1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARM.h"
14 #include "ARMCallLowering.h"
15 #include "ARMInstructionSelector.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMSubtarget.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "ARMTargetTransformInfo.h"
22 #include "MCTargetDesc/ARMMCTargetDesc.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
29 #include "llvm/CodeGen/GlobalISel/GISelAccessor.h"
30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
35 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
36 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/TargetParser.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include "llvm/Transforms/Scalar.h"
52 #include <cassert>
53 #include <memory>
54 #include <string>
55 
56 using namespace llvm;
57 
58 static cl::opt<bool>
59 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
60                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
61                    cl::init(false));
62 
63 static cl::opt<bool>
64 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
65                  cl::desc("Run SimplifyCFG after expanding atomic operations"
66                           " to make use of cmpxchg flow-based information"),
67                  cl::init(true));
68 
69 static cl::opt<bool>
70 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
71                       cl::desc("Enable ARM load/store optimization pass"),
72                       cl::init(true));
73 
74 // FIXME: Unify control over GlobalMerge.
75 static cl::opt<cl::boolOrDefault>
76 EnableGlobalMerge("arm-global-merge", cl::Hidden,
77                   cl::desc("Enable the global merge pass"));
78 
79 extern "C" void LLVMInitializeARMTarget() {
80   // Register the target.
81   RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
82   RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
83   RegisterTargetMachine<ThumbLETargetMachine> A(getTheThumbLETarget());
84   RegisterTargetMachine<ThumbBETargetMachine> B(getTheThumbBETarget());
85 
86   PassRegistry &Registry = *PassRegistry::getPassRegistry();
87   initializeGlobalISel(Registry);
88   initializeARMLoadStoreOptPass(Registry);
89   initializeARMPreAllocLoadStoreOptPass(Registry);
90   initializeARMConstantIslandsPass(Registry);
91 }
92 
93 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
94   if (TT.isOSBinFormatMachO())
95     return llvm::make_unique<TargetLoweringObjectFileMachO>();
96   if (TT.isOSWindows())
97     return llvm::make_unique<TargetLoweringObjectFileCOFF>();
98   return llvm::make_unique<ARMElfTargetObjectFile>();
99 }
100 
101 static ARMBaseTargetMachine::ARMABI
102 computeTargetABI(const Triple &TT, StringRef CPU,
103                  const TargetOptions &Options) {
104   if (Options.MCOptions.getABIName() == "aapcs16")
105     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
106   else if (Options.MCOptions.getABIName().startswith("aapcs"))
107     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
108   else if (Options.MCOptions.getABIName().startswith("apcs"))
109     return ARMBaseTargetMachine::ARM_ABI_APCS;
110 
111   assert(Options.MCOptions.getABIName().empty() &&
112          "Unknown target-abi option!");
113 
114   ARMBaseTargetMachine::ARMABI TargetABI =
115       ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
116 
117   unsigned ArchKind = ARM::parseCPUArch(CPU);
118   StringRef ArchName = ARM::getArchName(ArchKind);
119   // FIXME: This is duplicated code from the front end and should be unified.
120   if (TT.isOSBinFormatMachO()) {
121     if (TT.getEnvironment() == Triple::EABI ||
122         (TT.getOS() == Triple::UnknownOS && TT.isOSBinFormatMachO()) ||
123         ARM::parseArchProfile(ArchName) == ARM::PK_M) {
124       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
125     } else if (TT.isWatchABI()) {
126       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS16;
127     } else {
128       TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
129     }
130   } else if (TT.isOSWindows()) {
131     // FIXME: this is invalid for WindowsCE
132     TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
133   } else {
134     // Select the default based on the platform.
135     switch (TT.getEnvironment()) {
136     case Triple::Android:
137     case Triple::GNUEABI:
138     case Triple::GNUEABIHF:
139     case Triple::MuslEABI:
140     case Triple::MuslEABIHF:
141     case Triple::EABIHF:
142     case Triple::EABI:
143       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
144       break;
145     case Triple::GNU:
146       TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
147       break;
148     default:
149       if (TT.isOSNetBSD())
150         TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
151       else
152         TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
153       break;
154     }
155   }
156 
157   return TargetABI;
158 }
159 
160 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
161                                      const TargetOptions &Options,
162                                      bool isLittle) {
163   auto ABI = computeTargetABI(TT, CPU, Options);
164   std::string Ret;
165 
166   if (isLittle)
167     // Little endian.
168     Ret += "e";
169   else
170     // Big endian.
171     Ret += "E";
172 
173   Ret += DataLayout::getManglingComponent(TT);
174 
175   // Pointers are 32 bits and aligned to 32 bits.
176   Ret += "-p:32:32";
177 
178   // ABIs other than APCS have 64 bit integers with natural alignment.
179   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
180     Ret += "-i64:64";
181 
182   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
183   // bits, others to 64 bits. We always try to align to 64 bits.
184   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
185     Ret += "-f64:32:64";
186 
187   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
188   // to 64. We always ty to give them natural alignment.
189   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
190     Ret += "-v64:32:64-v128:32:128";
191   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
192     Ret += "-v128:64:128";
193 
194   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
195   // particular hardware support on 32-bit ARM).
196   Ret += "-a:0:32";
197 
198   // Integer registers are 32 bits.
199   Ret += "-n32";
200 
201   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
202   // aligned everywhere else.
203   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
204     Ret += "-S128";
205   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
206     Ret += "-S64";
207   else
208     Ret += "-S32";
209 
210   return Ret;
211 }
212 
213 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
214                                            Optional<Reloc::Model> RM) {
215   if (!RM.hasValue())
216     // Default relocation model on Darwin is PIC.
217     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
218 
219   if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
220     assert(TT.isOSBinFormatELF() &&
221            "ROPI/RWPI currently only supported for ELF");
222 
223   // DynamicNoPIC is only used on darwin.
224   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
225     return Reloc::Static;
226 
227   return *RM;
228 }
229 
230 /// Create an ARM architecture model.
231 ///
232 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
233                                            StringRef CPU, StringRef FS,
234                                            const TargetOptions &Options,
235                                            Optional<Reloc::Model> RM,
236                                            CodeModel::Model CM,
237                                            CodeGenOpt::Level OL, bool isLittle)
238     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
239                         CPU, FS, Options, getEffectiveRelocModel(TT, RM), CM,
240                         OL),
241       TargetABI(computeTargetABI(TT, CPU, Options)),
242       TLOF(createTLOF(getTargetTriple())),
243       Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
244 
245   // Default to triple-appropriate float ABI
246   if (Options.FloatABIType == FloatABI::Default)
247     this->Options.FloatABIType =
248         Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
249 
250   // Default to triple-appropriate EABI
251   if (Options.EABIVersion == EABI::Default ||
252       Options.EABIVersion == EABI::Unknown) {
253     // musl is compatible with glibc with regard to EABI version
254     if (Subtarget.isTargetGNUAEABI() || Subtarget.isTargetMuslAEABI())
255       this->Options.EABIVersion = EABI::GNU;
256     else
257       this->Options.EABIVersion = EABI::EABI5;
258   }
259 }
260 
261 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
262 
263 #ifdef LLVM_BUILD_GLOBAL_ISEL
264 namespace {
265 
266 struct ARMGISelActualAccessor : public GISelAccessor {
267   std::unique_ptr<CallLowering> CallLoweringInfo;
268   std::unique_ptr<InstructionSelector> InstSelector;
269   std::unique_ptr<LegalizerInfo> Legalizer;
270   std::unique_ptr<RegisterBankInfo> RegBankInfo;
271 
272   const CallLowering *getCallLowering() const override {
273     return CallLoweringInfo.get();
274   }
275 
276   const InstructionSelector *getInstructionSelector() const override {
277     return InstSelector.get();
278   }
279 
280   const LegalizerInfo *getLegalizerInfo() const override {
281     return Legalizer.get();
282   }
283 
284   const RegisterBankInfo *getRegBankInfo() const override {
285     return RegBankInfo.get();
286   }
287 };
288 
289 } // end anonymous namespace
290 #endif
291 
292 const ARMSubtarget *
293 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
294   Attribute CPUAttr = F.getFnAttribute("target-cpu");
295   Attribute FSAttr = F.getFnAttribute("target-features");
296 
297   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
298                         ? CPUAttr.getValueAsString().str()
299                         : TargetCPU;
300   std::string FS = !FSAttr.hasAttribute(Attribute::None)
301                        ? FSAttr.getValueAsString().str()
302                        : TargetFS;
303 
304   // FIXME: This is related to the code below to reset the target options,
305   // we need to know whether or not the soft float flag is set on the
306   // function before we can generate a subtarget. We also need to use
307   // it as a key for the subtarget since that can be the only difference
308   // between two functions.
309   bool SoftFloat =
310       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
311   // If the soft float attribute is set on the function turn on the soft float
312   // subtarget feature.
313   if (SoftFloat)
314     FS += FS.empty() ? "+soft-float" : ",+soft-float";
315 
316   auto &I = SubtargetMap[CPU + FS];
317   if (!I) {
318     // This needs to be done before we create a new subtarget since any
319     // creation will depend on the TM and the code generation flags on the
320     // function that reside in TargetOptions.
321     resetTargetOptions(F);
322     I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
323 
324 #ifndef LLVM_BUILD_GLOBAL_ISEL
325     GISelAccessor *GISel = new GISelAccessor();
326 #else
327     ARMGISelActualAccessor *GISel = new ARMGISelActualAccessor();
328     GISel->CallLoweringInfo.reset(new ARMCallLowering(*I->getTargetLowering()));
329     GISel->Legalizer.reset(new ARMLegalizerInfo(*I));
330 
331     auto *RBI = new ARMRegisterBankInfo(*I->getRegisterInfo());
332 
333     // FIXME: At this point, we can't rely on Subtarget having RBI.
334     // It's awkward to mix passing RBI and the Subtarget; should we pass
335     // TII/TRI as well?
336     GISel->InstSelector.reset(new ARMInstructionSelector(*I, *RBI));
337 
338     GISel->RegBankInfo.reset(RBI);
339 #endif
340     I->setGISelAccessor(*GISel);
341   }
342   return I.get();
343 }
344 
345 TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() {
346   return TargetIRAnalysis([this](const Function &F) {
347     return TargetTransformInfo(ARMTTIImpl(this, F));
348   });
349 }
350 
351 void ARMTargetMachine::anchor() {}
352 
353 ARMTargetMachine::ARMTargetMachine(const Target &T, const Triple &TT,
354                                    StringRef CPU, StringRef FS,
355                                    const TargetOptions &Options,
356                                    Optional<Reloc::Model> RM,
357                                    CodeModel::Model CM, CodeGenOpt::Level OL,
358                                    bool isLittle)
359     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
360   initAsmInfo();
361   if (!Subtarget.hasARMOps())
362     report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
363                        "support ARM mode execution!");
364 }
365 
366 void ARMLETargetMachine::anchor() {}
367 
368 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
369                                        StringRef CPU, StringRef FS,
370                                        const TargetOptions &Options,
371                                        Optional<Reloc::Model> RM,
372                                        CodeModel::Model CM,
373                                        CodeGenOpt::Level OL)
374     : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
375 
376 void ARMBETargetMachine::anchor() {}
377 
378 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
379                                        StringRef CPU, StringRef FS,
380                                        const TargetOptions &Options,
381                                        Optional<Reloc::Model> RM,
382                                        CodeModel::Model CM,
383                                        CodeGenOpt::Level OL)
384     : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
385 
386 void ThumbTargetMachine::anchor() {}
387 
388 ThumbTargetMachine::ThumbTargetMachine(const Target &T, const Triple &TT,
389                                        StringRef CPU, StringRef FS,
390                                        const TargetOptions &Options,
391                                        Optional<Reloc::Model> RM,
392                                        CodeModel::Model CM,
393                                        CodeGenOpt::Level OL, bool isLittle)
394     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
395   initAsmInfo();
396 }
397 
398 void ThumbLETargetMachine::anchor() {}
399 
400 ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, const Triple &TT,
401                                            StringRef CPU, StringRef FS,
402                                            const TargetOptions &Options,
403                                            Optional<Reloc::Model> RM,
404                                            CodeModel::Model CM,
405                                            CodeGenOpt::Level OL)
406     : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
407 
408 void ThumbBETargetMachine::anchor() {}
409 
410 ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, const Triple &TT,
411                                            StringRef CPU, StringRef FS,
412                                            const TargetOptions &Options,
413                                            Optional<Reloc::Model> RM,
414                                            CodeModel::Model CM,
415                                            CodeGenOpt::Level OL)
416     : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
417 
418 namespace {
419 
420 /// ARM Code Generator Pass Configuration Options.
421 class ARMPassConfig : public TargetPassConfig {
422 public:
423   ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
424     : TargetPassConfig(TM, PM) {}
425 
426   ARMBaseTargetMachine &getARMTargetMachine() const {
427     return getTM<ARMBaseTargetMachine>();
428   }
429 
430   void addIRPasses() override;
431   bool addPreISel() override;
432   bool addInstSelector() override;
433 #ifdef LLVM_BUILD_GLOBAL_ISEL
434   bool addIRTranslator() override;
435   bool addLegalizeMachineIR() override;
436   bool addRegBankSelect() override;
437   bool addGlobalInstructionSelect() override;
438 #endif
439   void addPreRegAlloc() override;
440   void addPreSched2() override;
441   void addPreEmitPass() override;
442 };
443 
444 } // end anonymous namespace
445 
446 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
447   return new ARMPassConfig(this, PM);
448 }
449 
450 void ARMPassConfig::addIRPasses() {
451   if (TM->Options.ThreadModel == ThreadModel::Single)
452     addPass(createLowerAtomicPass());
453   else
454     addPass(createAtomicExpandPass(TM));
455 
456   // Cmpxchg instructions are often used with a subsequent comparison to
457   // determine whether it succeeded. We can exploit existing control-flow in
458   // ldrex/strex loops to simplify this, but it needs tidying up.
459   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
460     addPass(createCFGSimplificationPass(-1, [this](const Function &F) {
461       const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
462       return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
463     }));
464 
465   TargetPassConfig::addIRPasses();
466 
467   // Match interleaved memory accesses to ldN/stN intrinsics.
468   if (TM->getOptLevel() != CodeGenOpt::None)
469     addPass(createInterleavedAccessPass(TM));
470 }
471 
472 bool ARMPassConfig::addPreISel() {
473   if ((TM->getOptLevel() != CodeGenOpt::None &&
474        EnableGlobalMerge == cl::BOU_UNSET) ||
475       EnableGlobalMerge == cl::BOU_TRUE) {
476     // FIXME: This is using the thumb1 only constant value for
477     // maximal global offset for merging globals. We may want
478     // to look into using the old value for non-thumb1 code of
479     // 4095 based on the TargetMachine, but this starts to become
480     // tricky when doing code gen per function.
481     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
482                                (EnableGlobalMerge == cl::BOU_UNSET);
483     // Merging of extern globals is enabled by default on non-Mach-O as we
484     // expect it to be generally either beneficial or harmless. On Mach-O it
485     // is disabled as we emit the .subsections_via_symbols directive which
486     // means that merging extern globals is not safe.
487     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
488     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
489                                   MergeExternalByDefault));
490   }
491 
492   return false;
493 }
494 
495 bool ARMPassConfig::addInstSelector() {
496   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
497   return false;
498 }
499 
500 #ifdef LLVM_BUILD_GLOBAL_ISEL
501 bool ARMPassConfig::addIRTranslator() {
502   addPass(new IRTranslator());
503   return false;
504 }
505 
506 bool ARMPassConfig::addLegalizeMachineIR() {
507   addPass(new Legalizer());
508   return false;
509 }
510 
511 bool ARMPassConfig::addRegBankSelect() {
512   addPass(new RegBankSelect());
513   return false;
514 }
515 
516 bool ARMPassConfig::addGlobalInstructionSelect() {
517   addPass(new InstructionSelect());
518   return false;
519 }
520 #endif
521 
522 void ARMPassConfig::addPreRegAlloc() {
523   if (getOptLevel() != CodeGenOpt::None) {
524     addPass(createMLxExpansionPass());
525 
526     if (EnableARMLoadStoreOpt)
527       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
528 
529     if (!DisableA15SDOptimization)
530       addPass(createA15SDOptimizerPass());
531   }
532 }
533 
534 void ARMPassConfig::addPreSched2() {
535   if (getOptLevel() != CodeGenOpt::None) {
536     if (EnableARMLoadStoreOpt)
537       addPass(createARMLoadStoreOptimizationPass());
538 
539     addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
540   }
541 
542   // Expand some pseudo instructions into multiple instructions to allow
543   // proper scheduling.
544   addPass(createARMExpandPseudoPass());
545 
546   if (getOptLevel() != CodeGenOpt::None) {
547     // in v8, IfConversion depends on Thumb instruction widths
548     addPass(createThumb2SizeReductionPass([this](const Function &F) {
549       return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
550     }));
551 
552     addPass(createIfConverter([](const MachineFunction &MF) {
553       return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
554     }));
555   }
556   addPass(createThumb2ITBlockPass());
557 }
558 
559 void ARMPassConfig::addPreEmitPass() {
560   addPass(createThumb2SizeReductionPass());
561 
562   // Constant island pass work on unbundled instructions.
563   addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
564     return MF.getSubtarget<ARMSubtarget>().isThumb2();
565   }));
566 
567   // Don't optimize barriers at -O0.
568   if (getOptLevel() != CodeGenOpt::None)
569     addPass(createARMOptimizeBarriersPass());
570 
571   addPass(createARMConstantIslandPass());
572 }
573