1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARM.h" 14 #include "ARMFrameLowering.h" 15 #include "ARMTargetMachine.h" 16 #include "ARMTargetObjectFile.h" 17 #include "ARMTargetTransformInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/LegacyPassManager.h" 21 #include "llvm/MC/MCAsmInfo.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/FormattedStream.h" 24 #include "llvm/Support/TargetRegistry.h" 25 #include "llvm/Target/TargetOptions.h" 26 #include "llvm/Transforms/Scalar.h" 27 using namespace llvm; 28 29 static cl::opt<bool> 30 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 31 cl::desc("Inhibit optimization of S->D register accesses on A15"), 32 cl::init(false)); 33 34 static cl::opt<bool> 35 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 36 cl::desc("Run SimplifyCFG after expanding atomic operations" 37 " to make use of cmpxchg flow-based information"), 38 cl::init(true)); 39 40 static cl::opt<bool> 41 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 42 cl::desc("Enable ARM load/store optimization pass"), 43 cl::init(true)); 44 45 // FIXME: Unify control over GlobalMerge. 46 static cl::opt<cl::boolOrDefault> 47 EnableGlobalMerge("arm-global-merge", cl::Hidden, 48 cl::desc("Enable the global merge pass")); 49 50 extern "C" void LLVMInitializeARMTarget() { 51 // Register the target. 52 RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget); 53 RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget); 54 RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget); 55 RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget); 56 } 57 58 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 59 if (TT.isOSBinFormatMachO()) 60 return make_unique<TargetLoweringObjectFileMachO>(); 61 if (TT.isOSWindows()) 62 return make_unique<TargetLoweringObjectFileCOFF>(); 63 return make_unique<ARMElfTargetObjectFile>(); 64 } 65 66 static ARMBaseTargetMachine::ARMABI 67 computeTargetABI(const Triple &TT, StringRef CPU, 68 const TargetOptions &Options) { 69 if (Options.MCOptions.getABIName() == "aapcs16") 70 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 71 else if (Options.MCOptions.getABIName().startswith("aapcs")) 72 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 73 else if (Options.MCOptions.getABIName().startswith("apcs")) 74 return ARMBaseTargetMachine::ARM_ABI_APCS; 75 76 assert(Options.MCOptions.getABIName().empty() && 77 "Unknown target-abi option!"); 78 79 ARMBaseTargetMachine::ARMABI TargetABI = 80 ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 81 82 // FIXME: This is duplicated code from the front end and should be unified. 83 if (TT.isOSBinFormatMachO()) { 84 if (TT.getEnvironment() == llvm::Triple::EABI || 85 (TT.getOS() == llvm::Triple::UnknownOS && TT.isOSBinFormatMachO()) || 86 CPU.startswith("cortex-m")) { 87 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; 88 } else if (TT.isWatchOS()) { 89 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS16; 90 } else { 91 TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; 92 } 93 } else if (TT.isOSWindows()) { 94 // FIXME: this is invalid for WindowsCE 95 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; 96 } else { 97 // Select the default based on the platform. 98 switch (TT.getEnvironment()) { 99 case llvm::Triple::Android: 100 case llvm::Triple::GNUEABI: 101 case llvm::Triple::GNUEABIHF: 102 case llvm::Triple::EABIHF: 103 case llvm::Triple::EABI: 104 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; 105 break; 106 case llvm::Triple::GNU: 107 TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; 108 break; 109 default: 110 if (TT.isOSNetBSD()) 111 TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; 112 else 113 TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; 114 break; 115 } 116 } 117 118 return TargetABI; 119 } 120 121 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 122 const TargetOptions &Options, 123 bool isLittle) { 124 auto ABI = computeTargetABI(TT, CPU, Options); 125 std::string Ret = ""; 126 127 if (isLittle) 128 // Little endian. 129 Ret += "e"; 130 else 131 // Big endian. 132 Ret += "E"; 133 134 Ret += DataLayout::getManglingComponent(TT); 135 136 // Pointers are 32 bits and aligned to 32 bits. 137 Ret += "-p:32:32"; 138 139 // ABIs other than APCS have 64 bit integers with natural alignment. 140 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 141 Ret += "-i64:64"; 142 143 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 144 // bits, others to 64 bits. We always try to align to 64 bits. 145 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 146 Ret += "-f64:32:64"; 147 148 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 149 // to 64. We always ty to give them natural alignment. 150 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 151 Ret += "-v64:32:64-v128:32:128"; 152 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 153 Ret += "-v128:64:128"; 154 155 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 156 // particular hardware support on 32-bit ARM). 157 Ret += "-a:0:32"; 158 159 // Integer registers are 32 bits. 160 Ret += "-n32"; 161 162 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 163 // aligned everywhere else. 164 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 165 Ret += "-S128"; 166 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 167 Ret += "-S64"; 168 else 169 Ret += "-S32"; 170 171 return Ret; 172 } 173 174 /// TargetMachine ctor - Create an ARM architecture model. 175 /// 176 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 177 StringRef CPU, StringRef FS, 178 const TargetOptions &Options, 179 Reloc::Model RM, CodeModel::Model CM, 180 CodeGenOpt::Level OL, bool isLittle) 181 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT, 182 CPU, FS, Options, RM, CM, OL), 183 TargetABI(computeTargetABI(TT, CPU, Options)), 184 TLOF(createTLOF(getTargetTriple())), 185 Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) { 186 187 // Default to triple-appropriate float ABI 188 if (Options.FloatABIType == FloatABI::Default) 189 this->Options.FloatABIType = 190 Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft; 191 } 192 193 ARMBaseTargetMachine::~ARMBaseTargetMachine() {} 194 195 const ARMSubtarget * 196 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 197 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 198 Attribute FSAttr = F.getFnAttribute("target-features"); 199 200 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 201 ? CPUAttr.getValueAsString().str() 202 : TargetCPU; 203 std::string FS = !FSAttr.hasAttribute(Attribute::None) 204 ? FSAttr.getValueAsString().str() 205 : TargetFS; 206 207 // FIXME: This is related to the code below to reset the target options, 208 // we need to know whether or not the soft float flag is set on the 209 // function before we can generate a subtarget. We also need to use 210 // it as a key for the subtarget since that can be the only difference 211 // between two functions. 212 bool SoftFloat = 213 F.hasFnAttribute("use-soft-float") && 214 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 215 // If the soft float attribute is set on the function turn on the soft float 216 // subtarget feature. 217 if (SoftFloat) 218 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 219 220 auto &I = SubtargetMap[CPU + FS]; 221 if (!I) { 222 // This needs to be done before we create a new subtarget since any 223 // creation will depend on the TM and the code generation flags on the 224 // function that reside in TargetOptions. 225 resetTargetOptions(F); 226 I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle); 227 } 228 return I.get(); 229 } 230 231 TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() { 232 return TargetIRAnalysis([this](const Function &F) { 233 return TargetTransformInfo(ARMTTIImpl(this, F)); 234 }); 235 } 236 237 void ARMTargetMachine::anchor() {} 238 239 ARMTargetMachine::ARMTargetMachine(const Target &T, const Triple &TT, 240 StringRef CPU, StringRef FS, 241 const TargetOptions &Options, 242 Reloc::Model RM, CodeModel::Model CM, 243 CodeGenOpt::Level OL, bool isLittle) 244 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) { 245 initAsmInfo(); 246 if (!Subtarget.hasARMOps()) 247 report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not " 248 "support ARM mode execution!"); 249 } 250 251 void ARMLETargetMachine::anchor() {} 252 253 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 254 StringRef CPU, StringRef FS, 255 const TargetOptions &Options, 256 Reloc::Model RM, CodeModel::Model CM, 257 CodeGenOpt::Level OL) 258 : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 259 260 void ARMBETargetMachine::anchor() {} 261 262 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 263 StringRef CPU, StringRef FS, 264 const TargetOptions &Options, 265 Reloc::Model RM, CodeModel::Model CM, 266 CodeGenOpt::Level OL) 267 : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 268 269 void ThumbTargetMachine::anchor() {} 270 271 ThumbTargetMachine::ThumbTargetMachine(const Target &T, const Triple &TT, 272 StringRef CPU, StringRef FS, 273 const TargetOptions &Options, 274 Reloc::Model RM, CodeModel::Model CM, 275 CodeGenOpt::Level OL, bool isLittle) 276 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) { 277 initAsmInfo(); 278 } 279 280 void ThumbLETargetMachine::anchor() {} 281 282 ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, const Triple &TT, 283 StringRef CPU, StringRef FS, 284 const TargetOptions &Options, 285 Reloc::Model RM, CodeModel::Model CM, 286 CodeGenOpt::Level OL) 287 : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 288 289 void ThumbBETargetMachine::anchor() {} 290 291 ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, const Triple &TT, 292 StringRef CPU, StringRef FS, 293 const TargetOptions &Options, 294 Reloc::Model RM, CodeModel::Model CM, 295 CodeGenOpt::Level OL) 296 : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 297 298 namespace { 299 /// ARM Code Generator Pass Configuration Options. 300 class ARMPassConfig : public TargetPassConfig { 301 public: 302 ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM) 303 : TargetPassConfig(TM, PM) {} 304 305 ARMBaseTargetMachine &getARMTargetMachine() const { 306 return getTM<ARMBaseTargetMachine>(); 307 } 308 309 void addIRPasses() override; 310 bool addPreISel() override; 311 bool addInstSelector() override; 312 void addPreRegAlloc() override; 313 void addPreSched2() override; 314 void addPreEmitPass() override; 315 }; 316 } // namespace 317 318 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 319 return new ARMPassConfig(this, PM); 320 } 321 322 void ARMPassConfig::addIRPasses() { 323 if (TM->Options.ThreadModel == ThreadModel::Single) 324 addPass(createLowerAtomicPass()); 325 else 326 addPass(createAtomicExpandPass(TM)); 327 328 // Cmpxchg instructions are often used with a subsequent comparison to 329 // determine whether it succeeded. We can exploit existing control-flow in 330 // ldrex/strex loops to simplify this, but it needs tidying up. 331 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 332 addPass(createCFGSimplificationPass(-1, [this](const Function &F) { 333 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 334 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 335 })); 336 337 TargetPassConfig::addIRPasses(); 338 339 // Match interleaved memory accesses to ldN/stN intrinsics. 340 if (TM->getOptLevel() != CodeGenOpt::None) 341 addPass(createInterleavedAccessPass(TM)); 342 } 343 344 bool ARMPassConfig::addPreISel() { 345 if ((TM->getOptLevel() != CodeGenOpt::None && 346 EnableGlobalMerge == cl::BOU_UNSET) || 347 EnableGlobalMerge == cl::BOU_TRUE) { 348 // FIXME: This is using the thumb1 only constant value for 349 // maximal global offset for merging globals. We may want 350 // to look into using the old value for non-thumb1 code of 351 // 4095 based on the TargetMachine, but this starts to become 352 // tricky when doing code gen per function. 353 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 354 (EnableGlobalMerge == cl::BOU_UNSET); 355 // Merging of extern globals is enabled by default on non-Mach-O as we 356 // expect it to be generally either beneficial or harmless. On Mach-O it 357 // is disabled as we emit the .subsections_via_symbols directive which 358 // means that merging extern globals is not safe. 359 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 360 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 361 MergeExternalByDefault)); 362 } 363 364 return false; 365 } 366 367 bool ARMPassConfig::addInstSelector() { 368 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 369 return false; 370 } 371 372 void ARMPassConfig::addPreRegAlloc() { 373 if (getOptLevel() != CodeGenOpt::None) { 374 addPass(createMLxExpansionPass()); 375 376 if (EnableARMLoadStoreOpt) 377 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 378 379 if (!DisableA15SDOptimization) 380 addPass(createA15SDOptimizerPass()); 381 } 382 } 383 384 void ARMPassConfig::addPreSched2() { 385 if (getOptLevel() != CodeGenOpt::None) { 386 if (EnableARMLoadStoreOpt) 387 addPass(createARMLoadStoreOptimizationPass()); 388 389 addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass)); 390 } 391 392 // Expand some pseudo instructions into multiple instructions to allow 393 // proper scheduling. 394 addPass(createARMExpandPseudoPass()); 395 396 if (getOptLevel() != CodeGenOpt::None) { 397 // in v8, IfConversion depends on Thumb instruction widths 398 addPass(createThumb2SizeReductionPass([this](const Function &F) { 399 return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 400 })); 401 402 addPass(createIfConverter([this](const Function &F) { 403 return !this->TM->getSubtarget<ARMSubtarget>(F).isThumb1Only(); 404 })); 405 } 406 addPass(createThumb2ITBlockPass()); 407 } 408 409 void ARMPassConfig::addPreEmitPass() { 410 addPass(createThumb2SizeReductionPass()); 411 412 // Constant island pass work on unbundled instructions. 413 addPass(createUnpackMachineBundles([this](const Function &F) { 414 return this->TM->getSubtarget<ARMSubtarget>(F).isThumb2(); 415 })); 416 417 // Don't optimize barriers at -O0. 418 if (getOptLevel() != CodeGenOpt::None) 419 addPass(createARMOptimizeBarriersPass()); 420 421 addPass(createARMConstantIslandPass()); 422 } 423