1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 12 /// purpose of this pass is do some IR pattern matching to create ACLE 13 /// DSP intrinsics, which map on these 32-bit SIMD operations. 14 /// This pass runs only when unaligned accesses is supported/enabled. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/LoopAccessAnalysis.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/NoFolder.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/LoopUtils.h" 29 #include "llvm/Pass.h" 30 #include "llvm/PassRegistry.h" 31 #include "llvm/PassSupport.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "ARM.h" 36 #include "ARMSubtarget.h" 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 #define DEBUG_TYPE "arm-parallel-dsp" 42 43 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 44 45 static cl::opt<bool> 46 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 47 cl::desc("Disable the ARM Parallel DSP pass")); 48 49 namespace { 50 struct OpChain; 51 struct BinOpChain; 52 struct Reduction; 53 54 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; 55 using ReductionList = SmallVector<Reduction, 8>; 56 using ValueList = SmallVector<Value*, 8>; 57 using MemInstList = SmallVector<Instruction*, 8>; 58 using PMACPair = std::pair<BinOpChain*,BinOpChain*>; 59 using PMACPairList = SmallVector<PMACPair, 8>; 60 using Instructions = SmallVector<Instruction*,16>; 61 using MemLocList = SmallVector<MemoryLocation, 4>; 62 63 struct OpChain { 64 Instruction *Root; 65 ValueList AllValues; 66 MemInstList VecLd; // List of all load instructions. 67 MemLocList MemLocs; // All memory locations read by this tree. 68 bool ReadOnly = true; 69 70 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } 71 virtual ~OpChain() = default; 72 73 void SetMemoryLocations() { 74 const auto Size = MemoryLocation::UnknownSize; 75 for (auto *V : AllValues) { 76 if (auto *I = dyn_cast<Instruction>(V)) { 77 if (I->mayWriteToMemory()) 78 ReadOnly = false; 79 if (auto *Ld = dyn_cast<LoadInst>(V)) 80 MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); 81 } 82 } 83 } 84 85 unsigned size() const { return AllValues.size(); } 86 }; 87 88 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. 89 // 'Reduction' contains the phi-node and accumulator statement from where we 90 // start pattern matching, and 'BinOpChain' the multiplication 91 // instructions that are candidates for parallel execution. 92 struct BinOpChain : public OpChain { 93 ValueList LHS; // List of all (narrow) left hand operands. 94 ValueList RHS; // List of all (narrow) right hand operands. 95 bool Exchange = false; 96 97 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : 98 OpChain(I, lhs), LHS(lhs), RHS(rhs) { 99 for (auto *V : RHS) 100 AllValues.push_back(V); 101 } 102 }; 103 104 struct Reduction { 105 PHINode *Phi; // The Phi-node from where we start 106 // pattern matching. 107 Instruction *AccIntAdd; // The accumulating integer add statement, 108 // i.e, the reduction statement. 109 110 OpChainList MACCandidates; // The MAC candidates associated with 111 // this reduction statement. 112 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; 113 }; 114 115 class ARMParallelDSP : public LoopPass { 116 ScalarEvolution *SE; 117 AliasAnalysis *AA; 118 TargetLibraryInfo *TLI; 119 DominatorTree *DT; 120 LoopInfo *LI; 121 Loop *L; 122 const DataLayout *DL; 123 Module *M; 124 125 bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs); 126 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 127 PMACPairList CreateParallelMACPairs(OpChainList &Candidates); 128 Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, 129 Instruction *Acc, bool Exchange, 130 Instruction *InsertAfter); 131 132 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 133 /// Dual performs two signed 16x16-bit multiplications. It adds the 134 /// products to a 32-bit accumulate operand. Optionally, the instruction can 135 /// exchange the halfwords of the second operand before performing the 136 /// arithmetic. 137 bool MatchSMLAD(Function &F); 138 139 public: 140 static char ID; 141 142 ARMParallelDSP() : LoopPass(ID) { } 143 144 void getAnalysisUsage(AnalysisUsage &AU) const override { 145 LoopPass::getAnalysisUsage(AU); 146 AU.addRequired<AssumptionCacheTracker>(); 147 AU.addRequired<ScalarEvolutionWrapperPass>(); 148 AU.addRequired<AAResultsWrapperPass>(); 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 AU.addRequired<LoopInfoWrapperPass>(); 151 AU.addRequired<DominatorTreeWrapperPass>(); 152 AU.addRequired<TargetPassConfig>(); 153 AU.addPreserved<LoopInfoWrapperPass>(); 154 AU.setPreservesCFG(); 155 } 156 157 bool runOnLoop(Loop *TheLoop, LPPassManager &) override { 158 if (DisableParallelDSP) 159 return false; 160 L = TheLoop; 161 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 162 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 163 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 164 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 165 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 166 auto &TPC = getAnalysis<TargetPassConfig>(); 167 168 BasicBlock *Header = TheLoop->getHeader(); 169 if (!Header) 170 return false; 171 172 // TODO: We assume the loop header and latch to be the same block. 173 // This is not a fundamental restriction, but lifting this would just 174 // require more work to do the transformation and then patch up the CFG. 175 if (Header != TheLoop->getLoopLatch()) { 176 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " 177 "running pass ARMParallelDSP\n"); 178 return false; 179 } 180 181 Function &F = *Header->getParent(); 182 M = F.getParent(); 183 DL = &M->getDataLayout(); 184 185 auto &TM = TPC.getTM<TargetMachine>(); 186 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 187 188 if (!ST->allowsUnalignedMem()) { 189 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 190 "running pass ARMParallelDSP\n"); 191 return false; 192 } 193 194 if (!ST->hasDSP()) { 195 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 196 "ARMParallelDSP\n"); 197 return false; 198 } 199 200 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); 201 bool Changes = false; 202 203 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 204 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 205 Changes = MatchSMLAD(F); 206 return Changes; 207 } 208 }; 209 } 210 211 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 212 // instructions, which is set to 16. So here we should collect all i8 and i16 213 // narrow operations. 214 // TODO: we currently only collect i16, and will support i8 later, so that's 215 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 216 template<unsigned MaxBitWidth> 217 static bool IsNarrowSequence(Value *V, ValueList &VL) { 218 LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump()); 219 ConstantInt *CInt; 220 221 if (match(V, m_ConstantInt(CInt))) { 222 // TODO: if a constant is used, it needs to fit within the bit width. 223 return false; 224 } 225 226 auto *I = dyn_cast<Instruction>(V); 227 if (!I) 228 return false; 229 230 Value *Val, *LHS, *RHS; 231 if (match(V, m_Trunc(m_Value(Val)))) { 232 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) 233 return IsNarrowSequence<MaxBitWidth>(Val, VL); 234 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { 235 // TODO: we need to implement sadd16/sadd8 for this, which enables to 236 // also do the rewrite for smlad8.ll, but it is unsupported for now. 237 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); 238 return false; 239 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { 240 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) { 241 LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " << 242 cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n"); 243 return false; 244 } 245 246 if (match(Val, m_Load(m_Value()))) { 247 LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump()); 248 VL.push_back(Val); 249 VL.push_back(I); 250 return true; 251 } 252 } 253 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); 254 return false; 255 } 256 257 // Element-by-element comparison of Value lists returning true if they are 258 // instructions with the same opcode or constants with the same value. 259 static bool AreSymmetrical(const ValueList &VL0, 260 const ValueList &VL1) { 261 if (VL0.size() != VL1.size()) { 262 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " 263 << VL0.size() << " != " << VL1.size() << "\n"); 264 return false; 265 } 266 267 const unsigned Pairs = VL0.size(); 268 LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n"); 269 270 for (unsigned i = 0; i < Pairs; ++i) { 271 const Value *V0 = VL0[i]; 272 const Value *V1 = VL1[i]; 273 const auto *Inst0 = dyn_cast<Instruction>(V0); 274 const auto *Inst1 = dyn_cast<Instruction>(V1); 275 276 LLVM_DEBUG(dbgs() << "Pair " << i << ":\n"; 277 dbgs() << "mul1: "; V0->dump(); 278 dbgs() << "mul2: "; V1->dump()); 279 280 if (!Inst0 || !Inst1) 281 return false; 282 283 if (Inst0->isSameOperationAs(Inst1)) { 284 LLVM_DEBUG(dbgs() << "OK: same operation found!\n"); 285 continue; 286 } 287 288 const APInt *C0, *C1; 289 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) 290 return false; 291 } 292 293 LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n"); 294 return true; 295 } 296 297 template<typename MemInst> 298 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 299 MemInstList &VecMem, const DataLayout &DL, 300 ScalarEvolution &SE) { 301 if (!MemOp0->isSimple() || !MemOp1->isSimple()) { 302 LLVM_DEBUG(dbgs() << "No, not touching volatile access\n"); 303 return false; 304 } 305 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) { 306 VecMem.clear(); 307 VecMem.push_back(MemOp0); 308 VecMem.push_back(MemOp1); 309 LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n"); 310 return true; 311 } 312 LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n"); 313 return false; 314 } 315 316 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 317 MemInstList &VecMem) { 318 if (!Ld0 || !Ld1) 319 return false; 320 321 LLVM_DEBUG(dbgs() << "Are consecutive loads:\n"; 322 dbgs() << "Ld0:"; Ld0->dump(); 323 dbgs() << "Ld1:"; Ld1->dump(); 324 ); 325 326 if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) { 327 LLVM_DEBUG(dbgs() << "No, load has more than one use.\n"); 328 return false; 329 } 330 331 return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE); 332 } 333 334 PMACPairList 335 ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) { 336 const unsigned Elems = Candidates.size(); 337 PMACPairList PMACPairs; 338 339 if (Elems < 2) 340 return PMACPairs; 341 342 SmallPtrSet<const Instruction*, 4> Paired; 343 for (unsigned i = 0; i < Elems; ++i) { 344 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); 345 if (Paired.count(PMul0->Root)) 346 continue; 347 348 for (unsigned j = 0; j < Elems; ++j) { 349 if (i == j) 350 continue; 351 352 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get()); 353 if (Paired.count(PMul1->Root)) 354 continue; 355 356 const Instruction *Mul0 = PMul0->Root; 357 const Instruction *Mul1 = PMul1->Root; 358 if (Mul0 == Mul1) 359 continue; 360 361 assert(PMul0 != PMul1 && "expected different chains"); 362 363 LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n"; 364 dbgs() << "- "; Mul0->dump(); 365 dbgs() << "- "; Mul1->dump()); 366 367 const ValueList &Mul0_LHS = PMul0->LHS; 368 const ValueList &Mul0_RHS = PMul0->RHS; 369 const ValueList &Mul1_LHS = PMul1->LHS; 370 const ValueList &Mul1_RHS = PMul1->RHS; 371 372 if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) || 373 !AreSymmetrical(Mul0_RHS, Mul1_RHS)) 374 continue; 375 376 LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n"); 377 // The first elements of each vector should be loads with sexts. If we 378 // find that its two pairs of consecutive loads, then these can be 379 // transformed into two wider loads and the users can be replaced with 380 // DSP intrinsics. 381 bool Found = false; 382 for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) { 383 auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]); 384 auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]); 385 auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]); 386 auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]); 387 388 if (!Ld0 || !Ld1 || !Ld2 || !Ld3) 389 continue; 390 391 LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n" 392 << "\t Ld0: " << *Ld0 << "\n" 393 << "\t Ld1: " << *Ld1 << "\n" 394 << "and operands " << x + 2 << ":\n" 395 << "\t Ld2: " << *Ld2 << "\n" 396 << "\t Ld3: " << *Ld3 << "\n"); 397 398 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 399 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 400 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 401 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 402 Found = true; 403 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 404 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 405 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 406 PMul1->Exchange = true; 407 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 408 Found = true; 409 } 410 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd)) { 411 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 412 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 413 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 414 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 415 PMul0->Exchange = true; 416 // Only the second operand can be exchanged, so swap the muls. 417 PMACPairs.push_back(std::make_pair(PMul1, PMul0)); 418 Found = true; 419 } 420 } 421 } 422 if (Found) { 423 Paired.insert(Mul0); 424 Paired.insert(Mul1); 425 break; 426 } 427 } 428 } 429 return PMACPairs; 430 } 431 432 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction, 433 PMACPairList &PMACPairs) { 434 Instruction *Acc = Reduction.Phi; 435 Instruction *InsertAfter = Reduction.AccIntAdd; 436 437 for (auto &Pair : PMACPairs) { 438 BinOpChain *PMul0 = Pair.first; 439 BinOpChain *PMul1 = Pair.second; 440 LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; 441 dbgs() << "- "; PMul0->Root->dump(); 442 dbgs() << "- "; PMul1->Root->dump()); 443 444 auto *VecLd0 = cast<LoadInst>(PMul0->VecLd[0]); 445 auto *VecLd1 = cast<LoadInst>(PMul1->VecLd[0]); 446 Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, PMul1->Exchange, InsertAfter); 447 InsertAfter = Acc; 448 } 449 450 if (Acc != Reduction.Phi) { 451 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); 452 Reduction.AccIntAdd->replaceAllUsesWith(Acc); 453 return true; 454 } 455 return false; 456 } 457 458 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, 459 ReductionList &Reductions) { 460 RecurrenceDescriptor RecDesc; 461 const bool HasFnNoNaNAttr = 462 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 463 const BasicBlock *Latch = TheLoop->getLoopLatch(); 464 465 // We need a preheader as getIncomingValueForBlock assumes there is one. 466 if (!TheLoop->getLoopPreheader()) { 467 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); 468 return; 469 } 470 471 for (PHINode &Phi : Header->phis()) { 472 const auto *Ty = Phi.getType(); 473 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 474 continue; 475 476 const bool IsReduction = 477 RecurrenceDescriptor::AddReductionVar(&Phi, 478 RecurrenceDescriptor::RK_IntegerAdd, 479 TheLoop, HasFnNoNaNAttr, RecDesc); 480 if (!IsReduction) 481 continue; 482 483 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); 484 if (!Acc) 485 continue; 486 487 Reductions.push_back(Reduction(&Phi, Acc)); 488 } 489 490 LLVM_DEBUG( 491 dbgs() << "\nAccumulating integer additions (reductions) found:\n"; 492 for (auto &R : Reductions) { 493 dbgs() << "- "; R.Phi->dump(); 494 dbgs() << "-> "; R.AccIntAdd->dump(); 495 } 496 ); 497 } 498 499 static void AddMACCandidate(OpChainList &Candidates, 500 Instruction *Mul, 501 Value *MulOp0, Value *MulOp1) { 502 LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump()); 503 assert(Mul->getOpcode() == Instruction::Mul && 504 "expected mul instruction"); 505 ValueList LHS; 506 ValueList RHS; 507 if (IsNarrowSequence<16>(MulOp0, LHS) && 508 IsNarrowSequence<16>(MulOp1, RHS)) { 509 LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump()); 510 Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS)); 511 } 512 } 513 514 static void MatchParallelMACSequences(Reduction &R, 515 OpChainList &Candidates) { 516 Instruction *Acc = R.AccIntAdd; 517 LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc); 518 519 // Returns false to signal the search should be stopped. 520 std::function<bool(Value*)> Match = 521 [&Candidates, &Match](Value *V) -> bool { 522 523 auto *I = dyn_cast<Instruction>(V); 524 if (!I) 525 return false; 526 527 Value *MulOp0, *MulOp1; 528 529 switch (I->getOpcode()) { 530 case Instruction::Add: 531 if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) 532 return true; 533 break; 534 case Instruction::Mul: 535 if (match (I, (m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) { 536 AddMACCandidate(Candidates, I, MulOp0, MulOp1); 537 return false; 538 } 539 break; 540 case Instruction::SExt: 541 if (match (I, (m_SExt(m_Mul(m_Value(MulOp0), m_Value(MulOp1)))))) { 542 Instruction *Mul = cast<Instruction>(I->getOperand(0)); 543 AddMACCandidate(Candidates, Mul, MulOp0, MulOp1); 544 return false; 545 } 546 break; 547 } 548 return false; 549 }; 550 551 while (Match (Acc)); 552 LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " 553 << Candidates.size() << " candidates.\n"); 554 } 555 556 // Collects all instructions that are not part of the MAC chains, which is the 557 // set of instructions that can potentially alias with the MAC operands. 558 static void AliasCandidates(BasicBlock *Header, Instructions &Reads, 559 Instructions &Writes) { 560 for (auto &I : *Header) { 561 if (I.mayReadFromMemory()) 562 Reads.push_back(&I); 563 if (I.mayWriteToMemory()) 564 Writes.push_back(&I); 565 } 566 } 567 568 // Check whether statements in the basic block that write to memory alias with 569 // the memory locations accessed by the MAC-chains. 570 // TODO: we need the read statements when we accept more complicated chains. 571 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, 572 Instructions &Writes, OpChainList &MACCandidates) { 573 LLVM_DEBUG(dbgs() << "Alias checks:\n"); 574 for (auto &MAC : MACCandidates) { 575 LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); 576 577 // At the moment, we allow only simple chains that only consist of reads, 578 // accumulate their result with an integer add, and thus that don't write 579 // memory, and simply bail if they do. 580 if (!MAC->ReadOnly) 581 return true; 582 583 // Now for all writes in the basic block, check that they don't alias with 584 // the memory locations accessed by our MAC-chain: 585 for (auto *I : Writes) { 586 LLVM_DEBUG(dbgs() << "- "; I->dump()); 587 assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); 588 for (auto &MemLoc : MAC->MemLocs) { 589 if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), 590 ModRefInfo::ModRef))) { 591 LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); 592 return true; 593 } 594 } 595 } 596 } 597 598 LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); 599 return false; 600 } 601 602 static bool CheckMACMemory(OpChainList &Candidates) { 603 for (auto &C : Candidates) { 604 // A mul has 2 operands, and a narrow op consist of sext and a load; thus 605 // we expect at least 4 items in this operand value list. 606 if (C->size() < 4) { 607 LLVM_DEBUG(dbgs() << "Operand list too short.\n"); 608 return false; 609 } 610 C->SetMemoryLocations(); 611 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; 612 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; 613 614 // Use +=2 to skip over the expected extend instructions. 615 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { 616 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) 617 return false; 618 } 619 } 620 return true; 621 } 622 623 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector 624 // multiplications. 625 // To use SMLAD: 626 // 1) we first need to find integer add reduction PHIs, 627 // 2) then from the PHI, look for this pattern: 628 // 629 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] 630 // ld0 = load i16 631 // sext0 = sext i16 %ld0 to i32 632 // ld1 = load i16 633 // sext1 = sext i16 %ld1 to i32 634 // mul0 = mul %sext0, %sext1 635 // ld2 = load i16 636 // sext2 = sext i16 %ld2 to i32 637 // ld3 = load i16 638 // sext3 = sext i16 %ld3 to i32 639 // mul1 = mul i32 %sext2, %sext3 640 // add0 = add i32 %mul0, %acc0 641 // acc1 = add i32 %add0, %mul1 642 // 643 // Which can be selected to: 644 // 645 // ldr.h r0 646 // ldr.h r1 647 // smlad r2, r0, r1, r2 648 // 649 // If constants are used instead of loads, these will need to be hoisted 650 // out and into a register. 651 // 652 // If loop invariants are used instead of loads, these need to be packed 653 // before the loop begins. 654 // 655 bool ARMParallelDSP::MatchSMLAD(Function &F) { 656 BasicBlock *Header = L->getHeader(); 657 LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; 658 dbgs() << "Header block:\n"; Header->dump(); 659 dbgs() << "Loop info:\n\n"; L->dump()); 660 661 bool Changed = false; 662 ReductionList Reductions; 663 MatchReductions(F, L, Header, Reductions); 664 665 for (auto &R : Reductions) { 666 OpChainList MACCandidates; 667 MatchParallelMACSequences(R, MACCandidates); 668 if (!CheckMACMemory(MACCandidates)) 669 continue; 670 671 R.MACCandidates = std::move(MACCandidates); 672 673 LLVM_DEBUG(dbgs() << "MAC candidates:\n"; 674 for (auto &M : R.MACCandidates) 675 M->Root->dump(); 676 dbgs() << "\n";); 677 } 678 679 // Collect all instructions that may read or write memory. Our alias 680 // analysis checks bail out if any of these instructions aliases with an 681 // instruction from the MAC-chain. 682 Instructions Reads, Writes; 683 AliasCandidates(Header, Reads, Writes); 684 685 for (auto &R : Reductions) { 686 if (AreAliased(AA, Reads, Writes, R.MACCandidates)) 687 return false; 688 PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates); 689 Changed |= InsertParallelMACs(R, PMACPairs); 690 } 691 692 LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); 693 return Changed; 694 } 695 696 static LoadInst *CreateLoadIns(IRBuilder<NoFolder> &IRB, LoadInst &BaseLoad, 697 const Type *LoadTy) { 698 const unsigned AddrSpace = BaseLoad.getPointerAddressSpace(); 699 700 Value *VecPtr = IRB.CreateBitCast(BaseLoad.getPointerOperand(), 701 LoadTy->getPointerTo(AddrSpace)); 702 return IRB.CreateAlignedLoad(VecPtr, BaseLoad.getAlignment()); 703 } 704 705 Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, 706 Instruction *Acc, bool Exchange, 707 Instruction *InsertAfter) { 708 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" 709 << "- " << *VecLd0 << "\n" 710 << "- " << *VecLd1 << "\n" 711 << "- " << *Acc << "\n" 712 << "Exchange: " << Exchange << "\n"); 713 714 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 715 ++BasicBlock::iterator(InsertAfter)); 716 717 // Replace the reduction chain with an intrinsic call 718 const Type *Ty = IntegerType::get(M->getContext(), 32); 719 LoadInst *NewLd0 = CreateLoadIns(Builder, VecLd0[0], Ty); 720 LoadInst *NewLd1 = CreateLoadIns(Builder, VecLd1[0], Ty); 721 Value* Args[] = { NewLd0, NewLd1, Acc }; 722 Function *SMLAD = nullptr; 723 if (Exchange) 724 SMLAD = Acc->getType()->isIntegerTy(32) ? 725 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 726 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 727 else 728 SMLAD = Acc->getType()->isIntegerTy(32) ? 729 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 730 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 731 CallInst *Call = Builder.CreateCall(SMLAD, Args); 732 NumSMLAD++; 733 return Call; 734 } 735 736 Pass *llvm::createARMParallelDSPPass() { 737 return new ARMParallelDSP(); 738 } 739 740 char ARMParallelDSP::ID = 0; 741 742 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 743 "Transform loops to use DSP intrinsics", false, false) 744 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 745 "Transform loops to use DSP intrinsics", false, false) 746