1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "ARMTargetMachine.h" 13 #include "ARM.h" 14 #include "ARMMacroFusion.h" 15 #include "ARMSubtarget.h" 16 #include "ARMTargetObjectFile.h" 17 #include "ARMTargetTransformInfo.h" 18 #include "MCTargetDesc/ARMMCTargetDesc.h" 19 #include "TargetInfo/ARMTargetInfo.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/ExecutionDomainFix.h" 26 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/TargetParser.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include <cassert> 51 #include <memory> 52 #include <string> 53 54 using namespace llvm; 55 56 static cl::opt<bool> 57 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 58 cl::desc("Inhibit optimization of S->D register accesses on A15"), 59 cl::init(false)); 60 61 static cl::opt<bool> 62 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 63 cl::desc("Run SimplifyCFG after expanding atomic operations" 64 " to make use of cmpxchg flow-based information"), 65 cl::init(true)); 66 67 static cl::opt<bool> 68 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 69 cl::desc("Enable ARM load/store optimization pass"), 70 cl::init(true)); 71 72 // FIXME: Unify control over GlobalMerge. 73 static cl::opt<cl::boolOrDefault> 74 EnableGlobalMerge("arm-global-merge", cl::Hidden, 75 cl::desc("Enable the global merge pass")); 76 77 namespace llvm { 78 void initializeARMExecutionDomainFixPass(PassRegistry&); 79 } 80 81 extern "C" void LLVMInitializeARMTarget() { 82 // Register the target. 83 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget()); 84 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget()); 85 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget()); 86 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget()); 87 88 PassRegistry &Registry = *PassRegistry::getPassRegistry(); 89 initializeGlobalISel(Registry); 90 initializeARMLoadStoreOptPass(Registry); 91 initializeARMPreAllocLoadStoreOptPass(Registry); 92 initializeARMParallelDSPPass(Registry); 93 initializeARMCodeGenPreparePass(Registry); 94 initializeARMConstantIslandsPass(Registry); 95 initializeARMExecutionDomainFixPass(Registry); 96 initializeARMExpandPseudoPass(Registry); 97 initializeThumb2SizeReducePass(Registry); 98 } 99 100 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 101 if (TT.isOSBinFormatMachO()) 102 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 103 if (TT.isOSWindows()) 104 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 105 return llvm::make_unique<ARMElfTargetObjectFile>(); 106 } 107 108 static ARMBaseTargetMachine::ARMABI 109 computeTargetABI(const Triple &TT, StringRef CPU, 110 const TargetOptions &Options) { 111 StringRef ABIName = Options.MCOptions.getABIName(); 112 113 if (ABIName.empty()) 114 ABIName = ARM::computeDefaultTargetABI(TT, CPU); 115 116 if (ABIName == "aapcs16") 117 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 118 else if (ABIName.startswith("aapcs")) 119 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 120 else if (ABIName.startswith("apcs")) 121 return ARMBaseTargetMachine::ARM_ABI_APCS; 122 123 llvm_unreachable("Unhandled/unknown ABI Name!"); 124 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 125 } 126 127 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 128 const TargetOptions &Options, 129 bool isLittle) { 130 auto ABI = computeTargetABI(TT, CPU, Options); 131 std::string Ret; 132 133 if (isLittle) 134 // Little endian. 135 Ret += "e"; 136 else 137 // Big endian. 138 Ret += "E"; 139 140 Ret += DataLayout::getManglingComponent(TT); 141 142 // Pointers are 32 bits and aligned to 32 bits. 143 Ret += "-p:32:32"; 144 145 // Function pointers are aligned to 8 bits (because the LSB stores the 146 // ARM/Thumb state). 147 Ret += "-Fi8"; 148 149 // ABIs other than APCS have 64 bit integers with natural alignment. 150 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 151 Ret += "-i64:64"; 152 153 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 154 // bits, others to 64 bits. We always try to align to 64 bits. 155 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 156 Ret += "-f64:32:64"; 157 158 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 159 // to 64. We always ty to give them natural alignment. 160 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 161 Ret += "-v64:32:64-v128:32:128"; 162 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 163 Ret += "-v128:64:128"; 164 165 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 166 // particular hardware support on 32-bit ARM). 167 Ret += "-a:0:32"; 168 169 // Integer registers are 32 bits. 170 Ret += "-n32"; 171 172 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 173 // aligned everywhere else. 174 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 175 Ret += "-S128"; 176 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 177 Ret += "-S64"; 178 else 179 Ret += "-S32"; 180 181 return Ret; 182 } 183 184 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 185 Optional<Reloc::Model> RM) { 186 if (!RM.hasValue()) 187 // Default relocation model on Darwin is PIC. 188 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static; 189 190 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI) 191 assert(TT.isOSBinFormatELF() && 192 "ROPI/RWPI currently only supported for ELF"); 193 194 // DynamicNoPIC is only used on darwin. 195 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin()) 196 return Reloc::Static; 197 198 return *RM; 199 } 200 201 /// Create an ARM architecture model. 202 /// 203 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 204 StringRef CPU, StringRef FS, 205 const TargetOptions &Options, 206 Optional<Reloc::Model> RM, 207 Optional<CodeModel::Model> CM, 208 CodeGenOpt::Level OL, bool isLittle) 209 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, 210 CPU, FS, Options, getEffectiveRelocModel(TT, RM), 211 getEffectiveCodeModel(CM, CodeModel::Small), OL), 212 TargetABI(computeTargetABI(TT, CPU, Options)), 213 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) { 214 215 // Default to triple-appropriate float ABI 216 if (Options.FloatABIType == FloatABI::Default) { 217 if (isTargetHardFloat()) 218 this->Options.FloatABIType = FloatABI::Hard; 219 else 220 this->Options.FloatABIType = FloatABI::Soft; 221 } 222 223 // Default to triple-appropriate EABI 224 if (Options.EABIVersion == EABI::Default || 225 Options.EABIVersion == EABI::Unknown) { 226 // musl is compatible with glibc with regard to EABI version 227 if ((TargetTriple.getEnvironment() == Triple::GNUEABI || 228 TargetTriple.getEnvironment() == Triple::GNUEABIHF || 229 TargetTriple.getEnvironment() == Triple::MuslEABI || 230 TargetTriple.getEnvironment() == Triple::MuslEABIHF) && 231 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin())) 232 this->Options.EABIVersion = EABI::GNU; 233 else 234 this->Options.EABIVersion = EABI::EABI5; 235 } 236 237 if (TT.isOSBinFormatMachO()) { 238 this->Options.TrapUnreachable = true; 239 this->Options.NoTrapAfterNoreturn = true; 240 } 241 242 initAsmInfo(); 243 } 244 245 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default; 246 247 const ARMSubtarget * 248 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 249 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 250 Attribute FSAttr = F.getFnAttribute("target-features"); 251 252 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 253 ? CPUAttr.getValueAsString().str() 254 : TargetCPU; 255 std::string FS = !FSAttr.hasAttribute(Attribute::None) 256 ? FSAttr.getValueAsString().str() 257 : TargetFS; 258 259 // FIXME: This is related to the code below to reset the target options, 260 // we need to know whether or not the soft float flag is set on the 261 // function before we can generate a subtarget. We also need to use 262 // it as a key for the subtarget since that can be the only difference 263 // between two functions. 264 bool SoftFloat = 265 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 266 // If the soft float attribute is set on the function turn on the soft float 267 // subtarget feature. 268 if (SoftFloat) 269 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 270 271 // Use the optminsize to identify the subtarget, but don't use it in the 272 // feature string. 273 std::string Key = CPU + FS; 274 if (F.hasMinSize()) 275 Key += "+minsize"; 276 277 auto &I = SubtargetMap[Key]; 278 if (!I) { 279 // This needs to be done before we create a new subtarget since any 280 // creation will depend on the TM and the code generation flags on the 281 // function that reside in TargetOptions. 282 resetTargetOptions(F); 283 I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle, 284 F.hasMinSize()); 285 286 if (!I->isThumb() && !I->hasARMOps()) 287 F.getContext().emitError("Function '" + F.getName() + "' uses ARM " 288 "instructions, but the target does not support ARM mode execution."); 289 } 290 291 return I.get(); 292 } 293 294 TargetTransformInfo 295 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) { 296 return TargetTransformInfo(ARMTTIImpl(this, F)); 297 } 298 299 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 300 StringRef CPU, StringRef FS, 301 const TargetOptions &Options, 302 Optional<Reloc::Model> RM, 303 Optional<CodeModel::Model> CM, 304 CodeGenOpt::Level OL, bool JIT) 305 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 306 307 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 308 StringRef CPU, StringRef FS, 309 const TargetOptions &Options, 310 Optional<Reloc::Model> RM, 311 Optional<CodeModel::Model> CM, 312 CodeGenOpt::Level OL, bool JIT) 313 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 314 315 namespace { 316 317 /// ARM Code Generator Pass Configuration Options. 318 class ARMPassConfig : public TargetPassConfig { 319 public: 320 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM) 321 : TargetPassConfig(TM, PM) { 322 if (TM.getOptLevel() != CodeGenOpt::None) { 323 ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(), 324 TM.getTargetFeatureString()); 325 if (STI.hasFeature(ARM::FeatureUseMISched)) 326 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 327 } 328 } 329 330 ARMBaseTargetMachine &getARMTargetMachine() const { 331 return getTM<ARMBaseTargetMachine>(); 332 } 333 334 ScheduleDAGInstrs * 335 createMachineScheduler(MachineSchedContext *C) const override { 336 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 337 // add DAG Mutations here. 338 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 339 if (ST.hasFusion()) 340 DAG->addMutation(createARMMacroFusionDAGMutation()); 341 return DAG; 342 } 343 344 ScheduleDAGInstrs * 345 createPostMachineScheduler(MachineSchedContext *C) const override { 346 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 347 // add DAG Mutations here. 348 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 349 if (ST.hasFusion()) 350 DAG->addMutation(createARMMacroFusionDAGMutation()); 351 return DAG; 352 } 353 354 void addIRPasses() override; 355 void addCodeGenPrepare() override; 356 bool addPreISel() override; 357 bool addInstSelector() override; 358 bool addIRTranslator() override; 359 bool addLegalizeMachineIR() override; 360 bool addRegBankSelect() override; 361 bool addGlobalInstructionSelect() override; 362 void addPreRegAlloc() override; 363 void addPreSched2() override; 364 void addPreEmitPass() override; 365 366 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 367 }; 368 369 class ARMExecutionDomainFix : public ExecutionDomainFix { 370 public: 371 static char ID; 372 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {} 373 StringRef getPassName() const override { 374 return "ARM Execution Domain Fix"; 375 } 376 }; 377 char ARMExecutionDomainFix::ID; 378 379 } // end anonymous namespace 380 381 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix", 382 "ARM Execution Domain Fix", false, false) 383 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 384 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix", 385 "ARM Execution Domain Fix", false, false) 386 387 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 388 return new ARMPassConfig(*this, PM); 389 } 390 391 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const { 392 return getStandardCSEConfigForOpt(TM->getOptLevel()); 393 } 394 395 void ARMPassConfig::addIRPasses() { 396 if (TM->Options.ThreadModel == ThreadModel::Single) 397 addPass(createLowerAtomicPass()); 398 else 399 addPass(createAtomicExpandPass()); 400 401 // Cmpxchg instructions are often used with a subsequent comparison to 402 // determine whether it succeeded. We can exploit existing control-flow in 403 // ldrex/strex loops to simplify this, but it needs tidying up. 404 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 405 addPass(createCFGSimplificationPass( 406 1, false, false, true, true, [this](const Function &F) { 407 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 408 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 409 })); 410 411 TargetPassConfig::addIRPasses(); 412 413 // Run the parallel DSP pass. 414 if (getOptLevel() == CodeGenOpt::Aggressive) 415 addPass(createARMParallelDSPPass()); 416 417 // Match interleaved memory accesses to ldN/stN intrinsics. 418 if (TM->getOptLevel() != CodeGenOpt::None) 419 addPass(createInterleavedAccessPass()); 420 } 421 422 void ARMPassConfig::addCodeGenPrepare() { 423 if (getOptLevel() != CodeGenOpt::None) 424 addPass(createARMCodeGenPreparePass()); 425 TargetPassConfig::addCodeGenPrepare(); 426 } 427 428 bool ARMPassConfig::addPreISel() { 429 if ((TM->getOptLevel() != CodeGenOpt::None && 430 EnableGlobalMerge == cl::BOU_UNSET) || 431 EnableGlobalMerge == cl::BOU_TRUE) { 432 // FIXME: This is using the thumb1 only constant value for 433 // maximal global offset for merging globals. We may want 434 // to look into using the old value for non-thumb1 code of 435 // 4095 based on the TargetMachine, but this starts to become 436 // tricky when doing code gen per function. 437 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 438 (EnableGlobalMerge == cl::BOU_UNSET); 439 // Merging of extern globals is enabled by default on non-Mach-O as we 440 // expect it to be generally either beneficial or harmless. On Mach-O it 441 // is disabled as we emit the .subsections_via_symbols directive which 442 // means that merging extern globals is not safe. 443 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 444 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 445 MergeExternalByDefault)); 446 } 447 448 return false; 449 } 450 451 bool ARMPassConfig::addInstSelector() { 452 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 453 return false; 454 } 455 456 bool ARMPassConfig::addIRTranslator() { 457 addPass(new IRTranslator()); 458 return false; 459 } 460 461 bool ARMPassConfig::addLegalizeMachineIR() { 462 addPass(new Legalizer()); 463 return false; 464 } 465 466 bool ARMPassConfig::addRegBankSelect() { 467 addPass(new RegBankSelect()); 468 return false; 469 } 470 471 bool ARMPassConfig::addGlobalInstructionSelect() { 472 addPass(new InstructionSelect()); 473 return false; 474 } 475 476 void ARMPassConfig::addPreRegAlloc() { 477 if (getOptLevel() != CodeGenOpt::None) { 478 addPass(createMLxExpansionPass()); 479 480 if (EnableARMLoadStoreOpt) 481 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 482 483 if (!DisableA15SDOptimization) 484 addPass(createA15SDOptimizerPass()); 485 } 486 } 487 488 void ARMPassConfig::addPreSched2() { 489 if (getOptLevel() != CodeGenOpt::None) { 490 if (EnableARMLoadStoreOpt) 491 addPass(createARMLoadStoreOptimizationPass()); 492 493 addPass(new ARMExecutionDomainFix()); 494 addPass(createBreakFalseDeps()); 495 } 496 497 // Expand some pseudo instructions into multiple instructions to allow 498 // proper scheduling. 499 addPass(createARMExpandPseudoPass()); 500 501 if (getOptLevel() != CodeGenOpt::None) { 502 // in v8, IfConversion depends on Thumb instruction widths 503 addPass(createThumb2SizeReductionPass([this](const Function &F) { 504 return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 505 })); 506 507 addPass(createIfConverter([](const MachineFunction &MF) { 508 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 509 })); 510 } 511 addPass(createThumb2ITBlockPass()); 512 } 513 514 void ARMPassConfig::addPreEmitPass() { 515 addPass(createThumb2SizeReductionPass()); 516 517 // Constant island pass work on unbundled instructions. 518 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 519 return MF.getSubtarget<ARMSubtarget>().isThumb2(); 520 })); 521 522 // Don't optimize barriers at -O0. 523 if (getOptLevel() != CodeGenOpt::None) 524 addPass(createARMOptimizeBarriersPass()); 525 526 addPass(createARMConstantIslandPass()); 527 } 528