1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "ARMTargetMachine.h" 13 #include "ARM.h" 14 #include "ARMMacroFusion.h" 15 #include "ARMSubtarget.h" 16 #include "ARMTargetObjectFile.h" 17 #include "ARMTargetTransformInfo.h" 18 #include "MCTargetDesc/ARMMCTargetDesc.h" 19 #include "TargetInfo/ARMTargetInfo.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/ExecutionDomainFix.h" 26 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/TargetParser.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include "llvm/Transforms/Scalar.h" 51 #include <cassert> 52 #include <memory> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> 58 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 59 cl::desc("Inhibit optimization of S->D register accesses on A15"), 60 cl::init(false)); 61 62 static cl::opt<bool> 63 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 64 cl::desc("Run SimplifyCFG after expanding atomic operations" 65 " to make use of cmpxchg flow-based information"), 66 cl::init(true)); 67 68 static cl::opt<bool> 69 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 70 cl::desc("Enable ARM load/store optimization pass"), 71 cl::init(true)); 72 73 // FIXME: Unify control over GlobalMerge. 74 static cl::opt<cl::boolOrDefault> 75 EnableGlobalMerge("arm-global-merge", cl::Hidden, 76 cl::desc("Enable the global merge pass")); 77 78 namespace llvm { 79 void initializeARMExecutionDomainFixPass(PassRegistry&); 80 } 81 82 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() { 83 // Register the target. 84 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget()); 85 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget()); 86 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget()); 87 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget()); 88 89 PassRegistry &Registry = *PassRegistry::getPassRegistry(); 90 initializeGlobalISel(Registry); 91 initializeARMLoadStoreOptPass(Registry); 92 initializeARMPreAllocLoadStoreOptPass(Registry); 93 initializeARMParallelDSPPass(Registry); 94 initializeARMConstantIslandsPass(Registry); 95 initializeARMExecutionDomainFixPass(Registry); 96 initializeARMExpandPseudoPass(Registry); 97 initializeThumb2SizeReducePass(Registry); 98 initializeMVEVPTBlockPass(Registry); 99 initializeMVETPAndVPTOptimisationsPass(Registry); 100 initializeMVETailPredicationPass(Registry); 101 initializeARMLowOverheadLoopsPass(Registry); 102 initializeARMBlockPlacementPass(Registry); 103 initializeMVEGatherScatterLoweringPass(Registry); 104 initializeARMSLSHardeningPass(Registry); 105 initializeMVELaneInterleavingPass(Registry); 106 } 107 108 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 109 if (TT.isOSBinFormatMachO()) 110 return std::make_unique<TargetLoweringObjectFileMachO>(); 111 if (TT.isOSWindows()) 112 return std::make_unique<TargetLoweringObjectFileCOFF>(); 113 return std::make_unique<ARMElfTargetObjectFile>(); 114 } 115 116 static ARMBaseTargetMachine::ARMABI 117 computeTargetABI(const Triple &TT, StringRef CPU, 118 const TargetOptions &Options) { 119 StringRef ABIName = Options.MCOptions.getABIName(); 120 121 if (ABIName.empty()) 122 ABIName = ARM::computeDefaultTargetABI(TT, CPU); 123 124 if (ABIName == "aapcs16") 125 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 126 else if (ABIName.startswith("aapcs")) 127 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 128 else if (ABIName.startswith("apcs")) 129 return ARMBaseTargetMachine::ARM_ABI_APCS; 130 131 llvm_unreachable("Unhandled/unknown ABI Name!"); 132 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 133 } 134 135 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 136 const TargetOptions &Options, 137 bool isLittle) { 138 auto ABI = computeTargetABI(TT, CPU, Options); 139 std::string Ret; 140 141 if (isLittle) 142 // Little endian. 143 Ret += "e"; 144 else 145 // Big endian. 146 Ret += "E"; 147 148 Ret += DataLayout::getManglingComponent(TT); 149 150 // Pointers are 32 bits and aligned to 32 bits. 151 Ret += "-p:32:32"; 152 153 // Function pointers are aligned to 8 bits (because the LSB stores the 154 // ARM/Thumb state). 155 Ret += "-Fi8"; 156 157 // ABIs other than APCS have 64 bit integers with natural alignment. 158 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 159 Ret += "-i64:64"; 160 161 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 162 // bits, others to 64 bits. We always try to align to 64 bits. 163 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 164 Ret += "-f64:32:64"; 165 166 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 167 // to 64. We always ty to give them natural alignment. 168 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 169 Ret += "-v64:32:64-v128:32:128"; 170 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 171 Ret += "-v128:64:128"; 172 173 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 174 // particular hardware support on 32-bit ARM). 175 Ret += "-a:0:32"; 176 177 // Integer registers are 32 bits. 178 Ret += "-n32"; 179 180 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 181 // aligned everywhere else. 182 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 183 Ret += "-S128"; 184 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 185 Ret += "-S64"; 186 else 187 Ret += "-S32"; 188 189 return Ret; 190 } 191 192 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 193 Optional<Reloc::Model> RM) { 194 if (!RM.hasValue()) 195 // Default relocation model on Darwin is PIC. 196 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static; 197 198 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI) 199 assert(TT.isOSBinFormatELF() && 200 "ROPI/RWPI currently only supported for ELF"); 201 202 // DynamicNoPIC is only used on darwin. 203 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin()) 204 return Reloc::Static; 205 206 return *RM; 207 } 208 209 /// Create an ARM architecture model. 210 /// 211 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 212 StringRef CPU, StringRef FS, 213 const TargetOptions &Options, 214 Optional<Reloc::Model> RM, 215 Optional<CodeModel::Model> CM, 216 CodeGenOpt::Level OL, bool isLittle) 217 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, 218 CPU, FS, Options, getEffectiveRelocModel(TT, RM), 219 getEffectiveCodeModel(CM, CodeModel::Small), OL), 220 TargetABI(computeTargetABI(TT, CPU, Options)), 221 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) { 222 223 // Default to triple-appropriate float ABI 224 if (Options.FloatABIType == FloatABI::Default) { 225 if (isTargetHardFloat()) 226 this->Options.FloatABIType = FloatABI::Hard; 227 else 228 this->Options.FloatABIType = FloatABI::Soft; 229 } 230 231 // Default to triple-appropriate EABI 232 if (Options.EABIVersion == EABI::Default || 233 Options.EABIVersion == EABI::Unknown) { 234 // musl is compatible with glibc with regard to EABI version 235 if ((TargetTriple.getEnvironment() == Triple::GNUEABI || 236 TargetTriple.getEnvironment() == Triple::GNUEABIHF || 237 TargetTriple.getEnvironment() == Triple::MuslEABI || 238 TargetTriple.getEnvironment() == Triple::MuslEABIHF) && 239 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin())) 240 this->Options.EABIVersion = EABI::GNU; 241 else 242 this->Options.EABIVersion = EABI::EABI5; 243 } 244 245 if (TT.isOSBinFormatMachO()) { 246 this->Options.TrapUnreachable = true; 247 this->Options.NoTrapAfterNoreturn = true; 248 } 249 250 // ARM supports the debug entry values. 251 setSupportsDebugEntryValues(true); 252 253 initAsmInfo(); 254 255 // ARM supports the MachineOutliner. 256 setMachineOutliner(true); 257 setSupportsDefaultOutlining(true); 258 } 259 260 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default; 261 262 const ARMSubtarget * 263 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 264 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 265 Attribute FSAttr = F.getFnAttribute("target-features"); 266 267 std::string CPU = 268 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 269 std::string FS = 270 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 271 272 // FIXME: This is related to the code below to reset the target options, 273 // we need to know whether or not the soft float flag is set on the 274 // function before we can generate a subtarget. We also need to use 275 // it as a key for the subtarget since that can be the only difference 276 // between two functions. 277 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 278 // If the soft float attribute is set on the function turn on the soft float 279 // subtarget feature. 280 if (SoftFloat) 281 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 282 283 // Use the optminsize to identify the subtarget, but don't use it in the 284 // feature string. 285 std::string Key = CPU + FS; 286 if (F.hasMinSize()) 287 Key += "+minsize"; 288 289 auto &I = SubtargetMap[Key]; 290 if (!I) { 291 // This needs to be done before we create a new subtarget since any 292 // creation will depend on the TM and the code generation flags on the 293 // function that reside in TargetOptions. 294 resetTargetOptions(F); 295 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle, 296 F.hasMinSize()); 297 298 if (!I->isThumb() && !I->hasARMOps()) 299 F.getContext().emitError("Function '" + F.getName() + "' uses ARM " 300 "instructions, but the target does not support ARM mode execution."); 301 } 302 303 return I.get(); 304 } 305 306 TargetTransformInfo 307 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) { 308 return TargetTransformInfo(ARMTTIImpl(this, F)); 309 } 310 311 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 312 StringRef CPU, StringRef FS, 313 const TargetOptions &Options, 314 Optional<Reloc::Model> RM, 315 Optional<CodeModel::Model> CM, 316 CodeGenOpt::Level OL, bool JIT) 317 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 318 319 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 320 StringRef CPU, StringRef FS, 321 const TargetOptions &Options, 322 Optional<Reloc::Model> RM, 323 Optional<CodeModel::Model> CM, 324 CodeGenOpt::Level OL, bool JIT) 325 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 326 327 namespace { 328 329 /// ARM Code Generator Pass Configuration Options. 330 class ARMPassConfig : public TargetPassConfig { 331 public: 332 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM) 333 : TargetPassConfig(TM, PM) {} 334 335 ARMBaseTargetMachine &getARMTargetMachine() const { 336 return getTM<ARMBaseTargetMachine>(); 337 } 338 339 ScheduleDAGInstrs * 340 createMachineScheduler(MachineSchedContext *C) const override { 341 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 342 // add DAG Mutations here. 343 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 344 if (ST.hasFusion()) 345 DAG->addMutation(createARMMacroFusionDAGMutation()); 346 return DAG; 347 } 348 349 ScheduleDAGInstrs * 350 createPostMachineScheduler(MachineSchedContext *C) const override { 351 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 352 // add DAG Mutations here. 353 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 354 if (ST.hasFusion()) 355 DAG->addMutation(createARMMacroFusionDAGMutation()); 356 return DAG; 357 } 358 359 void addIRPasses() override; 360 void addCodeGenPrepare() override; 361 bool addPreISel() override; 362 bool addInstSelector() override; 363 bool addIRTranslator() override; 364 bool addLegalizeMachineIR() override; 365 bool addRegBankSelect() override; 366 bool addGlobalInstructionSelect() override; 367 void addPreRegAlloc() override; 368 void addPreSched2() override; 369 void addPreEmitPass() override; 370 void addPreEmitPass2() override; 371 372 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 373 }; 374 375 class ARMExecutionDomainFix : public ExecutionDomainFix { 376 public: 377 static char ID; 378 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {} 379 StringRef getPassName() const override { 380 return "ARM Execution Domain Fix"; 381 } 382 }; 383 char ARMExecutionDomainFix::ID; 384 385 } // end anonymous namespace 386 387 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix", 388 "ARM Execution Domain Fix", false, false) 389 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 390 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix", 391 "ARM Execution Domain Fix", false, false) 392 393 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 394 return new ARMPassConfig(*this, PM); 395 } 396 397 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const { 398 return getStandardCSEConfigForOpt(TM->getOptLevel()); 399 } 400 401 void ARMPassConfig::addIRPasses() { 402 if (TM->Options.ThreadModel == ThreadModel::Single) 403 addPass(createLowerAtomicPass()); 404 else 405 addPass(createAtomicExpandPass()); 406 407 // Cmpxchg instructions are often used with a subsequent comparison to 408 // determine whether it succeeded. We can exploit existing control-flow in 409 // ldrex/strex loops to simplify this, but it needs tidying up. 410 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 411 addPass(createCFGSimplificationPass( 412 SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true), 413 [this](const Function &F) { 414 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 415 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 416 })); 417 418 addPass(createMVEGatherScatterLoweringPass()); 419 addPass(createMVELaneInterleavingPass()); 420 421 TargetPassConfig::addIRPasses(); 422 423 // Run the parallel DSP pass. 424 if (getOptLevel() == CodeGenOpt::Aggressive) 425 addPass(createARMParallelDSPPass()); 426 427 // Match interleaved memory accesses to ldN/stN intrinsics. 428 if (TM->getOptLevel() != CodeGenOpt::None) 429 addPass(createInterleavedAccessPass()); 430 431 // Add Control Flow Guard checks. 432 if (TM->getTargetTriple().isOSWindows()) 433 addPass(createCFGuardCheckPass()); 434 } 435 436 void ARMPassConfig::addCodeGenPrepare() { 437 if (getOptLevel() != CodeGenOpt::None) 438 addPass(createTypePromotionPass()); 439 TargetPassConfig::addCodeGenPrepare(); 440 } 441 442 bool ARMPassConfig::addPreISel() { 443 if ((TM->getOptLevel() != CodeGenOpt::None && 444 EnableGlobalMerge == cl::BOU_UNSET) || 445 EnableGlobalMerge == cl::BOU_TRUE) { 446 // FIXME: This is using the thumb1 only constant value for 447 // maximal global offset for merging globals. We may want 448 // to look into using the old value for non-thumb1 code of 449 // 4095 based on the TargetMachine, but this starts to become 450 // tricky when doing code gen per function. 451 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 452 (EnableGlobalMerge == cl::BOU_UNSET); 453 // Merging of extern globals is enabled by default on non-Mach-O as we 454 // expect it to be generally either beneficial or harmless. On Mach-O it 455 // is disabled as we emit the .subsections_via_symbols directive which 456 // means that merging extern globals is not safe. 457 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 458 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 459 MergeExternalByDefault)); 460 } 461 462 if (TM->getOptLevel() != CodeGenOpt::None) { 463 addPass(createHardwareLoopsPass()); 464 addPass(createMVETailPredicationPass()); 465 } 466 467 return false; 468 } 469 470 bool ARMPassConfig::addInstSelector() { 471 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 472 return false; 473 } 474 475 bool ARMPassConfig::addIRTranslator() { 476 addPass(new IRTranslator(getOptLevel())); 477 return false; 478 } 479 480 bool ARMPassConfig::addLegalizeMachineIR() { 481 addPass(new Legalizer()); 482 return false; 483 } 484 485 bool ARMPassConfig::addRegBankSelect() { 486 addPass(new RegBankSelect()); 487 return false; 488 } 489 490 bool ARMPassConfig::addGlobalInstructionSelect() { 491 addPass(new InstructionSelect(getOptLevel())); 492 return false; 493 } 494 495 void ARMPassConfig::addPreRegAlloc() { 496 if (getOptLevel() != CodeGenOpt::None) { 497 addPass(createMVETPAndVPTOptimisationsPass()); 498 499 addPass(createMLxExpansionPass()); 500 501 if (EnableARMLoadStoreOpt) 502 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 503 504 if (!DisableA15SDOptimization) 505 addPass(createA15SDOptimizerPass()); 506 } 507 } 508 509 void ARMPassConfig::addPreSched2() { 510 if (getOptLevel() != CodeGenOpt::None) { 511 if (EnableARMLoadStoreOpt) 512 addPass(createARMLoadStoreOptimizationPass()); 513 514 addPass(new ARMExecutionDomainFix()); 515 addPass(createBreakFalseDeps()); 516 } 517 518 // Expand some pseudo instructions into multiple instructions to allow 519 // proper scheduling. 520 addPass(createARMExpandPseudoPass()); 521 522 if (getOptLevel() != CodeGenOpt::None) { 523 // When optimising for size, always run the Thumb2SizeReduction pass before 524 // IfConversion. Otherwise, check whether IT blocks are restricted 525 // (e.g. in v8, IfConversion depends on Thumb instruction widths) 526 addPass(createThumb2SizeReductionPass([this](const Function &F) { 527 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() || 528 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 529 })); 530 531 addPass(createIfConverter([](const MachineFunction &MF) { 532 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 533 })); 534 } 535 addPass(createMVEVPTBlockPass()); 536 addPass(createThumb2ITBlockPass()); 537 538 // Add both scheduling passes to give the subtarget an opportunity to pick 539 // between them. 540 if (getOptLevel() != CodeGenOpt::None) { 541 addPass(&PostMachineSchedulerID); 542 addPass(&PostRASchedulerID); 543 } 544 545 addPass(createARMIndirectThunks()); 546 addPass(createARMSLSHardeningPass()); 547 } 548 549 void ARMPassConfig::addPreEmitPass() { 550 addPass(createThumb2SizeReductionPass()); 551 552 // Constant island pass work on unbundled instructions. 553 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 554 return MF.getSubtarget<ARMSubtarget>().isThumb2(); 555 })); 556 557 // Don't optimize barriers or block placement at -O0. 558 if (getOptLevel() != CodeGenOpt::None) { 559 addPass(createARMBlockPlacementPass()); 560 addPass(createARMOptimizeBarriersPass()); 561 } 562 } 563 564 void ARMPassConfig::addPreEmitPass2() { 565 addPass(createARMConstantIslandPass()); 566 addPass(createARMLowOverheadLoopsPass()); 567 568 if (TM->getTargetTriple().isOSWindows()) { 569 // Identify valid longjmp targets for Windows Control Flow Guard. 570 addPass(createCFGuardLongjmpPass()); 571 // Identify valid eh continuation targets for Windows EHCont Guard. 572 addPass(createEHContGuardCatchretPass()); 573 } 574 } 575