1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "ARM.h" 18 #include "ARMSubtarget.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/LoopAccessAnalysis.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicsARM.h" 26 #include "llvm/IR/NoFolder.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Pass.h" 29 #include "llvm/PassRegistry.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 34 using namespace llvm; 35 using namespace PatternMatch; 36 37 #define DEBUG_TYPE "arm-parallel-dsp" 38 39 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 40 41 static cl::opt<bool> 42 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 43 cl::desc("Disable the ARM Parallel DSP pass")); 44 45 static cl::opt<unsigned> 46 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), 47 cl::desc("Limit the number of loads analysed")); 48 49 namespace { 50 struct MulCandidate; 51 class Reduction; 52 53 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 54 using MemInstList = SmallVectorImpl<LoadInst*>; 55 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 56 57 // 'MulCandidate' holds the multiplication instructions that are candidates 58 // for parallel execution. 59 struct MulCandidate { 60 Instruction *Root; 61 Value* LHS; 62 Value* RHS; 63 bool Exchange = false; 64 bool ReadOnly = true; 65 bool Paired = false; 66 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 67 68 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 69 Root(I), LHS(lhs), RHS(rhs) { } 70 71 bool HasTwoLoadInputs() const { 72 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 73 } 74 75 LoadInst *getBaseLoad() const { 76 return VecLd.front(); 77 } 78 }; 79 80 /// Represent a sequence of multiply-accumulate operations with the aim to 81 /// perform the multiplications in parallel. 82 class Reduction { 83 Instruction *Root = nullptr; 84 Value *Acc = nullptr; 85 MulCandList Muls; 86 MulPairList MulPairs; 87 SetVector<Instruction*> Adds; 88 89 public: 90 Reduction() = delete; 91 92 Reduction (Instruction *Add) : Root(Add) { } 93 94 /// Record an Add instruction that is a part of the this reduction. 95 void InsertAdd(Instruction *I) { Adds.insert(I); } 96 97 /// Create MulCandidates, each rooted at a Mul instruction, that is a part 98 /// of this reduction. 99 void InsertMuls() { 100 auto GetMulOperand = [](Value *V) -> Instruction* { 101 if (auto *SExt = dyn_cast<SExtInst>(V)) { 102 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) 103 if (I->getOpcode() == Instruction::Mul) 104 return I; 105 } else if (auto *I = dyn_cast<Instruction>(V)) { 106 if (I->getOpcode() == Instruction::Mul) 107 return I; 108 } 109 return nullptr; 110 }; 111 112 auto InsertMul = [this](Instruction *I) { 113 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); 114 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); 115 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 116 }; 117 118 for (auto *Add : Adds) { 119 if (Add == Acc) 120 continue; 121 if (auto *Mul = GetMulOperand(Add->getOperand(0))) 122 InsertMul(Mul); 123 if (auto *Mul = GetMulOperand(Add->getOperand(1))) 124 InsertMul(Mul); 125 } 126 } 127 128 /// Add the incoming accumulator value, returns true if a value had not 129 /// already been added. Returning false signals to the user that this 130 /// reduction already has a value to initialise the accumulator. 131 bool InsertAcc(Value *V) { 132 if (Acc) 133 return false; 134 Acc = V; 135 return true; 136 } 137 138 /// Set two MulCandidates, rooted at muls, that can be executed as a single 139 /// parallel operation. 140 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, 141 bool Exchange = false) { 142 LLVM_DEBUG(dbgs() << "Pairing:\n" 143 << *Mul0->Root << "\n" 144 << *Mul1->Root << "\n"); 145 Mul0->Paired = true; 146 Mul1->Paired = true; 147 if (Exchange) 148 Mul1->Exchange = true; 149 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 150 } 151 152 /// Return true if enough mul operations are found that can be executed in 153 /// parallel. 154 bool CreateParallelPairs(); 155 156 /// Return the add instruction which is the root of the reduction. 157 Instruction *getRoot() { return Root; } 158 159 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 160 161 Type *getType() const { return Root->getType(); } 162 163 /// Return the incoming value to be accumulated. This maybe null. 164 Value *getAccumulator() { return Acc; } 165 166 /// Return the set of adds that comprise the reduction. 167 SetVector<Instruction*> &getAdds() { return Adds; } 168 169 /// Return the MulCandidate, rooted at mul instruction, that comprise the 170 /// the reduction. 171 MulCandList &getMuls() { return Muls; } 172 173 /// Return the MulCandidate, rooted at mul instructions, that have been 174 /// paired for parallel execution. 175 MulPairList &getMulPairs() { return MulPairs; } 176 177 /// To finalise, replace the uses of the root with the intrinsic call. 178 void UpdateRoot(Instruction *SMLAD) { 179 Root->replaceAllUsesWith(SMLAD); 180 } 181 182 void dump() { 183 LLVM_DEBUG(dbgs() << "Reduction:\n"; 184 for (auto *Add : Adds) 185 LLVM_DEBUG(dbgs() << *Add << "\n"); 186 for (auto &Mul : Muls) 187 LLVM_DEBUG(dbgs() << *Mul->Root << "\n" 188 << " " << *Mul->LHS << "\n" 189 << " " << *Mul->RHS << "\n"); 190 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") 191 ); 192 } 193 }; 194 195 class WidenedLoad { 196 LoadInst *NewLd = nullptr; 197 SmallVector<LoadInst*, 4> Loads; 198 199 public: 200 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 201 : NewLd(Wide) { 202 for (auto *I : Lds) 203 Loads.push_back(I); 204 } 205 LoadInst *getLoad() { 206 return NewLd; 207 } 208 }; 209 210 class ARMParallelDSP : public FunctionPass { 211 ScalarEvolution *SE; 212 AliasAnalysis *AA; 213 TargetLibraryInfo *TLI; 214 DominatorTree *DT; 215 const DataLayout *DL; 216 Module *M; 217 std::map<LoadInst*, LoadInst*> LoadPairs; 218 SmallPtrSet<LoadInst*, 4> OffsetLoads; 219 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 220 221 template<unsigned> 222 bool IsNarrowSequence(Value *V); 223 bool Search(Value *V, BasicBlock *BB, Reduction &R); 224 bool RecordMemoryOps(BasicBlock *BB); 225 void InsertParallelMACs(Reduction &Reduction); 226 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 227 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 228 bool CreateParallelPairs(Reduction &R); 229 230 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 231 /// Dual performs two signed 16x16-bit multiplications. It adds the 232 /// products to a 32-bit accumulate operand. Optionally, the instruction can 233 /// exchange the halfwords of the second operand before performing the 234 /// arithmetic. 235 bool MatchSMLAD(Function &F); 236 237 public: 238 static char ID; 239 240 ARMParallelDSP() : FunctionPass(ID) { } 241 242 void getAnalysisUsage(AnalysisUsage &AU) const override { 243 FunctionPass::getAnalysisUsage(AU); 244 AU.addRequired<AssumptionCacheTracker>(); 245 AU.addRequired<ScalarEvolutionWrapperPass>(); 246 AU.addRequired<AAResultsWrapperPass>(); 247 AU.addRequired<TargetLibraryInfoWrapperPass>(); 248 AU.addRequired<DominatorTreeWrapperPass>(); 249 AU.addRequired<TargetPassConfig>(); 250 AU.addPreserved<ScalarEvolutionWrapperPass>(); 251 AU.addPreserved<GlobalsAAWrapperPass>(); 252 AU.setPreservesCFG(); 253 } 254 255 bool runOnFunction(Function &F) override { 256 if (DisableParallelDSP) 257 return false; 258 if (skipFunction(F)) 259 return false; 260 261 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 262 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 263 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 264 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 265 auto &TPC = getAnalysis<TargetPassConfig>(); 266 267 M = F.getParent(); 268 DL = &M->getDataLayout(); 269 270 auto &TM = TPC.getTM<TargetMachine>(); 271 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 272 273 if (!ST->allowsUnalignedMem()) { 274 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 275 "running pass ARMParallelDSP\n"); 276 return false; 277 } 278 279 if (!ST->hasDSP()) { 280 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 281 "ARMParallelDSP\n"); 282 return false; 283 } 284 285 if (!ST->isLittle()) { 286 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 287 << "ARMParallelDSP\n"); 288 return false; 289 } 290 291 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 292 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 293 294 bool Changes = MatchSMLAD(F); 295 return Changes; 296 } 297 }; 298 } 299 300 template<typename MemInst> 301 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 302 const DataLayout &DL, ScalarEvolution &SE) { 303 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 304 return true; 305 return false; 306 } 307 308 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 309 MemInstList &VecMem) { 310 if (!Ld0 || !Ld1) 311 return false; 312 313 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 314 return false; 315 316 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 317 dbgs() << "Ld0:"; Ld0->dump(); 318 dbgs() << "Ld1:"; Ld1->dump(); 319 ); 320 321 VecMem.clear(); 322 VecMem.push_back(Ld0); 323 VecMem.push_back(Ld1); 324 return true; 325 } 326 327 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 328 // instructions, which is set to 16. So here we should collect all i8 and i16 329 // narrow operations. 330 // TODO: we currently only collect i16, and will support i8 later, so that's 331 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 332 template<unsigned MaxBitWidth> 333 bool ARMParallelDSP::IsNarrowSequence(Value *V) { 334 if (auto *SExt = dyn_cast<SExtInst>(V)) { 335 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 336 return false; 337 338 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 339 // Check that this load could be paired. 340 return LoadPairs.count(Ld) || OffsetLoads.count(Ld); 341 } 342 } 343 return false; 344 } 345 346 /// Iterate through the block and record base, offset pairs of loads which can 347 /// be widened into a single load. 348 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 349 SmallVector<LoadInst*, 8> Loads; 350 SmallVector<Instruction*, 8> Writes; 351 LoadPairs.clear(); 352 WideLoads.clear(); 353 354 // Collect loads and instruction that may write to memory. For now we only 355 // record loads which are simple, sign-extended and have a single user. 356 // TODO: Allow zero-extended loads. 357 for (auto &I : *BB) { 358 if (I.mayWriteToMemory()) 359 Writes.push_back(&I); 360 auto *Ld = dyn_cast<LoadInst>(&I); 361 if (!Ld || !Ld->isSimple() || 362 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 363 continue; 364 Loads.push_back(Ld); 365 } 366 367 if (Loads.empty() || Loads.size() > NumLoadLimit) 368 return false; 369 370 using InstSet = std::set<Instruction*>; 371 using DepMap = std::map<Instruction*, InstSet>; 372 DepMap RAWDeps; 373 374 // Record any writes that may alias a load. 375 const auto Size = LocationSize::unknown(); 376 for (auto Write : Writes) { 377 for (auto Read : Loads) { 378 MemoryLocation ReadLoc = 379 MemoryLocation(Read->getPointerOperand(), Size); 380 381 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 382 ModRefInfo::ModRef))) 383 continue; 384 if (Write->comesBefore(Read)) 385 RAWDeps[Read].insert(Write); 386 } 387 } 388 389 // Check whether there's not a write between the two loads which would 390 // prevent them from being safely merged. 391 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 392 bool BaseFirst = Base->comesBefore(Offset); 393 LoadInst *Dominator = BaseFirst ? Base : Offset; 394 LoadInst *Dominated = BaseFirst ? Offset : Base; 395 396 if (RAWDeps.count(Dominated)) { 397 InstSet &WritesBefore = RAWDeps[Dominated]; 398 399 for (auto Before : WritesBefore) { 400 // We can't move the second load backward, past a write, to merge 401 // with the first load. 402 if (Dominator->comesBefore(Before)) 403 return false; 404 } 405 } 406 return true; 407 }; 408 409 // Record base, offset load pairs. 410 for (auto *Base : Loads) { 411 for (auto *Offset : Loads) { 412 if (Base == Offset || OffsetLoads.count(Offset)) 413 continue; 414 415 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 416 SafeToPair(Base, Offset)) { 417 LoadPairs[Base] = Offset; 418 OffsetLoads.insert(Offset); 419 break; 420 } 421 } 422 } 423 424 LLVM_DEBUG(if (!LoadPairs.empty()) { 425 dbgs() << "Consecutive load pairs:\n"; 426 for (auto &MapIt : LoadPairs) { 427 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 428 << *MapIt.second << "\n"); 429 } 430 }); 431 return LoadPairs.size() > 1; 432 } 433 434 // Search recursively back through the operands to find a tree of values that 435 // form a multiply-accumulate chain. The search records the Add and Mul 436 // instructions that form the reduction and allows us to find a single value 437 // to be used as the initial input to the accumlator. 438 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { 439 // If we find a non-instruction, try to use it as the initial accumulator 440 // value. This may have already been found during the search in which case 441 // this function will return false, signaling a search fail. 442 auto *I = dyn_cast<Instruction>(V); 443 if (!I) 444 return R.InsertAcc(V); 445 446 if (I->getParent() != BB) 447 return false; 448 449 switch (I->getOpcode()) { 450 default: 451 break; 452 case Instruction::PHI: 453 // Could be the accumulator value. 454 return R.InsertAcc(V); 455 case Instruction::Add: { 456 // Adds should be adding together two muls, or another add and a mul to 457 // be within the mac chain. One of the operands may also be the 458 // accumulator value at which point we should stop searching. 459 R.InsertAdd(I); 460 Value *LHS = I->getOperand(0); 461 Value *RHS = I->getOperand(1); 462 bool ValidLHS = Search(LHS, BB, R); 463 bool ValidRHS = Search(RHS, BB, R); 464 465 if (ValidLHS && ValidRHS) 466 return true; 467 468 return R.InsertAcc(I); 469 } 470 case Instruction::Mul: { 471 Value *MulOp0 = I->getOperand(0); 472 Value *MulOp1 = I->getOperand(1); 473 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); 474 } 475 case Instruction::SExt: 476 return Search(I->getOperand(0), BB, R); 477 } 478 return false; 479 } 480 481 // The pass needs to identify integer add/sub reductions of 16-bit vector 482 // multiplications. 483 // To use SMLAD: 484 // 1) we first need to find integer add then look for this pattern: 485 // 486 // acc0 = ... 487 // ld0 = load i16 488 // sext0 = sext i16 %ld0 to i32 489 // ld1 = load i16 490 // sext1 = sext i16 %ld1 to i32 491 // mul0 = mul %sext0, %sext1 492 // ld2 = load i16 493 // sext2 = sext i16 %ld2 to i32 494 // ld3 = load i16 495 // sext3 = sext i16 %ld3 to i32 496 // mul1 = mul i32 %sext2, %sext3 497 // add0 = add i32 %mul0, %acc0 498 // acc1 = add i32 %add0, %mul1 499 // 500 // Which can be selected to: 501 // 502 // ldr r0 503 // ldr r1 504 // smlad r2, r0, r1, r2 505 // 506 // If constants are used instead of loads, these will need to be hoisted 507 // out and into a register. 508 // 509 // If loop invariants are used instead of loads, these need to be packed 510 // before the loop begins. 511 // 512 bool ARMParallelDSP::MatchSMLAD(Function &F) { 513 bool Changed = false; 514 515 for (auto &BB : F) { 516 SmallPtrSet<Instruction*, 4> AllAdds; 517 if (!RecordMemoryOps(&BB)) 518 continue; 519 520 for (Instruction &I : reverse(BB)) { 521 if (I.getOpcode() != Instruction::Add) 522 continue; 523 524 if (AllAdds.count(&I)) 525 continue; 526 527 const auto *Ty = I.getType(); 528 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 529 continue; 530 531 Reduction R(&I); 532 if (!Search(&I, &BB, R)) 533 continue; 534 535 R.InsertMuls(); 536 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); 537 538 if (!CreateParallelPairs(R)) 539 continue; 540 541 InsertParallelMACs(R); 542 Changed = true; 543 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 544 } 545 } 546 547 return Changed; 548 } 549 550 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 551 552 // Not enough mul operations to make a pair. 553 if (R.getMuls().size() < 2) 554 return false; 555 556 // Check that the muls operate directly upon sign extended loads. 557 for (auto &MulCand : R.getMuls()) { 558 if (!MulCand->HasTwoLoadInputs()) 559 return false; 560 } 561 562 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 563 // The first elements of each vector should be loads with sexts. If we 564 // find that its two pairs of consecutive loads, then these can be 565 // transformed into two wider loads and the users can be replaced with 566 // DSP intrinsics. 567 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 568 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 569 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 570 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 571 572 // Check that each mul is operating on two different loads. 573 if (Ld0 == Ld2 || Ld1 == Ld3) 574 return false; 575 576 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 577 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 578 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 579 R.AddMulPair(PMul0, PMul1); 580 return true; 581 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 582 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 583 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 584 R.AddMulPair(PMul0, PMul1, true); 585 return true; 586 } 587 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 588 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 589 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 590 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 591 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 592 // Only the second operand can be exchanged, so swap the muls. 593 R.AddMulPair(PMul1, PMul0, true); 594 return true; 595 } 596 return false; 597 }; 598 599 MulCandList &Muls = R.getMuls(); 600 const unsigned Elems = Muls.size(); 601 for (unsigned i = 0; i < Elems; ++i) { 602 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 603 if (PMul0->Paired) 604 continue; 605 606 for (unsigned j = 0; j < Elems; ++j) { 607 if (i == j) 608 continue; 609 610 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 611 if (PMul1->Paired) 612 continue; 613 614 const Instruction *Mul0 = PMul0->Root; 615 const Instruction *Mul1 = PMul1->Root; 616 if (Mul0 == Mul1) 617 continue; 618 619 assert(PMul0 != PMul1 && "expected different chains"); 620 621 if (CanPair(R, PMul0, PMul1)) 622 break; 623 } 624 } 625 return !R.getMulPairs().empty(); 626 } 627 628 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 629 630 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 631 Value *Acc, bool Exchange, 632 Instruction *InsertAfter) { 633 // Replace the reduction chain with an intrinsic call 634 635 Value* Args[] = { WideLd0, WideLd1, Acc }; 636 Function *SMLAD = nullptr; 637 if (Exchange) 638 SMLAD = Acc->getType()->isIntegerTy(32) ? 639 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 640 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 641 else 642 SMLAD = Acc->getType()->isIntegerTy(32) ? 643 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 644 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 645 646 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 647 BasicBlock::iterator(InsertAfter)); 648 Instruction *Call = Builder.CreateCall(SMLAD, Args); 649 NumSMLAD++; 650 return Call; 651 }; 652 653 // Return the instruction after the dominated instruction. 654 auto GetInsertPoint = [this](Value *A, Value *B) { 655 assert((isa<Instruction>(A) || isa<Instruction>(B)) && 656 "expected at least one instruction"); 657 658 Value *V = nullptr; 659 if (!isa<Instruction>(A)) 660 V = B; 661 else if (!isa<Instruction>(B)) 662 V = A; 663 else 664 V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A; 665 666 return &*++BasicBlock::iterator(cast<Instruction>(V)); 667 }; 668 669 Value *Acc = R.getAccumulator(); 670 671 // For any muls that were discovered but not paired, accumulate their values 672 // as before. 673 IRBuilder<NoFolder> Builder(R.getRoot()->getParent()); 674 MulCandList &MulCands = R.getMuls(); 675 for (auto &MulCand : MulCands) { 676 if (MulCand->Paired) 677 continue; 678 679 Instruction *Mul = cast<Instruction>(MulCand->Root); 680 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); 681 682 if (R.getType() != Mul->getType()) { 683 assert(R.is64Bit() && "expected 64-bit result"); 684 Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul)); 685 Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType())); 686 } 687 688 if (!Acc) { 689 Acc = Mul; 690 continue; 691 } 692 693 // If Acc is the original incoming value to the reduction, it could be a 694 // phi. But the phi will dominate Mul, meaning that Mul will be the 695 // insertion point. 696 Builder.SetInsertPoint(GetInsertPoint(Mul, Acc)); 697 Acc = Builder.CreateAdd(Mul, Acc); 698 } 699 700 if (!Acc) { 701 Acc = R.is64Bit() ? 702 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : 703 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 704 } else if (Acc->getType() != R.getType()) { 705 Builder.SetInsertPoint(R.getRoot()); 706 Acc = Builder.CreateSExt(Acc, R.getType()); 707 } 708 709 // Roughly sort the mul pairs in their program order. 710 llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) { 711 const Instruction *A = PairA.first->Root; 712 const Instruction *B = PairB.first->Root; 713 return A->comesBefore(B); 714 }); 715 716 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 717 for (auto &Pair : R.getMulPairs()) { 718 MulCandidate *LHSMul = Pair.first; 719 MulCandidate *RHSMul = Pair.second; 720 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 721 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 722 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 723 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 724 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 725 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 726 727 Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS); 728 InsertAfter = GetInsertPoint(InsertAfter, Acc); 729 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 730 } 731 R.UpdateRoot(cast<Instruction>(Acc)); 732 } 733 734 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 735 IntegerType *LoadTy) { 736 assert(Loads.size() == 2 && "currently only support widening two loads"); 737 738 LoadInst *Base = Loads[0]; 739 LoadInst *Offset = Loads[1]; 740 741 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 742 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 743 744 assert((BaseSExt && OffsetSExt) 745 && "Loads should have a single, extending, user"); 746 747 std::function<void(Value*, Value*)> MoveBefore = 748 [&](Value *A, Value *B) -> void { 749 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 750 return; 751 752 auto *Source = cast<Instruction>(A); 753 auto *Sink = cast<Instruction>(B); 754 755 if (DT->dominates(Source, Sink) || 756 Source->getParent() != Sink->getParent() || 757 isa<PHINode>(Source) || isa<PHINode>(Sink)) 758 return; 759 760 Source->moveBefore(Sink); 761 for (auto &Op : Source->operands()) 762 MoveBefore(Op, Source); 763 }; 764 765 // Insert the load at the point of the original dominating load. 766 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 767 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 768 ++BasicBlock::iterator(DomLoad)); 769 770 // Bitcast the pointer to a wider type and create the wide load, while making 771 // sure to maintain the original alignment as this prevents ldrd from being 772 // generated when it could be illegal due to memory alignment. 773 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 774 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 775 LoadTy->getPointerTo(AddrSpace)); 776 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign()); 777 778 // Make sure everything is in the correct order in the basic block. 779 MoveBefore(Base->getPointerOperand(), VecPtr); 780 MoveBefore(VecPtr, WideLoad); 781 782 // From the wide load, create two values that equal the original two loads. 783 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 784 // TODO: Support big-endian as well. 785 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 786 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); 787 BaseSExt->replaceAllUsesWith(NewBaseSExt); 788 789 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 790 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 791 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 792 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 793 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); 794 OffsetSExt->replaceAllUsesWith(NewOffsetSExt); 795 796 LLVM_DEBUG(dbgs() << "From Base and Offset:\n" 797 << *Base << "\n" << *Offset << "\n" 798 << "Created Wide Load:\n" 799 << *WideLoad << "\n" 800 << *Bottom << "\n" 801 << *NewBaseSExt << "\n" 802 << *Top << "\n" 803 << *Trunc << "\n" 804 << *NewOffsetSExt << "\n"); 805 WideLoads.emplace(std::make_pair(Base, 806 std::make_unique<WidenedLoad>(Loads, WideLoad))); 807 return WideLoad; 808 } 809 810 Pass *llvm::createARMParallelDSPPass() { 811 return new ARMParallelDSP(); 812 } 813 814 char ARMParallelDSP::ID = 0; 815 816 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 817 "Transform functions to use DSP intrinsics", false, false) 818 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 819 "Transform functions to use DSP intrinsics", false, false) 820