1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/NoFolder.h" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/LoopUtils.h" 28 #include "llvm/Pass.h" 29 #include "llvm/PassRegistry.h" 30 #include "llvm/PassSupport.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "ARM.h" 35 #include "ARMSubtarget.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "arm-parallel-dsp" 41 42 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 43 44 static cl::opt<bool> 45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 46 cl::desc("Disable the ARM Parallel DSP pass")); 47 48 namespace { 49 struct OpChain; 50 struct BinOpChain; 51 struct Reduction; 52 53 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; 54 using ReductionList = SmallVector<Reduction, 8>; 55 using ValueList = SmallVector<Value*, 8>; 56 using MemInstList = SmallVector<LoadInst*, 8>; 57 using PMACPair = std::pair<BinOpChain*,BinOpChain*>; 58 using PMACPairList = SmallVector<PMACPair, 8>; 59 using Instructions = SmallVector<Instruction*,16>; 60 using MemLocList = SmallVector<MemoryLocation, 4>; 61 62 struct OpChain { 63 Instruction *Root; 64 ValueList AllValues; 65 MemInstList VecLd; // List of all load instructions. 66 MemLocList MemLocs; // All memory locations read by this tree. 67 bool ReadOnly = true; 68 69 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } 70 virtual ~OpChain() = default; 71 72 void SetMemoryLocations() { 73 const auto Size = LocationSize::unknown(); 74 for (auto *V : AllValues) { 75 if (auto *I = dyn_cast<Instruction>(V)) { 76 if (I->mayWriteToMemory()) 77 ReadOnly = false; 78 if (auto *Ld = dyn_cast<LoadInst>(V)) 79 MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); 80 } 81 } 82 } 83 84 unsigned size() const { return AllValues.size(); } 85 }; 86 87 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. 88 // 'Reduction' contains the phi-node and accumulator statement from where we 89 // start pattern matching, and 'BinOpChain' the multiplication 90 // instructions that are candidates for parallel execution. 91 struct BinOpChain : public OpChain { 92 ValueList LHS; // List of all (narrow) left hand operands. 93 ValueList RHS; // List of all (narrow) right hand operands. 94 bool Exchange = false; 95 96 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : 97 OpChain(I, lhs), LHS(lhs), RHS(rhs) { 98 for (auto *V : RHS) 99 AllValues.push_back(V); 100 } 101 102 bool AreSymmetrical(BinOpChain *Other); 103 }; 104 105 struct Reduction { 106 PHINode *Phi; // The Phi-node from where we start 107 // pattern matching. 108 Instruction *AccIntAdd; // The accumulating integer add statement, 109 // i.e, the reduction statement. 110 OpChainList MACCandidates; // The MAC candidates associated with 111 // this reduction statement. 112 PMACPairList PMACPairs; 113 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; 114 }; 115 116 class WidenedLoad { 117 LoadInst *NewLd = nullptr; 118 SmallVector<LoadInst*, 4> Loads; 119 120 public: 121 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 122 : NewLd(Wide) { 123 for (auto *I : Lds) 124 Loads.push_back(I); 125 } 126 LoadInst *getLoad() { 127 return NewLd; 128 } 129 }; 130 131 class ARMParallelDSP : public LoopPass { 132 ScalarEvolution *SE; 133 AliasAnalysis *AA; 134 TargetLibraryInfo *TLI; 135 DominatorTree *DT; 136 LoopInfo *LI; 137 Loop *L; 138 const DataLayout *DL; 139 Module *M; 140 std::map<LoadInst*, LoadInst*> LoadPairs; 141 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 142 143 bool RecordSequentialLoads(BasicBlock *BB); 144 bool InsertParallelMACs(Reduction &Reduction); 145 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 146 LoadInst* CreateLoadIns(IRBuilder<NoFolder> &IRB, 147 SmallVectorImpl<LoadInst*> &Loads, 148 IntegerType *LoadTy); 149 void CreateParallelMACPairs(Reduction &R); 150 Instruction *CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0, 151 SmallVectorImpl<LoadInst*> &VecLd1, 152 Instruction *Acc, bool Exchange, 153 Instruction *InsertAfter); 154 155 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 156 /// Dual performs two signed 16x16-bit multiplications. It adds the 157 /// products to a 32-bit accumulate operand. Optionally, the instruction can 158 /// exchange the halfwords of the second operand before performing the 159 /// arithmetic. 160 bool MatchSMLAD(Function &F); 161 162 public: 163 static char ID; 164 165 ARMParallelDSP() : LoopPass(ID) { } 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 LoopPass::getAnalysisUsage(AU); 169 AU.addRequired<AssumptionCacheTracker>(); 170 AU.addRequired<ScalarEvolutionWrapperPass>(); 171 AU.addRequired<AAResultsWrapperPass>(); 172 AU.addRequired<TargetLibraryInfoWrapperPass>(); 173 AU.addRequired<LoopInfoWrapperPass>(); 174 AU.addRequired<DominatorTreeWrapperPass>(); 175 AU.addRequired<TargetPassConfig>(); 176 AU.addPreserved<LoopInfoWrapperPass>(); 177 AU.setPreservesCFG(); 178 } 179 180 bool runOnLoop(Loop *TheLoop, LPPassManager &) override { 181 if (DisableParallelDSP) 182 return false; 183 L = TheLoop; 184 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 185 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 186 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 187 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 188 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 189 auto &TPC = getAnalysis<TargetPassConfig>(); 190 191 BasicBlock *Header = TheLoop->getHeader(); 192 if (!Header) 193 return false; 194 195 // TODO: We assume the loop header and latch to be the same block. 196 // This is not a fundamental restriction, but lifting this would just 197 // require more work to do the transformation and then patch up the CFG. 198 if (Header != TheLoop->getLoopLatch()) { 199 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " 200 "running pass ARMParallelDSP\n"); 201 return false; 202 } 203 204 // We need a preheader as getIncomingValueForBlock assumes there is one. 205 if (!TheLoop->getLoopPreheader()) { 206 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); 207 return false; 208 } 209 210 Function &F = *Header->getParent(); 211 M = F.getParent(); 212 DL = &M->getDataLayout(); 213 214 auto &TM = TPC.getTM<TargetMachine>(); 215 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 216 217 if (!ST->allowsUnalignedMem()) { 218 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 219 "running pass ARMParallelDSP\n"); 220 return false; 221 } 222 223 if (!ST->hasDSP()) { 224 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 225 "ARMParallelDSP\n"); 226 return false; 227 } 228 229 if (!ST->isLittle()) { 230 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 231 "ARMParallelDSP\n"); 232 return false; 233 } 234 235 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); 236 237 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 238 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 239 240 if (!RecordSequentialLoads(Header)) { 241 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); 242 return false; 243 } 244 245 bool Changes = MatchSMLAD(F); 246 return Changes; 247 } 248 }; 249 } 250 251 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 252 // instructions, which is set to 16. So here we should collect all i8 and i16 253 // narrow operations. 254 // TODO: we currently only collect i16, and will support i8 later, so that's 255 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 256 template<unsigned MaxBitWidth> 257 static bool IsNarrowSequence(Value *V, ValueList &VL) { 258 ConstantInt *CInt; 259 260 if (match(V, m_ConstantInt(CInt))) { 261 // TODO: if a constant is used, it needs to fit within the bit width. 262 return false; 263 } 264 265 auto *I = dyn_cast<Instruction>(V); 266 if (!I) 267 return false; 268 269 Value *Val, *LHS, *RHS; 270 if (match(V, m_Trunc(m_Value(Val)))) { 271 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) 272 return IsNarrowSequence<MaxBitWidth>(Val, VL); 273 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { 274 // TODO: we need to implement sadd16/sadd8 for this, which enables to 275 // also do the rewrite for smlad8.ll, but it is unsupported for now. 276 return false; 277 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { 278 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 279 return false; 280 281 if (match(Val, m_Load(m_Value()))) { 282 VL.push_back(Val); 283 VL.push_back(I); 284 return true; 285 } 286 } 287 return false; 288 } 289 290 template<typename MemInst> 291 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 292 const DataLayout &DL, ScalarEvolution &SE) { 293 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 294 return true; 295 return false; 296 } 297 298 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 299 MemInstList &VecMem) { 300 if (!Ld0 || !Ld1) 301 return false; 302 303 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 304 return false; 305 306 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 307 dbgs() << "Ld0:"; Ld0->dump(); 308 dbgs() << "Ld1:"; Ld1->dump(); 309 ); 310 311 VecMem.clear(); 312 VecMem.push_back(Ld0); 313 VecMem.push_back(Ld1); 314 return true; 315 } 316 317 /// Iterate through the block and record base, offset pairs of loads as well as 318 /// maximal sequences of sequential loads. 319 bool ARMParallelDSP::RecordSequentialLoads(BasicBlock *BB) { 320 SmallVector<LoadInst*, 8> Loads; 321 for (auto &I : *BB) { 322 auto *Ld = dyn_cast<LoadInst>(&I); 323 if (!Ld || !Ld->isSimple() || 324 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 325 continue; 326 Loads.push_back(Ld); 327 } 328 329 for (auto *Ld0 : Loads) { 330 for (auto *Ld1 : Loads) { 331 if (Ld0 == Ld1) 332 continue; 333 334 if (AreSequentialAccesses<LoadInst>(Ld0, Ld1, *DL, *SE)) { 335 LoadPairs[Ld0] = Ld1; 336 break; 337 } 338 } 339 } 340 341 LLVM_DEBUG(if (!LoadPairs.empty()) { 342 dbgs() << "Consecutive load pairs:\n"; 343 for (auto &MapIt : LoadPairs) { 344 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 345 << *MapIt.second << "\n"); 346 } 347 }); 348 return LoadPairs.size() > 1; 349 } 350 351 void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { 352 OpChainList &Candidates = R.MACCandidates; 353 PMACPairList &PMACPairs = R.PMACPairs; 354 const unsigned Elems = Candidates.size(); 355 356 if (Elems < 2) 357 return; 358 359 auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) { 360 if (!PMul0->AreSymmetrical(PMul1)) 361 return false; 362 363 // The first elements of each vector should be loads with sexts. If we 364 // find that its two pairs of consecutive loads, then these can be 365 // transformed into two wider loads and the users can be replaced with 366 // DSP intrinsics. 367 for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { 368 auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]); 369 auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]); 370 auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]); 371 auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]); 372 373 if (!Ld0 || !Ld1 || !Ld2 || !Ld3) 374 return false; 375 376 LLVM_DEBUG(dbgs() << "Loads:\n" 377 << " - " << *Ld0 << "\n" 378 << " - " << *Ld1 << "\n" 379 << " - " << *Ld2 << "\n" 380 << " - " << *Ld3 << "\n"); 381 382 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 383 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 384 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 385 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 386 return true; 387 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 388 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 389 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 390 PMul1->Exchange = true; 391 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 392 return true; 393 } 394 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 395 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 396 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 397 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 398 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 399 PMul0->Exchange = true; 400 // Only the second operand can be exchanged, so swap the muls. 401 PMACPairs.push_back(std::make_pair(PMul1, PMul0)); 402 return true; 403 } 404 } 405 return false; 406 }; 407 408 SmallPtrSet<const Instruction*, 4> Paired; 409 for (unsigned i = 0; i < Elems; ++i) { 410 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); 411 if (Paired.count(PMul0->Root)) 412 continue; 413 414 for (unsigned j = 0; j < Elems; ++j) { 415 if (i == j) 416 continue; 417 418 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get()); 419 if (Paired.count(PMul1->Root)) 420 continue; 421 422 const Instruction *Mul0 = PMul0->Root; 423 const Instruction *Mul1 = PMul1->Root; 424 if (Mul0 == Mul1) 425 continue; 426 427 assert(PMul0 != PMul1 && "expected different chains"); 428 429 if (CanPair(PMul0, PMul1)) { 430 Paired.insert(Mul0); 431 Paired.insert(Mul1); 432 break; 433 } 434 } 435 } 436 } 437 438 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) { 439 Instruction *Acc = Reduction.Phi; 440 Instruction *InsertAfter = Reduction.AccIntAdd; 441 442 for (auto &Pair : Reduction.PMACPairs) { 443 BinOpChain *PMul0 = Pair.first; 444 BinOpChain *PMul1 = Pair.second; 445 LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; 446 dbgs() << "- "; PMul0->Root->dump(); 447 dbgs() << "- "; PMul1->Root->dump()); 448 449 Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, 450 InsertAfter); 451 InsertAfter = Acc; 452 } 453 454 if (Acc != Reduction.Phi) { 455 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); 456 Reduction.AccIntAdd->replaceAllUsesWith(Acc); 457 return true; 458 } 459 return false; 460 } 461 462 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, 463 ReductionList &Reductions) { 464 RecurrenceDescriptor RecDesc; 465 const bool HasFnNoNaNAttr = 466 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 467 const BasicBlock *Latch = TheLoop->getLoopLatch(); 468 469 for (PHINode &Phi : Header->phis()) { 470 const auto *Ty = Phi.getType(); 471 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 472 continue; 473 474 const bool IsReduction = 475 RecurrenceDescriptor::AddReductionVar(&Phi, 476 RecurrenceDescriptor::RK_IntegerAdd, 477 TheLoop, HasFnNoNaNAttr, RecDesc); 478 if (!IsReduction) 479 continue; 480 481 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); 482 if (!Acc) 483 continue; 484 485 Reductions.push_back(Reduction(&Phi, Acc)); 486 } 487 488 LLVM_DEBUG( 489 dbgs() << "\nAccumulating integer additions (reductions) found:\n"; 490 for (auto &R : Reductions) { 491 dbgs() << "- "; R.Phi->dump(); 492 dbgs() << "-> "; R.AccIntAdd->dump(); 493 } 494 ); 495 } 496 497 static void AddMACCandidate(OpChainList &Candidates, 498 Instruction *Mul, 499 Value *MulOp0, Value *MulOp1) { 500 assert(Mul->getOpcode() == Instruction::Mul && 501 "expected mul instruction"); 502 ValueList LHS; 503 ValueList RHS; 504 if (IsNarrowSequence<16>(MulOp0, LHS) && 505 IsNarrowSequence<16>(MulOp1, RHS)) { 506 Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS)); 507 } 508 } 509 510 static void MatchParallelMACSequences(Reduction &R, 511 OpChainList &Candidates) { 512 Instruction *Acc = R.AccIntAdd; 513 LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n"); 514 515 // Returns false to signal the search should be stopped. 516 std::function<bool(Value*)> Match = 517 [&Candidates, &Match](Value *V) -> bool { 518 519 auto *I = dyn_cast<Instruction>(V); 520 if (!I) 521 return false; 522 523 switch (I->getOpcode()) { 524 case Instruction::Add: 525 if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) 526 return true; 527 break; 528 case Instruction::Mul: { 529 Value *MulOp0 = I->getOperand(0); 530 Value *MulOp1 = I->getOperand(1); 531 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) 532 AddMACCandidate(Candidates, I, MulOp0, MulOp1); 533 return false; 534 } 535 case Instruction::SExt: 536 return Match(I->getOperand(0)); 537 } 538 return false; 539 }; 540 541 while (Match (Acc)); 542 LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " 543 << Candidates.size() << " candidates.\n"); 544 } 545 546 // Collects all instructions that are not part of the MAC chains, which is the 547 // set of instructions that can potentially alias with the MAC operands. 548 static void AliasCandidates(BasicBlock *Header, Instructions &Reads, 549 Instructions &Writes) { 550 for (auto &I : *Header) { 551 if (I.mayReadFromMemory()) 552 Reads.push_back(&I); 553 if (I.mayWriteToMemory()) 554 Writes.push_back(&I); 555 } 556 } 557 558 // Check whether statements in the basic block that write to memory alias with 559 // the memory locations accessed by the MAC-chains. 560 // TODO: we need the read statements when we accept more complicated chains. 561 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, 562 Instructions &Writes, OpChainList &MACCandidates) { 563 LLVM_DEBUG(dbgs() << "Alias checks:\n"); 564 for (auto &MAC : MACCandidates) { 565 LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); 566 567 // At the moment, we allow only simple chains that only consist of reads, 568 // accumulate their result with an integer add, and thus that don't write 569 // memory, and simply bail if they do. 570 if (!MAC->ReadOnly) 571 return true; 572 573 // Now for all writes in the basic block, check that they don't alias with 574 // the memory locations accessed by our MAC-chain: 575 for (auto *I : Writes) { 576 LLVM_DEBUG(dbgs() << "- "; I->dump()); 577 assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); 578 for (auto &MemLoc : MAC->MemLocs) { 579 if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), 580 ModRefInfo::ModRef))) { 581 LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); 582 return true; 583 } 584 } 585 } 586 } 587 588 LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); 589 return false; 590 } 591 592 static bool CheckMACMemory(OpChainList &Candidates) { 593 for (auto &C : Candidates) { 594 // A mul has 2 operands, and a narrow op consist of sext and a load; thus 595 // we expect at least 4 items in this operand value list. 596 if (C->size() < 4) { 597 LLVM_DEBUG(dbgs() << "Operand list too short.\n"); 598 return false; 599 } 600 C->SetMemoryLocations(); 601 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; 602 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; 603 604 // Use +=2 to skip over the expected extend instructions. 605 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { 606 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) 607 return false; 608 } 609 } 610 return true; 611 } 612 613 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector 614 // multiplications. 615 // To use SMLAD: 616 // 1) we first need to find integer add reduction PHIs, 617 // 2) then from the PHI, look for this pattern: 618 // 619 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] 620 // ld0 = load i16 621 // sext0 = sext i16 %ld0 to i32 622 // ld1 = load i16 623 // sext1 = sext i16 %ld1 to i32 624 // mul0 = mul %sext0, %sext1 625 // ld2 = load i16 626 // sext2 = sext i16 %ld2 to i32 627 // ld3 = load i16 628 // sext3 = sext i16 %ld3 to i32 629 // mul1 = mul i32 %sext2, %sext3 630 // add0 = add i32 %mul0, %acc0 631 // acc1 = add i32 %add0, %mul1 632 // 633 // Which can be selected to: 634 // 635 // ldr.h r0 636 // ldr.h r1 637 // smlad r2, r0, r1, r2 638 // 639 // If constants are used instead of loads, these will need to be hoisted 640 // out and into a register. 641 // 642 // If loop invariants are used instead of loads, these need to be packed 643 // before the loop begins. 644 // 645 bool ARMParallelDSP::MatchSMLAD(Function &F) { 646 BasicBlock *Header = L->getHeader(); 647 LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; 648 dbgs() << "Header block:\n"; Header->dump(); 649 dbgs() << "Loop info:\n\n"; L->dump()); 650 651 bool Changed = false; 652 ReductionList Reductions; 653 MatchReductions(F, L, Header, Reductions); 654 655 for (auto &R : Reductions) { 656 OpChainList MACCandidates; 657 MatchParallelMACSequences(R, MACCandidates); 658 if (!CheckMACMemory(MACCandidates)) 659 continue; 660 661 R.MACCandidates = std::move(MACCandidates); 662 663 LLVM_DEBUG(dbgs() << "MAC candidates:\n"; 664 for (auto &M : R.MACCandidates) 665 M->Root->dump(); 666 dbgs() << "\n";); 667 } 668 669 // Collect all instructions that may read or write memory. Our alias 670 // analysis checks bail out if any of these instructions aliases with an 671 // instruction from the MAC-chain. 672 Instructions Reads, Writes; 673 AliasCandidates(Header, Reads, Writes); 674 675 for (auto &R : Reductions) { 676 if (AreAliased(AA, Reads, Writes, R.MACCandidates)) 677 return false; 678 CreateParallelMACPairs(R); 679 Changed |= InsertParallelMACs(R); 680 } 681 682 LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); 683 return Changed; 684 } 685 686 LoadInst* ARMParallelDSP::CreateLoadIns(IRBuilder<NoFolder> &IRB, 687 SmallVectorImpl<LoadInst*> &Loads, 688 IntegerType *LoadTy) { 689 assert(Loads.size() == 2 && "currently only support widening two loads"); 690 691 const unsigned AddrSpace = Loads[0]->getPointerAddressSpace(); 692 Value *VecPtr = IRB.CreateBitCast(Loads[0]->getPointerOperand(), 693 LoadTy->getPointerTo(AddrSpace)); 694 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 695 Loads[0]->getAlignment()); 696 // Fix up users, Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 697 Instruction *SExt0 = dyn_cast<SExtInst>(Loads[0]->user_back()); 698 Instruction *SExt1 = dyn_cast<SExtInst>(Loads[1]->user_back()); 699 700 assert((Loads[0]->hasOneUse() && Loads[1]->hasOneUse() && SExt0 && SExt1) && 701 "Loads should have a single, extending, user"); 702 703 std::function<void(Instruction*, Instruction*)> MoveAfter = 704 [&](Instruction* Source, Instruction* Sink) -> void { 705 if (DT->dominates(Source, Sink) || 706 Source->getParent() != Sink->getParent() || 707 isa<PHINode>(Source) || isa<PHINode>(Sink)) 708 return; 709 710 Sink->moveAfter(Source); 711 for (auto &U : Sink->uses()) 712 MoveAfter(Sink, cast<Instruction>(U.getUser())); 713 }; 714 715 // From the wide load, create two values that equal the original two loads. 716 Value *Bottom = IRB.CreateTrunc(WideLoad, Loads[0]->getType()); 717 SExt0->setOperand(0, Bottom); 718 if (auto *I = dyn_cast<Instruction>(Bottom)) { 719 I->moveAfter(WideLoad); 720 MoveAfter(I, SExt0); 721 } 722 723 IntegerType *Ld1Ty = cast<IntegerType>(Loads[1]->getType()); 724 Value *ShiftVal = ConstantInt::get(LoadTy, Ld1Ty->getBitWidth()); 725 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 726 if (auto *I = dyn_cast<Instruction>(Top)) 727 MoveAfter(WideLoad, I); 728 729 Value *Trunc = IRB.CreateTrunc(Top, Ld1Ty); 730 SExt1->setOperand(0, Trunc); 731 if (auto *I = dyn_cast<Instruction>(Trunc)) 732 MoveAfter(I, SExt1); 733 734 WideLoads.emplace(std::make_pair(Loads[0], 735 make_unique<WidenedLoad>(Loads, WideLoad))); 736 return WideLoad; 737 } 738 739 Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0, 740 SmallVectorImpl<LoadInst*> &VecLd1, 741 Instruction *Acc, bool Exchange, 742 Instruction *InsertAfter) { 743 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" 744 << "- " << *VecLd0[0] << "\n" 745 << "- " << *VecLd0[1] << "\n" 746 << "- " << *VecLd1[0] << "\n" 747 << "- " << *VecLd1[1] << "\n" 748 << "- " << *Acc << "\n" 749 << "- Exchange: " << Exchange << "\n"); 750 751 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 752 ++BasicBlock::iterator(InsertAfter)); 753 754 // Replace the reduction chain with an intrinsic call 755 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 756 LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? 757 WideLoads[VecLd0[0]]->getLoad() : CreateLoadIns(Builder, VecLd0, Ty); 758 LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? 759 WideLoads[VecLd1[0]]->getLoad() : CreateLoadIns(Builder, VecLd1, Ty); 760 Value* Args[] = { WideLd0, WideLd1, Acc }; 761 Function *SMLAD = nullptr; 762 if (Exchange) 763 SMLAD = Acc->getType()->isIntegerTy(32) ? 764 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 765 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 766 else 767 SMLAD = Acc->getType()->isIntegerTy(32) ? 768 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 769 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 770 CallInst *Call = Builder.CreateCall(SMLAD, Args); 771 NumSMLAD++; 772 return Call; 773 } 774 775 // Compare the value lists in Other to this chain. 776 bool BinOpChain::AreSymmetrical(BinOpChain *Other) { 777 // Element-by-element comparison of Value lists returning true if they are 778 // instructions with the same opcode or constants with the same value. 779 auto CompareValueList = [](const ValueList &VL0, 780 const ValueList &VL1) { 781 if (VL0.size() != VL1.size()) { 782 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " 783 << VL0.size() << " != " << VL1.size() << "\n"); 784 return false; 785 } 786 787 const unsigned Pairs = VL0.size(); 788 789 for (unsigned i = 0; i < Pairs; ++i) { 790 const Value *V0 = VL0[i]; 791 const Value *V1 = VL1[i]; 792 const auto *Inst0 = dyn_cast<Instruction>(V0); 793 const auto *Inst1 = dyn_cast<Instruction>(V1); 794 795 if (!Inst0 || !Inst1) 796 return false; 797 798 if (Inst0->isSameOperationAs(Inst1)) 799 continue; 800 801 const APInt *C0, *C1; 802 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) 803 return false; 804 } 805 806 return true; 807 }; 808 809 return CompareValueList(LHS, Other->LHS) && 810 CompareValueList(RHS, Other->RHS); 811 } 812 813 Pass *llvm::createARMParallelDSPPass() { 814 return new ARMParallelDSP(); 815 } 816 817 char ARMParallelDSP::ID = 0; 818 819 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 820 "Transform loops to use DSP intrinsics", false, false) 821 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 822 "Transform loops to use DSP intrinsics", false, false) 823