1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/NoFolder.h" 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 #include "llvm/Pass.h" 26 #include "llvm/PassRegistry.h" 27 #include "llvm/PassSupport.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "ARM.h" 32 #include "ARMSubtarget.h" 33 34 using namespace llvm; 35 using namespace PatternMatch; 36 37 #define DEBUG_TYPE "arm-parallel-dsp" 38 39 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 40 41 static cl::opt<bool> 42 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 43 cl::desc("Disable the ARM Parallel DSP pass")); 44 45 namespace { 46 struct OpChain; 47 struct MulCandidate; 48 class Reduction; 49 50 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 51 using ReductionList = SmallVector<Reduction, 8>; 52 using ValueList = SmallVector<Value*, 8>; 53 using MemInstList = SmallVector<LoadInst*, 8>; 54 using PMACPair = std::pair<MulCandidate*,MulCandidate*>; 55 using PMACPairList = SmallVector<PMACPair, 8>; 56 57 // 'MulCandidate' holds the multiplication instructions that are candidates 58 // for parallel execution. 59 struct MulCandidate { 60 Instruction *Root; 61 MemInstList VecLd; // Container for loads to widen. 62 Value* LHS; 63 Value* RHS; 64 bool Exchange = false; 65 bool ReadOnly = true; 66 67 MulCandidate(Instruction *I, ValueList &lhs, ValueList &rhs) : 68 Root(I), LHS(lhs.front()), RHS(rhs.front()) { } 69 70 bool HasTwoLoadInputs() const { 71 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 72 } 73 }; 74 75 /// Represent a sequence of multiply-accumulate operations with the aim to 76 /// perform the multiplications in parallel. 77 class Reduction { 78 Instruction *Root = nullptr; 79 Value *Acc = nullptr; 80 MulCandList Muls; 81 PMACPairList MulPairs; 82 SmallPtrSet<Instruction*, 4> Adds; 83 84 public: 85 Reduction() = delete; 86 87 Reduction (Instruction *Add) : Root(Add) { } 88 89 /// Record an Add instruction that is a part of the this reduction. 90 void InsertAdd(Instruction *I) { Adds.insert(I); } 91 92 /// Record a MulCandidate, rooted at a Mul instruction, that is a part of 93 /// this reduction. 94 void InsertMul(Instruction *I, ValueList &LHS, ValueList &RHS) { 95 Muls.push_back(make_unique<MulCandidate>(I, LHS, RHS)); 96 } 97 98 /// Add the incoming accumulator value, returns true if a value had not 99 /// already been added. Returning false signals to the user that this 100 /// reduction already has a value to initialise the accumulator. 101 bool InsertAcc(Value *V) { 102 if (Acc) 103 return false; 104 Acc = V; 105 return true; 106 } 107 108 /// Set two MulCandidates, rooted at muls, that can be executed as a single 109 /// parallel operation. 110 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1) { 111 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 112 } 113 114 /// Return true if enough mul operations are found that can be executed in 115 /// parallel. 116 bool CreateParallelPairs(); 117 118 /// Return the add instruction which is the root of the reduction. 119 Instruction *getRoot() { return Root; } 120 121 /// Return the incoming value to be accumulated. This maybe null. 122 Value *getAccumulator() { return Acc; } 123 124 /// Return the set of adds that comprise the reduction. 125 SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; } 126 127 /// Return the MulCandidate, rooted at mul instruction, that comprise the 128 /// the reduction. 129 MulCandList &getMuls() { return Muls; } 130 131 /// Return the MulCandidate, rooted at mul instructions, that have been 132 /// paired for parallel execution. 133 PMACPairList &getMulPairs() { return MulPairs; } 134 135 /// To finalise, replace the uses of the root with the intrinsic call. 136 void UpdateRoot(Instruction *SMLAD) { 137 Root->replaceAllUsesWith(SMLAD); 138 } 139 }; 140 141 class WidenedLoad { 142 LoadInst *NewLd = nullptr; 143 SmallVector<LoadInst*, 4> Loads; 144 145 public: 146 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 147 : NewLd(Wide) { 148 for (auto *I : Lds) 149 Loads.push_back(I); 150 } 151 LoadInst *getLoad() { 152 return NewLd; 153 } 154 }; 155 156 class ARMParallelDSP : public FunctionPass { 157 ScalarEvolution *SE; 158 AliasAnalysis *AA; 159 TargetLibraryInfo *TLI; 160 DominatorTree *DT; 161 const DataLayout *DL; 162 Module *M; 163 std::map<LoadInst*, LoadInst*> LoadPairs; 164 SmallPtrSet<LoadInst*, 4> OffsetLoads; 165 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 166 167 template<unsigned> 168 bool IsNarrowSequence(Value *V, ValueList &VL); 169 170 bool RecordMemoryOps(BasicBlock *BB); 171 void InsertParallelMACs(Reduction &Reduction); 172 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 173 LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, 174 IntegerType *LoadTy); 175 bool CreateParallelPairs(Reduction &R); 176 177 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 178 /// Dual performs two signed 16x16-bit multiplications. It adds the 179 /// products to a 32-bit accumulate operand. Optionally, the instruction can 180 /// exchange the halfwords of the second operand before performing the 181 /// arithmetic. 182 bool MatchSMLAD(Function &F); 183 184 public: 185 static char ID; 186 187 ARMParallelDSP() : FunctionPass(ID) { } 188 189 void getAnalysisUsage(AnalysisUsage &AU) const override { 190 FunctionPass::getAnalysisUsage(AU); 191 AU.addRequired<AssumptionCacheTracker>(); 192 AU.addRequired<ScalarEvolutionWrapperPass>(); 193 AU.addRequired<AAResultsWrapperPass>(); 194 AU.addRequired<TargetLibraryInfoWrapperPass>(); 195 AU.addRequired<DominatorTreeWrapperPass>(); 196 AU.addRequired<TargetPassConfig>(); 197 AU.addPreserved<ScalarEvolutionWrapperPass>(); 198 AU.addPreserved<GlobalsAAWrapperPass>(); 199 AU.setPreservesCFG(); 200 } 201 202 bool runOnFunction(Function &F) override { 203 if (DisableParallelDSP) 204 return false; 205 if (skipFunction(F)) 206 return false; 207 208 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 209 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 210 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 211 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 212 auto &TPC = getAnalysis<TargetPassConfig>(); 213 214 M = F.getParent(); 215 DL = &M->getDataLayout(); 216 217 auto &TM = TPC.getTM<TargetMachine>(); 218 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 219 220 if (!ST->allowsUnalignedMem()) { 221 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 222 "running pass ARMParallelDSP\n"); 223 return false; 224 } 225 226 if (!ST->hasDSP()) { 227 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 228 "ARMParallelDSP\n"); 229 return false; 230 } 231 232 if (!ST->isLittle()) { 233 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 234 << "ARMParallelDSP\n"); 235 return false; 236 } 237 238 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 239 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 240 241 bool Changes = MatchSMLAD(F); 242 return Changes; 243 } 244 }; 245 } 246 247 template<typename MemInst> 248 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 249 const DataLayout &DL, ScalarEvolution &SE) { 250 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 251 return true; 252 return false; 253 } 254 255 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 256 MemInstList &VecMem) { 257 if (!Ld0 || !Ld1) 258 return false; 259 260 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 261 return false; 262 263 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 264 dbgs() << "Ld0:"; Ld0->dump(); 265 dbgs() << "Ld1:"; Ld1->dump(); 266 ); 267 268 VecMem.clear(); 269 VecMem.push_back(Ld0); 270 VecMem.push_back(Ld1); 271 return true; 272 } 273 274 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 275 // instructions, which is set to 16. So here we should collect all i8 and i16 276 // narrow operations. 277 // TODO: we currently only collect i16, and will support i8 later, so that's 278 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 279 template<unsigned MaxBitWidth> 280 bool ARMParallelDSP::IsNarrowSequence(Value *V, ValueList &VL) { 281 if (auto *SExt = dyn_cast<SExtInst>(V)) { 282 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 283 return false; 284 285 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 286 // Check that these load could be paired. 287 if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld)) 288 return false; 289 290 VL.push_back(Ld); 291 VL.push_back(SExt); 292 return true; 293 } 294 } 295 return false; 296 } 297 298 /// Iterate through the block and record base, offset pairs of loads which can 299 /// be widened into a single load. 300 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 301 SmallVector<LoadInst*, 8> Loads; 302 SmallVector<Instruction*, 8> Writes; 303 LoadPairs.clear(); 304 WideLoads.clear(); 305 306 // Collect loads and instruction that may write to memory. For now we only 307 // record loads which are simple, sign-extended and have a single user. 308 // TODO: Allow zero-extended loads. 309 for (auto &I : *BB) { 310 if (I.mayWriteToMemory()) 311 Writes.push_back(&I); 312 auto *Ld = dyn_cast<LoadInst>(&I); 313 if (!Ld || !Ld->isSimple() || 314 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 315 continue; 316 Loads.push_back(Ld); 317 } 318 319 using InstSet = std::set<Instruction*>; 320 using DepMap = std::map<Instruction*, InstSet>; 321 DepMap RAWDeps; 322 323 // Record any writes that may alias a load. 324 const auto Size = LocationSize::unknown(); 325 for (auto Read : Loads) { 326 for (auto Write : Writes) { 327 MemoryLocation ReadLoc = 328 MemoryLocation(Read->getPointerOperand(), Size); 329 330 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 331 ModRefInfo::ModRef))) 332 continue; 333 if (DT->dominates(Write, Read)) 334 RAWDeps[Read].insert(Write); 335 } 336 } 337 338 // Check whether there's not a write between the two loads which would 339 // prevent them from being safely merged. 340 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 341 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; 342 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; 343 344 if (RAWDeps.count(Dominated)) { 345 InstSet &WritesBefore = RAWDeps[Dominated]; 346 347 for (auto Before : WritesBefore) { 348 349 // We can't move the second load backward, past a write, to merge 350 // with the first load. 351 if (DT->dominates(Dominator, Before)) 352 return false; 353 } 354 } 355 return true; 356 }; 357 358 // Record base, offset load pairs. 359 for (auto *Base : Loads) { 360 for (auto *Offset : Loads) { 361 if (Base == Offset) 362 continue; 363 364 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 365 SafeToPair(Base, Offset)) { 366 LoadPairs[Base] = Offset; 367 OffsetLoads.insert(Offset); 368 break; 369 } 370 } 371 } 372 373 LLVM_DEBUG(if (!LoadPairs.empty()) { 374 dbgs() << "Consecutive load pairs:\n"; 375 for (auto &MapIt : LoadPairs) { 376 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 377 << *MapIt.second << "\n"); 378 } 379 }); 380 return LoadPairs.size() > 1; 381 } 382 383 // The pass needs to identify integer add/sub reductions of 16-bit vector 384 // multiplications. 385 // To use SMLAD: 386 // 1) we first need to find integer add then look for this pattern: 387 // 388 // acc0 = ... 389 // ld0 = load i16 390 // sext0 = sext i16 %ld0 to i32 391 // ld1 = load i16 392 // sext1 = sext i16 %ld1 to i32 393 // mul0 = mul %sext0, %sext1 394 // ld2 = load i16 395 // sext2 = sext i16 %ld2 to i32 396 // ld3 = load i16 397 // sext3 = sext i16 %ld3 to i32 398 // mul1 = mul i32 %sext2, %sext3 399 // add0 = add i32 %mul0, %acc0 400 // acc1 = add i32 %add0, %mul1 401 // 402 // Which can be selected to: 403 // 404 // ldr r0 405 // ldr r1 406 // smlad r2, r0, r1, r2 407 // 408 // If constants are used instead of loads, these will need to be hoisted 409 // out and into a register. 410 // 411 // If loop invariants are used instead of loads, these need to be packed 412 // before the loop begins. 413 // 414 bool ARMParallelDSP::MatchSMLAD(Function &F) { 415 // Search recursively back through the operands to find a tree of values that 416 // form a multiply-accumulate chain. The search records the Add and Mul 417 // instructions that form the reduction and allows us to find a single value 418 // to be used as the initial input to the accumlator. 419 std::function<bool(Value*, BasicBlock*, Reduction&)> Search = [&] 420 (Value *V, BasicBlock *BB, Reduction &R) -> bool { 421 422 // If we find a non-instruction, try to use it as the initial accumulator 423 // value. This may have already been found during the search in which case 424 // this function will return false, signaling a search fail. 425 auto *I = dyn_cast<Instruction>(V); 426 if (!I) 427 return R.InsertAcc(V); 428 429 if (I->getParent() != BB) 430 return false; 431 432 switch (I->getOpcode()) { 433 default: 434 break; 435 case Instruction::PHI: 436 // Could be the accumulator value. 437 return R.InsertAcc(V); 438 case Instruction::Add: { 439 // Adds should be adding together two muls, or another add and a mul to 440 // be within the mac chain. One of the operands may also be the 441 // accumulator value at which point we should stop searching. 442 bool ValidLHS = Search(I->getOperand(0), BB, R); 443 bool ValidRHS = Search(I->getOperand(1), BB, R); 444 if (!ValidLHS && !ValidLHS) 445 return false; 446 else if (ValidLHS && ValidRHS) { 447 R.InsertAdd(I); 448 return true; 449 } else { 450 R.InsertAdd(I); 451 return R.InsertAcc(I); 452 } 453 } 454 case Instruction::Mul: { 455 Value *MulOp0 = I->getOperand(0); 456 Value *MulOp1 = I->getOperand(1); 457 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) { 458 ValueList LHS; 459 ValueList RHS; 460 if (IsNarrowSequence<16>(MulOp0, LHS) && 461 IsNarrowSequence<16>(MulOp1, RHS)) { 462 R.InsertMul(I, LHS, RHS); 463 return true; 464 } 465 } 466 return false; 467 } 468 case Instruction::SExt: 469 return Search(I->getOperand(0), BB, R); 470 } 471 return false; 472 }; 473 474 bool Changed = false; 475 476 for (auto &BB : F) { 477 SmallPtrSet<Instruction*, 4> AllAdds; 478 if (!RecordMemoryOps(&BB)) 479 continue; 480 481 for (Instruction &I : reverse(BB)) { 482 if (I.getOpcode() != Instruction::Add) 483 continue; 484 485 if (AllAdds.count(&I)) 486 continue; 487 488 const auto *Ty = I.getType(); 489 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 490 continue; 491 492 Reduction R(&I); 493 if (!Search(&I, &BB, R)) 494 continue; 495 496 if (!CreateParallelPairs(R)) 497 continue; 498 499 InsertParallelMACs(R); 500 Changed = true; 501 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 502 } 503 } 504 505 return Changed; 506 } 507 508 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 509 510 // Not enough mul operations to make a pair. 511 if (R.getMuls().size() < 2) 512 return false; 513 514 // Check that the muls operate directly upon sign extended loads. 515 for (auto &MulCand : R.getMuls()) { 516 if (!MulCand->HasTwoLoadInputs()) 517 return false; 518 } 519 520 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 521 // The first elements of each vector should be loads with sexts. If we 522 // find that its two pairs of consecutive loads, then these can be 523 // transformed into two wider loads and the users can be replaced with 524 // DSP intrinsics. 525 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 526 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 527 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 528 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 529 530 LLVM_DEBUG(dbgs() << "Loads:\n" 531 << " - " << *Ld0 << "\n" 532 << " - " << *Ld1 << "\n" 533 << " - " << *Ld2 << "\n" 534 << " - " << *Ld3 << "\n"); 535 536 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 537 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 538 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 539 R.AddMulPair(PMul0, PMul1); 540 return true; 541 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 542 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 543 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 544 PMul1->Exchange = true; 545 R.AddMulPair(PMul0, PMul1); 546 return true; 547 } 548 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 549 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 550 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 551 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 552 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 553 PMul0->Exchange = true; 554 // Only the second operand can be exchanged, so swap the muls. 555 R.AddMulPair(PMul1, PMul0); 556 return true; 557 } 558 return false; 559 }; 560 561 MulCandList &Muls = R.getMuls(); 562 const unsigned Elems = Muls.size(); 563 SmallPtrSet<const Instruction*, 4> Paired; 564 for (unsigned i = 0; i < Elems; ++i) { 565 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 566 if (Paired.count(PMul0->Root)) 567 continue; 568 569 for (unsigned j = 0; j < Elems; ++j) { 570 if (i == j) 571 continue; 572 573 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 574 if (Paired.count(PMul1->Root)) 575 continue; 576 577 const Instruction *Mul0 = PMul0->Root; 578 const Instruction *Mul1 = PMul1->Root; 579 if (Mul0 == Mul1) 580 continue; 581 582 assert(PMul0 != PMul1 && "expected different chains"); 583 584 if (CanPair(R, PMul0, PMul1)) { 585 Paired.insert(Mul0); 586 Paired.insert(Mul1); 587 break; 588 } 589 } 590 } 591 return !R.getMulPairs().empty(); 592 } 593 594 595 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 596 597 auto CreateSMLADCall = [&](SmallVectorImpl<LoadInst*> &VecLd0, 598 SmallVectorImpl<LoadInst*> &VecLd1, 599 Value *Acc, bool Exchange, 600 Instruction *InsertAfter) { 601 // Replace the reduction chain with an intrinsic call 602 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 603 LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ? 604 WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty); 605 LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ? 606 WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty); 607 608 Value* Args[] = { WideLd0, WideLd1, Acc }; 609 Function *SMLAD = nullptr; 610 if (Exchange) 611 SMLAD = Acc->getType()->isIntegerTy(32) ? 612 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 613 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 614 else 615 SMLAD = Acc->getType()->isIntegerTy(32) ? 616 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 617 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 618 619 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 620 ++BasicBlock::iterator(InsertAfter)); 621 Instruction *Call = Builder.CreateCall(SMLAD, Args); 622 NumSMLAD++; 623 return Call; 624 }; 625 626 Instruction *InsertAfter = R.getRoot(); 627 Value *Acc = R.getAccumulator(); 628 if (!Acc) 629 Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 630 631 LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n" 632 << "Acc: " << *Acc << "\n"); 633 for (auto &Pair : R.getMulPairs()) { 634 MulCandidate *PMul0 = Pair.first; 635 MulCandidate *PMul1 = Pair.second; 636 LLVM_DEBUG(dbgs() << "Muls:\n" 637 << "- " << *PMul0->Root << "\n" 638 << "- " << *PMul1->Root << "\n"); 639 640 Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange, 641 InsertAfter); 642 InsertAfter = cast<Instruction>(Acc); 643 } 644 R.UpdateRoot(cast<Instruction>(Acc)); 645 } 646 647 LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads, 648 IntegerType *LoadTy) { 649 assert(Loads.size() == 2 && "currently only support widening two loads"); 650 651 LoadInst *Base = Loads[0]; 652 LoadInst *Offset = Loads[1]; 653 654 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 655 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 656 657 assert((BaseSExt && OffsetSExt) 658 && "Loads should have a single, extending, user"); 659 660 std::function<void(Value*, Value*)> MoveBefore = 661 [&](Value *A, Value *B) -> void { 662 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 663 return; 664 665 auto *Source = cast<Instruction>(A); 666 auto *Sink = cast<Instruction>(B); 667 668 if (DT->dominates(Source, Sink) || 669 Source->getParent() != Sink->getParent() || 670 isa<PHINode>(Source) || isa<PHINode>(Sink)) 671 return; 672 673 Source->moveBefore(Sink); 674 for (auto &Op : Source->operands()) 675 MoveBefore(Op, Source); 676 }; 677 678 // Insert the load at the point of the original dominating load. 679 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 680 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 681 ++BasicBlock::iterator(DomLoad)); 682 683 // Bitcast the pointer to a wider type and create the wide load, while making 684 // sure to maintain the original alignment as this prevents ldrd from being 685 // generated when it could be illegal due to memory alignment. 686 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 687 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 688 LoadTy->getPointerTo(AddrSpace)); 689 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 690 Base->getAlignment()); 691 692 // Make sure everything is in the correct order in the basic block. 693 MoveBefore(Base->getPointerOperand(), VecPtr); 694 MoveBefore(VecPtr, WideLoad); 695 696 // From the wide load, create two values that equal the original two loads. 697 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 698 // TODO: Support big-endian as well. 699 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 700 BaseSExt->setOperand(0, Bottom); 701 702 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 703 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 704 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 705 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 706 OffsetSExt->setOperand(0, Trunc); 707 708 WideLoads.emplace(std::make_pair(Base, 709 make_unique<WidenedLoad>(Loads, WideLoad))); 710 return WideLoad; 711 } 712 713 Pass *llvm::createARMParallelDSPPass() { 714 return new ARMParallelDSP(); 715 } 716 717 char ARMParallelDSP::ID = 0; 718 719 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 720 "Transform functions to use DSP intrinsics", false, false) 721 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 722 "Transform functions to use DSP intrinsics", false, false) 723