1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 12 /// purpose of this pass is do some IR pattern matching to create ACLE 13 /// DSP intrinsics, which map on these 32-bit SIMD operations. 14 /// This pass runs only when unaligned accesses is supported/enabled. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/LoopAccessAnalysis.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/NoFolder.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/LoopUtils.h" 29 #include "llvm/Pass.h" 30 #include "llvm/PassRegistry.h" 31 #include "llvm/PassSupport.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "ARM.h" 36 #include "ARMSubtarget.h" 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 #define DEBUG_TYPE "arm-parallel-dsp" 42 43 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 44 45 static cl::opt<bool> 46 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 47 cl::desc("Disable the ARM Parallel DSP pass")); 48 49 namespace { 50 struct OpChain; 51 struct BinOpChain; 52 struct Reduction; 53 54 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; 55 using ReductionList = SmallVector<Reduction, 8>; 56 using ValueList = SmallVector<Value*, 8>; 57 using MemInstList = SmallVector<Instruction*, 8>; 58 using PMACPair = std::pair<BinOpChain*,BinOpChain*>; 59 using PMACPairList = SmallVector<PMACPair, 8>; 60 using Instructions = SmallVector<Instruction*,16>; 61 using MemLocList = SmallVector<MemoryLocation, 4>; 62 63 struct OpChain { 64 Instruction *Root; 65 ValueList AllValues; 66 MemInstList VecLd; // List of all load instructions. 67 MemLocList MemLocs; // All memory locations read by this tree. 68 bool ReadOnly = true; 69 70 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } 71 virtual ~OpChain() = default; 72 73 void SetMemoryLocations() { 74 const auto Size = MemoryLocation::UnknownSize; 75 for (auto *V : AllValues) { 76 if (auto *I = dyn_cast<Instruction>(V)) { 77 if (I->mayWriteToMemory()) 78 ReadOnly = false; 79 if (auto *Ld = dyn_cast<LoadInst>(V)) 80 MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); 81 } 82 } 83 } 84 85 unsigned size() const { return AllValues.size(); } 86 }; 87 88 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. 89 // 'Reduction' contains the phi-node and accumulator statement from where we 90 // start pattern matching, and 'BinOpChain' the multiplication 91 // instructions that are candidates for parallel execution. 92 struct BinOpChain : public OpChain { 93 ValueList LHS; // List of all (narrow) left hand operands. 94 ValueList RHS; // List of all (narrow) right hand operands. 95 96 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : 97 OpChain(I, lhs), LHS(lhs), RHS(rhs) { 98 for (auto *V : RHS) 99 AllValues.push_back(V); 100 } 101 }; 102 103 struct Reduction { 104 PHINode *Phi; // The Phi-node from where we start 105 // pattern matching. 106 Instruction *AccIntAdd; // The accumulating integer add statement, 107 // i.e, the reduction statement. 108 109 OpChainList MACCandidates; // The MAC candidates associated with 110 // this reduction statement. 111 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; 112 }; 113 114 class ARMParallelDSP : public LoopPass { 115 ScalarEvolution *SE; 116 AliasAnalysis *AA; 117 TargetLibraryInfo *TLI; 118 DominatorTree *DT; 119 LoopInfo *LI; 120 Loop *L; 121 const DataLayout *DL; 122 Module *M; 123 124 bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs); 125 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 126 PMACPairList CreateParallelMACPairs(OpChainList &Candidates); 127 Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, 128 Instruction *Acc, Instruction *InsertAfter); 129 130 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 131 /// Dual performs two signed 16x16-bit multiplications. It adds the 132 /// products to a 32-bit accumulate operand. Optionally, the instruction can 133 /// exchange the halfwords of the second operand before performing the 134 /// arithmetic. 135 bool MatchSMLAD(Function &F); 136 137 public: 138 static char ID; 139 140 ARMParallelDSP() : LoopPass(ID) { } 141 142 void getAnalysisUsage(AnalysisUsage &AU) const override { 143 LoopPass::getAnalysisUsage(AU); 144 AU.addRequired<AssumptionCacheTracker>(); 145 AU.addRequired<ScalarEvolutionWrapperPass>(); 146 AU.addRequired<AAResultsWrapperPass>(); 147 AU.addRequired<TargetLibraryInfoWrapperPass>(); 148 AU.addRequired<LoopInfoWrapperPass>(); 149 AU.addRequired<DominatorTreeWrapperPass>(); 150 AU.addRequired<TargetPassConfig>(); 151 AU.addPreserved<LoopInfoWrapperPass>(); 152 AU.setPreservesCFG(); 153 } 154 155 bool runOnLoop(Loop *TheLoop, LPPassManager &) override { 156 if (DisableParallelDSP) 157 return false; 158 L = TheLoop; 159 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 160 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 161 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 162 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 163 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 164 auto &TPC = getAnalysis<TargetPassConfig>(); 165 166 BasicBlock *Header = TheLoop->getHeader(); 167 if (!Header) 168 return false; 169 170 // TODO: We assume the loop header and latch to be the same block. 171 // This is not a fundamental restriction, but lifting this would just 172 // require more work to do the transformation and then patch up the CFG. 173 if (Header != TheLoop->getLoopLatch()) { 174 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " 175 "running pass ARMParallelDSP\n"); 176 return false; 177 } 178 179 Function &F = *Header->getParent(); 180 M = F.getParent(); 181 DL = &M->getDataLayout(); 182 183 auto &TM = TPC.getTM<TargetMachine>(); 184 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 185 186 if (!ST->allowsUnalignedMem()) { 187 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 188 "running pass ARMParallelDSP\n"); 189 return false; 190 } 191 192 if (!ST->hasDSP()) { 193 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 194 "ARMParallelDSP\n"); 195 return false; 196 } 197 198 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); 199 bool Changes = false; 200 201 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n"); 202 Changes = MatchSMLAD(F); 203 return Changes; 204 } 205 }; 206 } 207 208 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 209 // instructions, which is set to 16. So here we should collect all i8 and i16 210 // narrow operations. 211 // TODO: we currently only collect i16, and will support i8 later, so that's 212 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 213 template<unsigned MaxBitWidth> 214 static bool IsNarrowSequence(Value *V, ValueList &VL) { 215 LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump()); 216 ConstantInt *CInt; 217 218 if (match(V, m_ConstantInt(CInt))) { 219 // TODO: if a constant is used, it needs to fit within the bit width. 220 return false; 221 } 222 223 auto *I = dyn_cast<Instruction>(V); 224 if (!I) 225 return false; 226 227 Value *Val, *LHS, *RHS; 228 if (match(V, m_Trunc(m_Value(Val)))) { 229 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) 230 return IsNarrowSequence<MaxBitWidth>(Val, VL); 231 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { 232 // TODO: we need to implement sadd16/sadd8 for this, which enables to 233 // also do the rewrite for smlad8.ll, but it is unsupported for now. 234 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); 235 return false; 236 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { 237 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) { 238 LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " << 239 cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n"); 240 return false; 241 } 242 243 if (match(Val, m_Load(m_Value()))) { 244 LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump()); 245 VL.push_back(Val); 246 VL.push_back(I); 247 return true; 248 } 249 } 250 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); 251 return false; 252 } 253 254 // Element-by-element comparison of Value lists returning true if they are 255 // instructions with the same opcode or constants with the same value. 256 static bool AreSymmetrical(const ValueList &VL0, 257 const ValueList &VL1) { 258 if (VL0.size() != VL1.size()) { 259 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " 260 << VL0.size() << " != " << VL1.size() << "\n"); 261 return false; 262 } 263 264 const unsigned Pairs = VL0.size(); 265 LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n"); 266 267 for (unsigned i = 0; i < Pairs; ++i) { 268 const Value *V0 = VL0[i]; 269 const Value *V1 = VL1[i]; 270 const auto *Inst0 = dyn_cast<Instruction>(V0); 271 const auto *Inst1 = dyn_cast<Instruction>(V1); 272 273 LLVM_DEBUG(dbgs() << "Pair " << i << ":\n"; 274 dbgs() << "mul1: "; V0->dump(); 275 dbgs() << "mul2: "; V1->dump()); 276 277 if (!Inst0 || !Inst1) 278 return false; 279 280 if (Inst0->isSameOperationAs(Inst1)) { 281 LLVM_DEBUG(dbgs() << "OK: same operation found!\n"); 282 continue; 283 } 284 285 const APInt *C0, *C1; 286 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) 287 return false; 288 } 289 290 LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n"); 291 return true; 292 } 293 294 template<typename MemInst> 295 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 296 MemInstList &VecMem, const DataLayout &DL, 297 ScalarEvolution &SE) { 298 if (!MemOp0->isSimple() || !MemOp1->isSimple()) { 299 LLVM_DEBUG(dbgs() << "No, not touching volatile access\n"); 300 return false; 301 } 302 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) { 303 VecMem.push_back(MemOp0); 304 VecMem.push_back(MemOp1); 305 LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n"); 306 return true; 307 } 308 LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n"); 309 return false; 310 } 311 312 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 313 MemInstList &VecMem) { 314 if (!Ld0 || !Ld1) 315 return false; 316 317 LLVM_DEBUG(dbgs() << "Are consecutive loads:\n"; 318 dbgs() << "Ld0:"; Ld0->dump(); 319 dbgs() << "Ld1:"; Ld1->dump(); 320 ); 321 322 if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) { 323 LLVM_DEBUG(dbgs() << "No, load has more than one use.\n"); 324 return false; 325 } 326 327 return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE); 328 } 329 330 PMACPairList 331 ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) { 332 const unsigned Elems = Candidates.size(); 333 PMACPairList PMACPairs; 334 335 if (Elems < 2) 336 return PMACPairs; 337 338 // TODO: for now we simply try to match consecutive pairs i and i+1. 339 // We can compare all elements, but then we need to compare and evaluate 340 // different solutions. 341 for(unsigned i=0; i<Elems-1; i+=2) { 342 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); 343 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[i+1].get()); 344 const Instruction *Mul0 = PMul0->Root; 345 const Instruction *Mul1 = PMul1->Root; 346 347 if (Mul0 == Mul1) 348 continue; 349 350 LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n"; 351 dbgs() << "- "; Mul0->dump(); 352 dbgs() << "- "; Mul1->dump()); 353 354 const ValueList &Mul0_LHS = PMul0->LHS; 355 const ValueList &Mul0_RHS = PMul0->RHS; 356 const ValueList &Mul1_LHS = PMul1->LHS; 357 const ValueList &Mul1_RHS = PMul1->RHS; 358 359 if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) || 360 !AreSymmetrical(Mul0_RHS, Mul1_RHS)) 361 continue; 362 363 LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n"); 364 // The first elements of each vector should be loads with sexts. If we find 365 // that its two pairs of consecutive loads, then these can be transformed 366 // into two wider loads and the users can be replaced with DSP 367 // intrinsics. 368 for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) { 369 auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]); 370 auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]); 371 auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]); 372 auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]); 373 374 LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n"; 375 dbgs() << "\t mul1: "; Mul0_LHS[x]->dump(); 376 dbgs() << "\t mul2: "; Mul1_LHS[x]->dump(); 377 dbgs() << "and operands " << x + 2 << ":\n"; 378 dbgs() << "\t mul1: "; Mul0_RHS[x]->dump(); 379 dbgs() << "\t mul2: "; Mul1_RHS[x]->dump()); 380 381 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd) && 382 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 383 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 384 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 385 } 386 } 387 } 388 return PMACPairs; 389 } 390 391 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction, 392 PMACPairList &PMACPairs) { 393 Instruction *Acc = Reduction.Phi; 394 Instruction *InsertAfter = Reduction.AccIntAdd; 395 396 for (auto &Pair : PMACPairs) { 397 LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; 398 dbgs() << "- "; Pair.first->Root->dump(); 399 dbgs() << "- "; Pair.second->Root->dump()); 400 auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]); 401 auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]); 402 Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter); 403 InsertAfter = Acc; 404 } 405 406 if (Acc != Reduction.Phi) { 407 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); 408 Reduction.AccIntAdd->replaceAllUsesWith(Acc); 409 return true; 410 } 411 return false; 412 } 413 414 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, 415 ReductionList &Reductions) { 416 RecurrenceDescriptor RecDesc; 417 const bool HasFnNoNaNAttr = 418 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 419 const BasicBlock *Latch = TheLoop->getLoopLatch(); 420 421 // We need a preheader as getIncomingValueForBlock assumes there is one. 422 if (!TheLoop->getLoopPreheader()) { 423 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); 424 return; 425 } 426 427 for (PHINode &Phi : Header->phis()) { 428 const auto *Ty = Phi.getType(); 429 if (!Ty->isIntegerTy(32)) 430 continue; 431 432 const bool IsReduction = 433 RecurrenceDescriptor::AddReductionVar(&Phi, 434 RecurrenceDescriptor::RK_IntegerAdd, 435 TheLoop, HasFnNoNaNAttr, RecDesc); 436 if (!IsReduction) 437 continue; 438 439 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); 440 if (!Acc) 441 continue; 442 443 Reductions.push_back(Reduction(&Phi, Acc)); 444 } 445 446 LLVM_DEBUG( 447 dbgs() << "\nAccumulating integer additions (reductions) found:\n"; 448 for (auto &R : Reductions) { 449 dbgs() << "- "; R.Phi->dump(); 450 dbgs() << "-> "; R.AccIntAdd->dump(); 451 } 452 ); 453 } 454 455 static void AddMACCandidate(OpChainList &Candidates, 456 const Instruction *Acc, 457 Value *MulOp0, Value *MulOp1, int MulOpNum) { 458 Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum)); 459 LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump()); 460 ValueList LHS; 461 ValueList RHS; 462 if (IsNarrowSequence<16>(MulOp0, LHS) && 463 IsNarrowSequence<16>(MulOp1, RHS)) { 464 LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump()); 465 Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS)); 466 } 467 } 468 469 static void MatchParallelMACSequences(Reduction &R, 470 OpChainList &Candidates) { 471 const Instruction *Acc = R.AccIntAdd; 472 Value *A, *MulOp0, *MulOp1; 473 LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump()); 474 475 // Pattern 1: the accumulator is the RHS of the mul. 476 while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), 477 m_Value(A)))){ 478 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0); 479 Acc = dyn_cast<Instruction>(A); 480 } 481 // Pattern 2: the accumulator is the LHS of the mul. 482 while(match(Acc, m_Add(m_Value(A), 483 m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) { 484 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 1); 485 Acc = dyn_cast<Instruction>(A); 486 } 487 488 // The last mul in the chain has a slightly different pattern: 489 // the mul is the first operand 490 if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A)))) 491 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0); 492 493 // Because we start at the bottom of the chain, and we work our way up, 494 // the muls are added in reverse program order to the list. 495 std::reverse(Candidates.begin(), Candidates.end()); 496 } 497 498 // Collects all instructions that are not part of the MAC chains, which is the 499 // set of instructions that can potentially alias with the MAC operands. 500 static void AliasCandidates(BasicBlock *Header, Instructions &Reads, 501 Instructions &Writes) { 502 for (auto &I : *Header) { 503 if (I.mayReadFromMemory()) 504 Reads.push_back(&I); 505 if (I.mayWriteToMemory()) 506 Writes.push_back(&I); 507 } 508 } 509 510 // Check whether statements in the basic block that write to memory alias with 511 // the memory locations accessed by the MAC-chains. 512 // TODO: we need the read statements when we accept more complicated chains. 513 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, 514 Instructions &Writes, OpChainList &MACCandidates) { 515 LLVM_DEBUG(dbgs() << "Alias checks:\n"); 516 for (auto &MAC : MACCandidates) { 517 LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); 518 519 // At the moment, we allow only simple chains that only consist of reads, 520 // accumulate their result with an integer add, and thus that don't write 521 // memory, and simply bail if they do. 522 if (!MAC->ReadOnly) 523 return true; 524 525 // Now for all writes in the basic block, check that they don't alias with 526 // the memory locations accessed by our MAC-chain: 527 for (auto *I : Writes) { 528 LLVM_DEBUG(dbgs() << "- "; I->dump()); 529 assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); 530 for (auto &MemLoc : MAC->MemLocs) { 531 if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), 532 ModRefInfo::ModRef))) { 533 LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); 534 return true; 535 } 536 } 537 } 538 } 539 540 LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); 541 return false; 542 } 543 544 static bool CheckMACMemory(OpChainList &Candidates) { 545 for (auto &C : Candidates) { 546 // A mul has 2 operands, and a narrow op consist of sext and a load; thus 547 // we expect at least 4 items in this operand value list. 548 if (C->size() < 4) { 549 LLVM_DEBUG(dbgs() << "Operand list too short.\n"); 550 return false; 551 } 552 C->SetMemoryLocations(); 553 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; 554 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; 555 556 // Use +=2 to skip over the expected extend instructions. 557 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { 558 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) 559 return false; 560 } 561 } 562 return true; 563 } 564 565 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector 566 // multiplications. 567 // To use SMLAD: 568 // 1) we first need to find integer add reduction PHIs, 569 // 2) then from the PHI, look for this pattern: 570 // 571 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] 572 // ld0 = load i16 573 // sext0 = sext i16 %ld0 to i32 574 // ld1 = load i16 575 // sext1 = sext i16 %ld1 to i32 576 // mul0 = mul %sext0, %sext1 577 // ld2 = load i16 578 // sext2 = sext i16 %ld2 to i32 579 // ld3 = load i16 580 // sext3 = sext i16 %ld3 to i32 581 // mul1 = mul i32 %sext2, %sext3 582 // add0 = add i32 %mul0, %acc0 583 // acc1 = add i32 %add0, %mul1 584 // 585 // Which can be selected to: 586 // 587 // ldr.h r0 588 // ldr.h r1 589 // smlad r2, r0, r1, r2 590 // 591 // If constants are used instead of loads, these will need to be hoisted 592 // out and into a register. 593 // 594 // If loop invariants are used instead of loads, these need to be packed 595 // before the loop begins. 596 // 597 bool ARMParallelDSP::MatchSMLAD(Function &F) { 598 BasicBlock *Header = L->getHeader(); 599 LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; 600 dbgs() << "Header block:\n"; Header->dump(); 601 dbgs() << "Loop info:\n\n"; L->dump()); 602 603 bool Changed = false; 604 ReductionList Reductions; 605 MatchReductions(F, L, Header, Reductions); 606 607 for (auto &R : Reductions) { 608 OpChainList MACCandidates; 609 MatchParallelMACSequences(R, MACCandidates); 610 if (!CheckMACMemory(MACCandidates)) 611 continue; 612 613 R.MACCandidates = std::move(MACCandidates); 614 615 LLVM_DEBUG(dbgs() << "MAC candidates:\n"; 616 for (auto &M : R.MACCandidates) 617 M->Root->dump(); 618 dbgs() << "\n";); 619 } 620 621 // Collect all instructions that may read or write memory. Our alias 622 // analysis checks bail out if any of these instructions aliases with an 623 // instruction from the MAC-chain. 624 Instructions Reads, Writes; 625 AliasCandidates(Header, Reads, Writes); 626 627 for (auto &R : Reductions) { 628 if (AreAliased(AA, Reads, Writes, R.MACCandidates)) 629 return false; 630 PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates); 631 Changed |= InsertParallelMACs(R, PMACPairs); 632 } 633 634 LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); 635 return Changed; 636 } 637 638 static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc, 639 LoadInst **VecLd) { 640 const Type *AccTy = Acc->getType(); 641 const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace(); 642 643 Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(), 644 AccTy->getPointerTo(AddrSpace)); 645 *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment()); 646 } 647 648 Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, 649 Instruction *Acc, 650 Instruction *InsertAfter) { 651 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"; 652 dbgs() << "- "; VecLd0->dump(); 653 dbgs() << "- "; VecLd1->dump(); 654 dbgs() << "- "; Acc->dump()); 655 656 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 657 ++BasicBlock::iterator(InsertAfter)); 658 659 // Replace the reduction chain with an intrinsic call 660 CreateLoadIns(Builder, Acc, &VecLd0); 661 CreateLoadIns(Builder, Acc, &VecLd1); 662 Value* Args[] = { VecLd0, VecLd1, Acc }; 663 Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad); 664 CallInst *Call = Builder.CreateCall(SMLAD, Args); 665 NumSMLAD++; 666 return Call; 667 } 668 669 Pass *llvm::createARMParallelDSPPass() { 670 return new ARMParallelDSP(); 671 } 672 673 char ARMParallelDSP::ID = 0; 674 675 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 676 "Transform loops to use DSP intrinsics", false, false) 677 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 678 "Transform loops to use DSP intrinsics", false, false) 679