1 //===- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file contains a pass that performs load / store related peephole
10 /// optimizations. This pass should be run after register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARM.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMISelLowering.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/iterator_range.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/CodeGen/LivePhysRegs.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineFunctionPass.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RegisterClassInfo.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/MC/MCInstrDesc.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Allocator.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdlib>
66 #include <iterator>
67 #include <limits>
68 #include <utility>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "arm-ldst-opt"
73 
74 STATISTIC(NumLDMGened , "Number of ldm instructions generated");
75 STATISTIC(NumSTMGened , "Number of stm instructions generated");
76 STATISTIC(NumVLDMGened, "Number of vldm instructions generated");
77 STATISTIC(NumVSTMGened, "Number of vstm instructions generated");
78 STATISTIC(NumLdStMoved, "Number of load / store instructions moved");
79 STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation");
80 STATISTIC(NumSTRDFormed,"Number of strd created before allocation");
81 STATISTIC(NumLDRD2LDM,  "Number of ldrd instructions turned back into ldm");
82 STATISTIC(NumSTRD2STM,  "Number of strd instructions turned back into stm");
83 STATISTIC(NumLDRD2LDR,  "Number of ldrd instructions turned back into ldr's");
84 STATISTIC(NumSTRD2STR,  "Number of strd instructions turned back into str's");
85 
86 /// This switch disables formation of double/multi instructions that could
87 /// potentially lead to (new) alignment traps even with CCR.UNALIGN_TRP
88 /// disabled. This can be used to create libraries that are robust even when
89 /// users provoke undefined behaviour by supplying misaligned pointers.
90 /// \see mayCombineMisaligned()
91 static cl::opt<bool>
92 AssumeMisalignedLoadStores("arm-assume-misaligned-load-store", cl::Hidden,
93     cl::init(false), cl::desc("Be more conservative in ARM load/store opt"));
94 
95 #define ARM_LOAD_STORE_OPT_NAME "ARM load / store optimization pass"
96 
97 namespace {
98 
99   /// Post- register allocation pass the combine load / store instructions to
100   /// form ldm / stm instructions.
101   struct ARMLoadStoreOpt : public MachineFunctionPass {
102     static char ID;
103 
104     const MachineFunction *MF;
105     const TargetInstrInfo *TII;
106     const TargetRegisterInfo *TRI;
107     const ARMSubtarget *STI;
108     const TargetLowering *TL;
109     ARMFunctionInfo *AFI;
110     LivePhysRegs LiveRegs;
111     RegisterClassInfo RegClassInfo;
112     MachineBasicBlock::const_iterator LiveRegPos;
113     bool LiveRegsValid;
114     bool RegClassInfoValid;
115     bool isThumb1, isThumb2;
116 
117     ARMLoadStoreOpt() : MachineFunctionPass(ID) {}
118 
119     bool runOnMachineFunction(MachineFunction &Fn) override;
120 
121     MachineFunctionProperties getRequiredProperties() const override {
122       return MachineFunctionProperties().set(
123           MachineFunctionProperties::Property::NoVRegs);
124     }
125 
126     StringRef getPassName() const override { return ARM_LOAD_STORE_OPT_NAME; }
127 
128   private:
129     /// A set of load/store MachineInstrs with same base register sorted by
130     /// offset.
131     struct MemOpQueueEntry {
132       MachineInstr *MI;
133       int Offset;        ///< Load/Store offset.
134       unsigned Position; ///< Position as counted from end of basic block.
135 
136       MemOpQueueEntry(MachineInstr &MI, int Offset, unsigned Position)
137           : MI(&MI), Offset(Offset), Position(Position) {}
138     };
139     using MemOpQueue = SmallVector<MemOpQueueEntry, 8>;
140 
141     /// A set of MachineInstrs that fulfill (nearly all) conditions to get
142     /// merged into a LDM/STM.
143     struct MergeCandidate {
144       /// List of instructions ordered by load/store offset.
145       SmallVector<MachineInstr*, 4> Instrs;
146 
147       /// Index in Instrs of the instruction being latest in the schedule.
148       unsigned LatestMIIdx;
149 
150       /// Index in Instrs of the instruction being earliest in the schedule.
151       unsigned EarliestMIIdx;
152 
153       /// Index into the basic block where the merged instruction will be
154       /// inserted. (See MemOpQueueEntry.Position)
155       unsigned InsertPos;
156 
157       /// Whether the instructions can be merged into a ldm/stm instruction.
158       bool CanMergeToLSMulti;
159 
160       /// Whether the instructions can be merged into a ldrd/strd instruction.
161       bool CanMergeToLSDouble;
162     };
163     SpecificBumpPtrAllocator<MergeCandidate> Allocator;
164     SmallVector<const MergeCandidate*,4> Candidates;
165     SmallVector<MachineInstr*,4> MergeBaseCandidates;
166 
167     void moveLiveRegsBefore(const MachineBasicBlock &MBB,
168                             MachineBasicBlock::const_iterator Before);
169     unsigned findFreeReg(const TargetRegisterClass &RegClass);
170     void UpdateBaseRegUses(MachineBasicBlock &MBB,
171                            MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
172                            unsigned Base, unsigned WordOffset,
173                            ARMCC::CondCodes Pred, unsigned PredReg);
174     MachineInstr *CreateLoadStoreMulti(
175         MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
176         int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
177         ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
178         ArrayRef<std::pair<unsigned, bool>> Regs,
179         ArrayRef<MachineInstr*> Instrs);
180     MachineInstr *CreateLoadStoreDouble(
181         MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
182         int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
183         ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
184         ArrayRef<std::pair<unsigned, bool>> Regs,
185         ArrayRef<MachineInstr*> Instrs) const;
186     void FormCandidates(const MemOpQueue &MemOps);
187     MachineInstr *MergeOpsUpdate(const MergeCandidate &Cand);
188     bool FixInvalidRegPairOp(MachineBasicBlock &MBB,
189                              MachineBasicBlock::iterator &MBBI);
190     bool MergeBaseUpdateLoadStore(MachineInstr *MI);
191     bool MergeBaseUpdateLSMultiple(MachineInstr *MI);
192     bool MergeBaseUpdateLSDouble(MachineInstr &MI) const;
193     bool LoadStoreMultipleOpti(MachineBasicBlock &MBB);
194     bool MergeReturnIntoLDM(MachineBasicBlock &MBB);
195     bool CombineMovBx(MachineBasicBlock &MBB);
196   };
197 
198 } // end anonymous namespace
199 
200 char ARMLoadStoreOpt::ID = 0;
201 
202 INITIALIZE_PASS(ARMLoadStoreOpt, "arm-ldst-opt", ARM_LOAD_STORE_OPT_NAME, false,
203                 false)
204 
205 static bool definesCPSR(const MachineInstr &MI) {
206   for (const auto &MO : MI.operands()) {
207     if (!MO.isReg())
208       continue;
209     if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead())
210       // If the instruction has live CPSR def, then it's not safe to fold it
211       // into load / store.
212       return true;
213   }
214 
215   return false;
216 }
217 
218 static int getMemoryOpOffset(const MachineInstr &MI) {
219   unsigned Opcode = MI.getOpcode();
220   bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
221   unsigned NumOperands = MI.getDesc().getNumOperands();
222   unsigned OffField = MI.getOperand(NumOperands - 3).getImm();
223 
224   if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
225       Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
226       Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 ||
227       Opcode == ARM::LDRi12   || Opcode == ARM::STRi12)
228     return OffField;
229 
230   // Thumb1 immediate offsets are scaled by 4
231   if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi ||
232       Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi)
233     return OffField * 4;
234 
235   int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField)
236     : ARM_AM::getAM5Offset(OffField) * 4;
237   ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField)
238     : ARM_AM::getAM5Op(OffField);
239 
240   if (Op == ARM_AM::sub)
241     return -Offset;
242 
243   return Offset;
244 }
245 
246 static const MachineOperand &getLoadStoreBaseOp(const MachineInstr &MI) {
247   return MI.getOperand(1);
248 }
249 
250 static const MachineOperand &getLoadStoreRegOp(const MachineInstr &MI) {
251   return MI.getOperand(0);
252 }
253 
254 static int getLoadStoreMultipleOpcode(unsigned Opcode, ARM_AM::AMSubMode Mode) {
255   switch (Opcode) {
256   default: llvm_unreachable("Unhandled opcode!");
257   case ARM::LDRi12:
258     ++NumLDMGened;
259     switch (Mode) {
260     default: llvm_unreachable("Unhandled submode!");
261     case ARM_AM::ia: return ARM::LDMIA;
262     case ARM_AM::da: return ARM::LDMDA;
263     case ARM_AM::db: return ARM::LDMDB;
264     case ARM_AM::ib: return ARM::LDMIB;
265     }
266   case ARM::STRi12:
267     ++NumSTMGened;
268     switch (Mode) {
269     default: llvm_unreachable("Unhandled submode!");
270     case ARM_AM::ia: return ARM::STMIA;
271     case ARM_AM::da: return ARM::STMDA;
272     case ARM_AM::db: return ARM::STMDB;
273     case ARM_AM::ib: return ARM::STMIB;
274     }
275   case ARM::tLDRi:
276   case ARM::tLDRspi:
277     // tLDMIA is writeback-only - unless the base register is in the input
278     // reglist.
279     ++NumLDMGened;
280     switch (Mode) {
281     default: llvm_unreachable("Unhandled submode!");
282     case ARM_AM::ia: return ARM::tLDMIA;
283     }
284   case ARM::tSTRi:
285   case ARM::tSTRspi:
286     // There is no non-writeback tSTMIA either.
287     ++NumSTMGened;
288     switch (Mode) {
289     default: llvm_unreachable("Unhandled submode!");
290     case ARM_AM::ia: return ARM::tSTMIA_UPD;
291     }
292   case ARM::t2LDRi8:
293   case ARM::t2LDRi12:
294     ++NumLDMGened;
295     switch (Mode) {
296     default: llvm_unreachable("Unhandled submode!");
297     case ARM_AM::ia: return ARM::t2LDMIA;
298     case ARM_AM::db: return ARM::t2LDMDB;
299     }
300   case ARM::t2STRi8:
301   case ARM::t2STRi12:
302     ++NumSTMGened;
303     switch (Mode) {
304     default: llvm_unreachable("Unhandled submode!");
305     case ARM_AM::ia: return ARM::t2STMIA;
306     case ARM_AM::db: return ARM::t2STMDB;
307     }
308   case ARM::VLDRS:
309     ++NumVLDMGened;
310     switch (Mode) {
311     default: llvm_unreachable("Unhandled submode!");
312     case ARM_AM::ia: return ARM::VLDMSIA;
313     case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists.
314     }
315   case ARM::VSTRS:
316     ++NumVSTMGened;
317     switch (Mode) {
318     default: llvm_unreachable("Unhandled submode!");
319     case ARM_AM::ia: return ARM::VSTMSIA;
320     case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists.
321     }
322   case ARM::VLDRD:
323     ++NumVLDMGened;
324     switch (Mode) {
325     default: llvm_unreachable("Unhandled submode!");
326     case ARM_AM::ia: return ARM::VLDMDIA;
327     case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists.
328     }
329   case ARM::VSTRD:
330     ++NumVSTMGened;
331     switch (Mode) {
332     default: llvm_unreachable("Unhandled submode!");
333     case ARM_AM::ia: return ARM::VSTMDIA;
334     case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists.
335     }
336   }
337 }
338 
339 static ARM_AM::AMSubMode getLoadStoreMultipleSubMode(unsigned Opcode) {
340   switch (Opcode) {
341   default: llvm_unreachable("Unhandled opcode!");
342   case ARM::LDMIA_RET:
343   case ARM::LDMIA:
344   case ARM::LDMIA_UPD:
345   case ARM::STMIA:
346   case ARM::STMIA_UPD:
347   case ARM::tLDMIA:
348   case ARM::tLDMIA_UPD:
349   case ARM::tSTMIA_UPD:
350   case ARM::t2LDMIA_RET:
351   case ARM::t2LDMIA:
352   case ARM::t2LDMIA_UPD:
353   case ARM::t2STMIA:
354   case ARM::t2STMIA_UPD:
355   case ARM::VLDMSIA:
356   case ARM::VLDMSIA_UPD:
357   case ARM::VSTMSIA:
358   case ARM::VSTMSIA_UPD:
359   case ARM::VLDMDIA:
360   case ARM::VLDMDIA_UPD:
361   case ARM::VSTMDIA:
362   case ARM::VSTMDIA_UPD:
363     return ARM_AM::ia;
364 
365   case ARM::LDMDA:
366   case ARM::LDMDA_UPD:
367   case ARM::STMDA:
368   case ARM::STMDA_UPD:
369     return ARM_AM::da;
370 
371   case ARM::LDMDB:
372   case ARM::LDMDB_UPD:
373   case ARM::STMDB:
374   case ARM::STMDB_UPD:
375   case ARM::t2LDMDB:
376   case ARM::t2LDMDB_UPD:
377   case ARM::t2STMDB:
378   case ARM::t2STMDB_UPD:
379   case ARM::VLDMSDB_UPD:
380   case ARM::VSTMSDB_UPD:
381   case ARM::VLDMDDB_UPD:
382   case ARM::VSTMDDB_UPD:
383     return ARM_AM::db;
384 
385   case ARM::LDMIB:
386   case ARM::LDMIB_UPD:
387   case ARM::STMIB:
388   case ARM::STMIB_UPD:
389     return ARM_AM::ib;
390   }
391 }
392 
393 static bool isT1i32Load(unsigned Opc) {
394   return Opc == ARM::tLDRi || Opc == ARM::tLDRspi;
395 }
396 
397 static bool isT2i32Load(unsigned Opc) {
398   return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8;
399 }
400 
401 static bool isi32Load(unsigned Opc) {
402   return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ;
403 }
404 
405 static bool isT1i32Store(unsigned Opc) {
406   return Opc == ARM::tSTRi || Opc == ARM::tSTRspi;
407 }
408 
409 static bool isT2i32Store(unsigned Opc) {
410   return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8;
411 }
412 
413 static bool isi32Store(unsigned Opc) {
414   return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc);
415 }
416 
417 static bool isLoadSingle(unsigned Opc) {
418   return isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD;
419 }
420 
421 static unsigned getImmScale(unsigned Opc) {
422   switch (Opc) {
423   default: llvm_unreachable("Unhandled opcode!");
424   case ARM::tLDRi:
425   case ARM::tSTRi:
426   case ARM::tLDRspi:
427   case ARM::tSTRspi:
428     return 1;
429   case ARM::tLDRHi:
430   case ARM::tSTRHi:
431     return 2;
432   case ARM::tLDRBi:
433   case ARM::tSTRBi:
434     return 4;
435   }
436 }
437 
438 static unsigned getLSMultipleTransferSize(const MachineInstr *MI) {
439   switch (MI->getOpcode()) {
440   default: return 0;
441   case ARM::LDRi12:
442   case ARM::STRi12:
443   case ARM::tLDRi:
444   case ARM::tSTRi:
445   case ARM::tLDRspi:
446   case ARM::tSTRspi:
447   case ARM::t2LDRi8:
448   case ARM::t2LDRi12:
449   case ARM::t2STRi8:
450   case ARM::t2STRi12:
451   case ARM::VLDRS:
452   case ARM::VSTRS:
453     return 4;
454   case ARM::VLDRD:
455   case ARM::VSTRD:
456     return 8;
457   case ARM::LDMIA:
458   case ARM::LDMDA:
459   case ARM::LDMDB:
460   case ARM::LDMIB:
461   case ARM::STMIA:
462   case ARM::STMDA:
463   case ARM::STMDB:
464   case ARM::STMIB:
465   case ARM::tLDMIA:
466   case ARM::tLDMIA_UPD:
467   case ARM::tSTMIA_UPD:
468   case ARM::t2LDMIA:
469   case ARM::t2LDMDB:
470   case ARM::t2STMIA:
471   case ARM::t2STMDB:
472   case ARM::VLDMSIA:
473   case ARM::VSTMSIA:
474     return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4;
475   case ARM::VLDMDIA:
476   case ARM::VSTMDIA:
477     return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8;
478   }
479 }
480 
481 /// Update future uses of the base register with the offset introduced
482 /// due to writeback. This function only works on Thumb1.
483 void ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB,
484                                         MachineBasicBlock::iterator MBBI,
485                                         const DebugLoc &DL, unsigned Base,
486                                         unsigned WordOffset,
487                                         ARMCC::CondCodes Pred,
488                                         unsigned PredReg) {
489   assert(isThumb1 && "Can only update base register uses for Thumb1!");
490   // Start updating any instructions with immediate offsets. Insert a SUB before
491   // the first non-updateable instruction (if any).
492   for (; MBBI != MBB.end(); ++MBBI) {
493     bool InsertSub = false;
494     unsigned Opc = MBBI->getOpcode();
495 
496     if (MBBI->readsRegister(Base)) {
497       int Offset;
498       bool IsLoad =
499         Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi;
500       bool IsStore =
501         Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi;
502 
503       if (IsLoad || IsStore) {
504         // Loads and stores with immediate offsets can be updated, but only if
505         // the new offset isn't negative.
506         // The MachineOperand containing the offset immediate is the last one
507         // before predicates.
508         MachineOperand &MO =
509           MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
510         // The offsets are scaled by 1, 2 or 4 depending on the Opcode.
511         Offset = MO.getImm() - WordOffset * getImmScale(Opc);
512 
513         // If storing the base register, it needs to be reset first.
514         Register InstrSrcReg = getLoadStoreRegOp(*MBBI).getReg();
515 
516         if (Offset >= 0 && !(IsStore && InstrSrcReg == Base))
517           MO.setImm(Offset);
518         else
519           InsertSub = true;
520       } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) &&
521                  !definesCPSR(*MBBI)) {
522         // SUBS/ADDS using this register, with a dead def of the CPSR.
523         // Merge it with the update; if the merged offset is too large,
524         // insert a new sub instead.
525         MachineOperand &MO =
526           MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
527         Offset = (Opc == ARM::tSUBi8) ?
528           MO.getImm() + WordOffset * 4 :
529           MO.getImm() - WordOffset * 4 ;
530         if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) {
531           // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if
532           // Offset == 0.
533           MO.setImm(Offset);
534           // The base register has now been reset, so exit early.
535           return;
536         } else {
537           InsertSub = true;
538         }
539       } else {
540         // Can't update the instruction.
541         InsertSub = true;
542       }
543     } else if (definesCPSR(*MBBI) || MBBI->isCall() || MBBI->isBranch()) {
544       // Since SUBS sets the condition flags, we can't place the base reset
545       // after an instruction that has a live CPSR def.
546       // The base register might also contain an argument for a function call.
547       InsertSub = true;
548     }
549 
550     if (InsertSub) {
551       // An instruction above couldn't be updated, so insert a sub.
552       BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base)
553           .add(t1CondCodeOp(true))
554           .addReg(Base)
555           .addImm(WordOffset * 4)
556           .addImm(Pred)
557           .addReg(PredReg);
558       return;
559     }
560 
561     if (MBBI->killsRegister(Base) || MBBI->definesRegister(Base))
562       // Register got killed. Stop updating.
563       return;
564   }
565 
566   // End of block was reached.
567   if (MBB.succ_size() > 0) {
568     // FIXME: Because of a bug, live registers are sometimes missing from
569     // the successor blocks' live-in sets. This means we can't trust that
570     // information and *always* have to reset at the end of a block.
571     // See PR21029.
572     if (MBBI != MBB.end()) --MBBI;
573     BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base)
574         .add(t1CondCodeOp(true))
575         .addReg(Base)
576         .addImm(WordOffset * 4)
577         .addImm(Pred)
578         .addReg(PredReg);
579   }
580 }
581 
582 /// Return the first register of class \p RegClass that is not in \p Regs.
583 unsigned ARMLoadStoreOpt::findFreeReg(const TargetRegisterClass &RegClass) {
584   if (!RegClassInfoValid) {
585     RegClassInfo.runOnMachineFunction(*MF);
586     RegClassInfoValid = true;
587   }
588 
589   for (unsigned Reg : RegClassInfo.getOrder(&RegClass))
590     if (!LiveRegs.contains(Reg))
591       return Reg;
592   return 0;
593 }
594 
595 /// Compute live registers just before instruction \p Before (in normal schedule
596 /// direction). Computes backwards so multiple queries in the same block must
597 /// come in reverse order.
598 void ARMLoadStoreOpt::moveLiveRegsBefore(const MachineBasicBlock &MBB,
599     MachineBasicBlock::const_iterator Before) {
600   // Initialize if we never queried in this block.
601   if (!LiveRegsValid) {
602     LiveRegs.init(*TRI);
603     LiveRegs.addLiveOuts(MBB);
604     LiveRegPos = MBB.end();
605     LiveRegsValid = true;
606   }
607   // Move backward just before the "Before" position.
608   while (LiveRegPos != Before) {
609     --LiveRegPos;
610     LiveRegs.stepBackward(*LiveRegPos);
611   }
612 }
613 
614 static bool ContainsReg(const ArrayRef<std::pair<unsigned, bool>> &Regs,
615                         unsigned Reg) {
616   for (const std::pair<unsigned, bool> &R : Regs)
617     if (R.first == Reg)
618       return true;
619   return false;
620 }
621 
622 /// Create and insert a LDM or STM with Base as base register and registers in
623 /// Regs as the register operands that would be loaded / stored.  It returns
624 /// true if the transformation is done.
625 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreMulti(
626     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
627     int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
628     ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
629     ArrayRef<std::pair<unsigned, bool>> Regs,
630     ArrayRef<MachineInstr*> Instrs) {
631   unsigned NumRegs = Regs.size();
632   assert(NumRegs > 1);
633 
634   // For Thumb1 targets, it might be necessary to clobber the CPSR to merge.
635   // Compute liveness information for that register to make the decision.
636   bool SafeToClobberCPSR = !isThumb1 ||
637     (MBB.computeRegisterLiveness(TRI, ARM::CPSR, InsertBefore, 20) ==
638      MachineBasicBlock::LQR_Dead);
639 
640   bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback.
641 
642   // Exception: If the base register is in the input reglist, Thumb1 LDM is
643   // non-writeback.
644   // It's also not possible to merge an STR of the base register in Thumb1.
645   if (isThumb1 && ContainsReg(Regs, Base)) {
646     assert(Base != ARM::SP && "Thumb1 does not allow SP in register list");
647     if (Opcode == ARM::tLDRi)
648       Writeback = false;
649     else if (Opcode == ARM::tSTRi)
650       return nullptr;
651   }
652 
653   ARM_AM::AMSubMode Mode = ARM_AM::ia;
654   // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA.
655   bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
656   bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1;
657 
658   if (Offset == 4 && haveIBAndDA) {
659     Mode = ARM_AM::ib;
660   } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) {
661     Mode = ARM_AM::da;
662   } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) {
663     // VLDM/VSTM do not support DB mode without also updating the base reg.
664     Mode = ARM_AM::db;
665   } else if (Offset != 0 || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) {
666     // Check if this is a supported opcode before inserting instructions to
667     // calculate a new base register.
668     if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return nullptr;
669 
670     // If starting offset isn't zero, insert a MI to materialize a new base.
671     // But only do so if it is cost effective, i.e. merging more than two
672     // loads / stores.
673     if (NumRegs <= 2)
674       return nullptr;
675 
676     // On Thumb1, it's not worth materializing a new base register without
677     // clobbering the CPSR (i.e. not using ADDS/SUBS).
678     if (!SafeToClobberCPSR)
679       return nullptr;
680 
681     unsigned NewBase;
682     if (isi32Load(Opcode)) {
683       // If it is a load, then just use one of the destination registers
684       // as the new base. Will no longer be writeback in Thumb1.
685       NewBase = Regs[NumRegs-1].first;
686       Writeback = false;
687     } else {
688       // Find a free register that we can use as scratch register.
689       moveLiveRegsBefore(MBB, InsertBefore);
690       // The merged instruction does not exist yet but will use several Regs if
691       // it is a Store.
692       if (!isLoadSingle(Opcode))
693         for (const std::pair<unsigned, bool> &R : Regs)
694           LiveRegs.addReg(R.first);
695 
696       NewBase = findFreeReg(isThumb1 ? ARM::tGPRRegClass : ARM::GPRRegClass);
697       if (NewBase == 0)
698         return nullptr;
699     }
700 
701     int BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2ADDspImm
702                                                           : ARM::t2ADDri)
703                            : (isThumb1 && Base == ARM::SP)
704                                  ? ARM::tADDrSPi
705                                  : (isThumb1 && Offset < 8)
706                                        ? ARM::tADDi3
707                                        : isThumb1 ? ARM::tADDi8 : ARM::ADDri;
708 
709     if (Offset < 0) {
710       // FIXME: There are no Thumb1 load/store instructions with negative
711       // offsets. So the Base != ARM::SP might be unnecessary.
712       Offset = -Offset;
713       BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2SUBspImm
714                                                         : ARM::t2SUBri)
715                          : (isThumb1 && Offset < 8 && Base != ARM::SP)
716                                ? ARM::tSUBi3
717                                : isThumb1 ? ARM::tSUBi8 : ARM::SUBri;
718     }
719 
720     if (!TL->isLegalAddImmediate(Offset))
721       // FIXME: Try add with register operand?
722       return nullptr; // Probably not worth it then.
723 
724     // We can only append a kill flag to the add/sub input if the value is not
725     // used in the register list of the stm as well.
726     bool KillOldBase = BaseKill &&
727       (!isi32Store(Opcode) || !ContainsReg(Regs, Base));
728 
729     if (isThumb1) {
730       // Thumb1: depending on immediate size, use either
731       //   ADDS NewBase, Base, #imm3
732       // or
733       //   MOV  NewBase, Base
734       //   ADDS NewBase, #imm8.
735       if (Base != NewBase &&
736           (BaseOpc == ARM::tADDi8 || BaseOpc == ARM::tSUBi8)) {
737         // Need to insert a MOV to the new base first.
738         if (isARMLowRegister(NewBase) && isARMLowRegister(Base) &&
739             !STI->hasV6Ops()) {
740           // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr
741           if (Pred != ARMCC::AL)
742             return nullptr;
743           BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVSr), NewBase)
744             .addReg(Base, getKillRegState(KillOldBase));
745         } else
746           BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVr), NewBase)
747               .addReg(Base, getKillRegState(KillOldBase))
748               .add(predOps(Pred, PredReg));
749 
750         // The following ADDS/SUBS becomes an update.
751         Base = NewBase;
752         KillOldBase = true;
753       }
754       if (BaseOpc == ARM::tADDrSPi) {
755         assert(Offset % 4 == 0 && "tADDrSPi offset is scaled by 4");
756         BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
757             .addReg(Base, getKillRegState(KillOldBase))
758             .addImm(Offset / 4)
759             .add(predOps(Pred, PredReg));
760       } else
761         BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
762             .add(t1CondCodeOp(true))
763             .addReg(Base, getKillRegState(KillOldBase))
764             .addImm(Offset)
765             .add(predOps(Pred, PredReg));
766     } else {
767       BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
768           .addReg(Base, getKillRegState(KillOldBase))
769           .addImm(Offset)
770           .add(predOps(Pred, PredReg))
771           .add(condCodeOp());
772     }
773     Base = NewBase;
774     BaseKill = true; // New base is always killed straight away.
775   }
776 
777   bool isDef = isLoadSingle(Opcode);
778 
779   // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with
780   // base register writeback.
781   Opcode = getLoadStoreMultipleOpcode(Opcode, Mode);
782   if (!Opcode)
783     return nullptr;
784 
785   // Check if a Thumb1 LDM/STM merge is safe. This is the case if:
786   // - There is no writeback (LDM of base register),
787   // - the base register is killed by the merged instruction,
788   // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS
789   //   to reset the base register.
790   // Otherwise, don't merge.
791   // It's safe to return here since the code to materialize a new base register
792   // above is also conditional on SafeToClobberCPSR.
793   if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill)
794     return nullptr;
795 
796   MachineInstrBuilder MIB;
797 
798   if (Writeback) {
799     assert(isThumb1 && "expected Writeback only inThumb1");
800     if (Opcode == ARM::tLDMIA) {
801       assert(!(ContainsReg(Regs, Base)) && "Thumb1 can't LDM ! with Base in Regs");
802       // Update tLDMIA with writeback if necessary.
803       Opcode = ARM::tLDMIA_UPD;
804     }
805 
806     MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode));
807 
808     // Thumb1: we might need to set base writeback when building the MI.
809     MIB.addReg(Base, getDefRegState(true))
810        .addReg(Base, getKillRegState(BaseKill));
811 
812     // The base isn't dead after a merged instruction with writeback.
813     // Insert a sub instruction after the newly formed instruction to reset.
814     if (!BaseKill)
815       UpdateBaseRegUses(MBB, InsertBefore, DL, Base, NumRegs, Pred, PredReg);
816   } else {
817     // No writeback, simply build the MachineInstr.
818     MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode));
819     MIB.addReg(Base, getKillRegState(BaseKill));
820   }
821 
822   MIB.addImm(Pred).addReg(PredReg);
823 
824   for (const std::pair<unsigned, bool> &R : Regs)
825     MIB.addReg(R.first, getDefRegState(isDef) | getKillRegState(R.second));
826 
827   MIB.cloneMergedMemRefs(Instrs);
828 
829   return MIB.getInstr();
830 }
831 
832 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreDouble(
833     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
834     int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
835     ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
836     ArrayRef<std::pair<unsigned, bool>> Regs,
837     ArrayRef<MachineInstr*> Instrs) const {
838   bool IsLoad = isi32Load(Opcode);
839   assert((IsLoad || isi32Store(Opcode)) && "Must have integer load or store");
840   unsigned LoadStoreOpcode = IsLoad ? ARM::t2LDRDi8 : ARM::t2STRDi8;
841 
842   assert(Regs.size() == 2);
843   MachineInstrBuilder MIB = BuildMI(MBB, InsertBefore, DL,
844                                     TII->get(LoadStoreOpcode));
845   if (IsLoad) {
846     MIB.addReg(Regs[0].first, RegState::Define)
847        .addReg(Regs[1].first, RegState::Define);
848   } else {
849     MIB.addReg(Regs[0].first, getKillRegState(Regs[0].second))
850        .addReg(Regs[1].first, getKillRegState(Regs[1].second));
851   }
852   MIB.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
853   MIB.cloneMergedMemRefs(Instrs);
854   return MIB.getInstr();
855 }
856 
857 /// Call MergeOps and update MemOps and merges accordingly on success.
858 MachineInstr *ARMLoadStoreOpt::MergeOpsUpdate(const MergeCandidate &Cand) {
859   const MachineInstr *First = Cand.Instrs.front();
860   unsigned Opcode = First->getOpcode();
861   bool IsLoad = isLoadSingle(Opcode);
862   SmallVector<std::pair<unsigned, bool>, 8> Regs;
863   SmallVector<unsigned, 4> ImpDefs;
864   DenseSet<unsigned> KilledRegs;
865   DenseSet<unsigned> UsedRegs;
866   // Determine list of registers and list of implicit super-register defs.
867   for (const MachineInstr *MI : Cand.Instrs) {
868     const MachineOperand &MO = getLoadStoreRegOp(*MI);
869     Register Reg = MO.getReg();
870     bool IsKill = MO.isKill();
871     if (IsKill)
872       KilledRegs.insert(Reg);
873     Regs.push_back(std::make_pair(Reg, IsKill));
874     UsedRegs.insert(Reg);
875 
876     if (IsLoad) {
877       // Collect any implicit defs of super-registers, after merging we can't
878       // be sure anymore that we properly preserved these live ranges and must
879       // removed these implicit operands.
880       for (const MachineOperand &MO : MI->implicit_operands()) {
881         if (!MO.isReg() || !MO.isDef() || MO.isDead())
882           continue;
883         assert(MO.isImplicit());
884         Register DefReg = MO.getReg();
885 
886         if (is_contained(ImpDefs, DefReg))
887           continue;
888         // We can ignore cases where the super-reg is read and written.
889         if (MI->readsRegister(DefReg))
890           continue;
891         ImpDefs.push_back(DefReg);
892       }
893     }
894   }
895 
896   // Attempt the merge.
897   using iterator = MachineBasicBlock::iterator;
898 
899   MachineInstr *LatestMI = Cand.Instrs[Cand.LatestMIIdx];
900   iterator InsertBefore = std::next(iterator(LatestMI));
901   MachineBasicBlock &MBB = *LatestMI->getParent();
902   unsigned Offset = getMemoryOpOffset(*First);
903   Register Base = getLoadStoreBaseOp(*First).getReg();
904   bool BaseKill = LatestMI->killsRegister(Base);
905   Register PredReg;
906   ARMCC::CondCodes Pred = getInstrPredicate(*First, PredReg);
907   DebugLoc DL = First->getDebugLoc();
908   MachineInstr *Merged = nullptr;
909   if (Cand.CanMergeToLSDouble)
910     Merged = CreateLoadStoreDouble(MBB, InsertBefore, Offset, Base, BaseKill,
911                                    Opcode, Pred, PredReg, DL, Regs,
912                                    Cand.Instrs);
913   if (!Merged && Cand.CanMergeToLSMulti)
914     Merged = CreateLoadStoreMulti(MBB, InsertBefore, Offset, Base, BaseKill,
915                                   Opcode, Pred, PredReg, DL, Regs, Cand.Instrs);
916   if (!Merged)
917     return nullptr;
918 
919   // Determine earliest instruction that will get removed. We then keep an
920   // iterator just above it so the following erases don't invalidated it.
921   iterator EarliestI(Cand.Instrs[Cand.EarliestMIIdx]);
922   bool EarliestAtBegin = false;
923   if (EarliestI == MBB.begin()) {
924     EarliestAtBegin = true;
925   } else {
926     EarliestI = std::prev(EarliestI);
927   }
928 
929   // Remove instructions which have been merged.
930   for (MachineInstr *MI : Cand.Instrs)
931     MBB.erase(MI);
932 
933   // Determine range between the earliest removed instruction and the new one.
934   if (EarliestAtBegin)
935     EarliestI = MBB.begin();
936   else
937     EarliestI = std::next(EarliestI);
938   auto FixupRange = make_range(EarliestI, iterator(Merged));
939 
940   if (isLoadSingle(Opcode)) {
941     // If the previous loads defined a super-reg, then we have to mark earlier
942     // operands undef; Replicate the super-reg def on the merged instruction.
943     for (MachineInstr &MI : FixupRange) {
944       for (unsigned &ImpDefReg : ImpDefs) {
945         for (MachineOperand &MO : MI.implicit_operands()) {
946           if (!MO.isReg() || MO.getReg() != ImpDefReg)
947             continue;
948           if (MO.readsReg())
949             MO.setIsUndef();
950           else if (MO.isDef())
951             ImpDefReg = 0;
952         }
953       }
954     }
955 
956     MachineInstrBuilder MIB(*Merged->getParent()->getParent(), Merged);
957     for (unsigned ImpDef : ImpDefs)
958       MIB.addReg(ImpDef, RegState::ImplicitDefine);
959   } else {
960     // Remove kill flags: We are possibly storing the values later now.
961     assert(isi32Store(Opcode) || Opcode == ARM::VSTRS || Opcode == ARM::VSTRD);
962     for (MachineInstr &MI : FixupRange) {
963       for (MachineOperand &MO : MI.uses()) {
964         if (!MO.isReg() || !MO.isKill())
965           continue;
966         if (UsedRegs.count(MO.getReg()))
967           MO.setIsKill(false);
968       }
969     }
970     assert(ImpDefs.empty());
971   }
972 
973   return Merged;
974 }
975 
976 static bool isValidLSDoubleOffset(int Offset) {
977   unsigned Value = abs(Offset);
978   // t2LDRDi8/t2STRDi8 supports an 8 bit immediate which is internally
979   // multiplied by 4.
980   return (Value % 4) == 0 && Value < 1024;
981 }
982 
983 /// Return true for loads/stores that can be combined to a double/multi
984 /// operation without increasing the requirements for alignment.
985 static bool mayCombineMisaligned(const TargetSubtargetInfo &STI,
986                                  const MachineInstr &MI) {
987   // vldr/vstr trap on misaligned pointers anyway, forming vldm makes no
988   // difference.
989   unsigned Opcode = MI.getOpcode();
990   if (!isi32Load(Opcode) && !isi32Store(Opcode))
991     return true;
992 
993   // Stack pointer alignment is out of the programmers control so we can trust
994   // SP-relative loads/stores.
995   if (getLoadStoreBaseOp(MI).getReg() == ARM::SP &&
996       STI.getFrameLowering()->getTransientStackAlign() >= Align(4))
997     return true;
998   return false;
999 }
1000 
1001 /// Find candidates for load/store multiple merge in list of MemOpQueueEntries.
1002 void ARMLoadStoreOpt::FormCandidates(const MemOpQueue &MemOps) {
1003   const MachineInstr *FirstMI = MemOps[0].MI;
1004   unsigned Opcode = FirstMI->getOpcode();
1005   bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
1006   unsigned Size = getLSMultipleTransferSize(FirstMI);
1007 
1008   unsigned SIndex = 0;
1009   unsigned EIndex = MemOps.size();
1010   do {
1011     // Look at the first instruction.
1012     const MachineInstr *MI = MemOps[SIndex].MI;
1013     int Offset = MemOps[SIndex].Offset;
1014     const MachineOperand &PMO = getLoadStoreRegOp(*MI);
1015     Register PReg = PMO.getReg();
1016     unsigned PRegNum = PMO.isUndef() ? std::numeric_limits<unsigned>::max()
1017                                      : TRI->getEncodingValue(PReg);
1018     unsigned Latest = SIndex;
1019     unsigned Earliest = SIndex;
1020     unsigned Count = 1;
1021     bool CanMergeToLSDouble =
1022       STI->isThumb2() && isNotVFP && isValidLSDoubleOffset(Offset);
1023     // ARM errata 602117: LDRD with base in list may result in incorrect base
1024     // register when interrupted or faulted.
1025     if (STI->isCortexM3() && isi32Load(Opcode) &&
1026         PReg == getLoadStoreBaseOp(*MI).getReg())
1027       CanMergeToLSDouble = false;
1028 
1029     bool CanMergeToLSMulti = true;
1030     // On swift vldm/vstm starting with an odd register number as that needs
1031     // more uops than single vldrs.
1032     if (STI->hasSlowOddRegister() && !isNotVFP && (PRegNum % 2) == 1)
1033       CanMergeToLSMulti = false;
1034 
1035     // LDRD/STRD do not allow SP/PC. LDM/STM do not support it or have it
1036     // deprecated; LDM to PC is fine but cannot happen here.
1037     if (PReg == ARM::SP || PReg == ARM::PC)
1038       CanMergeToLSMulti = CanMergeToLSDouble = false;
1039 
1040     // Should we be conservative?
1041     if (AssumeMisalignedLoadStores && !mayCombineMisaligned(*STI, *MI))
1042       CanMergeToLSMulti = CanMergeToLSDouble = false;
1043 
1044     // vldm / vstm limit are 32 for S variants, 16 for D variants.
1045     unsigned Limit;
1046     switch (Opcode) {
1047     default:
1048       Limit = UINT_MAX;
1049       break;
1050     case ARM::VLDRD:
1051     case ARM::VSTRD:
1052       Limit = 16;
1053       break;
1054     }
1055 
1056     // Merge following instructions where possible.
1057     for (unsigned I = SIndex+1; I < EIndex; ++I, ++Count) {
1058       int NewOffset = MemOps[I].Offset;
1059       if (NewOffset != Offset + (int)Size)
1060         break;
1061       const MachineOperand &MO = getLoadStoreRegOp(*MemOps[I].MI);
1062       Register Reg = MO.getReg();
1063       if (Reg == ARM::SP || Reg == ARM::PC)
1064         break;
1065       if (Count == Limit)
1066         break;
1067 
1068       // See if the current load/store may be part of a multi load/store.
1069       unsigned RegNum = MO.isUndef() ? std::numeric_limits<unsigned>::max()
1070                                      : TRI->getEncodingValue(Reg);
1071       bool PartOfLSMulti = CanMergeToLSMulti;
1072       if (PartOfLSMulti) {
1073         // Register numbers must be in ascending order.
1074         if (RegNum <= PRegNum)
1075           PartOfLSMulti = false;
1076         // For VFP / NEON load/store multiples, the registers must be
1077         // consecutive and within the limit on the number of registers per
1078         // instruction.
1079         else if (!isNotVFP && RegNum != PRegNum+1)
1080           PartOfLSMulti = false;
1081       }
1082       // See if the current load/store may be part of a double load/store.
1083       bool PartOfLSDouble = CanMergeToLSDouble && Count <= 1;
1084 
1085       if (!PartOfLSMulti && !PartOfLSDouble)
1086         break;
1087       CanMergeToLSMulti &= PartOfLSMulti;
1088       CanMergeToLSDouble &= PartOfLSDouble;
1089       // Track MemOp with latest and earliest position (Positions are
1090       // counted in reverse).
1091       unsigned Position = MemOps[I].Position;
1092       if (Position < MemOps[Latest].Position)
1093         Latest = I;
1094       else if (Position > MemOps[Earliest].Position)
1095         Earliest = I;
1096       // Prepare for next MemOp.
1097       Offset += Size;
1098       PRegNum = RegNum;
1099     }
1100 
1101     // Form a candidate from the Ops collected so far.
1102     MergeCandidate *Candidate = new(Allocator.Allocate()) MergeCandidate;
1103     for (unsigned C = SIndex, CE = SIndex + Count; C < CE; ++C)
1104       Candidate->Instrs.push_back(MemOps[C].MI);
1105     Candidate->LatestMIIdx = Latest - SIndex;
1106     Candidate->EarliestMIIdx = Earliest - SIndex;
1107     Candidate->InsertPos = MemOps[Latest].Position;
1108     if (Count == 1)
1109       CanMergeToLSMulti = CanMergeToLSDouble = false;
1110     Candidate->CanMergeToLSMulti = CanMergeToLSMulti;
1111     Candidate->CanMergeToLSDouble = CanMergeToLSDouble;
1112     Candidates.push_back(Candidate);
1113     // Continue after the chain.
1114     SIndex += Count;
1115   } while (SIndex < EIndex);
1116 }
1117 
1118 static unsigned getUpdatingLSMultipleOpcode(unsigned Opc,
1119                                             ARM_AM::AMSubMode Mode) {
1120   switch (Opc) {
1121   default: llvm_unreachable("Unhandled opcode!");
1122   case ARM::LDMIA:
1123   case ARM::LDMDA:
1124   case ARM::LDMDB:
1125   case ARM::LDMIB:
1126     switch (Mode) {
1127     default: llvm_unreachable("Unhandled submode!");
1128     case ARM_AM::ia: return ARM::LDMIA_UPD;
1129     case ARM_AM::ib: return ARM::LDMIB_UPD;
1130     case ARM_AM::da: return ARM::LDMDA_UPD;
1131     case ARM_AM::db: return ARM::LDMDB_UPD;
1132     }
1133   case ARM::STMIA:
1134   case ARM::STMDA:
1135   case ARM::STMDB:
1136   case ARM::STMIB:
1137     switch (Mode) {
1138     default: llvm_unreachable("Unhandled submode!");
1139     case ARM_AM::ia: return ARM::STMIA_UPD;
1140     case ARM_AM::ib: return ARM::STMIB_UPD;
1141     case ARM_AM::da: return ARM::STMDA_UPD;
1142     case ARM_AM::db: return ARM::STMDB_UPD;
1143     }
1144   case ARM::t2LDMIA:
1145   case ARM::t2LDMDB:
1146     switch (Mode) {
1147     default: llvm_unreachable("Unhandled submode!");
1148     case ARM_AM::ia: return ARM::t2LDMIA_UPD;
1149     case ARM_AM::db: return ARM::t2LDMDB_UPD;
1150     }
1151   case ARM::t2STMIA:
1152   case ARM::t2STMDB:
1153     switch (Mode) {
1154     default: llvm_unreachable("Unhandled submode!");
1155     case ARM_AM::ia: return ARM::t2STMIA_UPD;
1156     case ARM_AM::db: return ARM::t2STMDB_UPD;
1157     }
1158   case ARM::VLDMSIA:
1159     switch (Mode) {
1160     default: llvm_unreachable("Unhandled submode!");
1161     case ARM_AM::ia: return ARM::VLDMSIA_UPD;
1162     case ARM_AM::db: return ARM::VLDMSDB_UPD;
1163     }
1164   case ARM::VLDMDIA:
1165     switch (Mode) {
1166     default: llvm_unreachable("Unhandled submode!");
1167     case ARM_AM::ia: return ARM::VLDMDIA_UPD;
1168     case ARM_AM::db: return ARM::VLDMDDB_UPD;
1169     }
1170   case ARM::VSTMSIA:
1171     switch (Mode) {
1172     default: llvm_unreachable("Unhandled submode!");
1173     case ARM_AM::ia: return ARM::VSTMSIA_UPD;
1174     case ARM_AM::db: return ARM::VSTMSDB_UPD;
1175     }
1176   case ARM::VSTMDIA:
1177     switch (Mode) {
1178     default: llvm_unreachable("Unhandled submode!");
1179     case ARM_AM::ia: return ARM::VSTMDIA_UPD;
1180     case ARM_AM::db: return ARM::VSTMDDB_UPD;
1181     }
1182   }
1183 }
1184 
1185 /// Check if the given instruction increments or decrements a register and
1186 /// return the amount it is incremented/decremented. Returns 0 if the CPSR flags
1187 /// generated by the instruction are possibly read as well.
1188 static int isIncrementOrDecrement(const MachineInstr &MI, Register Reg,
1189                                   ARMCC::CondCodes Pred, Register PredReg) {
1190   bool CheckCPSRDef;
1191   int Scale;
1192   switch (MI.getOpcode()) {
1193   case ARM::tADDi8:  Scale =  4; CheckCPSRDef = true; break;
1194   case ARM::tSUBi8:  Scale = -4; CheckCPSRDef = true; break;
1195   case ARM::t2SUBri:
1196   case ARM::t2SUBspImm:
1197   case ARM::SUBri:   Scale = -1; CheckCPSRDef = true; break;
1198   case ARM::t2ADDri:
1199   case ARM::t2ADDspImm:
1200   case ARM::ADDri:   Scale =  1; CheckCPSRDef = true; break;
1201   case ARM::tADDspi: Scale =  4; CheckCPSRDef = false; break;
1202   case ARM::tSUBspi: Scale = -4; CheckCPSRDef = false; break;
1203   default: return 0;
1204   }
1205 
1206   Register MIPredReg;
1207   if (MI.getOperand(0).getReg() != Reg ||
1208       MI.getOperand(1).getReg() != Reg ||
1209       getInstrPredicate(MI, MIPredReg) != Pred ||
1210       MIPredReg != PredReg)
1211     return 0;
1212 
1213   if (CheckCPSRDef && definesCPSR(MI))
1214     return 0;
1215   return MI.getOperand(2).getImm() * Scale;
1216 }
1217 
1218 /// Searches for an increment or decrement of \p Reg before \p MBBI.
1219 static MachineBasicBlock::iterator
1220 findIncDecBefore(MachineBasicBlock::iterator MBBI, Register Reg,
1221                  ARMCC::CondCodes Pred, Register PredReg, int &Offset) {
1222   Offset = 0;
1223   MachineBasicBlock &MBB = *MBBI->getParent();
1224   MachineBasicBlock::iterator BeginMBBI = MBB.begin();
1225   MachineBasicBlock::iterator EndMBBI = MBB.end();
1226   if (MBBI == BeginMBBI)
1227     return EndMBBI;
1228 
1229   // Skip debug values.
1230   MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI);
1231   while (PrevMBBI->isDebugInstr() && PrevMBBI != BeginMBBI)
1232     --PrevMBBI;
1233 
1234   Offset = isIncrementOrDecrement(*PrevMBBI, Reg, Pred, PredReg);
1235   return Offset == 0 ? EndMBBI : PrevMBBI;
1236 }
1237 
1238 /// Searches for a increment or decrement of \p Reg after \p MBBI.
1239 static MachineBasicBlock::iterator
1240 findIncDecAfter(MachineBasicBlock::iterator MBBI, Register Reg,
1241                 ARMCC::CondCodes Pred, Register PredReg, int &Offset,
1242                 const TargetRegisterInfo *TRI) {
1243   Offset = 0;
1244   MachineBasicBlock &MBB = *MBBI->getParent();
1245   MachineBasicBlock::iterator EndMBBI = MBB.end();
1246   MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
1247   while (NextMBBI != EndMBBI) {
1248     // Skip debug values.
1249     while (NextMBBI != EndMBBI && NextMBBI->isDebugInstr())
1250       ++NextMBBI;
1251     if (NextMBBI == EndMBBI)
1252       return EndMBBI;
1253 
1254     unsigned Off = isIncrementOrDecrement(*NextMBBI, Reg, Pred, PredReg);
1255     if (Off) {
1256       Offset = Off;
1257       return NextMBBI;
1258     }
1259 
1260     // SP can only be combined if it is the next instruction after the original
1261     // MBBI, otherwise we may be incrementing the stack pointer (invalidating
1262     // anything below the new pointer) when its frame elements are still in
1263     // use. Other registers can attempt to look further, until a different use
1264     // or def of the register is found.
1265     if (Reg == ARM::SP || NextMBBI->readsRegister(Reg, TRI) ||
1266         NextMBBI->definesRegister(Reg, TRI))
1267       return EndMBBI;
1268 
1269     ++NextMBBI;
1270   }
1271   return EndMBBI;
1272 }
1273 
1274 /// Fold proceeding/trailing inc/dec of base register into the
1275 /// LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible:
1276 ///
1277 /// stmia rn, <ra, rb, rc>
1278 /// rn := rn + 4 * 3;
1279 /// =>
1280 /// stmia rn!, <ra, rb, rc>
1281 ///
1282 /// rn := rn - 4 * 3;
1283 /// ldmia rn, <ra, rb, rc>
1284 /// =>
1285 /// ldmdb rn!, <ra, rb, rc>
1286 bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineInstr *MI) {
1287   // Thumb1 is already using updating loads/stores.
1288   if (isThumb1) return false;
1289   LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI);
1290 
1291   const MachineOperand &BaseOP = MI->getOperand(0);
1292   Register Base = BaseOP.getReg();
1293   bool BaseKill = BaseOP.isKill();
1294   Register PredReg;
1295   ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1296   unsigned Opcode = MI->getOpcode();
1297   DebugLoc DL = MI->getDebugLoc();
1298 
1299   // Can't use an updating ld/st if the base register is also a dest
1300   // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined.
1301   for (unsigned i = 2, e = MI->getNumOperands(); i != e; ++i)
1302     if (MI->getOperand(i).getReg() == Base)
1303       return false;
1304 
1305   int Bytes = getLSMultipleTransferSize(MI);
1306   MachineBasicBlock &MBB = *MI->getParent();
1307   MachineBasicBlock::iterator MBBI(MI);
1308   int Offset;
1309   MachineBasicBlock::iterator MergeInstr
1310     = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset);
1311   ARM_AM::AMSubMode Mode = getLoadStoreMultipleSubMode(Opcode);
1312   if (Mode == ARM_AM::ia && Offset == -Bytes) {
1313     Mode = ARM_AM::db;
1314   } else if (Mode == ARM_AM::ib && Offset == -Bytes) {
1315     Mode = ARM_AM::da;
1316   } else {
1317     MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1318     if (((Mode != ARM_AM::ia && Mode != ARM_AM::ib) || Offset != Bytes) &&
1319         ((Mode != ARM_AM::da && Mode != ARM_AM::db) || Offset != -Bytes)) {
1320 
1321       // We couldn't find an inc/dec to merge. But if the base is dead, we
1322       // can still change to a writeback form as that will save us 2 bytes
1323       // of code size. It can create WAW hazards though, so only do it if
1324       // we're minimizing code size.
1325       if (!STI->hasMinSize() || !BaseKill)
1326         return false;
1327 
1328       bool HighRegsUsed = false;
1329       for (unsigned i = 2, e = MI->getNumOperands(); i != e; ++i)
1330         if (MI->getOperand(i).getReg() >= ARM::R8) {
1331           HighRegsUsed = true;
1332           break;
1333         }
1334 
1335       if (!HighRegsUsed)
1336         MergeInstr = MBB.end();
1337       else
1338         return false;
1339     }
1340   }
1341   if (MergeInstr != MBB.end()) {
1342     LLVM_DEBUG(dbgs() << "  Erasing old increment: " << *MergeInstr);
1343     MBB.erase(MergeInstr);
1344   }
1345 
1346   unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode);
1347   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
1348     .addReg(Base, getDefRegState(true)) // WB base register
1349     .addReg(Base, getKillRegState(BaseKill))
1350     .addImm(Pred).addReg(PredReg);
1351 
1352   // Transfer the rest of operands.
1353   for (unsigned OpNum = 3, e = MI->getNumOperands(); OpNum != e; ++OpNum)
1354     MIB.add(MI->getOperand(OpNum));
1355 
1356   // Transfer memoperands.
1357   MIB.setMemRefs(MI->memoperands());
1358 
1359   LLVM_DEBUG(dbgs() << "  Added new load/store: " << *MIB);
1360   MBB.erase(MBBI);
1361   return true;
1362 }
1363 
1364 static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc,
1365                                              ARM_AM::AddrOpc Mode) {
1366   switch (Opc) {
1367   case ARM::LDRi12:
1368     return ARM::LDR_PRE_IMM;
1369   case ARM::STRi12:
1370     return ARM::STR_PRE_IMM;
1371   case ARM::VLDRS:
1372     return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
1373   case ARM::VLDRD:
1374     return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
1375   case ARM::VSTRS:
1376     return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
1377   case ARM::VSTRD:
1378     return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
1379   case ARM::t2LDRi8:
1380   case ARM::t2LDRi12:
1381     return ARM::t2LDR_PRE;
1382   case ARM::t2STRi8:
1383   case ARM::t2STRi12:
1384     return ARM::t2STR_PRE;
1385   default: llvm_unreachable("Unhandled opcode!");
1386   }
1387 }
1388 
1389 static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc,
1390                                               ARM_AM::AddrOpc Mode) {
1391   switch (Opc) {
1392   case ARM::LDRi12:
1393     return ARM::LDR_POST_IMM;
1394   case ARM::STRi12:
1395     return ARM::STR_POST_IMM;
1396   case ARM::VLDRS:
1397     return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
1398   case ARM::VLDRD:
1399     return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
1400   case ARM::VSTRS:
1401     return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
1402   case ARM::VSTRD:
1403     return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
1404   case ARM::t2LDRi8:
1405   case ARM::t2LDRi12:
1406     return ARM::t2LDR_POST;
1407   case ARM::t2LDRBi8:
1408   case ARM::t2LDRBi12:
1409     return ARM::t2LDRB_POST;
1410   case ARM::t2LDRSBi8:
1411   case ARM::t2LDRSBi12:
1412     return ARM::t2LDRSB_POST;
1413   case ARM::t2LDRHi8:
1414   case ARM::t2LDRHi12:
1415     return ARM::t2LDRH_POST;
1416   case ARM::t2LDRSHi8:
1417   case ARM::t2LDRSHi12:
1418     return ARM::t2LDRSH_POST;
1419   case ARM::t2STRi8:
1420   case ARM::t2STRi12:
1421     return ARM::t2STR_POST;
1422   case ARM::t2STRBi8:
1423   case ARM::t2STRBi12:
1424     return ARM::t2STRB_POST;
1425   case ARM::t2STRHi8:
1426   case ARM::t2STRHi12:
1427     return ARM::t2STRH_POST;
1428 
1429   case ARM::MVE_VLDRBS16:
1430     return ARM::MVE_VLDRBS16_post;
1431   case ARM::MVE_VLDRBS32:
1432     return ARM::MVE_VLDRBS32_post;
1433   case ARM::MVE_VLDRBU16:
1434     return ARM::MVE_VLDRBU16_post;
1435   case ARM::MVE_VLDRBU32:
1436     return ARM::MVE_VLDRBU32_post;
1437   case ARM::MVE_VLDRHS32:
1438     return ARM::MVE_VLDRHS32_post;
1439   case ARM::MVE_VLDRHU32:
1440     return ARM::MVE_VLDRHU32_post;
1441   case ARM::MVE_VLDRBU8:
1442     return ARM::MVE_VLDRBU8_post;
1443   case ARM::MVE_VLDRHU16:
1444     return ARM::MVE_VLDRHU16_post;
1445   case ARM::MVE_VLDRWU32:
1446     return ARM::MVE_VLDRWU32_post;
1447   case ARM::MVE_VSTRB16:
1448     return ARM::MVE_VSTRB16_post;
1449   case ARM::MVE_VSTRB32:
1450     return ARM::MVE_VSTRB32_post;
1451   case ARM::MVE_VSTRH32:
1452     return ARM::MVE_VSTRH32_post;
1453   case ARM::MVE_VSTRBU8:
1454     return ARM::MVE_VSTRBU8_post;
1455   case ARM::MVE_VSTRHU16:
1456     return ARM::MVE_VSTRHU16_post;
1457   case ARM::MVE_VSTRWU32:
1458     return ARM::MVE_VSTRWU32_post;
1459 
1460   default: llvm_unreachable("Unhandled opcode!");
1461   }
1462 }
1463 
1464 /// Fold proceeding/trailing inc/dec of base register into the
1465 /// LDR/STR/FLD{D|S}/FST{D|S} op when possible:
1466 bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineInstr *MI) {
1467   // Thumb1 doesn't have updating LDR/STR.
1468   // FIXME: Use LDM/STM with single register instead.
1469   if (isThumb1) return false;
1470   LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI);
1471 
1472   Register Base = getLoadStoreBaseOp(*MI).getReg();
1473   bool BaseKill = getLoadStoreBaseOp(*MI).isKill();
1474   unsigned Opcode = MI->getOpcode();
1475   DebugLoc DL = MI->getDebugLoc();
1476   bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS ||
1477                 Opcode == ARM::VSTRD || Opcode == ARM::VSTRS);
1478   bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12);
1479   if (isi32Load(Opcode) || isi32Store(Opcode))
1480     if (MI->getOperand(2).getImm() != 0)
1481       return false;
1482   if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0)
1483     return false;
1484 
1485   // Can't do the merge if the destination register is the same as the would-be
1486   // writeback register.
1487   if (MI->getOperand(0).getReg() == Base)
1488     return false;
1489 
1490   Register PredReg;
1491   ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1492   int Bytes = getLSMultipleTransferSize(MI);
1493   MachineBasicBlock &MBB = *MI->getParent();
1494   MachineBasicBlock::iterator MBBI(MI);
1495   int Offset;
1496   MachineBasicBlock::iterator MergeInstr
1497     = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset);
1498   unsigned NewOpc;
1499   if (!isAM5 && Offset == Bytes) {
1500     NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::add);
1501   } else if (Offset == -Bytes) {
1502     NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::sub);
1503   } else {
1504     MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1505     if (Offset == Bytes) {
1506       NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::add);
1507     } else if (!isAM5 && Offset == -Bytes) {
1508       NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::sub);
1509     } else
1510       return false;
1511   }
1512   LLVM_DEBUG(dbgs() << "  Erasing old increment: " << *MergeInstr);
1513   MBB.erase(MergeInstr);
1514 
1515   ARM_AM::AddrOpc AddSub = Offset < 0 ? ARM_AM::sub : ARM_AM::add;
1516 
1517   bool isLd = isLoadSingle(Opcode);
1518   if (isAM5) {
1519     // VLDM[SD]_UPD, VSTM[SD]_UPD
1520     // (There are no base-updating versions of VLDR/VSTR instructions, but the
1521     // updating load/store-multiple instructions can be used with only one
1522     // register.)
1523     MachineOperand &MO = MI->getOperand(0);
1524     auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
1525                    .addReg(Base, getDefRegState(true)) // WB base register
1526                    .addReg(Base, getKillRegState(isLd ? BaseKill : false))
1527                    .addImm(Pred)
1528                    .addReg(PredReg)
1529                    .addReg(MO.getReg(), (isLd ? getDefRegState(true)
1530                                               : getKillRegState(MO.isKill())))
1531                    .cloneMemRefs(*MI);
1532     (void)MIB;
1533     LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1534   } else if (isLd) {
1535     if (isAM2) {
1536       // LDR_PRE, LDR_POST
1537       if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) {
1538         auto MIB =
1539             BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1540                 .addReg(Base, RegState::Define)
1541                 .addReg(Base)
1542                 .addImm(Offset)
1543                 .addImm(Pred)
1544                 .addReg(PredReg)
1545                 .cloneMemRefs(*MI);
1546         (void)MIB;
1547         LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1548       } else {
1549         int Imm = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
1550         auto MIB =
1551             BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1552                 .addReg(Base, RegState::Define)
1553                 .addReg(Base)
1554                 .addReg(0)
1555                 .addImm(Imm)
1556                 .add(predOps(Pred, PredReg))
1557                 .cloneMemRefs(*MI);
1558         (void)MIB;
1559         LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1560       }
1561     } else {
1562       // t2LDR_PRE, t2LDR_POST
1563       auto MIB =
1564           BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1565               .addReg(Base, RegState::Define)
1566               .addReg(Base)
1567               .addImm(Offset)
1568               .add(predOps(Pred, PredReg))
1569               .cloneMemRefs(*MI);
1570       (void)MIB;
1571       LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1572     }
1573   } else {
1574     MachineOperand &MO = MI->getOperand(0);
1575     // FIXME: post-indexed stores use am2offset_imm, which still encodes
1576     // the vestigal zero-reg offset register. When that's fixed, this clause
1577     // can be removed entirely.
1578     if (isAM2 && NewOpc == ARM::STR_POST_IMM) {
1579       int Imm = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
1580       // STR_PRE, STR_POST
1581       auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base)
1582                      .addReg(MO.getReg(), getKillRegState(MO.isKill()))
1583                      .addReg(Base)
1584                      .addReg(0)
1585                      .addImm(Imm)
1586                      .add(predOps(Pred, PredReg))
1587                      .cloneMemRefs(*MI);
1588       (void)MIB;
1589       LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1590     } else {
1591       // t2STR_PRE, t2STR_POST
1592       auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base)
1593                      .addReg(MO.getReg(), getKillRegState(MO.isKill()))
1594                      .addReg(Base)
1595                      .addImm(Offset)
1596                      .add(predOps(Pred, PredReg))
1597                      .cloneMemRefs(*MI);
1598       (void)MIB;
1599       LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1600     }
1601   }
1602   MBB.erase(MBBI);
1603 
1604   return true;
1605 }
1606 
1607 bool ARMLoadStoreOpt::MergeBaseUpdateLSDouble(MachineInstr &MI) const {
1608   unsigned Opcode = MI.getOpcode();
1609   assert((Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) &&
1610          "Must have t2STRDi8 or t2LDRDi8");
1611   if (MI.getOperand(3).getImm() != 0)
1612     return false;
1613   LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << MI);
1614 
1615   // Behaviour for writeback is undefined if base register is the same as one
1616   // of the others.
1617   const MachineOperand &BaseOp = MI.getOperand(2);
1618   Register Base = BaseOp.getReg();
1619   const MachineOperand &Reg0Op = MI.getOperand(0);
1620   const MachineOperand &Reg1Op = MI.getOperand(1);
1621   if (Reg0Op.getReg() == Base || Reg1Op.getReg() == Base)
1622     return false;
1623 
1624   Register PredReg;
1625   ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
1626   MachineBasicBlock::iterator MBBI(MI);
1627   MachineBasicBlock &MBB = *MI.getParent();
1628   int Offset;
1629   MachineBasicBlock::iterator MergeInstr = findIncDecBefore(MBBI, Base, Pred,
1630                                                             PredReg, Offset);
1631   unsigned NewOpc;
1632   if (Offset == 8 || Offset == -8) {
1633     NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_PRE : ARM::t2STRD_PRE;
1634   } else {
1635     MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1636     if (Offset == 8 || Offset == -8) {
1637       NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_POST : ARM::t2STRD_POST;
1638     } else
1639       return false;
1640   }
1641   LLVM_DEBUG(dbgs() << "  Erasing old increment: " << *MergeInstr);
1642   MBB.erase(MergeInstr);
1643 
1644   DebugLoc DL = MI.getDebugLoc();
1645   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1646   if (NewOpc == ARM::t2LDRD_PRE || NewOpc == ARM::t2LDRD_POST) {
1647     MIB.add(Reg0Op).add(Reg1Op).addReg(BaseOp.getReg(), RegState::Define);
1648   } else {
1649     assert(NewOpc == ARM::t2STRD_PRE || NewOpc == ARM::t2STRD_POST);
1650     MIB.addReg(BaseOp.getReg(), RegState::Define).add(Reg0Op).add(Reg1Op);
1651   }
1652   MIB.addReg(BaseOp.getReg(), RegState::Kill)
1653      .addImm(Offset).addImm(Pred).addReg(PredReg);
1654   assert(TII->get(Opcode).getNumOperands() == 6 &&
1655          TII->get(NewOpc).getNumOperands() == 7 &&
1656          "Unexpected number of operands in Opcode specification.");
1657 
1658   // Transfer implicit operands.
1659   for (const MachineOperand &MO : MI.implicit_operands())
1660     MIB.add(MO);
1661   MIB.cloneMemRefs(MI);
1662 
1663   LLVM_DEBUG(dbgs() << "  Added new load/store: " << *MIB);
1664   MBB.erase(MBBI);
1665   return true;
1666 }
1667 
1668 /// Returns true if instruction is a memory operation that this pass is capable
1669 /// of operating on.
1670 static bool isMemoryOp(const MachineInstr &MI) {
1671   unsigned Opcode = MI.getOpcode();
1672   switch (Opcode) {
1673   case ARM::VLDRS:
1674   case ARM::VSTRS:
1675   case ARM::VLDRD:
1676   case ARM::VSTRD:
1677   case ARM::LDRi12:
1678   case ARM::STRi12:
1679   case ARM::tLDRi:
1680   case ARM::tSTRi:
1681   case ARM::tLDRspi:
1682   case ARM::tSTRspi:
1683   case ARM::t2LDRi8:
1684   case ARM::t2LDRi12:
1685   case ARM::t2STRi8:
1686   case ARM::t2STRi12:
1687     break;
1688   default:
1689     return false;
1690   }
1691   if (!MI.getOperand(1).isReg())
1692     return false;
1693 
1694   // When no memory operands are present, conservatively assume unaligned,
1695   // volatile, unfoldable.
1696   if (!MI.hasOneMemOperand())
1697     return false;
1698 
1699   const MachineMemOperand &MMO = **MI.memoperands_begin();
1700 
1701   // Don't touch volatile memory accesses - we may be changing their order.
1702   // TODO: We could allow unordered and monotonic atomics here, but we need to
1703   // make sure the resulting ldm/stm is correctly marked as atomic.
1704   if (MMO.isVolatile() || MMO.isAtomic())
1705     return false;
1706 
1707   // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is
1708   // not.
1709   if (MMO.getAlign() < Align(4))
1710     return false;
1711 
1712   // str <undef> could probably be eliminated entirely, but for now we just want
1713   // to avoid making a mess of it.
1714   // FIXME: Use str <undef> as a wildcard to enable better stm folding.
1715   if (MI.getOperand(0).isReg() && MI.getOperand(0).isUndef())
1716     return false;
1717 
1718   // Likewise don't mess with references to undefined addresses.
1719   if (MI.getOperand(1).isUndef())
1720     return false;
1721 
1722   return true;
1723 }
1724 
1725 static void InsertLDR_STR(MachineBasicBlock &MBB,
1726                           MachineBasicBlock::iterator &MBBI, int Offset,
1727                           bool isDef, unsigned NewOpc, unsigned Reg,
1728                           bool RegDeadKill, bool RegUndef, unsigned BaseReg,
1729                           bool BaseKill, bool BaseUndef, ARMCC::CondCodes Pred,
1730                           unsigned PredReg, const TargetInstrInfo *TII,
1731                           MachineInstr *MI) {
1732   if (isDef) {
1733     MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
1734                                       TII->get(NewOpc))
1735       .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill))
1736       .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
1737     MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
1738     // FIXME: This is overly conservative; the new instruction accesses 4
1739     // bytes, not 8.
1740     MIB.cloneMemRefs(*MI);
1741   } else {
1742     MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
1743                                       TII->get(NewOpc))
1744       .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef))
1745       .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
1746     MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
1747     // FIXME: This is overly conservative; the new instruction accesses 4
1748     // bytes, not 8.
1749     MIB.cloneMemRefs(*MI);
1750   }
1751 }
1752 
1753 bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
1754                                           MachineBasicBlock::iterator &MBBI) {
1755   MachineInstr *MI = &*MBBI;
1756   unsigned Opcode = MI->getOpcode();
1757   // FIXME: Code/comments below check Opcode == t2STRDi8, but this check returns
1758   // if we see this opcode.
1759   if (Opcode != ARM::LDRD && Opcode != ARM::STRD && Opcode != ARM::t2LDRDi8)
1760     return false;
1761 
1762   const MachineOperand &BaseOp = MI->getOperand(2);
1763   Register BaseReg = BaseOp.getReg();
1764   Register EvenReg = MI->getOperand(0).getReg();
1765   Register OddReg = MI->getOperand(1).getReg();
1766   unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false);
1767   unsigned OddRegNum  = TRI->getDwarfRegNum(OddReg, false);
1768 
1769   // ARM errata 602117: LDRD with base in list may result in incorrect base
1770   // register when interrupted or faulted.
1771   bool Errata602117 = EvenReg == BaseReg &&
1772     (Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8) && STI->isCortexM3();
1773   // ARM LDRD/STRD needs consecutive registers.
1774   bool NonConsecutiveRegs = (Opcode == ARM::LDRD || Opcode == ARM::STRD) &&
1775     (EvenRegNum % 2 != 0 || EvenRegNum + 1 != OddRegNum);
1776 
1777   if (!Errata602117 && !NonConsecutiveRegs)
1778     return false;
1779 
1780   bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8;
1781   bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8;
1782   bool EvenDeadKill = isLd ?
1783     MI->getOperand(0).isDead() : MI->getOperand(0).isKill();
1784   bool EvenUndef = MI->getOperand(0).isUndef();
1785   bool OddDeadKill  = isLd ?
1786     MI->getOperand(1).isDead() : MI->getOperand(1).isKill();
1787   bool OddUndef = MI->getOperand(1).isUndef();
1788   bool BaseKill = BaseOp.isKill();
1789   bool BaseUndef = BaseOp.isUndef();
1790   assert((isT2 || MI->getOperand(3).getReg() == ARM::NoRegister) &&
1791          "register offset not handled below");
1792   int OffImm = getMemoryOpOffset(*MI);
1793   Register PredReg;
1794   ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1795 
1796   if (OddRegNum > EvenRegNum && OffImm == 0) {
1797     // Ascending register numbers and no offset. It's safe to change it to a
1798     // ldm or stm.
1799     unsigned NewOpc = (isLd)
1800       ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA)
1801       : (isT2 ? ARM::t2STMIA : ARM::STMIA);
1802     if (isLd) {
1803       BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
1804         .addReg(BaseReg, getKillRegState(BaseKill))
1805         .addImm(Pred).addReg(PredReg)
1806         .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill))
1807         .addReg(OddReg,  getDefRegState(isLd) | getDeadRegState(OddDeadKill))
1808         .cloneMemRefs(*MI);
1809       ++NumLDRD2LDM;
1810     } else {
1811       BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
1812         .addReg(BaseReg, getKillRegState(BaseKill))
1813         .addImm(Pred).addReg(PredReg)
1814         .addReg(EvenReg,
1815                 getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef))
1816         .addReg(OddReg,
1817                 getKillRegState(OddDeadKill)  | getUndefRegState(OddUndef))
1818         .cloneMemRefs(*MI);
1819       ++NumSTRD2STM;
1820     }
1821   } else {
1822     // Split into two instructions.
1823     unsigned NewOpc = (isLd)
1824       ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
1825       : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
1826     // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset,
1827     // so adjust and use t2LDRi12 here for that.
1828     unsigned NewOpc2 = (isLd)
1829       ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
1830       : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
1831     // If this is a load, make sure the first load does not clobber the base
1832     // register before the second load reads it.
1833     if (isLd && TRI->regsOverlap(EvenReg, BaseReg)) {
1834       assert(!TRI->regsOverlap(OddReg, BaseReg));
1835       InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill,
1836                     false, BaseReg, false, BaseUndef, Pred, PredReg, TII, MI);
1837       InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill,
1838                     false, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII,
1839                     MI);
1840     } else {
1841       if (OddReg == EvenReg && EvenDeadKill) {
1842         // If the two source operands are the same, the kill marker is
1843         // probably on the first one. e.g.
1844         // t2STRDi8 killed %r5, %r5, killed %r9, 0, 14, %reg0
1845         EvenDeadKill = false;
1846         OddDeadKill = true;
1847       }
1848       // Never kill the base register in the first instruction.
1849       if (EvenReg == BaseReg)
1850         EvenDeadKill = false;
1851       InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill,
1852                     EvenUndef, BaseReg, false, BaseUndef, Pred, PredReg, TII,
1853                     MI);
1854       InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill,
1855                     OddUndef, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII,
1856                     MI);
1857     }
1858     if (isLd)
1859       ++NumLDRD2LDR;
1860     else
1861       ++NumSTRD2STR;
1862   }
1863 
1864   MBBI = MBB.erase(MBBI);
1865   return true;
1866 }
1867 
1868 /// An optimization pass to turn multiple LDR / STR ops of the same base and
1869 /// incrementing offset into LDM / STM ops.
1870 bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
1871   MemOpQueue MemOps;
1872   unsigned CurrBase = 0;
1873   unsigned CurrOpc = ~0u;
1874   ARMCC::CondCodes CurrPred = ARMCC::AL;
1875   unsigned Position = 0;
1876   assert(Candidates.size() == 0);
1877   assert(MergeBaseCandidates.size() == 0);
1878   LiveRegsValid = false;
1879 
1880   for (MachineBasicBlock::iterator I = MBB.end(), MBBI; I != MBB.begin();
1881        I = MBBI) {
1882     // The instruction in front of the iterator is the one we look at.
1883     MBBI = std::prev(I);
1884     if (FixInvalidRegPairOp(MBB, MBBI))
1885       continue;
1886     ++Position;
1887 
1888     if (isMemoryOp(*MBBI)) {
1889       unsigned Opcode = MBBI->getOpcode();
1890       const MachineOperand &MO = MBBI->getOperand(0);
1891       Register Reg = MO.getReg();
1892       Register Base = getLoadStoreBaseOp(*MBBI).getReg();
1893       Register PredReg;
1894       ARMCC::CondCodes Pred = getInstrPredicate(*MBBI, PredReg);
1895       int Offset = getMemoryOpOffset(*MBBI);
1896       if (CurrBase == 0) {
1897         // Start of a new chain.
1898         CurrBase = Base;
1899         CurrOpc  = Opcode;
1900         CurrPred = Pred;
1901         MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position));
1902         continue;
1903       }
1904       // Note: No need to match PredReg in the next if.
1905       if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) {
1906         // Watch out for:
1907         //   r4 := ldr [r0, #8]
1908         //   r4 := ldr [r0, #4]
1909         // or
1910         //   r0 := ldr [r0]
1911         // If a load overrides the base register or a register loaded by
1912         // another load in our chain, we cannot take this instruction.
1913         bool Overlap = false;
1914         if (isLoadSingle(Opcode)) {
1915           Overlap = (Base == Reg);
1916           if (!Overlap) {
1917             for (const MemOpQueueEntry &E : MemOps) {
1918               if (TRI->regsOverlap(Reg, E.MI->getOperand(0).getReg())) {
1919                 Overlap = true;
1920                 break;
1921               }
1922             }
1923           }
1924         }
1925 
1926         if (!Overlap) {
1927           // Check offset and sort memory operation into the current chain.
1928           if (Offset > MemOps.back().Offset) {
1929             MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position));
1930             continue;
1931           } else {
1932             MemOpQueue::iterator MI, ME;
1933             for (MI = MemOps.begin(), ME = MemOps.end(); MI != ME; ++MI) {
1934               if (Offset < MI->Offset) {
1935                 // Found a place to insert.
1936                 break;
1937               }
1938               if (Offset == MI->Offset) {
1939                 // Collision, abort.
1940                 MI = ME;
1941                 break;
1942               }
1943             }
1944             if (MI != MemOps.end()) {
1945               MemOps.insert(MI, MemOpQueueEntry(*MBBI, Offset, Position));
1946               continue;
1947             }
1948           }
1949         }
1950       }
1951 
1952       // Don't advance the iterator; The op will start a new chain next.
1953       MBBI = I;
1954       --Position;
1955       // Fallthrough to look into existing chain.
1956     } else if (MBBI->isDebugInstr()) {
1957       continue;
1958     } else if (MBBI->getOpcode() == ARM::t2LDRDi8 ||
1959                MBBI->getOpcode() == ARM::t2STRDi8) {
1960       // ARMPreAllocLoadStoreOpt has already formed some LDRD/STRD instructions
1961       // remember them because we may still be able to merge add/sub into them.
1962       MergeBaseCandidates.push_back(&*MBBI);
1963     }
1964 
1965     // If we are here then the chain is broken; Extract candidates for a merge.
1966     if (MemOps.size() > 0) {
1967       FormCandidates(MemOps);
1968       // Reset for the next chain.
1969       CurrBase = 0;
1970       CurrOpc = ~0u;
1971       CurrPred = ARMCC::AL;
1972       MemOps.clear();
1973     }
1974   }
1975   if (MemOps.size() > 0)
1976     FormCandidates(MemOps);
1977 
1978   // Sort candidates so they get processed from end to begin of the basic
1979   // block later; This is necessary for liveness calculation.
1980   auto LessThan = [](const MergeCandidate* M0, const MergeCandidate *M1) {
1981     return M0->InsertPos < M1->InsertPos;
1982   };
1983   llvm::sort(Candidates, LessThan);
1984 
1985   // Go through list of candidates and merge.
1986   bool Changed = false;
1987   for (const MergeCandidate *Candidate : Candidates) {
1988     if (Candidate->CanMergeToLSMulti || Candidate->CanMergeToLSDouble) {
1989       MachineInstr *Merged = MergeOpsUpdate(*Candidate);
1990       // Merge preceding/trailing base inc/dec into the merged op.
1991       if (Merged) {
1992         Changed = true;
1993         unsigned Opcode = Merged->getOpcode();
1994         if (Opcode == ARM::t2STRDi8 || Opcode == ARM::t2LDRDi8)
1995           MergeBaseUpdateLSDouble(*Merged);
1996         else
1997           MergeBaseUpdateLSMultiple(Merged);
1998       } else {
1999         for (MachineInstr *MI : Candidate->Instrs) {
2000           if (MergeBaseUpdateLoadStore(MI))
2001             Changed = true;
2002         }
2003       }
2004     } else {
2005       assert(Candidate->Instrs.size() == 1);
2006       if (MergeBaseUpdateLoadStore(Candidate->Instrs.front()))
2007         Changed = true;
2008     }
2009   }
2010   Candidates.clear();
2011   // Try to fold add/sub into the LDRD/STRD formed by ARMPreAllocLoadStoreOpt.
2012   for (MachineInstr *MI : MergeBaseCandidates)
2013     MergeBaseUpdateLSDouble(*MI);
2014   MergeBaseCandidates.clear();
2015 
2016   return Changed;
2017 }
2018 
2019 /// If this is a exit BB, try merging the return ops ("bx lr" and "mov pc, lr")
2020 /// into the preceding stack restore so it directly restore the value of LR
2021 /// into pc.
2022 ///   ldmfd sp!, {..., lr}
2023 ///   bx lr
2024 /// or
2025 ///   ldmfd sp!, {..., lr}
2026 ///   mov pc, lr
2027 /// =>
2028 ///   ldmfd sp!, {..., pc}
2029 bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
2030   // Thumb1 LDM doesn't allow high registers.
2031   if (isThumb1) return false;
2032   if (MBB.empty()) return false;
2033 
2034   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
2035   if (MBBI != MBB.begin() && MBBI != MBB.end() &&
2036       (MBBI->getOpcode() == ARM::BX_RET ||
2037        MBBI->getOpcode() == ARM::tBX_RET ||
2038        MBBI->getOpcode() == ARM::MOVPCLR)) {
2039     MachineBasicBlock::iterator PrevI = std::prev(MBBI);
2040     // Ignore any debug instructions.
2041     while (PrevI->isDebugInstr() && PrevI != MBB.begin())
2042       --PrevI;
2043     MachineInstr &PrevMI = *PrevI;
2044     unsigned Opcode = PrevMI.getOpcode();
2045     if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD ||
2046         Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD ||
2047         Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
2048       MachineOperand &MO = PrevMI.getOperand(PrevMI.getNumOperands() - 1);
2049       if (MO.getReg() != ARM::LR)
2050         return false;
2051       unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET);
2052       assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) ||
2053               Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!");
2054       PrevMI.setDesc(TII->get(NewOpc));
2055       MO.setReg(ARM::PC);
2056       PrevMI.copyImplicitOps(*MBB.getParent(), *MBBI);
2057       MBB.erase(MBBI);
2058       // We now restore LR into PC so it is not live-out of the return block
2059       // anymore: Clear the CSI Restored bit.
2060       MachineFrameInfo &MFI = MBB.getParent()->getFrameInfo();
2061       // CSI should be fixed after PrologEpilog Insertion
2062       assert(MFI.isCalleeSavedInfoValid() && "CSI should be valid");
2063       for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
2064         if (Info.getReg() == ARM::LR) {
2065           Info.setRestored(false);
2066           break;
2067         }
2068       }
2069       return true;
2070     }
2071   }
2072   return false;
2073 }
2074 
2075 bool ARMLoadStoreOpt::CombineMovBx(MachineBasicBlock &MBB) {
2076   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
2077   if (MBBI == MBB.begin() || MBBI == MBB.end() ||
2078       MBBI->getOpcode() != ARM::tBX_RET)
2079     return false;
2080 
2081   MachineBasicBlock::iterator Prev = MBBI;
2082   --Prev;
2083   if (Prev->getOpcode() != ARM::tMOVr || !Prev->definesRegister(ARM::LR))
2084     return false;
2085 
2086   for (auto Use : Prev->uses())
2087     if (Use.isKill()) {
2088       assert(STI->hasV4TOps());
2089       BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::tBX))
2090           .addReg(Use.getReg(), RegState::Kill)
2091           .add(predOps(ARMCC::AL))
2092           .copyImplicitOps(*MBBI);
2093       MBB.erase(MBBI);
2094       MBB.erase(Prev);
2095       return true;
2096     }
2097 
2098   llvm_unreachable("tMOVr doesn't kill a reg before tBX_RET?");
2099 }
2100 
2101 bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2102   if (skipFunction(Fn.getFunction()))
2103     return false;
2104 
2105   MF = &Fn;
2106   STI = &static_cast<const ARMSubtarget &>(Fn.getSubtarget());
2107   TL = STI->getTargetLowering();
2108   AFI = Fn.getInfo<ARMFunctionInfo>();
2109   TII = STI->getInstrInfo();
2110   TRI = STI->getRegisterInfo();
2111 
2112   RegClassInfoValid = false;
2113   isThumb2 = AFI->isThumb2Function();
2114   isThumb1 = AFI->isThumbFunction() && !isThumb2;
2115 
2116   bool Modified = false;
2117   for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
2118        ++MFI) {
2119     MachineBasicBlock &MBB = *MFI;
2120     Modified |= LoadStoreMultipleOpti(MBB);
2121     if (STI->hasV5TOps())
2122       Modified |= MergeReturnIntoLDM(MBB);
2123     if (isThumb1)
2124       Modified |= CombineMovBx(MBB);
2125   }
2126 
2127   Allocator.DestroyAll();
2128   return Modified;
2129 }
2130 
2131 #define ARM_PREALLOC_LOAD_STORE_OPT_NAME                                       \
2132   "ARM pre- register allocation load / store optimization pass"
2133 
2134 namespace {
2135 
2136   /// Pre- register allocation pass that move load / stores from consecutive
2137   /// locations close to make it more likely they will be combined later.
2138   struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{
2139     static char ID;
2140 
2141     AliasAnalysis *AA;
2142     const DataLayout *TD;
2143     const TargetInstrInfo *TII;
2144     const TargetRegisterInfo *TRI;
2145     const ARMSubtarget *STI;
2146     MachineRegisterInfo *MRI;
2147     MachineDominatorTree *DT;
2148     MachineFunction *MF;
2149 
2150     ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {}
2151 
2152     bool runOnMachineFunction(MachineFunction &Fn) override;
2153 
2154     StringRef getPassName() const override {
2155       return ARM_PREALLOC_LOAD_STORE_OPT_NAME;
2156     }
2157 
2158     void getAnalysisUsage(AnalysisUsage &AU) const override {
2159       AU.addRequired<AAResultsWrapperPass>();
2160       AU.addRequired<MachineDominatorTree>();
2161       AU.addPreserved<MachineDominatorTree>();
2162       MachineFunctionPass::getAnalysisUsage(AU);
2163     }
2164 
2165   private:
2166     bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl,
2167                           unsigned &NewOpc, Register &EvenReg, Register &OddReg,
2168                           Register &BaseReg, int &Offset, Register &PredReg,
2169                           ARMCC::CondCodes &Pred, bool &isT2);
2170     bool RescheduleOps(MachineBasicBlock *MBB,
2171                        SmallVectorImpl<MachineInstr *> &Ops,
2172                        unsigned Base, bool isLd,
2173                        DenseMap<MachineInstr*, unsigned> &MI2LocMap);
2174     bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB);
2175     bool DistributeIncrements();
2176     bool DistributeIncrements(Register Base);
2177   };
2178 
2179 } // end anonymous namespace
2180 
2181 char ARMPreAllocLoadStoreOpt::ID = 0;
2182 
2183 INITIALIZE_PASS_BEGIN(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt",
2184                       ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false)
2185 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
2186 INITIALIZE_PASS_END(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt",
2187                     ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false)
2188 
2189 // Limit the number of instructions to be rescheduled.
2190 // FIXME: tune this limit, and/or come up with some better heuristics.
2191 static cl::opt<unsigned> InstReorderLimit("arm-prera-ldst-opt-reorder-limit",
2192                                           cl::init(8), cl::Hidden);
2193 
2194 bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2195   if (AssumeMisalignedLoadStores || skipFunction(Fn.getFunction()))
2196     return false;
2197 
2198   TD = &Fn.getDataLayout();
2199   STI = &static_cast<const ARMSubtarget &>(Fn.getSubtarget());
2200   TII = STI->getInstrInfo();
2201   TRI = STI->getRegisterInfo();
2202   MRI = &Fn.getRegInfo();
2203   DT = &getAnalysis<MachineDominatorTree>();
2204   MF  = &Fn;
2205   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2206 
2207   bool Modified = DistributeIncrements();
2208   for (MachineBasicBlock &MFI : Fn)
2209     Modified |= RescheduleLoadStoreInstrs(&MFI);
2210 
2211   return Modified;
2212 }
2213 
2214 static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base,
2215                                       MachineBasicBlock::iterator I,
2216                                       MachineBasicBlock::iterator E,
2217                                       SmallPtrSetImpl<MachineInstr*> &MemOps,
2218                                       SmallSet<unsigned, 4> &MemRegs,
2219                                       const TargetRegisterInfo *TRI,
2220                                       AliasAnalysis *AA) {
2221   // Are there stores / loads / calls between them?
2222   SmallSet<unsigned, 4> AddedRegPressure;
2223   while (++I != E) {
2224     if (I->isDebugInstr() || MemOps.count(&*I))
2225       continue;
2226     if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects())
2227       return false;
2228     if (I->mayStore() || (!isLd && I->mayLoad()))
2229       for (MachineInstr *MemOp : MemOps)
2230         if (I->mayAlias(AA, *MemOp, /*UseTBAA*/ false))
2231           return false;
2232     for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) {
2233       MachineOperand &MO = I->getOperand(j);
2234       if (!MO.isReg())
2235         continue;
2236       Register Reg = MO.getReg();
2237       if (MO.isDef() && TRI->regsOverlap(Reg, Base))
2238         return false;
2239       if (Reg != Base && !MemRegs.count(Reg))
2240         AddedRegPressure.insert(Reg);
2241     }
2242   }
2243 
2244   // Estimate register pressure increase due to the transformation.
2245   if (MemRegs.size() <= 4)
2246     // Ok if we are moving small number of instructions.
2247     return true;
2248   return AddedRegPressure.size() <= MemRegs.size() * 2;
2249 }
2250 
2251 bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord(
2252     MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc,
2253     Register &FirstReg, Register &SecondReg, Register &BaseReg, int &Offset,
2254     Register &PredReg, ARMCC::CondCodes &Pred, bool &isT2) {
2255   // Make sure we're allowed to generate LDRD/STRD.
2256   if (!STI->hasV5TEOps())
2257     return false;
2258 
2259   // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD
2260   unsigned Scale = 1;
2261   unsigned Opcode = Op0->getOpcode();
2262   if (Opcode == ARM::LDRi12) {
2263     NewOpc = ARM::LDRD;
2264   } else if (Opcode == ARM::STRi12) {
2265     NewOpc = ARM::STRD;
2266   } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) {
2267     NewOpc = ARM::t2LDRDi8;
2268     Scale = 4;
2269     isT2 = true;
2270   } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) {
2271     NewOpc = ARM::t2STRDi8;
2272     Scale = 4;
2273     isT2 = true;
2274   } else {
2275     return false;
2276   }
2277 
2278   // Make sure the base address satisfies i64 ld / st alignment requirement.
2279   // At the moment, we ignore the memoryoperand's value.
2280   // If we want to use AliasAnalysis, we should check it accordingly.
2281   if (!Op0->hasOneMemOperand() ||
2282       (*Op0->memoperands_begin())->isVolatile() ||
2283       (*Op0->memoperands_begin())->isAtomic())
2284     return false;
2285 
2286   Align Alignment = (*Op0->memoperands_begin())->getAlign();
2287   const Function &Func = MF->getFunction();
2288   Align ReqAlign =
2289       STI->hasV6Ops() ? TD->getABITypeAlign(Type::getInt64Ty(Func.getContext()))
2290                       : Align(8); // Pre-v6 need 8-byte align
2291   if (Alignment < ReqAlign)
2292     return false;
2293 
2294   // Then make sure the immediate offset fits.
2295   int OffImm = getMemoryOpOffset(*Op0);
2296   if (isT2) {
2297     int Limit = (1 << 8) * Scale;
2298     if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1)))
2299       return false;
2300     Offset = OffImm;
2301   } else {
2302     ARM_AM::AddrOpc AddSub = ARM_AM::add;
2303     if (OffImm < 0) {
2304       AddSub = ARM_AM::sub;
2305       OffImm = - OffImm;
2306     }
2307     int Limit = (1 << 8) * Scale;
2308     if (OffImm >= Limit || (OffImm & (Scale-1)))
2309       return false;
2310     Offset = ARM_AM::getAM3Opc(AddSub, OffImm);
2311   }
2312   FirstReg = Op0->getOperand(0).getReg();
2313   SecondReg = Op1->getOperand(0).getReg();
2314   if (FirstReg == SecondReg)
2315     return false;
2316   BaseReg = Op0->getOperand(1).getReg();
2317   Pred = getInstrPredicate(*Op0, PredReg);
2318   dl = Op0->getDebugLoc();
2319   return true;
2320 }
2321 
2322 bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB,
2323                                  SmallVectorImpl<MachineInstr *> &Ops,
2324                                  unsigned Base, bool isLd,
2325                                  DenseMap<MachineInstr*, unsigned> &MI2LocMap) {
2326   bool RetVal = false;
2327 
2328   // Sort by offset (in reverse order).
2329   llvm::sort(Ops, [](const MachineInstr *LHS, const MachineInstr *RHS) {
2330     int LOffset = getMemoryOpOffset(*LHS);
2331     int ROffset = getMemoryOpOffset(*RHS);
2332     assert(LHS == RHS || LOffset != ROffset);
2333     return LOffset > ROffset;
2334   });
2335 
2336   // The loads / stores of the same base are in order. Scan them from first to
2337   // last and check for the following:
2338   // 1. Any def of base.
2339   // 2. Any gaps.
2340   while (Ops.size() > 1) {
2341     unsigned FirstLoc = ~0U;
2342     unsigned LastLoc = 0;
2343     MachineInstr *FirstOp = nullptr;
2344     MachineInstr *LastOp = nullptr;
2345     int LastOffset = 0;
2346     unsigned LastOpcode = 0;
2347     unsigned LastBytes = 0;
2348     unsigned NumMove = 0;
2349     for (int i = Ops.size() - 1; i >= 0; --i) {
2350       // Make sure each operation has the same kind.
2351       MachineInstr *Op = Ops[i];
2352       unsigned LSMOpcode
2353         = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia);
2354       if (LastOpcode && LSMOpcode != LastOpcode)
2355         break;
2356 
2357       // Check that we have a continuous set of offsets.
2358       int Offset = getMemoryOpOffset(*Op);
2359       unsigned Bytes = getLSMultipleTransferSize(Op);
2360       if (LastBytes) {
2361         if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes))
2362           break;
2363       }
2364 
2365       // Don't try to reschedule too many instructions.
2366       if (NumMove == InstReorderLimit)
2367         break;
2368 
2369       // Found a mergable instruction; save information about it.
2370       ++NumMove;
2371       LastOffset = Offset;
2372       LastBytes = Bytes;
2373       LastOpcode = LSMOpcode;
2374 
2375       unsigned Loc = MI2LocMap[Op];
2376       if (Loc <= FirstLoc) {
2377         FirstLoc = Loc;
2378         FirstOp = Op;
2379       }
2380       if (Loc >= LastLoc) {
2381         LastLoc = Loc;
2382         LastOp = Op;
2383       }
2384     }
2385 
2386     if (NumMove <= 1)
2387       Ops.pop_back();
2388     else {
2389       SmallPtrSet<MachineInstr*, 4> MemOps;
2390       SmallSet<unsigned, 4> MemRegs;
2391       for (size_t i = Ops.size() - NumMove, e = Ops.size(); i != e; ++i) {
2392         MemOps.insert(Ops[i]);
2393         MemRegs.insert(Ops[i]->getOperand(0).getReg());
2394       }
2395 
2396       // Be conservative, if the instructions are too far apart, don't
2397       // move them. We want to limit the increase of register pressure.
2398       bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this.
2399       if (DoMove)
2400         DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp,
2401                                            MemOps, MemRegs, TRI, AA);
2402       if (!DoMove) {
2403         for (unsigned i = 0; i != NumMove; ++i)
2404           Ops.pop_back();
2405       } else {
2406         // This is the new location for the loads / stores.
2407         MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp;
2408         while (InsertPos != MBB->end() &&
2409                (MemOps.count(&*InsertPos) || InsertPos->isDebugInstr()))
2410           ++InsertPos;
2411 
2412         // If we are moving a pair of loads / stores, see if it makes sense
2413         // to try to allocate a pair of registers that can form register pairs.
2414         MachineInstr *Op0 = Ops.back();
2415         MachineInstr *Op1 = Ops[Ops.size()-2];
2416         Register FirstReg, SecondReg;
2417         Register BaseReg, PredReg;
2418         ARMCC::CondCodes Pred = ARMCC::AL;
2419         bool isT2 = false;
2420         unsigned NewOpc = 0;
2421         int Offset = 0;
2422         DebugLoc dl;
2423         if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc,
2424                                              FirstReg, SecondReg, BaseReg,
2425                                              Offset, PredReg, Pred, isT2)) {
2426           Ops.pop_back();
2427           Ops.pop_back();
2428 
2429           const MCInstrDesc &MCID = TII->get(NewOpc);
2430           const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
2431           MRI->constrainRegClass(FirstReg, TRC);
2432           MRI->constrainRegClass(SecondReg, TRC);
2433 
2434           // Form the pair instruction.
2435           if (isLd) {
2436             MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
2437               .addReg(FirstReg, RegState::Define)
2438               .addReg(SecondReg, RegState::Define)
2439               .addReg(BaseReg);
2440             // FIXME: We're converting from LDRi12 to an insn that still
2441             // uses addrmode2, so we need an explicit offset reg. It should
2442             // always by reg0 since we're transforming LDRi12s.
2443             if (!isT2)
2444               MIB.addReg(0);
2445             MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
2446             MIB.cloneMergedMemRefs({Op0, Op1});
2447             LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n");
2448             ++NumLDRDFormed;
2449           } else {
2450             MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
2451               .addReg(FirstReg)
2452               .addReg(SecondReg)
2453               .addReg(BaseReg);
2454             // FIXME: We're converting from LDRi12 to an insn that still
2455             // uses addrmode2, so we need an explicit offset reg. It should
2456             // always by reg0 since we're transforming STRi12s.
2457             if (!isT2)
2458               MIB.addReg(0);
2459             MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
2460             MIB.cloneMergedMemRefs({Op0, Op1});
2461             LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n");
2462             ++NumSTRDFormed;
2463           }
2464           MBB->erase(Op0);
2465           MBB->erase(Op1);
2466 
2467           if (!isT2) {
2468             // Add register allocation hints to form register pairs.
2469             MRI->setRegAllocationHint(FirstReg, ARMRI::RegPairEven, SecondReg);
2470             MRI->setRegAllocationHint(SecondReg,  ARMRI::RegPairOdd, FirstReg);
2471           }
2472         } else {
2473           for (unsigned i = 0; i != NumMove; ++i) {
2474             MachineInstr *Op = Ops.back();
2475             Ops.pop_back();
2476             MBB->splice(InsertPos, MBB, Op);
2477           }
2478         }
2479 
2480         NumLdStMoved += NumMove;
2481         RetVal = true;
2482       }
2483     }
2484   }
2485 
2486   return RetVal;
2487 }
2488 
2489 bool
2490 ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) {
2491   bool RetVal = false;
2492 
2493   DenseMap<MachineInstr*, unsigned> MI2LocMap;
2494   using MapIt = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>::iterator;
2495   using Base2InstMap = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>;
2496   using BaseVec = SmallVector<unsigned, 4>;
2497   Base2InstMap Base2LdsMap;
2498   Base2InstMap Base2StsMap;
2499   BaseVec LdBases;
2500   BaseVec StBases;
2501 
2502   unsigned Loc = 0;
2503   MachineBasicBlock::iterator MBBI = MBB->begin();
2504   MachineBasicBlock::iterator E = MBB->end();
2505   while (MBBI != E) {
2506     for (; MBBI != E; ++MBBI) {
2507       MachineInstr &MI = *MBBI;
2508       if (MI.isCall() || MI.isTerminator()) {
2509         // Stop at barriers.
2510         ++MBBI;
2511         break;
2512       }
2513 
2514       if (!MI.isDebugInstr())
2515         MI2LocMap[&MI] = ++Loc;
2516 
2517       if (!isMemoryOp(MI))
2518         continue;
2519       Register PredReg;
2520       if (getInstrPredicate(MI, PredReg) != ARMCC::AL)
2521         continue;
2522 
2523       int Opc = MI.getOpcode();
2524       bool isLd = isLoadSingle(Opc);
2525       Register Base = MI.getOperand(1).getReg();
2526       int Offset = getMemoryOpOffset(MI);
2527       bool StopHere = false;
2528       auto FindBases = [&] (Base2InstMap &Base2Ops, BaseVec &Bases) {
2529         MapIt BI = Base2Ops.find(Base);
2530         if (BI == Base2Ops.end()) {
2531           Base2Ops[Base].push_back(&MI);
2532           Bases.push_back(Base);
2533           return;
2534         }
2535         for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
2536           if (Offset == getMemoryOpOffset(*BI->second[i])) {
2537             StopHere = true;
2538             break;
2539           }
2540         }
2541         if (!StopHere)
2542           BI->second.push_back(&MI);
2543       };
2544 
2545       if (isLd)
2546         FindBases(Base2LdsMap, LdBases);
2547       else
2548         FindBases(Base2StsMap, StBases);
2549 
2550       if (StopHere) {
2551         // Found a duplicate (a base+offset combination that's seen earlier).
2552         // Backtrack.
2553         --Loc;
2554         break;
2555       }
2556     }
2557 
2558     // Re-schedule loads.
2559     for (unsigned i = 0, e = LdBases.size(); i != e; ++i) {
2560       unsigned Base = LdBases[i];
2561       SmallVectorImpl<MachineInstr *> &Lds = Base2LdsMap[Base];
2562       if (Lds.size() > 1)
2563         RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap);
2564     }
2565 
2566     // Re-schedule stores.
2567     for (unsigned i = 0, e = StBases.size(); i != e; ++i) {
2568       unsigned Base = StBases[i];
2569       SmallVectorImpl<MachineInstr *> &Sts = Base2StsMap[Base];
2570       if (Sts.size() > 1)
2571         RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap);
2572     }
2573 
2574     if (MBBI != E) {
2575       Base2LdsMap.clear();
2576       Base2StsMap.clear();
2577       LdBases.clear();
2578       StBases.clear();
2579     }
2580   }
2581 
2582   return RetVal;
2583 }
2584 
2585 // Get the Base register operand index from the memory access MachineInst if we
2586 // should attempt to distribute postinc on it. Return -1 if not of a valid
2587 // instruction type. If it returns an index, it is assumed that instruction is a
2588 // r+i indexing mode, and getBaseOperandIndex() + 1 is the Offset index.
2589 static int getBaseOperandIndex(MachineInstr &MI) {
2590   switch (MI.getOpcode()) {
2591   case ARM::MVE_VLDRBS16:
2592   case ARM::MVE_VLDRBS32:
2593   case ARM::MVE_VLDRBU16:
2594   case ARM::MVE_VLDRBU32:
2595   case ARM::MVE_VLDRHS32:
2596   case ARM::MVE_VLDRHU32:
2597   case ARM::MVE_VLDRBU8:
2598   case ARM::MVE_VLDRHU16:
2599   case ARM::MVE_VLDRWU32:
2600   case ARM::MVE_VSTRB16:
2601   case ARM::MVE_VSTRB32:
2602   case ARM::MVE_VSTRH32:
2603   case ARM::MVE_VSTRBU8:
2604   case ARM::MVE_VSTRHU16:
2605   case ARM::MVE_VSTRWU32:
2606   case ARM::t2LDRHi8:
2607   case ARM::t2LDRHi12:
2608   case ARM::t2LDRSHi8:
2609   case ARM::t2LDRSHi12:
2610   case ARM::t2LDRBi8:
2611   case ARM::t2LDRBi12:
2612   case ARM::t2LDRSBi8:
2613   case ARM::t2LDRSBi12:
2614   case ARM::t2STRBi8:
2615   case ARM::t2STRBi12:
2616   case ARM::t2STRHi8:
2617   case ARM::t2STRHi12:
2618     return 1;
2619   case ARM::MVE_VLDRBS16_post:
2620   case ARM::MVE_VLDRBS32_post:
2621   case ARM::MVE_VLDRBU16_post:
2622   case ARM::MVE_VLDRBU32_post:
2623   case ARM::MVE_VLDRHS32_post:
2624   case ARM::MVE_VLDRHU32_post:
2625   case ARM::MVE_VLDRBU8_post:
2626   case ARM::MVE_VLDRHU16_post:
2627   case ARM::MVE_VLDRWU32_post:
2628   case ARM::MVE_VSTRB16_post:
2629   case ARM::MVE_VSTRB32_post:
2630   case ARM::MVE_VSTRH32_post:
2631   case ARM::MVE_VSTRBU8_post:
2632   case ARM::MVE_VSTRHU16_post:
2633   case ARM::MVE_VSTRWU32_post:
2634   case ARM::MVE_VLDRBS16_pre:
2635   case ARM::MVE_VLDRBS32_pre:
2636   case ARM::MVE_VLDRBU16_pre:
2637   case ARM::MVE_VLDRBU32_pre:
2638   case ARM::MVE_VLDRHS32_pre:
2639   case ARM::MVE_VLDRHU32_pre:
2640   case ARM::MVE_VLDRBU8_pre:
2641   case ARM::MVE_VLDRHU16_pre:
2642   case ARM::MVE_VLDRWU32_pre:
2643   case ARM::MVE_VSTRB16_pre:
2644   case ARM::MVE_VSTRB32_pre:
2645   case ARM::MVE_VSTRH32_pre:
2646   case ARM::MVE_VSTRBU8_pre:
2647   case ARM::MVE_VSTRHU16_pre:
2648   case ARM::MVE_VSTRWU32_pre:
2649     return 2;
2650   }
2651   return -1;
2652 }
2653 
2654 static bool isPostIndex(MachineInstr &MI) {
2655   switch (MI.getOpcode()) {
2656   case ARM::MVE_VLDRBS16_post:
2657   case ARM::MVE_VLDRBS32_post:
2658   case ARM::MVE_VLDRBU16_post:
2659   case ARM::MVE_VLDRBU32_post:
2660   case ARM::MVE_VLDRHS32_post:
2661   case ARM::MVE_VLDRHU32_post:
2662   case ARM::MVE_VLDRBU8_post:
2663   case ARM::MVE_VLDRHU16_post:
2664   case ARM::MVE_VLDRWU32_post:
2665   case ARM::MVE_VSTRB16_post:
2666   case ARM::MVE_VSTRB32_post:
2667   case ARM::MVE_VSTRH32_post:
2668   case ARM::MVE_VSTRBU8_post:
2669   case ARM::MVE_VSTRHU16_post:
2670   case ARM::MVE_VSTRWU32_post:
2671     return true;
2672   }
2673   return false;
2674 }
2675 
2676 static bool isPreIndex(MachineInstr &MI) {
2677   switch (MI.getOpcode()) {
2678   case ARM::MVE_VLDRBS16_pre:
2679   case ARM::MVE_VLDRBS32_pre:
2680   case ARM::MVE_VLDRBU16_pre:
2681   case ARM::MVE_VLDRBU32_pre:
2682   case ARM::MVE_VLDRHS32_pre:
2683   case ARM::MVE_VLDRHU32_pre:
2684   case ARM::MVE_VLDRBU8_pre:
2685   case ARM::MVE_VLDRHU16_pre:
2686   case ARM::MVE_VLDRWU32_pre:
2687   case ARM::MVE_VSTRB16_pre:
2688   case ARM::MVE_VSTRB32_pre:
2689   case ARM::MVE_VSTRH32_pre:
2690   case ARM::MVE_VSTRBU8_pre:
2691   case ARM::MVE_VSTRHU16_pre:
2692   case ARM::MVE_VSTRWU32_pre:
2693     return true;
2694   }
2695   return false;
2696 }
2697 
2698 // Given a memory access Opcode, check that the give Imm would be a valid Offset
2699 // for this instruction (same as isLegalAddressImm), Or if the instruction
2700 // could be easily converted to one where that was valid. For example converting
2701 // t2LDRi12 to t2LDRi8 for negative offsets. Works in conjunction with
2702 // AdjustBaseAndOffset below.
2703 static bool isLegalOrConvertableAddressImm(unsigned Opcode, int Imm,
2704                                            const TargetInstrInfo *TII,
2705                                            int &CodesizeEstimate) {
2706   if (isLegalAddressImm(Opcode, Imm, TII))
2707     return true;
2708 
2709   // We can convert AddrModeT2_i12 to AddrModeT2_i8.
2710   const MCInstrDesc &Desc = TII->get(Opcode);
2711   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2712   switch (AddrMode) {
2713   case ARMII::AddrModeT2_i12:
2714     CodesizeEstimate += 1;
2715     return std::abs(Imm) < (((1 << 8) * 1) - 1);
2716   }
2717   return false;
2718 }
2719 
2720 // Given an MI adjust its address BaseReg to use NewBaseReg and address offset
2721 // by -Offset. This can either happen in-place or be a replacement as MI is
2722 // converted to another instruction type.
2723 static void AdjustBaseAndOffset(MachineInstr *MI, Register NewBaseReg,
2724                                 int Offset, const TargetInstrInfo *TII) {
2725   unsigned BaseOp = getBaseOperandIndex(*MI);
2726   MI->getOperand(BaseOp).setReg(NewBaseReg);
2727   int OldOffset = MI->getOperand(BaseOp + 1).getImm();
2728   if (isLegalAddressImm(MI->getOpcode(), OldOffset - Offset, TII))
2729     MI->getOperand(BaseOp + 1).setImm(OldOffset - Offset);
2730   else {
2731     unsigned ConvOpcode;
2732     switch (MI->getOpcode()) {
2733     case ARM::t2LDRHi12:
2734       ConvOpcode = ARM::t2LDRHi8;
2735       break;
2736     case ARM::t2LDRSHi12:
2737       ConvOpcode = ARM::t2LDRSHi8;
2738       break;
2739     case ARM::t2LDRBi12:
2740       ConvOpcode = ARM::t2LDRBi8;
2741       break;
2742     case ARM::t2LDRSBi12:
2743       ConvOpcode = ARM::t2LDRSBi8;
2744       break;
2745     case ARM::t2STRHi12:
2746       ConvOpcode = ARM::t2STRHi8;
2747       break;
2748     case ARM::t2STRBi12:
2749       ConvOpcode = ARM::t2STRBi8;
2750       break;
2751     default:
2752       llvm_unreachable("Unhandled convertable opcode");
2753     }
2754     assert(isLegalAddressImm(ConvOpcode, OldOffset - Offset, TII) &&
2755            "Illegal Address Immediate after convert!");
2756 
2757     const MCInstrDesc &MCID = TII->get(ConvOpcode);
2758     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
2759         .add(MI->getOperand(0))
2760         .add(MI->getOperand(1))
2761         .addImm(OldOffset - Offset)
2762         .add(MI->getOperand(3))
2763         .add(MI->getOperand(4))
2764         .cloneMemRefs(*MI);
2765     MI->eraseFromParent();
2766   }
2767 }
2768 
2769 static MachineInstr *createPostIncLoadStore(MachineInstr *MI, int Offset,
2770                                             Register NewReg,
2771                                             const TargetInstrInfo *TII,
2772                                             const TargetRegisterInfo *TRI) {
2773   MachineFunction *MF = MI->getMF();
2774   MachineRegisterInfo &MRI = MF->getRegInfo();
2775 
2776   unsigned NewOpcode = getPostIndexedLoadStoreOpcode(
2777       MI->getOpcode(), Offset > 0 ? ARM_AM::add : ARM_AM::sub);
2778 
2779   const MCInstrDesc &MCID = TII->get(NewOpcode);
2780   // Constrain the def register class
2781   const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
2782   MRI.constrainRegClass(NewReg, TRC);
2783   // And do the same for the base operand
2784   TRC = TII->getRegClass(MCID, 2, TRI, *MF);
2785   MRI.constrainRegClass(MI->getOperand(1).getReg(), TRC);
2786 
2787   unsigned AddrMode = (MCID.TSFlags & ARMII::AddrModeMask);
2788   switch (AddrMode) {
2789   case ARMII::AddrModeT2_i7:
2790   case ARMII::AddrModeT2_i7s2:
2791   case ARMII::AddrModeT2_i7s4:
2792     // Any MVE load/store
2793     return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
2794         .addReg(NewReg, RegState::Define)
2795         .add(MI->getOperand(0))
2796         .add(MI->getOperand(1))
2797         .addImm(Offset)
2798         .add(MI->getOperand(3))
2799         .add(MI->getOperand(4))
2800         .cloneMemRefs(*MI);
2801   case ARMII::AddrModeT2_i8:
2802     if (MI->mayLoad()) {
2803       return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
2804           .add(MI->getOperand(0))
2805           .addReg(NewReg, RegState::Define)
2806           .add(MI->getOperand(1))
2807           .addImm(Offset)
2808           .add(MI->getOperand(3))
2809           .add(MI->getOperand(4))
2810           .cloneMemRefs(*MI);
2811     } else {
2812       return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
2813           .addReg(NewReg, RegState::Define)
2814           .add(MI->getOperand(0))
2815           .add(MI->getOperand(1))
2816           .addImm(Offset)
2817           .add(MI->getOperand(3))
2818           .add(MI->getOperand(4))
2819           .cloneMemRefs(*MI);
2820     }
2821   default:
2822     llvm_unreachable("Unhandled createPostIncLoadStore");
2823   }
2824 }
2825 
2826 // Given a Base Register, optimise the load/store uses to attempt to create more
2827 // post-inc accesses and less register moves. We do this by taking zero offset
2828 // loads/stores with an add, and convert them to a postinc load/store of the
2829 // same type. Any subsequent accesses will be adjusted to use and account for
2830 // the post-inc value.
2831 // For example:
2832 // LDR #0            LDR_POSTINC #16
2833 // LDR #4            LDR #-12
2834 // LDR #8            LDR #-8
2835 // LDR #12           LDR #-4
2836 // ADD #16
2837 //
2838 // At the same time if we do not find an increment but do find an existing
2839 // pre/post inc instruction, we can still adjust the offsets of subsequent
2840 // instructions to save the register move that would otherwise be needed for the
2841 // in-place increment.
2842 bool ARMPreAllocLoadStoreOpt::DistributeIncrements(Register Base) {
2843   // We are looking for:
2844   // One zero offset load/store that can become postinc
2845   MachineInstr *BaseAccess = nullptr;
2846   MachineInstr *PrePostInc = nullptr;
2847   // An increment that can be folded in
2848   MachineInstr *Increment = nullptr;
2849   // Other accesses after BaseAccess that will need to be updated to use the
2850   // postinc value.
2851   SmallPtrSet<MachineInstr *, 8> OtherAccesses;
2852   for (auto &Use : MRI->use_nodbg_instructions(Base)) {
2853     if (!Increment && getAddSubImmediate(Use) != 0) {
2854       Increment = &Use;
2855       continue;
2856     }
2857 
2858     int BaseOp = getBaseOperandIndex(Use);
2859     if (BaseOp == -1)
2860       return false;
2861 
2862     if (!Use.getOperand(BaseOp).isReg() ||
2863         Use.getOperand(BaseOp).getReg() != Base)
2864       return false;
2865     if (isPreIndex(Use) || isPostIndex(Use))
2866       PrePostInc = &Use;
2867     else if (Use.getOperand(BaseOp + 1).getImm() == 0)
2868       BaseAccess = &Use;
2869     else
2870       OtherAccesses.insert(&Use);
2871   }
2872 
2873   int IncrementOffset;
2874   Register NewBaseReg;
2875   if (BaseAccess && Increment) {
2876     if (PrePostInc || BaseAccess->getParent() != Increment->getParent())
2877       return false;
2878     Register PredReg;
2879     if (Increment->definesRegister(ARM::CPSR) ||
2880         getInstrPredicate(*Increment, PredReg) != ARMCC::AL)
2881       return false;
2882 
2883     LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on VirtualReg "
2884                       << Base.virtRegIndex() << "\n");
2885 
2886     // Make sure that Increment has no uses before BaseAccess.
2887     for (MachineInstr &Use :
2888         MRI->use_nodbg_instructions(Increment->getOperand(0).getReg())) {
2889       if (!DT->dominates(BaseAccess, &Use) || &Use == BaseAccess) {
2890         LLVM_DEBUG(dbgs() << "  BaseAccess doesn't dominate use of increment\n");
2891         return false;
2892       }
2893     }
2894 
2895     // Make sure that Increment can be folded into Base
2896     IncrementOffset = getAddSubImmediate(*Increment);
2897     unsigned NewPostIncOpcode = getPostIndexedLoadStoreOpcode(
2898         BaseAccess->getOpcode(), IncrementOffset > 0 ? ARM_AM::add : ARM_AM::sub);
2899     if (!isLegalAddressImm(NewPostIncOpcode, IncrementOffset, TII)) {
2900       LLVM_DEBUG(dbgs() << "  Illegal addressing mode immediate on postinc\n");
2901       return false;
2902     }
2903   }
2904   else if (PrePostInc) {
2905     // If we already have a pre/post index load/store then set BaseAccess,
2906     // IncrementOffset and NewBaseReg to the values it already produces,
2907     // allowing us to update and subsequent uses of BaseOp reg with the
2908     // incremented value.
2909     if (Increment)
2910       return false;
2911 
2912     LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on already "
2913                       << "indexed VirtualReg " << Base.virtRegIndex() << "\n");
2914     int BaseOp = getBaseOperandIndex(*PrePostInc);
2915     IncrementOffset = PrePostInc->getOperand(BaseOp+1).getImm();
2916     BaseAccess = PrePostInc;
2917     NewBaseReg = PrePostInc->getOperand(0).getReg();
2918   }
2919   else
2920     return false;
2921 
2922   // And make sure that the negative value of increment can be added to all
2923   // other offsets after the BaseAccess. We rely on either
2924   // dominates(BaseAccess, OtherAccess) or dominates(OtherAccess, BaseAccess)
2925   // to keep things simple.
2926   // This also adds a simple codesize metric, to detect if an instruction (like
2927   // t2LDRBi12) which can often be shrunk to a thumb1 instruction (tLDRBi)
2928   // cannot because it is converted to something else (t2LDRBi8). We start this
2929   // at -1 for the gain from removing the increment.
2930   SmallPtrSet<MachineInstr *, 4> SuccessorAccesses;
2931   int CodesizeEstimate = -1;
2932   for (auto *Use : OtherAccesses) {
2933     if (DT->dominates(BaseAccess, Use)) {
2934       SuccessorAccesses.insert(Use);
2935       unsigned BaseOp = getBaseOperandIndex(*Use);
2936       if (!isLegalOrConvertableAddressImm(Use->getOpcode(),
2937                                           Use->getOperand(BaseOp + 1).getImm() -
2938                                               IncrementOffset,
2939                                           TII, CodesizeEstimate)) {
2940         LLVM_DEBUG(dbgs() << "  Illegal addressing mode immediate on use\n");
2941         return false;
2942       }
2943     } else if (!DT->dominates(Use, BaseAccess)) {
2944       LLVM_DEBUG(
2945           dbgs() << "  Unknown dominance relation between Base and Use\n");
2946       return false;
2947     }
2948   }
2949   if (STI->hasMinSize() && CodesizeEstimate > 0) {
2950     LLVM_DEBUG(dbgs() << "  Expected to grow instructions under minsize\n");
2951     return false;
2952   }
2953 
2954   if (!PrePostInc) {
2955     // Replace BaseAccess with a post inc
2956     LLVM_DEBUG(dbgs() << "Changing: "; BaseAccess->dump());
2957     LLVM_DEBUG(dbgs() << "  And   : "; Increment->dump());
2958     NewBaseReg = Increment->getOperand(0).getReg();
2959     MachineInstr *BaseAccessPost =
2960         createPostIncLoadStore(BaseAccess, IncrementOffset, NewBaseReg, TII, TRI);
2961     BaseAccess->eraseFromParent();
2962     Increment->eraseFromParent();
2963     (void)BaseAccessPost;
2964     LLVM_DEBUG(dbgs() << "  To    : "; BaseAccessPost->dump());
2965   }
2966 
2967   for (auto *Use : SuccessorAccesses) {
2968     LLVM_DEBUG(dbgs() << "Changing: "; Use->dump());
2969     AdjustBaseAndOffset(Use, NewBaseReg, IncrementOffset, TII);
2970     LLVM_DEBUG(dbgs() << "  To    : "; Use->dump());
2971   }
2972 
2973   // Remove the kill flag from all uses of NewBaseReg, in case any old uses
2974   // remain.
2975   for (MachineOperand &Op : MRI->use_nodbg_operands(NewBaseReg))
2976     Op.setIsKill(false);
2977   return true;
2978 }
2979 
2980 bool ARMPreAllocLoadStoreOpt::DistributeIncrements() {
2981   bool Changed = false;
2982   SmallSetVector<Register, 4> Visited;
2983   for (auto &MBB : *MF) {
2984     for (auto &MI : MBB) {
2985       int BaseOp = getBaseOperandIndex(MI);
2986       if (BaseOp == -1 || !MI.getOperand(BaseOp).isReg())
2987         continue;
2988 
2989       Register Base = MI.getOperand(BaseOp).getReg();
2990       if (!Base.isVirtual() || Visited.count(Base))
2991         continue;
2992 
2993       Visited.insert(Base);
2994     }
2995   }
2996 
2997   for (auto Base : Visited)
2998     Changed |= DistributeIncrements(Base);
2999 
3000   return Changed;
3001 }
3002 
3003 /// Returns an instance of the load / store optimization pass.
3004 FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) {
3005   if (PreAlloc)
3006     return new ARMPreAllocLoadStoreOpt();
3007   return new ARMLoadStoreOpt();
3008 }
3009