1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/NoFolder.h" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/LoopUtils.h" 28 #include "llvm/Pass.h" 29 #include "llvm/PassRegistry.h" 30 #include "llvm/PassSupport.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "ARM.h" 35 #include "ARMSubtarget.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "arm-parallel-dsp" 41 42 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 43 44 static cl::opt<bool> 45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 46 cl::desc("Disable the ARM Parallel DSP pass")); 47 48 namespace { 49 struct OpChain; 50 struct BinOpChain; 51 struct Reduction; 52 53 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; 54 using ReductionList = SmallVector<Reduction, 8>; 55 using ValueList = SmallVector<Value*, 8>; 56 using MemInstList = SmallVector<LoadInst*, 8>; 57 using PMACPair = std::pair<BinOpChain*,BinOpChain*>; 58 using PMACPairList = SmallVector<PMACPair, 8>; 59 using Instructions = SmallVector<Instruction*,16>; 60 using MemLocList = SmallVector<MemoryLocation, 4>; 61 62 struct OpChain { 63 Instruction *Root; 64 ValueList AllValues; 65 MemInstList VecLd; // List of all load instructions. 66 MemInstList Loads; 67 bool ReadOnly = true; 68 69 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } 70 virtual ~OpChain() = default; 71 72 void PopulateLoads() { 73 for (auto *V : AllValues) { 74 if (auto *Ld = dyn_cast<LoadInst>(V)) 75 Loads.push_back(Ld); 76 } 77 } 78 79 unsigned size() const { return AllValues.size(); } 80 }; 81 82 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. 83 // 'Reduction' contains the phi-node and accumulator statement from where we 84 // start pattern matching, and 'BinOpChain' the multiplication 85 // instructions that are candidates for parallel execution. 86 struct BinOpChain : public OpChain { 87 ValueList LHS; // List of all (narrow) left hand operands. 88 ValueList RHS; // List of all (narrow) right hand operands. 89 bool Exchange = false; 90 91 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : 92 OpChain(I, lhs), LHS(lhs), RHS(rhs) { 93 for (auto *V : RHS) 94 AllValues.push_back(V); 95 } 96 97 bool AreSymmetrical(BinOpChain *Other); 98 }; 99 100 struct Reduction { 101 PHINode *Phi; // The Phi-node from where we start 102 // pattern matching. 103 Instruction *AccIntAdd; // The accumulating integer add statement, 104 // i.e, the reduction statement. 105 OpChainList MACCandidates; // The MAC candidates associated with 106 // this reduction statement. 107 PMACPairList PMACPairs; 108 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; 109 }; 110 111 class WidenedLoad { 112 LoadInst *NewLd = nullptr; 113 SmallVector<LoadInst*, 4> Loads; 114 115 public: 116 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 117 : NewLd(Wide) { 118 for (auto *I : Lds) 119 Loads.push_back(I); 120 } 121 LoadInst *getLoad() { 122 return NewLd; 123 } 124 }; 125 126 class ARMParallelDSP : public LoopPass { 127 ScalarEvolution *SE; 128 AliasAnalysis *AA; 129 TargetLibraryInfo *TLI; 130 DominatorTree *DT; 131 LoopInfo *LI; 132 Loop *L; 133 const DataLayout *DL; 134 Module *M; 135 std::map<LoadInst*, LoadInst*> LoadPairs; 136 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 137 138 bool RecordMemoryOps(BasicBlock *BB); 139 bool InsertParallelMACs(Reduction &Reduction); 140 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 141 LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, 142 IntegerType *LoadTy); 143 void CreateParallelMACPairs(Reduction &R); 144 Instruction *CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0, 145 SmallVectorImpl<LoadInst*> &VecLd1, 146 Instruction *Acc, bool Exchange, 147 Instruction *InsertAfter); 148 149 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 150 /// Dual performs two signed 16x16-bit multiplications. It adds the 151 /// products to a 32-bit accumulate operand. Optionally, the instruction can 152 /// exchange the halfwords of the second operand before performing the 153 /// arithmetic. 154 bool MatchSMLAD(Function &F); 155 156 public: 157 static char ID; 158 159 ARMParallelDSP() : LoopPass(ID) { } 160 161 bool doInitialization(Loop *L, LPPassManager &LPM) override { 162 LoadPairs.clear(); 163 WideLoads.clear(); 164 return true; 165 } 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 LoopPass::getAnalysisUsage(AU); 169 AU.addRequired<AssumptionCacheTracker>(); 170 AU.addRequired<ScalarEvolutionWrapperPass>(); 171 AU.addRequired<AAResultsWrapperPass>(); 172 AU.addRequired<TargetLibraryInfoWrapperPass>(); 173 AU.addRequired<LoopInfoWrapperPass>(); 174 AU.addRequired<DominatorTreeWrapperPass>(); 175 AU.addRequired<TargetPassConfig>(); 176 AU.addPreserved<LoopInfoWrapperPass>(); 177 AU.setPreservesCFG(); 178 } 179 180 bool runOnLoop(Loop *TheLoop, LPPassManager &) override { 181 if (DisableParallelDSP) 182 return false; 183 L = TheLoop; 184 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 185 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 186 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 187 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 188 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 189 auto &TPC = getAnalysis<TargetPassConfig>(); 190 191 BasicBlock *Header = TheLoop->getHeader(); 192 if (!Header) 193 return false; 194 195 // TODO: We assume the loop header and latch to be the same block. 196 // This is not a fundamental restriction, but lifting this would just 197 // require more work to do the transformation and then patch up the CFG. 198 if (Header != TheLoop->getLoopLatch()) { 199 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " 200 "running pass ARMParallelDSP\n"); 201 return false; 202 } 203 204 // We need a preheader as getIncomingValueForBlock assumes there is one. 205 if (!TheLoop->getLoopPreheader()) { 206 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); 207 return false; 208 } 209 210 Function &F = *Header->getParent(); 211 M = F.getParent(); 212 DL = &M->getDataLayout(); 213 214 auto &TM = TPC.getTM<TargetMachine>(); 215 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 216 217 if (!ST->allowsUnalignedMem()) { 218 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 219 "running pass ARMParallelDSP\n"); 220 return false; 221 } 222 223 if (!ST->hasDSP()) { 224 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 225 "ARMParallelDSP\n"); 226 return false; 227 } 228 229 if (!ST->isLittle()) { 230 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 231 << "ARMParallelDSP\n"); 232 return false; 233 } 234 235 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); 236 237 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 238 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 239 240 if (!RecordMemoryOps(Header)) { 241 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); 242 return false; 243 } 244 245 bool Changes = MatchSMLAD(F); 246 return Changes; 247 } 248 }; 249 } 250 251 template<typename MemInst> 252 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 253 const DataLayout &DL, ScalarEvolution &SE) { 254 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 255 return true; 256 return false; 257 } 258 259 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 260 MemInstList &VecMem) { 261 if (!Ld0 || !Ld1) 262 return false; 263 264 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 265 return false; 266 267 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 268 dbgs() << "Ld0:"; Ld0->dump(); 269 dbgs() << "Ld1:"; Ld1->dump(); 270 ); 271 272 VecMem.clear(); 273 VecMem.push_back(Ld0); 274 VecMem.push_back(Ld1); 275 return true; 276 } 277 278 /// Iterate through the block and record base, offset pairs of loads which can 279 /// be widened into a single load. 280 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 281 SmallVector<LoadInst*, 8> Loads; 282 SmallVector<Instruction*, 8> Writes; 283 284 // Collect loads and instruction that may write to memory. For now we only 285 // record loads which are simple, sign-extended and have a single user. 286 // TODO: Allow zero-extended loads. 287 for (auto &I : *BB) { 288 if (I.mayWriteToMemory()) 289 Writes.push_back(&I); 290 auto *Ld = dyn_cast<LoadInst>(&I); 291 if (!Ld || !Ld->isSimple() || 292 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 293 continue; 294 Loads.push_back(Ld); 295 } 296 297 using InstSet = std::set<Instruction*>; 298 using DepMap = std::map<Instruction*, InstSet>; 299 DepMap RAWDeps; 300 301 // Record any writes that may alias a load. 302 const auto Size = LocationSize::unknown(); 303 for (auto Read : Loads) { 304 for (auto Write : Writes) { 305 MemoryLocation ReadLoc = 306 MemoryLocation(Read->getPointerOperand(), Size); 307 308 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 309 ModRefInfo::ModRef))) 310 continue; 311 if (DT->dominates(Write, Read)) 312 RAWDeps[Read].insert(Write); 313 } 314 } 315 316 // Check whether there's not a write between the two loads which would 317 // prevent them from being safely merged. 318 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 319 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; 320 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; 321 322 if (RAWDeps.count(Dominated)) { 323 InstSet &WritesBefore = RAWDeps[Dominated]; 324 325 for (auto Before : WritesBefore) { 326 327 // We can't move the second load backward, past a write, to merge 328 // with the first load. 329 if (DT->dominates(Dominator, Before)) 330 return false; 331 } 332 } 333 return true; 334 }; 335 336 // Record base, offset load pairs. 337 for (auto *Base : Loads) { 338 for (auto *Offset : Loads) { 339 if (Base == Offset) 340 continue; 341 342 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 343 SafeToPair(Base, Offset)) { 344 LoadPairs[Base] = Offset; 345 break; 346 } 347 } 348 } 349 350 LLVM_DEBUG(if (!LoadPairs.empty()) { 351 dbgs() << "Consecutive load pairs:\n"; 352 for (auto &MapIt : LoadPairs) { 353 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 354 << *MapIt.second << "\n"); 355 } 356 }); 357 return LoadPairs.size() > 1; 358 } 359 360 void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { 361 OpChainList &Candidates = R.MACCandidates; 362 PMACPairList &PMACPairs = R.PMACPairs; 363 const unsigned Elems = Candidates.size(); 364 365 if (Elems < 2) 366 return; 367 368 auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) { 369 if (!PMul0->AreSymmetrical(PMul1)) 370 return false; 371 372 // The first elements of each vector should be loads with sexts. If we 373 // find that its two pairs of consecutive loads, then these can be 374 // transformed into two wider loads and the users can be replaced with 375 // DSP intrinsics. 376 for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { 377 auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]); 378 auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]); 379 auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]); 380 auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]); 381 382 if (!Ld0 || !Ld1 || !Ld2 || !Ld3) 383 return false; 384 385 LLVM_DEBUG(dbgs() << "Loads:\n" 386 << " - " << *Ld0 << "\n" 387 << " - " << *Ld1 << "\n" 388 << " - " << *Ld2 << "\n" 389 << " - " << *Ld3 << "\n"); 390 391 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 392 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 393 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 394 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 395 return true; 396 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 397 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 398 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 399 PMul1->Exchange = true; 400 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 401 return true; 402 } 403 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 404 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 405 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 406 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 407 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 408 PMul0->Exchange = true; 409 // Only the second operand can be exchanged, so swap the muls. 410 PMACPairs.push_back(std::make_pair(PMul1, PMul0)); 411 return true; 412 } 413 } 414 return false; 415 }; 416 417 SmallPtrSet<const Instruction*, 4> Paired; 418 for (unsigned i = 0; i < Elems; ++i) { 419 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); 420 if (Paired.count(PMul0->Root)) 421 continue; 422 423 for (unsigned j = 0; j < Elems; ++j) { 424 if (i == j) 425 continue; 426 427 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get()); 428 if (Paired.count(PMul1->Root)) 429 continue; 430 431 const Instruction *Mul0 = PMul0->Root; 432 const Instruction *Mul1 = PMul1->Root; 433 if (Mul0 == Mul1) 434 continue; 435 436 assert(PMul0 != PMul1 && "expected different chains"); 437 438 if (CanPair(PMul0, PMul1)) { 439 Paired.insert(Mul0); 440 Paired.insert(Mul1); 441 break; 442 } 443 } 444 } 445 } 446 447 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) { 448 Instruction *Acc = Reduction.Phi; 449 Instruction *InsertAfter = Reduction.AccIntAdd; 450 451 for (auto &Pair : Reduction.PMACPairs) { 452 BinOpChain *PMul0 = Pair.first; 453 BinOpChain *PMul1 = Pair.second; 454 LLVM_DEBUG(dbgs() << "Found parallel MACs:\n" 455 << "- " << *PMul0->Root << "\n" 456 << "- " << *PMul1->Root << "\n"); 457 458 Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, 459 InsertAfter); 460 InsertAfter = Acc; 461 } 462 463 if (Acc != Reduction.Phi) { 464 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); 465 Reduction.AccIntAdd->replaceAllUsesWith(Acc); 466 return true; 467 } 468 return false; 469 } 470 471 template<typename InstType, unsigned BitWidth> 472 bool IsExtendingLoad(Value *V) { 473 auto *I = dyn_cast<InstType>(V); 474 if (!I) 475 return false; 476 477 if (I->getSrcTy()->getIntegerBitWidth() != BitWidth) 478 return false; 479 480 return isa<LoadInst>(I->getOperand(0)); 481 } 482 483 static void MatchParallelMACSequences(Reduction &R, 484 OpChainList &Candidates) { 485 Instruction *Acc = R.AccIntAdd; 486 LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n"); 487 488 // Returns false to signal the search should be stopped. 489 std::function<bool(Value*)> Match = 490 [&Candidates, &Match](Value *V) -> bool { 491 492 auto *I = dyn_cast<Instruction>(V); 493 if (!I) 494 return false; 495 496 switch (I->getOpcode()) { 497 case Instruction::Add: 498 if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) 499 return true; 500 break; 501 case Instruction::Mul: { 502 Value *Op0 = I->getOperand(0); 503 Value *Op1 = I->getOperand(1); 504 if (IsExtendingLoad<SExtInst, 16>(Op0) && 505 IsExtendingLoad<SExtInst, 16>(Op1)) { 506 ValueList LHS = { cast<SExtInst>(Op0)->getOperand(0), Op0 }; 507 ValueList RHS = { cast<SExtInst>(Op1)->getOperand(0), Op1 }; 508 Candidates.push_back(make_unique<BinOpChain>(I, LHS, RHS)); 509 } 510 return false; 511 } 512 case Instruction::SExt: 513 return Match(I->getOperand(0)); 514 } 515 return false; 516 }; 517 518 while (Match (Acc)); 519 LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " 520 << Candidates.size() << " candidates.\n"); 521 } 522 523 static bool CheckMACMemory(OpChainList &Candidates) { 524 for (auto &C : Candidates) { 525 // A mul has 2 operands, and a narrow op consist of sext and a load; thus 526 // we expect at least 4 items in this operand value list. 527 if (C->size() < 4) { 528 LLVM_DEBUG(dbgs() << "Operand list too short.\n"); 529 return false; 530 } 531 C->PopulateLoads(); 532 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; 533 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; 534 535 // Use +=2 to skip over the expected extend instructions. 536 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { 537 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) 538 return false; 539 } 540 } 541 return true; 542 } 543 544 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector 545 // multiplications. 546 // To use SMLAD: 547 // 1) we first need to find integer add reduction PHIs, 548 // 2) then from the PHI, look for this pattern: 549 // 550 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] 551 // ld0 = load i16 552 // sext0 = sext i16 %ld0 to i32 553 // ld1 = load i16 554 // sext1 = sext i16 %ld1 to i32 555 // mul0 = mul %sext0, %sext1 556 // ld2 = load i16 557 // sext2 = sext i16 %ld2 to i32 558 // ld3 = load i16 559 // sext3 = sext i16 %ld3 to i32 560 // mul1 = mul i32 %sext2, %sext3 561 // add0 = add i32 %mul0, %acc0 562 // acc1 = add i32 %add0, %mul1 563 // 564 // Which can be selected to: 565 // 566 // ldr.h r0 567 // ldr.h r1 568 // smlad r2, r0, r1, r2 569 // 570 // If constants are used instead of loads, these will need to be hoisted 571 // out and into a register. 572 // 573 // If loop invariants are used instead of loads, these need to be packed 574 // before the loop begins. 575 // 576 bool ARMParallelDSP::MatchSMLAD(Function &F) { 577 578 auto FindReductions = [&](ReductionList &Reductions) { 579 RecurrenceDescriptor RecDesc; 580 const bool HasFnNoNaNAttr = 581 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 582 BasicBlock *Latch = L->getLoopLatch(); 583 584 for (PHINode &Phi : Latch->phis()) { 585 const auto *Ty = Phi.getType(); 586 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 587 continue; 588 589 const bool IsReduction = RecurrenceDescriptor::AddReductionVar( 590 &Phi, RecurrenceDescriptor::RK_IntegerAdd, L, HasFnNoNaNAttr, RecDesc); 591 592 if (!IsReduction) 593 continue; 594 595 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); 596 if (!Acc) 597 continue; 598 599 Reductions.push_back(Reduction(&Phi, Acc)); 600 } 601 return !Reductions.empty(); 602 }; 603 604 ReductionList Reductions; 605 if (!FindReductions(Reductions)) 606 return false; 607 608 for (auto &R : Reductions) { 609 OpChainList MACCandidates; 610 MatchParallelMACSequences(R, MACCandidates); 611 if (!CheckMACMemory(MACCandidates)) 612 continue; 613 614 R.MACCandidates = std::move(MACCandidates); 615 616 LLVM_DEBUG(dbgs() << "MAC candidates:\n"; 617 for (auto &M : R.MACCandidates) 618 M->Root->dump(); 619 dbgs() << "\n";); 620 } 621 622 bool Changed = false; 623 // Check whether statements in the basic block that write to memory alias 624 // with the memory locations accessed by the MAC-chains. 625 for (auto &R : Reductions) { 626 CreateParallelMACPairs(R); 627 Changed |= InsertParallelMACs(R); 628 } 629 630 return Changed; 631 } 632 633 LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, 634 IntegerType *LoadTy) { 635 assert(Loads.size() == 2 && "currently only support widening two loads"); 636 637 LoadInst *Base = Loads[0]; 638 LoadInst *Offset = Loads[1]; 639 640 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 641 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 642 643 assert((BaseSExt && OffsetSExt) 644 && "Loads should have a single, extending, user"); 645 646 std::function<void(Value*, Value*)> MoveBefore = 647 [&](Value *A, Value *B) -> void { 648 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 649 return; 650 651 auto *Source = cast<Instruction>(A); 652 auto *Sink = cast<Instruction>(B); 653 654 if (DT->dominates(Source, Sink) || 655 Source->getParent() != Sink->getParent() || 656 isa<PHINode>(Source) || isa<PHINode>(Sink)) 657 return; 658 659 Source->moveBefore(Sink); 660 for (auto &U : Source->uses()) 661 MoveBefore(Source, U.getUser()); 662 }; 663 664 // Insert the load at the point of the original dominating load. 665 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 666 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 667 ++BasicBlock::iterator(DomLoad)); 668 669 // Bitcast the pointer to a wider type and create the wide load, while making 670 // sure to maintain the original alignment as this prevents ldrd from being 671 // generated when it could be illegal due to memory alignment. 672 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 673 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 674 LoadTy->getPointerTo(AddrSpace)); 675 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 676 Base->getAlignment()); 677 678 // Make sure everything is in the correct order in the basic block. 679 MoveBefore(Base->getPointerOperand(), VecPtr); 680 MoveBefore(VecPtr, WideLoad); 681 682 // From the wide load, create two values that equal the original two loads. 683 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 684 // TODO: Support big-endian as well. 685 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 686 BaseSExt->setOperand(0, Bottom); 687 688 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 689 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 690 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 691 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 692 OffsetSExt->setOperand(0, Trunc); 693 694 WideLoads.emplace(std::make_pair(Base, 695 make_unique<WidenedLoad>(Loads, WideLoad))); 696 return WideLoad; 697 } 698 699 Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0, 700 SmallVectorImpl<LoadInst*> &VecLd1, 701 Instruction *Acc, bool Exchange, 702 Instruction *InsertAfter) { 703 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" 704 << "- " << *VecLd0[0] << "\n" 705 << "- " << *VecLd0[1] << "\n" 706 << "- " << *VecLd1[0] << "\n" 707 << "- " << *VecLd1[1] << "\n" 708 << "- " << *Acc << "\n" 709 << "- Exchange: " << Exchange << "\n"); 710 711 // Replace the reduction chain with an intrinsic call 712 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 713 LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? 714 WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty); 715 LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? 716 WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty); 717 718 Value* Args[] = { WideLd0, WideLd1, Acc }; 719 Function *SMLAD = nullptr; 720 if (Exchange) 721 SMLAD = Acc->getType()->isIntegerTy(32) ? 722 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 723 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 724 else 725 SMLAD = Acc->getType()->isIntegerTy(32) ? 726 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 727 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 728 729 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 730 ++BasicBlock::iterator(InsertAfter)); 731 CallInst *Call = Builder.CreateCall(SMLAD, Args); 732 NumSMLAD++; 733 return Call; 734 } 735 736 // Compare the value lists in Other to this chain. 737 bool BinOpChain::AreSymmetrical(BinOpChain *Other) { 738 // Element-by-element comparison of Value lists returning true if they are 739 // instructions with the same opcode or constants with the same value. 740 auto CompareValueList = [](const ValueList &VL0, 741 const ValueList &VL1) { 742 if (VL0.size() != VL1.size()) { 743 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " 744 << VL0.size() << " != " << VL1.size() << "\n"); 745 return false; 746 } 747 748 const unsigned Pairs = VL0.size(); 749 750 for (unsigned i = 0; i < Pairs; ++i) { 751 const Value *V0 = VL0[i]; 752 const Value *V1 = VL1[i]; 753 const auto *Inst0 = dyn_cast<Instruction>(V0); 754 const auto *Inst1 = dyn_cast<Instruction>(V1); 755 756 if (!Inst0 || !Inst1) 757 return false; 758 759 if (Inst0->isSameOperationAs(Inst1)) 760 continue; 761 762 const APInt *C0, *C1; 763 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) 764 return false; 765 } 766 767 return true; 768 }; 769 770 return CompareValueList(LHS, Other->LHS) && 771 CompareValueList(RHS, Other->RHS); 772 } 773 774 Pass *llvm::createARMParallelDSPPass() { 775 return new ARMParallelDSP(); 776 } 777 778 char ARMParallelDSP::ID = 0; 779 780 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 781 "Transform loops to use DSP intrinsics", false, false) 782 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 783 "Transform loops to use DSP intrinsics", false, false) 784