1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/NoFolder.h" 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 #include "llvm/Pass.h" 26 #include "llvm/PassRegistry.h" 27 #include "llvm/PassSupport.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "ARM.h" 32 #include "ARMSubtarget.h" 33 34 using namespace llvm; 35 using namespace PatternMatch; 36 37 #define DEBUG_TYPE "arm-parallel-dsp" 38 39 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 40 41 static cl::opt<bool> 42 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 43 cl::desc("Disable the ARM Parallel DSP pass")); 44 45 namespace { 46 struct MulCandidate; 47 class Reduction; 48 49 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 50 using MemInstList = SmallVectorImpl<LoadInst*>; 51 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 52 53 // 'MulCandidate' holds the multiplication instructions that are candidates 54 // for parallel execution. 55 struct MulCandidate { 56 Instruction *Root; 57 Value* LHS; 58 Value* RHS; 59 bool Exchange = false; 60 bool ReadOnly = true; 61 bool Paired = false; 62 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 63 64 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 65 Root(I), LHS(lhs), RHS(rhs) { } 66 67 bool HasTwoLoadInputs() const { 68 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 69 } 70 71 LoadInst *getBaseLoad() const { 72 return VecLd.front(); 73 } 74 }; 75 76 /// Represent a sequence of multiply-accumulate operations with the aim to 77 /// perform the multiplications in parallel. 78 class Reduction { 79 Instruction *Root = nullptr; 80 Value *Acc = nullptr; 81 MulCandList Muls; 82 MulPairList MulPairs; 83 SetVector<Instruction*> Adds; 84 85 public: 86 Reduction() = delete; 87 88 Reduction (Instruction *Add) : Root(Add) { } 89 90 /// Record an Add instruction that is a part of the this reduction. 91 void InsertAdd(Instruction *I) { Adds.insert(I); } 92 93 /// Create MulCandidates, each rooted at a Mul instruction, that is a part 94 /// of this reduction. 95 void InsertMuls() { 96 auto GetMulOperand = [](Value *V) -> Instruction* { 97 if (auto *SExt = dyn_cast<SExtInst>(V)) { 98 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) 99 if (I->getOpcode() == Instruction::Mul) 100 return I; 101 } else if (auto *I = dyn_cast<Instruction>(V)) { 102 if (I->getOpcode() == Instruction::Mul) 103 return I; 104 } 105 return nullptr; 106 }; 107 108 auto InsertMul = [this](Instruction *I) { 109 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); 110 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); 111 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 112 }; 113 114 for (auto *Add : Adds) { 115 if (Add == Acc) 116 continue; 117 if (auto *Mul = GetMulOperand(Add->getOperand(0))) 118 InsertMul(Mul); 119 if (auto *Mul = GetMulOperand(Add->getOperand(1))) 120 InsertMul(Mul); 121 } 122 } 123 124 /// Add the incoming accumulator value, returns true if a value had not 125 /// already been added. Returning false signals to the user that this 126 /// reduction already has a value to initialise the accumulator. 127 bool InsertAcc(Value *V) { 128 if (Acc) 129 return false; 130 Acc = V; 131 return true; 132 } 133 134 /// Set two MulCandidates, rooted at muls, that can be executed as a single 135 /// parallel operation. 136 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, 137 bool Exchange = false) { 138 LLVM_DEBUG(dbgs() << "Pairing:\n" 139 << *Mul0->Root << "\n" 140 << *Mul1->Root << "\n"); 141 Mul0->Paired = true; 142 Mul1->Paired = true; 143 if (Exchange) 144 Mul1->Exchange = true; 145 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 146 } 147 148 /// Return true if enough mul operations are found that can be executed in 149 /// parallel. 150 bool CreateParallelPairs(); 151 152 /// Return the add instruction which is the root of the reduction. 153 Instruction *getRoot() { return Root; } 154 155 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 156 157 Type *getType() const { return Root->getType(); } 158 159 /// Return the incoming value to be accumulated. This maybe null. 160 Value *getAccumulator() { return Acc; } 161 162 /// Return the set of adds that comprise the reduction. 163 SetVector<Instruction*> &getAdds() { return Adds; } 164 165 /// Return the MulCandidate, rooted at mul instruction, that comprise the 166 /// the reduction. 167 MulCandList &getMuls() { return Muls; } 168 169 /// Return the MulCandidate, rooted at mul instructions, that have been 170 /// paired for parallel execution. 171 MulPairList &getMulPairs() { return MulPairs; } 172 173 /// To finalise, replace the uses of the root with the intrinsic call. 174 void UpdateRoot(Instruction *SMLAD) { 175 Root->replaceAllUsesWith(SMLAD); 176 } 177 178 void dump() { 179 LLVM_DEBUG(dbgs() << "Reduction:\n"; 180 for (auto *Add : Adds) 181 LLVM_DEBUG(dbgs() << *Add << "\n"); 182 for (auto &Mul : Muls) 183 LLVM_DEBUG(dbgs() << *Mul->Root << "\n" 184 << " " << *Mul->LHS << "\n" 185 << " " << *Mul->RHS << "\n"); 186 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") 187 ); 188 } 189 }; 190 191 class WidenedLoad { 192 LoadInst *NewLd = nullptr; 193 SmallVector<LoadInst*, 4> Loads; 194 195 public: 196 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 197 : NewLd(Wide) { 198 for (auto *I : Lds) 199 Loads.push_back(I); 200 } 201 LoadInst *getLoad() { 202 return NewLd; 203 } 204 }; 205 206 class ARMParallelDSP : public FunctionPass { 207 ScalarEvolution *SE; 208 AliasAnalysis *AA; 209 TargetLibraryInfo *TLI; 210 DominatorTree *DT; 211 const DataLayout *DL; 212 Module *M; 213 std::map<LoadInst*, LoadInst*> LoadPairs; 214 SmallPtrSet<LoadInst*, 4> OffsetLoads; 215 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 216 217 template<unsigned> 218 bool IsNarrowSequence(Value *V); 219 bool Search(Value *V, BasicBlock *BB, Reduction &R); 220 bool RecordMemoryOps(BasicBlock *BB); 221 void InsertParallelMACs(Reduction &Reduction); 222 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 223 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 224 bool CreateParallelPairs(Reduction &R); 225 226 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 227 /// Dual performs two signed 16x16-bit multiplications. It adds the 228 /// products to a 32-bit accumulate operand. Optionally, the instruction can 229 /// exchange the halfwords of the second operand before performing the 230 /// arithmetic. 231 bool MatchSMLAD(Function &F); 232 233 public: 234 static char ID; 235 236 ARMParallelDSP() : FunctionPass(ID) { } 237 238 void getAnalysisUsage(AnalysisUsage &AU) const override { 239 FunctionPass::getAnalysisUsage(AU); 240 AU.addRequired<AssumptionCacheTracker>(); 241 AU.addRequired<ScalarEvolutionWrapperPass>(); 242 AU.addRequired<AAResultsWrapperPass>(); 243 AU.addRequired<TargetLibraryInfoWrapperPass>(); 244 AU.addRequired<DominatorTreeWrapperPass>(); 245 AU.addRequired<TargetPassConfig>(); 246 AU.addPreserved<ScalarEvolutionWrapperPass>(); 247 AU.addPreserved<GlobalsAAWrapperPass>(); 248 AU.setPreservesCFG(); 249 } 250 251 bool runOnFunction(Function &F) override { 252 if (DisableParallelDSP) 253 return false; 254 if (skipFunction(F)) 255 return false; 256 257 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 258 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 259 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 260 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 261 auto &TPC = getAnalysis<TargetPassConfig>(); 262 263 M = F.getParent(); 264 DL = &M->getDataLayout(); 265 266 auto &TM = TPC.getTM<TargetMachine>(); 267 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 268 269 if (!ST->allowsUnalignedMem()) { 270 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 271 "running pass ARMParallelDSP\n"); 272 return false; 273 } 274 275 if (!ST->hasDSP()) { 276 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 277 "ARMParallelDSP\n"); 278 return false; 279 } 280 281 if (!ST->isLittle()) { 282 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 283 << "ARMParallelDSP\n"); 284 return false; 285 } 286 287 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 288 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 289 290 bool Changes = MatchSMLAD(F); 291 return Changes; 292 } 293 }; 294 } 295 296 template<typename MemInst> 297 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 298 const DataLayout &DL, ScalarEvolution &SE) { 299 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 300 return true; 301 return false; 302 } 303 304 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 305 MemInstList &VecMem) { 306 if (!Ld0 || !Ld1) 307 return false; 308 309 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 310 return false; 311 312 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 313 dbgs() << "Ld0:"; Ld0->dump(); 314 dbgs() << "Ld1:"; Ld1->dump(); 315 ); 316 317 VecMem.clear(); 318 VecMem.push_back(Ld0); 319 VecMem.push_back(Ld1); 320 return true; 321 } 322 323 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 324 // instructions, which is set to 16. So here we should collect all i8 and i16 325 // narrow operations. 326 // TODO: we currently only collect i16, and will support i8 later, so that's 327 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 328 template<unsigned MaxBitWidth> 329 bool ARMParallelDSP::IsNarrowSequence(Value *V) { 330 if (auto *SExt = dyn_cast<SExtInst>(V)) { 331 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 332 return false; 333 334 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 335 // Check that this load could be paired. 336 return LoadPairs.count(Ld) || OffsetLoads.count(Ld); 337 } 338 } 339 return false; 340 } 341 342 /// Iterate through the block and record base, offset pairs of loads which can 343 /// be widened into a single load. 344 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 345 SmallVector<LoadInst*, 8> Loads; 346 SmallVector<Instruction*, 8> Writes; 347 LoadPairs.clear(); 348 WideLoads.clear(); 349 350 // Collect loads and instruction that may write to memory. For now we only 351 // record loads which are simple, sign-extended and have a single user. 352 // TODO: Allow zero-extended loads. 353 for (auto &I : *BB) { 354 if (I.mayWriteToMemory()) 355 Writes.push_back(&I); 356 auto *Ld = dyn_cast<LoadInst>(&I); 357 if (!Ld || !Ld->isSimple() || 358 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 359 continue; 360 Loads.push_back(Ld); 361 } 362 363 using InstSet = std::set<Instruction*>; 364 using DepMap = std::map<Instruction*, InstSet>; 365 DepMap RAWDeps; 366 367 // Record any writes that may alias a load. 368 const auto Size = LocationSize::unknown(); 369 for (auto Read : Loads) { 370 for (auto Write : Writes) { 371 MemoryLocation ReadLoc = 372 MemoryLocation(Read->getPointerOperand(), Size); 373 374 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 375 ModRefInfo::ModRef))) 376 continue; 377 if (DT->dominates(Write, Read)) 378 RAWDeps[Read].insert(Write); 379 } 380 } 381 382 // Check whether there's not a write between the two loads which would 383 // prevent them from being safely merged. 384 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 385 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; 386 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; 387 388 if (RAWDeps.count(Dominated)) { 389 InstSet &WritesBefore = RAWDeps[Dominated]; 390 391 for (auto Before : WritesBefore) { 392 // We can't move the second load backward, past a write, to merge 393 // with the first load. 394 if (DT->dominates(Dominator, Before)) 395 return false; 396 } 397 } 398 return true; 399 }; 400 401 // Record base, offset load pairs. 402 for (auto *Base : Loads) { 403 for (auto *Offset : Loads) { 404 if (Base == Offset) 405 continue; 406 407 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 408 SafeToPair(Base, Offset)) { 409 LoadPairs[Base] = Offset; 410 OffsetLoads.insert(Offset); 411 break; 412 } 413 } 414 } 415 416 LLVM_DEBUG(if (!LoadPairs.empty()) { 417 dbgs() << "Consecutive load pairs:\n"; 418 for (auto &MapIt : LoadPairs) { 419 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 420 << *MapIt.second << "\n"); 421 } 422 }); 423 return LoadPairs.size() > 1; 424 } 425 426 // Search recursively back through the operands to find a tree of values that 427 // form a multiply-accumulate chain. The search records the Add and Mul 428 // instructions that form the reduction and allows us to find a single value 429 // to be used as the initial input to the accumlator. 430 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { 431 // If we find a non-instruction, try to use it as the initial accumulator 432 // value. This may have already been found during the search in which case 433 // this function will return false, signaling a search fail. 434 auto *I = dyn_cast<Instruction>(V); 435 if (!I) 436 return R.InsertAcc(V); 437 438 if (I->getParent() != BB) 439 return false; 440 441 switch (I->getOpcode()) { 442 default: 443 break; 444 case Instruction::PHI: 445 // Could be the accumulator value. 446 return R.InsertAcc(V); 447 case Instruction::Add: { 448 // Adds should be adding together two muls, or another add and a mul to 449 // be within the mac chain. One of the operands may also be the 450 // accumulator value at which point we should stop searching. 451 R.InsertAdd(I); 452 Value *LHS = I->getOperand(0); 453 Value *RHS = I->getOperand(1); 454 bool ValidLHS = Search(LHS, BB, R); 455 bool ValidRHS = Search(RHS, BB, R); 456 457 if (ValidLHS && ValidRHS) 458 return true; 459 460 return R.InsertAcc(I); 461 } 462 case Instruction::Mul: { 463 Value *MulOp0 = I->getOperand(0); 464 Value *MulOp1 = I->getOperand(1); 465 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); 466 } 467 case Instruction::SExt: 468 return Search(I->getOperand(0), BB, R); 469 } 470 return false; 471 } 472 473 // The pass needs to identify integer add/sub reductions of 16-bit vector 474 // multiplications. 475 // To use SMLAD: 476 // 1) we first need to find integer add then look for this pattern: 477 // 478 // acc0 = ... 479 // ld0 = load i16 480 // sext0 = sext i16 %ld0 to i32 481 // ld1 = load i16 482 // sext1 = sext i16 %ld1 to i32 483 // mul0 = mul %sext0, %sext1 484 // ld2 = load i16 485 // sext2 = sext i16 %ld2 to i32 486 // ld3 = load i16 487 // sext3 = sext i16 %ld3 to i32 488 // mul1 = mul i32 %sext2, %sext3 489 // add0 = add i32 %mul0, %acc0 490 // acc1 = add i32 %add0, %mul1 491 // 492 // Which can be selected to: 493 // 494 // ldr r0 495 // ldr r1 496 // smlad r2, r0, r1, r2 497 // 498 // If constants are used instead of loads, these will need to be hoisted 499 // out and into a register. 500 // 501 // If loop invariants are used instead of loads, these need to be packed 502 // before the loop begins. 503 // 504 bool ARMParallelDSP::MatchSMLAD(Function &F) { 505 bool Changed = false; 506 507 for (auto &BB : F) { 508 SmallPtrSet<Instruction*, 4> AllAdds; 509 if (!RecordMemoryOps(&BB)) 510 continue; 511 512 for (Instruction &I : reverse(BB)) { 513 if (I.getOpcode() != Instruction::Add) 514 continue; 515 516 if (AllAdds.count(&I)) 517 continue; 518 519 const auto *Ty = I.getType(); 520 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 521 continue; 522 523 Reduction R(&I); 524 if (!Search(&I, &BB, R)) 525 continue; 526 527 R.InsertMuls(); 528 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); 529 530 if (!CreateParallelPairs(R)) 531 continue; 532 533 InsertParallelMACs(R); 534 Changed = true; 535 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 536 } 537 } 538 539 return Changed; 540 } 541 542 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 543 544 // Not enough mul operations to make a pair. 545 if (R.getMuls().size() < 2) 546 return false; 547 548 // Check that the muls operate directly upon sign extended loads. 549 for (auto &MulCand : R.getMuls()) { 550 if (!MulCand->HasTwoLoadInputs()) 551 return false; 552 } 553 554 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 555 // The first elements of each vector should be loads with sexts. If we 556 // find that its two pairs of consecutive loads, then these can be 557 // transformed into two wider loads and the users can be replaced with 558 // DSP intrinsics. 559 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 560 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 561 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 562 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 563 564 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 565 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 566 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 567 R.AddMulPair(PMul0, PMul1); 568 return true; 569 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 570 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 571 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 572 R.AddMulPair(PMul0, PMul1, true); 573 return true; 574 } 575 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 576 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 577 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 578 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 579 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 580 // Only the second operand can be exchanged, so swap the muls. 581 R.AddMulPair(PMul1, PMul0, true); 582 return true; 583 } 584 return false; 585 }; 586 587 MulCandList &Muls = R.getMuls(); 588 const unsigned Elems = Muls.size(); 589 for (unsigned i = 0; i < Elems; ++i) { 590 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 591 if (PMul0->Paired) 592 continue; 593 594 for (unsigned j = 0; j < Elems; ++j) { 595 if (i == j) 596 continue; 597 598 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 599 if (PMul1->Paired) 600 continue; 601 602 const Instruction *Mul0 = PMul0->Root; 603 const Instruction *Mul1 = PMul1->Root; 604 if (Mul0 == Mul1) 605 continue; 606 607 assert(PMul0 != PMul1 && "expected different chains"); 608 609 if (CanPair(R, PMul0, PMul1)) 610 break; 611 } 612 } 613 return !R.getMulPairs().empty(); 614 } 615 616 617 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 618 619 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 620 Value *Acc, bool Exchange, 621 Instruction *InsertAfter) { 622 // Replace the reduction chain with an intrinsic call 623 624 Value* Args[] = { WideLd0, WideLd1, Acc }; 625 Function *SMLAD = nullptr; 626 if (Exchange) 627 SMLAD = Acc->getType()->isIntegerTy(32) ? 628 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 629 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 630 else 631 SMLAD = Acc->getType()->isIntegerTy(32) ? 632 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 633 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 634 635 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 636 ++BasicBlock::iterator(InsertAfter)); 637 Instruction *Call = Builder.CreateCall(SMLAD, Args); 638 NumSMLAD++; 639 return Call; 640 }; 641 642 Instruction *InsertAfter = R.getRoot(); 643 Value *Acc = R.getAccumulator(); 644 645 // For any muls that were discovered but not paired, accumulate their values 646 // as before. 647 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 648 ++BasicBlock::iterator(InsertAfter)); 649 MulCandList &MulCands = R.getMuls(); 650 for (auto &MulCand : MulCands) { 651 if (MulCand->Paired) 652 continue; 653 654 Value *Mul = MulCand->Root; 655 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); 656 657 if (R.getType() != Mul->getType()) { 658 assert(R.is64Bit() && "expected 64-bit result"); 659 Mul = Builder.CreateSExt(Mul, R.getType()); 660 } 661 662 if (!Acc) { 663 Acc = Mul; 664 continue; 665 } 666 667 Acc = Builder.CreateAdd(Mul, Acc); 668 InsertAfter = cast<Instruction>(Acc); 669 } 670 671 if (!Acc) { 672 Acc = R.is64Bit() ? 673 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : 674 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 675 } else if (Acc->getType() != R.getType()) { 676 Builder.SetInsertPoint(R.getRoot()); 677 Acc = Builder.CreateSExt(Acc, R.getType()); 678 } 679 680 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 681 for (auto &Pair : R.getMulPairs()) { 682 MulCandidate *LHSMul = Pair.first; 683 MulCandidate *RHSMul = Pair.second; 684 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 685 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 686 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 687 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 688 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 689 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 690 691 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 692 InsertAfter = cast<Instruction>(Acc); 693 } 694 R.UpdateRoot(cast<Instruction>(Acc)); 695 } 696 697 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 698 IntegerType *LoadTy) { 699 assert(Loads.size() == 2 && "currently only support widening two loads"); 700 701 LoadInst *Base = Loads[0]; 702 LoadInst *Offset = Loads[1]; 703 704 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 705 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 706 707 assert((BaseSExt && OffsetSExt) 708 && "Loads should have a single, extending, user"); 709 710 std::function<void(Value*, Value*)> MoveBefore = 711 [&](Value *A, Value *B) -> void { 712 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 713 return; 714 715 auto *Source = cast<Instruction>(A); 716 auto *Sink = cast<Instruction>(B); 717 718 if (DT->dominates(Source, Sink) || 719 Source->getParent() != Sink->getParent() || 720 isa<PHINode>(Source) || isa<PHINode>(Sink)) 721 return; 722 723 Source->moveBefore(Sink); 724 for (auto &Op : Source->operands()) 725 MoveBefore(Op, Source); 726 }; 727 728 // Insert the load at the point of the original dominating load. 729 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 730 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 731 ++BasicBlock::iterator(DomLoad)); 732 733 // Bitcast the pointer to a wider type and create the wide load, while making 734 // sure to maintain the original alignment as this prevents ldrd from being 735 // generated when it could be illegal due to memory alignment. 736 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 737 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 738 LoadTy->getPointerTo(AddrSpace)); 739 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 740 Base->getAlignment()); 741 742 // Make sure everything is in the correct order in the basic block. 743 MoveBefore(Base->getPointerOperand(), VecPtr); 744 MoveBefore(VecPtr, WideLoad); 745 746 // From the wide load, create two values that equal the original two loads. 747 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 748 // TODO: Support big-endian as well. 749 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 750 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); 751 BaseSExt->replaceAllUsesWith(NewBaseSExt); 752 753 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 754 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 755 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 756 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 757 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); 758 OffsetSExt->replaceAllUsesWith(NewOffsetSExt); 759 760 LLVM_DEBUG(dbgs() << "From Base and Offset:\n" 761 << *Base << "\n" << *Offset << "\n" 762 << "Created Wide Load:\n" 763 << *WideLoad << "\n" 764 << *Bottom << "\n" 765 << *NewBaseSExt << "\n" 766 << *Top << "\n" 767 << *Trunc << "\n" 768 << *NewOffsetSExt << "\n"); 769 WideLoads.emplace(std::make_pair(Base, 770 std::make_unique<WidenedLoad>(Loads, WideLoad))); 771 return WideLoad; 772 } 773 774 Pass *llvm::createARMParallelDSPPass() { 775 return new ARMParallelDSP(); 776 } 777 778 char ARMParallelDSP::ID = 0; 779 780 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 781 "Transform functions to use DSP intrinsics", false, false) 782 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 783 "Transform functions to use DSP intrinsics", false, false) 784