1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "ARMTargetMachine.h" 13 #include "ARM.h" 14 #include "ARMMacroFusion.h" 15 #include "ARMSubtarget.h" 16 #include "ARMTargetObjectFile.h" 17 #include "ARMTargetTransformInfo.h" 18 #include "MCTargetDesc/ARMMCTargetDesc.h" 19 #include "TargetInfo/ARMTargetInfo.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/ExecutionDomainFix.h" 26 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/TargetParser.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include "llvm/Transforms/Scalar.h" 51 #include <cassert> 52 #include <memory> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> 58 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 59 cl::desc("Inhibit optimization of S->D register accesses on A15"), 60 cl::init(false)); 61 62 static cl::opt<bool> 63 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 64 cl::desc("Run SimplifyCFG after expanding atomic operations" 65 " to make use of cmpxchg flow-based information"), 66 cl::init(true)); 67 68 static cl::opt<bool> 69 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 70 cl::desc("Enable ARM load/store optimization pass"), 71 cl::init(true)); 72 73 // FIXME: Unify control over GlobalMerge. 74 static cl::opt<cl::boolOrDefault> 75 EnableGlobalMerge("arm-global-merge", cl::Hidden, 76 cl::desc("Enable the global merge pass")); 77 78 namespace llvm { 79 void initializeARMExecutionDomainFixPass(PassRegistry&); 80 } 81 82 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() { 83 // Register the target. 84 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget()); 85 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget()); 86 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget()); 87 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget()); 88 89 PassRegistry &Registry = *PassRegistry::getPassRegistry(); 90 initializeGlobalISel(Registry); 91 initializeARMLoadStoreOptPass(Registry); 92 initializeARMPreAllocLoadStoreOptPass(Registry); 93 initializeARMParallelDSPPass(Registry); 94 initializeARMConstantIslandsPass(Registry); 95 initializeARMExecutionDomainFixPass(Registry); 96 initializeARMExpandPseudoPass(Registry); 97 initializeThumb2SizeReducePass(Registry); 98 initializeMVEVPTBlockPass(Registry); 99 initializeMVETPAndVPTOptimisationsPass(Registry); 100 initializeMVETailPredicationPass(Registry); 101 initializeARMLowOverheadLoopsPass(Registry); 102 initializeARMBlockPlacementPass(Registry); 103 initializeMVEGatherScatterLoweringPass(Registry); 104 initializeARMSLSHardeningPass(Registry); 105 initializeMVELaneInterleavingPass(Registry); 106 } 107 108 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 109 if (TT.isOSBinFormatMachO()) 110 return std::make_unique<TargetLoweringObjectFileMachO>(); 111 if (TT.isOSWindows()) 112 return std::make_unique<TargetLoweringObjectFileCOFF>(); 113 return std::make_unique<ARMElfTargetObjectFile>(); 114 } 115 116 static ARMBaseTargetMachine::ARMABI 117 computeTargetABI(const Triple &TT, StringRef CPU, 118 const TargetOptions &Options) { 119 StringRef ABIName = Options.MCOptions.getABIName(); 120 121 if (ABIName.empty()) 122 ABIName = ARM::computeDefaultTargetABI(TT, CPU); 123 124 if (ABIName == "aapcs16") 125 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 126 else if (ABIName.startswith("aapcs")) 127 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 128 else if (ABIName.startswith("apcs")) 129 return ARMBaseTargetMachine::ARM_ABI_APCS; 130 131 llvm_unreachable("Unhandled/unknown ABI Name!"); 132 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 133 } 134 135 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 136 const TargetOptions &Options, 137 bool isLittle) { 138 auto ABI = computeTargetABI(TT, CPU, Options); 139 std::string Ret; 140 141 if (isLittle) 142 // Little endian. 143 Ret += "e"; 144 else 145 // Big endian. 146 Ret += "E"; 147 148 Ret += DataLayout::getManglingComponent(TT); 149 150 // Pointers are 32 bits and aligned to 32 bits. 151 Ret += "-p:32:32"; 152 153 // Function pointers are aligned to 8 bits (because the LSB stores the 154 // ARM/Thumb state). 155 Ret += "-Fi8"; 156 157 // ABIs other than APCS have 64 bit integers with natural alignment. 158 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 159 Ret += "-i64:64"; 160 161 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 162 // bits, others to 64 bits. We always try to align to 64 bits. 163 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 164 Ret += "-f64:32:64"; 165 166 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 167 // to 64. We always ty to give them natural alignment. 168 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 169 Ret += "-v64:32:64-v128:32:128"; 170 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 171 Ret += "-v128:64:128"; 172 173 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 174 // particular hardware support on 32-bit ARM). 175 Ret += "-a:0:32"; 176 177 // Integer registers are 32 bits. 178 Ret += "-n32"; 179 180 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 181 // aligned everywhere else. 182 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 183 Ret += "-S128"; 184 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 185 Ret += "-S64"; 186 else 187 Ret += "-S32"; 188 189 return Ret; 190 } 191 192 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 193 Optional<Reloc::Model> RM) { 194 if (!RM.hasValue()) 195 // Default relocation model on Darwin is PIC. 196 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static; 197 198 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI) 199 assert(TT.isOSBinFormatELF() && 200 "ROPI/RWPI currently only supported for ELF"); 201 202 // DynamicNoPIC is only used on darwin. 203 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin()) 204 return Reloc::Static; 205 206 return *RM; 207 } 208 209 /// Create an ARM architecture model. 210 /// 211 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 212 StringRef CPU, StringRef FS, 213 const TargetOptions &Options, 214 Optional<Reloc::Model> RM, 215 Optional<CodeModel::Model> CM, 216 CodeGenOpt::Level OL, bool isLittle) 217 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, 218 CPU, FS, Options, getEffectiveRelocModel(TT, RM), 219 getEffectiveCodeModel(CM, CodeModel::Small), OL), 220 TargetABI(computeTargetABI(TT, CPU, Options)), 221 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) { 222 223 // Default to triple-appropriate float ABI 224 if (Options.FloatABIType == FloatABI::Default) { 225 if (isTargetHardFloat()) 226 this->Options.FloatABIType = FloatABI::Hard; 227 else 228 this->Options.FloatABIType = FloatABI::Soft; 229 } 230 231 // Default to triple-appropriate EABI 232 if (Options.EABIVersion == EABI::Default || 233 Options.EABIVersion == EABI::Unknown) { 234 // musl is compatible with glibc with regard to EABI version 235 if ((TargetTriple.getEnvironment() == Triple::GNUEABI || 236 TargetTriple.getEnvironment() == Triple::GNUEABIHF || 237 TargetTriple.getEnvironment() == Triple::MuslEABI || 238 TargetTriple.getEnvironment() == Triple::MuslEABIHF) && 239 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin())) 240 this->Options.EABIVersion = EABI::GNU; 241 else 242 this->Options.EABIVersion = EABI::EABI5; 243 } 244 245 if (TT.isOSBinFormatMachO()) { 246 this->Options.TrapUnreachable = true; 247 this->Options.NoTrapAfterNoreturn = true; 248 } 249 250 // ARM supports the debug entry values. 251 setSupportsDebugEntryValues(true); 252 253 initAsmInfo(); 254 255 // ARM supports the MachineOutliner. 256 setMachineOutliner(true); 257 setSupportsDefaultOutlining(true); 258 } 259 260 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default; 261 262 const ARMSubtarget * 263 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 264 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 265 Attribute FSAttr = F.getFnAttribute("target-features"); 266 267 std::string CPU = 268 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 269 std::string FS = 270 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 271 272 // FIXME: This is related to the code below to reset the target options, 273 // we need to know whether or not the soft float flag is set on the 274 // function before we can generate a subtarget. We also need to use 275 // it as a key for the subtarget since that can be the only difference 276 // between two functions. 277 bool SoftFloat = 278 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 279 // If the soft float attribute is set on the function turn on the soft float 280 // subtarget feature. 281 if (SoftFloat) 282 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 283 284 // Use the optminsize to identify the subtarget, but don't use it in the 285 // feature string. 286 std::string Key = CPU + FS; 287 if (F.hasMinSize()) 288 Key += "+minsize"; 289 290 auto &I = SubtargetMap[Key]; 291 if (!I) { 292 // This needs to be done before we create a new subtarget since any 293 // creation will depend on the TM and the code generation flags on the 294 // function that reside in TargetOptions. 295 resetTargetOptions(F); 296 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle, 297 F.hasMinSize()); 298 299 if (!I->isThumb() && !I->hasARMOps()) 300 F.getContext().emitError("Function '" + F.getName() + "' uses ARM " 301 "instructions, but the target does not support ARM mode execution."); 302 } 303 304 return I.get(); 305 } 306 307 TargetTransformInfo 308 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) { 309 return TargetTransformInfo(ARMTTIImpl(this, F)); 310 } 311 312 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 313 StringRef CPU, StringRef FS, 314 const TargetOptions &Options, 315 Optional<Reloc::Model> RM, 316 Optional<CodeModel::Model> CM, 317 CodeGenOpt::Level OL, bool JIT) 318 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 319 320 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 321 StringRef CPU, StringRef FS, 322 const TargetOptions &Options, 323 Optional<Reloc::Model> RM, 324 Optional<CodeModel::Model> CM, 325 CodeGenOpt::Level OL, bool JIT) 326 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 327 328 namespace { 329 330 /// ARM Code Generator Pass Configuration Options. 331 class ARMPassConfig : public TargetPassConfig { 332 public: 333 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM) 334 : TargetPassConfig(TM, PM) {} 335 336 ARMBaseTargetMachine &getARMTargetMachine() const { 337 return getTM<ARMBaseTargetMachine>(); 338 } 339 340 ScheduleDAGInstrs * 341 createMachineScheduler(MachineSchedContext *C) const override { 342 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 343 // add DAG Mutations here. 344 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 345 if (ST.hasFusion()) 346 DAG->addMutation(createARMMacroFusionDAGMutation()); 347 return DAG; 348 } 349 350 ScheduleDAGInstrs * 351 createPostMachineScheduler(MachineSchedContext *C) const override { 352 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 353 // add DAG Mutations here. 354 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 355 if (ST.hasFusion()) 356 DAG->addMutation(createARMMacroFusionDAGMutation()); 357 return DAG; 358 } 359 360 void addIRPasses() override; 361 void addCodeGenPrepare() override; 362 bool addPreISel() override; 363 bool addInstSelector() override; 364 bool addIRTranslator() override; 365 bool addLegalizeMachineIR() override; 366 bool addRegBankSelect() override; 367 bool addGlobalInstructionSelect() override; 368 void addPreRegAlloc() override; 369 void addPreSched2() override; 370 void addPreEmitPass() override; 371 void addPreEmitPass2() override; 372 373 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 374 }; 375 376 class ARMExecutionDomainFix : public ExecutionDomainFix { 377 public: 378 static char ID; 379 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {} 380 StringRef getPassName() const override { 381 return "ARM Execution Domain Fix"; 382 } 383 }; 384 char ARMExecutionDomainFix::ID; 385 386 } // end anonymous namespace 387 388 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix", 389 "ARM Execution Domain Fix", false, false) 390 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 391 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix", 392 "ARM Execution Domain Fix", false, false) 393 394 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 395 return new ARMPassConfig(*this, PM); 396 } 397 398 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const { 399 return getStandardCSEConfigForOpt(TM->getOptLevel()); 400 } 401 402 void ARMPassConfig::addIRPasses() { 403 if (TM->Options.ThreadModel == ThreadModel::Single) 404 addPass(createLowerAtomicPass()); 405 else 406 addPass(createAtomicExpandPass()); 407 408 // Cmpxchg instructions are often used with a subsequent comparison to 409 // determine whether it succeeded. We can exploit existing control-flow in 410 // ldrex/strex loops to simplify this, but it needs tidying up. 411 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 412 addPass(createCFGSimplificationPass( 413 SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true), 414 [this](const Function &F) { 415 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 416 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 417 })); 418 419 addPass(createMVEGatherScatterLoweringPass()); 420 addPass(createMVELaneInterleavingPass()); 421 422 TargetPassConfig::addIRPasses(); 423 424 // Run the parallel DSP pass. 425 if (getOptLevel() == CodeGenOpt::Aggressive) 426 addPass(createARMParallelDSPPass()); 427 428 // Match interleaved memory accesses to ldN/stN intrinsics. 429 if (TM->getOptLevel() != CodeGenOpt::None) 430 addPass(createInterleavedAccessPass()); 431 432 // Add Control Flow Guard checks. 433 if (TM->getTargetTriple().isOSWindows()) 434 addPass(createCFGuardCheckPass()); 435 } 436 437 void ARMPassConfig::addCodeGenPrepare() { 438 if (getOptLevel() != CodeGenOpt::None) 439 addPass(createTypePromotionPass()); 440 TargetPassConfig::addCodeGenPrepare(); 441 } 442 443 bool ARMPassConfig::addPreISel() { 444 if ((TM->getOptLevel() != CodeGenOpt::None && 445 EnableGlobalMerge == cl::BOU_UNSET) || 446 EnableGlobalMerge == cl::BOU_TRUE) { 447 // FIXME: This is using the thumb1 only constant value for 448 // maximal global offset for merging globals. We may want 449 // to look into using the old value for non-thumb1 code of 450 // 4095 based on the TargetMachine, but this starts to become 451 // tricky when doing code gen per function. 452 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 453 (EnableGlobalMerge == cl::BOU_UNSET); 454 // Merging of extern globals is enabled by default on non-Mach-O as we 455 // expect it to be generally either beneficial or harmless. On Mach-O it 456 // is disabled as we emit the .subsections_via_symbols directive which 457 // means that merging extern globals is not safe. 458 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 459 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 460 MergeExternalByDefault)); 461 } 462 463 if (TM->getOptLevel() != CodeGenOpt::None) { 464 addPass(createHardwareLoopsPass()); 465 addPass(createMVETailPredicationPass()); 466 } 467 468 return false; 469 } 470 471 bool ARMPassConfig::addInstSelector() { 472 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 473 return false; 474 } 475 476 bool ARMPassConfig::addIRTranslator() { 477 addPass(new IRTranslator(getOptLevel())); 478 return false; 479 } 480 481 bool ARMPassConfig::addLegalizeMachineIR() { 482 addPass(new Legalizer()); 483 return false; 484 } 485 486 bool ARMPassConfig::addRegBankSelect() { 487 addPass(new RegBankSelect()); 488 return false; 489 } 490 491 bool ARMPassConfig::addGlobalInstructionSelect() { 492 addPass(new InstructionSelect(getOptLevel())); 493 return false; 494 } 495 496 void ARMPassConfig::addPreRegAlloc() { 497 if (getOptLevel() != CodeGenOpt::None) { 498 addPass(createMVETPAndVPTOptimisationsPass()); 499 500 addPass(createMLxExpansionPass()); 501 502 if (EnableARMLoadStoreOpt) 503 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 504 505 if (!DisableA15SDOptimization) 506 addPass(createA15SDOptimizerPass()); 507 } 508 } 509 510 void ARMPassConfig::addPreSched2() { 511 if (getOptLevel() != CodeGenOpt::None) { 512 if (EnableARMLoadStoreOpt) 513 addPass(createARMLoadStoreOptimizationPass()); 514 515 addPass(new ARMExecutionDomainFix()); 516 addPass(createBreakFalseDeps()); 517 } 518 519 // Expand some pseudo instructions into multiple instructions to allow 520 // proper scheduling. 521 addPass(createARMExpandPseudoPass()); 522 523 if (getOptLevel() != CodeGenOpt::None) { 524 // When optimising for size, always run the Thumb2SizeReduction pass before 525 // IfConversion. Otherwise, check whether IT blocks are restricted 526 // (e.g. in v8, IfConversion depends on Thumb instruction widths) 527 addPass(createThumb2SizeReductionPass([this](const Function &F) { 528 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() || 529 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 530 })); 531 532 addPass(createIfConverter([](const MachineFunction &MF) { 533 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 534 })); 535 } 536 addPass(createMVEVPTBlockPass()); 537 addPass(createThumb2ITBlockPass()); 538 539 // Add both scheduling passes to give the subtarget an opportunity to pick 540 // between them. 541 if (getOptLevel() != CodeGenOpt::None) { 542 addPass(&PostMachineSchedulerID); 543 addPass(&PostRASchedulerID); 544 } 545 546 addPass(createARMIndirectThunks()); 547 addPass(createARMSLSHardeningPass()); 548 } 549 550 void ARMPassConfig::addPreEmitPass() { 551 addPass(createThumb2SizeReductionPass()); 552 553 // Constant island pass work on unbundled instructions. 554 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 555 return MF.getSubtarget<ARMSubtarget>().isThumb2(); 556 })); 557 558 // Don't optimize barriers or block placement at -O0. 559 if (getOptLevel() != CodeGenOpt::None) { 560 addPass(createARMBlockPlacementPass()); 561 addPass(createARMOptimizeBarriersPass()); 562 } 563 } 564 565 void ARMPassConfig::addPreEmitPass2() { 566 addPass(createARMConstantIslandPass()); 567 addPass(createARMLowOverheadLoopsPass()); 568 569 if (TM->getTargetTriple().isOSWindows()) { 570 // Identify valid longjmp targets for Windows Control Flow Guard. 571 addPass(createCFGuardLongjmpPass()); 572 // Identify valid eh continuation targets for Windows EHCont Guard. 573 addPass(createEHContGuardCatchretPass()); 574 } 575 } 576