1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/NoFolder.h" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/LoopUtils.h" 28 #include "llvm/Pass.h" 29 #include "llvm/PassRegistry.h" 30 #include "llvm/PassSupport.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "ARM.h" 35 #include "ARMSubtarget.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "arm-parallel-dsp" 41 42 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 43 44 static cl::opt<bool> 45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 46 cl::desc("Disable the ARM Parallel DSP pass")); 47 48 namespace { 49 struct OpChain; 50 struct BinOpChain; 51 struct Reduction; 52 53 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; 54 using ReductionList = SmallVector<Reduction, 8>; 55 using ValueList = SmallVector<Value*, 8>; 56 using MemInstList = SmallVector<LoadInst*, 8>; 57 using PMACPair = std::pair<BinOpChain*,BinOpChain*>; 58 using PMACPairList = SmallVector<PMACPair, 8>; 59 using Instructions = SmallVector<Instruction*,16>; 60 using MemLocList = SmallVector<MemoryLocation, 4>; 61 62 struct OpChain { 63 Instruction *Root; 64 ValueList AllValues; 65 MemInstList VecLd; // List of all load instructions. 66 MemInstList Loads; 67 bool ReadOnly = true; 68 69 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } 70 virtual ~OpChain() = default; 71 72 void PopulateLoads() { 73 for (auto *V : AllValues) { 74 if (auto *Ld = dyn_cast<LoadInst>(V)) 75 Loads.push_back(Ld); 76 } 77 } 78 79 unsigned size() const { return AllValues.size(); } 80 }; 81 82 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. 83 // 'Reduction' contains the phi-node and accumulator statement from where we 84 // start pattern matching, and 'BinOpChain' the multiplication 85 // instructions that are candidates for parallel execution. 86 struct BinOpChain : public OpChain { 87 ValueList LHS; // List of all (narrow) left hand operands. 88 ValueList RHS; // List of all (narrow) right hand operands. 89 bool Exchange = false; 90 91 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : 92 OpChain(I, lhs), LHS(lhs), RHS(rhs) { 93 for (auto *V : RHS) 94 AllValues.push_back(V); 95 } 96 97 bool AreSymmetrical(BinOpChain *Other); 98 }; 99 100 struct Reduction { 101 PHINode *Phi; // The Phi-node from where we start 102 // pattern matching. 103 Instruction *AccIntAdd; // The accumulating integer add statement, 104 // i.e, the reduction statement. 105 OpChainList MACCandidates; // The MAC candidates associated with 106 // this reduction statement. 107 PMACPairList PMACPairs; 108 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; 109 }; 110 111 class WidenedLoad { 112 LoadInst *NewLd = nullptr; 113 SmallVector<LoadInst*, 4> Loads; 114 115 public: 116 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 117 : NewLd(Wide) { 118 for (auto *I : Lds) 119 Loads.push_back(I); 120 } 121 LoadInst *getLoad() { 122 return NewLd; 123 } 124 }; 125 126 class ARMParallelDSP : public LoopPass { 127 ScalarEvolution *SE; 128 AliasAnalysis *AA; 129 TargetLibraryInfo *TLI; 130 DominatorTree *DT; 131 LoopInfo *LI; 132 Loop *L; 133 const DataLayout *DL; 134 Module *M; 135 std::map<LoadInst*, LoadInst*> LoadPairs; 136 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 137 138 bool RecordMemoryOps(BasicBlock *BB); 139 bool InsertParallelMACs(Reduction &Reduction); 140 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 141 LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, 142 IntegerType *LoadTy); 143 void CreateParallelMACPairs(Reduction &R); 144 Instruction *CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0, 145 SmallVectorImpl<LoadInst*> &VecLd1, 146 Instruction *Acc, bool Exchange, 147 Instruction *InsertAfter); 148 149 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 150 /// Dual performs two signed 16x16-bit multiplications. It adds the 151 /// products to a 32-bit accumulate operand. Optionally, the instruction can 152 /// exchange the halfwords of the second operand before performing the 153 /// arithmetic. 154 bool MatchSMLAD(Function &F); 155 156 public: 157 static char ID; 158 159 ARMParallelDSP() : LoopPass(ID) { } 160 161 bool doInitialization(Loop *L, LPPassManager &LPM) override { 162 LoadPairs.clear(); 163 WideLoads.clear(); 164 return true; 165 } 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 LoopPass::getAnalysisUsage(AU); 169 AU.addRequired<AssumptionCacheTracker>(); 170 AU.addRequired<ScalarEvolutionWrapperPass>(); 171 AU.addRequired<AAResultsWrapperPass>(); 172 AU.addRequired<TargetLibraryInfoWrapperPass>(); 173 AU.addRequired<LoopInfoWrapperPass>(); 174 AU.addRequired<DominatorTreeWrapperPass>(); 175 AU.addRequired<TargetPassConfig>(); 176 AU.addPreserved<LoopInfoWrapperPass>(); 177 AU.setPreservesCFG(); 178 } 179 180 bool runOnLoop(Loop *TheLoop, LPPassManager &) override { 181 if (DisableParallelDSP) 182 return false; 183 L = TheLoop; 184 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 185 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 186 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 187 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 188 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 189 auto &TPC = getAnalysis<TargetPassConfig>(); 190 191 BasicBlock *Header = TheLoop->getHeader(); 192 if (!Header) 193 return false; 194 195 // TODO: We assume the loop header and latch to be the same block. 196 // This is not a fundamental restriction, but lifting this would just 197 // require more work to do the transformation and then patch up the CFG. 198 if (Header != TheLoop->getLoopLatch()) { 199 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " 200 "running pass ARMParallelDSP\n"); 201 return false; 202 } 203 204 // We need a preheader as getIncomingValueForBlock assumes there is one. 205 if (!TheLoop->getLoopPreheader()) { 206 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); 207 return false; 208 } 209 210 Function &F = *Header->getParent(); 211 M = F.getParent(); 212 DL = &M->getDataLayout(); 213 214 auto &TM = TPC.getTM<TargetMachine>(); 215 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 216 217 if (!ST->allowsUnalignedMem()) { 218 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 219 "running pass ARMParallelDSP\n"); 220 return false; 221 } 222 223 if (!ST->hasDSP()) { 224 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 225 "ARMParallelDSP\n"); 226 return false; 227 } 228 229 if (!ST->isLittle()) { 230 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 231 << "ARMParallelDSP\n"); 232 return false; 233 } 234 235 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); 236 237 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 238 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 239 240 if (!RecordMemoryOps(Header)) { 241 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); 242 return false; 243 } 244 245 bool Changes = MatchSMLAD(F); 246 return Changes; 247 } 248 }; 249 } 250 251 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 252 // instructions, which is set to 16. So here we should collect all i8 and i16 253 // narrow operations. 254 // TODO: we currently only collect i16, and will support i8 later, so that's 255 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 256 template<unsigned MaxBitWidth> 257 static bool IsNarrowSequence(Value *V, ValueList &VL) { 258 ConstantInt *CInt; 259 260 if (match(V, m_ConstantInt(CInt))) { 261 // TODO: if a constant is used, it needs to fit within the bit width. 262 return false; 263 } 264 265 auto *I = dyn_cast<Instruction>(V); 266 if (!I) 267 return false; 268 269 Value *Val, *LHS, *RHS; 270 if (match(V, m_Trunc(m_Value(Val)))) { 271 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) 272 return IsNarrowSequence<MaxBitWidth>(Val, VL); 273 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { 274 // TODO: we need to implement sadd16/sadd8 for this, which enables to 275 // also do the rewrite for smlad8.ll, but it is unsupported for now. 276 return false; 277 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { 278 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 279 return false; 280 281 if (match(Val, m_Load(m_Value()))) { 282 VL.push_back(Val); 283 VL.push_back(I); 284 return true; 285 } 286 } 287 return false; 288 } 289 290 template<typename MemInst> 291 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 292 const DataLayout &DL, ScalarEvolution &SE) { 293 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 294 return true; 295 return false; 296 } 297 298 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 299 MemInstList &VecMem) { 300 if (!Ld0 || !Ld1) 301 return false; 302 303 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 304 return false; 305 306 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 307 dbgs() << "Ld0:"; Ld0->dump(); 308 dbgs() << "Ld1:"; Ld1->dump(); 309 ); 310 311 VecMem.clear(); 312 VecMem.push_back(Ld0); 313 VecMem.push_back(Ld1); 314 return true; 315 } 316 317 /// Iterate through the block and record base, offset pairs of loads which can 318 /// be widened into a single load. 319 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 320 SmallVector<LoadInst*, 8> Loads; 321 SmallVector<Instruction*, 8> Writes; 322 323 // Collect loads and instruction that may write to memory. For now we only 324 // record loads which are simple, sign-extended and have a single user. 325 // TODO: Allow zero-extended loads. 326 for (auto &I : *BB) { 327 if (I.mayWriteToMemory()) 328 Writes.push_back(&I); 329 auto *Ld = dyn_cast<LoadInst>(&I); 330 if (!Ld || !Ld->isSimple() || 331 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 332 continue; 333 Loads.push_back(Ld); 334 } 335 336 using InstSet = std::set<Instruction*>; 337 using DepMap = std::map<Instruction*, InstSet>; 338 DepMap RAWDeps; 339 340 // Record any writes that may alias a load. 341 const auto Size = LocationSize::unknown(); 342 for (auto Read : Loads) { 343 for (auto Write : Writes) { 344 MemoryLocation ReadLoc = 345 MemoryLocation(Read->getPointerOperand(), Size); 346 347 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 348 ModRefInfo::ModRef))) 349 continue; 350 if (DT->dominates(Write, Read)) 351 RAWDeps[Read].insert(Write); 352 } 353 } 354 355 // Check whether there's not a write between the two loads which would 356 // prevent them from being safely merged. 357 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 358 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; 359 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; 360 361 if (RAWDeps.count(Dominated)) { 362 InstSet &WritesBefore = RAWDeps[Dominated]; 363 364 for (auto Before : WritesBefore) { 365 366 // We can't move the second load backward, past a write, to merge 367 // with the first load. 368 if (DT->dominates(Dominator, Before)) 369 return false; 370 } 371 } 372 return true; 373 }; 374 375 // Record base, offset load pairs. 376 for (auto *Base : Loads) { 377 for (auto *Offset : Loads) { 378 if (Base == Offset) 379 continue; 380 381 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 382 SafeToPair(Base, Offset)) { 383 LoadPairs[Base] = Offset; 384 break; 385 } 386 } 387 } 388 389 LLVM_DEBUG(if (!LoadPairs.empty()) { 390 dbgs() << "Consecutive load pairs:\n"; 391 for (auto &MapIt : LoadPairs) { 392 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 393 << *MapIt.second << "\n"); 394 } 395 }); 396 return LoadPairs.size() > 1; 397 } 398 399 void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { 400 OpChainList &Candidates = R.MACCandidates; 401 PMACPairList &PMACPairs = R.PMACPairs; 402 const unsigned Elems = Candidates.size(); 403 404 if (Elems < 2) 405 return; 406 407 auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) { 408 if (!PMul0->AreSymmetrical(PMul1)) 409 return false; 410 411 // The first elements of each vector should be loads with sexts. If we 412 // find that its two pairs of consecutive loads, then these can be 413 // transformed into two wider loads and the users can be replaced with 414 // DSP intrinsics. 415 for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { 416 auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]); 417 auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]); 418 auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]); 419 auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]); 420 421 if (!Ld0 || !Ld1 || !Ld2 || !Ld3) 422 return false; 423 424 LLVM_DEBUG(dbgs() << "Loads:\n" 425 << " - " << *Ld0 << "\n" 426 << " - " << *Ld1 << "\n" 427 << " - " << *Ld2 << "\n" 428 << " - " << *Ld3 << "\n"); 429 430 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 431 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 432 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 433 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 434 return true; 435 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 436 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 437 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 438 PMul1->Exchange = true; 439 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 440 return true; 441 } 442 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 443 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 444 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 445 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 446 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 447 PMul0->Exchange = true; 448 // Only the second operand can be exchanged, so swap the muls. 449 PMACPairs.push_back(std::make_pair(PMul1, PMul0)); 450 return true; 451 } 452 } 453 return false; 454 }; 455 456 SmallPtrSet<const Instruction*, 4> Paired; 457 for (unsigned i = 0; i < Elems; ++i) { 458 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); 459 if (Paired.count(PMul0->Root)) 460 continue; 461 462 for (unsigned j = 0; j < Elems; ++j) { 463 if (i == j) 464 continue; 465 466 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get()); 467 if (Paired.count(PMul1->Root)) 468 continue; 469 470 const Instruction *Mul0 = PMul0->Root; 471 const Instruction *Mul1 = PMul1->Root; 472 if (Mul0 == Mul1) 473 continue; 474 475 assert(PMul0 != PMul1 && "expected different chains"); 476 477 if (CanPair(PMul0, PMul1)) { 478 Paired.insert(Mul0); 479 Paired.insert(Mul1); 480 break; 481 } 482 } 483 } 484 } 485 486 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) { 487 Instruction *Acc = Reduction.Phi; 488 Instruction *InsertAfter = Reduction.AccIntAdd; 489 490 for (auto &Pair : Reduction.PMACPairs) { 491 BinOpChain *PMul0 = Pair.first; 492 BinOpChain *PMul1 = Pair.second; 493 LLVM_DEBUG(dbgs() << "Found parallel MACs:\n" 494 << "- " << *PMul0->Root << "\n" 495 << "- " << *PMul1->Root << "\n"); 496 497 Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, 498 InsertAfter); 499 InsertAfter = Acc; 500 } 501 502 if (Acc != Reduction.Phi) { 503 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); 504 Reduction.AccIntAdd->replaceAllUsesWith(Acc); 505 return true; 506 } 507 return false; 508 } 509 510 static void MatchParallelMACSequences(Reduction &R, 511 OpChainList &Candidates) { 512 Instruction *Acc = R.AccIntAdd; 513 LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n"); 514 515 // Returns false to signal the search should be stopped. 516 std::function<bool(Value*)> Match = 517 [&Candidates, &Match](Value *V) -> bool { 518 519 auto *I = dyn_cast<Instruction>(V); 520 if (!I) 521 return false; 522 523 switch (I->getOpcode()) { 524 case Instruction::Add: 525 if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) 526 return true; 527 break; 528 case Instruction::Mul: { 529 Value *MulOp0 = I->getOperand(0); 530 Value *MulOp1 = I->getOperand(1); 531 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) { 532 ValueList LHS; 533 ValueList RHS; 534 if (IsNarrowSequence<16>(MulOp0, LHS) && 535 IsNarrowSequence<16>(MulOp1, RHS)) { 536 Candidates.push_back(make_unique<BinOpChain>(I, LHS, RHS)); 537 } 538 } 539 return false; 540 } 541 case Instruction::SExt: 542 return Match(I->getOperand(0)); 543 } 544 return false; 545 }; 546 547 while (Match (Acc)); 548 LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " 549 << Candidates.size() << " candidates.\n"); 550 } 551 552 static bool CheckMACMemory(OpChainList &Candidates) { 553 for (auto &C : Candidates) { 554 // A mul has 2 operands, and a narrow op consist of sext and a load; thus 555 // we expect at least 4 items in this operand value list. 556 if (C->size() < 4) { 557 LLVM_DEBUG(dbgs() << "Operand list too short.\n"); 558 return false; 559 } 560 C->PopulateLoads(); 561 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; 562 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; 563 564 // Use +=2 to skip over the expected extend instructions. 565 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { 566 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) 567 return false; 568 } 569 } 570 return true; 571 } 572 573 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector 574 // multiplications. 575 // To use SMLAD: 576 // 1) we first need to find integer add reduction PHIs, 577 // 2) then from the PHI, look for this pattern: 578 // 579 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] 580 // ld0 = load i16 581 // sext0 = sext i16 %ld0 to i32 582 // ld1 = load i16 583 // sext1 = sext i16 %ld1 to i32 584 // mul0 = mul %sext0, %sext1 585 // ld2 = load i16 586 // sext2 = sext i16 %ld2 to i32 587 // ld3 = load i16 588 // sext3 = sext i16 %ld3 to i32 589 // mul1 = mul i32 %sext2, %sext3 590 // add0 = add i32 %mul0, %acc0 591 // acc1 = add i32 %add0, %mul1 592 // 593 // Which can be selected to: 594 // 595 // ldr.h r0 596 // ldr.h r1 597 // smlad r2, r0, r1, r2 598 // 599 // If constants are used instead of loads, these will need to be hoisted 600 // out and into a register. 601 // 602 // If loop invariants are used instead of loads, these need to be packed 603 // before the loop begins. 604 // 605 bool ARMParallelDSP::MatchSMLAD(Function &F) { 606 607 auto FindReductions = [&](ReductionList &Reductions) { 608 RecurrenceDescriptor RecDesc; 609 const bool HasFnNoNaNAttr = 610 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 611 BasicBlock *Latch = L->getLoopLatch(); 612 613 for (PHINode &Phi : Latch->phis()) { 614 const auto *Ty = Phi.getType(); 615 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 616 continue; 617 618 const bool IsReduction = RecurrenceDescriptor::AddReductionVar( 619 &Phi, RecurrenceDescriptor::RK_IntegerAdd, L, HasFnNoNaNAttr, RecDesc); 620 621 if (!IsReduction) 622 continue; 623 624 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); 625 if (!Acc) 626 continue; 627 628 Reductions.push_back(Reduction(&Phi, Acc)); 629 } 630 return !Reductions.empty(); 631 }; 632 633 ReductionList Reductions; 634 if (!FindReductions(Reductions)) 635 return false; 636 637 for (auto &R : Reductions) { 638 OpChainList MACCandidates; 639 MatchParallelMACSequences(R, MACCandidates); 640 if (!CheckMACMemory(MACCandidates)) 641 continue; 642 643 R.MACCandidates = std::move(MACCandidates); 644 645 LLVM_DEBUG(dbgs() << "MAC candidates:\n"; 646 for (auto &M : R.MACCandidates) 647 M->Root->dump(); 648 dbgs() << "\n";); 649 } 650 651 bool Changed = false; 652 // Check whether statements in the basic block that write to memory alias 653 // with the memory locations accessed by the MAC-chains. 654 for (auto &R : Reductions) { 655 CreateParallelMACPairs(R); 656 Changed |= InsertParallelMACs(R); 657 } 658 659 return Changed; 660 } 661 662 LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, 663 IntegerType *LoadTy) { 664 assert(Loads.size() == 2 && "currently only support widening two loads"); 665 666 LoadInst *Base = Loads[0]; 667 LoadInst *Offset = Loads[1]; 668 669 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 670 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 671 672 assert((BaseSExt && OffsetSExt) 673 && "Loads should have a single, extending, user"); 674 675 std::function<void(Value*, Value*)> MoveBefore = 676 [&](Value *A, Value *B) -> void { 677 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 678 return; 679 680 auto *Source = cast<Instruction>(A); 681 auto *Sink = cast<Instruction>(B); 682 683 if (DT->dominates(Source, Sink) || 684 Source->getParent() != Sink->getParent() || 685 isa<PHINode>(Source) || isa<PHINode>(Sink)) 686 return; 687 688 Source->moveBefore(Sink); 689 for (auto &U : Source->uses()) 690 MoveBefore(Source, U.getUser()); 691 }; 692 693 // Insert the load at the point of the original dominating load. 694 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 695 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 696 ++BasicBlock::iterator(DomLoad)); 697 698 // Bitcast the pointer to a wider type and create the wide load, while making 699 // sure to maintain the original alignment as this prevents ldrd from being 700 // generated when it could be illegal due to memory alignment. 701 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 702 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 703 LoadTy->getPointerTo(AddrSpace)); 704 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 705 Base->getAlignment()); 706 707 // Make sure everything is in the correct order in the basic block. 708 MoveBefore(Base->getPointerOperand(), VecPtr); 709 MoveBefore(VecPtr, WideLoad); 710 711 // From the wide load, create two values that equal the original two loads. 712 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 713 // TODO: Support big-endian as well. 714 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 715 BaseSExt->setOperand(0, Bottom); 716 717 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 718 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 719 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 720 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 721 OffsetSExt->setOperand(0, Trunc); 722 723 WideLoads.emplace(std::make_pair(Base, 724 make_unique<WidenedLoad>(Loads, WideLoad))); 725 return WideLoad; 726 } 727 728 Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0, 729 SmallVectorImpl<LoadInst*> &VecLd1, 730 Instruction *Acc, bool Exchange, 731 Instruction *InsertAfter) { 732 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" 733 << "- " << *VecLd0[0] << "\n" 734 << "- " << *VecLd0[1] << "\n" 735 << "- " << *VecLd1[0] << "\n" 736 << "- " << *VecLd1[1] << "\n" 737 << "- " << *Acc << "\n" 738 << "- Exchange: " << Exchange << "\n"); 739 740 // Replace the reduction chain with an intrinsic call 741 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 742 LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? 743 WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty); 744 LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? 745 WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty); 746 747 Value* Args[] = { WideLd0, WideLd1, Acc }; 748 Function *SMLAD = nullptr; 749 if (Exchange) 750 SMLAD = Acc->getType()->isIntegerTy(32) ? 751 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 752 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 753 else 754 SMLAD = Acc->getType()->isIntegerTy(32) ? 755 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 756 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 757 758 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 759 ++BasicBlock::iterator(InsertAfter)); 760 CallInst *Call = Builder.CreateCall(SMLAD, Args); 761 NumSMLAD++; 762 return Call; 763 } 764 765 // Compare the value lists in Other to this chain. 766 bool BinOpChain::AreSymmetrical(BinOpChain *Other) { 767 // Element-by-element comparison of Value lists returning true if they are 768 // instructions with the same opcode or constants with the same value. 769 auto CompareValueList = [](const ValueList &VL0, 770 const ValueList &VL1) { 771 if (VL0.size() != VL1.size()) { 772 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " 773 << VL0.size() << " != " << VL1.size() << "\n"); 774 return false; 775 } 776 777 const unsigned Pairs = VL0.size(); 778 779 for (unsigned i = 0; i < Pairs; ++i) { 780 const Value *V0 = VL0[i]; 781 const Value *V1 = VL1[i]; 782 const auto *Inst0 = dyn_cast<Instruction>(V0); 783 const auto *Inst1 = dyn_cast<Instruction>(V1); 784 785 if (!Inst0 || !Inst1) 786 return false; 787 788 if (Inst0->isSameOperationAs(Inst1)) 789 continue; 790 791 const APInt *C0, *C1; 792 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) 793 return false; 794 } 795 796 return true; 797 }; 798 799 return CompareValueList(LHS, Other->LHS) && 800 CompareValueList(RHS, Other->RHS); 801 } 802 803 Pass *llvm::createARMParallelDSPPass() { 804 return new ARMParallelDSP(); 805 } 806 807 char ARMParallelDSP::ID = 0; 808 809 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 810 "Transform loops to use DSP intrinsics", false, false) 811 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 812 "Transform loops to use DSP intrinsics", false, false) 813