1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARM.h"
14 #include "ARMCallLowering.h"
15 #include "ARMInstructionSelector.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMSubtarget.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "ARMTargetTransformInfo.h"
22 #include "MCTargetDesc/ARMMCTargetDesc.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
29 #include "llvm/CodeGen/GlobalISel/GISelAccessor.h"
30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
35 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
36 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/TargetParser.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include "llvm/Transforms/Scalar.h"
52 #include <cassert>
53 #include <memory>
54 #include <string>
55 
56 using namespace llvm;
57 
58 static cl::opt<bool>
59 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
60                    cl::desc("Inhibit optimization of S->D register accesses on A15"),
61                    cl::init(false));
62 
63 static cl::opt<bool>
64 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
65                  cl::desc("Run SimplifyCFG after expanding atomic operations"
66                           " to make use of cmpxchg flow-based information"),
67                  cl::init(true));
68 
69 static cl::opt<bool>
70 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
71                       cl::desc("Enable ARM load/store optimization pass"),
72                       cl::init(true));
73 
74 // FIXME: Unify control over GlobalMerge.
75 static cl::opt<cl::boolOrDefault>
76 EnableGlobalMerge("arm-global-merge", cl::Hidden,
77                   cl::desc("Enable the global merge pass"));
78 
79 extern "C" void LLVMInitializeARMTarget() {
80   // Register the target.
81   RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
82   RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
83   RegisterTargetMachine<ThumbLETargetMachine> A(getTheThumbLETarget());
84   RegisterTargetMachine<ThumbBETargetMachine> B(getTheThumbBETarget());
85 
86   PassRegistry &Registry = *PassRegistry::getPassRegistry();
87   initializeGlobalISel(Registry);
88   initializeARMLoadStoreOptPass(Registry);
89   initializeARMPreAllocLoadStoreOptPass(Registry);
90 }
91 
92 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
93   if (TT.isOSBinFormatMachO())
94     return llvm::make_unique<TargetLoweringObjectFileMachO>();
95   if (TT.isOSWindows())
96     return llvm::make_unique<TargetLoweringObjectFileCOFF>();
97   return llvm::make_unique<ARMElfTargetObjectFile>();
98 }
99 
100 static ARMBaseTargetMachine::ARMABI
101 computeTargetABI(const Triple &TT, StringRef CPU,
102                  const TargetOptions &Options) {
103   if (Options.MCOptions.getABIName() == "aapcs16")
104     return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
105   else if (Options.MCOptions.getABIName().startswith("aapcs"))
106     return ARMBaseTargetMachine::ARM_ABI_AAPCS;
107   else if (Options.MCOptions.getABIName().startswith("apcs"))
108     return ARMBaseTargetMachine::ARM_ABI_APCS;
109 
110   assert(Options.MCOptions.getABIName().empty() &&
111          "Unknown target-abi option!");
112 
113   ARMBaseTargetMachine::ARMABI TargetABI =
114       ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
115 
116   unsigned ArchKind = ARM::parseCPUArch(CPU);
117   StringRef ArchName = ARM::getArchName(ArchKind);
118   // FIXME: This is duplicated code from the front end and should be unified.
119   if (TT.isOSBinFormatMachO()) {
120     if (TT.getEnvironment() == Triple::EABI ||
121         (TT.getOS() == Triple::UnknownOS && TT.isOSBinFormatMachO()) ||
122         ARM::parseArchProfile(ArchName) == ARM::PK_M) {
123       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
124     } else if (TT.isWatchABI()) {
125       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS16;
126     } else {
127       TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
128     }
129   } else if (TT.isOSWindows()) {
130     // FIXME: this is invalid for WindowsCE
131     TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
132   } else {
133     // Select the default based on the platform.
134     switch (TT.getEnvironment()) {
135     case Triple::Android:
136     case Triple::GNUEABI:
137     case Triple::GNUEABIHF:
138     case Triple::MuslEABI:
139     case Triple::MuslEABIHF:
140     case Triple::EABIHF:
141     case Triple::EABI:
142       TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
143       break;
144     case Triple::GNU:
145       TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
146       break;
147     default:
148       if (TT.isOSNetBSD())
149         TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
150       else
151         TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
152       break;
153     }
154   }
155 
156   return TargetABI;
157 }
158 
159 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
160                                      const TargetOptions &Options,
161                                      bool isLittle) {
162   auto ABI = computeTargetABI(TT, CPU, Options);
163   std::string Ret;
164 
165   if (isLittle)
166     // Little endian.
167     Ret += "e";
168   else
169     // Big endian.
170     Ret += "E";
171 
172   Ret += DataLayout::getManglingComponent(TT);
173 
174   // Pointers are 32 bits and aligned to 32 bits.
175   Ret += "-p:32:32";
176 
177   // ABIs other than APCS have 64 bit integers with natural alignment.
178   if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
179     Ret += "-i64:64";
180 
181   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
182   // bits, others to 64 bits. We always try to align to 64 bits.
183   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
184     Ret += "-f64:32:64";
185 
186   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
187   // to 64. We always ty to give them natural alignment.
188   if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
189     Ret += "-v64:32:64-v128:32:128";
190   else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
191     Ret += "-v128:64:128";
192 
193   // Try to align aggregates to 32 bits (the default is 64 bits, which has no
194   // particular hardware support on 32-bit ARM).
195   Ret += "-a:0:32";
196 
197   // Integer registers are 32 bits.
198   Ret += "-n32";
199 
200   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
201   // aligned everywhere else.
202   if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
203     Ret += "-S128";
204   else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
205     Ret += "-S64";
206   else
207     Ret += "-S32";
208 
209   return Ret;
210 }
211 
212 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
213                                            Optional<Reloc::Model> RM) {
214   if (!RM.hasValue())
215     // Default relocation model on Darwin is PIC.
216     return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
217 
218   if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
219     assert(TT.isOSBinFormatELF() &&
220            "ROPI/RWPI currently only supported for ELF");
221 
222   // DynamicNoPIC is only used on darwin.
223   if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
224     return Reloc::Static;
225 
226   return *RM;
227 }
228 
229 /// Create an ARM architecture model.
230 ///
231 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
232                                            StringRef CPU, StringRef FS,
233                                            const TargetOptions &Options,
234                                            Optional<Reloc::Model> RM,
235                                            CodeModel::Model CM,
236                                            CodeGenOpt::Level OL, bool isLittle)
237     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
238                         CPU, FS, Options, getEffectiveRelocModel(TT, RM), CM,
239                         OL),
240       TargetABI(computeTargetABI(TT, CPU, Options)),
241       TLOF(createTLOF(getTargetTriple())),
242       Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
243 
244   // Default to triple-appropriate float ABI
245   if (Options.FloatABIType == FloatABI::Default)
246     this->Options.FloatABIType =
247         Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
248 
249   // Default to triple-appropriate EABI
250   if (Options.EABIVersion == EABI::Default ||
251       Options.EABIVersion == EABI::Unknown) {
252     // musl is compatible with glibc with regard to EABI version
253     if (Subtarget.isTargetGNUAEABI() || Subtarget.isTargetMuslAEABI())
254       this->Options.EABIVersion = EABI::GNU;
255     else
256       this->Options.EABIVersion = EABI::EABI5;
257   }
258 }
259 
260 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
261 
262 #ifdef LLVM_BUILD_GLOBAL_ISEL
263 namespace {
264 
265 struct ARMGISelActualAccessor : public GISelAccessor {
266   std::unique_ptr<CallLowering> CallLoweringInfo;
267   std::unique_ptr<InstructionSelector> InstSelector;
268   std::unique_ptr<LegalizerInfo> Legalizer;
269   std::unique_ptr<RegisterBankInfo> RegBankInfo;
270 
271   const CallLowering *getCallLowering() const override {
272     return CallLoweringInfo.get();
273   }
274 
275   const InstructionSelector *getInstructionSelector() const override {
276     return InstSelector.get();
277   }
278 
279   const LegalizerInfo *getLegalizerInfo() const override {
280     return Legalizer.get();
281   }
282 
283   const RegisterBankInfo *getRegBankInfo() const override {
284     return RegBankInfo.get();
285   }
286 };
287 
288 } // end anonymous namespace
289 #endif
290 
291 const ARMSubtarget *
292 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
293   Attribute CPUAttr = F.getFnAttribute("target-cpu");
294   Attribute FSAttr = F.getFnAttribute("target-features");
295 
296   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
297                         ? CPUAttr.getValueAsString().str()
298                         : TargetCPU;
299   std::string FS = !FSAttr.hasAttribute(Attribute::None)
300                        ? FSAttr.getValueAsString().str()
301                        : TargetFS;
302 
303   // FIXME: This is related to the code below to reset the target options,
304   // we need to know whether or not the soft float flag is set on the
305   // function before we can generate a subtarget. We also need to use
306   // it as a key for the subtarget since that can be the only difference
307   // between two functions.
308   bool SoftFloat =
309       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
310   // If the soft float attribute is set on the function turn on the soft float
311   // subtarget feature.
312   if (SoftFloat)
313     FS += FS.empty() ? "+soft-float" : ",+soft-float";
314 
315   auto &I = SubtargetMap[CPU + FS];
316   if (!I) {
317     // This needs to be done before we create a new subtarget since any
318     // creation will depend on the TM and the code generation flags on the
319     // function that reside in TargetOptions.
320     resetTargetOptions(F);
321     I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
322 
323 #ifndef LLVM_BUILD_GLOBAL_ISEL
324     GISelAccessor *GISel = new GISelAccessor();
325 #else
326     ARMGISelActualAccessor *GISel = new ARMGISelActualAccessor();
327     GISel->CallLoweringInfo.reset(new ARMCallLowering(*I->getTargetLowering()));
328     GISel->Legalizer.reset(new ARMLegalizerInfo());
329 
330     auto *RBI = new ARMRegisterBankInfo(*I->getRegisterInfo());
331 
332     // FIXME: At this point, we can't rely on Subtarget having RBI.
333     // It's awkward to mix passing RBI and the Subtarget; should we pass
334     // TII/TRI as well?
335     GISel->InstSelector.reset(new ARMInstructionSelector(*I, *RBI));
336 
337     GISel->RegBankInfo.reset(RBI);
338 #endif
339     I->setGISelAccessor(*GISel);
340   }
341   return I.get();
342 }
343 
344 TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() {
345   return TargetIRAnalysis([this](const Function &F) {
346     return TargetTransformInfo(ARMTTIImpl(this, F));
347   });
348 }
349 
350 void ARMTargetMachine::anchor() {}
351 
352 ARMTargetMachine::ARMTargetMachine(const Target &T, const Triple &TT,
353                                    StringRef CPU, StringRef FS,
354                                    const TargetOptions &Options,
355                                    Optional<Reloc::Model> RM,
356                                    CodeModel::Model CM, CodeGenOpt::Level OL,
357                                    bool isLittle)
358     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
359   initAsmInfo();
360   if (!Subtarget.hasARMOps())
361     report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
362                        "support ARM mode execution!");
363 }
364 
365 void ARMLETargetMachine::anchor() {}
366 
367 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
368                                        StringRef CPU, StringRef FS,
369                                        const TargetOptions &Options,
370                                        Optional<Reloc::Model> RM,
371                                        CodeModel::Model CM,
372                                        CodeGenOpt::Level OL)
373     : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
374 
375 void ARMBETargetMachine::anchor() {}
376 
377 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
378                                        StringRef CPU, StringRef FS,
379                                        const TargetOptions &Options,
380                                        Optional<Reloc::Model> RM,
381                                        CodeModel::Model CM,
382                                        CodeGenOpt::Level OL)
383     : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
384 
385 void ThumbTargetMachine::anchor() {}
386 
387 ThumbTargetMachine::ThumbTargetMachine(const Target &T, const Triple &TT,
388                                        StringRef CPU, StringRef FS,
389                                        const TargetOptions &Options,
390                                        Optional<Reloc::Model> RM,
391                                        CodeModel::Model CM,
392                                        CodeGenOpt::Level OL, bool isLittle)
393     : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
394   initAsmInfo();
395 }
396 
397 void ThumbLETargetMachine::anchor() {}
398 
399 ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, const Triple &TT,
400                                            StringRef CPU, StringRef FS,
401                                            const TargetOptions &Options,
402                                            Optional<Reloc::Model> RM,
403                                            CodeModel::Model CM,
404                                            CodeGenOpt::Level OL)
405     : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
406 
407 void ThumbBETargetMachine::anchor() {}
408 
409 ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, const Triple &TT,
410                                            StringRef CPU, StringRef FS,
411                                            const TargetOptions &Options,
412                                            Optional<Reloc::Model> RM,
413                                            CodeModel::Model CM,
414                                            CodeGenOpt::Level OL)
415     : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
416 
417 namespace {
418 
419 /// ARM Code Generator Pass Configuration Options.
420 class ARMPassConfig : public TargetPassConfig {
421 public:
422   ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
423     : TargetPassConfig(TM, PM) {}
424 
425   ARMBaseTargetMachine &getARMTargetMachine() const {
426     return getTM<ARMBaseTargetMachine>();
427   }
428 
429   void addIRPasses() override;
430   bool addPreISel() override;
431   bool addInstSelector() override;
432 #ifdef LLVM_BUILD_GLOBAL_ISEL
433   bool addIRTranslator() override;
434   bool addLegalizeMachineIR() override;
435   bool addRegBankSelect() override;
436   bool addGlobalInstructionSelect() override;
437 #endif
438   void addPreRegAlloc() override;
439   void addPreSched2() override;
440   void addPreEmitPass() override;
441 };
442 
443 } // end anonymous namespace
444 
445 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
446   return new ARMPassConfig(this, PM);
447 }
448 
449 void ARMPassConfig::addIRPasses() {
450   if (TM->Options.ThreadModel == ThreadModel::Single)
451     addPass(createLowerAtomicPass());
452   else
453     addPass(createAtomicExpandPass(TM));
454 
455   // Cmpxchg instructions are often used with a subsequent comparison to
456   // determine whether it succeeded. We can exploit existing control-flow in
457   // ldrex/strex loops to simplify this, but it needs tidying up.
458   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
459     addPass(createCFGSimplificationPass(-1, [this](const Function &F) {
460       const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
461       return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
462     }));
463 
464   TargetPassConfig::addIRPasses();
465 
466   // Match interleaved memory accesses to ldN/stN intrinsics.
467   if (TM->getOptLevel() != CodeGenOpt::None)
468     addPass(createInterleavedAccessPass(TM));
469 }
470 
471 bool ARMPassConfig::addPreISel() {
472   if ((TM->getOptLevel() != CodeGenOpt::None &&
473        EnableGlobalMerge == cl::BOU_UNSET) ||
474       EnableGlobalMerge == cl::BOU_TRUE) {
475     // FIXME: This is using the thumb1 only constant value for
476     // maximal global offset for merging globals. We may want
477     // to look into using the old value for non-thumb1 code of
478     // 4095 based on the TargetMachine, but this starts to become
479     // tricky when doing code gen per function.
480     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
481                                (EnableGlobalMerge == cl::BOU_UNSET);
482     // Merging of extern globals is enabled by default on non-Mach-O as we
483     // expect it to be generally either beneficial or harmless. On Mach-O it
484     // is disabled as we emit the .subsections_via_symbols directive which
485     // means that merging extern globals is not safe.
486     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
487     addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
488                                   MergeExternalByDefault));
489   }
490 
491   return false;
492 }
493 
494 bool ARMPassConfig::addInstSelector() {
495   addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
496   return false;
497 }
498 
499 #ifdef LLVM_BUILD_GLOBAL_ISEL
500 bool ARMPassConfig::addIRTranslator() {
501   addPass(new IRTranslator());
502   return false;
503 }
504 
505 bool ARMPassConfig::addLegalizeMachineIR() {
506   addPass(new Legalizer());
507   return false;
508 }
509 
510 bool ARMPassConfig::addRegBankSelect() {
511   addPass(new RegBankSelect());
512   return false;
513 }
514 
515 bool ARMPassConfig::addGlobalInstructionSelect() {
516   addPass(new InstructionSelect());
517   return false;
518 }
519 #endif
520 
521 void ARMPassConfig::addPreRegAlloc() {
522   if (getOptLevel() != CodeGenOpt::None) {
523     addPass(createMLxExpansionPass());
524 
525     if (EnableARMLoadStoreOpt)
526       addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
527 
528     if (!DisableA15SDOptimization)
529       addPass(createA15SDOptimizerPass());
530   }
531 }
532 
533 void ARMPassConfig::addPreSched2() {
534   if (getOptLevel() != CodeGenOpt::None) {
535     if (EnableARMLoadStoreOpt)
536       addPass(createARMLoadStoreOptimizationPass());
537 
538     addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
539   }
540 
541   // Expand some pseudo instructions into multiple instructions to allow
542   // proper scheduling.
543   addPass(createARMExpandPseudoPass());
544 
545   if (getOptLevel() != CodeGenOpt::None) {
546     // in v8, IfConversion depends on Thumb instruction widths
547     addPass(createThumb2SizeReductionPass([this](const Function &F) {
548       return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
549     }));
550 
551     addPass(createIfConverter([](const MachineFunction &MF) {
552       return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
553     }));
554   }
555   addPass(createThumb2ITBlockPass());
556 }
557 
558 void ARMPassConfig::addPreEmitPass() {
559   addPass(createThumb2SizeReductionPass());
560 
561   // Constant island pass work on unbundled instructions.
562   addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
563     return MF.getSubtarget<ARMSubtarget>().isThumb2();
564   }));
565 
566   // Don't optimize barriers at -O0.
567   if (getOptLevel() != CodeGenOpt::None)
568     addPass(createARMOptimizeBarriersPass());
569 
570   addPass(createARMConstantIslandPass());
571 }
572