1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/NoFolder.h" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/LoopUtils.h" 28 #include "llvm/Pass.h" 29 #include "llvm/PassRegistry.h" 30 #include "llvm/PassSupport.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "ARM.h" 35 #include "ARMSubtarget.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "arm-parallel-dsp" 41 42 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 43 44 static cl::opt<bool> 45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 46 cl::desc("Disable the ARM Parallel DSP pass")); 47 48 namespace { 49 struct OpChain; 50 struct BinOpChain; 51 struct Reduction; 52 53 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; 54 using ReductionList = SmallVector<Reduction, 8>; 55 using ValueList = SmallVector<Value*, 8>; 56 using MemInstList = SmallVector<Instruction*, 8>; 57 using PMACPair = std::pair<BinOpChain*,BinOpChain*>; 58 using PMACPairList = SmallVector<PMACPair, 8>; 59 using Instructions = SmallVector<Instruction*,16>; 60 using MemLocList = SmallVector<MemoryLocation, 4>; 61 62 struct OpChain { 63 Instruction *Root; 64 ValueList AllValues; 65 MemInstList VecLd; // List of all load instructions. 66 MemLocList MemLocs; // All memory locations read by this tree. 67 bool ReadOnly = true; 68 69 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } 70 virtual ~OpChain() = default; 71 72 void SetMemoryLocations() { 73 const auto Size = LocationSize::unknown(); 74 for (auto *V : AllValues) { 75 if (auto *I = dyn_cast<Instruction>(V)) { 76 if (I->mayWriteToMemory()) 77 ReadOnly = false; 78 if (auto *Ld = dyn_cast<LoadInst>(V)) 79 MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); 80 } 81 } 82 } 83 84 unsigned size() const { return AllValues.size(); } 85 }; 86 87 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. 88 // 'Reduction' contains the phi-node and accumulator statement from where we 89 // start pattern matching, and 'BinOpChain' the multiplication 90 // instructions that are candidates for parallel execution. 91 struct BinOpChain : public OpChain { 92 ValueList LHS; // List of all (narrow) left hand operands. 93 ValueList RHS; // List of all (narrow) right hand operands. 94 bool Exchange = false; 95 96 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : 97 OpChain(I, lhs), LHS(lhs), RHS(rhs) { 98 for (auto *V : RHS) 99 AllValues.push_back(V); 100 } 101 102 bool AreSymmetrical(BinOpChain *Other); 103 }; 104 105 struct Reduction { 106 PHINode *Phi; // The Phi-node from where we start 107 // pattern matching. 108 Instruction *AccIntAdd; // The accumulating integer add statement, 109 // i.e, the reduction statement. 110 OpChainList MACCandidates; // The MAC candidates associated with 111 // this reduction statement. 112 PMACPairList PMACPairs; 113 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; 114 }; 115 116 class ARMParallelDSP : public LoopPass { 117 ScalarEvolution *SE; 118 AliasAnalysis *AA; 119 TargetLibraryInfo *TLI; 120 DominatorTree *DT; 121 LoopInfo *LI; 122 Loop *L; 123 const DataLayout *DL; 124 Module *M; 125 std::map<LoadInst*, LoadInst*> LoadPairs; 126 std::map<LoadInst*, SmallVector<LoadInst*, 4>> SequentialLoads; 127 128 bool RecordSequentialLoads(BasicBlock *Header); 129 bool InsertParallelMACs(Reduction &Reduction); 130 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 131 void CreateParallelMACPairs(Reduction &R); 132 Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, 133 Instruction *Acc, bool Exchange, 134 Instruction *InsertAfter); 135 136 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 137 /// Dual performs two signed 16x16-bit multiplications. It adds the 138 /// products to a 32-bit accumulate operand. Optionally, the instruction can 139 /// exchange the halfwords of the second operand before performing the 140 /// arithmetic. 141 bool MatchSMLAD(Function &F); 142 143 public: 144 static char ID; 145 146 ARMParallelDSP() : LoopPass(ID) { } 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 LoopPass::getAnalysisUsage(AU); 150 AU.addRequired<AssumptionCacheTracker>(); 151 AU.addRequired<ScalarEvolutionWrapperPass>(); 152 AU.addRequired<AAResultsWrapperPass>(); 153 AU.addRequired<TargetLibraryInfoWrapperPass>(); 154 AU.addRequired<LoopInfoWrapperPass>(); 155 AU.addRequired<DominatorTreeWrapperPass>(); 156 AU.addRequired<TargetPassConfig>(); 157 AU.addPreserved<LoopInfoWrapperPass>(); 158 AU.setPreservesCFG(); 159 } 160 161 bool runOnLoop(Loop *TheLoop, LPPassManager &) override { 162 if (DisableParallelDSP) 163 return false; 164 L = TheLoop; 165 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 166 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 167 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 168 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 169 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 170 auto &TPC = getAnalysis<TargetPassConfig>(); 171 172 BasicBlock *Header = TheLoop->getHeader(); 173 if (!Header) 174 return false; 175 176 // TODO: We assume the loop header and latch to be the same block. 177 // This is not a fundamental restriction, but lifting this would just 178 // require more work to do the transformation and then patch up the CFG. 179 if (Header != TheLoop->getLoopLatch()) { 180 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " 181 "running pass ARMParallelDSP\n"); 182 return false; 183 } 184 185 Function &F = *Header->getParent(); 186 M = F.getParent(); 187 DL = &M->getDataLayout(); 188 189 auto &TM = TPC.getTM<TargetMachine>(); 190 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 191 192 if (!ST->allowsUnalignedMem()) { 193 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 194 "running pass ARMParallelDSP\n"); 195 return false; 196 } 197 198 if (!ST->hasDSP()) { 199 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 200 "ARMParallelDSP\n"); 201 return false; 202 } 203 204 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); 205 bool Changes = false; 206 207 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 208 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 209 210 if (!RecordSequentialLoads(Header)) { 211 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n"); 212 return false; 213 } 214 215 Changes = MatchSMLAD(F); 216 return Changes; 217 } 218 }; 219 } 220 221 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 222 // instructions, which is set to 16. So here we should collect all i8 and i16 223 // narrow operations. 224 // TODO: we currently only collect i16, and will support i8 later, so that's 225 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 226 template<unsigned MaxBitWidth> 227 static bool IsNarrowSequence(Value *V, ValueList &VL) { 228 LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump()); 229 ConstantInt *CInt; 230 231 if (match(V, m_ConstantInt(CInt))) { 232 // TODO: if a constant is used, it needs to fit within the bit width. 233 return false; 234 } 235 236 auto *I = dyn_cast<Instruction>(V); 237 if (!I) 238 return false; 239 240 Value *Val, *LHS, *RHS; 241 if (match(V, m_Trunc(m_Value(Val)))) { 242 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) 243 return IsNarrowSequence<MaxBitWidth>(Val, VL); 244 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { 245 // TODO: we need to implement sadd16/sadd8 for this, which enables to 246 // also do the rewrite for smlad8.ll, but it is unsupported for now. 247 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); 248 return false; 249 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { 250 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) { 251 LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " << 252 cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n"); 253 return false; 254 } 255 256 if (match(Val, m_Load(m_Value()))) { 257 LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump()); 258 VL.push_back(Val); 259 VL.push_back(I); 260 return true; 261 } 262 } 263 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); 264 return false; 265 } 266 267 template<typename MemInst> 268 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 269 const DataLayout &DL, ScalarEvolution &SE) { 270 if (!MemOp0->isSimple() || !MemOp1->isSimple()) { 271 LLVM_DEBUG(dbgs() << "No, not touching volatile access\n"); 272 return false; 273 } 274 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) { 275 LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n"); 276 return true; 277 } 278 LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n"); 279 return false; 280 } 281 282 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 283 MemInstList &VecMem) { 284 if (!Ld0 || !Ld1) 285 return false; 286 287 LLVM_DEBUG(dbgs() << "Are consecutive loads:\n"; 288 dbgs() << "Ld0:"; Ld0->dump(); 289 dbgs() << "Ld1:"; Ld1->dump(); 290 ); 291 292 if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) { 293 LLVM_DEBUG(dbgs() << "No, load has more than one use.\n"); 294 return false; 295 } 296 297 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 298 return false; 299 300 VecMem.clear(); 301 VecMem.push_back(Ld0); 302 VecMem.push_back(Ld1); 303 return true; 304 } 305 306 /// Iterate through the block and record base, offset pairs of loads as well as 307 /// maximal sequences of sequential loads. 308 bool ARMParallelDSP::RecordSequentialLoads(BasicBlock *Header) { 309 SmallVector<LoadInst*, 8> Loads; 310 for (auto &I : *Header) { 311 auto *Ld = dyn_cast<LoadInst>(&I); 312 if (!Ld) 313 continue; 314 Loads.push_back(Ld); 315 } 316 317 std::map<LoadInst*, LoadInst*> BaseLoads; 318 319 for (auto *Ld0 : Loads) { 320 for (auto *Ld1 : Loads) { 321 if (Ld0 == Ld1) 322 continue; 323 324 if (AreSequentialAccesses<LoadInst>(Ld0, Ld1, *DL, *SE)) { 325 LoadPairs[Ld0] = Ld1; 326 if (BaseLoads.count(Ld0)) { 327 LoadInst *Base = BaseLoads[Ld0]; 328 BaseLoads[Ld1] = Base; 329 SequentialLoads[Base].push_back(Ld1); 330 } else { 331 BaseLoads[Ld1] = Ld0; 332 SequentialLoads[Ld0].push_back(Ld1); 333 } 334 } 335 } 336 } 337 return LoadPairs.size() > 1; 338 } 339 340 void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) { 341 OpChainList &Candidates = R.MACCandidates; 342 PMACPairList &PMACPairs = R.PMACPairs; 343 const unsigned Elems = Candidates.size(); 344 345 if (Elems < 2) 346 return; 347 348 auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) { 349 if (!PMul0->AreSymmetrical(PMul1)) 350 return false; 351 352 // The first elements of each vector should be loads with sexts. If we 353 // find that its two pairs of consecutive loads, then these can be 354 // transformed into two wider loads and the users can be replaced with 355 // DSP intrinsics. 356 for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) { 357 auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]); 358 auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]); 359 auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]); 360 auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]); 361 362 if (!Ld0 || !Ld1 || !Ld2 || !Ld3) 363 return false; 364 365 LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n" 366 << "\t Ld0: " << *Ld0 << "\n" 367 << "\t Ld1: " << *Ld1 << "\n" 368 << "and operands " << x + 2 << ":\n" 369 << "\t Ld2: " << *Ld2 << "\n" 370 << "\t Ld3: " << *Ld3 << "\n"); 371 372 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 373 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 374 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 375 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 376 return true; 377 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 378 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 379 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 380 PMul1->Exchange = true; 381 PMACPairs.push_back(std::make_pair(PMul0, PMul1)); 382 return true; 383 } 384 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 385 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 386 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 387 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 388 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 389 PMul0->Exchange = true; 390 // Only the second operand can be exchanged, so swap the muls. 391 PMACPairs.push_back(std::make_pair(PMul1, PMul0)); 392 return true; 393 } 394 } 395 return false; 396 }; 397 398 SmallPtrSet<const Instruction*, 4> Paired; 399 for (unsigned i = 0; i < Elems; ++i) { 400 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); 401 if (Paired.count(PMul0->Root)) 402 continue; 403 404 for (unsigned j = 0; j < Elems; ++j) { 405 if (i == j) 406 continue; 407 408 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get()); 409 if (Paired.count(PMul1->Root)) 410 continue; 411 412 const Instruction *Mul0 = PMul0->Root; 413 const Instruction *Mul1 = PMul1->Root; 414 if (Mul0 == Mul1) 415 continue; 416 417 assert(PMul0 != PMul1 && "expected different chains"); 418 419 LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n"; 420 dbgs() << "- "; Mul0->dump(); 421 dbgs() << "- "; Mul1->dump()); 422 423 LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n"); 424 if (CanPair(PMul0, PMul1)) { 425 Paired.insert(Mul0); 426 Paired.insert(Mul1); 427 break; 428 } 429 } 430 } 431 } 432 433 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) { 434 Instruction *Acc = Reduction.Phi; 435 Instruction *InsertAfter = Reduction.AccIntAdd; 436 437 for (auto &Pair : Reduction.PMACPairs) { 438 BinOpChain *PMul0 = Pair.first; 439 BinOpChain *PMul1 = Pair.second; 440 LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; 441 dbgs() << "- "; PMul0->Root->dump(); 442 dbgs() << "- "; PMul1->Root->dump()); 443 444 auto *VecLd0 = cast<LoadInst>(PMul0->VecLd[0]); 445 auto *VecLd1 = cast<LoadInst>(PMul1->VecLd[0]); 446 Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, PMul1->Exchange, InsertAfter); 447 InsertAfter = Acc; 448 } 449 450 if (Acc != Reduction.Phi) { 451 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); 452 Reduction.AccIntAdd->replaceAllUsesWith(Acc); 453 return true; 454 } 455 return false; 456 } 457 458 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, 459 ReductionList &Reductions) { 460 RecurrenceDescriptor RecDesc; 461 const bool HasFnNoNaNAttr = 462 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 463 const BasicBlock *Latch = TheLoop->getLoopLatch(); 464 465 // We need a preheader as getIncomingValueForBlock assumes there is one. 466 if (!TheLoop->getLoopPreheader()) { 467 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); 468 return; 469 } 470 471 for (PHINode &Phi : Header->phis()) { 472 const auto *Ty = Phi.getType(); 473 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 474 continue; 475 476 const bool IsReduction = 477 RecurrenceDescriptor::AddReductionVar(&Phi, 478 RecurrenceDescriptor::RK_IntegerAdd, 479 TheLoop, HasFnNoNaNAttr, RecDesc); 480 if (!IsReduction) 481 continue; 482 483 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); 484 if (!Acc) 485 continue; 486 487 Reductions.push_back(Reduction(&Phi, Acc)); 488 } 489 490 LLVM_DEBUG( 491 dbgs() << "\nAccumulating integer additions (reductions) found:\n"; 492 for (auto &R : Reductions) { 493 dbgs() << "- "; R.Phi->dump(); 494 dbgs() << "-> "; R.AccIntAdd->dump(); 495 } 496 ); 497 } 498 499 static void AddMACCandidate(OpChainList &Candidates, 500 Instruction *Mul, 501 Value *MulOp0, Value *MulOp1) { 502 LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump()); 503 assert(Mul->getOpcode() == Instruction::Mul && 504 "expected mul instruction"); 505 ValueList LHS; 506 ValueList RHS; 507 if (IsNarrowSequence<16>(MulOp0, LHS) && 508 IsNarrowSequence<16>(MulOp1, RHS)) { 509 LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump()); 510 Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS)); 511 } 512 } 513 514 static void MatchParallelMACSequences(Reduction &R, 515 OpChainList &Candidates) { 516 Instruction *Acc = R.AccIntAdd; 517 LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc); 518 519 // Returns false to signal the search should be stopped. 520 std::function<bool(Value*)> Match = 521 [&Candidates, &Match](Value *V) -> bool { 522 523 auto *I = dyn_cast<Instruction>(V); 524 if (!I) 525 return false; 526 527 switch (I->getOpcode()) { 528 case Instruction::Add: 529 if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) 530 return true; 531 break; 532 case Instruction::Mul: { 533 Value *MulOp0 = I->getOperand(0); 534 Value *MulOp1 = I->getOperand(1); 535 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) 536 AddMACCandidate(Candidates, I, MulOp0, MulOp1); 537 return false; 538 } 539 case Instruction::SExt: 540 return Match(I->getOperand(0)); 541 } 542 return false; 543 }; 544 545 while (Match (Acc)); 546 LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " 547 << Candidates.size() << " candidates.\n"); 548 } 549 550 // Collects all instructions that are not part of the MAC chains, which is the 551 // set of instructions that can potentially alias with the MAC operands. 552 static void AliasCandidates(BasicBlock *Header, Instructions &Reads, 553 Instructions &Writes) { 554 for (auto &I : *Header) { 555 if (I.mayReadFromMemory()) 556 Reads.push_back(&I); 557 if (I.mayWriteToMemory()) 558 Writes.push_back(&I); 559 } 560 } 561 562 // Check whether statements in the basic block that write to memory alias with 563 // the memory locations accessed by the MAC-chains. 564 // TODO: we need the read statements when we accept more complicated chains. 565 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, 566 Instructions &Writes, OpChainList &MACCandidates) { 567 LLVM_DEBUG(dbgs() << "Alias checks:\n"); 568 for (auto &MAC : MACCandidates) { 569 LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); 570 571 // At the moment, we allow only simple chains that only consist of reads, 572 // accumulate their result with an integer add, and thus that don't write 573 // memory, and simply bail if they do. 574 if (!MAC->ReadOnly) 575 return true; 576 577 // Now for all writes in the basic block, check that they don't alias with 578 // the memory locations accessed by our MAC-chain: 579 for (auto *I : Writes) { 580 LLVM_DEBUG(dbgs() << "- "; I->dump()); 581 assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); 582 for (auto &MemLoc : MAC->MemLocs) { 583 if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), 584 ModRefInfo::ModRef))) { 585 LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); 586 return true; 587 } 588 } 589 } 590 } 591 592 LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); 593 return false; 594 } 595 596 static bool CheckMACMemory(OpChainList &Candidates) { 597 for (auto &C : Candidates) { 598 // A mul has 2 operands, and a narrow op consist of sext and a load; thus 599 // we expect at least 4 items in this operand value list. 600 if (C->size() < 4) { 601 LLVM_DEBUG(dbgs() << "Operand list too short.\n"); 602 return false; 603 } 604 C->SetMemoryLocations(); 605 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; 606 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; 607 608 // Use +=2 to skip over the expected extend instructions. 609 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { 610 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) 611 return false; 612 } 613 } 614 return true; 615 } 616 617 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector 618 // multiplications. 619 // To use SMLAD: 620 // 1) we first need to find integer add reduction PHIs, 621 // 2) then from the PHI, look for this pattern: 622 // 623 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] 624 // ld0 = load i16 625 // sext0 = sext i16 %ld0 to i32 626 // ld1 = load i16 627 // sext1 = sext i16 %ld1 to i32 628 // mul0 = mul %sext0, %sext1 629 // ld2 = load i16 630 // sext2 = sext i16 %ld2 to i32 631 // ld3 = load i16 632 // sext3 = sext i16 %ld3 to i32 633 // mul1 = mul i32 %sext2, %sext3 634 // add0 = add i32 %mul0, %acc0 635 // acc1 = add i32 %add0, %mul1 636 // 637 // Which can be selected to: 638 // 639 // ldr.h r0 640 // ldr.h r1 641 // smlad r2, r0, r1, r2 642 // 643 // If constants are used instead of loads, these will need to be hoisted 644 // out and into a register. 645 // 646 // If loop invariants are used instead of loads, these need to be packed 647 // before the loop begins. 648 // 649 bool ARMParallelDSP::MatchSMLAD(Function &F) { 650 BasicBlock *Header = L->getHeader(); 651 LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; 652 dbgs() << "Header block:\n"; Header->dump(); 653 dbgs() << "Loop info:\n\n"; L->dump()); 654 655 bool Changed = false; 656 ReductionList Reductions; 657 MatchReductions(F, L, Header, Reductions); 658 659 for (auto &R : Reductions) { 660 OpChainList MACCandidates; 661 MatchParallelMACSequences(R, MACCandidates); 662 if (!CheckMACMemory(MACCandidates)) 663 continue; 664 665 R.MACCandidates = std::move(MACCandidates); 666 667 LLVM_DEBUG(dbgs() << "MAC candidates:\n"; 668 for (auto &M : R.MACCandidates) 669 M->Root->dump(); 670 dbgs() << "\n";); 671 } 672 673 // Collect all instructions that may read or write memory. Our alias 674 // analysis checks bail out if any of these instructions aliases with an 675 // instruction from the MAC-chain. 676 Instructions Reads, Writes; 677 AliasCandidates(Header, Reads, Writes); 678 679 for (auto &R : Reductions) { 680 if (AreAliased(AA, Reads, Writes, R.MACCandidates)) 681 return false; 682 CreateParallelMACPairs(R); 683 Changed |= InsertParallelMACs(R); 684 } 685 686 LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); 687 return Changed; 688 } 689 690 static LoadInst *CreateLoadIns(IRBuilder<NoFolder> &IRB, LoadInst &BaseLoad, 691 Type *LoadTy) { 692 const unsigned AddrSpace = BaseLoad.getPointerAddressSpace(); 693 694 Value *VecPtr = IRB.CreateBitCast(BaseLoad.getPointerOperand(), 695 LoadTy->getPointerTo(AddrSpace)); 696 return IRB.CreateAlignedLoad(LoadTy, VecPtr, BaseLoad.getAlignment()); 697 } 698 699 Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, 700 Instruction *Acc, bool Exchange, 701 Instruction *InsertAfter) { 702 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" 703 << "- " << *VecLd0 << "\n" 704 << "- " << *VecLd1 << "\n" 705 << "- " << *Acc << "\n" 706 << "Exchange: " << Exchange << "\n"); 707 708 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 709 ++BasicBlock::iterator(InsertAfter)); 710 711 // Replace the reduction chain with an intrinsic call 712 Type *Ty = IntegerType::get(M->getContext(), 32); 713 LoadInst *NewLd0 = CreateLoadIns(Builder, VecLd0[0], Ty); 714 LoadInst *NewLd1 = CreateLoadIns(Builder, VecLd1[0], Ty); 715 Value* Args[] = { NewLd0, NewLd1, Acc }; 716 Function *SMLAD = nullptr; 717 if (Exchange) 718 SMLAD = Acc->getType()->isIntegerTy(32) ? 719 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 720 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 721 else 722 SMLAD = Acc->getType()->isIntegerTy(32) ? 723 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 724 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 725 CallInst *Call = Builder.CreateCall(SMLAD, Args); 726 NumSMLAD++; 727 return Call; 728 } 729 730 // Compare the value lists in Other to this chain. 731 bool BinOpChain::AreSymmetrical(BinOpChain *Other) { 732 // Element-by-element comparison of Value lists returning true if they are 733 // instructions with the same opcode or constants with the same value. 734 auto CompareValueList = [](const ValueList &VL0, 735 const ValueList &VL1) { 736 if (VL0.size() != VL1.size()) { 737 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " 738 << VL0.size() << " != " << VL1.size() << "\n"); 739 return false; 740 } 741 742 const unsigned Pairs = VL0.size(); 743 LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n"); 744 745 for (unsigned i = 0; i < Pairs; ++i) { 746 const Value *V0 = VL0[i]; 747 const Value *V1 = VL1[i]; 748 const auto *Inst0 = dyn_cast<Instruction>(V0); 749 const auto *Inst1 = dyn_cast<Instruction>(V1); 750 751 LLVM_DEBUG(dbgs() << "Pair " << i << ":\n"; 752 dbgs() << "mul1: "; V0->dump(); 753 dbgs() << "mul2: "; V1->dump()); 754 755 if (!Inst0 || !Inst1) 756 return false; 757 758 if (Inst0->isSameOperationAs(Inst1)) { 759 LLVM_DEBUG(dbgs() << "OK: same operation found!\n"); 760 continue; 761 } 762 763 const APInt *C0, *C1; 764 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) 765 return false; 766 } 767 768 LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n"); 769 return true; 770 }; 771 772 return CompareValueList(LHS, Other->LHS) && 773 CompareValueList(RHS, Other->RHS); 774 } 775 776 Pass *llvm::createARMParallelDSPPass() { 777 return new ARMParallelDSP(); 778 } 779 780 char ARMParallelDSP::ID = 0; 781 782 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 783 "Transform loops to use DSP intrinsics", false, false) 784 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 785 "Transform loops to use DSP intrinsics", false, false) 786