1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "ARM.h" 18 #include "ARMSubtarget.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/LoopAccessAnalysis.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicsARM.h" 29 #include "llvm/IR/NoFolder.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Pass.h" 32 #include "llvm/PassRegistry.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "arm-parallel-dsp" 41 42 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 43 44 static cl::opt<bool> 45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 46 cl::desc("Disable the ARM Parallel DSP pass")); 47 48 static cl::opt<unsigned> 49 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), 50 cl::desc("Limit the number of loads analysed")); 51 52 namespace { 53 struct MulCandidate; 54 class Reduction; 55 56 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 57 using MemInstList = SmallVectorImpl<LoadInst*>; 58 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 59 60 // 'MulCandidate' holds the multiplication instructions that are candidates 61 // for parallel execution. 62 struct MulCandidate { 63 Instruction *Root; 64 Value* LHS; 65 Value* RHS; 66 bool Exchange = false; 67 bool ReadOnly = true; 68 bool Paired = false; 69 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 70 71 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 72 Root(I), LHS(lhs), RHS(rhs) { } 73 74 bool HasTwoLoadInputs() const { 75 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 76 } 77 78 LoadInst *getBaseLoad() const { 79 return VecLd.front(); 80 } 81 }; 82 83 /// Represent a sequence of multiply-accumulate operations with the aim to 84 /// perform the multiplications in parallel. 85 class Reduction { 86 Instruction *Root = nullptr; 87 Value *Acc = nullptr; 88 MulCandList Muls; 89 MulPairList MulPairs; 90 SetVector<Instruction*> Adds; 91 92 public: 93 Reduction() = delete; 94 95 Reduction (Instruction *Add) : Root(Add) { } 96 97 /// Record an Add instruction that is a part of the this reduction. 98 void InsertAdd(Instruction *I) { Adds.insert(I); } 99 100 /// Create MulCandidates, each rooted at a Mul instruction, that is a part 101 /// of this reduction. 102 void InsertMuls() { 103 auto GetMulOperand = [](Value *V) -> Instruction* { 104 if (auto *SExt = dyn_cast<SExtInst>(V)) { 105 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) 106 if (I->getOpcode() == Instruction::Mul) 107 return I; 108 } else if (auto *I = dyn_cast<Instruction>(V)) { 109 if (I->getOpcode() == Instruction::Mul) 110 return I; 111 } 112 return nullptr; 113 }; 114 115 auto InsertMul = [this](Instruction *I) { 116 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); 117 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); 118 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 119 }; 120 121 for (auto *Add : Adds) { 122 if (Add == Acc) 123 continue; 124 if (auto *Mul = GetMulOperand(Add->getOperand(0))) 125 InsertMul(Mul); 126 if (auto *Mul = GetMulOperand(Add->getOperand(1))) 127 InsertMul(Mul); 128 } 129 } 130 131 /// Add the incoming accumulator value, returns true if a value had not 132 /// already been added. Returning false signals to the user that this 133 /// reduction already has a value to initialise the accumulator. 134 bool InsertAcc(Value *V) { 135 if (Acc) 136 return false; 137 Acc = V; 138 return true; 139 } 140 141 /// Set two MulCandidates, rooted at muls, that can be executed as a single 142 /// parallel operation. 143 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, 144 bool Exchange = false) { 145 LLVM_DEBUG(dbgs() << "Pairing:\n" 146 << *Mul0->Root << "\n" 147 << *Mul1->Root << "\n"); 148 Mul0->Paired = true; 149 Mul1->Paired = true; 150 if (Exchange) 151 Mul1->Exchange = true; 152 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 153 } 154 155 /// Return true if enough mul operations are found that can be executed in 156 /// parallel. 157 bool CreateParallelPairs(); 158 159 /// Return the add instruction which is the root of the reduction. 160 Instruction *getRoot() { return Root; } 161 162 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 163 164 Type *getType() const { return Root->getType(); } 165 166 /// Return the incoming value to be accumulated. This maybe null. 167 Value *getAccumulator() { return Acc; } 168 169 /// Return the set of adds that comprise the reduction. 170 SetVector<Instruction*> &getAdds() { return Adds; } 171 172 /// Return the MulCandidate, rooted at mul instruction, that comprise the 173 /// the reduction. 174 MulCandList &getMuls() { return Muls; } 175 176 /// Return the MulCandidate, rooted at mul instructions, that have been 177 /// paired for parallel execution. 178 MulPairList &getMulPairs() { return MulPairs; } 179 180 /// To finalise, replace the uses of the root with the intrinsic call. 181 void UpdateRoot(Instruction *SMLAD) { 182 Root->replaceAllUsesWith(SMLAD); 183 } 184 185 void dump() { 186 LLVM_DEBUG(dbgs() << "Reduction:\n"; 187 for (auto *Add : Adds) 188 LLVM_DEBUG(dbgs() << *Add << "\n"); 189 for (auto &Mul : Muls) 190 LLVM_DEBUG(dbgs() << *Mul->Root << "\n" 191 << " " << *Mul->LHS << "\n" 192 << " " << *Mul->RHS << "\n"); 193 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") 194 ); 195 } 196 }; 197 198 class WidenedLoad { 199 LoadInst *NewLd = nullptr; 200 SmallVector<LoadInst*, 4> Loads; 201 202 public: 203 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 204 : NewLd(Wide) { 205 for (auto *I : Lds) 206 Loads.push_back(I); 207 } 208 LoadInst *getLoad() { 209 return NewLd; 210 } 211 }; 212 213 class ARMParallelDSP : public FunctionPass { 214 ScalarEvolution *SE; 215 AliasAnalysis *AA; 216 TargetLibraryInfo *TLI; 217 DominatorTree *DT; 218 const DataLayout *DL; 219 Module *M; 220 std::map<LoadInst*, LoadInst*> LoadPairs; 221 SmallPtrSet<LoadInst*, 4> OffsetLoads; 222 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 223 224 template<unsigned> 225 bool IsNarrowSequence(Value *V); 226 bool Search(Value *V, BasicBlock *BB, Reduction &R); 227 bool RecordMemoryOps(BasicBlock *BB); 228 void InsertParallelMACs(Reduction &Reduction); 229 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 230 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 231 bool CreateParallelPairs(Reduction &R); 232 233 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 234 /// Dual performs two signed 16x16-bit multiplications. It adds the 235 /// products to a 32-bit accumulate operand. Optionally, the instruction can 236 /// exchange the halfwords of the second operand before performing the 237 /// arithmetic. 238 bool MatchSMLAD(Function &F); 239 240 public: 241 static char ID; 242 243 ARMParallelDSP() : FunctionPass(ID) { } 244 245 void getAnalysisUsage(AnalysisUsage &AU) const override { 246 FunctionPass::getAnalysisUsage(AU); 247 AU.addRequired<AssumptionCacheTracker>(); 248 AU.addRequired<ScalarEvolutionWrapperPass>(); 249 AU.addRequired<AAResultsWrapperPass>(); 250 AU.addRequired<TargetLibraryInfoWrapperPass>(); 251 AU.addRequired<DominatorTreeWrapperPass>(); 252 AU.addRequired<TargetPassConfig>(); 253 AU.addPreserved<ScalarEvolutionWrapperPass>(); 254 AU.addPreserved<GlobalsAAWrapperPass>(); 255 AU.setPreservesCFG(); 256 } 257 258 bool runOnFunction(Function &F) override { 259 if (DisableParallelDSP) 260 return false; 261 if (skipFunction(F)) 262 return false; 263 264 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 265 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 266 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 267 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 268 auto &TPC = getAnalysis<TargetPassConfig>(); 269 270 M = F.getParent(); 271 DL = &M->getDataLayout(); 272 273 auto &TM = TPC.getTM<TargetMachine>(); 274 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 275 276 if (!ST->allowsUnalignedMem()) { 277 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 278 "running pass ARMParallelDSP\n"); 279 return false; 280 } 281 282 if (!ST->hasDSP()) { 283 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 284 "ARMParallelDSP\n"); 285 return false; 286 } 287 288 if (!ST->isLittle()) { 289 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 290 << "ARMParallelDSP\n"); 291 return false; 292 } 293 294 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 295 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 296 297 bool Changes = MatchSMLAD(F); 298 return Changes; 299 } 300 }; 301 } 302 303 template<typename MemInst> 304 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 305 const DataLayout &DL, ScalarEvolution &SE) { 306 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 307 return true; 308 return false; 309 } 310 311 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 312 MemInstList &VecMem) { 313 if (!Ld0 || !Ld1) 314 return false; 315 316 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 317 return false; 318 319 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 320 dbgs() << "Ld0:"; Ld0->dump(); 321 dbgs() << "Ld1:"; Ld1->dump(); 322 ); 323 324 VecMem.clear(); 325 VecMem.push_back(Ld0); 326 VecMem.push_back(Ld1); 327 return true; 328 } 329 330 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 331 // instructions, which is set to 16. So here we should collect all i8 and i16 332 // narrow operations. 333 // TODO: we currently only collect i16, and will support i8 later, so that's 334 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 335 template<unsigned MaxBitWidth> 336 bool ARMParallelDSP::IsNarrowSequence(Value *V) { 337 if (auto *SExt = dyn_cast<SExtInst>(V)) { 338 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 339 return false; 340 341 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 342 // Check that this load could be paired. 343 return LoadPairs.count(Ld) || OffsetLoads.count(Ld); 344 } 345 } 346 return false; 347 } 348 349 /// Iterate through the block and record base, offset pairs of loads which can 350 /// be widened into a single load. 351 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 352 SmallVector<LoadInst*, 8> Loads; 353 SmallVector<Instruction*, 8> Writes; 354 LoadPairs.clear(); 355 WideLoads.clear(); 356 357 // Collect loads and instruction that may write to memory. For now we only 358 // record loads which are simple, sign-extended and have a single user. 359 // TODO: Allow zero-extended loads. 360 for (auto &I : *BB) { 361 if (I.mayWriteToMemory()) 362 Writes.push_back(&I); 363 auto *Ld = dyn_cast<LoadInst>(&I); 364 if (!Ld || !Ld->isSimple() || 365 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 366 continue; 367 Loads.push_back(Ld); 368 } 369 370 if (Loads.empty() || Loads.size() > NumLoadLimit) 371 return false; 372 373 using InstSet = std::set<Instruction*>; 374 using DepMap = std::map<Instruction*, InstSet>; 375 DepMap RAWDeps; 376 377 // Record any writes that may alias a load. 378 const auto Size = LocationSize::beforeOrAfterPointer(); 379 for (auto Write : Writes) { 380 for (auto Read : Loads) { 381 MemoryLocation ReadLoc = 382 MemoryLocation(Read->getPointerOperand(), Size); 383 384 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 385 ModRefInfo::ModRef))) 386 continue; 387 if (Write->comesBefore(Read)) 388 RAWDeps[Read].insert(Write); 389 } 390 } 391 392 // Check whether there's not a write between the two loads which would 393 // prevent them from being safely merged. 394 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 395 bool BaseFirst = Base->comesBefore(Offset); 396 LoadInst *Dominator = BaseFirst ? Base : Offset; 397 LoadInst *Dominated = BaseFirst ? Offset : Base; 398 399 if (RAWDeps.count(Dominated)) { 400 InstSet &WritesBefore = RAWDeps[Dominated]; 401 402 for (auto Before : WritesBefore) { 403 // We can't move the second load backward, past a write, to merge 404 // with the first load. 405 if (Dominator->comesBefore(Before)) 406 return false; 407 } 408 } 409 return true; 410 }; 411 412 // Record base, offset load pairs. 413 for (auto *Base : Loads) { 414 for (auto *Offset : Loads) { 415 if (Base == Offset || OffsetLoads.count(Offset)) 416 continue; 417 418 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 419 SafeToPair(Base, Offset)) { 420 LoadPairs[Base] = Offset; 421 OffsetLoads.insert(Offset); 422 break; 423 } 424 } 425 } 426 427 LLVM_DEBUG(if (!LoadPairs.empty()) { 428 dbgs() << "Consecutive load pairs:\n"; 429 for (auto &MapIt : LoadPairs) { 430 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 431 << *MapIt.second << "\n"); 432 } 433 }); 434 return LoadPairs.size() > 1; 435 } 436 437 // Search recursively back through the operands to find a tree of values that 438 // form a multiply-accumulate chain. The search records the Add and Mul 439 // instructions that form the reduction and allows us to find a single value 440 // to be used as the initial input to the accumlator. 441 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { 442 // If we find a non-instruction, try to use it as the initial accumulator 443 // value. This may have already been found during the search in which case 444 // this function will return false, signaling a search fail. 445 auto *I = dyn_cast<Instruction>(V); 446 if (!I) 447 return R.InsertAcc(V); 448 449 if (I->getParent() != BB) 450 return false; 451 452 switch (I->getOpcode()) { 453 default: 454 break; 455 case Instruction::PHI: 456 // Could be the accumulator value. 457 return R.InsertAcc(V); 458 case Instruction::Add: { 459 // Adds should be adding together two muls, or another add and a mul to 460 // be within the mac chain. One of the operands may also be the 461 // accumulator value at which point we should stop searching. 462 R.InsertAdd(I); 463 Value *LHS = I->getOperand(0); 464 Value *RHS = I->getOperand(1); 465 bool ValidLHS = Search(LHS, BB, R); 466 bool ValidRHS = Search(RHS, BB, R); 467 468 if (ValidLHS && ValidRHS) 469 return true; 470 471 return R.InsertAcc(I); 472 } 473 case Instruction::Mul: { 474 Value *MulOp0 = I->getOperand(0); 475 Value *MulOp1 = I->getOperand(1); 476 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); 477 } 478 case Instruction::SExt: 479 return Search(I->getOperand(0), BB, R); 480 } 481 return false; 482 } 483 484 // The pass needs to identify integer add/sub reductions of 16-bit vector 485 // multiplications. 486 // To use SMLAD: 487 // 1) we first need to find integer add then look for this pattern: 488 // 489 // acc0 = ... 490 // ld0 = load i16 491 // sext0 = sext i16 %ld0 to i32 492 // ld1 = load i16 493 // sext1 = sext i16 %ld1 to i32 494 // mul0 = mul %sext0, %sext1 495 // ld2 = load i16 496 // sext2 = sext i16 %ld2 to i32 497 // ld3 = load i16 498 // sext3 = sext i16 %ld3 to i32 499 // mul1 = mul i32 %sext2, %sext3 500 // add0 = add i32 %mul0, %acc0 501 // acc1 = add i32 %add0, %mul1 502 // 503 // Which can be selected to: 504 // 505 // ldr r0 506 // ldr r1 507 // smlad r2, r0, r1, r2 508 // 509 // If constants are used instead of loads, these will need to be hoisted 510 // out and into a register. 511 // 512 // If loop invariants are used instead of loads, these need to be packed 513 // before the loop begins. 514 // 515 bool ARMParallelDSP::MatchSMLAD(Function &F) { 516 bool Changed = false; 517 518 for (auto &BB : F) { 519 SmallPtrSet<Instruction*, 4> AllAdds; 520 if (!RecordMemoryOps(&BB)) 521 continue; 522 523 for (Instruction &I : reverse(BB)) { 524 if (I.getOpcode() != Instruction::Add) 525 continue; 526 527 if (AllAdds.count(&I)) 528 continue; 529 530 const auto *Ty = I.getType(); 531 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 532 continue; 533 534 Reduction R(&I); 535 if (!Search(&I, &BB, R)) 536 continue; 537 538 R.InsertMuls(); 539 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); 540 541 if (!CreateParallelPairs(R)) 542 continue; 543 544 InsertParallelMACs(R); 545 Changed = true; 546 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 547 } 548 } 549 550 return Changed; 551 } 552 553 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 554 555 // Not enough mul operations to make a pair. 556 if (R.getMuls().size() < 2) 557 return false; 558 559 // Check that the muls operate directly upon sign extended loads. 560 for (auto &MulCand : R.getMuls()) { 561 if (!MulCand->HasTwoLoadInputs()) 562 return false; 563 } 564 565 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 566 // The first elements of each vector should be loads with sexts. If we 567 // find that its two pairs of consecutive loads, then these can be 568 // transformed into two wider loads and the users can be replaced with 569 // DSP intrinsics. 570 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 571 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 572 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 573 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 574 575 // Check that each mul is operating on two different loads. 576 if (Ld0 == Ld2 || Ld1 == Ld3) 577 return false; 578 579 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 580 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 581 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 582 R.AddMulPair(PMul0, PMul1); 583 return true; 584 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 585 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 586 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 587 R.AddMulPair(PMul0, PMul1, true); 588 return true; 589 } 590 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 591 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 592 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 593 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 594 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 595 // Only the second operand can be exchanged, so swap the muls. 596 R.AddMulPair(PMul1, PMul0, true); 597 return true; 598 } 599 return false; 600 }; 601 602 MulCandList &Muls = R.getMuls(); 603 const unsigned Elems = Muls.size(); 604 for (unsigned i = 0; i < Elems; ++i) { 605 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 606 if (PMul0->Paired) 607 continue; 608 609 for (unsigned j = 0; j < Elems; ++j) { 610 if (i == j) 611 continue; 612 613 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 614 if (PMul1->Paired) 615 continue; 616 617 const Instruction *Mul0 = PMul0->Root; 618 const Instruction *Mul1 = PMul1->Root; 619 if (Mul0 == Mul1) 620 continue; 621 622 assert(PMul0 != PMul1 && "expected different chains"); 623 624 if (CanPair(R, PMul0, PMul1)) 625 break; 626 } 627 } 628 return !R.getMulPairs().empty(); 629 } 630 631 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 632 633 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 634 Value *Acc, bool Exchange, 635 Instruction *InsertAfter) { 636 // Replace the reduction chain with an intrinsic call 637 638 Value* Args[] = { WideLd0, WideLd1, Acc }; 639 Function *SMLAD = nullptr; 640 if (Exchange) 641 SMLAD = Acc->getType()->isIntegerTy(32) ? 642 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 643 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 644 else 645 SMLAD = Acc->getType()->isIntegerTy(32) ? 646 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 647 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 648 649 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 650 BasicBlock::iterator(InsertAfter)); 651 Instruction *Call = Builder.CreateCall(SMLAD, Args); 652 NumSMLAD++; 653 return Call; 654 }; 655 656 // Return the instruction after the dominated instruction. 657 auto GetInsertPoint = [this](Value *A, Value *B) { 658 assert((isa<Instruction>(A) || isa<Instruction>(B)) && 659 "expected at least one instruction"); 660 661 Value *V = nullptr; 662 if (!isa<Instruction>(A)) 663 V = B; 664 else if (!isa<Instruction>(B)) 665 V = A; 666 else 667 V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A; 668 669 return &*++BasicBlock::iterator(cast<Instruction>(V)); 670 }; 671 672 Value *Acc = R.getAccumulator(); 673 674 // For any muls that were discovered but not paired, accumulate their values 675 // as before. 676 IRBuilder<NoFolder> Builder(R.getRoot()->getParent()); 677 MulCandList &MulCands = R.getMuls(); 678 for (auto &MulCand : MulCands) { 679 if (MulCand->Paired) 680 continue; 681 682 Instruction *Mul = cast<Instruction>(MulCand->Root); 683 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); 684 685 if (R.getType() != Mul->getType()) { 686 assert(R.is64Bit() && "expected 64-bit result"); 687 Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul)); 688 Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType())); 689 } 690 691 if (!Acc) { 692 Acc = Mul; 693 continue; 694 } 695 696 // If Acc is the original incoming value to the reduction, it could be a 697 // phi. But the phi will dominate Mul, meaning that Mul will be the 698 // insertion point. 699 Builder.SetInsertPoint(GetInsertPoint(Mul, Acc)); 700 Acc = Builder.CreateAdd(Mul, Acc); 701 } 702 703 if (!Acc) { 704 Acc = R.is64Bit() ? 705 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : 706 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 707 } else if (Acc->getType() != R.getType()) { 708 Builder.SetInsertPoint(R.getRoot()); 709 Acc = Builder.CreateSExt(Acc, R.getType()); 710 } 711 712 // Roughly sort the mul pairs in their program order. 713 llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) { 714 const Instruction *A = PairA.first->Root; 715 const Instruction *B = PairB.first->Root; 716 return A->comesBefore(B); 717 }); 718 719 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 720 for (auto &Pair : R.getMulPairs()) { 721 MulCandidate *LHSMul = Pair.first; 722 MulCandidate *RHSMul = Pair.second; 723 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 724 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 725 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 726 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 727 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 728 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 729 730 Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS); 731 InsertAfter = GetInsertPoint(InsertAfter, Acc); 732 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 733 } 734 R.UpdateRoot(cast<Instruction>(Acc)); 735 } 736 737 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 738 IntegerType *LoadTy) { 739 assert(Loads.size() == 2 && "currently only support widening two loads"); 740 741 LoadInst *Base = Loads[0]; 742 LoadInst *Offset = Loads[1]; 743 744 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 745 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 746 747 assert((BaseSExt && OffsetSExt) 748 && "Loads should have a single, extending, user"); 749 750 std::function<void(Value*, Value*)> MoveBefore = 751 [&](Value *A, Value *B) -> void { 752 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 753 return; 754 755 auto *Source = cast<Instruction>(A); 756 auto *Sink = cast<Instruction>(B); 757 758 if (DT->dominates(Source, Sink) || 759 Source->getParent() != Sink->getParent() || 760 isa<PHINode>(Source) || isa<PHINode>(Sink)) 761 return; 762 763 Source->moveBefore(Sink); 764 for (auto &Op : Source->operands()) 765 MoveBefore(Op, Source); 766 }; 767 768 // Insert the load at the point of the original dominating load. 769 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 770 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 771 ++BasicBlock::iterator(DomLoad)); 772 773 // Bitcast the pointer to a wider type and create the wide load, while making 774 // sure to maintain the original alignment as this prevents ldrd from being 775 // generated when it could be illegal due to memory alignment. 776 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 777 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 778 LoadTy->getPointerTo(AddrSpace)); 779 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign()); 780 781 // Make sure everything is in the correct order in the basic block. 782 MoveBefore(Base->getPointerOperand(), VecPtr); 783 MoveBefore(VecPtr, WideLoad); 784 785 // From the wide load, create two values that equal the original two loads. 786 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 787 // TODO: Support big-endian as well. 788 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 789 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); 790 BaseSExt->replaceAllUsesWith(NewBaseSExt); 791 792 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 793 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 794 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 795 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 796 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); 797 OffsetSExt->replaceAllUsesWith(NewOffsetSExt); 798 799 LLVM_DEBUG(dbgs() << "From Base and Offset:\n" 800 << *Base << "\n" << *Offset << "\n" 801 << "Created Wide Load:\n" 802 << *WideLoad << "\n" 803 << *Bottom << "\n" 804 << *NewBaseSExt << "\n" 805 << *Top << "\n" 806 << *Trunc << "\n" 807 << *NewOffsetSExt << "\n"); 808 WideLoads.emplace(std::make_pair(Base, 809 std::make_unique<WidenedLoad>(Loads, WideLoad))); 810 return WideLoad; 811 } 812 813 Pass *llvm::createARMParallelDSPPass() { 814 return new ARMParallelDSP(); 815 } 816 817 char ARMParallelDSP::ID = 0; 818 819 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 820 "Transform functions to use DSP intrinsics", false, false) 821 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 822 "Transform functions to use DSP intrinsics", false, false) 823