1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/LoopAccessAnalysis.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/NoFolder.h" 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 #include "llvm/Pass.h" 26 #include "llvm/PassRegistry.h" 27 #include "llvm/PassSupport.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/CodeGen/TargetPassConfig.h" 31 #include "ARM.h" 32 #include "ARMSubtarget.h" 33 34 using namespace llvm; 35 using namespace PatternMatch; 36 37 #define DEBUG_TYPE "arm-parallel-dsp" 38 39 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 40 41 static cl::opt<bool> 42 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 43 cl::desc("Disable the ARM Parallel DSP pass")); 44 45 namespace { 46 struct MulCandidate; 47 class Reduction; 48 49 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 50 using MemInstList = SmallVectorImpl<LoadInst*>; 51 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 52 53 // 'MulCandidate' holds the multiplication instructions that are candidates 54 // for parallel execution. 55 struct MulCandidate { 56 Instruction *Root; 57 Value* LHS; 58 Value* RHS; 59 bool Exchange = false; 60 bool ReadOnly = true; 61 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 62 63 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 64 Root(I), LHS(lhs), RHS(rhs) { } 65 66 bool HasTwoLoadInputs() const { 67 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 68 } 69 70 LoadInst *getBaseLoad() const { 71 return VecLd.front(); 72 } 73 }; 74 75 /// Represent a sequence of multiply-accumulate operations with the aim to 76 /// perform the multiplications in parallel. 77 class Reduction { 78 Instruction *Root = nullptr; 79 Value *Acc = nullptr; 80 MulCandList Muls; 81 MulPairList MulPairs; 82 SmallPtrSet<Instruction*, 4> Adds; 83 84 public: 85 Reduction() = delete; 86 87 Reduction (Instruction *Add) : Root(Add) { } 88 89 /// Record an Add instruction that is a part of the this reduction. 90 void InsertAdd(Instruction *I) { Adds.insert(I); } 91 92 /// Record a MulCandidate, rooted at a Mul instruction, that is a part of 93 /// this reduction. 94 void InsertMul(Instruction *I, Value *LHS, Value *RHS) { 95 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 96 } 97 98 /// Add the incoming accumulator value, returns true if a value had not 99 /// already been added. Returning false signals to the user that this 100 /// reduction already has a value to initialise the accumulator. 101 bool InsertAcc(Value *V) { 102 if (Acc) 103 return false; 104 Acc = V; 105 return true; 106 } 107 108 /// Set two MulCandidates, rooted at muls, that can be executed as a single 109 /// parallel operation. 110 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1) { 111 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 112 } 113 114 /// Return true if enough mul operations are found that can be executed in 115 /// parallel. 116 bool CreateParallelPairs(); 117 118 /// Return the add instruction which is the root of the reduction. 119 Instruction *getRoot() { return Root; } 120 121 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 122 123 /// Return the incoming value to be accumulated. This maybe null. 124 Value *getAccumulator() { return Acc; } 125 126 /// Return the set of adds that comprise the reduction. 127 SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; } 128 129 /// Return the MulCandidate, rooted at mul instruction, that comprise the 130 /// the reduction. 131 MulCandList &getMuls() { return Muls; } 132 133 /// Return the MulCandidate, rooted at mul instructions, that have been 134 /// paired for parallel execution. 135 MulPairList &getMulPairs() { return MulPairs; } 136 137 /// To finalise, replace the uses of the root with the intrinsic call. 138 void UpdateRoot(Instruction *SMLAD) { 139 Root->replaceAllUsesWith(SMLAD); 140 } 141 }; 142 143 class WidenedLoad { 144 LoadInst *NewLd = nullptr; 145 SmallVector<LoadInst*, 4> Loads; 146 147 public: 148 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 149 : NewLd(Wide) { 150 for (auto *I : Lds) 151 Loads.push_back(I); 152 } 153 LoadInst *getLoad() { 154 return NewLd; 155 } 156 }; 157 158 class ARMParallelDSP : public FunctionPass { 159 ScalarEvolution *SE; 160 AliasAnalysis *AA; 161 TargetLibraryInfo *TLI; 162 DominatorTree *DT; 163 const DataLayout *DL; 164 Module *M; 165 std::map<LoadInst*, LoadInst*> LoadPairs; 166 SmallPtrSet<LoadInst*, 4> OffsetLoads; 167 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 168 169 template<unsigned> 170 bool IsNarrowSequence(Value *V, Value *&Src); 171 172 bool RecordMemoryOps(BasicBlock *BB); 173 void InsertParallelMACs(Reduction &Reduction); 174 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 175 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 176 bool CreateParallelPairs(Reduction &R); 177 178 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 179 /// Dual performs two signed 16x16-bit multiplications. It adds the 180 /// products to a 32-bit accumulate operand. Optionally, the instruction can 181 /// exchange the halfwords of the second operand before performing the 182 /// arithmetic. 183 bool MatchSMLAD(Function &F); 184 185 public: 186 static char ID; 187 188 ARMParallelDSP() : FunctionPass(ID) { } 189 190 void getAnalysisUsage(AnalysisUsage &AU) const override { 191 FunctionPass::getAnalysisUsage(AU); 192 AU.addRequired<AssumptionCacheTracker>(); 193 AU.addRequired<ScalarEvolutionWrapperPass>(); 194 AU.addRequired<AAResultsWrapperPass>(); 195 AU.addRequired<TargetLibraryInfoWrapperPass>(); 196 AU.addRequired<DominatorTreeWrapperPass>(); 197 AU.addRequired<TargetPassConfig>(); 198 AU.addPreserved<ScalarEvolutionWrapperPass>(); 199 AU.addPreserved<GlobalsAAWrapperPass>(); 200 AU.setPreservesCFG(); 201 } 202 203 bool runOnFunction(Function &F) override { 204 if (DisableParallelDSP) 205 return false; 206 if (skipFunction(F)) 207 return false; 208 209 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 210 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 211 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 212 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 213 auto &TPC = getAnalysis<TargetPassConfig>(); 214 215 M = F.getParent(); 216 DL = &M->getDataLayout(); 217 218 auto &TM = TPC.getTM<TargetMachine>(); 219 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 220 221 if (!ST->allowsUnalignedMem()) { 222 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 223 "running pass ARMParallelDSP\n"); 224 return false; 225 } 226 227 if (!ST->hasDSP()) { 228 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 229 "ARMParallelDSP\n"); 230 return false; 231 } 232 233 if (!ST->isLittle()) { 234 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 235 << "ARMParallelDSP\n"); 236 return false; 237 } 238 239 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 240 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 241 242 bool Changes = MatchSMLAD(F); 243 return Changes; 244 } 245 }; 246 } 247 248 template<typename MemInst> 249 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 250 const DataLayout &DL, ScalarEvolution &SE) { 251 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 252 return true; 253 return false; 254 } 255 256 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 257 MemInstList &VecMem) { 258 if (!Ld0 || !Ld1) 259 return false; 260 261 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 262 return false; 263 264 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 265 dbgs() << "Ld0:"; Ld0->dump(); 266 dbgs() << "Ld1:"; Ld1->dump(); 267 ); 268 269 VecMem.clear(); 270 VecMem.push_back(Ld0); 271 VecMem.push_back(Ld1); 272 return true; 273 } 274 275 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 276 // instructions, which is set to 16. So here we should collect all i8 and i16 277 // narrow operations. 278 // TODO: we currently only collect i16, and will support i8 later, so that's 279 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 280 template<unsigned MaxBitWidth> 281 bool ARMParallelDSP::IsNarrowSequence(Value *V, Value *&Src) { 282 if (auto *SExt = dyn_cast<SExtInst>(V)) { 283 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 284 return false; 285 286 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 287 // Check that these load could be paired. 288 if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld)) 289 return false; 290 291 Src = Ld; 292 return true; 293 } 294 } 295 return false; 296 } 297 298 /// Iterate through the block and record base, offset pairs of loads which can 299 /// be widened into a single load. 300 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 301 SmallVector<LoadInst*, 8> Loads; 302 SmallVector<Instruction*, 8> Writes; 303 LoadPairs.clear(); 304 WideLoads.clear(); 305 306 // Collect loads and instruction that may write to memory. For now we only 307 // record loads which are simple, sign-extended and have a single user. 308 // TODO: Allow zero-extended loads. 309 for (auto &I : *BB) { 310 if (I.mayWriteToMemory()) 311 Writes.push_back(&I); 312 auto *Ld = dyn_cast<LoadInst>(&I); 313 if (!Ld || !Ld->isSimple() || 314 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 315 continue; 316 Loads.push_back(Ld); 317 } 318 319 using InstSet = std::set<Instruction*>; 320 using DepMap = std::map<Instruction*, InstSet>; 321 DepMap RAWDeps; 322 323 // Record any writes that may alias a load. 324 const auto Size = LocationSize::unknown(); 325 for (auto Read : Loads) { 326 for (auto Write : Writes) { 327 MemoryLocation ReadLoc = 328 MemoryLocation(Read->getPointerOperand(), Size); 329 330 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 331 ModRefInfo::ModRef))) 332 continue; 333 if (DT->dominates(Write, Read)) 334 RAWDeps[Read].insert(Write); 335 } 336 } 337 338 // Check whether there's not a write between the two loads which would 339 // prevent them from being safely merged. 340 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 341 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset; 342 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base; 343 344 if (RAWDeps.count(Dominated)) { 345 InstSet &WritesBefore = RAWDeps[Dominated]; 346 347 for (auto Before : WritesBefore) { 348 // We can't move the second load backward, past a write, to merge 349 // with the first load. 350 if (DT->dominates(Dominator, Before)) 351 return false; 352 } 353 } 354 return true; 355 }; 356 357 // Record base, offset load pairs. 358 for (auto *Base : Loads) { 359 for (auto *Offset : Loads) { 360 if (Base == Offset) 361 continue; 362 363 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 364 SafeToPair(Base, Offset)) { 365 LoadPairs[Base] = Offset; 366 OffsetLoads.insert(Offset); 367 break; 368 } 369 } 370 } 371 372 LLVM_DEBUG(if (!LoadPairs.empty()) { 373 dbgs() << "Consecutive load pairs:\n"; 374 for (auto &MapIt : LoadPairs) { 375 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 376 << *MapIt.second << "\n"); 377 } 378 }); 379 return LoadPairs.size() > 1; 380 } 381 382 // The pass needs to identify integer add/sub reductions of 16-bit vector 383 // multiplications. 384 // To use SMLAD: 385 // 1) we first need to find integer add then look for this pattern: 386 // 387 // acc0 = ... 388 // ld0 = load i16 389 // sext0 = sext i16 %ld0 to i32 390 // ld1 = load i16 391 // sext1 = sext i16 %ld1 to i32 392 // mul0 = mul %sext0, %sext1 393 // ld2 = load i16 394 // sext2 = sext i16 %ld2 to i32 395 // ld3 = load i16 396 // sext3 = sext i16 %ld3 to i32 397 // mul1 = mul i32 %sext2, %sext3 398 // add0 = add i32 %mul0, %acc0 399 // acc1 = add i32 %add0, %mul1 400 // 401 // Which can be selected to: 402 // 403 // ldr r0 404 // ldr r1 405 // smlad r2, r0, r1, r2 406 // 407 // If constants are used instead of loads, these will need to be hoisted 408 // out and into a register. 409 // 410 // If loop invariants are used instead of loads, these need to be packed 411 // before the loop begins. 412 // 413 bool ARMParallelDSP::MatchSMLAD(Function &F) { 414 // Search recursively back through the operands to find a tree of values that 415 // form a multiply-accumulate chain. The search records the Add and Mul 416 // instructions that form the reduction and allows us to find a single value 417 // to be used as the initial input to the accumlator. 418 std::function<bool(Value*, BasicBlock*, Reduction&)> Search = [&] 419 (Value *V, BasicBlock *BB, Reduction &R) -> bool { 420 421 // If we find a non-instruction, try to use it as the initial accumulator 422 // value. This may have already been found during the search in which case 423 // this function will return false, signaling a search fail. 424 auto *I = dyn_cast<Instruction>(V); 425 if (!I) 426 return R.InsertAcc(V); 427 428 if (I->getParent() != BB) 429 return false; 430 431 switch (I->getOpcode()) { 432 default: 433 break; 434 case Instruction::PHI: 435 // Could be the accumulator value. 436 return R.InsertAcc(V); 437 case Instruction::Add: { 438 // Adds should be adding together two muls, or another add and a mul to 439 // be within the mac chain. One of the operands may also be the 440 // accumulator value at which point we should stop searching. 441 bool ValidLHS = Search(I->getOperand(0), BB, R); 442 bool ValidRHS = Search(I->getOperand(1), BB, R); 443 if (!ValidLHS && !ValidLHS) 444 return false; 445 else if (ValidLHS && ValidRHS) { 446 R.InsertAdd(I); 447 return true; 448 } else { 449 R.InsertAdd(I); 450 return R.InsertAcc(I); 451 } 452 } 453 case Instruction::Mul: { 454 Value *MulOp0 = I->getOperand(0); 455 Value *MulOp1 = I->getOperand(1); 456 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) { 457 Value *LHS = nullptr; 458 Value *RHS = nullptr; 459 if (IsNarrowSequence<16>(MulOp0, LHS) && 460 IsNarrowSequence<16>(MulOp1, RHS)) { 461 R.InsertMul(I, LHS, RHS); 462 return true; 463 } 464 } 465 return false; 466 } 467 case Instruction::SExt: 468 return Search(I->getOperand(0), BB, R); 469 } 470 return false; 471 }; 472 473 bool Changed = false; 474 475 for (auto &BB : F) { 476 SmallPtrSet<Instruction*, 4> AllAdds; 477 if (!RecordMemoryOps(&BB)) 478 continue; 479 480 for (Instruction &I : reverse(BB)) { 481 if (I.getOpcode() != Instruction::Add) 482 continue; 483 484 if (AllAdds.count(&I)) 485 continue; 486 487 const auto *Ty = I.getType(); 488 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 489 continue; 490 491 Reduction R(&I); 492 if (!Search(&I, &BB, R)) 493 continue; 494 495 if (!CreateParallelPairs(R)) 496 continue; 497 498 InsertParallelMACs(R); 499 Changed = true; 500 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 501 } 502 } 503 504 return Changed; 505 } 506 507 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 508 509 // Not enough mul operations to make a pair. 510 if (R.getMuls().size() < 2) 511 return false; 512 513 // Check that the muls operate directly upon sign extended loads. 514 for (auto &MulCand : R.getMuls()) { 515 if (!MulCand->HasTwoLoadInputs()) 516 return false; 517 } 518 519 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 520 // The first elements of each vector should be loads with sexts. If we 521 // find that its two pairs of consecutive loads, then these can be 522 // transformed into two wider loads and the users can be replaced with 523 // DSP intrinsics. 524 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 525 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 526 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 527 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 528 529 LLVM_DEBUG(dbgs() << "Loads:\n" 530 << " - " << *Ld0 << "\n" 531 << " - " << *Ld1 << "\n" 532 << " - " << *Ld2 << "\n" 533 << " - " << *Ld3 << "\n"); 534 535 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 536 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 537 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 538 R.AddMulPair(PMul0, PMul1); 539 return true; 540 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 541 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 542 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 543 PMul1->Exchange = true; 544 R.AddMulPair(PMul0, PMul1); 545 return true; 546 } 547 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 548 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 549 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 550 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 551 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 552 PMul0->Exchange = true; 553 // Only the second operand can be exchanged, so swap the muls. 554 R.AddMulPair(PMul1, PMul0); 555 return true; 556 } 557 return false; 558 }; 559 560 MulCandList &Muls = R.getMuls(); 561 const unsigned Elems = Muls.size(); 562 SmallPtrSet<const Instruction*, 4> Paired; 563 for (unsigned i = 0; i < Elems; ++i) { 564 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 565 if (Paired.count(PMul0->Root)) 566 continue; 567 568 for (unsigned j = 0; j < Elems; ++j) { 569 if (i == j) 570 continue; 571 572 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 573 if (Paired.count(PMul1->Root)) 574 continue; 575 576 const Instruction *Mul0 = PMul0->Root; 577 const Instruction *Mul1 = PMul1->Root; 578 if (Mul0 == Mul1) 579 continue; 580 581 assert(PMul0 != PMul1 && "expected different chains"); 582 583 if (CanPair(R, PMul0, PMul1)) { 584 Paired.insert(Mul0); 585 Paired.insert(Mul1); 586 break; 587 } 588 } 589 } 590 return !R.getMulPairs().empty(); 591 } 592 593 594 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 595 596 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 597 Value *Acc, bool Exchange, 598 Instruction *InsertAfter) { 599 // Replace the reduction chain with an intrinsic call 600 601 Value* Args[] = { WideLd0, WideLd1, Acc }; 602 Function *SMLAD = nullptr; 603 if (Exchange) 604 SMLAD = Acc->getType()->isIntegerTy(32) ? 605 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 606 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 607 else 608 SMLAD = Acc->getType()->isIntegerTy(32) ? 609 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 610 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 611 612 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 613 ++BasicBlock::iterator(InsertAfter)); 614 Instruction *Call = Builder.CreateCall(SMLAD, Args); 615 NumSMLAD++; 616 return Call; 617 }; 618 619 Instruction *InsertAfter = R.getRoot(); 620 Value *Acc = R.getAccumulator(); 621 if (!Acc) 622 Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 623 624 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 625 LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n" 626 << "Acc: " << *Acc << "\n"); 627 for (auto &Pair : R.getMulPairs()) { 628 MulCandidate *LHSMul = Pair.first; 629 MulCandidate *RHSMul = Pair.second; 630 LLVM_DEBUG(dbgs() << "Muls:\n" 631 << "- " << *LHSMul->Root << "\n" 632 << "- " << *RHSMul->Root << "\n"); 633 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 634 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 635 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 636 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 637 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 638 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 639 640 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 641 InsertAfter = cast<Instruction>(Acc); 642 } 643 R.UpdateRoot(cast<Instruction>(Acc)); 644 } 645 646 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 647 IntegerType *LoadTy) { 648 assert(Loads.size() == 2 && "currently only support widening two loads"); 649 650 LoadInst *Base = Loads[0]; 651 LoadInst *Offset = Loads[1]; 652 653 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 654 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 655 656 assert((BaseSExt && OffsetSExt) 657 && "Loads should have a single, extending, user"); 658 659 std::function<void(Value*, Value*)> MoveBefore = 660 [&](Value *A, Value *B) -> void { 661 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 662 return; 663 664 auto *Source = cast<Instruction>(A); 665 auto *Sink = cast<Instruction>(B); 666 667 if (DT->dominates(Source, Sink) || 668 Source->getParent() != Sink->getParent() || 669 isa<PHINode>(Source) || isa<PHINode>(Sink)) 670 return; 671 672 Source->moveBefore(Sink); 673 for (auto &Op : Source->operands()) 674 MoveBefore(Op, Source); 675 }; 676 677 // Insert the load at the point of the original dominating load. 678 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 679 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 680 ++BasicBlock::iterator(DomLoad)); 681 682 // Bitcast the pointer to a wider type and create the wide load, while making 683 // sure to maintain the original alignment as this prevents ldrd from being 684 // generated when it could be illegal due to memory alignment. 685 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 686 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 687 LoadTy->getPointerTo(AddrSpace)); 688 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 689 Base->getAlignment()); 690 691 // Make sure everything is in the correct order in the basic block. 692 MoveBefore(Base->getPointerOperand(), VecPtr); 693 MoveBefore(VecPtr, WideLoad); 694 695 // From the wide load, create two values that equal the original two loads. 696 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 697 // TODO: Support big-endian as well. 698 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 699 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); 700 BaseSExt->replaceAllUsesWith(NewBaseSExt); 701 702 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 703 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 704 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 705 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 706 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); 707 OffsetSExt->replaceAllUsesWith(NewOffsetSExt); 708 709 WideLoads.emplace(std::make_pair(Base, 710 std::make_unique<WidenedLoad>(Loads, WideLoad))); 711 return WideLoad; 712 } 713 714 Pass *llvm::createARMParallelDSPPass() { 715 return new ARMParallelDSP(); 716 } 717 718 char ARMParallelDSP::ID = 0; 719 720 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 721 "Transform functions to use DSP intrinsics", false, false) 722 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 723 "Transform functions to use DSP intrinsics", false, false) 724