1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/NoFolder.h" 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 #include "llvm/Pass.h" 26 #include "llvm/PassRegistry.h" 27 #include "llvm/PassSupport.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "ARM.h" 32 #include "ARMSubtarget.h" 33 34 using namespace llvm; 35 using namespace PatternMatch; 36 37 #define DEBUG_TYPE "arm-parallel-dsp" 38 39 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 40 41 static cl::opt<bool> 42 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 43 cl::desc("Disable the ARM Parallel DSP pass")); 44 45 namespace { 46 struct MulCandidate; 47 class Reduction; 48 49 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 50 using MemInstList = SmallVectorImpl<LoadInst*>; 51 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 52 53 // 'MulCandidate' holds the multiplication instructions that are candidates 54 // for parallel execution. 55 struct MulCandidate { 56 Instruction *Root; 57 Value* LHS; 58 Value* RHS; 59 bool Exchange = false; 60 bool ReadOnly = true; 61 bool Paired = false; 62 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 63 64 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 65 Root(I), LHS(lhs), RHS(rhs) { } 66 67 bool HasTwoLoadInputs() const { 68 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 69 } 70 71 LoadInst *getBaseLoad() const { 72 return VecLd.front(); 73 } 74 }; 75 76 /// Represent a sequence of multiply-accumulate operations with the aim to 77 /// perform the multiplications in parallel. 78 class Reduction { 79 Instruction *Root = nullptr; 80 Value *Acc = nullptr; 81 MulCandList Muls; 82 MulPairList MulPairs; 83 SetVector<Instruction*> Adds; 84 85 public: 86 Reduction() = delete; 87 88 Reduction (Instruction *Add) : Root(Add) { } 89 90 /// Record an Add instruction that is a part of the this reduction. 91 void InsertAdd(Instruction *I) { Adds.insert(I); } 92 93 /// Create MulCandidates, each rooted at a Mul instruction, that is a part 94 /// of this reduction. 95 void InsertMuls() { 96 auto GetMulOperand = [](Value *V) -> Instruction* { 97 if (auto *SExt = dyn_cast<SExtInst>(V)) { 98 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) 99 if (I->getOpcode() == Instruction::Mul) 100 return I; 101 } else if (auto *I = dyn_cast<Instruction>(V)) { 102 if (I->getOpcode() == Instruction::Mul) 103 return I; 104 } 105 return nullptr; 106 }; 107 108 auto InsertMul = [this](Instruction *I) { 109 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); 110 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); 111 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 112 }; 113 114 for (auto *Add : Adds) { 115 if (Add == Acc) 116 continue; 117 if (auto *Mul = GetMulOperand(Add->getOperand(0))) 118 InsertMul(Mul); 119 if (auto *Mul = GetMulOperand(Add->getOperand(1))) 120 InsertMul(Mul); 121 } 122 } 123 124 /// Add the incoming accumulator value, returns true if a value had not 125 /// already been added. Returning false signals to the user that this 126 /// reduction already has a value to initialise the accumulator. 127 bool InsertAcc(Value *V) { 128 if (Acc) 129 return false; 130 Acc = V; 131 return true; 132 } 133 134 /// Set two MulCandidates, rooted at muls, that can be executed as a single 135 /// parallel operation. 136 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, 137 bool Exchange = false) { 138 LLVM_DEBUG(dbgs() << "Pairing:\n" 139 << *Mul0->Root << "\n" 140 << *Mul1->Root << "\n"); 141 Mul0->Paired = true; 142 Mul1->Paired = true; 143 if (Exchange) 144 Mul1->Exchange = true; 145 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 146 } 147 148 /// Return true if enough mul operations are found that can be executed in 149 /// parallel. 150 bool CreateParallelPairs(); 151 152 /// Return the add instruction which is the root of the reduction. 153 Instruction *getRoot() { return Root; } 154 155 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 156 157 /// Return the incoming value to be accumulated. This maybe null. 158 Value *getAccumulator() { return Acc; } 159 160 /// Return the set of adds that comprise the reduction. 161 SetVector<Instruction*> &getAdds() { return Adds; } 162 163 /// Return the MulCandidate, rooted at mul instruction, that comprise the 164 /// the reduction. 165 MulCandList &getMuls() { return Muls; } 166 167 /// Return the MulCandidate, rooted at mul instructions, that have been 168 /// paired for parallel execution. 169 MulPairList &getMulPairs() { return MulPairs; } 170 171 /// To finalise, replace the uses of the root with the intrinsic call. 172 void UpdateRoot(Instruction *SMLAD) { 173 Root->replaceAllUsesWith(SMLAD); 174 } 175 176 void dump() { 177 LLVM_DEBUG(dbgs() << "Reduction:\n"; 178 for (auto *Add : Adds) 179 LLVM_DEBUG(dbgs() << *Add << "\n"); 180 for (auto &Mul : Muls) 181 LLVM_DEBUG(dbgs() << *Mul->Root << "\n" 182 << " " << *Mul->LHS << "\n" 183 << " " << *Mul->RHS << "\n"); 184 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") 185 ); 186 } 187 }; 188 189 class WidenedLoad { 190 LoadInst *NewLd = nullptr; 191 SmallVector<LoadInst*, 4> Loads; 192 193 public: 194 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 195 : NewLd(Wide) { 196 for (auto *I : Lds) 197 Loads.push_back(I); 198 } 199 LoadInst *getLoad() { 200 return NewLd; 201 } 202 }; 203 204 class ARMParallelDSP : public FunctionPass { 205 ScalarEvolution *SE; 206 AliasAnalysis *AA; 207 TargetLibraryInfo *TLI; 208 DominatorTree *DT; 209 const DataLayout *DL; 210 Module *M; 211 std::map<LoadInst*, LoadInst*> LoadPairs; 212 SmallPtrSet<LoadInst*, 4> OffsetLoads; 213 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 214 215 template<unsigned> 216 bool IsNarrowSequence(Value *V); 217 bool Search(Value *V, BasicBlock *BB, Reduction &R); 218 bool RecordMemoryOps(BasicBlock *BB); 219 void InsertParallelMACs(Reduction &Reduction); 220 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 221 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 222 bool CreateParallelPairs(Reduction &R); 223 224 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 225 /// Dual performs two signed 16x16-bit multiplications. It adds the 226 /// products to a 32-bit accumulate operand. Optionally, the instruction can 227 /// exchange the halfwords of the second operand before performing the 228 /// arithmetic. 229 bool MatchSMLAD(Function &F); 230 231 public: 232 static char ID; 233 234 ARMParallelDSP() : FunctionPass(ID) { } 235 236 void getAnalysisUsage(AnalysisUsage &AU) const override { 237 FunctionPass::getAnalysisUsage(AU); 238 AU.addRequired<AssumptionCacheTracker>(); 239 AU.addRequired<ScalarEvolutionWrapperPass>(); 240 AU.addRequired<AAResultsWrapperPass>(); 241 AU.addRequired<TargetLibraryInfoWrapperPass>(); 242 AU.addRequired<DominatorTreeWrapperPass>(); 243 AU.addRequired<TargetPassConfig>(); 244 AU.addPreserved<ScalarEvolutionWrapperPass>(); 245 AU.addPreserved<GlobalsAAWrapperPass>(); 246 AU.setPreservesCFG(); 247 } 248 249 bool runOnFunction(Function &F) override { 250 if (DisableParallelDSP) 251 return false; 252 if (skipFunction(F)) 253 return false; 254 255 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 256 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 257 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 258 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 259 auto &TPC = getAnalysis<TargetPassConfig>(); 260 261 M = F.getParent(); 262 DL = &M->getDataLayout(); 263 264 auto &TM = TPC.getTM<TargetMachine>(); 265 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 266 267 if (!ST->allowsUnalignedMem()) { 268 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 269 "running pass ARMParallelDSP\n"); 270 return false; 271 } 272 273 if (!ST->hasDSP()) { 274 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 275 "ARMParallelDSP\n"); 276 return false; 277 } 278 279 if (!ST->isLittle()) { 280 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 281 << "ARMParallelDSP\n"); 282 return false; 283 } 284 285 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 286 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 287 288 bool Changes = MatchSMLAD(F); 289 return Changes; 290 } 291 }; 292 } 293 294 template<typename MemInst> 295 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 296 const DataLayout &DL, ScalarEvolution &SE) { 297 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 298 return true; 299 return false; 300 } 301 302 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 303 MemInstList &VecMem) { 304 if (!Ld0 || !Ld1) 305 return false; 306 307 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 308 return false; 309 310 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 311 dbgs() << "Ld0:"; Ld0->dump(); 312 dbgs() << "Ld1:"; Ld1->dump(); 313 ); 314 315 VecMem.clear(); 316 VecMem.push_back(Ld0); 317 VecMem.push_back(Ld1); 318 return true; 319 } 320 321 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 322 // instructions, which is set to 16. So here we should collect all i8 and i16 323 // narrow operations. 324 // TODO: we currently only collect i16, and will support i8 later, so that's 325 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 326 template<unsigned MaxBitWidth> 327 bool ARMParallelDSP::IsNarrowSequence(Value *V) { 328 if (auto *SExt = dyn_cast<SExtInst>(V)) { 329 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 330 return false; 331 332 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 333 // Check that this load could be paired. 334 return LoadPairs.count(Ld) || OffsetLoads.count(Ld); 335 } 336 } 337 return false; 338 } 339 340 /// Iterate through the block and record base, offset pairs of loads which can 341 /// be widened into a single load. 342 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 343 SmallVector<LoadInst*, 8> Loads; 344 SmallVector<Instruction*, 8> Writes; 345 LoadPairs.clear(); 346 WideLoads.clear(); 347 348 // Collect loads and instruction that may write to memory. For now we only 349 // record loads which are simple, sign-extended and have a single user. 350 // TODO: Allow zero-extended loads. 351 for (auto &I : *BB) { 352 if (I.mayWriteToMemory()) 353 Writes.push_back(&I); 354 auto *Ld = dyn_cast<LoadInst>(&I); 355 if (!Ld || !Ld->isSimple() || 356 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 357 continue; 358 Loads.push_back(Ld); 359 } 360 361 using InstSet = std::set<Instruction*>; 362 using DepMap = std::map<Instruction*, InstSet>; 363 DepMap RAWDeps; 364 365 // Record any writes that may alias a load. 366 const auto Size = LocationSize::unknown(); 367 for (auto Read : Loads) { 368 for (auto Write : Writes) { 369 MemoryLocation ReadLoc = 370 MemoryLocation(Read->getPointerOperand(), Size); 371 372 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 373 ModRefInfo::ModRef))) 374 continue; 375 if (DT->dominates(Write, Read)) 376 RAWDeps[Read].insert(Write); 377 } 378 } 379 380 // Check whether there's not a write between the two loads which would 381 // prevent them from being safely merged. 382 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 383 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; 384 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; 385 386 if (RAWDeps.count(Dominated)) { 387 InstSet &WritesBefore = RAWDeps[Dominated]; 388 389 for (auto Before : WritesBefore) { 390 // We can't move the second load backward, past a write, to merge 391 // with the first load. 392 if (DT->dominates(Dominator, Before)) 393 return false; 394 } 395 } 396 return true; 397 }; 398 399 // Record base, offset load pairs. 400 for (auto *Base : Loads) { 401 for (auto *Offset : Loads) { 402 if (Base == Offset) 403 continue; 404 405 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 406 SafeToPair(Base, Offset)) { 407 LoadPairs[Base] = Offset; 408 OffsetLoads.insert(Offset); 409 break; 410 } 411 } 412 } 413 414 LLVM_DEBUG(if (!LoadPairs.empty()) { 415 dbgs() << "Consecutive load pairs:\n"; 416 for (auto &MapIt : LoadPairs) { 417 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 418 << *MapIt.second << "\n"); 419 } 420 }); 421 return LoadPairs.size() > 1; 422 } 423 424 // Search recursively back through the operands to find a tree of values that 425 // form a multiply-accumulate chain. The search records the Add and Mul 426 // instructions that form the reduction and allows us to find a single value 427 // to be used as the initial input to the accumlator. 428 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { 429 // If we find a non-instruction, try to use it as the initial accumulator 430 // value. This may have already been found during the search in which case 431 // this function will return false, signaling a search fail. 432 auto *I = dyn_cast<Instruction>(V); 433 if (!I) 434 return R.InsertAcc(V); 435 436 if (I->getParent() != BB) 437 return false; 438 439 switch (I->getOpcode()) { 440 default: 441 break; 442 case Instruction::PHI: 443 // Could be the accumulator value. 444 return R.InsertAcc(V); 445 case Instruction::Add: { 446 // Adds should be adding together two muls, or another add and a mul to 447 // be within the mac chain. One of the operands may also be the 448 // accumulator value at which point we should stop searching. 449 R.InsertAdd(I); 450 Value *LHS = I->getOperand(0); 451 Value *RHS = I->getOperand(1); 452 bool ValidLHS = Search(LHS, BB, R); 453 bool ValidRHS = Search(RHS, BB, R); 454 455 if (ValidLHS && ValidRHS) 456 return true; 457 458 return R.InsertAcc(I); 459 } 460 case Instruction::Mul: { 461 Value *MulOp0 = I->getOperand(0); 462 Value *MulOp1 = I->getOperand(1); 463 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); 464 } 465 case Instruction::SExt: 466 return Search(I->getOperand(0), BB, R); 467 } 468 return false; 469 } 470 471 // The pass needs to identify integer add/sub reductions of 16-bit vector 472 // multiplications. 473 // To use SMLAD: 474 // 1) we first need to find integer add then look for this pattern: 475 // 476 // acc0 = ... 477 // ld0 = load i16 478 // sext0 = sext i16 %ld0 to i32 479 // ld1 = load i16 480 // sext1 = sext i16 %ld1 to i32 481 // mul0 = mul %sext0, %sext1 482 // ld2 = load i16 483 // sext2 = sext i16 %ld2 to i32 484 // ld3 = load i16 485 // sext3 = sext i16 %ld3 to i32 486 // mul1 = mul i32 %sext2, %sext3 487 // add0 = add i32 %mul0, %acc0 488 // acc1 = add i32 %add0, %mul1 489 // 490 // Which can be selected to: 491 // 492 // ldr r0 493 // ldr r1 494 // smlad r2, r0, r1, r2 495 // 496 // If constants are used instead of loads, these will need to be hoisted 497 // out and into a register. 498 // 499 // If loop invariants are used instead of loads, these need to be packed 500 // before the loop begins. 501 // 502 bool ARMParallelDSP::MatchSMLAD(Function &F) { 503 bool Changed = false; 504 505 for (auto &BB : F) { 506 SmallPtrSet<Instruction*, 4> AllAdds; 507 if (!RecordMemoryOps(&BB)) 508 continue; 509 510 for (Instruction &I : reverse(BB)) { 511 if (I.getOpcode() != Instruction::Add) 512 continue; 513 514 if (AllAdds.count(&I)) 515 continue; 516 517 const auto *Ty = I.getType(); 518 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 519 continue; 520 521 Reduction R(&I); 522 if (!Search(&I, &BB, R)) 523 continue; 524 525 R.InsertMuls(); 526 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); 527 528 if (!CreateParallelPairs(R)) 529 continue; 530 531 InsertParallelMACs(R); 532 Changed = true; 533 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 534 } 535 } 536 537 return Changed; 538 } 539 540 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 541 542 // Not enough mul operations to make a pair. 543 if (R.getMuls().size() < 2) 544 return false; 545 546 // Check that the muls operate directly upon sign extended loads. 547 for (auto &MulCand : R.getMuls()) { 548 if (!MulCand->HasTwoLoadInputs()) 549 return false; 550 } 551 552 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 553 // The first elements of each vector should be loads with sexts. If we 554 // find that its two pairs of consecutive loads, then these can be 555 // transformed into two wider loads and the users can be replaced with 556 // DSP intrinsics. 557 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 558 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 559 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 560 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 561 562 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 563 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 564 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 565 R.AddMulPair(PMul0, PMul1); 566 return true; 567 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 568 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 569 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 570 R.AddMulPair(PMul0, PMul1, true); 571 return true; 572 } 573 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 574 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 575 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 576 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 577 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 578 // Only the second operand can be exchanged, so swap the muls. 579 R.AddMulPair(PMul1, PMul0, true); 580 return true; 581 } 582 return false; 583 }; 584 585 MulCandList &Muls = R.getMuls(); 586 const unsigned Elems = Muls.size(); 587 for (unsigned i = 0; i < Elems; ++i) { 588 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 589 if (PMul0->Paired) 590 continue; 591 592 for (unsigned j = 0; j < Elems; ++j) { 593 if (i == j) 594 continue; 595 596 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 597 if (PMul1->Paired) 598 continue; 599 600 const Instruction *Mul0 = PMul0->Root; 601 const Instruction *Mul1 = PMul1->Root; 602 if (Mul0 == Mul1) 603 continue; 604 605 assert(PMul0 != PMul1 && "expected different chains"); 606 607 if (CanPair(R, PMul0, PMul1)) 608 break; 609 } 610 } 611 return !R.getMulPairs().empty(); 612 } 613 614 615 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 616 617 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 618 Value *Acc, bool Exchange, 619 Instruction *InsertAfter) { 620 // Replace the reduction chain with an intrinsic call 621 622 Value* Args[] = { WideLd0, WideLd1, Acc }; 623 Function *SMLAD = nullptr; 624 if (Exchange) 625 SMLAD = Acc->getType()->isIntegerTy(32) ? 626 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 627 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 628 else 629 SMLAD = Acc->getType()->isIntegerTy(32) ? 630 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 631 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 632 633 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 634 ++BasicBlock::iterator(InsertAfter)); 635 Instruction *Call = Builder.CreateCall(SMLAD, Args); 636 NumSMLAD++; 637 return Call; 638 }; 639 640 Instruction *InsertAfter = R.getRoot(); 641 Value *Acc = R.getAccumulator(); 642 643 // For any muls that were discovered but not paired, accumulate their values 644 // as before. 645 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 646 ++BasicBlock::iterator(InsertAfter)); 647 MulCandList &MulCands = R.getMuls(); 648 for (auto &MulCand : MulCands) { 649 if (MulCand->Paired) 650 continue; 651 652 Value *Mul = MulCand->Root; 653 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); 654 655 if (R.getRoot()->getType() != Mul->getType()) { 656 assert(R.is64Bit() && "expected 64-bit result"); 657 Mul = Builder.CreateSExt(Mul, R.getRoot()->getType()); 658 } 659 660 if (!Acc) { 661 Acc = Mul; 662 continue; 663 } 664 665 Acc = Builder.CreateAdd(Mul, Acc); 666 InsertAfter = cast<Instruction>(Acc); 667 } 668 669 if (!Acc) 670 Acc = R.is64Bit() ? 671 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : 672 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 673 674 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 675 for (auto &Pair : R.getMulPairs()) { 676 MulCandidate *LHSMul = Pair.first; 677 MulCandidate *RHSMul = Pair.second; 678 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 679 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 680 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 681 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 682 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 683 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 684 685 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 686 InsertAfter = cast<Instruction>(Acc); 687 } 688 R.UpdateRoot(cast<Instruction>(Acc)); 689 } 690 691 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 692 IntegerType *LoadTy) { 693 assert(Loads.size() == 2 && "currently only support widening two loads"); 694 695 LoadInst *Base = Loads[0]; 696 LoadInst *Offset = Loads[1]; 697 698 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 699 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 700 701 assert((BaseSExt && OffsetSExt) 702 && "Loads should have a single, extending, user"); 703 704 std::function<void(Value*, Value*)> MoveBefore = 705 [&](Value *A, Value *B) -> void { 706 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 707 return; 708 709 auto *Source = cast<Instruction>(A); 710 auto *Sink = cast<Instruction>(B); 711 712 if (DT->dominates(Source, Sink) || 713 Source->getParent() != Sink->getParent() || 714 isa<PHINode>(Source) || isa<PHINode>(Sink)) 715 return; 716 717 Source->moveBefore(Sink); 718 for (auto &Op : Source->operands()) 719 MoveBefore(Op, Source); 720 }; 721 722 // Insert the load at the point of the original dominating load. 723 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 724 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 725 ++BasicBlock::iterator(DomLoad)); 726 727 // Bitcast the pointer to a wider type and create the wide load, while making 728 // sure to maintain the original alignment as this prevents ldrd from being 729 // generated when it could be illegal due to memory alignment. 730 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 731 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 732 LoadTy->getPointerTo(AddrSpace)); 733 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 734 Base->getAlignment()); 735 736 // Make sure everything is in the correct order in the basic block. 737 MoveBefore(Base->getPointerOperand(), VecPtr); 738 MoveBefore(VecPtr, WideLoad); 739 740 // From the wide load, create two values that equal the original two loads. 741 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 742 // TODO: Support big-endian as well. 743 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 744 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); 745 BaseSExt->replaceAllUsesWith(NewBaseSExt); 746 747 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 748 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 749 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 750 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 751 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); 752 OffsetSExt->replaceAllUsesWith(NewOffsetSExt); 753 754 LLVM_DEBUG(dbgs() << "From Base and Offset:\n" 755 << *Base << "\n" << *Offset << "\n" 756 << "Created Wide Load:\n" 757 << *WideLoad << "\n" 758 << *Bottom << "\n" 759 << *NewBaseSExt << "\n" 760 << *Top << "\n" 761 << *Trunc << "\n" 762 << *NewOffsetSExt << "\n"); 763 WideLoads.emplace(std::make_pair(Base, 764 std::make_unique<WidenedLoad>(Loads, WideLoad))); 765 return WideLoad; 766 } 767 768 Pass *llvm::createARMParallelDSPPass() { 769 return new ARMParallelDSP(); 770 } 771 772 char ARMParallelDSP::ID = 0; 773 774 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 775 "Transform functions to use DSP intrinsics", false, false) 776 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 777 "Transform functions to use DSP intrinsics", false, false) 778