1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/NoFolder.h" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/LoopUtils.h" 28 #include "llvm/Pass.h" 29 #include "llvm/PassRegistry.h" 30 #include "llvm/PassSupport.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "ARM.h" 35 #include "ARMSubtarget.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "arm-parallel-dsp" 41 42 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 43 44 static cl::opt<bool> 45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 46 cl::desc("Disable the ARM Parallel DSP pass")); 47 48 namespace { 49 struct OpChain; 50 struct BinOpChain; 51 struct Reduction; 52 53 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; 54 using ReductionList = SmallVector<Reduction, 8>; 55 using ValueList = SmallVector<Value*, 8>; 56 using MemInstList = SmallVector<LoadInst*, 8>; 57 using PMACPair = std::pair<BinOpChain*,BinOpChain*>; 58 using PMACPairList = SmallVector<PMACPair, 8>; 59 using Instructions = SmallVector<Instruction*,16>; 60 using MemLocList = SmallVector<MemoryLocation, 4>; 61 62 struct OpChain { 63 Instruction *Root; 64 ValueList AllValues; 65 MemInstList VecLd; // List of all load instructions. 66 MemLocList MemLocs; // All memory locations read by this tree. 67 bool ReadOnly = true; 68 69 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } 70 virtual ~OpChain() = default; 71 72 void SetMemoryLocations() { 73 const auto Size = LocationSize::unknown(); 74 for (auto *V : AllValues) { 75 if (auto *I = dyn_cast<Instruction>(V)) { 76 if (I->mayWriteToMemory()) 77 ReadOnly = false; 78 if (auto *Ld = dyn_cast<LoadInst>(V)) 79 MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); 80 } 81 } 82 } 83 84 unsigned size() const { return AllValues.size(); } 85 }; 86 87 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. 88 // 'Reduction' contains the phi-node and accumulator statement from where we 89 // start pattern matching, and 'BinOpChain' the multiplication 90 // instructions that are candidates for parallel execution. 91 struct BinOpChain : public OpChain { 92 ValueList LHS; // List of all (narrow) left hand operands. 93 ValueList RHS; // List of all (narrow) right hand operands. 94 bool Exchange = false; 95 96 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : 97 OpChain(I, lhs), LHS(lhs), RHS(rhs) { 98 for (auto *V : RHS) 99 AllValues.push_back(V); 100 } 101 102 bool AreSymmetrical(BinOpChain *Other); 103 }; 104 105 struct Reduction { 106 PHINode *Phi; // The Phi-node from where we start 107 // pattern matching. 108 Instruction *AccIntAdd; // The accumulating integer add statement, 109 // i.e, the reduction statement. 110 OpChainList MACCandidates; // The MAC candidates associated with 111 // this reduction statement. 112 PMACPairList PMACPairs; 113 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; 114 }; 115 116 class WidenedLoad { 117 LoadInst *NewLd = nullptr; 118 SmallVector<LoadInst*, 4> Loads; 119 120 public: 121 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 122 : NewLd(Wide) { 123 for (auto *I : Lds) 124 Loads.push_back(I); 125 } 126 LoadInst *getLoad() { 127 return NewLd; 128 } 129 }; 130 131 class ARMParallelDSP : public LoopPass { 132 ScalarEvolution *SE; 133 AliasAnalysis *AA; 134 TargetLibraryInfo *TLI; 135 DominatorTree *DT; 136 LoopInfo *LI; 137 Loop *L; 138 const DataLayout *DL; 139 Module *M; 140 std::map<LoadInst*, LoadInst*> LoadPairs; 141 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 142 143 bool RecordSequentialLoads(BasicBlock *BB); 144 bool InsertParallelMACs(Reduction &Reduction); 145 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 146 LoadInst* CreateLoadIns(IRBuilder<NoFolder> &IRB, 147 SmallVectorImpl<LoadInst*> &Loads, 148 IntegerType *LoadTy); 149 void CreateParallelMACPairs(Reduction &R); 150 Instruction *CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0, 151 SmallVectorImpl<LoadInst*> &VecLd1, 152 Instruction *Acc, bool Exchange, 153 Instruction *InsertAfter); 154 155 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 156 /// Dual performs two signed 16x16-bit multiplications. It adds the 157 /// products to a 32-bit accumulate operand. Optionally, the instruction can 158 /// exchange the halfwords of the second operand before performing the 159 /// arithmetic. 160 bool MatchSMLAD(Function &F); 161 162 public: 163 static char ID; 164 165 ARMParallelDSP() : LoopPass(ID) { } 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 LoopPass::getAnalysisUsage(AU); 169 AU.addRequired<AssumptionCacheTracker>(); 170 AU.addRequired<ScalarEvolutionWrapperPass>(); 171 AU.addRequired<AAResultsWrapperPass>(); 172 AU.addRequired<TargetLibraryInfoWrapperPass>(); 173 AU.addRequired<LoopInfoWrapperPass>(); 174 AU.addRequired<DominatorTreeWrapperPass>(); 175 AU.addRequired<TargetPassConfig>(); 176 AU.addPreserved<LoopInfoWrapperPass>(); 177 AU.setPreservesCFG(); 178 } 179 180 bool runOnLoop(Loop *TheLoop, LPPassManager &) override { 181 if (DisableParallelDSP) 182 return false; 183 L = TheLoop; 184 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 185 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 186 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 187 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 188 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 189 auto &TPC = getAnalysis<TargetPassConfig>(); 190 191 BasicBlock *Header = TheLoop->getHeader(); 192 if (!Header) 193 return false; 194 195 // TODO: We assume the loop header and latch to be the same block. 196 // This is not a fundamental restriction, but lifting this would just 197 // require more work to do the transformation and then patch up the CFG. 198 if (Header != TheLoop->getLoopLatch()) { 199 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " 200 "running pass ARMParallelDSP\n"); 201 return false; 202 } 203 204 Function &F = *Header->getParent(); 205 M = F.getParent(); 206 DL = &M->getDataLayout(); 207 208 auto &TM = TPC.getTM<TargetMachine>(); 209 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 210 211 if (!ST->allowsUnalignedMem()) { 212 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 213 "running pass ARMParallelDSP\n"); 214 return false; 215 } 216 217 if (!ST->hasDSP()) { 218 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 219 "ARMParallelDSP\n"); 220 return false; 221 } 222 223 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); 224 225 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 226 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 227 228 if (!RecordSequentialLoads(Header)) { 229 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); 230 return false; 231 } 232 233 bool Changes = MatchSMLAD(F); 234 return Changes; 235 } 236 }; 237 } 238 239 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 240 // instructions, which is set to 16. So here we should collect all i8 and i16 241 // narrow operations. 242 // TODO: we currently only collect i16, and will support i8 later, so that's 243 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 244 template<unsigned MaxBitWidth> 245 static bool IsNarrowSequence(Value *V, ValueList &VL) { 246 ConstantInt *CInt; 247 248 if (match(V, m_ConstantInt(CInt))) { 249 // TODO: if a constant is used, it needs to fit within the bit width. 250 return false; 251 } 252 253 auto *I = dyn_cast<Instruction>(V); 254 if (!I) 255 return false; 256 257 Value *Val, *LHS, *RHS; 258 if (match(V, m_Trunc(m_Value(Val)))) { 259 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) 260 return IsNarrowSequence<MaxBitWidth>(Val, VL); 261 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { 262 // TODO: we need to implement sadd16/sadd8 for this, which enables to 263 // also do the rewrite for smlad8.ll, but it is unsupported for now. 264 return false; 265 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { 266 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 267 return false; 268 269 if (match(Val, m_Load(m_Value()))) { 270 VL.push_back(Val); 271 VL.push_back(I); 272 return true; 273 } 274 } 275 return false; 276 } 277 278 template<typename MemInst> 279 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 280 const DataLayout &DL, ScalarEvolution &SE) { 281 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 282 return true; 283 return false; 284 } 285 286 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 287 MemInstList &VecMem) { 288 if (!Ld0 || !Ld1) 289 return false; 290 291 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 292 return false; 293 294 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 295 dbgs() << "Ld0:"; Ld0->dump(); 296 dbgs() << "Ld1:"; Ld1->dump(); 297 ); 298 299 VecMem.clear(); 300 VecMem.push_back(Ld0); 301 VecMem.push_back(Ld1); 302 return true; 303 } 304 305 /// Iterate through the block and record base, offset pairs of loads as well as 306 /// maximal sequences of sequential loads. 307 bool ARMParallelDSP::RecordSequentialLoads(BasicBlock *BB) { 308 SmallVector<LoadInst*, 8> Loads; 309 for (auto &I : *BB) { 310 auto *Ld = dyn_cast<LoadInst>(&I); 311 if (!Ld || !Ld->isSimple() || 312 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 313 continue; 314 Loads.push_back(Ld); 315 } 316 317 for (auto *Ld0 : Loads) { 318 for (auto *Ld1 : Loads) { 319 if (Ld0 == Ld1) 320 continue; 321 322 if (AreSequentialAccesses<LoadInst>(Ld0, Ld1, *DL, *SE)) { 323 LoadPairs[Ld0] = Ld1; 324 break; 325 } 326 } 327 } 328 329 LLVM_DEBUG(if (!LoadPairs.empty()) { 330 dbgs() << "Consecutive load pairs:\n"; 331 for (auto &MapIt : LoadPairs) { 332 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 333 << *MapIt.second << "\n"); 334 } 335 }); 336 return LoadPairs.size() > 1; 337 } 338 339 void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { 340 OpChainList &Candidates = R.MACCandidates; 341 PMACPairList &PMACPairs = R.PMACPairs; 342 const unsigned Elems = Candidates.size(); 343 344 if (Elems < 2) 345 return; 346 347 auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) { 348 if (!PMul0->AreSymmetrical(PMul1)) 349 return false; 350 351 // The first elements of each vector should be loads with sexts. If we 352 // find that its two pairs of consecutive loads, then these can be 353 // transformed into two wider loads and the users can be replaced with 354 // DSP intrinsics. 355 for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { 356 auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]); 357 auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]); 358 auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]); 359 auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]); 360 361 if (!Ld0 || !Ld1 || !Ld2 || !Ld3) 362 return false; 363 364 LLVM_DEBUG(dbgs() << "Loads:\n" 365 << " - " << *Ld0 << "\n" 366 << " - " << *Ld1 << "\n" 367 << " - " << *Ld2 << "\n" 368 << " - " << *Ld3 << "\n"); 369 370 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 371 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 372 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 373 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 374 return true; 375 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 376 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 377 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 378 PMul1->Exchange = true; 379 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 380 return true; 381 } 382 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 383 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 384 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 385 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 386 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 387 PMul0->Exchange = true; 388 // Only the second operand can be exchanged, so swap the muls. 389 PMACPairs.push_back(std::make_pair(PMul1, PMul0)); 390 return true; 391 } 392 } 393 return false; 394 }; 395 396 SmallPtrSet<const Instruction*, 4> Paired; 397 for (unsigned i = 0; i < Elems; ++i) { 398 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); 399 if (Paired.count(PMul0->Root)) 400 continue; 401 402 for (unsigned j = 0; j < Elems; ++j) { 403 if (i == j) 404 continue; 405 406 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get()); 407 if (Paired.count(PMul1->Root)) 408 continue; 409 410 const Instruction *Mul0 = PMul0->Root; 411 const Instruction *Mul1 = PMul1->Root; 412 if (Mul0 == Mul1) 413 continue; 414 415 assert(PMul0 != PMul1 && "expected different chains"); 416 417 if (CanPair(PMul0, PMul1)) { 418 Paired.insert(Mul0); 419 Paired.insert(Mul1); 420 break; 421 } 422 } 423 } 424 } 425 426 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) { 427 Instruction *Acc = Reduction.Phi; 428 Instruction *InsertAfter = Reduction.AccIntAdd; 429 430 for (auto &Pair : Reduction.PMACPairs) { 431 BinOpChain *PMul0 = Pair.first; 432 BinOpChain *PMul1 = Pair.second; 433 LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; 434 dbgs() << "- "; PMul0->Root->dump(); 435 dbgs() << "- "; PMul1->Root->dump()); 436 437 Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, 438 InsertAfter); 439 InsertAfter = Acc; 440 } 441 442 if (Acc != Reduction.Phi) { 443 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); 444 Reduction.AccIntAdd->replaceAllUsesWith(Acc); 445 return true; 446 } 447 return false; 448 } 449 450 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, 451 ReductionList &Reductions) { 452 RecurrenceDescriptor RecDesc; 453 const bool HasFnNoNaNAttr = 454 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 455 const BasicBlock *Latch = TheLoop->getLoopLatch(); 456 457 // We need a preheader as getIncomingValueForBlock assumes there is one. 458 if (!TheLoop->getLoopPreheader()) { 459 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); 460 return; 461 } 462 463 for (PHINode &Phi : Header->phis()) { 464 const auto *Ty = Phi.getType(); 465 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 466 continue; 467 468 const bool IsReduction = 469 RecurrenceDescriptor::AddReductionVar(&Phi, 470 RecurrenceDescriptor::RK_IntegerAdd, 471 TheLoop, HasFnNoNaNAttr, RecDesc); 472 if (!IsReduction) 473 continue; 474 475 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); 476 if (!Acc) 477 continue; 478 479 Reductions.push_back(Reduction(&Phi, Acc)); 480 } 481 482 LLVM_DEBUG( 483 dbgs() << "\nAccumulating integer additions (reductions) found:\n"; 484 for (auto &R : Reductions) { 485 dbgs() << "- "; R.Phi->dump(); 486 dbgs() << "-> "; R.AccIntAdd->dump(); 487 } 488 ); 489 } 490 491 static void AddMACCandidate(OpChainList &Candidates, 492 Instruction *Mul, 493 Value *MulOp0, Value *MulOp1) { 494 assert(Mul->getOpcode() == Instruction::Mul && 495 "expected mul instruction"); 496 ValueList LHS; 497 ValueList RHS; 498 if (IsNarrowSequence<16>(MulOp0, LHS) && 499 IsNarrowSequence<16>(MulOp1, RHS)) { 500 Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS)); 501 } 502 } 503 504 static void MatchParallelMACSequences(Reduction &R, 505 OpChainList &Candidates) { 506 Instruction *Acc = R.AccIntAdd; 507 LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n"); 508 509 // Returns false to signal the search should be stopped. 510 std::function<bool(Value*)> Match = 511 [&Candidates, &Match](Value *V) -> bool { 512 513 auto *I = dyn_cast<Instruction>(V); 514 if (!I) 515 return false; 516 517 switch (I->getOpcode()) { 518 case Instruction::Add: 519 if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) 520 return true; 521 break; 522 case Instruction::Mul: { 523 Value *MulOp0 = I->getOperand(0); 524 Value *MulOp1 = I->getOperand(1); 525 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) 526 AddMACCandidate(Candidates, I, MulOp0, MulOp1); 527 return false; 528 } 529 case Instruction::SExt: 530 return Match(I->getOperand(0)); 531 } 532 return false; 533 }; 534 535 while (Match (Acc)); 536 LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " 537 << Candidates.size() << " candidates.\n"); 538 } 539 540 // Collects all instructions that are not part of the MAC chains, which is the 541 // set of instructions that can potentially alias with the MAC operands. 542 static void AliasCandidates(BasicBlock *Header, Instructions &Reads, 543 Instructions &Writes) { 544 for (auto &I : *Header) { 545 if (I.mayReadFromMemory()) 546 Reads.push_back(&I); 547 if (I.mayWriteToMemory()) 548 Writes.push_back(&I); 549 } 550 } 551 552 // Check whether statements in the basic block that write to memory alias with 553 // the memory locations accessed by the MAC-chains. 554 // TODO: we need the read statements when we accept more complicated chains. 555 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, 556 Instructions &Writes, OpChainList &MACCandidates) { 557 LLVM_DEBUG(dbgs() << "Alias checks:\n"); 558 for (auto &MAC : MACCandidates) { 559 LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); 560 561 // At the moment, we allow only simple chains that only consist of reads, 562 // accumulate their result with an integer add, and thus that don't write 563 // memory, and simply bail if they do. 564 if (!MAC->ReadOnly) 565 return true; 566 567 // Now for all writes in the basic block, check that they don't alias with 568 // the memory locations accessed by our MAC-chain: 569 for (auto *I : Writes) { 570 LLVM_DEBUG(dbgs() << "- "; I->dump()); 571 assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); 572 for (auto &MemLoc : MAC->MemLocs) { 573 if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), 574 ModRefInfo::ModRef))) { 575 LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); 576 return true; 577 } 578 } 579 } 580 } 581 582 LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); 583 return false; 584 } 585 586 static bool CheckMACMemory(OpChainList &Candidates) { 587 for (auto &C : Candidates) { 588 // A mul has 2 operands, and a narrow op consist of sext and a load; thus 589 // we expect at least 4 items in this operand value list. 590 if (C->size() < 4) { 591 LLVM_DEBUG(dbgs() << "Operand list too short.\n"); 592 return false; 593 } 594 C->SetMemoryLocations(); 595 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; 596 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; 597 598 // Use +=2 to skip over the expected extend instructions. 599 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { 600 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) 601 return false; 602 } 603 } 604 return true; 605 } 606 607 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector 608 // multiplications. 609 // To use SMLAD: 610 // 1) we first need to find integer add reduction PHIs, 611 // 2) then from the PHI, look for this pattern: 612 // 613 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] 614 // ld0 = load i16 615 // sext0 = sext i16 %ld0 to i32 616 // ld1 = load i16 617 // sext1 = sext i16 %ld1 to i32 618 // mul0 = mul %sext0, %sext1 619 // ld2 = load i16 620 // sext2 = sext i16 %ld2 to i32 621 // ld3 = load i16 622 // sext3 = sext i16 %ld3 to i32 623 // mul1 = mul i32 %sext2, %sext3 624 // add0 = add i32 %mul0, %acc0 625 // acc1 = add i32 %add0, %mul1 626 // 627 // Which can be selected to: 628 // 629 // ldr.h r0 630 // ldr.h r1 631 // smlad r2, r0, r1, r2 632 // 633 // If constants are used instead of loads, these will need to be hoisted 634 // out and into a register. 635 // 636 // If loop invariants are used instead of loads, these need to be packed 637 // before the loop begins. 638 // 639 bool ARMParallelDSP::MatchSMLAD(Function &F) { 640 BasicBlock *Header = L->getHeader(); 641 LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; 642 dbgs() << "Header block:\n"; Header->dump(); 643 dbgs() << "Loop info:\n\n"; L->dump()); 644 645 bool Changed = false; 646 ReductionList Reductions; 647 MatchReductions(F, L, Header, Reductions); 648 649 for (auto &R : Reductions) { 650 OpChainList MACCandidates; 651 MatchParallelMACSequences(R, MACCandidates); 652 if (!CheckMACMemory(MACCandidates)) 653 continue; 654 655 R.MACCandidates = std::move(MACCandidates); 656 657 LLVM_DEBUG(dbgs() << "MAC candidates:\n"; 658 for (auto &M : R.MACCandidates) 659 M->Root->dump(); 660 dbgs() << "\n";); 661 } 662 663 // Collect all instructions that may read or write memory. Our alias 664 // analysis checks bail out if any of these instructions aliases with an 665 // instruction from the MAC-chain. 666 Instructions Reads, Writes; 667 AliasCandidates(Header, Reads, Writes); 668 669 for (auto &R : Reductions) { 670 if (AreAliased(AA, Reads, Writes, R.MACCandidates)) 671 return false; 672 CreateParallelMACPairs(R); 673 Changed |= InsertParallelMACs(R); 674 } 675 676 LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); 677 return Changed; 678 } 679 680 LoadInst* ARMParallelDSP::CreateLoadIns(IRBuilder<NoFolder> &IRB, 681 SmallVectorImpl<LoadInst*> &Loads, 682 IntegerType *LoadTy) { 683 assert(Loads.size() == 2 && "currently only support widening two loads"); 684 685 const unsigned AddrSpace = Loads[0]->getPointerAddressSpace(); 686 Value *VecPtr = IRB.CreateBitCast(Loads[0]->getPointerOperand(), 687 LoadTy->getPointerTo(AddrSpace)); 688 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 689 Loads[0]->getAlignment()); 690 // Fix up users, Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 691 Instruction *SExt0 = dyn_cast<SExtInst>(Loads[0]->user_back()); 692 Instruction *SExt1 = dyn_cast<SExtInst>(Loads[1]->user_back()); 693 694 assert((Loads[0]->hasOneUse() && Loads[1]->hasOneUse() && SExt0 && SExt1) && 695 "Loads should have a single, extending, user"); 696 697 std::function<void(Instruction*, Instruction*)> MoveAfter = 698 [&](Instruction* Source, Instruction* Sink) -> void { 699 if (DT->dominates(Source, Sink) || 700 Source->getParent() != Sink->getParent() || 701 isa<PHINode>(Source) || isa<PHINode>(Sink)) 702 return; 703 704 Sink->moveAfter(Source); 705 for (auto &U : Sink->uses()) 706 MoveAfter(Sink, cast<Instruction>(U.getUser())); 707 }; 708 709 // From the wide load, create two values that equal the original two loads. 710 Value *Bottom = IRB.CreateTrunc(WideLoad, Loads[0]->getType()); 711 SExt0->setOperand(0, Bottom); 712 if (auto *I = dyn_cast<Instruction>(Bottom)) { 713 I->moveAfter(WideLoad); 714 MoveAfter(I, SExt0); 715 } 716 717 IntegerType *Ld1Ty = cast<IntegerType>(Loads[1]->getType()); 718 Value *ShiftVal = ConstantInt::get(LoadTy, Ld1Ty->getBitWidth()); 719 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 720 if (auto *I = dyn_cast<Instruction>(Top)) 721 MoveAfter(WideLoad, I); 722 723 Value *Trunc = IRB.CreateTrunc(Top, Ld1Ty); 724 SExt1->setOperand(0, Trunc); 725 if (auto *I = dyn_cast<Instruction>(Trunc)) 726 MoveAfter(I, SExt1); 727 728 WideLoads.emplace(std::make_pair(Loads[0], 729 make_unique<WidenedLoad>(Loads, WideLoad))); 730 return WideLoad; 731 } 732 733 Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0, 734 SmallVectorImpl<LoadInst*> &VecLd1, 735 Instruction *Acc, bool Exchange, 736 Instruction *InsertAfter) { 737 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" 738 << "- " << *VecLd0[0] << "\n" 739 << "- " << *VecLd0[1] << "\n" 740 << "- " << *VecLd1[0] << "\n" 741 << "- " << *VecLd1[1] << "\n" 742 << "- " << *Acc << "\n" 743 << "- Exchange: " << Exchange << "\n"); 744 745 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 746 ++BasicBlock::iterator(InsertAfter)); 747 748 // Replace the reduction chain with an intrinsic call 749 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 750 LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? 751 WideLoads[VecLd0[0]]->getLoad() : CreateLoadIns(Builder, VecLd0, Ty); 752 LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? 753 WideLoads[VecLd1[0]]->getLoad() : CreateLoadIns(Builder, VecLd1, Ty); 754 Value* Args[] = { WideLd0, WideLd1, Acc }; 755 Function *SMLAD = nullptr; 756 if (Exchange) 757 SMLAD = Acc->getType()->isIntegerTy(32) ? 758 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 759 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 760 else 761 SMLAD = Acc->getType()->isIntegerTy(32) ? 762 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 763 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 764 CallInst *Call = Builder.CreateCall(SMLAD, Args); 765 NumSMLAD++; 766 return Call; 767 } 768 769 // Compare the value lists in Other to this chain. 770 bool BinOpChain::AreSymmetrical(BinOpChain *Other) { 771 // Element-by-element comparison of Value lists returning true if they are 772 // instructions with the same opcode or constants with the same value. 773 auto CompareValueList = [](const ValueList &VL0, 774 const ValueList &VL1) { 775 if (VL0.size() != VL1.size()) { 776 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " 777 << VL0.size() << " != " << VL1.size() << "\n"); 778 return false; 779 } 780 781 const unsigned Pairs = VL0.size(); 782 783 for (unsigned i = 0; i < Pairs; ++i) { 784 const Value *V0 = VL0[i]; 785 const Value *V1 = VL1[i]; 786 const auto *Inst0 = dyn_cast<Instruction>(V0); 787 const auto *Inst1 = dyn_cast<Instruction>(V1); 788 789 if (!Inst0 || !Inst1) 790 return false; 791 792 if (Inst0->isSameOperationAs(Inst1)) 793 continue; 794 795 const APInt *C0, *C1; 796 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) 797 return false; 798 } 799 800 return true; 801 }; 802 803 return CompareValueList(LHS, Other->LHS) && 804 CompareValueList(RHS, Other->RHS); 805 } 806 807 Pass *llvm::createARMParallelDSPPass() { 808 return new ARMParallelDSP(); 809 } 810 811 char ARMParallelDSP::ID = 0; 812 813 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 814 "Transform loops to use DSP intrinsics", false, false) 815 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 816 "Transform loops to use DSP intrinsics", false, false) 817