instruction::ICmp && Imm.isNegative() && 402 Ty->getIntegerBitWidth() == 32) { 403 int64_t NegImm = -Imm.getSExtValue(); 404 if (ST->isThumb2() && NegImm < 1<<12) 405 // icmp X, #-C -> cmn X, #C 406 return 0; 407 if (ST->isThumb() && NegImm < 1<<8) 408 // icmp X, #-C -> adds X, #C 409 return 0; 410 } 411 412 // xor a, -1 can always be folded to MVN 413 if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) 414 return 0; 415 416 // Ensures negative constant of min(max()) or max(min()) patterns that 417 // match to SSAT instructions don't get hoisted 418 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && 419 Ty->getIntegerBitWidth() <= 32) { 420 if (isSSATMinMaxPattern(Inst, Imm) || 421 (isa<ICmpInst>(Inst) && Inst->hasOneUse() && 422 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm))) 423 return 0; 424 } 425 426 return getIntImmCost(Imm, Ty, CostKind); 427 } 428 429 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, 430 TTI::TargetCostKind CostKind, 431 const Instruction *I) { 432 if (CostKind == TTI::TCK_RecipThroughput && 433 (ST->hasNEON() || ST->hasMVEIntegerOps())) { 434 // FIXME: The vectorizer is highly sensistive to the cost of these 435 // instructions, which suggests that it may be using the costs incorrectly. 436 // But, for now, just make them free to avoid performance regressions for 437 // vector targets. 438 return 0; 439 } 440 return BaseT::getCFInstrCost(Opcode, CostKind, I); 441 } 442 443 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 444 Type *Src, 445 TTI::CastContextHint CCH, 446 TTI::TargetCostKind CostKind, 447 const Instruction *I) { 448 int ISD = TLI->InstructionOpcodeToISD(Opcode); 449 assert(ISD && "Invalid opcode"); 450 451 // TODO: Allow non-throughput costs that aren't binary. 452 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 453 if (CostKind != TTI::TCK_RecipThroughput) 454 return Cost == 0 ? 0 : 1; 455 return Cost; 456 }; 457 auto IsLegalFPType = [this](EVT VT) { 458 EVT EltVT = VT.getScalarType(); 459 return (EltVT == MVT::f32 && ST->hasVFP2Base()) || 460 (EltVT == MVT::f64 && ST->hasFP64()) || 461 (EltVT == MVT::f16 && ST->hasFullFP16()); 462 }; 463 464 EVT SrcTy = TLI->getValueType(DL, Src); 465 EVT DstTy = TLI->getValueType(DL, Dst); 466 467 if (!SrcTy.isSimple() || !DstTy.isSimple()) 468 return AdjustCost( 469 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 470 471 // Extending masked load/Truncating masked stores is expensive because we 472 // currently don't split them. This means that we'll likely end up 473 // loading/storing each element individually (hence the high cost). 474 if ((ST->hasMVEIntegerOps() && 475 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || 476 Opcode == Instruction::SExt)) || 477 (ST->hasMVEFloatOps() && 478 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && 479 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) 480 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) 481 return 2 * DstTy.getVectorNumElements() * 482 ST->getMVEVectorCostFactor(CostKind); 483 484 // The extend of other kinds of load is free 485 if (CCH == TTI::CastContextHint::Normal || 486 CCH == TTI::CastContextHint::Masked) { 487 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 488 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 489 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 490 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 491 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 492 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 493 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 494 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 495 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 496 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 497 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 498 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 499 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 500 }; 501 if (const auto *Entry = ConvertCostTableLookup( 502 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 503 return AdjustCost(Entry->Cost); 504 505 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 506 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 507 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 508 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 509 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 510 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 511 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 512 // The following extend from a legal type to an illegal type, so need to 513 // split the load. This introduced an extra load operation, but the 514 // extend is still "free". 515 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 516 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 517 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 518 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 519 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 520 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 521 }; 522 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 523 if (const auto *Entry = 524 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 525 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 526 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 527 } 528 529 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { 530 // FPExtends are similar but also require the VCVT instructions. 531 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1}, 532 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3}, 533 }; 534 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 535 if (const auto *Entry = 536 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD, 537 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 538 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 539 } 540 541 // The truncate of a store is free. This is the mirror of extends above. 542 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { 543 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0}, 544 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0}, 545 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0}, 546 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1}, 547 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1}, 548 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3}, 549 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1}, 550 }; 551 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 552 if (const auto *Entry = 553 ConvertCostTableLookup(MVEStoreConversionTbl, ISD, 554 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 555 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 556 } 557 558 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { 559 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1}, 560 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3}, 561 }; 562 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 563 if (const auto *Entry = 564 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD, 565 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 566 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 567 } 568 } 569 570 // NEON vector operations that can extend their inputs. 571 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 572 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 573 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 574 // vaddl 575 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 576 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 577 // vsubl 578 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 579 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 580 // vmull 581 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 582 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 583 // vshll 584 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 585 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 586 }; 587 588 auto *User = cast<Instruction>(*I->user_begin()); 589 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 590 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 591 DstTy.getSimpleVT(), 592 SrcTy.getSimpleVT())) { 593 return AdjustCost(Entry->Cost); 594 } 595 } 596 597 // Single to/from double precision conversions. 598 if (Src->isVectorTy() && ST->hasNEON() && 599 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && 600 DstTy.getScalarType() == MVT::f32) || 601 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && 602 DstTy.getScalarType() == MVT::f64))) { 603 static const CostTblEntry NEONFltDblTbl[] = { 604 // Vector fptrunc/fpext conversions. 605 {ISD::FP_ROUND, MVT::v2f64, 2}, 606 {ISD::FP_EXTEND, MVT::v2f32, 2}, 607 {ISD::FP_EXTEND, MVT::v4f32, 4}}; 608 609 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 610 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 611 return AdjustCost(LT.first * Entry->Cost); 612 } 613 614 // Some arithmetic, load and store operations have specific instructions 615 // to cast up/down their types automatically at no extra cost. 616 // TODO: Get these tables to know at least what the related operations are. 617 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 618 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 619 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 620 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 621 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 622 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 623 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 624 625 // The number of vmovl instructions for the extension. 626 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 627 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 628 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 629 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 630 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 631 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 632 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 633 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 634 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 635 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 636 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 637 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 638 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 639 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 640 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 641 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 642 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 643 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 644 645 // Operations that we legalize using splitting. 646 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 647 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 648 649 // Vector float <-> i32 conversions. 650 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 651 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 652 653 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 654 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 655 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 656 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 657 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 658 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 659 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 660 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 661 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 662 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 663 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 664 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 665 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 666 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 667 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 668 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 669 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 670 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 671 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 672 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 673 674 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 675 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 676 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 677 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 678 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 679 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 680 681 // Vector double <-> i32 conversions. 682 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 683 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 684 685 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 686 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 687 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 688 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 689 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 690 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 691 692 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 693 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 694 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 695 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 696 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 697 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 698 }; 699 700 if (SrcTy.isVector() && ST->hasNEON()) { 701 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 702 DstTy.getSimpleVT(), 703 SrcTy.getSimpleVT())) 704 return AdjustCost(Entry->Cost); 705 } 706 707 // Scalar float to integer conversions. 708 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 709 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 710 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 711 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 712 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 713 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 714 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 715 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 716 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 717 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 718 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 719 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 720 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 721 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 722 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 723 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 724 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 725 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 726 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 727 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 728 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 729 }; 730 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 731 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 732 DstTy.getSimpleVT(), 733 SrcTy.getSimpleVT())) 734 return AdjustCost(Entry->Cost); 735 } 736 737 // Scalar integer to float conversions. 738 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 739 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 740 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 741 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 742 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 743 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 744 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 745 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 746 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 747 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 748 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 749 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 750 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 751 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 752 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 753 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 754 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 755 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 756 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 757 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 758 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 759 }; 760 761 if (SrcTy.isInteger() && ST->hasNEON()) { 762 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 763 ISD, DstTy.getSimpleVT(), 764 SrcTy.getSimpleVT())) 765 return AdjustCost(Entry->Cost); 766 } 767 768 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 769 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 770 // are linearised so take more. 771 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 772 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 773 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 774 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 775 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 776 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 777 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 778 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 779 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 780 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 781 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 782 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 783 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 784 }; 785 786 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 787 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 788 ISD, DstTy.getSimpleVT(), 789 SrcTy.getSimpleVT())) 790 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 791 } 792 793 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { 794 // As general rule, fp converts that were not matched above are scalarized 795 // and cost 1 vcvt for each lane, so long as the instruction is available. 796 // If not it will become a series of function calls. 797 const InstructionCost CallCost = 798 getCallInstrCost(nullptr, Dst, {Src}, CostKind); 799 int Lanes = 1; 800 if (SrcTy.isFixedLengthVector()) 801 Lanes = SrcTy.getVectorNumElements(); 802 803 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) 804 return Lanes; 805 else 806 return Lanes * CallCost; 807 } 808 809 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && 810 SrcTy.isFixedLengthVector()) { 811 // Treat a truncate with larger than legal source (128bits for MVE) as 812 // expensive, 2 instructions per lane. 813 if ((SrcTy.getScalarType() == MVT::i8 || 814 SrcTy.getScalarType() == MVT::i16 || 815 SrcTy.getScalarType() == MVT::i32) && 816 SrcTy.getSizeInBits() > 128 && 817 SrcTy.getSizeInBits() > DstTy.getSizeInBits()) 818 return SrcTy.getVectorNumElements() * 2; 819 } 820 821 // Scalar integer conversion costs. 822 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 823 // i16 -> i64 requires two dependent operations. 824 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 825 826 // Truncates on i64 are assumed to be free. 827 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 828 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 829 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 830 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 831 }; 832 833 if (SrcTy.isInteger()) { 834 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 835 DstTy.getSimpleVT(), 836 SrcTy.getSimpleVT())) 837 return AdjustCost(Entry->Cost); 838 } 839 840 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 841 ? ST->getMVEVectorCostFactor(CostKind) 842 : 1; 843 return AdjustCost( 844 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 845 } 846 847 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 848 unsigned Index) { 849 // Penalize inserting into an D-subregister. We end up with a three times 850 // lower estimated throughput on swift. 851 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 852 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 853 return 3; 854 855 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 856 Opcode == Instruction::ExtractElement)) { 857 // Cross-class copies are expensive on many microarchitectures, 858 // so assume they are expensive by default. 859 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 860 return 3; 861 862 // Even if it's not a cross class copy, this likely leads to mixing 863 // of NEON and VFP code and should be therefore penalized. 864 if (ValTy->isVectorTy() && 865 ValTy->getScalarSizeInBits() <= 32) 866 return std::max<InstructionCost>( 867 BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 868 } 869 870 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 871 Opcode == Instruction::ExtractElement)) { 872 // Integer cross-lane moves are more expensive than float, which can 873 // sometimes just be vmovs. Integer involve being passes to GPR registers, 874 // causing more of a delay. 875 std::pair<InstructionCost, MVT> LT = 876 getTLI()->getTypeLegalizationCost(DL, ValTy->getScalarType()); 877 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); 878 } 879 880 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 881 } 882 883 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 884 Type *CondTy, 885 CmpInst::Predicate VecPred, 886 TTI::TargetCostKind CostKind, 887 const Instruction *I) { 888 int ISD = TLI->InstructionOpcodeToISD(Opcode); 889 890 // Thumb scalar code size cost for select. 891 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && 892 ST->isThumb() && !ValTy->isVectorTy()) { 893 // Assume expensive structs. 894 if (TLI->getValueType(DL, ValTy, true) == MVT::Other) 895 return TTI::TCC_Expensive; 896 897 // Select costs can vary because they: 898 // - may require one or more conditional mov (including an IT), 899 // - can't operate directly on immediates, 900 // - require live flags, which we can't copy around easily. 901 InstructionCost Cost = TLI->getTypeLegalizationCost(DL, ValTy).first; 902 903 // Possible IT instruction for Thumb2, or more for Thumb1. 904 ++Cost; 905 906 // i1 values may need rematerialising by using mov immediates and/or 907 // flag setting instructions. 908 if (ValTy->isIntegerTy(1)) 909 ++Cost; 910 911 return Cost; 912 } 913 914 // If this is a vector min/max/abs, use the cost of that intrinsic directly 915 // instead. Hopefully when min/max intrinsics are more prevalent this code 916 // will not be needed. 917 const Instruction *Sel = I; 918 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && 919 Sel->hasOneUse()) 920 Sel = cast<Instruction>(Sel->user_back()); 921 if (Sel && ValTy->isVectorTy() && 922 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { 923 const Value *LHS, *RHS; 924 SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor; 925 unsigned IID = 0; 926 switch (SPF) { 927 case SPF_ABS: 928 IID = Intrinsic::abs; 929 break; 930 case SPF_SMIN: 931 IID = Intrinsic::smin; 932 break; 933 case SPF_SMAX: 934 IID = Intrinsic::smax; 935 break; 936 case SPF_UMIN: 937 IID = Intrinsic::umin; 938 break; 939 case SPF_UMAX: 940 IID = Intrinsic::umax; 941 break; 942 case SPF_FMINNUM: 943 IID = Intrinsic::minnum; 944 break; 945 case SPF_FMAXNUM: 946 IID = Intrinsic::maxnum; 947 break; 948 default: 949 break; 950 } 951 if (IID) { 952 // The ICmp is free, the select gets the cost of the min/max/etc 953 if (Sel != I) 954 return 0; 955 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); 956 return getIntrinsicInstrCost(CostAttrs, CostKind); 957 } 958 } 959 960 // On NEON a vector select gets lowered to vbsl. 961 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { 962 // Lowering of some vector selects is currently far from perfect. 963 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 964 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 965 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 966 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 967 }; 968 969 EVT SelCondTy = TLI->getValueType(DL, CondTy); 970 EVT SelValTy = TLI->getValueType(DL, ValTy); 971 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 972 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 973 SelCondTy.getSimpleVT(), 974 SelValTy.getSimpleVT())) 975 return Entry->Cost; 976 } 977 978 std::pair<InstructionCost, MVT> LT = 979 TLI->getTypeLegalizationCost(DL, ValTy); 980 return LT.first; 981 } 982 983 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && 984 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 985 cast<FixedVectorType>(ValTy)->getNumElements() > 1) { 986 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy); 987 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy); 988 if (!VecCondTy) 989 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy)); 990 991 // If we don't have mve.fp any fp operations will need to be scalarized. 992 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { 993 // One scalaization insert, one scalarization extract and the cost of the 994 // fcmps. 995 return BaseT::getScalarizationOverhead(VecValTy, false, true) + 996 BaseT::getScalarizationOverhead(VecCondTy, true, false) + 997 VecValTy->getNumElements() * 998 getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 999 VecCondTy->getScalarType(), VecPred, CostKind, 1000 I); 1001 } 1002 1003 std::pair<InstructionCost, MVT> LT = 1004 TLI->getTypeLegalizationCost(DL, ValTy); 1005 int BaseCost = ST->getMVEVectorCostFactor(CostKind); 1006 // There are two types - the input that specifies the type of the compare 1007 // and the output vXi1 type. Because we don't know how the output will be 1008 // split, we may need an expensive shuffle to get two in sync. This has the 1009 // effect of making larger than legal compares (v8i32 for example) 1010 // expensive. 1011 if (LT.second.getVectorNumElements() > 2) { 1012 if (LT.first > 1) 1013 return LT.first * BaseCost + 1014 BaseT::getScalarizationOverhead(VecCondTy, true, false); 1015 return BaseCost; 1016 } 1017 } 1018 1019 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1020 // for "multiple beats" potentially needed by MVE instructions. 1021 int BaseCost = 1; 1022 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) 1023 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1024 1025 return BaseCost * 1026 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1027 } 1028 1029 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, 1030 ScalarEvolution *SE, 1031 const SCEV *Ptr) { 1032 // Address computations in vectorized code with non-consecutive addresses will 1033 // likely result in more instructions compared to scalar code where the 1034 // computation can more often be merged into the index mode. The resulting 1035 // extra micro-ops can significantly decrease throughput. 1036 unsigned NumVectorInstToHideOverhead = 10; 1037 int MaxMergeDistance = 64; 1038 1039 if (ST->hasNEON()) { 1040 if (Ty->isVectorTy() && SE && 1041 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1042 return NumVectorInstToHideOverhead; 1043 1044 // In many cases the address computation is not merged into the instruction 1045 // addressing mode. 1046 return 1; 1047 } 1048 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 1049 } 1050 1051 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 1052 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1053 // If a VCTP is part of a chain, it's already profitable and shouldn't be 1054 // optimized, else LSR may block tail-predication. 1055 switch (II->getIntrinsicID()) { 1056 case Intrinsic::arm_mve_vctp8: 1057 case Intrinsic::arm_mve_vctp16: 1058 case Intrinsic::arm_mve_vctp32: 1059 case Intrinsic::arm_mve_vctp64: 1060 return true; 1061 default: 1062 break; 1063 } 1064 } 1065 return false; 1066 } 1067 1068 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 1069 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 1070 return false; 1071 1072 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) { 1073 // Don't support v2i1 yet. 1074 if (VecTy->getNumElements() == 2) 1075 return false; 1076 1077 // We don't support extending fp types. 1078 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 1079 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 1080 return false; 1081 } 1082 1083 unsigned EltWidth = DataTy->getScalarSizeInBits(); 1084 return (EltWidth == 32 && Alignment >= 4) || 1085 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); 1086 } 1087 1088 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) { 1089 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 1090 return false; 1091 1092 // This method is called in 2 places: 1093 // - from the vectorizer with a scalar type, in which case we need to get 1094 // this as good as we can with the limited info we have (and rely on the cost 1095 // model for the rest). 1096 // - from the masked intrinsic lowering pass with the actual vector type. 1097 // For MVE, we have a custom lowering pass that will already have custom 1098 // legalised any gathers that we can to MVE intrinsics, and want to expand all 1099 // the rest. The pass runs before the masked intrinsic lowering pass, so if we 1100 // are here, we know we want to expand. 1101 if (isa<VectorType>(Ty)) 1102 return false; 1103 1104 unsigned EltWidth = Ty->getScalarSizeInBits(); 1105 return ((EltWidth == 32 && Alignment >= 4) || 1106 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); 1107 } 1108 1109 /// Given a memcpy/memset/memmove instruction, return the number of memory 1110 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a 1111 /// call is used. 1112 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { 1113 MemOp MOp; 1114 unsigned DstAddrSpace = ~0u; 1115 unsigned SrcAddrSpace = ~0u; 1116 const Function *F = I->getParent()->getParent(); 1117 1118 if (const auto *MC = dyn_cast<MemTransferInst>(I)) { 1119 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength()); 1120 // If 'size' is not a constant, a library call will be generated. 1121 if (!C) 1122 return -1; 1123 1124 const unsigned Size = C->getValue().getZExtValue(); 1125 const Align DstAlign = *MC->getDestAlign(); 1126 const Align SrcAlign = *MC->getSourceAlign(); 1127 1128 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 1129 /*IsVolatile*/ false); 1130 DstAddrSpace = MC->getDestAddressSpace(); 1131 SrcAddrSpace = MC->getSourceAddressSpace(); 1132 } 1133 else if (const auto *MS = dyn_cast<MemSetInst>(I)) { 1134 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength()); 1135 // If 'size' is not a constant, a library call will be generated. 1136 if (!C) 1137 return -1; 1138 1139 const unsigned Size = C->getValue().getZExtValue(); 1140 const Align DstAlign = *MS->getDestAlign(); 1141 1142 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, 1143 /*IsZeroMemset*/ false, /*IsVolatile*/ false); 1144 DstAddrSpace = MS->getDestAddressSpace(); 1145 } 1146 else 1147 llvm_unreachable("Expected a memcpy/move or memset!"); 1148 1149 unsigned Limit, Factor = 2; 1150 switch(I->getIntrinsicID()) { 1151 case Intrinsic::memcpy: 1152 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize()); 1153 break; 1154 case Intrinsic::memmove: 1155 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 1156 break; 1157 case Intrinsic::memset: 1158 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize()); 1159 Factor = 1; 1160 break; 1161 default: 1162 llvm_unreachable("Expected a memcpy/move or memset!"); 1163 } 1164 1165 // MemOps will be poplulated with a list of data types that needs to be 1166 // loaded and stored. That's why we multiply the number of elements by 2 to 1167 // get the cost for this memcpy. 1168 std::vector<EVT> MemOps; 1169 if (getTLI()->findOptimalMemOpLowering( 1170 MemOps, Limit, MOp, DstAddrSpace, 1171 SrcAddrSpace, F->getAttributes())) 1172 return MemOps.size() * Factor; 1173 1174 // If we can't find an optimal memop lowering, return the default cost 1175 return -1; 1176 } 1177 1178 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) { 1179 int NumOps = getNumMemOps(cast<IntrinsicInst>(I)); 1180 1181 // To model the cost of a library call, we assume 1 for the call, and 1182 // 3 for the argument setup. 1183 if (NumOps == -1) 1184 return 4; 1185 return NumOps; 1186 } 1187 1188 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1189 VectorType *Tp, ArrayRef<int> Mask, 1190 int Index, VectorType *SubTp) { 1191 Kind = improveShuffleKindFromMask(Kind, Mask); 1192 if (ST->hasNEON()) { 1193 if (Kind == TTI::SK_Broadcast) { 1194 static const CostTblEntry NEONDupTbl[] = { 1195 // VDUP handles these cases. 1196 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1197 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1198 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1199 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1200 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1201 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1202 1203 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1204 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1205 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1206 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 1207 1208 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1209 if (const auto *Entry = 1210 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1211 return LT.first * Entry->Cost; 1212 } 1213 if (Kind == TTI::SK_Reverse) { 1214 static const CostTblEntry NEONShuffleTbl[] = { 1215 // Reverse shuffle cost one instruction if we are shuffling within a 1216 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 1217 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1218 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1219 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1220 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1221 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1222 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1223 1224 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1225 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1226 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 1227 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 1228 1229 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1230 if (const auto *Entry = 1231 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1232 return LT.first * Entry->Cost; 1233 } 1234 if (Kind == TTI::SK_Select) { 1235 static const CostTblEntry NEONSelShuffleTbl[] = { 1236 // Select shuffle cost table for ARM. Cost is the number of 1237 // instructions 1238 // required to create the shuffled vector. 1239 1240 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1241 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1242 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1243 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1244 1245 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1246 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1247 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 1248 1249 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 1250 1251 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 1252 1253 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1254 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 1255 ISD::VECTOR_SHUFFLE, LT.second)) 1256 return LT.first * Entry->Cost; 1257 } 1258 } 1259 if (ST->hasMVEIntegerOps()) { 1260 if (Kind == TTI::SK_Broadcast) { 1261 static const CostTblEntry MVEDupTbl[] = { 1262 // VDUP handles these cases. 1263 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1264 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1265 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 1266 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1267 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 1268 1269 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1270 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 1271 LT.second)) 1272 return LT.first * Entry->Cost * 1273 ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput); 1274 } 1275 1276 if (!Mask.empty()) { 1277 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1278 if (Mask.size() <= LT.second.getVectorNumElements() && 1279 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) || 1280 isVREVMask(Mask, LT.second, 64))) 1281 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first; 1282 } 1283 } 1284 1285 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 1286 ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) 1287 : 1; 1288 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 1289 } 1290 1291 InstructionCost ARMTTIImpl::getArithmeticInstrCost( 1292 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1293 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 1294 TTI::OperandValueProperties Opd1PropInfo, 1295 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1296 const Instruction *CxtI) { 1297 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 1298 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) { 1299 // Make operations on i1 relatively expensive as this often involves 1300 // combining predicates. AND and XOR should be easier to handle with IT 1301 // blocks. 1302 switch (ISDOpcode) { 1303 default: 1304 break; 1305 case ISD::AND: 1306 case ISD::XOR: 1307 return 2; 1308 case ISD::OR: 1309 return 3; 1310 } 1311 } 1312 1313 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1314 1315 if (ST->hasNEON()) { 1316 const unsigned FunctionCallDivCost = 20; 1317 const unsigned ReciprocalDivCost = 10; 1318 static const CostTblEntry CostTbl[] = { 1319 // Division. 1320 // These costs are somewhat random. Choose a cost of 20 to indicate that 1321 // vectorizing devision (added function call) is going to be very expensive. 1322 // Double registers types. 1323 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1324 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1325 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1326 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1327 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1328 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1329 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1330 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1331 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 1332 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 1333 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1334 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1335 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 1336 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 1337 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1338 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1339 // Quad register types. 1340 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1341 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1342 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1343 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1344 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1345 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1346 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1347 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1348 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1349 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1350 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1351 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1352 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1353 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1354 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1355 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1356 // Multiplication. 1357 }; 1358 1359 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 1360 return LT.first * Entry->Cost; 1361 1362 InstructionCost Cost = BaseT::getArithmeticInstrCost( 1363 Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); 1364 1365 // This is somewhat of a hack. The problem that we are facing is that SROA 1366 // creates a sequence of shift, and, or instructions to construct values. 1367 // These sequences are recognized by the ISel and have zero-cost. Not so for 1368 // the vectorized code. Because we have support for v2i64 but not i64 those 1369 // sequences look particularly beneficial to vectorize. 1370 // To work around this we increase the cost of v2i64 operations to make them 1371 // seem less beneficial. 1372 if (LT.second == MVT::v2i64 && 1373 Op2Info == TargetTransformInfo::OK_UniformConstantValue) 1374 Cost += 4; 1375 1376 return Cost; 1377 } 1378 1379 // If this operation is a shift on arm/thumb2, it might well be folded into 1380 // the following instruction, hence having a cost of 0. 1381 auto LooksLikeAFreeShift = [&]() { 1382 if (ST->isThumb1Only() || Ty->isVectorTy()) 1383 return false; 1384 1385 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 1386 return false; 1387 if (Op2Info != TargetTransformInfo::OK_UniformConstantValue) 1388 return false; 1389 1390 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 1391 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 1392 case Instruction::Add: 1393 case Instruction::Sub: 1394 case Instruction::And: 1395 case Instruction::Xor: 1396 case Instruction::Or: 1397 case Instruction::ICmp: 1398 return true; 1399 default: 1400 return false; 1401 } 1402 }; 1403 if (LooksLikeAFreeShift()) 1404 return 0; 1405 1406 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1407 // for "multiple beats" potentially needed by MVE instructions. 1408 int BaseCost = 1; 1409 if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) 1410 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1411 1412 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 1413 // without treating floats as more expensive that scalars or increasing the 1414 // costs for custom operations. The results is also multiplied by the 1415 // MVEVectorCostFactor where appropriate. 1416 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 1417 return LT.first * BaseCost; 1418 1419 // Else this is expand, assume that we need to scalarize this op. 1420 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { 1421 unsigned Num = VTy->getNumElements(); 1422 InstructionCost Cost = 1423 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 1424 // Return the cost of multiple scalar invocation plus the cost of 1425 // inserting and extracting the values. 1426 SmallVector<Type *> Tys(Args.size(), Ty); 1427 return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 1428 } 1429 1430 return BaseCost; 1431 } 1432 1433 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1434 MaybeAlign Alignment, 1435 unsigned AddressSpace, 1436 TTI::TargetCostKind CostKind, 1437 const Instruction *I) { 1438 // TODO: Handle other cost kinds. 1439 if (CostKind != TTI::TCK_RecipThroughput) 1440 return 1; 1441 1442 // Type legalization can't handle structs 1443 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1444 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1445 CostKind); 1446 1447 if (ST->hasNEON() && Src->isVectorTy() && 1448 (Alignment && *Alignment != Align(16)) && 1449 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 1450 // Unaligned loads/stores are extremely inefficient. 1451 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 1452 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 1453 return LT.first * 4; 1454 } 1455 1456 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. 1457 // Same for stores. 1458 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I && 1459 ((Opcode == Instruction::Load && I->hasOneUse() && 1460 isa<FPExtInst>(*I->user_begin())) || 1461 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) { 1462 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src); 1463 Type *DstTy = 1464 Opcode == Instruction::Load 1465 ? (*I->user_begin())->getType() 1466 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType(); 1467 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && 1468 DstTy->getScalarType()->isFloatTy()) 1469 return ST->getMVEVectorCostFactor(CostKind); 1470 } 1471 1472 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 1473 ? ST->getMVEVectorCostFactor(CostKind) 1474 : 1; 1475 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1476 CostKind, I); 1477 } 1478 1479 InstructionCost 1480 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1481 unsigned AddressSpace, 1482 TTI::TargetCostKind CostKind) { 1483 if (ST->hasMVEIntegerOps()) { 1484 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment)) 1485 return ST->getMVEVectorCostFactor(CostKind); 1486 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment)) 1487 return ST->getMVEVectorCostFactor(CostKind); 1488 } 1489 if (!isa<FixedVectorType>(Src)) 1490 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1491 CostKind); 1492 // Scalar cost, which is currently very high due to the efficiency of the 1493 // generated code. 1494 return cast<FixedVectorType>(Src)->getNumElements() * 8; 1495 } 1496 1497 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( 1498 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1499 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1500 bool UseMaskForCond, bool UseMaskForGaps) { 1501 assert(Factor >= 2 && "Invalid interleave factor"); 1502 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 1503 1504 // vldN/vstN doesn't support vector types of i64/f64 element. 1505 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 1506 1507 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 1508 !UseMaskForCond && !UseMaskForGaps) { 1509 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1510 auto *SubVecTy = 1511 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1512 1513 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 1514 // Accesses having vector types that are a multiple of 128 bits can be 1515 // matched to more than one vldN/vstN instruction. 1516 int BaseCost = 1517 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1518 if (NumElts % Factor == 0 && 1519 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL)) 1520 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1521 1522 // Some smaller than legal interleaved patterns are cheap as we can make 1523 // use of the vmovn or vrev patterns to interleave a standard load. This is 1524 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 1525 // promoted differently). The cost of 2 here is then a load and vrev or 1526 // vmovn. 1527 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 1528 VecTy->isIntOrIntVectorTy() && 1529 DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64) 1530 return 2 * BaseCost; 1531 } 1532 1533 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1534 Alignment, AddressSpace, CostKind, 1535 UseMaskForCond, UseMaskForGaps); 1536 } 1537 1538 InstructionCost ARMTTIImpl::getGatherScatterOpCost( 1539 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1540 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1541 using namespace PatternMatch; 1542 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 1543 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1544 Alignment, CostKind, I); 1545 1546 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 1547 auto *VTy = cast<FixedVectorType>(DataTy); 1548 1549 // TODO: Splitting, once we do that. 1550 1551 unsigned NumElems = VTy->getNumElements(); 1552 unsigned EltSize = VTy->getScalarSizeInBits(); 1553 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy); 1554 1555 // For now, it is assumed that for the MVE gather instructions the loads are 1556 // all effectively serialised. This means the cost is the scalar cost 1557 // multiplied by the number of elements being loaded. This is possibly very 1558 // conservative, but even so we still end up vectorising loops because the 1559 // cost per iteration for many loops is lower than for scalar loops. 1560 InstructionCost VectorCost = 1561 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); 1562 // The scalarization cost should be a lot higher. We use the number of vector 1563 // elements plus the scalarization overhead. 1564 InstructionCost ScalarCost = 1565 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) + 1566 BaseT::getScalarizationOverhead(VTy, false, true); 1567 1568 if (EltSize < 8 || Alignment < EltSize / 8) 1569 return ScalarCost; 1570 1571 unsigned ExtSize = EltSize; 1572 // Check whether there's a single user that asks for an extended type 1573 if (I != nullptr) { 1574 // Dependent of the caller of this function, a gather instruction will 1575 // either have opcode Instruction::Load or be a call to the masked_gather 1576 // intrinsic 1577 if ((I->getOpcode() == Instruction::Load || 1578 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 1579 I->hasOneUse()) { 1580 const User *Us = *I->users().begin(); 1581 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 1582 // only allow valid type combinations 1583 unsigned TypeSize = 1584 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 1585 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 1586 (TypeSize == 16 && EltSize == 8)) && 1587 TypeSize * NumElems == 128) { 1588 ExtSize = TypeSize; 1589 } 1590 } 1591 } 1592 // Check whether the input data needs to be truncated 1593 TruncInst *T; 1594 if ((I->getOpcode() == Instruction::Store || 1595 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 1596 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 1597 // Only allow valid type combinations 1598 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 1599 if (((EltSize == 16 && TypeSize == 32) || 1600 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 1601 TypeSize * NumElems == 128) 1602 ExtSize = TypeSize; 1603 } 1604 } 1605 1606 if (ExtSize * NumElems != 128 || NumElems < 4) 1607 return ScalarCost; 1608 1609 // Any (aligned) i32 gather will not need to be scalarised. 1610 if (ExtSize == 32) 1611 return VectorCost; 1612 // For smaller types, we need to ensure that the gep's inputs are correctly 1613 // extended from a small enough value. Other sizes (including i64) are 1614 // scalarized for now. 1615 if (ExtSize != 8 && ExtSize != 16) 1616 return ScalarCost; 1617 1618 if (const auto *BC = dyn_cast<BitCastInst>(Ptr)) 1619 Ptr = BC->getOperand(0); 1620 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1621 if (GEP->getNumOperands() != 2) 1622 return ScalarCost; 1623 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1624 // Scale needs to be correct (which is only relevant for i16s). 1625 if (Scale != 1 && Scale * 8 != ExtSize) 1626 return ScalarCost; 1627 // And we need to zext (not sext) the indexes from a small enough type. 1628 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1629 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1630 return VectorCost; 1631 } 1632 return ScalarCost; 1633 } 1634 return ScalarCost; 1635 } 1636 1637 InstructionCost 1638 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 1639 Optional<FastMathFlags> FMF, 1640 TTI::TargetCostKind CostKind) { 1641 if (TTI::requiresOrderedReduction(FMF)) 1642 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1643 1644 EVT ValVT = TLI->getValueType(DL, ValTy); 1645 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1646 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD) 1647 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1648 1649 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1650 1651 static const CostTblEntry CostTblAdd[]{ 1652 {ISD::ADD, MVT::v16i8, 1}, 1653 {ISD::ADD, MVT::v8i16, 1}, 1654 {ISD::ADD, MVT::v4i32, 1}, 1655 }; 1656 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second)) 1657 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; 1658 1659 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1660 } 1661 1662 InstructionCost 1663 ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned, 1664 Type *ResTy, VectorType *ValTy, 1665 TTI::TargetCostKind CostKind) { 1666 EVT ValVT = TLI->getValueType(DL, ValTy); 1667 EVT ResVT = TLI->getValueType(DL, ResTy); 1668 1669 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1670 std::pair<InstructionCost, MVT> LT = 1671 TLI->getTypeLegalizationCost(DL, ValTy); 1672 1673 // The legal cases are: 1674 // VADDV u/s 8/16/32 1675 // VMLAV u/s 8/16/32 1676 // VADDLV u/s 32 1677 // VMLALV u/s 16/32 1678 // Codegen currently cannot always handle larger than legal vectors very 1679 // well, especially for predicated reductions where the mask needs to be 1680 // split, so restrict to 128bit or smaller input types. 1681 unsigned RevVTSize = ResVT.getSizeInBits(); 1682 if (ValVT.getSizeInBits() <= 128 && 1683 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1684 (LT.second == MVT::v8i16 && RevVTSize <= (IsMLA ? 64u : 32u)) || 1685 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1686 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1687 } 1688 1689 return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy, 1690 CostKind); 1691 } 1692 1693 InstructionCost 1694 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1695 TTI::TargetCostKind CostKind) { 1696 switch (ICA.getID()) { 1697 case Intrinsic::get_active_lane_mask: 1698 // Currently we make a somewhat optimistic assumption that 1699 // active_lane_mask's are always free. In reality it may be freely folded 1700 // into a tail predicated loop, expanded into a VCPT or expanded into a lot 1701 // of add/icmp code. We may need to improve this in the future, but being 1702 // able to detect if it is free or not involves looking at a lot of other 1703 // code. We currently assume that the vectorizer inserted these, and knew 1704 // what it was doing in adding one. 1705 if (ST->hasMVEIntegerOps()) 1706 return 0; 1707 break; 1708 case Intrinsic::sadd_sat: 1709 case Intrinsic::ssub_sat: 1710 case Intrinsic::uadd_sat: 1711 case Intrinsic::usub_sat: { 1712 if (!ST->hasMVEIntegerOps()) 1713 break; 1714 Type *VT = ICA.getReturnType(); 1715 1716 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1717 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1718 LT.second == MVT::v16i8) { 1719 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we 1720 // need to extend the type, as it uses shr(qadd(shl, shl)). 1721 unsigned Instrs = 1722 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4; 1723 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; 1724 } 1725 break; 1726 } 1727 case Intrinsic::abs: 1728 case Intrinsic::smin: 1729 case Intrinsic::smax: 1730 case Intrinsic::umin: 1731 case Intrinsic::umax: { 1732 if (!ST->hasMVEIntegerOps()) 1733 break; 1734 Type *VT = ICA.getReturnType(); 1735 1736 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1737 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1738 LT.second == MVT::v16i8) 1739 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1740 break; 1741 } 1742 case Intrinsic::minnum: 1743 case Intrinsic::maxnum: { 1744 if (!ST->hasMVEFloatOps()) 1745 break; 1746 Type *VT = ICA.getReturnType(); 1747 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VT); 1748 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) 1749 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1750 break; 1751 } 1752 } 1753 1754 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1755 } 1756 1757 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1758 if (!F->isIntrinsic()) 1759 BaseT::isLoweredToCall(F); 1760 1761 // Assume all Arm-specific intrinsics map to an instruction. 1762 if (F->getName().startswith("llvm.arm")) 1763 return false; 1764 1765 switch (F->getIntrinsicID()) { 1766 default: break; 1767 case Intrinsic::powi: 1768 case Intrinsic::sin: 1769 case Intrinsic::cos: 1770 case Intrinsic::pow: 1771 case Intrinsic::log: 1772 case Intrinsic::log10: 1773 case Intrinsic::log2: 1774 case Intrinsic::exp: 1775 case Intrinsic::exp2: 1776 return true; 1777 case Intrinsic::sqrt: 1778 case Intrinsic::fabs: 1779 case Intrinsic::copysign: 1780 case Intrinsic::floor: 1781 case Intrinsic::ceil: 1782 case Intrinsic::trunc: 1783 case Intrinsic::rint: 1784 case Intrinsic::nearbyint: 1785 case Intrinsic::round: 1786 case Intrinsic::canonicalize: 1787 case Intrinsic::lround: 1788 case Intrinsic::llround: 1789 case Intrinsic::lrint: 1790 case Intrinsic::llrint: 1791 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 1792 return true; 1793 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 1794 return true; 1795 // Some operations can be handled by vector instructions and assume 1796 // unsupported vectors will be expanded into supported scalar ones. 1797 // TODO Handle scalar operations properly. 1798 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 1799 case Intrinsic::masked_store: 1800 case Intrinsic::masked_load: 1801 case Intrinsic::masked_gather: 1802 case Intrinsic::masked_scatter: 1803 return !ST->hasMVEIntegerOps(); 1804 case Intrinsic::sadd_with_overflow: 1805 case Intrinsic::uadd_with_overflow: 1806 case Intrinsic::ssub_with_overflow: 1807 case Intrinsic::usub_with_overflow: 1808 case Intrinsic::sadd_sat: 1809 case Intrinsic::uadd_sat: 1810 case Intrinsic::ssub_sat: 1811 case Intrinsic::usub_sat: 1812 return false; 1813 } 1814 1815 return BaseT::isLoweredToCall(F); 1816 } 1817 1818 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) { 1819 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 1820 EVT VT = TLI->getValueType(DL, I.getType(), true); 1821 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 1822 return true; 1823 1824 // Check if an intrinsic will be lowered to a call and assume that any 1825 // other CallInst will generate a bl. 1826 if (auto *Call = dyn_cast<CallInst>(&I)) { 1827 if (auto *II = dyn_cast<IntrinsicInst>(Call)) { 1828 switch(II->getIntrinsicID()) { 1829 case Intrinsic::memcpy: 1830 case Intrinsic::memset: 1831 case Intrinsic::memmove: 1832 return getNumMemOps(II) == -1; 1833 default: 1834 if (const Function *F = Call->getCalledFunction()) 1835 return isLoweredToCall(F); 1836 } 1837 } 1838 return true; 1839 } 1840 1841 // FPv5 provides conversions between integer, double-precision, 1842 // single-precision, and half-precision formats. 1843 switch (I.getOpcode()) { 1844 default: 1845 break; 1846 case Instruction::FPToSI: 1847 case Instruction::FPToUI: 1848 case Instruction::SIToFP: 1849 case Instruction::UIToFP: 1850 case Instruction::FPTrunc: 1851 case Instruction::FPExt: 1852 return !ST->hasFPARMv8Base(); 1853 } 1854 1855 // FIXME: Unfortunately the approach of checking the Operation Action does 1856 // not catch all cases of Legalization that use library calls. Our 1857 // Legalization step categorizes some transformations into library calls as 1858 // Custom, Expand or even Legal when doing type legalization. So for now 1859 // we have to special case for instance the SDIV of 64bit integers and the 1860 // use of floating point emulation. 1861 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 1862 switch (ISD) { 1863 default: 1864 break; 1865 case ISD::SDIV: 1866 case ISD::UDIV: 1867 case ISD::SREM: 1868 case ISD::UREM: 1869 case ISD::SDIVREM: 1870 case ISD::UDIVREM: 1871 return true; 1872 } 1873 } 1874 1875 // Assume all other non-float operations are supported. 1876 if (!VT.isFloatingPoint()) 1877 return false; 1878 1879 // We'll need a library call to handle most floats when using soft. 1880 if (TLI->useSoftFloat()) { 1881 switch (I.getOpcode()) { 1882 default: 1883 return true; 1884 case Instruction::Alloca: 1885 case Instruction::Load: 1886 case Instruction::Store: 1887 case Instruction::Select: 1888 case Instruction::PHI: 1889 return false; 1890 } 1891 } 1892 1893 // We'll need a libcall to perform double precision operations on a single 1894 // precision only FPU. 1895 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 1896 return true; 1897 1898 // Likewise for half precision arithmetic. 1899 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 1900 return true; 1901 1902 return false; 1903 } 1904 1905 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1906 AssumptionCache &AC, 1907 TargetLibraryInfo *LibInfo, 1908 HardwareLoopInfo &HWLoopInfo) { 1909 // Low-overhead branches are only supported in the 'low-overhead branch' 1910 // extension of v8.1-m. 1911 if (!ST->hasLOB() || DisableLowOverheadLoops) { 1912 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 1913 return false; 1914 } 1915 1916 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 1917 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 1918 return false; 1919 } 1920 1921 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1922 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1923 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 1924 return false; 1925 } 1926 1927 const SCEV *TripCountSCEV = 1928 SE.getAddExpr(BackedgeTakenCount, 1929 SE.getOne(BackedgeTakenCount->getType())); 1930 1931 // We need to store the trip count in LR, a 32-bit register. 1932 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 1933 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 1934 return false; 1935 } 1936 1937 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 1938 // point in generating a hardware loop if that's going to happen. 1939 1940 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 1941 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 1942 switch (Call->getIntrinsicID()) { 1943 default: 1944 break; 1945 case Intrinsic::start_loop_iterations: 1946 case Intrinsic::test_start_loop_iterations: 1947 case Intrinsic::loop_decrement: 1948 case Intrinsic::loop_decrement_reg: 1949 return true; 1950 } 1951 } 1952 return false; 1953 }; 1954 1955 // Scan the instructions to see if there's any that we know will turn into a 1956 // call or if this loop is already a low-overhead loop or will become a tail 1957 // predicated loop. 1958 bool IsTailPredLoop = false; 1959 auto ScanLoop = [&](Loop *L) { 1960 for (auto *BB : L->getBlocks()) { 1961 for (auto &I : *BB) { 1962 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || 1963 isa<InlineAsm>(I)) { 1964 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 1965 return false; 1966 } 1967 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1968 IsTailPredLoop |= 1969 II->getIntrinsicID() == Intrinsic::get_active_lane_mask || 1970 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || 1971 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || 1972 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || 1973 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; 1974 } 1975 } 1976 return true; 1977 }; 1978 1979 // Visit inner loops. 1980 for (auto Inner : *L) 1981 if (!ScanLoop(Inner)) 1982 return false; 1983 1984 if (!ScanLoop(L)) 1985 return false; 1986 1987 // TODO: Check whether the trip count calculation is expensive. If L is the 1988 // inner loop but we know it has a low trip count, calculating that trip 1989 // count (in the parent loop) may be detrimental. 1990 1991 LLVMContext &C = L->getHeader()->getContext(); 1992 HWLoopInfo.CounterInReg = true; 1993 HWLoopInfo.IsNestingLegal = false; 1994 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; 1995 HWLoopInfo.CountType = Type::getInt32Ty(C); 1996 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 1997 return true; 1998 } 1999 2000 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 2001 // We don't allow icmp's, and because we only look at single block loops, 2002 // we simply count the icmps, i.e. there should only be 1 for the backedge. 2003 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 2004 return false; 2005 // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are 2006 // not currently canonical, but soon will be. Code without them uses icmp, and 2007 // so is not tail predicated as per the condition above. In order to get the 2008 // same performance we treat min and max the same as an icmp for tailpred 2009 // purposes for the moment (we often rely on non-tailpred and higher VF's to 2010 // pick more optimial instructions like VQDMULH. They need to be recognized 2011 // directly by the vectorizer). 2012 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2013 if ((II->getIntrinsicID() == Intrinsic::smin || 2014 II->getIntrinsicID() == Intrinsic::smax || 2015 II->getIntrinsicID() == Intrinsic::umin || 2016 II->getIntrinsicID() == Intrinsic::umax) && 2017 ++ICmpCount > 1) 2018 return false; 2019 2020 if (isa<FCmpInst>(&I)) 2021 return false; 2022 2023 // We could allow extending/narrowing FP loads/stores, but codegen is 2024 // too inefficient so reject this for now. 2025 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 2026 return false; 2027 2028 // Extends have to be extending-loads 2029 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 2030 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 2031 return false; 2032 2033 // Truncs have to be narrowing-stores 2034 if (isa<TruncInst>(&I) ) 2035 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 2036 return false; 2037 2038 return true; 2039 } 2040 2041 // To set up a tail-predicated loop, we need to know the total number of 2042 // elements processed by that loop. Thus, we need to determine the element 2043 // size and: 2044 // 1) it should be uniform for all operations in the vector loop, so we 2045 // e.g. don't want any widening/narrowing operations. 2046 // 2) it should be smaller than i64s because we don't have vector operations 2047 // that work on i64s. 2048 // 3) we don't want elements to be reversed or shuffled, to make sure the 2049 // tail-predication masks/predicates the right lanes. 2050 // 2051 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 2052 const DataLayout &DL, 2053 const LoopAccessInfo *LAI) { 2054 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n"); 2055 2056 // If there are live-out values, it is probably a reduction. We can predicate 2057 // most reduction operations freely under MVE using a combination of 2058 // prefer-predicated-reduction-select and inloop reductions. We limit this to 2059 // floating point and integer reductions, but don't check for operators 2060 // specifically here. If the value ends up not being a reduction (and so the 2061 // vectorizer cannot tailfold the loop), we should fall back to standard 2062 // vectorization automatically. 2063 SmallVector< Instruction *, 8 > LiveOuts; 2064 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); 2065 bool ReductionsDisabled = 2066 EnableTailPredication == TailPredication::EnabledNoReductions || 2067 EnableTailPredication == TailPredication::ForceEnabledNoReductions; 2068 2069 for (auto *I : LiveOuts) { 2070 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && 2071 !I->getType()->isHalfTy()) { 2072 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " 2073 "live-out value\n"); 2074 return false; 2075 } 2076 if (ReductionsDisabled) { 2077 LLVM_DEBUG(dbgs() << "Reductions not enabled\n"); 2078 return false; 2079 } 2080 } 2081 2082 // Next, check that all instructions can be tail-predicated. 2083 PredicatedScalarEvolution PSE = LAI->getPSE(); 2084 SmallVector<Instruction *, 16> LoadStores; 2085 int ICmpCount = 0; 2086 2087 for (BasicBlock *BB : L->blocks()) { 2088 for (Instruction &I : BB->instructionsWithoutDebug()) { 2089 if (isa<PHINode>(&I)) 2090 continue; 2091 if (!canTailPredicateInstruction(I, ICmpCount)) { 2092 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 2093 return false; 2094 } 2095 2096 Type *T = I.getType(); 2097 if (T->isPointerTy()) 2098 T = T->getPointerElementType(); 2099 2100 if (T->getScalarSizeInBits() > 32) { 2101 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 2102 return false; 2103 } 2104 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 2105 Value *Ptr = getLoadStorePointerOperand(&I); 2106 Type *AccessTy = getLoadStoreType(&I); 2107 int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L); 2108 if (NextStride == 1) { 2109 // TODO: for now only allow consecutive strides of 1. We could support 2110 // other strides as long as it is uniform, but let's keep it simple 2111 // for now. 2112 continue; 2113 } else if (NextStride == -1 || 2114 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || 2115 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { 2116 LLVM_DEBUG(dbgs() 2117 << "Consecutive strides of 2 found, vld2/vstr2 can't " 2118 "be tail-predicated\n."); 2119 return false; 2120 // TODO: don't tail predicate if there is a reversed load? 2121 } else if (EnableMaskedGatherScatters) { 2122 // Gather/scatters do allow loading from arbitrary strides, at 2123 // least if they are loop invariant. 2124 // TODO: Loop variant strides should in theory work, too, but 2125 // this requires further testing. 2126 const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr); 2127 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) { 2128 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 2129 if (PSE.getSE()->isLoopInvariant(Step, L)) 2130 continue; 2131 } 2132 } 2133 LLVM_DEBUG(dbgs() << "Bad stride found, can't " 2134 "tail-predicate\n."); 2135 return false; 2136 } 2137 } 2138 } 2139 2140 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 2141 return true; 2142 } 2143 2144 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, 2145 ScalarEvolution &SE, 2146 AssumptionCache &AC, 2147 TargetLibraryInfo *TLI, 2148 DominatorTree *DT, 2149 const LoopAccessInfo *LAI) { 2150 if (!EnableTailPredication) { 2151 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n"); 2152 return false; 2153 } 2154 2155 // Creating a predicated vector loop is the first step for generating a 2156 // tail-predicated hardware loop, for which we need the MVE masked 2157 // load/stores instructions: 2158 if (!ST->hasMVEIntegerOps()) 2159 return false; 2160 2161 // For now, restrict this to single block loops. 2162 if (L->getNumBlocks() > 1) { 2163 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 2164 "loop.\n"); 2165 return false; 2166 } 2167 2168 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected"); 2169 2170 HardwareLoopInfo HWLoopInfo(L); 2171 if (!HWLoopInfo.canAnalyze(*LI)) { 2172 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2173 "analyzable.\n"); 2174 return false; 2175 } 2176 2177 // This checks if we have the low-overhead branch architecture 2178 // extension, and if we will create a hardware-loop: 2179 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { 2180 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2181 "profitable.\n"); 2182 return false; 2183 } 2184 2185 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { 2186 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2187 "a candidate.\n"); 2188 return false; 2189 } 2190 2191 return canTailPredicateLoop(L, LI, SE, DL, LAI); 2192 } 2193 2194 bool ARMTTIImpl::emitGetActiveLaneMask() const { 2195 if (!ST->hasMVEIntegerOps() || !EnableTailPredication) 2196 return false; 2197 2198 // Intrinsic @llvm.get.active.lane.mask is supported. 2199 // It is used in the MVETailPredication pass, which requires the number of 2200 // elements processed by this vector loop to setup the tail-predicated 2201 // loop. 2202 return true; 2203 } 2204 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2205 TTI::UnrollingPreferences &UP, 2206 OptimizationRemarkEmitter *ORE) { 2207 // Enable Upper bound unrolling universally, not dependant upon the conditions 2208 // below. 2209 UP.UpperBound = true; 2210 2211 // Only currently enable these preferences for M-Class cores. 2212 if (!ST->isMClass()) 2213 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); 2214 2215 // Disable loop unrolling for Oz and Os. 2216 UP.OptSizeThreshold = 0; 2217 UP.PartialOptSizeThreshold = 0; 2218 if (L->getHeader()->getParent()->hasOptSize()) 2219 return; 2220 2221 SmallVector<BasicBlock*, 4> ExitingBlocks; 2222 L->getExitingBlocks(ExitingBlocks); 2223 LLVM_DEBUG(dbgs() << "Loop has:\n" 2224 << "Blocks: " << L->getNumBlocks() << "\n" 2225 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 2226 2227 // Only allow another exit other than the latch. This acts as an early exit 2228 // as it mirrors the profitability calculation of the runtime unroller. 2229 if (ExitingBlocks.size() > 2) 2230 return; 2231 2232 // Limit the CFG of the loop body for targets with a branch predictor. 2233 // Allowing 4 blocks permits if-then-else diamonds in the body. 2234 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 2235 return; 2236 2237 // Don't unroll vectorized loops, including the remainder loop 2238 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 2239 return; 2240 2241 // Scan the loop: don't unroll loops with calls as this could prevent 2242 // inlining. 2243 InstructionCost Cost = 0; 2244 for (auto *BB : L->getBlocks()) { 2245 for (auto &I : *BB) { 2246 // Don't unroll vectorised loop. MVE does not benefit from it as much as 2247 // scalar code. 2248 if (I.getType()->isVectorTy()) 2249 return; 2250 2251 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2252 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2253 if (!isLoweredToCall(F)) 2254 continue; 2255 } 2256 return; 2257 } 2258 2259 SmallVector<const Value*, 4> Operands(I.operand_values()); 2260 Cost += 2261 getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency); 2262 } 2263 } 2264 2265 // On v6m cores, there are very few registers available. We can easily end up 2266 // spilling and reloading more registers in an unrolled loop. Look at the 2267 // number of LCSSA phis as a rough measure of how many registers will need to 2268 // be live out of the loop, reducing the default unroll count if more than 1 2269 // value is needed. In the long run, all of this should be being learnt by a 2270 // machine. 2271 unsigned UnrollCount = 4; 2272 if (ST->isThumb1Only()) { 2273 unsigned ExitingValues = 0; 2274 SmallVector<BasicBlock *, 4> ExitBlocks; 2275 L->getExitBlocks(ExitBlocks); 2276 for (auto *Exit : ExitBlocks) { 2277 // Count the number of LCSSA phis. Exclude values coming from GEP's as 2278 // only the last is expected to be needed for address operands. 2279 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) { 2280 return PH.getNumOperands() != 1 || 2281 !isa<GetElementPtrInst>(PH.getOperand(0)); 2282 }); 2283 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; 2284 } 2285 if (ExitingValues) 2286 UnrollCount /= ExitingValues; 2287 if (UnrollCount <= 1) 2288 return; 2289 } 2290 2291 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 2292 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n"); 2293 2294 UP.Partial = true; 2295 UP.Runtime = true; 2296 UP.UnrollRemainder = true; 2297 UP.DefaultUnrollRuntimeCount = UnrollCount; 2298 UP.UnrollAndJam = true; 2299 UP.UnrollAndJamInnerLoopThreshold = 60; 2300 2301 // Force unrolling small loops can be very useful because of the branch 2302 // taken cost of the backedge. 2303 if (Cost < 12) 2304 UP.Force = true; 2305 } 2306 2307 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2308 TTI::PeelingPreferences &PP) { 2309 BaseT::getPeelingPreferences(L, SE, PP); 2310 } 2311 2312 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty, 2313 TTI::ReductionFlags Flags) const { 2314 if (!ST->hasMVEIntegerOps()) 2315 return false; 2316 2317 unsigned ScalarBits = Ty->getScalarSizeInBits(); 2318 switch (Opcode) { 2319 case Instruction::Add: 2320 return ScalarBits <= 64; 2321 default: 2322 return false; 2323 } 2324 } 2325 2326 bool ARMTTIImpl::preferPredicatedReductionSelect( 2327 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { 2328 if (!ST->hasMVEIntegerOps()) 2329 return false; 2330 return true; 2331 } 2332