1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
12 /// purpose of this pass is do some IR pattern matching to create ACLE
13 /// DSP intrinsics, which map on these 32-bit SIMD operations.
14 /// This pass runs only when unaligned accesses is supported/enabled.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/LoopAccessAnalysis.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/NoFolder.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/LoopUtils.h"
29 #include "llvm/Pass.h"
30 #include "llvm/PassRegistry.h"
31 #include "llvm/PassSupport.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "ARM.h"
36 #include "ARMSubtarget.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 #define DEBUG_TYPE "arm-parallel-dsp"
42 
43 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
44 
45 static cl::opt<bool>
46 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
47                    cl::desc("Disable the ARM Parallel DSP pass"));
48 
49 namespace {
50   struct OpChain;
51   struct BinOpChain;
52   struct Reduction;
53 
54   using OpChainList     = SmallVector<std::unique_ptr<OpChain>, 8>;
55   using ReductionList   = SmallVector<Reduction, 8>;
56   using ValueList       = SmallVector<Value*, 8>;
57   using MemInstList     = SmallVector<Instruction*, 8>;
58   using PMACPair        = std::pair<BinOpChain*,BinOpChain*>;
59   using PMACPairList    = SmallVector<PMACPair, 8>;
60   using Instructions    = SmallVector<Instruction*,16>;
61   using MemLocList      = SmallVector<MemoryLocation, 4>;
62 
63   struct OpChain {
64     Instruction   *Root;
65     ValueList     AllValues;
66     MemInstList   VecLd;    // List of all load instructions.
67     MemLocList    MemLocs;  // All memory locations read by this tree.
68     bool          ReadOnly = true;
69 
70     OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
71     virtual ~OpChain() = default;
72 
73     void SetMemoryLocations() {
74       const auto Size = MemoryLocation::UnknownSize;
75       for (auto *V : AllValues) {
76         if (auto *I = dyn_cast<Instruction>(V)) {
77           if (I->mayWriteToMemory())
78             ReadOnly = false;
79           if (auto *Ld = dyn_cast<LoadInst>(V))
80             MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size));
81         }
82       }
83     }
84 
85     unsigned size() const { return AllValues.size(); }
86   };
87 
88   // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
89   // 'Reduction' contains the phi-node and accumulator statement from where we
90   // start pattern matching, and 'BinOpChain' the multiplication
91   // instructions that are candidates for parallel execution.
92   struct BinOpChain : public OpChain {
93     ValueList     LHS;      // List of all (narrow) left hand operands.
94     ValueList     RHS;      // List of all (narrow) right hand operands.
95     bool Exchange = false;
96 
97     BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
98       OpChain(I, lhs), LHS(lhs), RHS(rhs) {
99         for (auto *V : RHS)
100           AllValues.push_back(V);
101       }
102   };
103 
104   struct Reduction {
105     PHINode         *Phi;             // The Phi-node from where we start
106                                       // pattern matching.
107     Instruction     *AccIntAdd;       // The accumulating integer add statement,
108                                       // i.e, the reduction statement.
109 
110     OpChainList     MACCandidates;    // The MAC candidates associated with
111                                       // this reduction statement.
112     Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
113   };
114 
115   class ARMParallelDSP : public LoopPass {
116     ScalarEvolution   *SE;
117     AliasAnalysis     *AA;
118     TargetLibraryInfo *TLI;
119     DominatorTree     *DT;
120     LoopInfo          *LI;
121     Loop              *L;
122     const DataLayout  *DL;
123     Module            *M;
124 
125     bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs);
126     bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
127     PMACPairList CreateParallelMACPairs(OpChainList &Candidates);
128     Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
129                                  Instruction *Acc, bool Exchange,
130                                  Instruction *InsertAfter);
131 
132     /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
133     /// Dual performs two signed 16x16-bit multiplications. It adds the
134     /// products to a 32-bit accumulate operand. Optionally, the instruction can
135     /// exchange the halfwords of the second operand before performing the
136     /// arithmetic.
137     bool MatchSMLAD(Function &F);
138 
139   public:
140     static char ID;
141 
142     ARMParallelDSP() : LoopPass(ID) { }
143 
144     void getAnalysisUsage(AnalysisUsage &AU) const override {
145       LoopPass::getAnalysisUsage(AU);
146       AU.addRequired<AssumptionCacheTracker>();
147       AU.addRequired<ScalarEvolutionWrapperPass>();
148       AU.addRequired<AAResultsWrapperPass>();
149       AU.addRequired<TargetLibraryInfoWrapperPass>();
150       AU.addRequired<LoopInfoWrapperPass>();
151       AU.addRequired<DominatorTreeWrapperPass>();
152       AU.addRequired<TargetPassConfig>();
153       AU.addPreserved<LoopInfoWrapperPass>();
154       AU.setPreservesCFG();
155     }
156 
157     bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
158       if (DisableParallelDSP)
159         return false;
160       L = TheLoop;
161       SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
162       AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
163       TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
164       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
165       LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
166       auto &TPC = getAnalysis<TargetPassConfig>();
167 
168       BasicBlock *Header = TheLoop->getHeader();
169       if (!Header)
170         return false;
171 
172       // TODO: We assume the loop header and latch to be the same block.
173       // This is not a fundamental restriction, but lifting this would just
174       // require more work to do the transformation and then patch up the CFG.
175       if (Header != TheLoop->getLoopLatch()) {
176         LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
177                              "running pass ARMParallelDSP\n");
178         return false;
179       }
180 
181       Function &F = *Header->getParent();
182       M = F.getParent();
183       DL = &M->getDataLayout();
184 
185       auto &TM = TPC.getTM<TargetMachine>();
186       auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
187 
188       if (!ST->allowsUnalignedMem()) {
189         LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
190                              "running pass ARMParallelDSP\n");
191         return false;
192       }
193 
194       if (!ST->hasDSP()) {
195         LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
196                              "ARMParallelDSP\n");
197         return false;
198       }
199 
200       LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
201       bool Changes = false;
202 
203       LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
204       LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
205       Changes = MatchSMLAD(F);
206       return Changes;
207     }
208   };
209 }
210 
211 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
212 // instructions, which is set to 16. So here we should collect all i8 and i16
213 // narrow operations.
214 // TODO: we currently only collect i16, and will support i8 later, so that's
215 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
216 template<unsigned MaxBitWidth>
217 static bool IsNarrowSequence(Value *V, ValueList &VL) {
218   LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
219   ConstantInt *CInt;
220 
221   if (match(V, m_ConstantInt(CInt))) {
222     // TODO: if a constant is used, it needs to fit within the bit width.
223     return false;
224   }
225 
226   auto *I = dyn_cast<Instruction>(V);
227   if (!I)
228    return false;
229 
230   Value *Val, *LHS, *RHS;
231   if (match(V, m_Trunc(m_Value(Val)))) {
232     if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
233       return IsNarrowSequence<MaxBitWidth>(Val, VL);
234   } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
235     // TODO: we need to implement sadd16/sadd8 for this, which enables to
236     // also do the rewrite for smlad8.ll, but it is unsupported for now.
237     LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
238     return false;
239   } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
240     if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
241       LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
242         cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
243       return false;
244     }
245 
246     if (match(Val, m_Load(m_Value()))) {
247       LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
248       VL.push_back(Val);
249       VL.push_back(I);
250       return true;
251     }
252   }
253   LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
254   return false;
255 }
256 
257 // Element-by-element comparison of Value lists returning true if they are
258 // instructions with the same opcode or constants with the same value.
259 static bool AreSymmetrical(const ValueList &VL0,
260                            const ValueList &VL1) {
261   if (VL0.size() != VL1.size()) {
262     LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
263                       << VL0.size() << " != " << VL1.size() << "\n");
264     return false;
265   }
266 
267   const unsigned Pairs = VL0.size();
268   LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");
269 
270   for (unsigned i = 0; i < Pairs; ++i) {
271     const Value *V0 = VL0[i];
272     const Value *V1 = VL1[i];
273     const auto *Inst0 = dyn_cast<Instruction>(V0);
274     const auto *Inst1 = dyn_cast<Instruction>(V1);
275 
276     LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
277                dbgs() << "mul1: "; V0->dump();
278                dbgs() << "mul2: "; V1->dump());
279 
280     if (!Inst0 || !Inst1)
281       return false;
282 
283     if (Inst0->isSameOperationAs(Inst1)) {
284       LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
285       continue;
286     }
287 
288     const APInt *C0, *C1;
289     if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
290       return false;
291   }
292 
293   LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
294   return true;
295 }
296 
297 template<typename MemInst>
298 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
299                                   MemInstList &VecMem, const DataLayout &DL,
300                                   ScalarEvolution &SE) {
301   if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
302     LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
303     return false;
304   }
305   if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
306     VecMem.clear();
307     VecMem.push_back(MemOp0);
308     VecMem.push_back(MemOp1);
309     LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
310     return true;
311   }
312   LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
313   return false;
314 }
315 
316 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
317                                         MemInstList &VecMem) {
318   if (!Ld0 || !Ld1)
319     return false;
320 
321   LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
322     dbgs() << "Ld0:"; Ld0->dump();
323     dbgs() << "Ld1:"; Ld1->dump();
324   );
325 
326   if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
327     LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
328     return false;
329   }
330 
331   return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE);
332 }
333 
334 PMACPairList
335 ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) {
336   const unsigned Elems = Candidates.size();
337   PMACPairList PMACPairs;
338 
339   if (Elems < 2)
340     return PMACPairs;
341 
342   SmallPtrSet<const Instruction*, 4> Paired;
343   for (unsigned i = 0; i < Elems; ++i) {
344     BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
345     if (Paired.count(PMul0->Root))
346       continue;
347 
348     for (unsigned j = 0; j < Elems; ++j) {
349       if (i == j)
350         continue;
351 
352       BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get());
353       if (Paired.count(PMul1->Root))
354         continue;
355 
356       const Instruction *Mul0 = PMul0->Root;
357       const Instruction *Mul1 = PMul1->Root;
358       if (Mul0 == Mul1)
359         continue;
360 
361       assert(PMul0 != PMul1 && "expected different chains");
362 
363       LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
364                  dbgs() << "- "; Mul0->dump();
365                  dbgs() << "- "; Mul1->dump());
366 
367       const ValueList &Mul0_LHS = PMul0->LHS;
368       const ValueList &Mul0_RHS = PMul0->RHS;
369       const ValueList &Mul1_LHS = PMul1->LHS;
370       const ValueList &Mul1_RHS = PMul1->RHS;
371 
372       if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) ||
373           !AreSymmetrical(Mul0_RHS, Mul1_RHS))
374         continue;
375 
376       LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
377       // The first elements of each vector should be loads with sexts. If we
378       // find that its two pairs of consecutive loads, then these can be
379       // transformed into two wider loads and the users can be replaced with
380       // DSP intrinsics.
381       bool Found = false;
382       for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) {
383         auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]);
384         auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]);
385         auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]);
386         auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]);
387 
388         if (!Ld0 || !Ld1 || !Ld2 || !Ld3)
389           continue;
390 
391         LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n"
392                    << "\t Ld0: " << *Ld0 << "\n"
393                    << "\t Ld1: " << *Ld1 << "\n"
394                    << "and operands " << x + 2 << ":\n"
395                    << "\t Ld2: " << *Ld2 << "\n"
396                    << "\t Ld3: " << *Ld3 << "\n");
397 
398         if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
399           if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
400             LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
401             PMACPairs.push_back(std::make_pair(PMul0, PMul1));
402             Found = true;
403           } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
404             LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
405             LLVM_DEBUG(dbgs() << "    exchanging Ld2 and Ld3\n");
406             PMul1->Exchange = true;
407             PMACPairs.push_back(std::make_pair(PMul0, PMul1));
408             Found = true;
409           }
410         } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd)) {
411           if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
412             LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
413             LLVM_DEBUG(dbgs() << "    exchanging Ld0 and Ld1\n");
414             LLVM_DEBUG(dbgs() << "    and swapping muls\n");
415             PMul0->Exchange = true;
416             // Only the second operand can be exchanged, so swap the muls.
417             PMACPairs.push_back(std::make_pair(PMul1, PMul0));
418             Found = true;
419           }
420         }
421       }
422       if (Found) {
423         Paired.insert(Mul0);
424         Paired.insert(Mul1);
425         break;
426       }
427     }
428   }
429   return PMACPairs;
430 }
431 
432 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction,
433                                         PMACPairList &PMACPairs) {
434   Instruction *Acc = Reduction.Phi;
435   Instruction *InsertAfter = Reduction.AccIntAdd;
436 
437   for (auto &Pair : PMACPairs) {
438     BinOpChain *PMul0 = Pair.first;
439     BinOpChain *PMul1 = Pair.second;
440     LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
441                dbgs() << "- "; PMul0->Root->dump();
442                dbgs() << "- "; PMul1->Root->dump());
443 
444     auto *VecLd0 = cast<LoadInst>(PMul0->VecLd[0]);
445     auto *VecLd1 = cast<LoadInst>(PMul1->VecLd[0]);
446     Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, PMul1->Exchange, InsertAfter);
447     InsertAfter = Acc;
448   }
449 
450   if (Acc != Reduction.Phi) {
451     LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
452     Reduction.AccIntAdd->replaceAllUsesWith(Acc);
453     return true;
454   }
455   return false;
456 }
457 
458 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header,
459                             ReductionList &Reductions) {
460   RecurrenceDescriptor RecDesc;
461   const bool HasFnNoNaNAttr =
462     F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
463   const BasicBlock *Latch = TheLoop->getLoopLatch();
464 
465   // We need a preheader as getIncomingValueForBlock assumes there is one.
466   if (!TheLoop->getLoopPreheader()) {
467     LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
468     return;
469   }
470 
471   for (PHINode &Phi : Header->phis()) {
472     const auto *Ty = Phi.getType();
473     if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
474       continue;
475 
476     const bool IsReduction =
477       RecurrenceDescriptor::AddReductionVar(&Phi,
478                                             RecurrenceDescriptor::RK_IntegerAdd,
479                                             TheLoop, HasFnNoNaNAttr, RecDesc);
480     if (!IsReduction)
481       continue;
482 
483     Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
484     if (!Acc)
485       continue;
486 
487     Reductions.push_back(Reduction(&Phi, Acc));
488   }
489 
490   LLVM_DEBUG(
491     dbgs() << "\nAccumulating integer additions (reductions) found:\n";
492     for (auto &R : Reductions) {
493       dbgs() << "-  "; R.Phi->dump();
494       dbgs() << "-> "; R.AccIntAdd->dump();
495     }
496   );
497 }
498 
499 static void AddMACCandidate(OpChainList &Candidates,
500                             Instruction *Mul,
501                             Value *MulOp0, Value *MulOp1) {
502   LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
503   assert(Mul->getOpcode() == Instruction::Mul &&
504          "expected mul instruction");
505   ValueList LHS;
506   ValueList RHS;
507   if (IsNarrowSequence<16>(MulOp0, LHS) &&
508       IsNarrowSequence<16>(MulOp1, RHS)) {
509     LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
510     Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS));
511   }
512 }
513 
514 static void MatchParallelMACSequences(Reduction &R,
515                                       OpChainList &Candidates) {
516   Instruction *Acc = R.AccIntAdd;
517   LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc);
518 
519   // Returns false to signal the search should be stopped.
520   std::function<bool(Value*)> Match =
521     [&Candidates, &Match](Value *V) -> bool {
522 
523     auto *I = dyn_cast<Instruction>(V);
524     if (!I)
525       return false;
526 
527     Value *MulOp0, *MulOp1;
528 
529     switch (I->getOpcode()) {
530     case Instruction::Add:
531       if (Match(I->getOperand(0)) || (Match(I->getOperand(1))))
532         return true;
533       break;
534     case Instruction::Mul:
535       if (match (I, (m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) {
536         AddMACCandidate(Candidates, I, MulOp0, MulOp1);
537         return false;
538       }
539       break;
540     case Instruction::SExt:
541       if (match (I, (m_SExt(m_Mul(m_Value(MulOp0), m_Value(MulOp1)))))) {
542         Instruction *Mul = cast<Instruction>(I->getOperand(0));
543         AddMACCandidate(Candidates, Mul, MulOp0, MulOp1);
544         return false;
545       }
546       break;
547     }
548     return false;
549   };
550 
551   while (Match (Acc));
552   LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found "
553              << Candidates.size() << " candidates.\n");
554 }
555 
556 // Collects all instructions that are not part of the MAC chains, which is the
557 // set of instructions that can potentially alias with the MAC operands.
558 static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
559                             Instructions &Writes) {
560   for (auto &I : *Header) {
561     if (I.mayReadFromMemory())
562       Reads.push_back(&I);
563     if (I.mayWriteToMemory())
564       Writes.push_back(&I);
565   }
566 }
567 
568 // Check whether statements in the basic block that write to memory alias with
569 // the memory locations accessed by the MAC-chains.
570 // TODO: we need the read statements when we accept more complicated chains.
571 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
572                        Instructions &Writes, OpChainList &MACCandidates) {
573   LLVM_DEBUG(dbgs() << "Alias checks:\n");
574   for (auto &MAC : MACCandidates) {
575     LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump());
576 
577     // At the moment, we allow only simple chains that only consist of reads,
578     // accumulate their result with an integer add, and thus that don't write
579     // memory, and simply bail if they do.
580     if (!MAC->ReadOnly)
581       return true;
582 
583     // Now for all writes in the basic block, check that they don't alias with
584     // the memory locations accessed by our MAC-chain:
585     for (auto *I : Writes) {
586       LLVM_DEBUG(dbgs() << "- "; I->dump());
587       assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs");
588       for (auto &MemLoc : MAC->MemLocs) {
589         if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
590                                           ModRefInfo::ModRef))) {
591           LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
592           return true;
593         }
594       }
595     }
596   }
597 
598   LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
599   return false;
600 }
601 
602 static bool CheckMACMemory(OpChainList &Candidates) {
603   for (auto &C : Candidates) {
604     // A mul has 2 operands, and a narrow op consist of sext and a load; thus
605     // we expect at least 4 items in this operand value list.
606     if (C->size() < 4) {
607       LLVM_DEBUG(dbgs() << "Operand list too short.\n");
608       return false;
609     }
610     C->SetMemoryLocations();
611     ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
612     ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
613 
614     // Use +=2 to skip over the expected extend instructions.
615     for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
616       if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
617         return false;
618     }
619   }
620   return true;
621 }
622 
623 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
624 // multiplications.
625 // To use SMLAD:
626 // 1) we first need to find integer add reduction PHIs,
627 // 2) then from the PHI, look for this pattern:
628 //
629 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
630 // ld0 = load i16
631 // sext0 = sext i16 %ld0 to i32
632 // ld1 = load i16
633 // sext1 = sext i16 %ld1 to i32
634 // mul0 = mul %sext0, %sext1
635 // ld2 = load i16
636 // sext2 = sext i16 %ld2 to i32
637 // ld3 = load i16
638 // sext3 = sext i16 %ld3 to i32
639 // mul1 = mul i32 %sext2, %sext3
640 // add0 = add i32 %mul0, %acc0
641 // acc1 = add i32 %add0, %mul1
642 //
643 // Which can be selected to:
644 //
645 // ldr.h r0
646 // ldr.h r1
647 // smlad r2, r0, r1, r2
648 //
649 // If constants are used instead of loads, these will need to be hoisted
650 // out and into a register.
651 //
652 // If loop invariants are used instead of loads, these need to be packed
653 // before the loop begins.
654 //
655 bool ARMParallelDSP::MatchSMLAD(Function &F) {
656   BasicBlock *Header = L->getHeader();
657   LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
658              dbgs() << "Header block:\n"; Header->dump();
659              dbgs() << "Loop info:\n\n"; L->dump());
660 
661   bool Changed = false;
662   ReductionList Reductions;
663   MatchReductions(F, L, Header, Reductions);
664 
665   for (auto &R : Reductions) {
666     OpChainList MACCandidates;
667     MatchParallelMACSequences(R, MACCandidates);
668     if (!CheckMACMemory(MACCandidates))
669       continue;
670 
671     R.MACCandidates = std::move(MACCandidates);
672 
673     LLVM_DEBUG(dbgs() << "MAC candidates:\n";
674       for (auto &M : R.MACCandidates)
675         M->Root->dump();
676       dbgs() << "\n";);
677   }
678 
679   // Collect all instructions that may read or write memory. Our alias
680   // analysis checks bail out if any of these instructions aliases with an
681   // instruction from the MAC-chain.
682   Instructions Reads, Writes;
683   AliasCandidates(Header, Reads, Writes);
684 
685   for (auto &R : Reductions) {
686     if (AreAliased(AA, Reads, Writes, R.MACCandidates))
687       return false;
688     PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates);
689     Changed |= InsertParallelMACs(R, PMACPairs);
690   }
691 
692   LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
693   return Changed;
694 }
695 
696 static LoadInst *CreateLoadIns(IRBuilder<NoFolder> &IRB, LoadInst &BaseLoad,
697                                const Type *LoadTy) {
698   const unsigned AddrSpace = BaseLoad.getPointerAddressSpace();
699 
700   Value *VecPtr = IRB.CreateBitCast(BaseLoad.getPointerOperand(),
701                                     LoadTy->getPointerTo(AddrSpace));
702   return IRB.CreateAlignedLoad(VecPtr, BaseLoad.getAlignment());
703 }
704 
705 Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
706                                              Instruction *Acc, bool Exchange,
707                                              Instruction *InsertAfter) {
708   LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"
709              << "- " << *VecLd0 << "\n"
710              << "- " << *VecLd1 << "\n"
711              << "- " << *Acc << "\n"
712              << "Exchange: " << Exchange << "\n");
713 
714   IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
715                               ++BasicBlock::iterator(InsertAfter));
716 
717   // Replace the reduction chain with an intrinsic call
718   const Type *Ty = IntegerType::get(M->getContext(), 32);
719   LoadInst *NewLd0 = CreateLoadIns(Builder, VecLd0[0], Ty);
720   LoadInst *NewLd1 = CreateLoadIns(Builder, VecLd1[0], Ty);
721   Value* Args[] = { NewLd0, NewLd1, Acc };
722   Function *SMLAD = nullptr;
723   if (Exchange)
724     SMLAD = Acc->getType()->isIntegerTy(32) ?
725       Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
726       Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
727   else
728     SMLAD = Acc->getType()->isIntegerTy(32) ?
729       Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
730       Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
731   CallInst *Call = Builder.CreateCall(SMLAD, Args);
732   NumSMLAD++;
733   return Call;
734 }
735 
736 Pass *llvm::createARMParallelDSPPass() {
737   return new ARMParallelDSP();
738 }
739 
740 char ARMParallelDSP::ID = 0;
741 
742 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
743                 "Transform loops to use DSP intrinsics", false, false)
744 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
745                 "Transform loops to use DSP intrinsics", false, false)
746