1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/NoFolder.h" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/LoopUtils.h" 28 #include "llvm/Pass.h" 29 #include "llvm/PassRegistry.h" 30 #include "llvm/PassSupport.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "ARM.h" 35 #include "ARMSubtarget.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "arm-parallel-dsp" 41 42 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 43 44 static cl::opt<bool> 45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 46 cl::desc("Disable the ARM Parallel DSP pass")); 47 48 namespace { 49 struct MulCandidate; 50 class Reduction; 51 52 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 53 using MemInstList = SmallVectorImpl<LoadInst*>; 54 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 55 56 // 'MulCandidate' holds the multiplication instructions that are candidates 57 // for parallel execution. 58 struct MulCandidate { 59 Instruction *Root; 60 Value* LHS; 61 Value* RHS; 62 bool Exchange = false; 63 bool ReadOnly = true; 64 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 65 66 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 67 Root(I), LHS(lhs), RHS(rhs) { } 68 69 bool HasTwoLoadInputs() const { 70 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 71 } 72 73 LoadInst *getBaseLoad() const { 74 return cast<LoadInst>(LHS); 75 } 76 }; 77 78 /// Represent a sequence of multiply-accumulate operations with the aim to 79 /// perform the multiplications in parallel. 80 class Reduction { 81 Instruction *Root = nullptr; 82 Value *Acc = nullptr; 83 MulCandList Muls; 84 MulPairList MulPairs; 85 SmallPtrSet<Instruction*, 4> Adds; 86 87 public: 88 Reduction() = delete; 89 90 Reduction (Instruction *Add) : Root(Add) { } 91 92 /// Record an Add instruction that is a part of the this reduction. 93 void InsertAdd(Instruction *I) { Adds.insert(I); } 94 95 /// Record a MulCandidate, rooted at a Mul instruction, that is a part of 96 /// this reduction. 97 void InsertMul(Instruction *I, Value *LHS, Value *RHS) { 98 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 99 } 100 101 /// Add the incoming accumulator value, returns true if a value had not 102 /// already been added. Returning false signals to the user that this 103 /// reduction already has a value to initialise the accumulator. 104 bool InsertAcc(Value *V) { 105 if (Acc) 106 return false; 107 Acc = V; 108 return true; 109 } 110 111 /// Set two MulCandidates, rooted at muls, that can be executed as a single 112 /// parallel operation. 113 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1) { 114 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 115 } 116 117 /// Return true if enough mul operations are found that can be executed in 118 /// parallel. 119 bool CreateParallelPairs(); 120 121 /// Return the add instruction which is the root of the reduction. 122 Instruction *getRoot() { return Root; } 123 124 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 125 126 /// Return the incoming value to be accumulated. This maybe null. 127 Value *getAccumulator() { return Acc; } 128 129 /// Return the set of adds that comprise the reduction. 130 SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; } 131 132 /// Return the MulCandidate, rooted at mul instruction, that comprise the 133 /// the reduction. 134 MulCandList &getMuls() { return Muls; } 135 136 /// Return the MulCandidate, rooted at mul instructions, that have been 137 /// paired for parallel execution. 138 MulPairList &getMulPairs() { return MulPairs; } 139 140 /// To finalise, replace the uses of the root with the intrinsic call. 141 void UpdateRoot(Instruction *SMLAD) { 142 Root->replaceAllUsesWith(SMLAD); 143 } 144 }; 145 146 class WidenedLoad { 147 LoadInst *NewLd = nullptr; 148 SmallVector<LoadInst*, 4> Loads; 149 150 public: 151 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 152 : NewLd(Wide) { 153 for (auto *I : Lds) 154 Loads.push_back(I); 155 } 156 LoadInst *getLoad() { 157 return NewLd; 158 } 159 }; 160 161 class ARMParallelDSP : public LoopPass { 162 ScalarEvolution *SE; 163 AliasAnalysis *AA; 164 TargetLibraryInfo *TLI; 165 DominatorTree *DT; 166 LoopInfo *LI; 167 Loop *L; 168 const DataLayout *DL; 169 Module *M; 170 std::map<LoadInst*, LoadInst*> LoadPairs; 171 SmallPtrSet<LoadInst*, 4> OffsetLoads; 172 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 173 174 template<unsigned> 175 bool IsNarrowSequence(Value *V, Value *&Src); 176 177 bool RecordMemoryOps(BasicBlock *BB); 178 void InsertParallelMACs(Reduction &Reduction); 179 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 180 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 181 bool CreateParallelPairs(Reduction &R); 182 183 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 184 /// Dual performs two signed 16x16-bit multiplications. It adds the 185 /// products to a 32-bit accumulate operand. Optionally, the instruction can 186 /// exchange the halfwords of the second operand before performing the 187 /// arithmetic. 188 bool MatchSMLAD(Loop *L); 189 190 public: 191 static char ID; 192 193 ARMParallelDSP() : LoopPass(ID) { } 194 195 bool doInitialization(Loop *L, LPPassManager &LPM) override { 196 LoadPairs.clear(); 197 WideLoads.clear(); 198 return true; 199 } 200 201 void getAnalysisUsage(AnalysisUsage &AU) const override { 202 LoopPass::getAnalysisUsage(AU); 203 AU.addRequired<AssumptionCacheTracker>(); 204 AU.addRequired<ScalarEvolutionWrapperPass>(); 205 AU.addRequired<AAResultsWrapperPass>(); 206 AU.addRequired<TargetLibraryInfoWrapperPass>(); 207 AU.addRequired<LoopInfoWrapperPass>(); 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetPassConfig>(); 210 AU.addPreserved<LoopInfoWrapperPass>(); 211 AU.setPreservesCFG(); 212 } 213 214 bool runOnLoop(Loop *TheLoop, LPPassManager &) override { 215 if (DisableParallelDSP) 216 return false; 217 if (skipLoop(TheLoop)) 218 return false; 219 220 L = TheLoop; 221 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 222 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 223 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 224 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 225 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 226 auto &TPC = getAnalysis<TargetPassConfig>(); 227 228 BasicBlock *Header = TheLoop->getHeader(); 229 if (!Header) 230 return false; 231 232 // TODO: We assume the loop header and latch to be the same block. 233 // This is not a fundamental restriction, but lifting this would just 234 // require more work to do the transformation and then patch up the CFG. 235 if (Header != TheLoop->getLoopLatch()) { 236 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " 237 "running pass ARMParallelDSP\n"); 238 return false; 239 } 240 241 if (!TheLoop->getLoopPreheader()) 242 InsertPreheaderForLoop(L, DT, LI, nullptr, true); 243 244 Function &F = *Header->getParent(); 245 M = F.getParent(); 246 DL = &M->getDataLayout(); 247 248 auto &TM = TPC.getTM<TargetMachine>(); 249 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 250 251 if (!ST->allowsUnalignedMem()) { 252 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 253 "running pass ARMParallelDSP\n"); 254 return false; 255 } 256 257 if (!ST->hasDSP()) { 258 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 259 "ARMParallelDSP\n"); 260 return false; 261 } 262 263 if (!ST->isLittle()) { 264 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 265 << "ARMParallelDSP\n"); 266 return false; 267 } 268 269 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); 270 271 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 272 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 273 274 if (!RecordMemoryOps(Header)) { 275 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); 276 return false; 277 } 278 279 bool Changes = MatchSMLAD(L); 280 return Changes; 281 } 282 }; 283 } 284 285 template<typename MemInst> 286 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 287 const DataLayout &DL, ScalarEvolution &SE) { 288 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 289 return true; 290 return false; 291 } 292 293 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 294 MemInstList &VecMem) { 295 if (!Ld0 || !Ld1) 296 return false; 297 298 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 299 return false; 300 301 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 302 dbgs() << "Ld0:"; Ld0->dump(); 303 dbgs() << "Ld1:"; Ld1->dump(); 304 ); 305 306 VecMem.clear(); 307 VecMem.push_back(Ld0); 308 VecMem.push_back(Ld1); 309 return true; 310 } 311 312 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 313 // instructions, which is set to 16. So here we should collect all i8 and i16 314 // narrow operations. 315 // TODO: we currently only collect i16, and will support i8 later, so that's 316 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 317 template<unsigned MaxBitWidth> 318 bool ARMParallelDSP::IsNarrowSequence(Value *V, Value *&Src) { 319 if (auto *SExt = dyn_cast<SExtInst>(V)) { 320 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 321 return false; 322 323 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 324 // Check that these load could be paired. 325 if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld)) 326 return false; 327 328 Src = Ld; 329 return true; 330 } 331 } 332 return false; 333 } 334 335 /// Iterate through the block and record base, offset pairs of loads which can 336 /// be widened into a single load. 337 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 338 SmallVector<LoadInst*, 8> Loads; 339 SmallVector<Instruction*, 8> Writes; 340 341 // Collect loads and instruction that may write to memory. For now we only 342 // record loads which are simple, sign-extended and have a single user. 343 // TODO: Allow zero-extended loads. 344 for (auto &I : *BB) { 345 if (I.mayWriteToMemory()) 346 Writes.push_back(&I); 347 auto *Ld = dyn_cast<LoadInst>(&I); 348 if (!Ld || !Ld->isSimple() || 349 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 350 continue; 351 Loads.push_back(Ld); 352 } 353 354 using InstSet = std::set<Instruction*>; 355 using DepMap = std::map<Instruction*, InstSet>; 356 DepMap RAWDeps; 357 358 // Record any writes that may alias a load. 359 const auto Size = LocationSize::unknown(); 360 for (auto Read : Loads) { 361 for (auto Write : Writes) { 362 MemoryLocation ReadLoc = 363 MemoryLocation(Read->getPointerOperand(), Size); 364 365 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 366 ModRefInfo::ModRef))) 367 continue; 368 if (DT->dominates(Write, Read)) 369 RAWDeps[Read].insert(Write); 370 } 371 } 372 373 // Check whether there's not a write between the two loads which would 374 // prevent them from being safely merged. 375 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 376 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; 377 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; 378 379 if (RAWDeps.count(Dominated)) { 380 InstSet &WritesBefore = RAWDeps[Dominated]; 381 382 for (auto Before : WritesBefore) { 383 // We can't move the second load backward, past a write, to merge 384 // with the first load. 385 if (DT->dominates(Dominator, Before)) 386 return false; 387 } 388 } 389 return true; 390 }; 391 392 // Record base, offset load pairs. 393 for (auto *Base : Loads) { 394 for (auto *Offset : Loads) { 395 if (Base == Offset) 396 continue; 397 398 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 399 SafeToPair(Base, Offset)) { 400 LoadPairs[Base] = Offset; 401 OffsetLoads.insert(Offset); 402 break; 403 } 404 } 405 } 406 407 LLVM_DEBUG(if (!LoadPairs.empty()) { 408 dbgs() << "Consecutive load pairs:\n"; 409 for (auto &MapIt : LoadPairs) { 410 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 411 << *MapIt.second << "\n"); 412 } 413 }); 414 return LoadPairs.size() > 1; 415 } 416 417 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector 418 // multiplications. 419 // To use SMLAD: 420 // 1) we first need to find integer add then look for this pattern: 421 // 422 // acc0 = ... 423 // ld0 = load i16 424 // sext0 = sext i16 %ld0 to i32 425 // ld1 = load i16 426 // sext1 = sext i16 %ld1 to i32 427 // mul0 = mul %sext0, %sext1 428 // ld2 = load i16 429 // sext2 = sext i16 %ld2 to i32 430 // ld3 = load i16 431 // sext3 = sext i16 %ld3 to i32 432 // mul1 = mul i32 %sext2, %sext3 433 // add0 = add i32 %mul0, %acc0 434 // acc1 = add i32 %add0, %mul1 435 // 436 // Which can be selected to: 437 // 438 // ldr r0 439 // ldr r1 440 // smlad r2, r0, r1, r2 441 // 442 // If constants are used instead of loads, these will need to be hoisted 443 // out and into a register. 444 // 445 // If loop invariants are used instead of loads, these need to be packed 446 // before the loop begins. 447 // 448 bool ARMParallelDSP::MatchSMLAD(Loop *L) { 449 // Search recursively back through the operands to find a tree of values that 450 // form a multiply-accumulate chain. The search records the Add and Mul 451 // instructions that form the reduction and allows us to find a single value 452 // to be used as the initial input to the accumlator. 453 std::function<bool(Value*, Reduction&)> Search = [&] 454 (Value *V, Reduction &R) -> bool { 455 456 // If we find a non-instruction, try to use it as the initial accumulator 457 // value. This may have already been found during the search in which case 458 // this function will return false, signaling a search fail. 459 auto *I = dyn_cast<Instruction>(V); 460 if (!I) 461 return R.InsertAcc(V); 462 463 switch (I->getOpcode()) { 464 default: 465 break; 466 case Instruction::PHI: 467 // Could be the accumulator value. 468 return R.InsertAcc(V); 469 case Instruction::Add: { 470 // Adds should be adding together two muls, or another add and a mul to 471 // be within the mac chain. One of the operands may also be the 472 // accumulator value at which point we should stop searching. 473 bool ValidLHS = Search(I->getOperand(0), R); 474 bool ValidRHS = Search(I->getOperand(1), R); 475 if (!ValidLHS && !ValidLHS) 476 return false; 477 else if (ValidLHS && ValidRHS) { 478 R.InsertAdd(I); 479 return true; 480 } else { 481 R.InsertAdd(I); 482 return R.InsertAcc(I); 483 } 484 } 485 case Instruction::Mul: { 486 Value *MulOp0 = I->getOperand(0); 487 Value *MulOp1 = I->getOperand(1); 488 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) { 489 Value *LHS = nullptr; 490 Value *RHS = nullptr; 491 if (IsNarrowSequence<16>(MulOp0, LHS) && 492 IsNarrowSequence<16>(MulOp1, RHS)) { 493 R.InsertMul(I, LHS, RHS); 494 return true; 495 } 496 } 497 return false; 498 } 499 case Instruction::SExt: 500 return Search(I->getOperand(0), R); 501 } 502 return false; 503 }; 504 505 bool Changed = false; 506 SmallPtrSet<Instruction*, 4> AllAdds; 507 BasicBlock *Latch = L->getLoopLatch(); 508 509 for (Instruction &I : reverse(*Latch)) { 510 if (I.getOpcode() != Instruction::Add) 511 continue; 512 513 if (AllAdds.count(&I)) 514 continue; 515 516 const auto *Ty = I.getType(); 517 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 518 continue; 519 520 Reduction R(&I); 521 if (!Search(&I, R)) 522 continue; 523 524 if (!CreateParallelPairs(R)) 525 continue; 526 527 InsertParallelMACs(R); 528 Changed = true; 529 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 530 } 531 532 return Changed; 533 } 534 535 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 536 537 // Not enough mul operations to make a pair. 538 if (R.getMuls().size() < 2) 539 return false; 540 541 // Check that the muls operate directly upon sign extended loads. 542 for (auto &MulCand : R.getMuls()) { 543 if (!MulCand->HasTwoLoadInputs()) 544 return false; 545 } 546 547 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 548 // The first elements of each vector should be loads with sexts. If we 549 // find that its two pairs of consecutive loads, then these can be 550 // transformed into two wider loads and the users can be replaced with 551 // DSP intrinsics. 552 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 553 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 554 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 555 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 556 557 LLVM_DEBUG(dbgs() << "Loads:\n" 558 << " - " << *Ld0 << "\n" 559 << " - " << *Ld1 << "\n" 560 << " - " << *Ld2 << "\n" 561 << " - " << *Ld3 << "\n"); 562 563 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 564 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 565 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 566 R.AddMulPair(PMul0, PMul1); 567 return true; 568 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 569 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 570 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 571 PMul1->Exchange = true; 572 R.AddMulPair(PMul0, PMul1); 573 return true; 574 } 575 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 576 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 577 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 578 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 579 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 580 PMul0->Exchange = true; 581 // Only the second operand can be exchanged, so swap the muls. 582 R.AddMulPair(PMul1, PMul0); 583 return true; 584 } 585 return false; 586 }; 587 588 MulCandList &Muls = R.getMuls(); 589 const unsigned Elems = Muls.size(); 590 SmallPtrSet<const Instruction*, 4> Paired; 591 for (unsigned i = 0; i < Elems; ++i) { 592 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 593 if (Paired.count(PMul0->Root)) 594 continue; 595 596 for (unsigned j = 0; j < Elems; ++j) { 597 if (i == j) 598 continue; 599 600 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 601 if (Paired.count(PMul1->Root)) 602 continue; 603 604 const Instruction *Mul0 = PMul0->Root; 605 const Instruction *Mul1 = PMul1->Root; 606 if (Mul0 == Mul1) 607 continue; 608 609 assert(PMul0 != PMul1 && "expected different chains"); 610 611 if (CanPair(R, PMul0, PMul1)) { 612 Paired.insert(Mul0); 613 Paired.insert(Mul1); 614 break; 615 } 616 } 617 } 618 return !R.getMulPairs().empty(); 619 } 620 621 622 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 623 624 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 625 Value *Acc, bool Exchange, 626 Instruction *InsertAfter) { 627 // Replace the reduction chain with an intrinsic call 628 629 Value* Args[] = { WideLd0, WideLd1, Acc }; 630 Function *SMLAD = nullptr; 631 if (Exchange) 632 SMLAD = Acc->getType()->isIntegerTy(32) ? 633 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 634 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 635 else 636 SMLAD = Acc->getType()->isIntegerTy(32) ? 637 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 638 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 639 640 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 641 ++BasicBlock::iterator(InsertAfter)); 642 Instruction *Call = Builder.CreateCall(SMLAD, Args); 643 NumSMLAD++; 644 return Call; 645 }; 646 647 Instruction *InsertAfter = R.getRoot(); 648 Value *Acc = R.getAccumulator(); 649 if (!Acc) 650 Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 651 652 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 653 LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n" 654 << "Acc: " << *Acc << "\n"); 655 for (auto &Pair : R.getMulPairs()) { 656 MulCandidate *LHSMul = Pair.first; 657 MulCandidate *RHSMul = Pair.second; 658 LLVM_DEBUG(dbgs() << "Muls:\n" 659 << "- " << *LHSMul->Root << "\n" 660 << "- " << *RHSMul->Root << "\n"); 661 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 662 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 663 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 664 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 665 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 666 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 667 668 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 669 InsertAfter = cast<Instruction>(Acc); 670 } 671 R.UpdateRoot(cast<Instruction>(Acc)); 672 } 673 674 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 675 IntegerType *LoadTy) { 676 assert(Loads.size() == 2 && "currently only support widening two loads"); 677 678 LoadInst *Base = Loads[0]; 679 LoadInst *Offset = Loads[1]; 680 681 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 682 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 683 684 assert((BaseSExt && OffsetSExt) 685 && "Loads should have a single, extending, user"); 686 687 std::function<void(Value*, Value*)> MoveBefore = 688 [&](Value *A, Value *B) -> void { 689 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 690 return; 691 692 auto *Source = cast<Instruction>(A); 693 auto *Sink = cast<Instruction>(B); 694 695 if (DT->dominates(Source, Sink) || 696 Source->getParent() != Sink->getParent() || 697 isa<PHINode>(Source) || isa<PHINode>(Sink)) 698 return; 699 700 Source->moveBefore(Sink); 701 for (auto &Op : Source->operands()) 702 MoveBefore(Op, Source); 703 }; 704 705 // Insert the load at the point of the original dominating load. 706 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 707 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 708 ++BasicBlock::iterator(DomLoad)); 709 710 // Bitcast the pointer to a wider type and create the wide load, while making 711 // sure to maintain the original alignment as this prevents ldrd from being 712 // generated when it could be illegal due to memory alignment. 713 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 714 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 715 LoadTy->getPointerTo(AddrSpace)); 716 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 717 Base->getAlignment()); 718 719 // Make sure everything is in the correct order in the basic block. 720 MoveBefore(Base->getPointerOperand(), VecPtr); 721 MoveBefore(VecPtr, WideLoad); 722 723 // From the wide load, create two values that equal the original two loads. 724 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 725 // TODO: Support big-endian as well. 726 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 727 BaseSExt->setOperand(0, Bottom); 728 729 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 730 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 731 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 732 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 733 OffsetSExt->setOperand(0, Trunc); 734 735 WideLoads.emplace(std::make_pair(Base, 736 std::make_unique<WidenedLoad>(Loads, WideLoad))); 737 return WideLoad; 738 } 739 740 Pass *llvm::createARMParallelDSPPass() { 741 return new ARMParallelDSP(); 742 } 743 744 char ARMParallelDSP::ID = 0; 745 746 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 747 "Transform loops to use DSP intrinsics", false, false) 748 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 749 "Transform loops to use DSP intrinsics", false, false) 750