1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMISelLowering.h"
16 #include "ARMCallingConv.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMPerfectShuffle.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMTargetObjectFile.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/IntrinsicLowering.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/MC/MCSectionMachO.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include <utility>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "arm-isel"
58 
59 STATISTIC(NumTailCalls, "Number of tail calls");
60 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
61 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
62 
63 static cl::opt<bool>
64 ARMInterworking("arm-interworking", cl::Hidden,
65   cl::desc("Enable / disable ARM interworking (for debugging only)"),
66   cl::init(true));
67 
68 namespace {
69   class ARMCCState : public CCState {
70   public:
71     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
72                SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
73                ParmContext PC)
74         : CCState(CC, isVarArg, MF, locs, C) {
75       assert(((PC == Call) || (PC == Prologue)) &&
76              "ARMCCState users must specify whether their context is call"
77              "or prologue generation.");
78       CallOrPrologue = PC;
79     }
80   };
81 }
82 
83 void ARMTargetLowering::InitLibcallCallingConvs() {
84   // The builtins on ARM always use AAPCS, irrespective of wheter C is AAPCS or
85   // AAPCS_VFP.
86   for (const auto LC : {
87            RTLIB::SHL_I16,
88            RTLIB::SHL_I32,
89            RTLIB::SHL_I64,
90            RTLIB::SHL_I128,
91            RTLIB::SRL_I16,
92            RTLIB::SRL_I32,
93            RTLIB::SRL_I64,
94            RTLIB::SRL_I128,
95            RTLIB::SRA_I16,
96            RTLIB::SRA_I32,
97            RTLIB::SRA_I64,
98            RTLIB::SRA_I128,
99            RTLIB::MUL_I8,
100            RTLIB::MUL_I16,
101            RTLIB::MUL_I32,
102            RTLIB::MUL_I64,
103            RTLIB::MUL_I128,
104            RTLIB::MULO_I32,
105            RTLIB::MULO_I64,
106            RTLIB::MULO_I128,
107            RTLIB::SDIV_I8,
108            RTLIB::SDIV_I16,
109            RTLIB::SDIV_I32,
110            RTLIB::SDIV_I64,
111            RTLIB::SDIV_I128,
112            RTLIB::UDIV_I8,
113            RTLIB::UDIV_I16,
114            RTLIB::UDIV_I32,
115            RTLIB::UDIV_I64,
116            RTLIB::UDIV_I128,
117            RTLIB::SREM_I8,
118            RTLIB::SREM_I16,
119            RTLIB::SREM_I32,
120            RTLIB::SREM_I64,
121            RTLIB::SREM_I128,
122            RTLIB::UREM_I8,
123            RTLIB::UREM_I16,
124            RTLIB::UREM_I32,
125            RTLIB::UREM_I64,
126            RTLIB::UREM_I128,
127            RTLIB::SDIVREM_I8,
128            RTLIB::SDIVREM_I16,
129            RTLIB::SDIVREM_I32,
130            RTLIB::SDIVREM_I64,
131            RTLIB::SDIVREM_I128,
132            RTLIB::UDIVREM_I8,
133            RTLIB::UDIVREM_I16,
134            RTLIB::UDIVREM_I32,
135            RTLIB::UDIVREM_I64,
136            RTLIB::UDIVREM_I128,
137            RTLIB::NEG_I32,
138            RTLIB::NEG_I64,
139            RTLIB::ADD_F32,
140            RTLIB::ADD_F64,
141            RTLIB::ADD_F80,
142            RTLIB::ADD_F128,
143            RTLIB::SUB_F32,
144            RTLIB::SUB_F64,
145            RTLIB::SUB_F80,
146            RTLIB::SUB_F128,
147            RTLIB::MUL_F32,
148            RTLIB::MUL_F64,
149            RTLIB::MUL_F80,
150            RTLIB::MUL_F128,
151            RTLIB::DIV_F32,
152            RTLIB::DIV_F64,
153            RTLIB::DIV_F80,
154            RTLIB::DIV_F128,
155            RTLIB::POWI_F32,
156            RTLIB::POWI_F64,
157            RTLIB::POWI_F80,
158            RTLIB::POWI_F128,
159            RTLIB::FPEXT_F64_F128,
160            RTLIB::FPEXT_F32_F128,
161            RTLIB::FPEXT_F32_F64,
162            RTLIB::FPEXT_F16_F32,
163            RTLIB::FPROUND_F32_F16,
164            RTLIB::FPROUND_F64_F16,
165            RTLIB::FPROUND_F80_F16,
166            RTLIB::FPROUND_F128_F16,
167            RTLIB::FPROUND_F64_F32,
168            RTLIB::FPROUND_F80_F32,
169            RTLIB::FPROUND_F128_F32,
170            RTLIB::FPROUND_F80_F64,
171            RTLIB::FPROUND_F128_F64,
172            RTLIB::FPTOSINT_F32_I32,
173            RTLIB::FPTOSINT_F32_I64,
174            RTLIB::FPTOSINT_F32_I128,
175            RTLIB::FPTOSINT_F64_I32,
176            RTLIB::FPTOSINT_F64_I64,
177            RTLIB::FPTOSINT_F64_I128,
178            RTLIB::FPTOSINT_F80_I32,
179            RTLIB::FPTOSINT_F80_I64,
180            RTLIB::FPTOSINT_F80_I128,
181            RTLIB::FPTOSINT_F128_I32,
182            RTLIB::FPTOSINT_F128_I64,
183            RTLIB::FPTOSINT_F128_I128,
184            RTLIB::FPTOUINT_F32_I32,
185            RTLIB::FPTOUINT_F32_I64,
186            RTLIB::FPTOUINT_F32_I128,
187            RTLIB::FPTOUINT_F64_I32,
188            RTLIB::FPTOUINT_F64_I64,
189            RTLIB::FPTOUINT_F64_I128,
190            RTLIB::FPTOUINT_F80_I32,
191            RTLIB::FPTOUINT_F80_I64,
192            RTLIB::FPTOUINT_F80_I128,
193            RTLIB::FPTOUINT_F128_I32,
194            RTLIB::FPTOUINT_F128_I64,
195            RTLIB::FPTOUINT_F128_I128,
196            RTLIB::SINTTOFP_I32_F32,
197            RTLIB::SINTTOFP_I32_F64,
198            RTLIB::SINTTOFP_I32_F80,
199            RTLIB::SINTTOFP_I32_F128,
200            RTLIB::SINTTOFP_I64_F32,
201            RTLIB::SINTTOFP_I64_F64,
202            RTLIB::SINTTOFP_I64_F80,
203            RTLIB::SINTTOFP_I64_F128,
204            RTLIB::SINTTOFP_I128_F32,
205            RTLIB::SINTTOFP_I128_F64,
206            RTLIB::SINTTOFP_I128_F80,
207            RTLIB::SINTTOFP_I128_F128,
208            RTLIB::UINTTOFP_I32_F32,
209            RTLIB::UINTTOFP_I32_F64,
210            RTLIB::UINTTOFP_I32_F80,
211            RTLIB::UINTTOFP_I32_F128,
212            RTLIB::UINTTOFP_I64_F32,
213            RTLIB::UINTTOFP_I64_F64,
214            RTLIB::UINTTOFP_I64_F80,
215            RTLIB::UINTTOFP_I64_F128,
216            RTLIB::UINTTOFP_I128_F32,
217            RTLIB::UINTTOFP_I128_F64,
218            RTLIB::UINTTOFP_I128_F80,
219            RTLIB::UINTTOFP_I128_F128,
220            RTLIB::OEQ_F32,
221            RTLIB::OEQ_F64,
222            RTLIB::OEQ_F128,
223            RTLIB::UNE_F32,
224            RTLIB::UNE_F64,
225            RTLIB::UNE_F128,
226            RTLIB::OGE_F32,
227            RTLIB::OGE_F64,
228            RTLIB::OGE_F128,
229            RTLIB::OLT_F32,
230            RTLIB::OLT_F64,
231            RTLIB::OLT_F128,
232            RTLIB::OLE_F32,
233            RTLIB::OLE_F64,
234            RTLIB::OLE_F128,
235            RTLIB::OGT_F32,
236            RTLIB::OGT_F64,
237            RTLIB::OGT_F128,
238            RTLIB::UO_F32,
239            RTLIB::UO_F64,
240            RTLIB::UO_F128,
241            RTLIB::O_F32,
242            RTLIB::O_F64,
243            RTLIB::O_F128,
244        })
245   setLibcallCallingConv(LC, CallingConv::ARM_AAPCS);
246 }
247 
248 // The APCS parameter registers.
249 static const MCPhysReg GPRArgRegs[] = {
250   ARM::R0, ARM::R1, ARM::R2, ARM::R3
251 };
252 
253 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
254                                        MVT PromotedBitwiseVT) {
255   if (VT != PromotedLdStVT) {
256     setOperationAction(ISD::LOAD, VT, Promote);
257     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
258 
259     setOperationAction(ISD::STORE, VT, Promote);
260     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
261   }
262 
263   MVT ElemTy = VT.getVectorElementType();
264   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
265     setOperationAction(ISD::SETCC, VT, Custom);
266   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
267   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
268   if (ElemTy == MVT::i32) {
269     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
270     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
271     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
272     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
273   } else {
274     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
275     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
276     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
277     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
278   }
279   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
280   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
281   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
282   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
283   setOperationAction(ISD::SELECT,            VT, Expand);
284   setOperationAction(ISD::SELECT_CC,         VT, Expand);
285   setOperationAction(ISD::VSELECT,           VT, Expand);
286   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
287   if (VT.isInteger()) {
288     setOperationAction(ISD::SHL, VT, Custom);
289     setOperationAction(ISD::SRA, VT, Custom);
290     setOperationAction(ISD::SRL, VT, Custom);
291   }
292 
293   // Promote all bit-wise operations.
294   if (VT.isInteger() && VT != PromotedBitwiseVT) {
295     setOperationAction(ISD::AND, VT, Promote);
296     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
297     setOperationAction(ISD::OR,  VT, Promote);
298     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
299     setOperationAction(ISD::XOR, VT, Promote);
300     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
301   }
302 
303   // Neon does not support vector divide/remainder operations.
304   setOperationAction(ISD::SDIV, VT, Expand);
305   setOperationAction(ISD::UDIV, VT, Expand);
306   setOperationAction(ISD::FDIV, VT, Expand);
307   setOperationAction(ISD::SREM, VT, Expand);
308   setOperationAction(ISD::UREM, VT, Expand);
309   setOperationAction(ISD::FREM, VT, Expand);
310 
311   if (!VT.isFloatingPoint() &&
312       VT != MVT::v2i64 && VT != MVT::v1i64)
313     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
314       setOperationAction(Opcode, VT, Legal);
315 }
316 
317 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
318   addRegisterClass(VT, &ARM::DPRRegClass);
319   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
320 }
321 
322 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
323   addRegisterClass(VT, &ARM::DPairRegClass);
324   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
325 }
326 
327 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
328                                      const ARMSubtarget &STI)
329     : TargetLowering(TM), Subtarget(&STI) {
330   RegInfo = Subtarget->getRegisterInfo();
331   Itins = Subtarget->getInstrItineraryData();
332 
333   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
334 
335   InitLibcallCallingConvs();
336 
337   if (Subtarget->isTargetMachO()) {
338     // Uses VFP for Thumb libfuncs if available.
339     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
340         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
341       static const struct {
342         const RTLIB::Libcall Op;
343         const char * const Name;
344         const ISD::CondCode Cond;
345       } LibraryCalls[] = {
346         // Single-precision floating-point arithmetic.
347         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
348         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
349         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
350         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
351 
352         // Double-precision floating-point arithmetic.
353         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
354         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
355         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
356         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
357 
358         // Single-precision comparisons.
359         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
360         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
361         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
362         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
363         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
364         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
365         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
366         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
367 
368         // Double-precision comparisons.
369         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
370         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
371         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
372         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
373         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
374         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
375         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
376         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
377 
378         // Floating-point to integer conversions.
379         // i64 conversions are done via library routines even when generating VFP
380         // instructions, so use the same ones.
381         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
382         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
383         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
384         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
385 
386         // Conversions between floating types.
387         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
388         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
389 
390         // Integer to floating-point conversions.
391         // i64 conversions are done via library routines even when generating VFP
392         // instructions, so use the same ones.
393         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
394         // e.g., __floatunsidf vs. __floatunssidfvfp.
395         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
396         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
397         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
398         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
399       };
400 
401       for (const auto &LC : LibraryCalls) {
402         setLibcallName(LC.Op, LC.Name);
403         if (LC.Cond != ISD::SETCC_INVALID)
404           setCmpLibcallCC(LC.Op, LC.Cond);
405       }
406     }
407 
408     // Set the correct calling convention for ARMv7k WatchOS. It's just
409     // AAPCS_VFP for functions as simple as libcalls.
410     if (Subtarget->isTargetWatchABI()) {
411       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
412         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
413     }
414   }
415 
416   // These libcalls are not available in 32-bit.
417   setLibcallName(RTLIB::SHL_I128, nullptr);
418   setLibcallName(RTLIB::SRL_I128, nullptr);
419   setLibcallName(RTLIB::SRA_I128, nullptr);
420 
421   // RTLIB
422   if (Subtarget->isAAPCS_ABI() &&
423       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
424        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
425     static const struct {
426       const RTLIB::Libcall Op;
427       const char * const Name;
428       const CallingConv::ID CC;
429       const ISD::CondCode Cond;
430     } LibraryCalls[] = {
431       // Double-precision floating-point arithmetic helper functions
432       // RTABI chapter 4.1.2, Table 2
433       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
434       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
435       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
436       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
437 
438       // Double-precision floating-point comparison helper functions
439       // RTABI chapter 4.1.2, Table 3
440       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
441       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
442       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
443       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
444       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
445       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
446       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
447       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
448 
449       // Single-precision floating-point arithmetic helper functions
450       // RTABI chapter 4.1.2, Table 4
451       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
452       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
453       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
454       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
455 
456       // Single-precision floating-point comparison helper functions
457       // RTABI chapter 4.1.2, Table 5
458       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
459       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
460       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
461       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
462       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
463       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
464       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
465       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
466 
467       // Floating-point to integer conversions.
468       // RTABI chapter 4.1.2, Table 6
469       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
470       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
471       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
472       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
473       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
474       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
475       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
476       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
477 
478       // Conversions between floating types.
479       // RTABI chapter 4.1.2, Table 7
480       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
481       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
482       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
483 
484       // Integer to floating-point conversions.
485       // RTABI chapter 4.1.2, Table 8
486       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
487       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
488       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
489       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
490       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
491       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
492       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
493       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
494 
495       // Long long helper functions
496       // RTABI chapter 4.2, Table 9
497       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
498       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
499       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
500       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
501 
502       // Integer division functions
503       // RTABI chapter 4.3.1
504       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
505       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
506       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
507       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
508       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
509       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
510       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
511       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
512     };
513 
514     for (const auto &LC : LibraryCalls) {
515       setLibcallName(LC.Op, LC.Name);
516       setLibcallCallingConv(LC.Op, LC.CC);
517       if (LC.Cond != ISD::SETCC_INVALID)
518         setCmpLibcallCC(LC.Op, LC.Cond);
519     }
520 
521     // EABI dependent RTLIB
522     if (TM.Options.EABIVersion == EABI::EABI4 ||
523         TM.Options.EABIVersion == EABI::EABI5) {
524       static const struct {
525         const RTLIB::Libcall Op;
526         const char *const Name;
527         const CallingConv::ID CC;
528         const ISD::CondCode Cond;
529       } MemOpsLibraryCalls[] = {
530         // Memory operations
531         // RTABI chapter 4.3.4
532         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
533         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
534         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
535       };
536 
537       for (const auto &LC : MemOpsLibraryCalls) {
538         setLibcallName(LC.Op, LC.Name);
539         setLibcallCallingConv(LC.Op, LC.CC);
540         if (LC.Cond != ISD::SETCC_INVALID)
541           setCmpLibcallCC(LC.Op, LC.Cond);
542       }
543     }
544   }
545 
546   if (Subtarget->isTargetWindows()) {
547     static const struct {
548       const RTLIB::Libcall Op;
549       const char * const Name;
550       const CallingConv::ID CC;
551     } LibraryCalls[] = {
552       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
553       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
554       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
555       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
556       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
557       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
558       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
559       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
560     };
561 
562     for (const auto &LC : LibraryCalls) {
563       setLibcallName(LC.Op, LC.Name);
564       setLibcallCallingConv(LC.Op, LC.CC);
565     }
566   }
567 
568   // Use divmod compiler-rt calls for iOS 5.0 and later.
569   if (Subtarget->isTargetWatchOS() ||
570       (Subtarget->isTargetIOS() &&
571        !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
572     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
573     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
574   }
575 
576   // The half <-> float conversion functions are always soft-float on
577   // non-watchos platforms, but are needed for some targets which use a
578   // hard-float calling convention by default.
579   if (!Subtarget->isTargetWatchABI()) {
580     if (Subtarget->isAAPCS_ABI()) {
581       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
582       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
583       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
584     } else {
585       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
586       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
587       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
588     }
589   }
590 
591   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
592   // a __gnu_ prefix (which is the default).
593   if (Subtarget->isTargetAEABI()) {
594     setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h");
595     setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h");
596     setLibcallName(RTLIB::FPEXT_F16_F32,   "__aeabi_h2f");
597   }
598 
599   if (Subtarget->isThumb1Only())
600     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
601   else
602     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
603   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
604       !Subtarget->isThumb1Only()) {
605     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
606     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
607   }
608 
609   for (MVT VT : MVT::vector_valuetypes()) {
610     for (MVT InnerVT : MVT::vector_valuetypes()) {
611       setTruncStoreAction(VT, InnerVT, Expand);
612       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
613       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
614       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
615     }
616 
617     setOperationAction(ISD::MULHS, VT, Expand);
618     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
619     setOperationAction(ISD::MULHU, VT, Expand);
620     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
621 
622     setOperationAction(ISD::BSWAP, VT, Expand);
623   }
624 
625   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
626   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
627 
628   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
629   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
630 
631   if (Subtarget->hasNEON()) {
632     addDRTypeForNEON(MVT::v2f32);
633     addDRTypeForNEON(MVT::v8i8);
634     addDRTypeForNEON(MVT::v4i16);
635     addDRTypeForNEON(MVT::v2i32);
636     addDRTypeForNEON(MVT::v1i64);
637 
638     addQRTypeForNEON(MVT::v4f32);
639     addQRTypeForNEON(MVT::v2f64);
640     addQRTypeForNEON(MVT::v16i8);
641     addQRTypeForNEON(MVT::v8i16);
642     addQRTypeForNEON(MVT::v4i32);
643     addQRTypeForNEON(MVT::v2i64);
644 
645     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
646     // neither Neon nor VFP support any arithmetic operations on it.
647     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
648     // supported for v4f32.
649     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
650     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
651     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
652     // FIXME: Code duplication: FDIV and FREM are expanded always, see
653     // ARMTargetLowering::addTypeForNEON method for details.
654     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
655     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
656     // FIXME: Create unittest.
657     // In another words, find a way when "copysign" appears in DAG with vector
658     // operands.
659     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
660     // FIXME: Code duplication: SETCC has custom operation action, see
661     // ARMTargetLowering::addTypeForNEON method for details.
662     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
663     // FIXME: Create unittest for FNEG and for FABS.
664     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
665     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
666     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
667     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
668     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
669     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
670     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
671     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
672     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
673     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
674     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
675     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
676     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
677     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
678     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
679     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
680     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
681     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
682     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
683 
684     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
685     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
686     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
687     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
688     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
689     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
690     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
691     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
692     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
693     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
694     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
695     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
696     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
697     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
698     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
699 
700     // Mark v2f32 intrinsics.
701     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
702     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
703     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
704     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
705     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
706     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
707     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
708     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
709     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
710     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
711     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
712     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
713     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
714     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
715     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
716 
717     // Neon does not support some operations on v1i64 and v2i64 types.
718     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
719     // Custom handling for some quad-vector types to detect VMULL.
720     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
721     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
722     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
723     // Custom handling for some vector types to avoid expensive expansions
724     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
725     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
726     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
727     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
728     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
729     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
730     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
731     // a destination type that is wider than the source, and nor does
732     // it have a FP_TO_[SU]INT instruction with a narrower destination than
733     // source.
734     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
735     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
736     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
737     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
738 
739     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
740     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
741 
742     // NEON does not have single instruction CTPOP for vectors with element
743     // types wider than 8-bits.  However, custom lowering can leverage the
744     // v8i8/v16i8 vcnt instruction.
745     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
746     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
747     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
748     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
749     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
750     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
751 
752     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
753     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
754 
755     // NEON does not have single instruction CTTZ for vectors.
756     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
757     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
758     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
759     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
760 
761     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
762     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
763     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
764     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
765 
766     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
767     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
768     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
769     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
770 
771     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
772     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
773     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
774     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
775 
776     // NEON only has FMA instructions as of VFP4.
777     if (!Subtarget->hasVFP4()) {
778       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
779       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
780     }
781 
782     setTargetDAGCombine(ISD::INTRINSIC_VOID);
783     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
784     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
785     setTargetDAGCombine(ISD::SHL);
786     setTargetDAGCombine(ISD::SRL);
787     setTargetDAGCombine(ISD::SRA);
788     setTargetDAGCombine(ISD::SIGN_EXTEND);
789     setTargetDAGCombine(ISD::ZERO_EXTEND);
790     setTargetDAGCombine(ISD::ANY_EXTEND);
791     setTargetDAGCombine(ISD::BUILD_VECTOR);
792     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
793     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
794     setTargetDAGCombine(ISD::STORE);
795     setTargetDAGCombine(ISD::FP_TO_SINT);
796     setTargetDAGCombine(ISD::FP_TO_UINT);
797     setTargetDAGCombine(ISD::FDIV);
798     setTargetDAGCombine(ISD::LOAD);
799 
800     // It is legal to extload from v4i8 to v4i16 or v4i32.
801     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
802                    MVT::v2i32}) {
803       for (MVT VT : MVT::integer_vector_valuetypes()) {
804         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
805         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
806         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
807       }
808     }
809   }
810 
811   // ARM and Thumb2 support UMLAL/SMLAL.
812   if (!Subtarget->isThumb1Only())
813     setTargetDAGCombine(ISD::ADDC);
814 
815   if (Subtarget->isFPOnlySP()) {
816     // When targeting a floating-point unit with only single-precision
817     // operations, f64 is legal for the few double-precision instructions which
818     // are present However, no double-precision operations other than moves,
819     // loads and stores are provided by the hardware.
820     setOperationAction(ISD::FADD,       MVT::f64, Expand);
821     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
822     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
823     setOperationAction(ISD::FMA,        MVT::f64, Expand);
824     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
825     setOperationAction(ISD::FREM,       MVT::f64, Expand);
826     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
827     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
828     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
829     setOperationAction(ISD::FABS,       MVT::f64, Expand);
830     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
831     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
832     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
833     setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
834     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
835     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
836     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
837     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
838     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
839     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
840     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
841     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
842     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
843     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
844     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
845     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
846     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
847     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
848     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
849     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
850     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
851     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
852     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
853   }
854 
855   computeRegisterProperties(Subtarget->getRegisterInfo());
856 
857   // ARM does not have floating-point extending loads.
858   for (MVT VT : MVT::fp_valuetypes()) {
859     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
860     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
861   }
862 
863   // ... or truncating stores
864   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
865   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
866   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
867 
868   // ARM does not have i1 sign extending load.
869   for (MVT VT : MVT::integer_valuetypes())
870     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
871 
872   // ARM supports all 4 flavors of integer indexed load / store.
873   if (!Subtarget->isThumb1Only()) {
874     for (unsigned im = (unsigned)ISD::PRE_INC;
875          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
876       setIndexedLoadAction(im,  MVT::i1,  Legal);
877       setIndexedLoadAction(im,  MVT::i8,  Legal);
878       setIndexedLoadAction(im,  MVT::i16, Legal);
879       setIndexedLoadAction(im,  MVT::i32, Legal);
880       setIndexedStoreAction(im, MVT::i1,  Legal);
881       setIndexedStoreAction(im, MVT::i8,  Legal);
882       setIndexedStoreAction(im, MVT::i16, Legal);
883       setIndexedStoreAction(im, MVT::i32, Legal);
884     }
885   } else {
886     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
887     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
888     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
889   }
890 
891   setOperationAction(ISD::SADDO, MVT::i32, Custom);
892   setOperationAction(ISD::UADDO, MVT::i32, Custom);
893   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
894   setOperationAction(ISD::USUBO, MVT::i32, Custom);
895 
896   // i64 operation support.
897   setOperationAction(ISD::MUL,     MVT::i64, Expand);
898   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
899   if (Subtarget->isThumb1Only()) {
900     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
901     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
902   }
903   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
904       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
905     setOperationAction(ISD::MULHS, MVT::i32, Expand);
906 
907   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
908   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
909   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
910   setOperationAction(ISD::SRL,       MVT::i64, Custom);
911   setOperationAction(ISD::SRA,       MVT::i64, Custom);
912 
913   if (!Subtarget->isThumb1Only()) {
914     // FIXME: We should do this for Thumb1 as well.
915     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
916     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
917     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
918     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
919   }
920 
921   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
922     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
923 
924   // ARM does not have ROTL.
925   setOperationAction(ISD::ROTL, MVT::i32, Expand);
926   for (MVT VT : MVT::vector_valuetypes()) {
927     setOperationAction(ISD::ROTL, VT, Expand);
928     setOperationAction(ISD::ROTR, VT, Expand);
929   }
930   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
931   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
932   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
933     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
934 
935   // @llvm.readcyclecounter requires the Performance Monitors extension.
936   // Default to the 0 expansion on unsupported platforms.
937   // FIXME: Technically there are older ARM CPUs that have
938   // implementation-specific ways of obtaining this information.
939   if (Subtarget->hasPerfMon())
940     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
941 
942   // Only ARMv6 has BSWAP.
943   if (!Subtarget->hasV6Ops())
944     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
945 
946   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
947                                         : Subtarget->hasDivideInARMMode();
948   if (!hasDivide) {
949     // These are expanded into libcalls if the cpu doesn't have HW divider.
950     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
951     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
952   }
953 
954   if (Subtarget->isTargetWindows() && !Subtarget->hasDivide()) {
955     setOperationAction(ISD::SDIV, MVT::i32, Custom);
956     setOperationAction(ISD::UDIV, MVT::i32, Custom);
957 
958     setOperationAction(ISD::SDIV, MVT::i64, Custom);
959     setOperationAction(ISD::UDIV, MVT::i64, Custom);
960   }
961 
962   setOperationAction(ISD::SREM,  MVT::i32, Expand);
963   setOperationAction(ISD::UREM,  MVT::i32, Expand);
964   // Register based DivRem for AEABI (RTABI 4.2)
965   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
966       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI()) {
967     setOperationAction(ISD::SREM, MVT::i64, Custom);
968     setOperationAction(ISD::UREM, MVT::i64, Custom);
969     HasStandaloneRem = false;
970 
971     setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
972     setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
973     setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
974     setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
975     setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
976     setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
977     setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
978     setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
979 
980     setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
981     setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
982     setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
983     setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
984     setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
985     setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
986     setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
987     setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
988 
989     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
990     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
991     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
992     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
993   } else {
994     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
995     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
996   }
997 
998   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
999   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1000   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1001   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1002 
1003   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1004 
1005   // Use the default implementation.
1006   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1007   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1008   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1009   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1010   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1011   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1012 
1013   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
1014     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1015   else
1016     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1017 
1018   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1019   // the default expansion.
1020   InsertFencesForAtomic = false;
1021   if (Subtarget->hasAnyDataBarrier() &&
1022       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1023     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1024     // to ldrex/strex loops already.
1025     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1026     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1027       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1028 
1029     // On v8, we have particularly efficient implementations of atomic fences
1030     // if they can be combined with nearby atomic loads and stores.
1031     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
1032       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1033       InsertFencesForAtomic = true;
1034     }
1035   } else {
1036     // If there's anything we can use as a barrier, go through custom lowering
1037     // for ATOMIC_FENCE.
1038     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1039                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1040 
1041     // Set them all for expansion, which will force libcalls.
1042     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1043     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1044     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1045     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1046     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1047     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1048     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1049     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1050     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1051     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1052     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1053     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1054     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1055     // Unordered/Monotonic case.
1056     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1057     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1058   }
1059 
1060   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1061 
1062   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1063   if (!Subtarget->hasV6Ops()) {
1064     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1065     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1066   }
1067   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1068 
1069   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1070       !Subtarget->isThumb1Only()) {
1071     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1072     // iff target supports vfp2.
1073     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1074     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1075   }
1076 
1077   // We want to custom lower some of our intrinsics.
1078   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1079   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1080   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1081   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1082   if (Subtarget->useSjLjEH())
1083     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1084 
1085   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1086   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1087   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1088   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1089   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1090   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1091   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1092   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1093   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1094 
1095   // Thumb-1 cannot currently select ARMISD::SUBE.
1096   if (!Subtarget->isThumb1Only())
1097     setOperationAction(ISD::SETCCE, MVT::i32, Custom);
1098 
1099   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
1100   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1101   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1102   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1103   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1104 
1105   // We don't support sin/cos/fmod/copysign/pow
1106   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1107   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1108   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1109   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1110   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1111   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1112   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1113   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1114   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1115       !Subtarget->isThumb1Only()) {
1116     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1117     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1118   }
1119   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1120   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1121 
1122   if (!Subtarget->hasVFP4()) {
1123     setOperationAction(ISD::FMA, MVT::f64, Expand);
1124     setOperationAction(ISD::FMA, MVT::f32, Expand);
1125   }
1126 
1127   // Various VFP goodness
1128   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1129     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1130     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
1131       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1132       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1133     }
1134 
1135     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1136     if (!Subtarget->hasFP16()) {
1137       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1138       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1139     }
1140   }
1141 
1142   // Combine sin / cos into one node or libcall if possible.
1143   if (Subtarget->hasSinCos()) {
1144     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1145     setLibcallName(RTLIB::SINCOS_F64, "sincos");
1146     if (Subtarget->isTargetWatchABI()) {
1147       setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
1148       setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
1149     }
1150     if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
1151       // For iOS, we don't want to the normal expansion of a libcall to
1152       // sincos. We want to issue a libcall to __sincos_stret.
1153       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1154       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1155     }
1156   }
1157 
1158   // FP-ARMv8 implements a lot of rounding-like FP operations.
1159   if (Subtarget->hasFPARMv8()) {
1160     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1161     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1162     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1163     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1164     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1165     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1166     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1167     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1168     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1169     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1170     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1171     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1172 
1173     if (!Subtarget->isFPOnlySP()) {
1174       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1175       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1176       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1177       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1178       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1179       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1180       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1181       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1182     }
1183   }
1184 
1185   if (Subtarget->hasNEON()) {
1186     // vmin and vmax aren't available in a scalar form, so we use
1187     // a NEON instruction with an undef lane instead.
1188     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1189     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1190     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1191     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1192     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1193     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1194   }
1195 
1196   // We have target-specific dag combine patterns for the following nodes:
1197   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1198   setTargetDAGCombine(ISD::ADD);
1199   setTargetDAGCombine(ISD::SUB);
1200   setTargetDAGCombine(ISD::MUL);
1201   setTargetDAGCombine(ISD::AND);
1202   setTargetDAGCombine(ISD::OR);
1203   setTargetDAGCombine(ISD::XOR);
1204 
1205   if (Subtarget->hasV6Ops())
1206     setTargetDAGCombine(ISD::SRL);
1207 
1208   setStackPointerRegisterToSaveRestore(ARM::SP);
1209 
1210   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1211       !Subtarget->hasVFP2())
1212     setSchedulingPreference(Sched::RegPressure);
1213   else
1214     setSchedulingPreference(Sched::Hybrid);
1215 
1216   //// temporary - rewrite interface to use type
1217   MaxStoresPerMemset = 8;
1218   MaxStoresPerMemsetOptSize = 4;
1219   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1220   MaxStoresPerMemcpyOptSize = 2;
1221   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1222   MaxStoresPerMemmoveOptSize = 2;
1223 
1224   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1225   // are at least 4 bytes aligned.
1226   setMinStackArgumentAlignment(4);
1227 
1228   // Prefer likely predicted branches to selects on out-of-order cores.
1229   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1230 
1231   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1232 }
1233 
1234 bool ARMTargetLowering::useSoftFloat() const {
1235   return Subtarget->useSoftFloat();
1236 }
1237 
1238 // FIXME: It might make sense to define the representative register class as the
1239 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1240 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1241 // SPR's representative would be DPR_VFP2. This should work well if register
1242 // pressure tracking were modified such that a register use would increment the
1243 // pressure of the register class's representative and all of it's super
1244 // classes' representatives transitively. We have not implemented this because
1245 // of the difficulty prior to coalescing of modeling operand register classes
1246 // due to the common occurrence of cross class copies and subregister insertions
1247 // and extractions.
1248 std::pair<const TargetRegisterClass *, uint8_t>
1249 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1250                                            MVT VT) const {
1251   const TargetRegisterClass *RRC = nullptr;
1252   uint8_t Cost = 1;
1253   switch (VT.SimpleTy) {
1254   default:
1255     return TargetLowering::findRepresentativeClass(TRI, VT);
1256   // Use DPR as representative register class for all floating point
1257   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1258   // the cost is 1 for both f32 and f64.
1259   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1260   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1261     RRC = &ARM::DPRRegClass;
1262     // When NEON is used for SP, only half of the register file is available
1263     // because operations that define both SP and DP results will be constrained
1264     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1265     // coalescing by double-counting the SP regs. See the FIXME above.
1266     if (Subtarget->useNEONForSinglePrecisionFP())
1267       Cost = 2;
1268     break;
1269   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1270   case MVT::v4f32: case MVT::v2f64:
1271     RRC = &ARM::DPRRegClass;
1272     Cost = 2;
1273     break;
1274   case MVT::v4i64:
1275     RRC = &ARM::DPRRegClass;
1276     Cost = 4;
1277     break;
1278   case MVT::v8i64:
1279     RRC = &ARM::DPRRegClass;
1280     Cost = 8;
1281     break;
1282   }
1283   return std::make_pair(RRC, Cost);
1284 }
1285 
1286 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1287   switch ((ARMISD::NodeType)Opcode) {
1288   case ARMISD::FIRST_NUMBER:  break;
1289   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1290   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1291   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1292   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1293   case ARMISD::CALL:          return "ARMISD::CALL";
1294   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1295   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1296   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1297   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1298   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1299   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1300   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1301   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1302   case ARMISD::CMP:           return "ARMISD::CMP";
1303   case ARMISD::CMN:           return "ARMISD::CMN";
1304   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1305   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1306   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1307   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1308   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1309 
1310   case ARMISD::CMOV:          return "ARMISD::CMOV";
1311 
1312   case ARMISD::SSAT:          return "ARMISD::SSAT";
1313 
1314   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1315   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1316   case ARMISD::RRX:           return "ARMISD::RRX";
1317 
1318   case ARMISD::ADDC:          return "ARMISD::ADDC";
1319   case ARMISD::ADDE:          return "ARMISD::ADDE";
1320   case ARMISD::SUBC:          return "ARMISD::SUBC";
1321   case ARMISD::SUBE:          return "ARMISD::SUBE";
1322 
1323   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1324   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1325 
1326   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1327   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1328   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1329 
1330   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1331 
1332   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1333 
1334   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1335 
1336   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1337 
1338   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1339 
1340   case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
1341   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1342 
1343   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1344   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1345   case ARMISD::VCGE:          return "ARMISD::VCGE";
1346   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1347   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1348   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1349   case ARMISD::VCGT:          return "ARMISD::VCGT";
1350   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1351   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1352   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1353   case ARMISD::VTST:          return "ARMISD::VTST";
1354 
1355   case ARMISD::VSHL:          return "ARMISD::VSHL";
1356   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1357   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1358   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1359   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1360   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1361   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1362   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1363   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1364   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1365   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1366   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1367   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1368   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1369   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1370   case ARMISD::VSLI:          return "ARMISD::VSLI";
1371   case ARMISD::VSRI:          return "ARMISD::VSRI";
1372   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1373   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1374   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1375   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1376   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1377   case ARMISD::VDUP:          return "ARMISD::VDUP";
1378   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1379   case ARMISD::VEXT:          return "ARMISD::VEXT";
1380   case ARMISD::VREV64:        return "ARMISD::VREV64";
1381   case ARMISD::VREV32:        return "ARMISD::VREV32";
1382   case ARMISD::VREV16:        return "ARMISD::VREV16";
1383   case ARMISD::VZIP:          return "ARMISD::VZIP";
1384   case ARMISD::VUZP:          return "ARMISD::VUZP";
1385   case ARMISD::VTRN:          return "ARMISD::VTRN";
1386   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1387   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1388   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1389   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1390   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1391   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1392   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1393   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1394   case ARMISD::BFI:           return "ARMISD::BFI";
1395   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1396   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1397   case ARMISD::VBSL:          return "ARMISD::VBSL";
1398   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1399   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1400   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1401   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1402   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1403   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1404   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1405   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1406   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1407   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1408   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1409   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1410   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1411   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1412   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1413   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1414   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1415   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1416   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1417   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1418   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1419   }
1420   return nullptr;
1421 }
1422 
1423 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1424                                           EVT VT) const {
1425   if (!VT.isVector())
1426     return getPointerTy(DL);
1427   return VT.changeVectorElementTypeToInteger();
1428 }
1429 
1430 /// getRegClassFor - Return the register class that should be used for the
1431 /// specified value type.
1432 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1433   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1434   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1435   // load / store 4 to 8 consecutive D registers.
1436   if (Subtarget->hasNEON()) {
1437     if (VT == MVT::v4i64)
1438       return &ARM::QQPRRegClass;
1439     if (VT == MVT::v8i64)
1440       return &ARM::QQQQPRRegClass;
1441   }
1442   return TargetLowering::getRegClassFor(VT);
1443 }
1444 
1445 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1446 // source/dest is aligned and the copy size is large enough. We therefore want
1447 // to align such objects passed to memory intrinsics.
1448 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1449                                                unsigned &PrefAlign) const {
1450   if (!isa<MemIntrinsic>(CI))
1451     return false;
1452   MinSize = 8;
1453   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1454   // cycle faster than 4-byte aligned LDM.
1455   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1456   return true;
1457 }
1458 
1459 // Create a fast isel object.
1460 FastISel *
1461 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1462                                   const TargetLibraryInfo *libInfo) const {
1463   return ARM::createFastISel(funcInfo, libInfo);
1464 }
1465 
1466 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1467   unsigned NumVals = N->getNumValues();
1468   if (!NumVals)
1469     return Sched::RegPressure;
1470 
1471   for (unsigned i = 0; i != NumVals; ++i) {
1472     EVT VT = N->getValueType(i);
1473     if (VT == MVT::Glue || VT == MVT::Other)
1474       continue;
1475     if (VT.isFloatingPoint() || VT.isVector())
1476       return Sched::ILP;
1477   }
1478 
1479   if (!N->isMachineOpcode())
1480     return Sched::RegPressure;
1481 
1482   // Load are scheduled for latency even if there instruction itinerary
1483   // is not available.
1484   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1485   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1486 
1487   if (MCID.getNumDefs() == 0)
1488     return Sched::RegPressure;
1489   if (!Itins->isEmpty() &&
1490       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1491     return Sched::ILP;
1492 
1493   return Sched::RegPressure;
1494 }
1495 
1496 //===----------------------------------------------------------------------===//
1497 // Lowering Code
1498 //===----------------------------------------------------------------------===//
1499 
1500 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1501 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1502   switch (CC) {
1503   default: llvm_unreachable("Unknown condition code!");
1504   case ISD::SETNE:  return ARMCC::NE;
1505   case ISD::SETEQ:  return ARMCC::EQ;
1506   case ISD::SETGT:  return ARMCC::GT;
1507   case ISD::SETGE:  return ARMCC::GE;
1508   case ISD::SETLT:  return ARMCC::LT;
1509   case ISD::SETLE:  return ARMCC::LE;
1510   case ISD::SETUGT: return ARMCC::HI;
1511   case ISD::SETUGE: return ARMCC::HS;
1512   case ISD::SETULT: return ARMCC::LO;
1513   case ISD::SETULE: return ARMCC::LS;
1514   }
1515 }
1516 
1517 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1518 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1519                         ARMCC::CondCodes &CondCode2) {
1520   CondCode2 = ARMCC::AL;
1521   switch (CC) {
1522   default: llvm_unreachable("Unknown FP condition!");
1523   case ISD::SETEQ:
1524   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1525   case ISD::SETGT:
1526   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1527   case ISD::SETGE:
1528   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1529   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1530   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1531   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1532   case ISD::SETO:   CondCode = ARMCC::VC; break;
1533   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1534   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1535   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1536   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1537   case ISD::SETLT:
1538   case ISD::SETULT: CondCode = ARMCC::LT; break;
1539   case ISD::SETLE:
1540   case ISD::SETULE: CondCode = ARMCC::LE; break;
1541   case ISD::SETNE:
1542   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1543   }
1544 }
1545 
1546 //===----------------------------------------------------------------------===//
1547 //                      Calling Convention Implementation
1548 //===----------------------------------------------------------------------===//
1549 
1550 #include "ARMGenCallingConv.inc"
1551 
1552 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1553 /// account presence of floating point hardware and calling convention
1554 /// limitations, such as support for variadic functions.
1555 CallingConv::ID
1556 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1557                                            bool isVarArg) const {
1558   switch (CC) {
1559   default:
1560     llvm_unreachable("Unsupported calling convention");
1561   case CallingConv::ARM_AAPCS:
1562   case CallingConv::ARM_APCS:
1563   case CallingConv::GHC:
1564     return CC;
1565   case CallingConv::PreserveMost:
1566     return CallingConv::PreserveMost;
1567   case CallingConv::ARM_AAPCS_VFP:
1568   case CallingConv::Swift:
1569     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1570   case CallingConv::C:
1571     if (!Subtarget->isAAPCS_ABI())
1572       return CallingConv::ARM_APCS;
1573     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1574              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1575              !isVarArg)
1576       return CallingConv::ARM_AAPCS_VFP;
1577     else
1578       return CallingConv::ARM_AAPCS;
1579   case CallingConv::Fast:
1580   case CallingConv::CXX_FAST_TLS:
1581     if (!Subtarget->isAAPCS_ABI()) {
1582       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1583         return CallingConv::Fast;
1584       return CallingConv::ARM_APCS;
1585     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1586       return CallingConv::ARM_AAPCS_VFP;
1587     else
1588       return CallingConv::ARM_AAPCS;
1589   }
1590 }
1591 
1592 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1593 /// CallingConvention.
1594 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1595                                                  bool Return,
1596                                                  bool isVarArg) const {
1597   switch (getEffectiveCallingConv(CC, isVarArg)) {
1598   default:
1599     llvm_unreachable("Unsupported calling convention");
1600   case CallingConv::ARM_APCS:
1601     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1602   case CallingConv::ARM_AAPCS:
1603     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1604   case CallingConv::ARM_AAPCS_VFP:
1605     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1606   case CallingConv::Fast:
1607     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1608   case CallingConv::GHC:
1609     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1610   case CallingConv::PreserveMost:
1611     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1612   }
1613 }
1614 
1615 /// LowerCallResult - Lower the result values of a call into the
1616 /// appropriate copies out of appropriate physical registers.
1617 SDValue ARMTargetLowering::LowerCallResult(
1618     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1619     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1620     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1621     SDValue ThisVal) const {
1622 
1623   // Assign locations to each value returned by this call.
1624   SmallVector<CCValAssign, 16> RVLocs;
1625   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1626                     *DAG.getContext(), Call);
1627   CCInfo.AnalyzeCallResult(Ins,
1628                            CCAssignFnForNode(CallConv, /* Return*/ true,
1629                                              isVarArg));
1630 
1631   // Copy all of the result registers out of their specified physreg.
1632   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1633     CCValAssign VA = RVLocs[i];
1634 
1635     // Pass 'this' value directly from the argument to return value, to avoid
1636     // reg unit interference
1637     if (i == 0 && isThisReturn) {
1638       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1639              "unexpected return calling convention register assignment");
1640       InVals.push_back(ThisVal);
1641       continue;
1642     }
1643 
1644     SDValue Val;
1645     if (VA.needsCustom()) {
1646       // Handle f64 or half of a v2f64.
1647       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1648                                       InFlag);
1649       Chain = Lo.getValue(1);
1650       InFlag = Lo.getValue(2);
1651       VA = RVLocs[++i]; // skip ahead to next loc
1652       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1653                                       InFlag);
1654       Chain = Hi.getValue(1);
1655       InFlag = Hi.getValue(2);
1656       if (!Subtarget->isLittle())
1657         std::swap (Lo, Hi);
1658       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1659 
1660       if (VA.getLocVT() == MVT::v2f64) {
1661         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1662         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1663                           DAG.getConstant(0, dl, MVT::i32));
1664 
1665         VA = RVLocs[++i]; // skip ahead to next loc
1666         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1667         Chain = Lo.getValue(1);
1668         InFlag = Lo.getValue(2);
1669         VA = RVLocs[++i]; // skip ahead to next loc
1670         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1671         Chain = Hi.getValue(1);
1672         InFlag = Hi.getValue(2);
1673         if (!Subtarget->isLittle())
1674           std::swap (Lo, Hi);
1675         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1676         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1677                           DAG.getConstant(1, dl, MVT::i32));
1678       }
1679     } else {
1680       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1681                                InFlag);
1682       Chain = Val.getValue(1);
1683       InFlag = Val.getValue(2);
1684     }
1685 
1686     switch (VA.getLocInfo()) {
1687     default: llvm_unreachable("Unknown loc info!");
1688     case CCValAssign::Full: break;
1689     case CCValAssign::BCvt:
1690       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1691       break;
1692     }
1693 
1694     InVals.push_back(Val);
1695   }
1696 
1697   return Chain;
1698 }
1699 
1700 /// LowerMemOpCallTo - Store the argument to the stack.
1701 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1702                                             SDValue Arg, const SDLoc &dl,
1703                                             SelectionDAG &DAG,
1704                                             const CCValAssign &VA,
1705                                             ISD::ArgFlagsTy Flags) const {
1706   unsigned LocMemOffset = VA.getLocMemOffset();
1707   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1708   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1709                        StackPtr, PtrOff);
1710   return DAG.getStore(
1711       Chain, dl, Arg, PtrOff,
1712       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1713 }
1714 
1715 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1716                                          SDValue Chain, SDValue &Arg,
1717                                          RegsToPassVector &RegsToPass,
1718                                          CCValAssign &VA, CCValAssign &NextVA,
1719                                          SDValue &StackPtr,
1720                                          SmallVectorImpl<SDValue> &MemOpChains,
1721                                          ISD::ArgFlagsTy Flags) const {
1722 
1723   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1724                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1725   unsigned id = Subtarget->isLittle() ? 0 : 1;
1726   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1727 
1728   if (NextVA.isRegLoc())
1729     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1730   else {
1731     assert(NextVA.isMemLoc());
1732     if (!StackPtr.getNode())
1733       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1734                                     getPointerTy(DAG.getDataLayout()));
1735 
1736     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1737                                            dl, DAG, NextVA,
1738                                            Flags));
1739   }
1740 }
1741 
1742 /// LowerCall - Lowering a call into a callseq_start <-
1743 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1744 /// nodes.
1745 SDValue
1746 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1747                              SmallVectorImpl<SDValue> &InVals) const {
1748   SelectionDAG &DAG                     = CLI.DAG;
1749   SDLoc &dl                             = CLI.DL;
1750   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1751   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1752   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1753   SDValue Chain                         = CLI.Chain;
1754   SDValue Callee                        = CLI.Callee;
1755   bool &isTailCall                      = CLI.IsTailCall;
1756   CallingConv::ID CallConv              = CLI.CallConv;
1757   bool doesNotRet                       = CLI.DoesNotReturn;
1758   bool isVarArg                         = CLI.IsVarArg;
1759 
1760   MachineFunction &MF = DAG.getMachineFunction();
1761   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1762   bool isThisReturn   = false;
1763   bool isSibCall      = false;
1764   auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
1765 
1766   // Disable tail calls if they're not supported.
1767   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1768     isTailCall = false;
1769 
1770   if (isTailCall) {
1771     // Check if it's really possible to do a tail call.
1772     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1773                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1774                                                    Outs, OutVals, Ins, DAG);
1775     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
1776       report_fatal_error("failed to perform tail call elimination on a call "
1777                          "site marked musttail");
1778     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1779     // detected sibcalls.
1780     if (isTailCall) {
1781       ++NumTailCalls;
1782       isSibCall = true;
1783     }
1784   }
1785 
1786   // Analyze operands of the call, assigning locations to each operand.
1787   SmallVector<CCValAssign, 16> ArgLocs;
1788   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1789                     *DAG.getContext(), Call);
1790   CCInfo.AnalyzeCallOperands(Outs,
1791                              CCAssignFnForNode(CallConv, /* Return*/ false,
1792                                                isVarArg));
1793 
1794   // Get a count of how many bytes are to be pushed on the stack.
1795   unsigned NumBytes = CCInfo.getNextStackOffset();
1796 
1797   // For tail calls, memory operands are available in our caller's stack.
1798   if (isSibCall)
1799     NumBytes = 0;
1800 
1801   // Adjust the stack pointer for the new arguments...
1802   // These operations are automatically eliminated by the prolog/epilog pass
1803   if (!isSibCall)
1804     Chain = DAG.getCALLSEQ_START(Chain,
1805                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
1806 
1807   SDValue StackPtr =
1808       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1809 
1810   RegsToPassVector RegsToPass;
1811   SmallVector<SDValue, 8> MemOpChains;
1812 
1813   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1814   // of tail call optimization, arguments are handled later.
1815   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1816        i != e;
1817        ++i, ++realArgIdx) {
1818     CCValAssign &VA = ArgLocs[i];
1819     SDValue Arg = OutVals[realArgIdx];
1820     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1821     bool isByVal = Flags.isByVal();
1822 
1823     // Promote the value if needed.
1824     switch (VA.getLocInfo()) {
1825     default: llvm_unreachable("Unknown loc info!");
1826     case CCValAssign::Full: break;
1827     case CCValAssign::SExt:
1828       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1829       break;
1830     case CCValAssign::ZExt:
1831       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1832       break;
1833     case CCValAssign::AExt:
1834       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1835       break;
1836     case CCValAssign::BCvt:
1837       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1838       break;
1839     }
1840 
1841     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1842     if (VA.needsCustom()) {
1843       if (VA.getLocVT() == MVT::v2f64) {
1844         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1845                                   DAG.getConstant(0, dl, MVT::i32));
1846         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1847                                   DAG.getConstant(1, dl, MVT::i32));
1848 
1849         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1850                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1851 
1852         VA = ArgLocs[++i]; // skip ahead to next loc
1853         if (VA.isRegLoc()) {
1854           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1855                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1856         } else {
1857           assert(VA.isMemLoc());
1858 
1859           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1860                                                  dl, DAG, VA, Flags));
1861         }
1862       } else {
1863         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1864                          StackPtr, MemOpChains, Flags);
1865       }
1866     } else if (VA.isRegLoc()) {
1867       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1868         assert(VA.getLocVT() == MVT::i32 &&
1869                "unexpected calling convention register assignment");
1870         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1871                "unexpected use of 'returned'");
1872         isThisReturn = true;
1873       }
1874       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1875     } else if (isByVal) {
1876       assert(VA.isMemLoc());
1877       unsigned offset = 0;
1878 
1879       // True if this byval aggregate will be split between registers
1880       // and memory.
1881       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1882       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1883 
1884       if (CurByValIdx < ByValArgsCount) {
1885 
1886         unsigned RegBegin, RegEnd;
1887         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1888 
1889         EVT PtrVT =
1890             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1891         unsigned int i, j;
1892         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1893           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1894           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1895           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1896                                      MachinePointerInfo(),
1897                                      DAG.InferPtrAlignment(AddArg));
1898           MemOpChains.push_back(Load.getValue(1));
1899           RegsToPass.push_back(std::make_pair(j, Load));
1900         }
1901 
1902         // If parameter size outsides register area, "offset" value
1903         // helps us to calculate stack slot for remained part properly.
1904         offset = RegEnd - RegBegin;
1905 
1906         CCInfo.nextInRegsParam();
1907       }
1908 
1909       if (Flags.getByValSize() > 4*offset) {
1910         auto PtrVT = getPointerTy(DAG.getDataLayout());
1911         unsigned LocMemOffset = VA.getLocMemOffset();
1912         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1913         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1914         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1915         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1916         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1917                                            MVT::i32);
1918         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1919                                             MVT::i32);
1920 
1921         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1922         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1923         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1924                                           Ops));
1925       }
1926     } else if (!isSibCall) {
1927       assert(VA.isMemLoc());
1928 
1929       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1930                                              dl, DAG, VA, Flags));
1931     }
1932   }
1933 
1934   if (!MemOpChains.empty())
1935     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1936 
1937   // Build a sequence of copy-to-reg nodes chained together with token chain
1938   // and flag operands which copy the outgoing args into the appropriate regs.
1939   SDValue InFlag;
1940   // Tail call byval lowering might overwrite argument registers so in case of
1941   // tail call optimization the copies to registers are lowered later.
1942   if (!isTailCall)
1943     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1944       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1945                                RegsToPass[i].second, InFlag);
1946       InFlag = Chain.getValue(1);
1947     }
1948 
1949   // For tail calls lower the arguments to the 'real' stack slot.
1950   if (isTailCall) {
1951     // Force all the incoming stack arguments to be loaded from the stack
1952     // before any new outgoing arguments are stored to the stack, because the
1953     // outgoing stack slots may alias the incoming argument stack slots, and
1954     // the alias isn't otherwise explicit. This is slightly more conservative
1955     // than necessary, because it means that each store effectively depends
1956     // on every argument instead of just those arguments it would clobber.
1957 
1958     // Do not flag preceding copytoreg stuff together with the following stuff.
1959     InFlag = SDValue();
1960     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1961       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1962                                RegsToPass[i].second, InFlag);
1963       InFlag = Chain.getValue(1);
1964     }
1965     InFlag = SDValue();
1966   }
1967 
1968   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1969   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1970   // node so that legalize doesn't hack it.
1971   bool isDirect = false;
1972 
1973   const TargetMachine &TM = getTargetMachine();
1974   const Module *Mod = MF.getFunction()->getParent();
1975   const GlobalValue *GV = nullptr;
1976   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1977     GV = G->getGlobal();
1978   bool isStub =
1979       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
1980 
1981   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1982   bool isLocalARMFunc = false;
1983   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1984   auto PtrVt = getPointerTy(DAG.getDataLayout());
1985 
1986   if (Subtarget->genLongCalls()) {
1987     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
1988            "long-calls codegen is not position independent!");
1989     // Handle a global address or an external symbol. If it's not one of
1990     // those, the target's already in a register, so we don't need to do
1991     // anything extra.
1992     if (isa<GlobalAddressSDNode>(Callee)) {
1993       // Create a constant pool entry for the callee address
1994       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1995       ARMConstantPoolValue *CPV =
1996         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1997 
1998       // Get the address of the callee into a register
1999       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2000       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2001       Callee = DAG.getLoad(
2002           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2003           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2004     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2005       const char *Sym = S->getSymbol();
2006 
2007       // Create a constant pool entry for the callee address
2008       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2009       ARMConstantPoolValue *CPV =
2010         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2011                                       ARMPCLabelIndex, 0);
2012       // Get the address of the callee into a register
2013       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2014       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2015       Callee = DAG.getLoad(
2016           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2017           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2018     }
2019   } else if (isa<GlobalAddressSDNode>(Callee)) {
2020     // If we're optimizing for minimum size and the function is called three or
2021     // more times in this block, we can improve codesize by calling indirectly
2022     // as BLXr has a 16-bit encoding.
2023     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2024     auto *BB = CLI.CS->getParent();
2025     bool PreferIndirect =
2026         Subtarget->isThumb() && MF.getFunction()->optForMinSize() &&
2027         count_if(GV->users(), [&BB](const User *U) {
2028           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
2029         }) > 2;
2030 
2031     if (!PreferIndirect) {
2032       isDirect = true;
2033       bool isDef = GV->isStrongDefinitionForLinker();
2034 
2035       // ARM call to a local ARM function is predicable.
2036       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2037       // tBX takes a register source operand.
2038       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2039         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2040         Callee = DAG.getNode(
2041             ARMISD::WrapperPIC, dl, PtrVt,
2042             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2043         Callee = DAG.getLoad(
2044             PtrVt, dl, DAG.getEntryNode(), Callee,
2045             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2046             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2047                                      MachineMemOperand::MOInvariant);
2048       } else if (Subtarget->isTargetCOFF()) {
2049         assert(Subtarget->isTargetWindows() &&
2050                "Windows is the only supported COFF target");
2051         unsigned TargetFlags = GV->hasDLLImportStorageClass()
2052                                    ? ARMII::MO_DLLIMPORT
2053                                    : ARMII::MO_NO_FLAG;
2054         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
2055                                             TargetFlags);
2056         if (GV->hasDLLImportStorageClass())
2057           Callee =
2058               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2059                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2060                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2061       } else {
2062         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2063       }
2064     }
2065   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2066     isDirect = true;
2067     // tBX takes a register source operand.
2068     const char *Sym = S->getSymbol();
2069     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2070       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2071       ARMConstantPoolValue *CPV =
2072         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2073                                       ARMPCLabelIndex, 4);
2074       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2075       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2076       Callee = DAG.getLoad(
2077           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2078           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2079       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2080       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2081     } else {
2082       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2083     }
2084   }
2085 
2086   // FIXME: handle tail calls differently.
2087   unsigned CallOpc;
2088   if (Subtarget->isThumb()) {
2089     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2090       CallOpc = ARMISD::CALL_NOLINK;
2091     else
2092       CallOpc = ARMISD::CALL;
2093   } else {
2094     if (!isDirect && !Subtarget->hasV5TOps())
2095       CallOpc = ARMISD::CALL_NOLINK;
2096     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2097              // Emit regular call when code size is the priority
2098              !MF.getFunction()->optForMinSize())
2099       // "mov lr, pc; b _foo" to avoid confusing the RSP
2100       CallOpc = ARMISD::CALL_NOLINK;
2101     else
2102       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2103   }
2104 
2105   std::vector<SDValue> Ops;
2106   Ops.push_back(Chain);
2107   Ops.push_back(Callee);
2108 
2109   // Add argument registers to the end of the list so that they are known live
2110   // into the call.
2111   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2112     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2113                                   RegsToPass[i].second.getValueType()));
2114 
2115   // Add a register mask operand representing the call-preserved registers.
2116   if (!isTailCall) {
2117     const uint32_t *Mask;
2118     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2119     if (isThisReturn) {
2120       // For 'this' returns, use the R0-preserving mask if applicable
2121       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2122       if (!Mask) {
2123         // Set isThisReturn to false if the calling convention is not one that
2124         // allows 'returned' to be modeled in this way, so LowerCallResult does
2125         // not try to pass 'this' straight through
2126         isThisReturn = false;
2127         Mask = ARI->getCallPreservedMask(MF, CallConv);
2128       }
2129     } else
2130       Mask = ARI->getCallPreservedMask(MF, CallConv);
2131 
2132     assert(Mask && "Missing call preserved mask for calling convention");
2133     Ops.push_back(DAG.getRegisterMask(Mask));
2134   }
2135 
2136   if (InFlag.getNode())
2137     Ops.push_back(InFlag);
2138 
2139   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2140   if (isTailCall) {
2141     MF.getFrameInfo().setHasTailCall();
2142     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2143   }
2144 
2145   // Returns a chain and a flag for retval copy to use.
2146   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2147   InFlag = Chain.getValue(1);
2148 
2149   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2150                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2151   if (!Ins.empty())
2152     InFlag = Chain.getValue(1);
2153 
2154   // Handle result values, copying them out of physregs into vregs that we
2155   // return.
2156   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2157                          InVals, isThisReturn,
2158                          isThisReturn ? OutVals[0] : SDValue());
2159 }
2160 
2161 /// HandleByVal - Every parameter *after* a byval parameter is passed
2162 /// on the stack.  Remember the next parameter register to allocate,
2163 /// and then confiscate the rest of the parameter registers to insure
2164 /// this.
2165 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2166                                     unsigned Align) const {
2167   assert((State->getCallOrPrologue() == Prologue ||
2168           State->getCallOrPrologue() == Call) &&
2169          "unhandled ParmContext");
2170 
2171   // Byval (as with any stack) slots are always at least 4 byte aligned.
2172   Align = std::max(Align, 4U);
2173 
2174   unsigned Reg = State->AllocateReg(GPRArgRegs);
2175   if (!Reg)
2176     return;
2177 
2178   unsigned AlignInRegs = Align / 4;
2179   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2180   for (unsigned i = 0; i < Waste; ++i)
2181     Reg = State->AllocateReg(GPRArgRegs);
2182 
2183   if (!Reg)
2184     return;
2185 
2186   unsigned Excess = 4 * (ARM::R4 - Reg);
2187 
2188   // Special case when NSAA != SP and parameter size greater than size of
2189   // all remained GPR regs. In that case we can't split parameter, we must
2190   // send it to stack. We also must set NCRN to R4, so waste all
2191   // remained registers.
2192   const unsigned NSAAOffset = State->getNextStackOffset();
2193   if (NSAAOffset != 0 && Size > Excess) {
2194     while (State->AllocateReg(GPRArgRegs))
2195       ;
2196     return;
2197   }
2198 
2199   // First register for byval parameter is the first register that wasn't
2200   // allocated before this method call, so it would be "reg".
2201   // If parameter is small enough to be saved in range [reg, r4), then
2202   // the end (first after last) register would be reg + param-size-in-regs,
2203   // else parameter would be splitted between registers and stack,
2204   // end register would be r4 in this case.
2205   unsigned ByValRegBegin = Reg;
2206   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2207   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2208   // Note, first register is allocated in the beginning of function already,
2209   // allocate remained amount of registers we need.
2210   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2211     State->AllocateReg(GPRArgRegs);
2212   // A byval parameter that is split between registers and memory needs its
2213   // size truncated here.
2214   // In the case where the entire structure fits in registers, we set the
2215   // size in memory to zero.
2216   Size = std::max<int>(Size - Excess, 0);
2217 }
2218 
2219 /// MatchingStackOffset - Return true if the given stack call argument is
2220 /// already available in the same position (relatively) of the caller's
2221 /// incoming argument stack.
2222 static
2223 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2224                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2225                          const TargetInstrInfo *TII) {
2226   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2227   int FI = INT_MAX;
2228   if (Arg.getOpcode() == ISD::CopyFromReg) {
2229     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2230     if (!TargetRegisterInfo::isVirtualRegister(VR))
2231       return false;
2232     MachineInstr *Def = MRI->getVRegDef(VR);
2233     if (!Def)
2234       return false;
2235     if (!Flags.isByVal()) {
2236       if (!TII->isLoadFromStackSlot(*Def, FI))
2237         return false;
2238     } else {
2239       return false;
2240     }
2241   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2242     if (Flags.isByVal())
2243       // ByVal argument is passed in as a pointer but it's now being
2244       // dereferenced. e.g.
2245       // define @foo(%struct.X* %A) {
2246       //   tail call @bar(%struct.X* byval %A)
2247       // }
2248       return false;
2249     SDValue Ptr = Ld->getBasePtr();
2250     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2251     if (!FINode)
2252       return false;
2253     FI = FINode->getIndex();
2254   } else
2255     return false;
2256 
2257   assert(FI != INT_MAX);
2258   if (!MFI.isFixedObjectIndex(FI))
2259     return false;
2260   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2261 }
2262 
2263 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2264 /// for tail call optimization. Targets which want to do tail call
2265 /// optimization should implement this function.
2266 bool
2267 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2268                                                      CallingConv::ID CalleeCC,
2269                                                      bool isVarArg,
2270                                                      bool isCalleeStructRet,
2271                                                      bool isCallerStructRet,
2272                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2273                                     const SmallVectorImpl<SDValue> &OutVals,
2274                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2275                                                      SelectionDAG& DAG) const {
2276   MachineFunction &MF = DAG.getMachineFunction();
2277   const Function *CallerF = MF.getFunction();
2278   CallingConv::ID CallerCC = CallerF->getCallingConv();
2279 
2280   assert(Subtarget->supportsTailCall());
2281 
2282   // Look for obvious safe cases to perform tail call optimization that do not
2283   // require ABI changes. This is what gcc calls sibcall.
2284 
2285   // Do not sibcall optimize vararg calls unless the call site is not passing
2286   // any arguments.
2287   if (isVarArg && !Outs.empty())
2288     return false;
2289 
2290   // Exception-handling functions need a special set of instructions to indicate
2291   // a return to the hardware. Tail-calling another function would probably
2292   // break this.
2293   if (CallerF->hasFnAttribute("interrupt"))
2294     return false;
2295 
2296   // Also avoid sibcall optimization if either caller or callee uses struct
2297   // return semantics.
2298   if (isCalleeStructRet || isCallerStructRet)
2299     return false;
2300 
2301   // Externally-defined functions with weak linkage should not be
2302   // tail-called on ARM when the OS does not support dynamic
2303   // pre-emption of symbols, as the AAELF spec requires normal calls
2304   // to undefined weak functions to be replaced with a NOP or jump to the
2305   // next instruction. The behaviour of branch instructions in this
2306   // situation (as used for tail calls) is implementation-defined, so we
2307   // cannot rely on the linker replacing the tail call with a return.
2308   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2309     const GlobalValue *GV = G->getGlobal();
2310     const Triple &TT = getTargetMachine().getTargetTriple();
2311     if (GV->hasExternalWeakLinkage() &&
2312         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2313       return false;
2314   }
2315 
2316   // Check that the call results are passed in the same way.
2317   LLVMContext &C = *DAG.getContext();
2318   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2319                                   CCAssignFnForNode(CalleeCC, true, isVarArg),
2320                                   CCAssignFnForNode(CallerCC, true, isVarArg)))
2321     return false;
2322   // The callee has to preserve all registers the caller needs to preserve.
2323   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2324   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2325   if (CalleeCC != CallerCC) {
2326     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2327     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2328       return false;
2329   }
2330 
2331   // If Caller's vararg or byval argument has been split between registers and
2332   // stack, do not perform tail call, since part of the argument is in caller's
2333   // local frame.
2334   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2335   if (AFI_Caller->getArgRegsSaveSize())
2336     return false;
2337 
2338   // If the callee takes no arguments then go on to check the results of the
2339   // call.
2340   if (!Outs.empty()) {
2341     // Check if stack adjustment is needed. For now, do not do this if any
2342     // argument is passed on the stack.
2343     SmallVector<CCValAssign, 16> ArgLocs;
2344     ARMCCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C, Call);
2345     CCInfo.AnalyzeCallOperands(Outs,
2346                                CCAssignFnForNode(CalleeCC, false, isVarArg));
2347     if (CCInfo.getNextStackOffset()) {
2348       // Check if the arguments are already laid out in the right way as
2349       // the caller's fixed stack objects.
2350       MachineFrameInfo &MFI = MF.getFrameInfo();
2351       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2352       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2353       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2354            i != e;
2355            ++i, ++realArgIdx) {
2356         CCValAssign &VA = ArgLocs[i];
2357         EVT RegVT = VA.getLocVT();
2358         SDValue Arg = OutVals[realArgIdx];
2359         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2360         if (VA.getLocInfo() == CCValAssign::Indirect)
2361           return false;
2362         if (VA.needsCustom()) {
2363           // f64 and vector types are split into multiple registers or
2364           // register/stack-slot combinations.  The types will not match
2365           // the registers; give up on memory f64 refs until we figure
2366           // out what to do about this.
2367           if (!VA.isRegLoc())
2368             return false;
2369           if (!ArgLocs[++i].isRegLoc())
2370             return false;
2371           if (RegVT == MVT::v2f64) {
2372             if (!ArgLocs[++i].isRegLoc())
2373               return false;
2374             if (!ArgLocs[++i].isRegLoc())
2375               return false;
2376           }
2377         } else if (!VA.isRegLoc()) {
2378           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2379                                    MFI, MRI, TII))
2380             return false;
2381         }
2382       }
2383     }
2384 
2385     const MachineRegisterInfo &MRI = MF.getRegInfo();
2386     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2387       return false;
2388   }
2389 
2390   return true;
2391 }
2392 
2393 bool
2394 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2395                                   MachineFunction &MF, bool isVarArg,
2396                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2397                                   LLVMContext &Context) const {
2398   SmallVector<CCValAssign, 16> RVLocs;
2399   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2400   return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2401                                                     isVarArg));
2402 }
2403 
2404 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2405                                     const SDLoc &DL, SelectionDAG &DAG) {
2406   const MachineFunction &MF = DAG.getMachineFunction();
2407   const Function *F = MF.getFunction();
2408 
2409   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2410 
2411   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2412   // version of the "preferred return address". These offsets affect the return
2413   // instruction if this is a return from PL1 without hypervisor extensions.
2414   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2415   //    SWI:     0      "subs pc, lr, #0"
2416   //    ABORT:   +4     "subs pc, lr, #4"
2417   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2418   // UNDEF varies depending on where the exception came from ARM or Thumb
2419   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2420 
2421   int64_t LROffset;
2422   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2423       IntKind == "ABORT")
2424     LROffset = 4;
2425   else if (IntKind == "SWI" || IntKind == "UNDEF")
2426     LROffset = 0;
2427   else
2428     report_fatal_error("Unsupported interrupt attribute. If present, value "
2429                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2430 
2431   RetOps.insert(RetOps.begin() + 1,
2432                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2433 
2434   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2435 }
2436 
2437 SDValue
2438 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2439                                bool isVarArg,
2440                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2441                                const SmallVectorImpl<SDValue> &OutVals,
2442                                const SDLoc &dl, SelectionDAG &DAG) const {
2443 
2444   // CCValAssign - represent the assignment of the return value to a location.
2445   SmallVector<CCValAssign, 16> RVLocs;
2446 
2447   // CCState - Info about the registers and stack slots.
2448   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2449                     *DAG.getContext(), Call);
2450 
2451   // Analyze outgoing return values.
2452   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2453                                                isVarArg));
2454 
2455   SDValue Flag;
2456   SmallVector<SDValue, 4> RetOps;
2457   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2458   bool isLittleEndian = Subtarget->isLittle();
2459 
2460   MachineFunction &MF = DAG.getMachineFunction();
2461   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2462   AFI->setReturnRegsCount(RVLocs.size());
2463 
2464   // Copy the result values into the output registers.
2465   for (unsigned i = 0, realRVLocIdx = 0;
2466        i != RVLocs.size();
2467        ++i, ++realRVLocIdx) {
2468     CCValAssign &VA = RVLocs[i];
2469     assert(VA.isRegLoc() && "Can only return in registers!");
2470 
2471     SDValue Arg = OutVals[realRVLocIdx];
2472 
2473     switch (VA.getLocInfo()) {
2474     default: llvm_unreachable("Unknown loc info!");
2475     case CCValAssign::Full: break;
2476     case CCValAssign::BCvt:
2477       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2478       break;
2479     }
2480 
2481     if (VA.needsCustom()) {
2482       if (VA.getLocVT() == MVT::v2f64) {
2483         // Extract the first half and return it in two registers.
2484         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2485                                    DAG.getConstant(0, dl, MVT::i32));
2486         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2487                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2488 
2489         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2490                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2491                                  Flag);
2492         Flag = Chain.getValue(1);
2493         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2494         VA = RVLocs[++i]; // skip ahead to next loc
2495         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2496                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2497                                  Flag);
2498         Flag = Chain.getValue(1);
2499         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2500         VA = RVLocs[++i]; // skip ahead to next loc
2501 
2502         // Extract the 2nd half and fall through to handle it as an f64 value.
2503         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2504                           DAG.getConstant(1, dl, MVT::i32));
2505       }
2506       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2507       // available.
2508       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2509                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2510       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2511                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2512                                Flag);
2513       Flag = Chain.getValue(1);
2514       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2515       VA = RVLocs[++i]; // skip ahead to next loc
2516       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2517                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2518                                Flag);
2519     } else
2520       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2521 
2522     // Guarantee that all emitted copies are
2523     // stuck together, avoiding something bad.
2524     Flag = Chain.getValue(1);
2525     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2526   }
2527   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2528   const MCPhysReg *I =
2529       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2530   if (I) {
2531     for (; *I; ++I) {
2532       if (ARM::GPRRegClass.contains(*I))
2533         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2534       else if (ARM::DPRRegClass.contains(*I))
2535         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2536       else
2537         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2538     }
2539   }
2540 
2541   // Update chain and glue.
2542   RetOps[0] = Chain;
2543   if (Flag.getNode())
2544     RetOps.push_back(Flag);
2545 
2546   // CPUs which aren't M-class use a special sequence to return from
2547   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2548   // though we use "subs pc, lr, #N").
2549   //
2550   // M-class CPUs actually use a normal return sequence with a special
2551   // (hardware-provided) value in LR, so the normal code path works.
2552   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2553       !Subtarget->isMClass()) {
2554     if (Subtarget->isThumb1Only())
2555       report_fatal_error("interrupt attribute is not supported in Thumb1");
2556     return LowerInterruptReturn(RetOps, dl, DAG);
2557   }
2558 
2559   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2560 }
2561 
2562 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2563   if (N->getNumValues() != 1)
2564     return false;
2565   if (!N->hasNUsesOfValue(1, 0))
2566     return false;
2567 
2568   SDValue TCChain = Chain;
2569   SDNode *Copy = *N->use_begin();
2570   if (Copy->getOpcode() == ISD::CopyToReg) {
2571     // If the copy has a glue operand, we conservatively assume it isn't safe to
2572     // perform a tail call.
2573     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2574       return false;
2575     TCChain = Copy->getOperand(0);
2576   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2577     SDNode *VMov = Copy;
2578     // f64 returned in a pair of GPRs.
2579     SmallPtrSet<SDNode*, 2> Copies;
2580     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2581          UI != UE; ++UI) {
2582       if (UI->getOpcode() != ISD::CopyToReg)
2583         return false;
2584       Copies.insert(*UI);
2585     }
2586     if (Copies.size() > 2)
2587       return false;
2588 
2589     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2590          UI != UE; ++UI) {
2591       SDValue UseChain = UI->getOperand(0);
2592       if (Copies.count(UseChain.getNode()))
2593         // Second CopyToReg
2594         Copy = *UI;
2595       else {
2596         // We are at the top of this chain.
2597         // If the copy has a glue operand, we conservatively assume it
2598         // isn't safe to perform a tail call.
2599         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2600           return false;
2601         // First CopyToReg
2602         TCChain = UseChain;
2603       }
2604     }
2605   } else if (Copy->getOpcode() == ISD::BITCAST) {
2606     // f32 returned in a single GPR.
2607     if (!Copy->hasOneUse())
2608       return false;
2609     Copy = *Copy->use_begin();
2610     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2611       return false;
2612     // If the copy has a glue operand, we conservatively assume it isn't safe to
2613     // perform a tail call.
2614     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2615       return false;
2616     TCChain = Copy->getOperand(0);
2617   } else {
2618     return false;
2619   }
2620 
2621   bool HasRet = false;
2622   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2623        UI != UE; ++UI) {
2624     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2625         UI->getOpcode() != ARMISD::INTRET_FLAG)
2626       return false;
2627     HasRet = true;
2628   }
2629 
2630   if (!HasRet)
2631     return false;
2632 
2633   Chain = TCChain;
2634   return true;
2635 }
2636 
2637 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2638   if (!Subtarget->supportsTailCall())
2639     return false;
2640 
2641   auto Attr =
2642       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2643   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2644     return false;
2645 
2646   return true;
2647 }
2648 
2649 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2650 // and pass the lower and high parts through.
2651 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2652   SDLoc DL(Op);
2653   SDValue WriteValue = Op->getOperand(2);
2654 
2655   // This function is only supposed to be called for i64 type argument.
2656   assert(WriteValue.getValueType() == MVT::i64
2657           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2658 
2659   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2660                            DAG.getConstant(0, DL, MVT::i32));
2661   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2662                            DAG.getConstant(1, DL, MVT::i32));
2663   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2664   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2665 }
2666 
2667 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2668 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2669 // one of the above mentioned nodes. It has to be wrapped because otherwise
2670 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2671 // be used to form addressing mode. These wrapped nodes will be selected
2672 // into MOVi.
2673 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2674   EVT PtrVT = Op.getValueType();
2675   // FIXME there is no actual debug info here
2676   SDLoc dl(Op);
2677   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2678   SDValue Res;
2679   if (CP->isMachineConstantPoolEntry())
2680     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2681                                     CP->getAlignment());
2682   else
2683     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2684                                     CP->getAlignment());
2685   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2686 }
2687 
2688 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2689   return MachineJumpTableInfo::EK_Inline;
2690 }
2691 
2692 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2693                                              SelectionDAG &DAG) const {
2694   MachineFunction &MF = DAG.getMachineFunction();
2695   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2696   unsigned ARMPCLabelIndex = 0;
2697   SDLoc DL(Op);
2698   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2699   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2700   SDValue CPAddr;
2701   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2702   if (!IsPositionIndependent) {
2703     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2704   } else {
2705     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2706     ARMPCLabelIndex = AFI->createPICLabelUId();
2707     ARMConstantPoolValue *CPV =
2708       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2709                                       ARMCP::CPBlockAddress, PCAdj);
2710     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2711   }
2712   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2713   SDValue Result = DAG.getLoad(
2714       PtrVT, DL, DAG.getEntryNode(), CPAddr,
2715       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2716   if (!IsPositionIndependent)
2717     return Result;
2718   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2719   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2720 }
2721 
2722 /// \brief Convert a TLS address reference into the correct sequence of loads
2723 /// and calls to compute the variable's address for Darwin, and return an
2724 /// SDValue containing the final node.
2725 
2726 /// Darwin only has one TLS scheme which must be capable of dealing with the
2727 /// fully general situation, in the worst case. This means:
2728 ///     + "extern __thread" declaration.
2729 ///     + Defined in a possibly unknown dynamic library.
2730 ///
2731 /// The general system is that each __thread variable has a [3 x i32] descriptor
2732 /// which contains information used by the runtime to calculate the address. The
2733 /// only part of this the compiler needs to know about is the first word, which
2734 /// contains a function pointer that must be called with the address of the
2735 /// entire descriptor in "r0".
2736 ///
2737 /// Since this descriptor may be in a different unit, in general access must
2738 /// proceed along the usual ARM rules. A common sequence to produce is:
2739 ///
2740 ///     movw rT1, :lower16:_var$non_lazy_ptr
2741 ///     movt rT1, :upper16:_var$non_lazy_ptr
2742 ///     ldr r0, [rT1]
2743 ///     ldr rT2, [r0]
2744 ///     blx rT2
2745 ///     [...address now in r0...]
2746 SDValue
2747 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2748                                                SelectionDAG &DAG) const {
2749   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2750   SDLoc DL(Op);
2751 
2752   // First step is to get the address of the actua global symbol. This is where
2753   // the TLS descriptor lives.
2754   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2755 
2756   // The first entry in the descriptor is a function pointer that we must call
2757   // to obtain the address of the variable.
2758   SDValue Chain = DAG.getEntryNode();
2759   SDValue FuncTLVGet = DAG.getLoad(
2760       MVT::i32, DL, Chain, DescAddr,
2761       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2762       /* Alignment = */ 4,
2763       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2764           MachineMemOperand::MOInvariant);
2765   Chain = FuncTLVGet.getValue(1);
2766 
2767   MachineFunction &F = DAG.getMachineFunction();
2768   MachineFrameInfo &MFI = F.getFrameInfo();
2769   MFI.setAdjustsStack(true);
2770 
2771   // TLS calls preserve all registers except those that absolutely must be
2772   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2773   // silly).
2774   auto TRI =
2775       getTargetMachine().getSubtargetImpl(*F.getFunction())->getRegisterInfo();
2776   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2777   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2778 
2779   // Finally, we can make the call. This is just a degenerate version of a
2780   // normal AArch64 call node: r0 takes the address of the descriptor, and
2781   // returns the address of the variable in this thread.
2782   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2783   Chain =
2784       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2785                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2786                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2787   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2788 }
2789 
2790 SDValue
2791 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2792                                                 SelectionDAG &DAG) const {
2793   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2794 
2795   SDValue Chain = DAG.getEntryNode();
2796   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2797   SDLoc DL(Op);
2798 
2799   // Load the current TEB (thread environment block)
2800   SDValue Ops[] = {Chain,
2801                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2802                    DAG.getConstant(15, DL, MVT::i32),
2803                    DAG.getConstant(0, DL, MVT::i32),
2804                    DAG.getConstant(13, DL, MVT::i32),
2805                    DAG.getConstant(0, DL, MVT::i32),
2806                    DAG.getConstant(2, DL, MVT::i32)};
2807   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2808                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2809 
2810   SDValue TEB = CurrentTEB.getValue(0);
2811   Chain = CurrentTEB.getValue(1);
2812 
2813   // Load the ThreadLocalStoragePointer from the TEB
2814   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2815   SDValue TLSArray =
2816       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2817   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
2818 
2819   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2820   // offset into the TLSArray.
2821 
2822   // Load the TLS index from the C runtime
2823   SDValue TLSIndex =
2824       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2825   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2826   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
2827 
2828   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2829                               DAG.getConstant(2, DL, MVT::i32));
2830   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2831                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2832                             MachinePointerInfo());
2833 
2834   // Get the offset of the start of the .tls section (section base)
2835   const auto *GA = cast<GlobalAddressSDNode>(Op);
2836   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2837   SDValue Offset = DAG.getLoad(
2838       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2839                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2840       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2841 
2842   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2843 }
2844 
2845 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2846 SDValue
2847 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2848                                                  SelectionDAG &DAG) const {
2849   SDLoc dl(GA);
2850   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2851   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2852   MachineFunction &MF = DAG.getMachineFunction();
2853   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2854   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2855   ARMConstantPoolValue *CPV =
2856     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2857                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2858   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2859   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2860   Argument = DAG.getLoad(
2861       PtrVT, dl, DAG.getEntryNode(), Argument,
2862       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2863   SDValue Chain = Argument.getValue(1);
2864 
2865   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2866   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2867 
2868   // call __tls_get_addr.
2869   ArgListTy Args;
2870   ArgListEntry Entry;
2871   Entry.Node = Argument;
2872   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2873   Args.push_back(Entry);
2874 
2875   // FIXME: is there useful debug info available here?
2876   TargetLowering::CallLoweringInfo CLI(DAG);
2877   CLI.setDebugLoc(dl).setChain(Chain)
2878     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2879                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2880 
2881   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2882   return CallResult.first;
2883 }
2884 
2885 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2886 // "local exec" model.
2887 SDValue
2888 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2889                                         SelectionDAG &DAG,
2890                                         TLSModel::Model model) const {
2891   const GlobalValue *GV = GA->getGlobal();
2892   SDLoc dl(GA);
2893   SDValue Offset;
2894   SDValue Chain = DAG.getEntryNode();
2895   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2896   // Get the Thread Pointer
2897   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2898 
2899   if (model == TLSModel::InitialExec) {
2900     MachineFunction &MF = DAG.getMachineFunction();
2901     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2902     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2903     // Initial exec model.
2904     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2905     ARMConstantPoolValue *CPV =
2906       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2907                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2908                                       true);
2909     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2910     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2911     Offset = DAG.getLoad(
2912         PtrVT, dl, Chain, Offset,
2913         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2914     Chain = Offset.getValue(1);
2915 
2916     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2917     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2918 
2919     Offset = DAG.getLoad(
2920         PtrVT, dl, Chain, Offset,
2921         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2922   } else {
2923     // local exec model
2924     assert(model == TLSModel::LocalExec);
2925     ARMConstantPoolValue *CPV =
2926       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2927     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2928     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2929     Offset = DAG.getLoad(
2930         PtrVT, dl, Chain, Offset,
2931         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2932   }
2933 
2934   // The address of the thread local variable is the add of the thread
2935   // pointer with the offset of the variable.
2936   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2937 }
2938 
2939 SDValue
2940 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2941   if (Subtarget->isTargetDarwin())
2942     return LowerGlobalTLSAddressDarwin(Op, DAG);
2943 
2944   if (Subtarget->isTargetWindows())
2945     return LowerGlobalTLSAddressWindows(Op, DAG);
2946 
2947   // TODO: implement the "local dynamic" model
2948   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
2949   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2950   if (DAG.getTarget().Options.EmulatedTLS)
2951     return LowerToTLSEmulatedModel(GA, DAG);
2952 
2953   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2954 
2955   switch (model) {
2956     case TLSModel::GeneralDynamic:
2957     case TLSModel::LocalDynamic:
2958       return LowerToTLSGeneralDynamicModel(GA, DAG);
2959     case TLSModel::InitialExec:
2960     case TLSModel::LocalExec:
2961       return LowerToTLSExecModels(GA, DAG, model);
2962   }
2963   llvm_unreachable("bogus TLS model");
2964 }
2965 
2966 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2967                                                  SelectionDAG &DAG) const {
2968   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2969   SDLoc dl(Op);
2970   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2971   const TargetMachine &TM = getTargetMachine();
2972   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
2973     GV = GA->getBaseObject();
2974   bool IsRO =
2975       (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
2976       isa<Function>(GV);
2977   if (isPositionIndependent()) {
2978     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2979 
2980     MachineFunction &MF = DAG.getMachineFunction();
2981     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2982     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2983     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2984     SDLoc dl(Op);
2985     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2986     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2987         GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2988         UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2989         /*AddCurrentAddress=*/UseGOT_PREL);
2990     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2991     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2992     SDValue Result = DAG.getLoad(
2993         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2994         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2995     SDValue Chain = Result.getValue(1);
2996     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2997     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2998     if (UseGOT_PREL)
2999       Result =
3000           DAG.getLoad(PtrVT, dl, Chain, Result,
3001                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3002     return Result;
3003   } else if (Subtarget->isROPI() && IsRO) {
3004     // PC-relative.
3005     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3006     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3007     return Result;
3008   } else if (Subtarget->isRWPI() && !IsRO) {
3009     // SB-relative.
3010     ARMConstantPoolValue *CPV =
3011       ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3012     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3013     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3014     SDValue G = DAG.getLoad(
3015         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3016         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3017     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3018     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, G);
3019     return Result;
3020   }
3021 
3022   // If we have T2 ops, we can materialize the address directly via movt/movw
3023   // pair. This is always cheaper.
3024   if (Subtarget->useMovt(DAG.getMachineFunction())) {
3025     ++NumMovwMovt;
3026     // FIXME: Once remat is capable of dealing with instructions with register
3027     // operands, expand this into two nodes.
3028     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3029                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3030   } else {
3031     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3032     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3033     return DAG.getLoad(
3034         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3035         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3036   }
3037 }
3038 
3039 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3040                                                     SelectionDAG &DAG) const {
3041   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3042          "ROPI/RWPI not currently supported for Darwin");
3043   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3044   SDLoc dl(Op);
3045   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3046 
3047   if (Subtarget->useMovt(DAG.getMachineFunction()))
3048     ++NumMovwMovt;
3049 
3050   // FIXME: Once remat is capable of dealing with instructions with register
3051   // operands, expand this into multiple nodes
3052   unsigned Wrapper =
3053       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3054 
3055   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3056   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3057 
3058   if (Subtarget->isGVIndirectSymbol(GV))
3059     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3060                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3061   return Result;
3062 }
3063 
3064 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3065                                                      SelectionDAG &DAG) const {
3066   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3067   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
3068          "Windows on ARM expects to use movw/movt");
3069   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3070          "ROPI/RWPI not currently supported for Windows");
3071 
3072   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3073   const ARMII::TOF TargetFlags =
3074     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
3075   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3076   SDValue Result;
3077   SDLoc DL(Op);
3078 
3079   ++NumMovwMovt;
3080 
3081   // FIXME: Once remat is capable of dealing with instructions with register
3082   // operands, expand this into two nodes.
3083   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3084                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3085                                                   TargetFlags));
3086   if (GV->hasDLLImportStorageClass())
3087     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3088                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3089   return Result;
3090 }
3091 
3092 SDValue
3093 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3094   SDLoc dl(Op);
3095   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3096   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3097                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3098                      Op.getOperand(1), Val);
3099 }
3100 
3101 SDValue
3102 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3103   SDLoc dl(Op);
3104   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3105                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3106 }
3107 
3108 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3109                                                       SelectionDAG &DAG) const {
3110   SDLoc dl(Op);
3111   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3112                      Op.getOperand(0));
3113 }
3114 
3115 SDValue
3116 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3117                                           const ARMSubtarget *Subtarget) const {
3118   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3119   SDLoc dl(Op);
3120   switch (IntNo) {
3121   default: return SDValue();    // Don't custom lower most intrinsics.
3122   case Intrinsic::arm_rbit: {
3123     assert(Op.getOperand(1).getValueType() == MVT::i32 &&
3124            "RBIT intrinsic must have i32 type!");
3125     return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1));
3126   }
3127   case Intrinsic::thread_pointer: {
3128     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3129     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3130   }
3131   case Intrinsic::eh_sjlj_lsda: {
3132     MachineFunction &MF = DAG.getMachineFunction();
3133     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3134     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3135     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3136     SDValue CPAddr;
3137     bool IsPositionIndependent = isPositionIndependent();
3138     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3139     ARMConstantPoolValue *CPV =
3140       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
3141                                       ARMCP::CPLSDA, PCAdj);
3142     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3143     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3144     SDValue Result = DAG.getLoad(
3145         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3146         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3147 
3148     if (IsPositionIndependent) {
3149       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3150       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3151     }
3152     return Result;
3153   }
3154   case Intrinsic::arm_neon_vmulls:
3155   case Intrinsic::arm_neon_vmullu: {
3156     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3157       ? ARMISD::VMULLs : ARMISD::VMULLu;
3158     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3159                        Op.getOperand(1), Op.getOperand(2));
3160   }
3161   case Intrinsic::arm_neon_vminnm:
3162   case Intrinsic::arm_neon_vmaxnm: {
3163     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3164       ? ISD::FMINNUM : ISD::FMAXNUM;
3165     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3166                        Op.getOperand(1), Op.getOperand(2));
3167   }
3168   case Intrinsic::arm_neon_vminu:
3169   case Intrinsic::arm_neon_vmaxu: {
3170     if (Op.getValueType().isFloatingPoint())
3171       return SDValue();
3172     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3173       ? ISD::UMIN : ISD::UMAX;
3174     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3175                          Op.getOperand(1), Op.getOperand(2));
3176   }
3177   case Intrinsic::arm_neon_vmins:
3178   case Intrinsic::arm_neon_vmaxs: {
3179     // v{min,max}s is overloaded between signed integers and floats.
3180     if (!Op.getValueType().isFloatingPoint()) {
3181       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3182         ? ISD::SMIN : ISD::SMAX;
3183       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3184                          Op.getOperand(1), Op.getOperand(2));
3185     }
3186     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3187       ? ISD::FMINNAN : ISD::FMAXNAN;
3188     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3189                        Op.getOperand(1), Op.getOperand(2));
3190   }
3191   }
3192 }
3193 
3194 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3195                                  const ARMSubtarget *Subtarget) {
3196   // FIXME: handle "fence singlethread" more efficiently.
3197   SDLoc dl(Op);
3198   if (!Subtarget->hasDataBarrier()) {
3199     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3200     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3201     // here.
3202     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3203            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3204     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3205                        DAG.getConstant(0, dl, MVT::i32));
3206   }
3207 
3208   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3209   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3210   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3211   if (Subtarget->isMClass()) {
3212     // Only a full system barrier exists in the M-class architectures.
3213     Domain = ARM_MB::SY;
3214   } else if (Subtarget->preferISHSTBarriers() &&
3215              Ord == AtomicOrdering::Release) {
3216     // Swift happens to implement ISHST barriers in a way that's compatible with
3217     // Release semantics but weaker than ISH so we'd be fools not to use
3218     // it. Beware: other processors probably don't!
3219     Domain = ARM_MB::ISHST;
3220   }
3221 
3222   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3223                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3224                      DAG.getConstant(Domain, dl, MVT::i32));
3225 }
3226 
3227 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3228                              const ARMSubtarget *Subtarget) {
3229   // ARM pre v5TE and Thumb1 does not have preload instructions.
3230   if (!(Subtarget->isThumb2() ||
3231         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3232     // Just preserve the chain.
3233     return Op.getOperand(0);
3234 
3235   SDLoc dl(Op);
3236   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3237   if (!isRead &&
3238       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3239     // ARMv7 with MP extension has PLDW.
3240     return Op.getOperand(0);
3241 
3242   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3243   if (Subtarget->isThumb()) {
3244     // Invert the bits.
3245     isRead = ~isRead & 1;
3246     isData = ~isData & 1;
3247   }
3248 
3249   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3250                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3251                      DAG.getConstant(isData, dl, MVT::i32));
3252 }
3253 
3254 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3255   MachineFunction &MF = DAG.getMachineFunction();
3256   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3257 
3258   // vastart just stores the address of the VarArgsFrameIndex slot into the
3259   // memory location argument.
3260   SDLoc dl(Op);
3261   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3262   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3263   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3264   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3265                       MachinePointerInfo(SV));
3266 }
3267 
3268 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3269                                                 CCValAssign &NextVA,
3270                                                 SDValue &Root,
3271                                                 SelectionDAG &DAG,
3272                                                 const SDLoc &dl) const {
3273   MachineFunction &MF = DAG.getMachineFunction();
3274   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3275 
3276   const TargetRegisterClass *RC;
3277   if (AFI->isThumb1OnlyFunction())
3278     RC = &ARM::tGPRRegClass;
3279   else
3280     RC = &ARM::GPRRegClass;
3281 
3282   // Transform the arguments stored in physical registers into virtual ones.
3283   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3284   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3285 
3286   SDValue ArgValue2;
3287   if (NextVA.isMemLoc()) {
3288     MachineFrameInfo &MFI = MF.getFrameInfo();
3289     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3290 
3291     // Create load node to retrieve arguments from the stack.
3292     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3293     ArgValue2 = DAG.getLoad(
3294         MVT::i32, dl, Root, FIN,
3295         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3296   } else {
3297     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3298     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3299   }
3300   if (!Subtarget->isLittle())
3301     std::swap (ArgValue, ArgValue2);
3302   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3303 }
3304 
3305 // The remaining GPRs hold either the beginning of variable-argument
3306 // data, or the beginning of an aggregate passed by value (usually
3307 // byval).  Either way, we allocate stack slots adjacent to the data
3308 // provided by our caller, and store the unallocated registers there.
3309 // If this is a variadic function, the va_list pointer will begin with
3310 // these values; otherwise, this reassembles a (byval) structure that
3311 // was split between registers and memory.
3312 // Return: The frame index registers were stored into.
3313 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3314                                       const SDLoc &dl, SDValue &Chain,
3315                                       const Value *OrigArg,
3316                                       unsigned InRegsParamRecordIdx,
3317                                       int ArgOffset, unsigned ArgSize) const {
3318   // Currently, two use-cases possible:
3319   // Case #1. Non-var-args function, and we meet first byval parameter.
3320   //          Setup first unallocated register as first byval register;
3321   //          eat all remained registers
3322   //          (these two actions are performed by HandleByVal method).
3323   //          Then, here, we initialize stack frame with
3324   //          "store-reg" instructions.
3325   // Case #2. Var-args function, that doesn't contain byval parameters.
3326   //          The same: eat all remained unallocated registers,
3327   //          initialize stack frame.
3328 
3329   MachineFunction &MF = DAG.getMachineFunction();
3330   MachineFrameInfo &MFI = MF.getFrameInfo();
3331   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3332   unsigned RBegin, REnd;
3333   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3334     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3335   } else {
3336     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3337     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3338     REnd = ARM::R4;
3339   }
3340 
3341   if (REnd != RBegin)
3342     ArgOffset = -4 * (ARM::R4 - RBegin);
3343 
3344   auto PtrVT = getPointerTy(DAG.getDataLayout());
3345   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3346   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3347 
3348   SmallVector<SDValue, 4> MemOps;
3349   const TargetRegisterClass *RC =
3350       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3351 
3352   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3353     unsigned VReg = MF.addLiveIn(Reg, RC);
3354     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3355     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3356                                  MachinePointerInfo(OrigArg, 4 * i));
3357     MemOps.push_back(Store);
3358     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3359   }
3360 
3361   if (!MemOps.empty())
3362     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3363   return FrameIndex;
3364 }
3365 
3366 // Setup stack frame, the va_list pointer will start from.
3367 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3368                                              const SDLoc &dl, SDValue &Chain,
3369                                              unsigned ArgOffset,
3370                                              unsigned TotalArgRegsSaveSize,
3371                                              bool ForceMutable) const {
3372   MachineFunction &MF = DAG.getMachineFunction();
3373   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3374 
3375   // Try to store any remaining integer argument regs
3376   // to their spots on the stack so that they may be loaded by dereferencing
3377   // the result of va_next.
3378   // If there is no regs to be stored, just point address after last
3379   // argument passed via stack.
3380   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3381                                   CCInfo.getInRegsParamsCount(),
3382                                   CCInfo.getNextStackOffset(), 4);
3383   AFI->setVarArgsFrameIndex(FrameIndex);
3384 }
3385 
3386 SDValue ARMTargetLowering::LowerFormalArguments(
3387     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3388     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3389     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3390   MachineFunction &MF = DAG.getMachineFunction();
3391   MachineFrameInfo &MFI = MF.getFrameInfo();
3392 
3393   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3394 
3395   // Assign locations to all of the incoming arguments.
3396   SmallVector<CCValAssign, 16> ArgLocs;
3397   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3398                     *DAG.getContext(), Prologue);
3399   CCInfo.AnalyzeFormalArguments(Ins,
3400                                 CCAssignFnForNode(CallConv, /* Return*/ false,
3401                                                   isVarArg));
3402 
3403   SmallVector<SDValue, 16> ArgValues;
3404   SDValue ArgValue;
3405   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
3406   unsigned CurArgIdx = 0;
3407 
3408   // Initially ArgRegsSaveSize is zero.
3409   // Then we increase this value each time we meet byval parameter.
3410   // We also increase this value in case of varargs function.
3411   AFI->setArgRegsSaveSize(0);
3412 
3413   // Calculate the amount of stack space that we need to allocate to store
3414   // byval and variadic arguments that are passed in registers.
3415   // We need to know this before we allocate the first byval or variadic
3416   // argument, as they will be allocated a stack slot below the CFA (Canonical
3417   // Frame Address, the stack pointer at entry to the function).
3418   unsigned ArgRegBegin = ARM::R4;
3419   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3420     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3421       break;
3422 
3423     CCValAssign &VA = ArgLocs[i];
3424     unsigned Index = VA.getValNo();
3425     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3426     if (!Flags.isByVal())
3427       continue;
3428 
3429     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3430     unsigned RBegin, REnd;
3431     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3432     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3433 
3434     CCInfo.nextInRegsParam();
3435   }
3436   CCInfo.rewindByValRegsInfo();
3437 
3438   int lastInsIndex = -1;
3439   if (isVarArg && MFI.hasVAStart()) {
3440     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3441     if (RegIdx != array_lengthof(GPRArgRegs))
3442       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3443   }
3444 
3445   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3446   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3447   auto PtrVT = getPointerTy(DAG.getDataLayout());
3448 
3449   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3450     CCValAssign &VA = ArgLocs[i];
3451     if (Ins[VA.getValNo()].isOrigArg()) {
3452       std::advance(CurOrigArg,
3453                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3454       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3455     }
3456     // Arguments stored in registers.
3457     if (VA.isRegLoc()) {
3458       EVT RegVT = VA.getLocVT();
3459 
3460       if (VA.needsCustom()) {
3461         // f64 and vector types are split up into multiple registers or
3462         // combinations of registers and stack slots.
3463         if (VA.getLocVT() == MVT::v2f64) {
3464           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3465                                                    Chain, DAG, dl);
3466           VA = ArgLocs[++i]; // skip ahead to next loc
3467           SDValue ArgValue2;
3468           if (VA.isMemLoc()) {
3469             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3470             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3471             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3472                                     MachinePointerInfo::getFixedStack(
3473                                         DAG.getMachineFunction(), FI));
3474           } else {
3475             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3476                                              Chain, DAG, dl);
3477           }
3478           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3479           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3480                                  ArgValue, ArgValue1,
3481                                  DAG.getIntPtrConstant(0, dl));
3482           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3483                                  ArgValue, ArgValue2,
3484                                  DAG.getIntPtrConstant(1, dl));
3485         } else
3486           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3487 
3488       } else {
3489         const TargetRegisterClass *RC;
3490 
3491         if (RegVT == MVT::f32)
3492           RC = &ARM::SPRRegClass;
3493         else if (RegVT == MVT::f64)
3494           RC = &ARM::DPRRegClass;
3495         else if (RegVT == MVT::v2f64)
3496           RC = &ARM::QPRRegClass;
3497         else if (RegVT == MVT::i32)
3498           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3499                                            : &ARM::GPRRegClass;
3500         else
3501           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3502 
3503         // Transform the arguments in physical registers into virtual ones.
3504         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3505         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3506       }
3507 
3508       // If this is an 8 or 16-bit value, it is really passed promoted
3509       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3510       // truncate to the right size.
3511       switch (VA.getLocInfo()) {
3512       default: llvm_unreachable("Unknown loc info!");
3513       case CCValAssign::Full: break;
3514       case CCValAssign::BCvt:
3515         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3516         break;
3517       case CCValAssign::SExt:
3518         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3519                                DAG.getValueType(VA.getValVT()));
3520         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3521         break;
3522       case CCValAssign::ZExt:
3523         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3524                                DAG.getValueType(VA.getValVT()));
3525         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3526         break;
3527       }
3528 
3529       InVals.push_back(ArgValue);
3530 
3531     } else { // VA.isRegLoc()
3532 
3533       // sanity check
3534       assert(VA.isMemLoc());
3535       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3536 
3537       int index = VA.getValNo();
3538 
3539       // Some Ins[] entries become multiple ArgLoc[] entries.
3540       // Process them only once.
3541       if (index != lastInsIndex)
3542         {
3543           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3544           // FIXME: For now, all byval parameter objects are marked mutable.
3545           // This can be changed with more analysis.
3546           // In case of tail call optimization mark all arguments mutable.
3547           // Since they could be overwritten by lowering of arguments in case of
3548           // a tail call.
3549           if (Flags.isByVal()) {
3550             assert(Ins[index].isOrigArg() &&
3551                    "Byval arguments cannot be implicit");
3552             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3553 
3554             int FrameIndex = StoreByValRegs(
3555                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3556                 VA.getLocMemOffset(), Flags.getByValSize());
3557             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3558             CCInfo.nextInRegsParam();
3559           } else {
3560             unsigned FIOffset = VA.getLocMemOffset();
3561             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3562                                            FIOffset, true);
3563 
3564             // Create load nodes to retrieve arguments from the stack.
3565             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3566             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3567                                          MachinePointerInfo::getFixedStack(
3568                                              DAG.getMachineFunction(), FI)));
3569           }
3570           lastInsIndex = index;
3571         }
3572     }
3573   }
3574 
3575   // varargs
3576   if (isVarArg && MFI.hasVAStart())
3577     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3578                          CCInfo.getNextStackOffset(),
3579                          TotalArgRegsSaveSize);
3580 
3581   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3582 
3583   return Chain;
3584 }
3585 
3586 /// isFloatingPointZero - Return true if this is +0.0.
3587 static bool isFloatingPointZero(SDValue Op) {
3588   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3589     return CFP->getValueAPF().isPosZero();
3590   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3591     // Maybe this has already been legalized into the constant pool?
3592     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3593       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3594       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3595         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3596           return CFP->getValueAPF().isPosZero();
3597     }
3598   } else if (Op->getOpcode() == ISD::BITCAST &&
3599              Op->getValueType(0) == MVT::f64) {
3600     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3601     // created by LowerConstantFP().
3602     SDValue BitcastOp = Op->getOperand(0);
3603     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3604         isNullConstant(BitcastOp->getOperand(0)))
3605       return true;
3606   }
3607   return false;
3608 }
3609 
3610 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3611 /// the given operands.
3612 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3613                                      SDValue &ARMcc, SelectionDAG &DAG,
3614                                      const SDLoc &dl) const {
3615   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3616     unsigned C = RHSC->getZExtValue();
3617     if (!isLegalICmpImmediate(C)) {
3618       // Constant does not fit, try adjusting it by one?
3619       switch (CC) {
3620       default: break;
3621       case ISD::SETLT:
3622       case ISD::SETGE:
3623         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3624           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3625           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3626         }
3627         break;
3628       case ISD::SETULT:
3629       case ISD::SETUGE:
3630         if (C != 0 && isLegalICmpImmediate(C-1)) {
3631           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3632           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3633         }
3634         break;
3635       case ISD::SETLE:
3636       case ISD::SETGT:
3637         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3638           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3639           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3640         }
3641         break;
3642       case ISD::SETULE:
3643       case ISD::SETUGT:
3644         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3645           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3646           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3647         }
3648         break;
3649       }
3650     }
3651   }
3652 
3653   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3654   ARMISD::NodeType CompareType;
3655   switch (CondCode) {
3656   default:
3657     CompareType = ARMISD::CMP;
3658     break;
3659   case ARMCC::EQ:
3660   case ARMCC::NE:
3661     // Uses only Z Flag
3662     CompareType = ARMISD::CMPZ;
3663     break;
3664   }
3665   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3666   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3667 }
3668 
3669 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3670 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3671                                      SelectionDAG &DAG, const SDLoc &dl) const {
3672   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3673   SDValue Cmp;
3674   if (!isFloatingPointZero(RHS))
3675     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3676   else
3677     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3678   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3679 }
3680 
3681 /// duplicateCmp - Glue values can have only one use, so this function
3682 /// duplicates a comparison node.
3683 SDValue
3684 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3685   unsigned Opc = Cmp.getOpcode();
3686   SDLoc DL(Cmp);
3687   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3688     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3689 
3690   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3691   Cmp = Cmp.getOperand(0);
3692   Opc = Cmp.getOpcode();
3693   if (Opc == ARMISD::CMPFP)
3694     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3695   else {
3696     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3697     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3698   }
3699   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3700 }
3701 
3702 std::pair<SDValue, SDValue>
3703 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3704                                  SDValue &ARMcc) const {
3705   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3706 
3707   SDValue Value, OverflowCmp;
3708   SDValue LHS = Op.getOperand(0);
3709   SDValue RHS = Op.getOperand(1);
3710   SDLoc dl(Op);
3711 
3712   // FIXME: We are currently always generating CMPs because we don't support
3713   // generating CMN through the backend. This is not as good as the natural
3714   // CMP case because it causes a register dependency and cannot be folded
3715   // later.
3716 
3717   switch (Op.getOpcode()) {
3718   default:
3719     llvm_unreachable("Unknown overflow instruction!");
3720   case ISD::SADDO:
3721     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3722     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3723     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3724     break;
3725   case ISD::UADDO:
3726     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3727     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3728     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3729     break;
3730   case ISD::SSUBO:
3731     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3732     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3733     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3734     break;
3735   case ISD::USUBO:
3736     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3737     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3738     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3739     break;
3740   } // switch (...)
3741 
3742   return std::make_pair(Value, OverflowCmp);
3743 }
3744 
3745 
3746 SDValue
3747 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
3748   // Let legalize expand this if it isn't a legal type yet.
3749   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3750     return SDValue();
3751 
3752   SDValue Value, OverflowCmp;
3753   SDValue ARMcc;
3754   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
3755   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3756   SDLoc dl(Op);
3757   // We use 0 and 1 as false and true values.
3758   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
3759   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
3760   EVT VT = Op.getValueType();
3761 
3762   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
3763                                  ARMcc, CCR, OverflowCmp);
3764 
3765   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3766   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
3767 }
3768 
3769 
3770 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3771   SDValue Cond = Op.getOperand(0);
3772   SDValue SelectTrue = Op.getOperand(1);
3773   SDValue SelectFalse = Op.getOperand(2);
3774   SDLoc dl(Op);
3775   unsigned Opc = Cond.getOpcode();
3776 
3777   if (Cond.getResNo() == 1 &&
3778       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3779        Opc == ISD::USUBO)) {
3780     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
3781       return SDValue();
3782 
3783     SDValue Value, OverflowCmp;
3784     SDValue ARMcc;
3785     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
3786     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3787     EVT VT = Op.getValueType();
3788 
3789     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
3790                    OverflowCmp, DAG);
3791   }
3792 
3793   // Convert:
3794   //
3795   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3796   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3797   //
3798   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3799     const ConstantSDNode *CMOVTrue =
3800       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3801     const ConstantSDNode *CMOVFalse =
3802       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3803 
3804     if (CMOVTrue && CMOVFalse) {
3805       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3806       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3807 
3808       SDValue True;
3809       SDValue False;
3810       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3811         True = SelectTrue;
3812         False = SelectFalse;
3813       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3814         True = SelectFalse;
3815         False = SelectTrue;
3816       }
3817 
3818       if (True.getNode() && False.getNode()) {
3819         EVT VT = Op.getValueType();
3820         SDValue ARMcc = Cond.getOperand(2);
3821         SDValue CCR = Cond.getOperand(3);
3822         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3823         assert(True.getValueType() == VT);
3824         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
3825       }
3826     }
3827   }
3828 
3829   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3830   // undefined bits before doing a full-word comparison with zero.
3831   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3832                      DAG.getConstant(1, dl, Cond.getValueType()));
3833 
3834   return DAG.getSelectCC(dl, Cond,
3835                          DAG.getConstant(0, dl, Cond.getValueType()),
3836                          SelectTrue, SelectFalse, ISD::SETNE);
3837 }
3838 
3839 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
3840                                  bool &swpCmpOps, bool &swpVselOps) {
3841   // Start by selecting the GE condition code for opcodes that return true for
3842   // 'equality'
3843   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3844       CC == ISD::SETULE)
3845     CondCode = ARMCC::GE;
3846 
3847   // and GT for opcodes that return false for 'equality'.
3848   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3849            CC == ISD::SETULT)
3850     CondCode = ARMCC::GT;
3851 
3852   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3853   // to swap the compare operands.
3854   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3855       CC == ISD::SETULT)
3856     swpCmpOps = true;
3857 
3858   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3859   // If we have an unordered opcode, we need to swap the operands to the VSEL
3860   // instruction (effectively negating the condition).
3861   //
3862   // This also has the effect of swapping which one of 'less' or 'greater'
3863   // returns true, so we also swap the compare operands. It also switches
3864   // whether we return true for 'equality', so we compensate by picking the
3865   // opposite condition code to our original choice.
3866   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3867       CC == ISD::SETUGT) {
3868     swpCmpOps = !swpCmpOps;
3869     swpVselOps = !swpVselOps;
3870     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3871   }
3872 
3873   // 'ordered' is 'anything but unordered', so use the VS condition code and
3874   // swap the VSEL operands.
3875   if (CC == ISD::SETO) {
3876     CondCode = ARMCC::VS;
3877     swpVselOps = true;
3878   }
3879 
3880   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3881   // code and swap the VSEL operands.
3882   if (CC == ISD::SETUNE) {
3883     CondCode = ARMCC::EQ;
3884     swpVselOps = true;
3885   }
3886 }
3887 
3888 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
3889                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
3890                                    SDValue Cmp, SelectionDAG &DAG) const {
3891   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
3892     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3893                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
3894     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3895                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
3896 
3897     SDValue TrueLow = TrueVal.getValue(0);
3898     SDValue TrueHigh = TrueVal.getValue(1);
3899     SDValue FalseLow = FalseVal.getValue(0);
3900     SDValue FalseHigh = FalseVal.getValue(1);
3901 
3902     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
3903                               ARMcc, CCR, Cmp);
3904     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
3905                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
3906 
3907     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
3908   } else {
3909     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3910                        Cmp);
3911   }
3912 }
3913 
3914 static bool isGTorGE(ISD::CondCode CC) {
3915   return CC == ISD::SETGT || CC == ISD::SETGE;
3916 }
3917 
3918 static bool isLTorLE(ISD::CondCode CC) {
3919   return CC == ISD::SETLT || CC == ISD::SETLE;
3920 }
3921 
3922 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
3923 // All of these conditions (and their <= and >= counterparts) will do:
3924 //          x < k ? k : x
3925 //          x > k ? x : k
3926 //          k < x ? x : k
3927 //          k > x ? k : x
3928 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
3929                             const SDValue TrueVal, const SDValue FalseVal,
3930                             const ISD::CondCode CC, const SDValue K) {
3931   return (isGTorGE(CC) &&
3932           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
3933          (isLTorLE(CC) &&
3934           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
3935 }
3936 
3937 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
3938 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
3939                             const SDValue TrueVal, const SDValue FalseVal,
3940                             const ISD::CondCode CC, const SDValue K) {
3941   return (isGTorGE(CC) &&
3942           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
3943          (isLTorLE(CC) &&
3944           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
3945 }
3946 
3947 // Check if two chained conditionals could be converted into SSAT.
3948 //
3949 // SSAT can replace a set of two conditional selectors that bound a number to an
3950 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
3951 //
3952 //     x < -k ? -k : (x > k ? k : x)
3953 //     x < -k ? -k : (x < k ? x : k)
3954 //     x > -k ? (x > k ? k : x) : -k
3955 //     x < k ? (x < -k ? -k : x) : k
3956 //     etc.
3957 //
3958 // It returns true if the conversion can be done, false otherwise.
3959 // Additionally, the variable is returned in parameter V and the constant in K.
3960 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
3961                                     uint64_t &K) {
3962 
3963   SDValue LHS1 = Op.getOperand(0);
3964   SDValue RHS1 = Op.getOperand(1);
3965   SDValue TrueVal1 = Op.getOperand(2);
3966   SDValue FalseVal1 = Op.getOperand(3);
3967   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3968 
3969   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
3970   if (Op2.getOpcode() != ISD::SELECT_CC)
3971     return false;
3972 
3973   SDValue LHS2 = Op2.getOperand(0);
3974   SDValue RHS2 = Op2.getOperand(1);
3975   SDValue TrueVal2 = Op2.getOperand(2);
3976   SDValue FalseVal2 = Op2.getOperand(3);
3977   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
3978 
3979   // Find out which are the constants and which are the variables
3980   // in each conditional
3981   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
3982                                                         ? &RHS1
3983                                                         : NULL;
3984   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
3985                                                         ? &RHS2
3986                                                         : NULL;
3987   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
3988   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
3989   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
3990   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
3991 
3992   // We must detect cases where the original operations worked with 16- or
3993   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
3994   // must work with sign-extended values but the select operations return
3995   // the original non-extended value.
3996   SDValue V2TmpReg = V2Tmp;
3997   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
3998     V2TmpReg = V2Tmp->getOperand(0);
3999 
4000   // Check that the registers and the constants have the correct values
4001   // in both conditionals
4002   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4003       V2TmpReg != V2)
4004     return false;
4005 
4006   // Figure out which conditional is saturating the lower/upper bound.
4007   const SDValue *LowerCheckOp =
4008       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4009           ? &Op
4010           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
4011                                                                        : NULL;
4012   const SDValue *UpperCheckOp =
4013       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4014           ? &Op
4015           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
4016                                                                        : NULL;
4017 
4018   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4019     return false;
4020 
4021   // Check that the constant in the lower-bound check is
4022   // the opposite of the constant in the upper-bound check
4023   // in 1's complement.
4024   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4025   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4026   int64_t PosVal = std::max(Val1, Val2);
4027 
4028   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4029        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4030       Val1 == ~Val2 && isPowerOf2_64(PosVal + 1)) {
4031 
4032     V = V2;
4033     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4034     return true;
4035   }
4036 
4037   return false;
4038 }
4039 
4040 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4041 
4042   EVT VT = Op.getValueType();
4043   SDLoc dl(Op);
4044 
4045   // Try to convert two saturating conditional selects into a single SSAT
4046   SDValue SatValue;
4047   uint64_t SatConstant;
4048   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4049       isSaturatingConditional(Op, SatValue, SatConstant))
4050     return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4051                        DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4052 
4053   SDValue LHS = Op.getOperand(0);
4054   SDValue RHS = Op.getOperand(1);
4055   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4056   SDValue TrueVal = Op.getOperand(2);
4057   SDValue FalseVal = Op.getOperand(3);
4058 
4059   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4060     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4061                                                     dl);
4062 
4063     // If softenSetCCOperands only returned one value, we should compare it to
4064     // zero.
4065     if (!RHS.getNode()) {
4066       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4067       CC = ISD::SETNE;
4068     }
4069   }
4070 
4071   if (LHS.getValueType() == MVT::i32) {
4072     // Try to generate VSEL on ARMv8.
4073     // The VSEL instruction can't use all the usual ARM condition
4074     // codes: it only has two bits to select the condition code, so it's
4075     // constrained to use only GE, GT, VS and EQ.
4076     //
4077     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4078     // swap the operands of the previous compare instruction (effectively
4079     // inverting the compare condition, swapping 'less' and 'greater') and
4080     // sometimes need to swap the operands to the VSEL (which inverts the
4081     // condition in the sense of firing whenever the previous condition didn't)
4082     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4083                                     TrueVal.getValueType() == MVT::f64)) {
4084       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4085       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4086           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4087         CC = ISD::getSetCCInverse(CC, true);
4088         std::swap(TrueVal, FalseVal);
4089       }
4090     }
4091 
4092     SDValue ARMcc;
4093     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4094     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4095     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4096   }
4097 
4098   ARMCC::CondCodes CondCode, CondCode2;
4099   FPCCToARMCC(CC, CondCode, CondCode2);
4100 
4101   // Try to generate VMAXNM/VMINNM on ARMv8.
4102   if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4103                                   TrueVal.getValueType() == MVT::f64)) {
4104     bool swpCmpOps = false;
4105     bool swpVselOps = false;
4106     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4107 
4108     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4109         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4110       if (swpCmpOps)
4111         std::swap(LHS, RHS);
4112       if (swpVselOps)
4113         std::swap(TrueVal, FalseVal);
4114     }
4115   }
4116 
4117   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4118   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
4119   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4120   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4121   if (CondCode2 != ARMCC::AL) {
4122     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4123     // FIXME: Needs another CMP because flag can have but one use.
4124     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
4125     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4126   }
4127   return Result;
4128 }
4129 
4130 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4131 /// to morph to an integer compare sequence.
4132 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4133                            const ARMSubtarget *Subtarget) {
4134   SDNode *N = Op.getNode();
4135   if (!N->hasOneUse())
4136     // Otherwise it requires moving the value from fp to integer registers.
4137     return false;
4138   if (!N->getNumValues())
4139     return false;
4140   EVT VT = Op.getValueType();
4141   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4142     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4143     // vmrs are very slow, e.g. cortex-a8.
4144     return false;
4145 
4146   if (isFloatingPointZero(Op)) {
4147     SeenZero = true;
4148     return true;
4149   }
4150   return ISD::isNormalLoad(N);
4151 }
4152 
4153 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4154   if (isFloatingPointZero(Op))
4155     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4156 
4157   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4158     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4159                        Ld->getPointerInfo(), Ld->getAlignment(),
4160                        Ld->getMemOperand()->getFlags());
4161 
4162   llvm_unreachable("Unknown VFP cmp argument!");
4163 }
4164 
4165 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4166                            SDValue &RetVal1, SDValue &RetVal2) {
4167   SDLoc dl(Op);
4168 
4169   if (isFloatingPointZero(Op)) {
4170     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4171     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4172     return;
4173   }
4174 
4175   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4176     SDValue Ptr = Ld->getBasePtr();
4177     RetVal1 =
4178         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4179                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4180 
4181     EVT PtrType = Ptr.getValueType();
4182     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4183     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4184                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4185     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4186                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
4187                           Ld->getMemOperand()->getFlags());
4188     return;
4189   }
4190 
4191   llvm_unreachable("Unknown VFP cmp argument!");
4192 }
4193 
4194 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4195 /// f32 and even f64 comparisons to integer ones.
4196 SDValue
4197 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4198   SDValue Chain = Op.getOperand(0);
4199   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4200   SDValue LHS = Op.getOperand(2);
4201   SDValue RHS = Op.getOperand(3);
4202   SDValue Dest = Op.getOperand(4);
4203   SDLoc dl(Op);
4204 
4205   bool LHSSeenZero = false;
4206   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4207   bool RHSSeenZero = false;
4208   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4209   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4210     // If unsafe fp math optimization is enabled and there are no other uses of
4211     // the CMP operands, and the condition code is EQ or NE, we can optimize it
4212     // to an integer comparison.
4213     if (CC == ISD::SETOEQ)
4214       CC = ISD::SETEQ;
4215     else if (CC == ISD::SETUNE)
4216       CC = ISD::SETNE;
4217 
4218     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4219     SDValue ARMcc;
4220     if (LHS.getValueType() == MVT::f32) {
4221       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4222                         bitcastf32Toi32(LHS, DAG), Mask);
4223       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4224                         bitcastf32Toi32(RHS, DAG), Mask);
4225       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4226       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4227       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4228                          Chain, Dest, ARMcc, CCR, Cmp);
4229     }
4230 
4231     SDValue LHS1, LHS2;
4232     SDValue RHS1, RHS2;
4233     expandf64Toi32(LHS, DAG, LHS1, LHS2);
4234     expandf64Toi32(RHS, DAG, RHS1, RHS2);
4235     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4236     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4237     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4238     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4239     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4240     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4241     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4242   }
4243 
4244   return SDValue();
4245 }
4246 
4247 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4248   SDValue Chain = Op.getOperand(0);
4249   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4250   SDValue LHS = Op.getOperand(2);
4251   SDValue RHS = Op.getOperand(3);
4252   SDValue Dest = Op.getOperand(4);
4253   SDLoc dl(Op);
4254 
4255   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4256     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4257                                                     dl);
4258 
4259     // If softenSetCCOperands only returned one value, we should compare it to
4260     // zero.
4261     if (!RHS.getNode()) {
4262       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4263       CC = ISD::SETNE;
4264     }
4265   }
4266 
4267   if (LHS.getValueType() == MVT::i32) {
4268     SDValue ARMcc;
4269     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4270     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4271     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4272                        Chain, Dest, ARMcc, CCR, Cmp);
4273   }
4274 
4275   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4276 
4277   if (getTargetMachine().Options.UnsafeFPMath &&
4278       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4279        CC == ISD::SETNE || CC == ISD::SETUNE)) {
4280     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4281       return Result;
4282   }
4283 
4284   ARMCC::CondCodes CondCode, CondCode2;
4285   FPCCToARMCC(CC, CondCode, CondCode2);
4286 
4287   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4288   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
4289   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4290   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4291   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4292   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4293   if (CondCode2 != ARMCC::AL) {
4294     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4295     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4296     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4297   }
4298   return Res;
4299 }
4300 
4301 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4302   SDValue Chain = Op.getOperand(0);
4303   SDValue Table = Op.getOperand(1);
4304   SDValue Index = Op.getOperand(2);
4305   SDLoc dl(Op);
4306 
4307   EVT PTy = getPointerTy(DAG.getDataLayout());
4308   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4309   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4310   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4311   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4312   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
4313   if (Subtarget->isThumb2()) {
4314     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
4315     // which does another jump to the destination. This also makes it easier
4316     // to translate it to TBB / TBH later.
4317     // FIXME: This might not work if the function is extremely large.
4318     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4319                        Addr, Op.getOperand(2), JTI);
4320   }
4321   if (isPositionIndependent() || Subtarget->isROPI()) {
4322     Addr =
4323         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4324                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4325     Chain = Addr.getValue(1);
4326     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
4327     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4328   } else {
4329     Addr =
4330         DAG.getLoad(PTy, dl, Chain, Addr,
4331                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4332     Chain = Addr.getValue(1);
4333     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4334   }
4335 }
4336 
4337 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4338   EVT VT = Op.getValueType();
4339   SDLoc dl(Op);
4340 
4341   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4342     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4343       return Op;
4344     return DAG.UnrollVectorOp(Op.getNode());
4345   }
4346 
4347   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4348          "Invalid type for custom lowering!");
4349   if (VT != MVT::v4i16)
4350     return DAG.UnrollVectorOp(Op.getNode());
4351 
4352   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4353   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4354 }
4355 
4356 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4357   EVT VT = Op.getValueType();
4358   if (VT.isVector())
4359     return LowerVectorFP_TO_INT(Op, DAG);
4360   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4361     RTLIB::Libcall LC;
4362     if (Op.getOpcode() == ISD::FP_TO_SINT)
4363       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4364                               Op.getValueType());
4365     else
4366       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4367                               Op.getValueType());
4368     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4369                        /*isSigned*/ false, SDLoc(Op)).first;
4370   }
4371 
4372   return Op;
4373 }
4374 
4375 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4376   EVT VT = Op.getValueType();
4377   SDLoc dl(Op);
4378 
4379   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4380     if (VT.getVectorElementType() == MVT::f32)
4381       return Op;
4382     return DAG.UnrollVectorOp(Op.getNode());
4383   }
4384 
4385   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4386          "Invalid type for custom lowering!");
4387   if (VT != MVT::v4f32)
4388     return DAG.UnrollVectorOp(Op.getNode());
4389 
4390   unsigned CastOpc;
4391   unsigned Opc;
4392   switch (Op.getOpcode()) {
4393   default: llvm_unreachable("Invalid opcode!");
4394   case ISD::SINT_TO_FP:
4395     CastOpc = ISD::SIGN_EXTEND;
4396     Opc = ISD::SINT_TO_FP;
4397     break;
4398   case ISD::UINT_TO_FP:
4399     CastOpc = ISD::ZERO_EXTEND;
4400     Opc = ISD::UINT_TO_FP;
4401     break;
4402   }
4403 
4404   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4405   return DAG.getNode(Opc, dl, VT, Op);
4406 }
4407 
4408 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4409   EVT VT = Op.getValueType();
4410   if (VT.isVector())
4411     return LowerVectorINT_TO_FP(Op, DAG);
4412   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4413     RTLIB::Libcall LC;
4414     if (Op.getOpcode() == ISD::SINT_TO_FP)
4415       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4416                               Op.getValueType());
4417     else
4418       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4419                               Op.getValueType());
4420     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4421                        /*isSigned*/ false, SDLoc(Op)).first;
4422   }
4423 
4424   return Op;
4425 }
4426 
4427 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4428   // Implement fcopysign with a fabs and a conditional fneg.
4429   SDValue Tmp0 = Op.getOperand(0);
4430   SDValue Tmp1 = Op.getOperand(1);
4431   SDLoc dl(Op);
4432   EVT VT = Op.getValueType();
4433   EVT SrcVT = Tmp1.getValueType();
4434   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4435     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4436   bool UseNEON = !InGPR && Subtarget->hasNEON();
4437 
4438   if (UseNEON) {
4439     // Use VBSL to copy the sign bit.
4440     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4441     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4442                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4443     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4444     if (VT == MVT::f64)
4445       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4446                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4447                          DAG.getConstant(32, dl, MVT::i32));
4448     else /*if (VT == MVT::f32)*/
4449       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4450     if (SrcVT == MVT::f32) {
4451       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4452       if (VT == MVT::f64)
4453         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4454                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4455                            DAG.getConstant(32, dl, MVT::i32));
4456     } else if (VT == MVT::f32)
4457       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4458                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4459                          DAG.getConstant(32, dl, MVT::i32));
4460     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4461     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4462 
4463     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4464                                             dl, MVT::i32);
4465     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4466     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4467                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4468 
4469     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4470                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4471                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4472     if (VT == MVT::f32) {
4473       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4474       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4475                         DAG.getConstant(0, dl, MVT::i32));
4476     } else {
4477       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4478     }
4479 
4480     return Res;
4481   }
4482 
4483   // Bitcast operand 1 to i32.
4484   if (SrcVT == MVT::f64)
4485     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4486                        Tmp1).getValue(1);
4487   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4488 
4489   // Or in the signbit with integer operations.
4490   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4491   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4492   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4493   if (VT == MVT::f32) {
4494     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4495                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4496     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4497                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4498   }
4499 
4500   // f64: Or the high part with signbit and then combine two parts.
4501   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4502                      Tmp0);
4503   SDValue Lo = Tmp0.getValue(0);
4504   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4505   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4506   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4507 }
4508 
4509 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4510   MachineFunction &MF = DAG.getMachineFunction();
4511   MachineFrameInfo &MFI = MF.getFrameInfo();
4512   MFI.setReturnAddressIsTaken(true);
4513 
4514   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4515     return SDValue();
4516 
4517   EVT VT = Op.getValueType();
4518   SDLoc dl(Op);
4519   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4520   if (Depth) {
4521     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4522     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
4523     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
4524                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
4525                        MachinePointerInfo());
4526   }
4527 
4528   // Return LR, which contains the return address. Mark it an implicit live-in.
4529   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4530   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
4531 }
4532 
4533 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
4534   const ARMBaseRegisterInfo &ARI =
4535     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
4536   MachineFunction &MF = DAG.getMachineFunction();
4537   MachineFrameInfo &MFI = MF.getFrameInfo();
4538   MFI.setFrameAddressIsTaken(true);
4539 
4540   EVT VT = Op.getValueType();
4541   SDLoc dl(Op);  // FIXME probably not meaningful
4542   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4543   unsigned FrameReg = ARI.getFrameRegister(MF);
4544   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
4545   while (Depth--)
4546     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
4547                             MachinePointerInfo());
4548   return FrameAddr;
4549 }
4550 
4551 // FIXME? Maybe this could be a TableGen attribute on some registers and
4552 // this table could be generated automatically from RegInfo.
4553 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4554                                               SelectionDAG &DAG) const {
4555   unsigned Reg = StringSwitch<unsigned>(RegName)
4556                        .Case("sp", ARM::SP)
4557                        .Default(0);
4558   if (Reg)
4559     return Reg;
4560   report_fatal_error(Twine("Invalid register name \""
4561                               + StringRef(RegName)  + "\"."));
4562 }
4563 
4564 // Result is 64 bit value so split into two 32 bit values and return as a
4565 // pair of values.
4566 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
4567                                 SelectionDAG &DAG) {
4568   SDLoc DL(N);
4569 
4570   // This function is only supposed to be called for i64 type destination.
4571   assert(N->getValueType(0) == MVT::i64
4572           && "ExpandREAD_REGISTER called for non-i64 type result.");
4573 
4574   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
4575                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
4576                              N->getOperand(0),
4577                              N->getOperand(1));
4578 
4579   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
4580                     Read.getValue(1)));
4581   Results.push_back(Read.getOperand(0));
4582 }
4583 
4584 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
4585 /// When \p DstVT, the destination type of \p BC, is on the vector
4586 /// register bank and the source of bitcast, \p Op, operates on the same bank,
4587 /// it might be possible to combine them, such that everything stays on the
4588 /// vector register bank.
4589 /// \p return The node that would replace \p BT, if the combine
4590 /// is possible.
4591 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
4592                                                 SelectionDAG &DAG) {
4593   SDValue Op = BC->getOperand(0);
4594   EVT DstVT = BC->getValueType(0);
4595 
4596   // The only vector instruction that can produce a scalar (remember,
4597   // since the bitcast was about to be turned into VMOVDRR, the source
4598   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
4599   // Moreover, we can do this combine only if there is one use.
4600   // Finally, if the destination type is not a vector, there is not
4601   // much point on forcing everything on the vector bank.
4602   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4603       !Op.hasOneUse())
4604     return SDValue();
4605 
4606   // If the index is not constant, we will introduce an additional
4607   // multiply that will stick.
4608   // Give up in that case.
4609   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4610   if (!Index)
4611     return SDValue();
4612   unsigned DstNumElt = DstVT.getVectorNumElements();
4613 
4614   // Compute the new index.
4615   const APInt &APIntIndex = Index->getAPIntValue();
4616   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
4617   NewIndex *= APIntIndex;
4618   // Check if the new constant index fits into i32.
4619   if (NewIndex.getBitWidth() > 32)
4620     return SDValue();
4621 
4622   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
4623   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
4624   SDLoc dl(Op);
4625   SDValue ExtractSrc = Op.getOperand(0);
4626   EVT VecVT = EVT::getVectorVT(
4627       *DAG.getContext(), DstVT.getScalarType(),
4628       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
4629   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
4630   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
4631                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
4632 }
4633 
4634 /// ExpandBITCAST - If the target supports VFP, this function is called to
4635 /// expand a bit convert where either the source or destination type is i64 to
4636 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
4637 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
4638 /// vectors), since the legalizer won't know what to do with that.
4639 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
4640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4641   SDLoc dl(N);
4642   SDValue Op = N->getOperand(0);
4643 
4644   // This function is only supposed to be called for i64 types, either as the
4645   // source or destination of the bit convert.
4646   EVT SrcVT = Op.getValueType();
4647   EVT DstVT = N->getValueType(0);
4648   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
4649          "ExpandBITCAST called for non-i64 type");
4650 
4651   // Turn i64->f64 into VMOVDRR.
4652   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
4653     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
4654     // if we can combine the bitcast with its source.
4655     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
4656       return Val;
4657 
4658     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4659                              DAG.getConstant(0, dl, MVT::i32));
4660     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4661                              DAG.getConstant(1, dl, MVT::i32));
4662     return DAG.getNode(ISD::BITCAST, dl, DstVT,
4663                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
4664   }
4665 
4666   // Turn f64->i64 into VMOVRRD.
4667   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
4668     SDValue Cvt;
4669     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
4670         SrcVT.getVectorNumElements() > 1)
4671       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4672                         DAG.getVTList(MVT::i32, MVT::i32),
4673                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
4674     else
4675       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4676                         DAG.getVTList(MVT::i32, MVT::i32), Op);
4677     // Merge the pieces into a single i64 value.
4678     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
4679   }
4680 
4681   return SDValue();
4682 }
4683 
4684 /// getZeroVector - Returns a vector of specified type with all zero elements.
4685 /// Zero vectors are used to represent vector negation and in those cases
4686 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
4687 /// not support i64 elements, so sometimes the zero vectors will need to be
4688 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
4689 /// zero vector.
4690 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
4691   assert(VT.isVector() && "Expected a vector type");
4692   // The canonical modified immediate encoding of a zero vector is....0!
4693   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
4694   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
4695   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
4696   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4697 }
4698 
4699 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4700 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
4701 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
4702                                                 SelectionDAG &DAG) const {
4703   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4704   EVT VT = Op.getValueType();
4705   unsigned VTBits = VT.getSizeInBits();
4706   SDLoc dl(Op);
4707   SDValue ShOpLo = Op.getOperand(0);
4708   SDValue ShOpHi = Op.getOperand(1);
4709   SDValue ShAmt  = Op.getOperand(2);
4710   SDValue ARMcc;
4711   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4712 
4713   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4714 
4715   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4716                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4717   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4718   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4719                                    DAG.getConstant(VTBits, dl, MVT::i32));
4720   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4721   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4722   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4723 
4724   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4725   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4726                           ISD::SETGE, ARMcc, DAG, dl);
4727   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4728   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
4729                            CCR, Cmp);
4730 
4731   SDValue Ops[2] = { Lo, Hi };
4732   return DAG.getMergeValues(Ops, dl);
4733 }
4734 
4735 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4736 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
4737 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
4738                                                SelectionDAG &DAG) const {
4739   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4740   EVT VT = Op.getValueType();
4741   unsigned VTBits = VT.getSizeInBits();
4742   SDLoc dl(Op);
4743   SDValue ShOpLo = Op.getOperand(0);
4744   SDValue ShOpHi = Op.getOperand(1);
4745   SDValue ShAmt  = Op.getOperand(2);
4746   SDValue ARMcc;
4747 
4748   assert(Op.getOpcode() == ISD::SHL_PARTS);
4749   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4750                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4751   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4752   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4753                                    DAG.getConstant(VTBits, dl, MVT::i32));
4754   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4755   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4756 
4757   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4758   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4759   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4760                           ISD::SETGE, ARMcc, DAG, dl);
4761   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4762   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
4763                            CCR, Cmp);
4764 
4765   SDValue Ops[2] = { Lo, Hi };
4766   return DAG.getMergeValues(Ops, dl);
4767 }
4768 
4769 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4770                                             SelectionDAG &DAG) const {
4771   // The rounding mode is in bits 23:22 of the FPSCR.
4772   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
4773   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
4774   // so that the shift + and get folded into a bitfield extract.
4775   SDLoc dl(Op);
4776   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
4777                               DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
4778                                               MVT::i32));
4779   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
4780                                   DAG.getConstant(1U << 22, dl, MVT::i32));
4781   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
4782                               DAG.getConstant(22, dl, MVT::i32));
4783   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
4784                      DAG.getConstant(3, dl, MVT::i32));
4785 }
4786 
4787 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
4788                          const ARMSubtarget *ST) {
4789   SDLoc dl(N);
4790   EVT VT = N->getValueType(0);
4791   if (VT.isVector()) {
4792     assert(ST->hasNEON());
4793 
4794     // Compute the least significant set bit: LSB = X & -X
4795     SDValue X = N->getOperand(0);
4796     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
4797     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
4798 
4799     EVT ElemTy = VT.getVectorElementType();
4800 
4801     if (ElemTy == MVT::i8) {
4802       // Compute with: cttz(x) = ctpop(lsb - 1)
4803       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4804                                 DAG.getTargetConstant(1, dl, ElemTy));
4805       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4806       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
4807     }
4808 
4809     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
4810         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
4811       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
4812       unsigned NumBits = ElemTy.getSizeInBits();
4813       SDValue WidthMinus1 =
4814           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4815                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
4816       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
4817       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
4818     }
4819 
4820     // Compute with: cttz(x) = ctpop(lsb - 1)
4821 
4822     // Since we can only compute the number of bits in a byte with vcnt.8, we
4823     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
4824     // and i64.
4825 
4826     // Compute LSB - 1.
4827     SDValue Bits;
4828     if (ElemTy == MVT::i64) {
4829       // Load constant 0xffff'ffff'ffff'ffff to register.
4830       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4831                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
4832       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
4833     } else {
4834       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4835                                 DAG.getTargetConstant(1, dl, ElemTy));
4836       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4837     }
4838 
4839     // Count #bits with vcnt.8.
4840     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4841     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
4842     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
4843 
4844     // Gather the #bits with vpaddl (pairwise add.)
4845     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4846     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
4847         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4848         Cnt8);
4849     if (ElemTy == MVT::i16)
4850       return Cnt16;
4851 
4852     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
4853     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
4854         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4855         Cnt16);
4856     if (ElemTy == MVT::i32)
4857       return Cnt32;
4858 
4859     assert(ElemTy == MVT::i64);
4860     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4861         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4862         Cnt32);
4863     return Cnt64;
4864   }
4865 
4866   if (!ST->hasV6T2Ops())
4867     return SDValue();
4868 
4869   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
4870   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
4871 }
4872 
4873 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
4874 /// for each 16-bit element from operand, repeated.  The basic idea is to
4875 /// leverage vcnt to get the 8-bit counts, gather and add the results.
4876 ///
4877 /// Trace for v4i16:
4878 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
4879 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
4880 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
4881 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
4882 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
4883 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
4884 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4885 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
4886 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
4887   EVT VT = N->getValueType(0);
4888   SDLoc DL(N);
4889 
4890   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4891   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4892   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4893   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4894   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4895   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4896 }
4897 
4898 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4899 /// bit-count for each 16-bit element from the operand.  We need slightly
4900 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
4901 /// 64/128-bit registers.
4902 ///
4903 /// Trace for v4i16:
4904 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
4905 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4906 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
4907 /// v4i16:Extracted = [k0    k1    k2    k3    ]
4908 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
4909   EVT VT = N->getValueType(0);
4910   SDLoc DL(N);
4911 
4912   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4913   if (VT.is64BitVector()) {
4914     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4915     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4916                        DAG.getIntPtrConstant(0, DL));
4917   } else {
4918     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4919                                     BitCounts, DAG.getIntPtrConstant(0, DL));
4920     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4921   }
4922 }
4923 
4924 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
4925 /// bit-count for each 32-bit element from the operand.  The idea here is
4926 /// to split the vector into 16-bit elements, leverage the 16-bit count
4927 /// routine, and then combine the results.
4928 ///
4929 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
4930 /// input    = [v0    v1    ] (vi: 32-bit elements)
4931 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
4932 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
4933 /// vrev: N0 = [k1 k0 k3 k2 ]
4934 ///            [k0 k1 k2 k3 ]
4935 ///       N1 =+[k1 k0 k3 k2 ]
4936 ///            [k0 k2 k1 k3 ]
4937 ///       N2 =+[k1 k3 k0 k2 ]
4938 ///            [k0    k2    k1    k3    ]
4939 /// Extended =+[k1    k3    k0    k2    ]
4940 ///            [k0    k2    ]
4941 /// Extracted=+[k1    k3    ]
4942 ///
4943 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
4944   EVT VT = N->getValueType(0);
4945   SDLoc DL(N);
4946 
4947   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4948 
4949   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
4950   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
4951   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
4952   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
4953   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
4954 
4955   if (VT.is64BitVector()) {
4956     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
4957     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
4958                        DAG.getIntPtrConstant(0, DL));
4959   } else {
4960     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
4961                                     DAG.getIntPtrConstant(0, DL));
4962     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
4963   }
4964 }
4965 
4966 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
4967                           const ARMSubtarget *ST) {
4968   EVT VT = N->getValueType(0);
4969 
4970   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
4971   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
4972           VT == MVT::v4i16 || VT == MVT::v8i16) &&
4973          "Unexpected type for custom ctpop lowering");
4974 
4975   if (VT.getVectorElementType() == MVT::i32)
4976     return lowerCTPOP32BitElements(N, DAG);
4977   else
4978     return lowerCTPOP16BitElements(N, DAG);
4979 }
4980 
4981 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
4982                           const ARMSubtarget *ST) {
4983   EVT VT = N->getValueType(0);
4984   SDLoc dl(N);
4985 
4986   if (!VT.isVector())
4987     return SDValue();
4988 
4989   // Lower vector shifts on NEON to use VSHL.
4990   assert(ST->hasNEON() && "unexpected vector shift");
4991 
4992   // Left shifts translate directly to the vshiftu intrinsic.
4993   if (N->getOpcode() == ISD::SHL)
4994     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4995                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
4996                                        MVT::i32),
4997                        N->getOperand(0), N->getOperand(1));
4998 
4999   assert((N->getOpcode() == ISD::SRA ||
5000           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5001 
5002   // NEON uses the same intrinsics for both left and right shifts.  For
5003   // right shifts, the shift amounts are negative, so negate the vector of
5004   // shift amounts.
5005   EVT ShiftVT = N->getOperand(1).getValueType();
5006   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5007                                      getZeroVector(ShiftVT, DAG, dl),
5008                                      N->getOperand(1));
5009   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5010                              Intrinsic::arm_neon_vshifts :
5011                              Intrinsic::arm_neon_vshiftu);
5012   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5013                      DAG.getConstant(vshiftInt, dl, MVT::i32),
5014                      N->getOperand(0), NegatedCount);
5015 }
5016 
5017 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5018                                 const ARMSubtarget *ST) {
5019   EVT VT = N->getValueType(0);
5020   SDLoc dl(N);
5021 
5022   // We can get here for a node like i32 = ISD::SHL i32, i64
5023   if (VT != MVT::i64)
5024     return SDValue();
5025 
5026   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
5027          "Unknown shift to lower!");
5028 
5029   // We only lower SRA, SRL of 1 here, all others use generic lowering.
5030   if (!isOneConstant(N->getOperand(1)))
5031     return SDValue();
5032 
5033   // If we are in thumb mode, we don't have RRX.
5034   if (ST->isThumb1Only()) return SDValue();
5035 
5036   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
5037   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5038                            DAG.getConstant(0, dl, MVT::i32));
5039   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5040                            DAG.getConstant(1, dl, MVT::i32));
5041 
5042   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5043   // captures the result into a carry flag.
5044   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5045   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5046 
5047   // The low part is an ARMISD::RRX operand, which shifts the carry in.
5048   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5049 
5050   // Merge the pieces into a single i64 value.
5051  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5052 }
5053 
5054 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5055   SDValue TmpOp0, TmpOp1;
5056   bool Invert = false;
5057   bool Swap = false;
5058   unsigned Opc = 0;
5059 
5060   SDValue Op0 = Op.getOperand(0);
5061   SDValue Op1 = Op.getOperand(1);
5062   SDValue CC = Op.getOperand(2);
5063   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5064   EVT VT = Op.getValueType();
5065   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5066   SDLoc dl(Op);
5067 
5068   if (CmpVT.getVectorElementType() == MVT::i64)
5069     // 64-bit comparisons are not legal. We've marked SETCC as non-Custom,
5070     // but it's possible that our operands are 64-bit but our result is 32-bit.
5071     // Bail in this case.
5072     return SDValue();
5073 
5074   if (Op1.getValueType().isFloatingPoint()) {
5075     switch (SetCCOpcode) {
5076     default: llvm_unreachable("Illegal FP comparison");
5077     case ISD::SETUNE:
5078     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5079     case ISD::SETOEQ:
5080     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5081     case ISD::SETOLT:
5082     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5083     case ISD::SETOGT:
5084     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5085     case ISD::SETOLE:
5086     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5087     case ISD::SETOGE:
5088     case ISD::SETGE: Opc = ARMISD::VCGE; break;
5089     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5090     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5091     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5092     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5093     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5094     case ISD::SETONE:
5095       // Expand this to (OLT | OGT).
5096       TmpOp0 = Op0;
5097       TmpOp1 = Op1;
5098       Opc = ISD::OR;
5099       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5100       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5101       break;
5102     case ISD::SETUO:
5103       Invert = true;
5104       LLVM_FALLTHROUGH;
5105     case ISD::SETO:
5106       // Expand this to (OLT | OGE).
5107       TmpOp0 = Op0;
5108       TmpOp1 = Op1;
5109       Opc = ISD::OR;
5110       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5111       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5112       break;
5113     }
5114   } else {
5115     // Integer comparisons.
5116     switch (SetCCOpcode) {
5117     default: llvm_unreachable("Illegal integer comparison");
5118     case ISD::SETNE:  Invert = true;
5119     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5120     case ISD::SETLT:  Swap = true;
5121     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5122     case ISD::SETLE:  Swap = true;
5123     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
5124     case ISD::SETULT: Swap = true;
5125     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5126     case ISD::SETULE: Swap = true;
5127     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5128     }
5129 
5130     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5131     if (Opc == ARMISD::VCEQ) {
5132 
5133       SDValue AndOp;
5134       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5135         AndOp = Op0;
5136       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5137         AndOp = Op1;
5138 
5139       // Ignore bitconvert.
5140       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5141         AndOp = AndOp.getOperand(0);
5142 
5143       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5144         Opc = ARMISD::VTST;
5145         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5146         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5147         Invert = !Invert;
5148       }
5149     }
5150   }
5151 
5152   if (Swap)
5153     std::swap(Op0, Op1);
5154 
5155   // If one of the operands is a constant vector zero, attempt to fold the
5156   // comparison to a specialized compare-against-zero form.
5157   SDValue SingleOp;
5158   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5159     SingleOp = Op0;
5160   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5161     if (Opc == ARMISD::VCGE)
5162       Opc = ARMISD::VCLEZ;
5163     else if (Opc == ARMISD::VCGT)
5164       Opc = ARMISD::VCLTZ;
5165     SingleOp = Op1;
5166   }
5167 
5168   SDValue Result;
5169   if (SingleOp.getNode()) {
5170     switch (Opc) {
5171     case ARMISD::VCEQ:
5172       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5173     case ARMISD::VCGE:
5174       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5175     case ARMISD::VCLEZ:
5176       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5177     case ARMISD::VCGT:
5178       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5179     case ARMISD::VCLTZ:
5180       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5181     default:
5182       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5183     }
5184   } else {
5185      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5186   }
5187 
5188   Result = DAG.getSExtOrTrunc(Result, dl, VT);
5189 
5190   if (Invert)
5191     Result = DAG.getNOT(dl, Result, VT);
5192 
5193   return Result;
5194 }
5195 
5196 static SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) {
5197   SDValue LHS = Op.getOperand(0);
5198   SDValue RHS = Op.getOperand(1);
5199   SDValue Carry = Op.getOperand(2);
5200   SDValue Cond = Op.getOperand(3);
5201   SDLoc DL(Op);
5202 
5203   assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
5204 
5205   assert(Carry.getOpcode() != ISD::CARRY_FALSE);
5206   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5207   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5208 
5209   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5210   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5211   SDValue ARMcc = DAG.getConstant(
5212       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5213   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5214   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5215                                    Cmp.getValue(1), SDValue());
5216   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5217                      CCR, Chain.getValue(1));
5218 }
5219 
5220 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5221 /// valid vector constant for a NEON instruction with a "modified immediate"
5222 /// operand (e.g., VMOV).  If so, return the encoded value.
5223 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5224                                  unsigned SplatBitSize, SelectionDAG &DAG,
5225                                  const SDLoc &dl, EVT &VT, bool is128Bits,
5226                                  NEONModImmType type) {
5227   unsigned OpCmode, Imm;
5228 
5229   // SplatBitSize is set to the smallest size that splats the vector, so a
5230   // zero vector will always have SplatBitSize == 8.  However, NEON modified
5231   // immediate instructions others than VMOV do not support the 8-bit encoding
5232   // of a zero vector, and the default encoding of zero is supposed to be the
5233   // 32-bit version.
5234   if (SplatBits == 0)
5235     SplatBitSize = 32;
5236 
5237   switch (SplatBitSize) {
5238   case 8:
5239     if (type != VMOVModImm)
5240       return SDValue();
5241     // Any 1-byte value is OK.  Op=0, Cmode=1110.
5242     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5243     OpCmode = 0xe;
5244     Imm = SplatBits;
5245     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5246     break;
5247 
5248   case 16:
5249     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5250     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5251     if ((SplatBits & ~0xff) == 0) {
5252       // Value = 0x00nn: Op=x, Cmode=100x.
5253       OpCmode = 0x8;
5254       Imm = SplatBits;
5255       break;
5256     }
5257     if ((SplatBits & ~0xff00) == 0) {
5258       // Value = 0xnn00: Op=x, Cmode=101x.
5259       OpCmode = 0xa;
5260       Imm = SplatBits >> 8;
5261       break;
5262     }
5263     return SDValue();
5264 
5265   case 32:
5266     // NEON's 32-bit VMOV supports splat values where:
5267     // * only one byte is nonzero, or
5268     // * the least significant byte is 0xff and the second byte is nonzero, or
5269     // * the least significant 2 bytes are 0xff and the third is nonzero.
5270     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5271     if ((SplatBits & ~0xff) == 0) {
5272       // Value = 0x000000nn: Op=x, Cmode=000x.
5273       OpCmode = 0;
5274       Imm = SplatBits;
5275       break;
5276     }
5277     if ((SplatBits & ~0xff00) == 0) {
5278       // Value = 0x0000nn00: Op=x, Cmode=001x.
5279       OpCmode = 0x2;
5280       Imm = SplatBits >> 8;
5281       break;
5282     }
5283     if ((SplatBits & ~0xff0000) == 0) {
5284       // Value = 0x00nn0000: Op=x, Cmode=010x.
5285       OpCmode = 0x4;
5286       Imm = SplatBits >> 16;
5287       break;
5288     }
5289     if ((SplatBits & ~0xff000000) == 0) {
5290       // Value = 0xnn000000: Op=x, Cmode=011x.
5291       OpCmode = 0x6;
5292       Imm = SplatBits >> 24;
5293       break;
5294     }
5295 
5296     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5297     if (type == OtherModImm) return SDValue();
5298 
5299     if ((SplatBits & ~0xffff) == 0 &&
5300         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5301       // Value = 0x0000nnff: Op=x, Cmode=1100.
5302       OpCmode = 0xc;
5303       Imm = SplatBits >> 8;
5304       break;
5305     }
5306 
5307     if ((SplatBits & ~0xffffff) == 0 &&
5308         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5309       // Value = 0x00nnffff: Op=x, Cmode=1101.
5310       OpCmode = 0xd;
5311       Imm = SplatBits >> 16;
5312       break;
5313     }
5314 
5315     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5316     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5317     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5318     // and fall through here to test for a valid 64-bit splat.  But, then the
5319     // caller would also need to check and handle the change in size.
5320     return SDValue();
5321 
5322   case 64: {
5323     if (type != VMOVModImm)
5324       return SDValue();
5325     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5326     uint64_t BitMask = 0xff;
5327     uint64_t Val = 0;
5328     unsigned ImmMask = 1;
5329     Imm = 0;
5330     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5331       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5332         Val |= BitMask;
5333         Imm |= ImmMask;
5334       } else if ((SplatBits & BitMask) != 0) {
5335         return SDValue();
5336       }
5337       BitMask <<= 8;
5338       ImmMask <<= 1;
5339     }
5340 
5341     if (DAG.getDataLayout().isBigEndian())
5342       // swap higher and lower 32 bit word
5343       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5344 
5345     // Op=1, Cmode=1110.
5346     OpCmode = 0x1e;
5347     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5348     break;
5349   }
5350 
5351   default:
5352     llvm_unreachable("unexpected size for isNEONModifiedImm");
5353   }
5354 
5355   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5356   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5357 }
5358 
5359 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5360                                            const ARMSubtarget *ST) const {
5361   if (!ST->hasVFP3())
5362     return SDValue();
5363 
5364   bool IsDouble = Op.getValueType() == MVT::f64;
5365   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5366 
5367   // Use the default (constant pool) lowering for double constants when we have
5368   // an SP-only FPU
5369   if (IsDouble && Subtarget->isFPOnlySP())
5370     return SDValue();
5371 
5372   // Try splatting with a VMOV.f32...
5373   const APFloat &FPVal = CFP->getValueAPF();
5374   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5375 
5376   if (ImmVal != -1) {
5377     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
5378       // We have code in place to select a valid ConstantFP already, no need to
5379       // do any mangling.
5380       return Op;
5381     }
5382 
5383     // It's a float and we are trying to use NEON operations where
5384     // possible. Lower it to a splat followed by an extract.
5385     SDLoc DL(Op);
5386     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
5387     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
5388                                       NewVal);
5389     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
5390                        DAG.getConstant(0, DL, MVT::i32));
5391   }
5392 
5393   // The rest of our options are NEON only, make sure that's allowed before
5394   // proceeding..
5395   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
5396     return SDValue();
5397 
5398   EVT VMovVT;
5399   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
5400 
5401   // It wouldn't really be worth bothering for doubles except for one very
5402   // important value, which does happen to match: 0.0. So make sure we don't do
5403   // anything stupid.
5404   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
5405     return SDValue();
5406 
5407   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
5408   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
5409                                      VMovVT, false, VMOVModImm);
5410   if (NewVal != SDValue()) {
5411     SDLoc DL(Op);
5412     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
5413                                       NewVal);
5414     if (IsDouble)
5415       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5416 
5417     // It's a float: cast and extract a vector element.
5418     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5419                                        VecConstant);
5420     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5421                        DAG.getConstant(0, DL, MVT::i32));
5422   }
5423 
5424   // Finally, try a VMVN.i32
5425   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
5426                              false, VMVNModImm);
5427   if (NewVal != SDValue()) {
5428     SDLoc DL(Op);
5429     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
5430 
5431     if (IsDouble)
5432       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5433 
5434     // It's a float: cast and extract a vector element.
5435     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5436                                        VecConstant);
5437     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5438                        DAG.getConstant(0, DL, MVT::i32));
5439   }
5440 
5441   return SDValue();
5442 }
5443 
5444 // check if an VEXT instruction can handle the shuffle mask when the
5445 // vector sources of the shuffle are the same.
5446 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5447   unsigned NumElts = VT.getVectorNumElements();
5448 
5449   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5450   if (M[0] < 0)
5451     return false;
5452 
5453   Imm = M[0];
5454 
5455   // If this is a VEXT shuffle, the immediate value is the index of the first
5456   // element.  The other shuffle indices must be the successive elements after
5457   // the first one.
5458   unsigned ExpectedElt = Imm;
5459   for (unsigned i = 1; i < NumElts; ++i) {
5460     // Increment the expected index.  If it wraps around, just follow it
5461     // back to index zero and keep going.
5462     ++ExpectedElt;
5463     if (ExpectedElt == NumElts)
5464       ExpectedElt = 0;
5465 
5466     if (M[i] < 0) continue; // ignore UNDEF indices
5467     if (ExpectedElt != static_cast<unsigned>(M[i]))
5468       return false;
5469   }
5470 
5471   return true;
5472 }
5473 
5474 
5475 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
5476                        bool &ReverseVEXT, unsigned &Imm) {
5477   unsigned NumElts = VT.getVectorNumElements();
5478   ReverseVEXT = false;
5479 
5480   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5481   if (M[0] < 0)
5482     return false;
5483 
5484   Imm = M[0];
5485 
5486   // If this is a VEXT shuffle, the immediate value is the index of the first
5487   // element.  The other shuffle indices must be the successive elements after
5488   // the first one.
5489   unsigned ExpectedElt = Imm;
5490   for (unsigned i = 1; i < NumElts; ++i) {
5491     // Increment the expected index.  If it wraps around, it may still be
5492     // a VEXT but the source vectors must be swapped.
5493     ExpectedElt += 1;
5494     if (ExpectedElt == NumElts * 2) {
5495       ExpectedElt = 0;
5496       ReverseVEXT = true;
5497     }
5498 
5499     if (M[i] < 0) continue; // ignore UNDEF indices
5500     if (ExpectedElt != static_cast<unsigned>(M[i]))
5501       return false;
5502   }
5503 
5504   // Adjust the index value if the source operands will be swapped.
5505   if (ReverseVEXT)
5506     Imm -= NumElts;
5507 
5508   return true;
5509 }
5510 
5511 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
5512 /// instruction with the specified blocksize.  (The order of the elements
5513 /// within each block of the vector is reversed.)
5514 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5515   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
5516          "Only possible block sizes for VREV are: 16, 32, 64");
5517 
5518   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5519   if (EltSz == 64)
5520     return false;
5521 
5522   unsigned NumElts = VT.getVectorNumElements();
5523   unsigned BlockElts = M[0] + 1;
5524   // If the first shuffle index is UNDEF, be optimistic.
5525   if (M[0] < 0)
5526     BlockElts = BlockSize / EltSz;
5527 
5528   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5529     return false;
5530 
5531   for (unsigned i = 0; i < NumElts; ++i) {
5532     if (M[i] < 0) continue; // ignore UNDEF indices
5533     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
5534       return false;
5535   }
5536 
5537   return true;
5538 }
5539 
5540 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
5541   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
5542   // range, then 0 is placed into the resulting vector. So pretty much any mask
5543   // of 8 elements can work here.
5544   return VT == MVT::v8i8 && M.size() == 8;
5545 }
5546 
5547 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
5548 // checking that pairs of elements in the shuffle mask represent the same index
5549 // in each vector, incrementing the expected index by 2 at each step.
5550 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
5551 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
5552 //  v2={e,f,g,h}
5553 // WhichResult gives the offset for each element in the mask based on which
5554 // of the two results it belongs to.
5555 //
5556 // The transpose can be represented either as:
5557 // result1 = shufflevector v1, v2, result1_shuffle_mask
5558 // result2 = shufflevector v1, v2, result2_shuffle_mask
5559 // where v1/v2 and the shuffle masks have the same number of elements
5560 // (here WhichResult (see below) indicates which result is being checked)
5561 //
5562 // or as:
5563 // results = shufflevector v1, v2, shuffle_mask
5564 // where both results are returned in one vector and the shuffle mask has twice
5565 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
5566 // want to check the low half and high half of the shuffle mask as if it were
5567 // the other case
5568 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5569   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5570   if (EltSz == 64)
5571     return false;
5572 
5573   unsigned NumElts = VT.getVectorNumElements();
5574   if (M.size() != NumElts && M.size() != NumElts*2)
5575     return false;
5576 
5577   // If the mask is twice as long as the input vector then we need to check the
5578   // upper and lower parts of the mask with a matching value for WhichResult
5579   // FIXME: A mask with only even values will be rejected in case the first
5580   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
5581   // M[0] is used to determine WhichResult
5582   for (unsigned i = 0; i < M.size(); i += NumElts) {
5583     if (M.size() == NumElts * 2)
5584       WhichResult = i / NumElts;
5585     else
5586       WhichResult = M[i] == 0 ? 0 : 1;
5587     for (unsigned j = 0; j < NumElts; j += 2) {
5588       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5589           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
5590         return false;
5591     }
5592   }
5593 
5594   if (M.size() == NumElts*2)
5595     WhichResult = 0;
5596 
5597   return true;
5598 }
5599 
5600 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
5601 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5602 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5603 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5604   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5605   if (EltSz == 64)
5606     return false;
5607 
5608   unsigned NumElts = VT.getVectorNumElements();
5609   if (M.size() != NumElts && M.size() != NumElts*2)
5610     return false;
5611 
5612   for (unsigned i = 0; i < M.size(); i += NumElts) {
5613     if (M.size() == NumElts * 2)
5614       WhichResult = i / NumElts;
5615     else
5616       WhichResult = M[i] == 0 ? 0 : 1;
5617     for (unsigned j = 0; j < NumElts; j += 2) {
5618       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5619           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
5620         return false;
5621     }
5622   }
5623 
5624   if (M.size() == NumElts*2)
5625     WhichResult = 0;
5626 
5627   return true;
5628 }
5629 
5630 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
5631 // that the mask elements are either all even and in steps of size 2 or all odd
5632 // and in steps of size 2.
5633 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
5634 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
5635 //  v2={e,f,g,h}
5636 // Requires similar checks to that of isVTRNMask with
5637 // respect the how results are returned.
5638 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5639   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5640   if (EltSz == 64)
5641     return false;
5642 
5643   unsigned NumElts = VT.getVectorNumElements();
5644   if (M.size() != NumElts && M.size() != NumElts*2)
5645     return false;
5646 
5647   for (unsigned i = 0; i < M.size(); i += NumElts) {
5648     WhichResult = M[i] == 0 ? 0 : 1;
5649     for (unsigned j = 0; j < NumElts; ++j) {
5650       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
5651         return false;
5652     }
5653   }
5654 
5655   if (M.size() == NumElts*2)
5656     WhichResult = 0;
5657 
5658   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5659   if (VT.is64BitVector() && EltSz == 32)
5660     return false;
5661 
5662   return true;
5663 }
5664 
5665 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
5666 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5667 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5668 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5669   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5670   if (EltSz == 64)
5671     return false;
5672 
5673   unsigned NumElts = VT.getVectorNumElements();
5674   if (M.size() != NumElts && M.size() != NumElts*2)
5675     return false;
5676 
5677   unsigned Half = NumElts / 2;
5678   for (unsigned i = 0; i < M.size(); i += NumElts) {
5679     WhichResult = M[i] == 0 ? 0 : 1;
5680     for (unsigned j = 0; j < NumElts; j += Half) {
5681       unsigned Idx = WhichResult;
5682       for (unsigned k = 0; k < Half; ++k) {
5683         int MIdx = M[i + j + k];
5684         if (MIdx >= 0 && (unsigned) MIdx != Idx)
5685           return false;
5686         Idx += 2;
5687       }
5688     }
5689   }
5690 
5691   if (M.size() == NumElts*2)
5692     WhichResult = 0;
5693 
5694   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5695   if (VT.is64BitVector() && EltSz == 32)
5696     return false;
5697 
5698   return true;
5699 }
5700 
5701 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
5702 // that pairs of elements of the shufflemask represent the same index in each
5703 // vector incrementing sequentially through the vectors.
5704 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
5705 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
5706 //  v2={e,f,g,h}
5707 // Requires similar checks to that of isVTRNMask with respect the how results
5708 // are returned.
5709 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5710   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5711   if (EltSz == 64)
5712     return false;
5713 
5714   unsigned NumElts = VT.getVectorNumElements();
5715   if (M.size() != NumElts && M.size() != NumElts*2)
5716     return false;
5717 
5718   for (unsigned i = 0; i < M.size(); i += NumElts) {
5719     WhichResult = M[i] == 0 ? 0 : 1;
5720     unsigned Idx = WhichResult * NumElts / 2;
5721     for (unsigned j = 0; j < NumElts; j += 2) {
5722       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5723           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
5724         return false;
5725       Idx += 1;
5726     }
5727   }
5728 
5729   if (M.size() == NumElts*2)
5730     WhichResult = 0;
5731 
5732   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5733   if (VT.is64BitVector() && EltSz == 32)
5734     return false;
5735 
5736   return true;
5737 }
5738 
5739 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
5740 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5741 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5742 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5743   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5744   if (EltSz == 64)
5745     return false;
5746 
5747   unsigned NumElts = VT.getVectorNumElements();
5748   if (M.size() != NumElts && M.size() != NumElts*2)
5749     return false;
5750 
5751   for (unsigned i = 0; i < M.size(); i += NumElts) {
5752     WhichResult = M[i] == 0 ? 0 : 1;
5753     unsigned Idx = WhichResult * NumElts / 2;
5754     for (unsigned j = 0; j < NumElts; j += 2) {
5755       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5756           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
5757         return false;
5758       Idx += 1;
5759     }
5760   }
5761 
5762   if (M.size() == NumElts*2)
5763     WhichResult = 0;
5764 
5765   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5766   if (VT.is64BitVector() && EltSz == 32)
5767     return false;
5768 
5769   return true;
5770 }
5771 
5772 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
5773 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
5774 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
5775                                            unsigned &WhichResult,
5776                                            bool &isV_UNDEF) {
5777   isV_UNDEF = false;
5778   if (isVTRNMask(ShuffleMask, VT, WhichResult))
5779     return ARMISD::VTRN;
5780   if (isVUZPMask(ShuffleMask, VT, WhichResult))
5781     return ARMISD::VUZP;
5782   if (isVZIPMask(ShuffleMask, VT, WhichResult))
5783     return ARMISD::VZIP;
5784 
5785   isV_UNDEF = true;
5786   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5787     return ARMISD::VTRN;
5788   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5789     return ARMISD::VUZP;
5790   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5791     return ARMISD::VZIP;
5792 
5793   return 0;
5794 }
5795 
5796 /// \return true if this is a reverse operation on an vector.
5797 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
5798   unsigned NumElts = VT.getVectorNumElements();
5799   // Make sure the mask has the right size.
5800   if (NumElts != M.size())
5801       return false;
5802 
5803   // Look for <15, ..., 3, -1, 1, 0>.
5804   for (unsigned i = 0; i != NumElts; ++i)
5805     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
5806       return false;
5807 
5808   return true;
5809 }
5810 
5811 // If N is an integer constant that can be moved into a register in one
5812 // instruction, return an SDValue of such a constant (will become a MOV
5813 // instruction).  Otherwise return null.
5814 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
5815                                      const ARMSubtarget *ST, const SDLoc &dl) {
5816   uint64_t Val;
5817   if (!isa<ConstantSDNode>(N))
5818     return SDValue();
5819   Val = cast<ConstantSDNode>(N)->getZExtValue();
5820 
5821   if (ST->isThumb1Only()) {
5822     if (Val <= 255 || ~Val <= 255)
5823       return DAG.getConstant(Val, dl, MVT::i32);
5824   } else {
5825     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
5826       return DAG.getConstant(Val, dl, MVT::i32);
5827   }
5828   return SDValue();
5829 }
5830 
5831 // If this is a case we can't handle, return null and let the default
5832 // expansion code take care of it.
5833 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
5834                                              const ARMSubtarget *ST) const {
5835   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5836   SDLoc dl(Op);
5837   EVT VT = Op.getValueType();
5838 
5839   APInt SplatBits, SplatUndef;
5840   unsigned SplatBitSize;
5841   bool HasAnyUndefs;
5842   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5843     if (SplatBitSize <= 64) {
5844       // Check if an immediate VMOV works.
5845       EVT VmovVT;
5846       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5847                                       SplatUndef.getZExtValue(), SplatBitSize,
5848                                       DAG, dl, VmovVT, VT.is128BitVector(),
5849                                       VMOVModImm);
5850       if (Val.getNode()) {
5851         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
5852         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5853       }
5854 
5855       // Try an immediate VMVN.
5856       uint64_t NegatedImm = (~SplatBits).getZExtValue();
5857       Val = isNEONModifiedImm(NegatedImm,
5858                                       SplatUndef.getZExtValue(), SplatBitSize,
5859                                       DAG, dl, VmovVT, VT.is128BitVector(),
5860                                       VMVNModImm);
5861       if (Val.getNode()) {
5862         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
5863         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5864       }
5865 
5866       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
5867       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
5868         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
5869         if (ImmVal != -1) {
5870           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
5871           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
5872         }
5873       }
5874     }
5875   }
5876 
5877   // Scan through the operands to see if only one value is used.
5878   //
5879   // As an optimisation, even if more than one value is used it may be more
5880   // profitable to splat with one value then change some lanes.
5881   //
5882   // Heuristically we decide to do this if the vector has a "dominant" value,
5883   // defined as splatted to more than half of the lanes.
5884   unsigned NumElts = VT.getVectorNumElements();
5885   bool isOnlyLowElement = true;
5886   bool usesOnlyOneValue = true;
5887   bool hasDominantValue = false;
5888   bool isConstant = true;
5889 
5890   // Map of the number of times a particular SDValue appears in the
5891   // element list.
5892   DenseMap<SDValue, unsigned> ValueCounts;
5893   SDValue Value;
5894   for (unsigned i = 0; i < NumElts; ++i) {
5895     SDValue V = Op.getOperand(i);
5896     if (V.isUndef())
5897       continue;
5898     if (i > 0)
5899       isOnlyLowElement = false;
5900     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5901       isConstant = false;
5902 
5903     ValueCounts.insert(std::make_pair(V, 0));
5904     unsigned &Count = ValueCounts[V];
5905 
5906     // Is this value dominant? (takes up more than half of the lanes)
5907     if (++Count > (NumElts / 2)) {
5908       hasDominantValue = true;
5909       Value = V;
5910     }
5911   }
5912   if (ValueCounts.size() != 1)
5913     usesOnlyOneValue = false;
5914   if (!Value.getNode() && ValueCounts.size() > 0)
5915     Value = ValueCounts.begin()->first;
5916 
5917   if (ValueCounts.size() == 0)
5918     return DAG.getUNDEF(VT);
5919 
5920   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
5921   // Keep going if we are hitting this case.
5922   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
5923     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5924 
5925   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5926 
5927   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
5928   // i32 and try again.
5929   if (hasDominantValue && EltSize <= 32) {
5930     if (!isConstant) {
5931       SDValue N;
5932 
5933       // If we are VDUPing a value that comes directly from a vector, that will
5934       // cause an unnecessary move to and from a GPR, where instead we could
5935       // just use VDUPLANE. We can only do this if the lane being extracted
5936       // is at a constant index, as the VDUP from lane instructions only have
5937       // constant-index forms.
5938       ConstantSDNode *constIndex;
5939       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5940           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
5941         // We need to create a new undef vector to use for the VDUPLANE if the
5942         // size of the vector from which we get the value is different than the
5943         // size of the vector that we need to create. We will insert the element
5944         // such that the register coalescer will remove unnecessary copies.
5945         if (VT != Value->getOperand(0).getValueType()) {
5946           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
5947                              VT.getVectorNumElements();
5948           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5949                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
5950                         Value, DAG.getConstant(index, dl, MVT::i32)),
5951                            DAG.getConstant(index, dl, MVT::i32));
5952         } else
5953           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5954                         Value->getOperand(0), Value->getOperand(1));
5955       } else
5956         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
5957 
5958       if (!usesOnlyOneValue) {
5959         // The dominant value was splatted as 'N', but we now have to insert
5960         // all differing elements.
5961         for (unsigned I = 0; I < NumElts; ++I) {
5962           if (Op.getOperand(I) == Value)
5963             continue;
5964           SmallVector<SDValue, 3> Ops;
5965           Ops.push_back(N);
5966           Ops.push_back(Op.getOperand(I));
5967           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
5968           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
5969         }
5970       }
5971       return N;
5972     }
5973     if (VT.getVectorElementType().isFloatingPoint()) {
5974       SmallVector<SDValue, 8> Ops;
5975       for (unsigned i = 0; i < NumElts; ++i)
5976         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
5977                                   Op.getOperand(i)));
5978       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
5979       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
5980       Val = LowerBUILD_VECTOR(Val, DAG, ST);
5981       if (Val.getNode())
5982         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5983     }
5984     if (usesOnlyOneValue) {
5985       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
5986       if (isConstant && Val.getNode())
5987         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
5988     }
5989   }
5990 
5991   // If all elements are constants and the case above didn't get hit, fall back
5992   // to the default expansion, which will generate a load from the constant
5993   // pool.
5994   if (isConstant)
5995     return SDValue();
5996 
5997   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5998   if (NumElts >= 4) {
5999     SDValue shuffle = ReconstructShuffle(Op, DAG);
6000     if (shuffle != SDValue())
6001       return shuffle;
6002   }
6003 
6004   // Vectors with 32- or 64-bit elements can be built by directly assigning
6005   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
6006   // will be legalized.
6007   if (EltSize >= 32) {
6008     // Do the expansion with floating-point types, since that is what the VFP
6009     // registers are defined to use, and since i64 is not legal.
6010     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6011     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6012     SmallVector<SDValue, 8> Ops;
6013     for (unsigned i = 0; i < NumElts; ++i)
6014       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6015     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6016     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6017   }
6018 
6019   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6020   // know the default expansion would otherwise fall back on something even
6021   // worse. For a vector with one or two non-undef values, that's
6022   // scalar_to_vector for the elements followed by a shuffle (provided the
6023   // shuffle is valid for the target) and materialization element by element
6024   // on the stack followed by a load for everything else.
6025   if (!isConstant && !usesOnlyOneValue) {
6026     SDValue Vec = DAG.getUNDEF(VT);
6027     for (unsigned i = 0 ; i < NumElts; ++i) {
6028       SDValue V = Op.getOperand(i);
6029       if (V.isUndef())
6030         continue;
6031       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6032       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6033     }
6034     return Vec;
6035   }
6036 
6037   return SDValue();
6038 }
6039 
6040 // Gather data to see if the operation can be modelled as a
6041 // shuffle in combination with VEXTs.
6042 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6043                                               SelectionDAG &DAG) const {
6044   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6045   SDLoc dl(Op);
6046   EVT VT = Op.getValueType();
6047   unsigned NumElts = VT.getVectorNumElements();
6048 
6049   struct ShuffleSourceInfo {
6050     SDValue Vec;
6051     unsigned MinElt;
6052     unsigned MaxElt;
6053 
6054     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6055     // be compatible with the shuffle we intend to construct. As a result
6056     // ShuffleVec will be some sliding window into the original Vec.
6057     SDValue ShuffleVec;
6058 
6059     // Code should guarantee that element i in Vec starts at element "WindowBase
6060     // + i * WindowScale in ShuffleVec".
6061     int WindowBase;
6062     int WindowScale;
6063 
6064     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6065     ShuffleSourceInfo(SDValue Vec)
6066         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
6067           WindowScale(1) {}
6068   };
6069 
6070   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6071   // node.
6072   SmallVector<ShuffleSourceInfo, 2> Sources;
6073   for (unsigned i = 0; i < NumElts; ++i) {
6074     SDValue V = Op.getOperand(i);
6075     if (V.isUndef())
6076       continue;
6077     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6078       // A shuffle can only come from building a vector from various
6079       // elements of other vectors.
6080       return SDValue();
6081     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6082       // Furthermore, shuffles require a constant mask, whereas extractelts
6083       // accept variable indices.
6084       return SDValue();
6085     }
6086 
6087     // Add this element source to the list if it's not already there.
6088     SDValue SourceVec = V.getOperand(0);
6089     auto Source = find(Sources, SourceVec);
6090     if (Source == Sources.end())
6091       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6092 
6093     // Update the minimum and maximum lane number seen.
6094     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6095     Source->MinElt = std::min(Source->MinElt, EltNo);
6096     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6097   }
6098 
6099   // Currently only do something sane when at most two source vectors
6100   // are involved.
6101   if (Sources.size() > 2)
6102     return SDValue();
6103 
6104   // Find out the smallest element size among result and two sources, and use
6105   // it as element size to build the shuffle_vector.
6106   EVT SmallestEltTy = VT.getVectorElementType();
6107   for (auto &Source : Sources) {
6108     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6109     if (SrcEltTy.bitsLT(SmallestEltTy))
6110       SmallestEltTy = SrcEltTy;
6111   }
6112   unsigned ResMultiplier =
6113       VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
6114   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6115   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6116 
6117   // If the source vector is too wide or too narrow, we may nevertheless be able
6118   // to construct a compatible shuffle either by concatenating it with UNDEF or
6119   // extracting a suitable range of elements.
6120   for (auto &Src : Sources) {
6121     EVT SrcVT = Src.ShuffleVec.getValueType();
6122 
6123     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6124       continue;
6125 
6126     // This stage of the search produces a source with the same element type as
6127     // the original, but with a total width matching the BUILD_VECTOR output.
6128     EVT EltVT = SrcVT.getVectorElementType();
6129     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6130     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6131 
6132     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6133       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6134         return SDValue();
6135       // We can pad out the smaller vector for free, so if it's part of a
6136       // shuffle...
6137       Src.ShuffleVec =
6138           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6139                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6140       continue;
6141     }
6142 
6143     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6144       return SDValue();
6145 
6146     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6147       // Span too large for a VEXT to cope
6148       return SDValue();
6149     }
6150 
6151     if (Src.MinElt >= NumSrcElts) {
6152       // The extraction can just take the second half
6153       Src.ShuffleVec =
6154           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6155                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6156       Src.WindowBase = -NumSrcElts;
6157     } else if (Src.MaxElt < NumSrcElts) {
6158       // The extraction can just take the first half
6159       Src.ShuffleVec =
6160           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6161                       DAG.getConstant(0, dl, MVT::i32));
6162     } else {
6163       // An actual VEXT is needed
6164       SDValue VEXTSrc1 =
6165           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6166                       DAG.getConstant(0, dl, MVT::i32));
6167       SDValue VEXTSrc2 =
6168           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6169                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6170 
6171       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6172                                    VEXTSrc2,
6173                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
6174       Src.WindowBase = -Src.MinElt;
6175     }
6176   }
6177 
6178   // Another possible incompatibility occurs from the vector element types. We
6179   // can fix this by bitcasting the source vectors to the same type we intend
6180   // for the shuffle.
6181   for (auto &Src : Sources) {
6182     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6183     if (SrcEltTy == SmallestEltTy)
6184       continue;
6185     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6186     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6187     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6188     Src.WindowBase *= Src.WindowScale;
6189   }
6190 
6191   // Final sanity check before we try to actually produce a shuffle.
6192   DEBUG(
6193     for (auto Src : Sources)
6194       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
6195   );
6196 
6197   // The stars all align, our next step is to produce the mask for the shuffle.
6198   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6199   int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
6200   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6201     SDValue Entry = Op.getOperand(i);
6202     if (Entry.isUndef())
6203       continue;
6204 
6205     auto Src = find(Sources, Entry.getOperand(0));
6206     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6207 
6208     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6209     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6210     // segment.
6211     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6212     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6213                                VT.getVectorElementType().getSizeInBits());
6214     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6215 
6216     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6217     // starting at the appropriate offset.
6218     int *LaneMask = &Mask[i * ResMultiplier];
6219 
6220     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6221     ExtractBase += NumElts * (Src - Sources.begin());
6222     for (int j = 0; j < LanesDefined; ++j)
6223       LaneMask[j] = ExtractBase + j;
6224   }
6225 
6226   // Final check before we try to produce nonsense...
6227   if (!isShuffleMaskLegal(Mask, ShuffleVT))
6228     return SDValue();
6229 
6230   // We can't handle more than two sources. This should have already
6231   // been checked before this point.
6232   assert(Sources.size() <= 2 && "Too many sources!");
6233 
6234   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6235   for (unsigned i = 0; i < Sources.size(); ++i)
6236     ShuffleOps[i] = Sources[i].ShuffleVec;
6237 
6238   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6239                                          ShuffleOps[1], Mask);
6240   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6241 }
6242 
6243 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6244 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6245 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6246 /// are assumed to be legal.
6247 bool
6248 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6249                                       EVT VT) const {
6250   if (VT.getVectorNumElements() == 4 &&
6251       (VT.is128BitVector() || VT.is64BitVector())) {
6252     unsigned PFIndexes[4];
6253     for (unsigned i = 0; i != 4; ++i) {
6254       if (M[i] < 0)
6255         PFIndexes[i] = 8;
6256       else
6257         PFIndexes[i] = M[i];
6258     }
6259 
6260     // Compute the index in the perfect shuffle table.
6261     unsigned PFTableIndex =
6262       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6263     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6264     unsigned Cost = (PFEntry >> 30);
6265 
6266     if (Cost <= 4)
6267       return true;
6268   }
6269 
6270   bool ReverseVEXT, isV_UNDEF;
6271   unsigned Imm, WhichResult;
6272 
6273   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6274   return (EltSize >= 32 ||
6275           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6276           isVREVMask(M, VT, 64) ||
6277           isVREVMask(M, VT, 32) ||
6278           isVREVMask(M, VT, 16) ||
6279           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6280           isVTBLMask(M, VT) ||
6281           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6282           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6283 }
6284 
6285 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6286 /// the specified operations to build the shuffle.
6287 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6288                                       SDValue RHS, SelectionDAG &DAG,
6289                                       const SDLoc &dl) {
6290   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6291   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6292   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
6293 
6294   enum {
6295     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6296     OP_VREV,
6297     OP_VDUP0,
6298     OP_VDUP1,
6299     OP_VDUP2,
6300     OP_VDUP3,
6301     OP_VEXT1,
6302     OP_VEXT2,
6303     OP_VEXT3,
6304     OP_VUZPL, // VUZP, left result
6305     OP_VUZPR, // VUZP, right result
6306     OP_VZIPL, // VZIP, left result
6307     OP_VZIPR, // VZIP, right result
6308     OP_VTRNL, // VTRN, left result
6309     OP_VTRNR  // VTRN, right result
6310   };
6311 
6312   if (OpNum == OP_COPY) {
6313     if (LHSID == (1*9+2)*9+3) return LHS;
6314     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6315     return RHS;
6316   }
6317 
6318   SDValue OpLHS, OpRHS;
6319   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6320   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6321   EVT VT = OpLHS.getValueType();
6322 
6323   switch (OpNum) {
6324   default: llvm_unreachable("Unknown shuffle opcode!");
6325   case OP_VREV:
6326     // VREV divides the vector in half and swaps within the half.
6327     if (VT.getVectorElementType() == MVT::i32 ||
6328         VT.getVectorElementType() == MVT::f32)
6329       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6330     // vrev <4 x i16> -> VREV32
6331     if (VT.getVectorElementType() == MVT::i16)
6332       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6333     // vrev <4 x i8> -> VREV16
6334     assert(VT.getVectorElementType() == MVT::i8);
6335     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6336   case OP_VDUP0:
6337   case OP_VDUP1:
6338   case OP_VDUP2:
6339   case OP_VDUP3:
6340     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6341                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6342   case OP_VEXT1:
6343   case OP_VEXT2:
6344   case OP_VEXT3:
6345     return DAG.getNode(ARMISD::VEXT, dl, VT,
6346                        OpLHS, OpRHS,
6347                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6348   case OP_VUZPL:
6349   case OP_VUZPR:
6350     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6351                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6352   case OP_VZIPL:
6353   case OP_VZIPR:
6354     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6355                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6356   case OP_VTRNL:
6357   case OP_VTRNR:
6358     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6359                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6360   }
6361 }
6362 
6363 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
6364                                        ArrayRef<int> ShuffleMask,
6365                                        SelectionDAG &DAG) {
6366   // Check to see if we can use the VTBL instruction.
6367   SDValue V1 = Op.getOperand(0);
6368   SDValue V2 = Op.getOperand(1);
6369   SDLoc DL(Op);
6370 
6371   SmallVector<SDValue, 8> VTBLMask;
6372   for (ArrayRef<int>::iterator
6373          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
6374     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
6375 
6376   if (V2.getNode()->isUndef())
6377     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
6378                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6379 
6380   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
6381                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6382 }
6383 
6384 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
6385                                                       SelectionDAG &DAG) {
6386   SDLoc DL(Op);
6387   SDValue OpLHS = Op.getOperand(0);
6388   EVT VT = OpLHS.getValueType();
6389 
6390   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
6391          "Expect an v8i16/v16i8 type");
6392   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
6393   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
6394   // extract the first 8 bytes into the top double word and the last 8 bytes
6395   // into the bottom double word. The v8i16 case is similar.
6396   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
6397   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
6398                      DAG.getConstant(ExtractNum, DL, MVT::i32));
6399 }
6400 
6401 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
6402   SDValue V1 = Op.getOperand(0);
6403   SDValue V2 = Op.getOperand(1);
6404   SDLoc dl(Op);
6405   EVT VT = Op.getValueType();
6406   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6407 
6408   // Convert shuffles that are directly supported on NEON to target-specific
6409   // DAG nodes, instead of keeping them as shuffles and matching them again
6410   // during code selection.  This is more efficient and avoids the possibility
6411   // of inconsistencies between legalization and selection.
6412   // FIXME: floating-point vectors should be canonicalized to integer vectors
6413   // of the same time so that they get CSEd properly.
6414   ArrayRef<int> ShuffleMask = SVN->getMask();
6415 
6416   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6417   if (EltSize <= 32) {
6418     if (SVN->isSplat()) {
6419       int Lane = SVN->getSplatIndex();
6420       // If this is undef splat, generate it via "just" vdup, if possible.
6421       if (Lane == -1) Lane = 0;
6422 
6423       // Test if V1 is a SCALAR_TO_VECTOR.
6424       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6425         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6426       }
6427       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
6428       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
6429       // reaches it).
6430       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
6431           !isa<ConstantSDNode>(V1.getOperand(0))) {
6432         bool IsScalarToVector = true;
6433         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
6434           if (!V1.getOperand(i).isUndef()) {
6435             IsScalarToVector = false;
6436             break;
6437           }
6438         if (IsScalarToVector)
6439           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6440       }
6441       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
6442                          DAG.getConstant(Lane, dl, MVT::i32));
6443     }
6444 
6445     bool ReverseVEXT;
6446     unsigned Imm;
6447     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
6448       if (ReverseVEXT)
6449         std::swap(V1, V2);
6450       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
6451                          DAG.getConstant(Imm, dl, MVT::i32));
6452     }
6453 
6454     if (isVREVMask(ShuffleMask, VT, 64))
6455       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
6456     if (isVREVMask(ShuffleMask, VT, 32))
6457       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
6458     if (isVREVMask(ShuffleMask, VT, 16))
6459       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
6460 
6461     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
6462       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
6463                          DAG.getConstant(Imm, dl, MVT::i32));
6464     }
6465 
6466     // Check for Neon shuffles that modify both input vectors in place.
6467     // If both results are used, i.e., if there are two shuffles with the same
6468     // source operands and with masks corresponding to both results of one of
6469     // these operations, DAG memoization will ensure that a single node is
6470     // used for both shuffles.
6471     unsigned WhichResult;
6472     bool isV_UNDEF;
6473     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6474             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
6475       if (isV_UNDEF)
6476         V2 = V1;
6477       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
6478           .getValue(WhichResult);
6479     }
6480 
6481     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
6482     // shuffles that produce a result larger than their operands with:
6483     //   shuffle(concat(v1, undef), concat(v2, undef))
6484     // ->
6485     //   shuffle(concat(v1, v2), undef)
6486     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
6487     //
6488     // This is useful in the general case, but there are special cases where
6489     // native shuffles produce larger results: the two-result ops.
6490     //
6491     // Look through the concat when lowering them:
6492     //   shuffle(concat(v1, v2), undef)
6493     // ->
6494     //   concat(VZIP(v1, v2):0, :1)
6495     //
6496     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
6497       SDValue SubV1 = V1->getOperand(0);
6498       SDValue SubV2 = V1->getOperand(1);
6499       EVT SubVT = SubV1.getValueType();
6500 
6501       // We expect these to have been canonicalized to -1.
6502       assert(all_of(ShuffleMask, [&](int i) {
6503         return i < (int)VT.getVectorNumElements();
6504       }) && "Unexpected shuffle index into UNDEF operand!");
6505 
6506       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6507               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
6508         if (isV_UNDEF)
6509           SubV2 = SubV1;
6510         assert((WhichResult == 0) &&
6511                "In-place shuffle of concat can only have one result!");
6512         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
6513                                   SubV1, SubV2);
6514         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
6515                            Res.getValue(1));
6516       }
6517     }
6518   }
6519 
6520   // If the shuffle is not directly supported and it has 4 elements, use
6521   // the PerfectShuffle-generated table to synthesize it from other shuffles.
6522   unsigned NumElts = VT.getVectorNumElements();
6523   if (NumElts == 4) {
6524     unsigned PFIndexes[4];
6525     for (unsigned i = 0; i != 4; ++i) {
6526       if (ShuffleMask[i] < 0)
6527         PFIndexes[i] = 8;
6528       else
6529         PFIndexes[i] = ShuffleMask[i];
6530     }
6531 
6532     // Compute the index in the perfect shuffle table.
6533     unsigned PFTableIndex =
6534       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6535     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6536     unsigned Cost = (PFEntry >> 30);
6537 
6538     if (Cost <= 4)
6539       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6540   }
6541 
6542   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
6543   if (EltSize >= 32) {
6544     // Do the expansion with floating-point types, since that is what the VFP
6545     // registers are defined to use, and since i64 is not legal.
6546     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6547     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6548     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
6549     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
6550     SmallVector<SDValue, 8> Ops;
6551     for (unsigned i = 0; i < NumElts; ++i) {
6552       if (ShuffleMask[i] < 0)
6553         Ops.push_back(DAG.getUNDEF(EltVT));
6554       else
6555         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6556                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
6557                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
6558                                                   dl, MVT::i32)));
6559     }
6560     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6561     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6562   }
6563 
6564   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
6565     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
6566 
6567   if (VT == MVT::v8i8)
6568     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
6569       return NewOp;
6570 
6571   return SDValue();
6572 }
6573 
6574 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6575   // INSERT_VECTOR_ELT is legal only for immediate indexes.
6576   SDValue Lane = Op.getOperand(2);
6577   if (!isa<ConstantSDNode>(Lane))
6578     return SDValue();
6579 
6580   return Op;
6581 }
6582 
6583 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6584   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
6585   SDValue Lane = Op.getOperand(1);
6586   if (!isa<ConstantSDNode>(Lane))
6587     return SDValue();
6588 
6589   SDValue Vec = Op.getOperand(0);
6590   if (Op.getValueType() == MVT::i32 &&
6591       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
6592     SDLoc dl(Op);
6593     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
6594   }
6595 
6596   return Op;
6597 }
6598 
6599 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6600   // The only time a CONCAT_VECTORS operation can have legal types is when
6601   // two 64-bit vectors are concatenated to a 128-bit vector.
6602   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
6603          "unexpected CONCAT_VECTORS");
6604   SDLoc dl(Op);
6605   SDValue Val = DAG.getUNDEF(MVT::v2f64);
6606   SDValue Op0 = Op.getOperand(0);
6607   SDValue Op1 = Op.getOperand(1);
6608   if (!Op0.isUndef())
6609     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6610                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
6611                       DAG.getIntPtrConstant(0, dl));
6612   if (!Op1.isUndef())
6613     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6614                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
6615                       DAG.getIntPtrConstant(1, dl));
6616   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
6617 }
6618 
6619 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
6620 /// element has been zero/sign-extended, depending on the isSigned parameter,
6621 /// from an integer type half its size.
6622 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
6623                                    bool isSigned) {
6624   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
6625   EVT VT = N->getValueType(0);
6626   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
6627     SDNode *BVN = N->getOperand(0).getNode();
6628     if (BVN->getValueType(0) != MVT::v4i32 ||
6629         BVN->getOpcode() != ISD::BUILD_VECTOR)
6630       return false;
6631     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6632     unsigned HiElt = 1 - LoElt;
6633     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
6634     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
6635     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
6636     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
6637     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
6638       return false;
6639     if (isSigned) {
6640       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
6641           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
6642         return true;
6643     } else {
6644       if (Hi0->isNullValue() && Hi1->isNullValue())
6645         return true;
6646     }
6647     return false;
6648   }
6649 
6650   if (N->getOpcode() != ISD::BUILD_VECTOR)
6651     return false;
6652 
6653   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6654     SDNode *Elt = N->getOperand(i).getNode();
6655     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
6656       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6657       unsigned HalfSize = EltSize / 2;
6658       if (isSigned) {
6659         if (!isIntN(HalfSize, C->getSExtValue()))
6660           return false;
6661       } else {
6662         if (!isUIntN(HalfSize, C->getZExtValue()))
6663           return false;
6664       }
6665       continue;
6666     }
6667     return false;
6668   }
6669 
6670   return true;
6671 }
6672 
6673 /// isSignExtended - Check if a node is a vector value that is sign-extended
6674 /// or a constant BUILD_VECTOR with sign-extended elements.
6675 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
6676   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
6677     return true;
6678   if (isExtendedBUILD_VECTOR(N, DAG, true))
6679     return true;
6680   return false;
6681 }
6682 
6683 /// isZeroExtended - Check if a node is a vector value that is zero-extended
6684 /// or a constant BUILD_VECTOR with zero-extended elements.
6685 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
6686   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
6687     return true;
6688   if (isExtendedBUILD_VECTOR(N, DAG, false))
6689     return true;
6690   return false;
6691 }
6692 
6693 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
6694   if (OrigVT.getSizeInBits() >= 64)
6695     return OrigVT;
6696 
6697   assert(OrigVT.isSimple() && "Expecting a simple value type");
6698 
6699   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
6700   switch (OrigSimpleTy) {
6701   default: llvm_unreachable("Unexpected Vector Type");
6702   case MVT::v2i8:
6703   case MVT::v2i16:
6704      return MVT::v2i32;
6705   case MVT::v4i8:
6706     return  MVT::v4i16;
6707   }
6708 }
6709 
6710 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
6711 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
6712 /// We insert the required extension here to get the vector to fill a D register.
6713 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
6714                                             const EVT &OrigTy,
6715                                             const EVT &ExtTy,
6716                                             unsigned ExtOpcode) {
6717   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
6718   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
6719   // 64-bits we need to insert a new extension so that it will be 64-bits.
6720   assert(ExtTy.is128BitVector() && "Unexpected extension size");
6721   if (OrigTy.getSizeInBits() >= 64)
6722     return N;
6723 
6724   // Must extend size to at least 64 bits to be used as an operand for VMULL.
6725   EVT NewVT = getExtensionTo64Bits(OrigTy);
6726 
6727   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
6728 }
6729 
6730 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
6731 /// does not do any sign/zero extension. If the original vector is less
6732 /// than 64 bits, an appropriate extension will be added after the load to
6733 /// reach a total size of 64 bits. We have to add the extension separately
6734 /// because ARM does not have a sign/zero extending load for vectors.
6735 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
6736   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
6737 
6738   // The load already has the right type.
6739   if (ExtendedTy == LD->getMemoryVT())
6740     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
6741                        LD->getBasePtr(), LD->getPointerInfo(),
6742                        LD->getAlignment(), LD->getMemOperand()->getFlags());
6743 
6744   // We need to create a zextload/sextload. We cannot just create a load
6745   // followed by a zext/zext node because LowerMUL is also run during normal
6746   // operation legalization where we can't create illegal types.
6747   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
6748                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
6749                         LD->getMemoryVT(), LD->getAlignment(),
6750                         LD->getMemOperand()->getFlags());
6751 }
6752 
6753 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
6754 /// extending load, or BUILD_VECTOR with extended elements, return the
6755 /// unextended value. The unextended vector should be 64 bits so that it can
6756 /// be used as an operand to a VMULL instruction. If the original vector size
6757 /// before extension is less than 64 bits we add a an extension to resize
6758 /// the vector to 64 bits.
6759 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
6760   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
6761     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
6762                                         N->getOperand(0)->getValueType(0),
6763                                         N->getValueType(0),
6764                                         N->getOpcode());
6765 
6766   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
6767     return SkipLoadExtensionForVMULL(LD, DAG);
6768 
6769   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
6770   // have been legalized as a BITCAST from v4i32.
6771   if (N->getOpcode() == ISD::BITCAST) {
6772     SDNode *BVN = N->getOperand(0).getNode();
6773     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
6774            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
6775     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6776     return DAG.getBuildVector(
6777         MVT::v2i32, SDLoc(N),
6778         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
6779   }
6780   // Construct a new BUILD_VECTOR with elements truncated to half the size.
6781   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
6782   EVT VT = N->getValueType(0);
6783   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
6784   unsigned NumElts = VT.getVectorNumElements();
6785   MVT TruncVT = MVT::getIntegerVT(EltSize);
6786   SmallVector<SDValue, 8> Ops;
6787   SDLoc dl(N);
6788   for (unsigned i = 0; i != NumElts; ++i) {
6789     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
6790     const APInt &CInt = C->getAPIntValue();
6791     // Element types smaller than 32 bits are not legal, so use i32 elements.
6792     // The values are implicitly truncated so sext vs. zext doesn't matter.
6793     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
6794   }
6795   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
6796 }
6797 
6798 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
6799   unsigned Opcode = N->getOpcode();
6800   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6801     SDNode *N0 = N->getOperand(0).getNode();
6802     SDNode *N1 = N->getOperand(1).getNode();
6803     return N0->hasOneUse() && N1->hasOneUse() &&
6804       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
6805   }
6806   return false;
6807 }
6808 
6809 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
6810   unsigned Opcode = N->getOpcode();
6811   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6812     SDNode *N0 = N->getOperand(0).getNode();
6813     SDNode *N1 = N->getOperand(1).getNode();
6814     return N0->hasOneUse() && N1->hasOneUse() &&
6815       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
6816   }
6817   return false;
6818 }
6819 
6820 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
6821   // Multiplications are only custom-lowered for 128-bit vectors so that
6822   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
6823   EVT VT = Op.getValueType();
6824   assert(VT.is128BitVector() && VT.isInteger() &&
6825          "unexpected type for custom-lowering ISD::MUL");
6826   SDNode *N0 = Op.getOperand(0).getNode();
6827   SDNode *N1 = Op.getOperand(1).getNode();
6828   unsigned NewOpc = 0;
6829   bool isMLA = false;
6830   bool isN0SExt = isSignExtended(N0, DAG);
6831   bool isN1SExt = isSignExtended(N1, DAG);
6832   if (isN0SExt && isN1SExt)
6833     NewOpc = ARMISD::VMULLs;
6834   else {
6835     bool isN0ZExt = isZeroExtended(N0, DAG);
6836     bool isN1ZExt = isZeroExtended(N1, DAG);
6837     if (isN0ZExt && isN1ZExt)
6838       NewOpc = ARMISD::VMULLu;
6839     else if (isN1SExt || isN1ZExt) {
6840       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
6841       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
6842       if (isN1SExt && isAddSubSExt(N0, DAG)) {
6843         NewOpc = ARMISD::VMULLs;
6844         isMLA = true;
6845       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
6846         NewOpc = ARMISD::VMULLu;
6847         isMLA = true;
6848       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
6849         std::swap(N0, N1);
6850         NewOpc = ARMISD::VMULLu;
6851         isMLA = true;
6852       }
6853     }
6854 
6855     if (!NewOpc) {
6856       if (VT == MVT::v2i64)
6857         // Fall through to expand this.  It is not legal.
6858         return SDValue();
6859       else
6860         // Other vector multiplications are legal.
6861         return Op;
6862     }
6863   }
6864 
6865   // Legalize to a VMULL instruction.
6866   SDLoc DL(Op);
6867   SDValue Op0;
6868   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
6869   if (!isMLA) {
6870     Op0 = SkipExtensionForVMULL(N0, DAG);
6871     assert(Op0.getValueType().is64BitVector() &&
6872            Op1.getValueType().is64BitVector() &&
6873            "unexpected types for extended operands to VMULL");
6874     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
6875   }
6876 
6877   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
6878   // isel lowering to take advantage of no-stall back to back vmul + vmla.
6879   //   vmull q0, d4, d6
6880   //   vmlal q0, d5, d6
6881   // is faster than
6882   //   vaddl q0, d4, d5
6883   //   vmovl q1, d6
6884   //   vmul  q0, q0, q1
6885   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
6886   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
6887   EVT Op1VT = Op1.getValueType();
6888   return DAG.getNode(N0->getOpcode(), DL, VT,
6889                      DAG.getNode(NewOpc, DL, VT,
6890                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
6891                      DAG.getNode(NewOpc, DL, VT,
6892                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
6893 }
6894 
6895 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
6896                               SelectionDAG &DAG) {
6897   // TODO: Should this propagate fast-math-flags?
6898 
6899   // Convert to float
6900   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
6901   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
6902   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
6903   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
6904   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
6905   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
6906   // Get reciprocal estimate.
6907   // float4 recip = vrecpeq_f32(yf);
6908   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6909                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6910                    Y);
6911   // Because char has a smaller range than uchar, we can actually get away
6912   // without any newton steps.  This requires that we use a weird bias
6913   // of 0xb000, however (again, this has been exhaustively tested).
6914   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
6915   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
6916   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
6917   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
6918   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
6919   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
6920   // Convert back to short.
6921   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
6922   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
6923   return X;
6924 }
6925 
6926 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
6927                                SelectionDAG &DAG) {
6928   // TODO: Should this propagate fast-math-flags?
6929 
6930   SDValue N2;
6931   // Convert to float.
6932   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
6933   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
6934   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
6935   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
6936   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6937   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6938 
6939   // Use reciprocal estimate and one refinement step.
6940   // float4 recip = vrecpeq_f32(yf);
6941   // recip *= vrecpsq_f32(yf, recip);
6942   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6943                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6944                    N1);
6945   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6946                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6947                    N1, N2);
6948   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6949   // Because short has a smaller range than ushort, we can actually get away
6950   // with only a single newton step.  This requires that we use a weird bias
6951   // of 89, however (again, this has been exhaustively tested).
6952   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
6953   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6954   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6955   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
6956   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6957   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6958   // Convert back to integer and return.
6959   // return vmovn_s32(vcvt_s32_f32(result));
6960   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6961   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6962   return N0;
6963 }
6964 
6965 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
6966   EVT VT = Op.getValueType();
6967   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6968          "unexpected type for custom-lowering ISD::SDIV");
6969 
6970   SDLoc dl(Op);
6971   SDValue N0 = Op.getOperand(0);
6972   SDValue N1 = Op.getOperand(1);
6973   SDValue N2, N3;
6974 
6975   if (VT == MVT::v8i8) {
6976     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
6977     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
6978 
6979     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6980                      DAG.getIntPtrConstant(4, dl));
6981     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6982                      DAG.getIntPtrConstant(4, dl));
6983     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6984                      DAG.getIntPtrConstant(0, dl));
6985     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6986                      DAG.getIntPtrConstant(0, dl));
6987 
6988     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
6989     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
6990 
6991     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6992     N0 = LowerCONCAT_VECTORS(N0, DAG);
6993 
6994     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
6995     return N0;
6996   }
6997   return LowerSDIV_v4i16(N0, N1, dl, DAG);
6998 }
6999 
7000 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7001   // TODO: Should this propagate fast-math-flags?
7002   EVT VT = Op.getValueType();
7003   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7004          "unexpected type for custom-lowering ISD::UDIV");
7005 
7006   SDLoc dl(Op);
7007   SDValue N0 = Op.getOperand(0);
7008   SDValue N1 = Op.getOperand(1);
7009   SDValue N2, N3;
7010 
7011   if (VT == MVT::v8i8) {
7012     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7013     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7014 
7015     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7016                      DAG.getIntPtrConstant(4, dl));
7017     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7018                      DAG.getIntPtrConstant(4, dl));
7019     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7020                      DAG.getIntPtrConstant(0, dl));
7021     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7022                      DAG.getIntPtrConstant(0, dl));
7023 
7024     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7025     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7026 
7027     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7028     N0 = LowerCONCAT_VECTORS(N0, DAG);
7029 
7030     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7031                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7032                                      MVT::i32),
7033                      N0);
7034     return N0;
7035   }
7036 
7037   // v4i16 sdiv ... Convert to float.
7038   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7039   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7040   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7041   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7042   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7043   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7044 
7045   // Use reciprocal estimate and two refinement steps.
7046   // float4 recip = vrecpeq_f32(yf);
7047   // recip *= vrecpsq_f32(yf, recip);
7048   // recip *= vrecpsq_f32(yf, recip);
7049   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7050                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7051                    BN1);
7052   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7053                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7054                    BN1, N2);
7055   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7056   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7057                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7058                    BN1, N2);
7059   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7060   // Simply multiplying by the reciprocal estimate can leave us a few ulps
7061   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7062   // and that it will never cause us to return an answer too large).
7063   // float4 result = as_float4(as_int4(xf*recip) + 2);
7064   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7065   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7066   N1 = DAG.getConstant(2, dl, MVT::v4i32);
7067   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7068   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7069   // Convert back to integer and return.
7070   // return vmovn_u32(vcvt_s32_f32(result));
7071   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7072   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7073   return N0;
7074 }
7075 
7076 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
7077   EVT VT = Op.getNode()->getValueType(0);
7078   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7079 
7080   unsigned Opc;
7081   bool ExtraOp = false;
7082   switch (Op.getOpcode()) {
7083   default: llvm_unreachable("Invalid code");
7084   case ISD::ADDC: Opc = ARMISD::ADDC; break;
7085   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
7086   case ISD::SUBC: Opc = ARMISD::SUBC; break;
7087   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
7088   }
7089 
7090   if (!ExtraOp)
7091     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
7092                        Op.getOperand(1));
7093   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
7094                      Op.getOperand(1), Op.getOperand(2));
7095 }
7096 
7097 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7098   assert(Subtarget->isTargetDarwin());
7099 
7100   // For iOS, we want to call an alternative entry point: __sincos_stret,
7101   // return values are passed via sret.
7102   SDLoc dl(Op);
7103   SDValue Arg = Op.getOperand(0);
7104   EVT ArgVT = Arg.getValueType();
7105   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7106   auto PtrVT = getPointerTy(DAG.getDataLayout());
7107 
7108   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7110 
7111   // Pair of floats / doubles used to pass the result.
7112   Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
7113   auto &DL = DAG.getDataLayout();
7114 
7115   ArgListTy Args;
7116   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7117   SDValue SRet;
7118   if (ShouldUseSRet) {
7119     // Create stack object for sret.
7120     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7121     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7122     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7123     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7124 
7125     ArgListEntry Entry;
7126     Entry.Node = SRet;
7127     Entry.Ty = RetTy->getPointerTo();
7128     Entry.isSExt = false;
7129     Entry.isZExt = false;
7130     Entry.isSRet = true;
7131     Args.push_back(Entry);
7132     RetTy = Type::getVoidTy(*DAG.getContext());
7133   }
7134 
7135   ArgListEntry Entry;
7136   Entry.Node = Arg;
7137   Entry.Ty = ArgTy;
7138   Entry.isSExt = false;
7139   Entry.isZExt = false;
7140   Args.push_back(Entry);
7141 
7142   const char *LibcallName =
7143       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
7144   RTLIB::Libcall LC =
7145       (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
7146   CallingConv::ID CC = getLibcallCallingConv(LC);
7147   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7148 
7149   TargetLowering::CallLoweringInfo CLI(DAG);
7150   CLI.setDebugLoc(dl)
7151       .setChain(DAG.getEntryNode())
7152       .setCallee(CC, RetTy, Callee, std::move(Args))
7153       .setDiscardResult(ShouldUseSRet);
7154   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7155 
7156   if (!ShouldUseSRet)
7157     return CallResult.first;
7158 
7159   SDValue LoadSin =
7160       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
7161 
7162   // Address of cos field.
7163   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
7164                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
7165   SDValue LoadCos =
7166       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
7167 
7168   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
7169   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
7170                      LoadSin.getValue(0), LoadCos.getValue(0));
7171 }
7172 
7173 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
7174                                                   bool Signed,
7175                                                   SDValue &Chain) const {
7176   EVT VT = Op.getValueType();
7177   assert((VT == MVT::i32 || VT == MVT::i64) &&
7178          "unexpected type for custom lowering DIV");
7179   SDLoc dl(Op);
7180 
7181   const auto &DL = DAG.getDataLayout();
7182   const auto &TLI = DAG.getTargetLoweringInfo();
7183 
7184   const char *Name = nullptr;
7185   if (Signed)
7186     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7187   else
7188     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7189 
7190   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7191 
7192   ARMTargetLowering::ArgListTy Args;
7193 
7194   for (auto AI : {1, 0}) {
7195     ArgListEntry Arg;
7196     Arg.Node = Op.getOperand(AI);
7197     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7198     Args.push_back(Arg);
7199   }
7200 
7201   CallLoweringInfo CLI(DAG);
7202   CLI.setDebugLoc(dl)
7203     .setChain(Chain)
7204     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7205                ES, std::move(Args));
7206 
7207   return LowerCallTo(CLI).first;
7208 }
7209 
7210 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7211                                             bool Signed) const {
7212   assert(Op.getValueType() == MVT::i32 &&
7213          "unexpected type for custom lowering DIV");
7214   SDLoc dl(Op);
7215 
7216   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7217                                DAG.getEntryNode(), Op.getOperand(1));
7218 
7219   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7220 }
7221 
7222 void ARMTargetLowering::ExpandDIV_Windows(
7223     SDValue Op, SelectionDAG &DAG, bool Signed,
7224     SmallVectorImpl<SDValue> &Results) const {
7225   const auto &DL = DAG.getDataLayout();
7226   const auto &TLI = DAG.getTargetLoweringInfo();
7227 
7228   assert(Op.getValueType() == MVT::i64 &&
7229          "unexpected type for custom lowering DIV");
7230   SDLoc dl(Op);
7231 
7232   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
7233                            DAG.getConstant(0, dl, MVT::i32));
7234   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
7235                            DAG.getConstant(1, dl, MVT::i32));
7236   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi);
7237 
7238   SDValue DBZCHK =
7239       DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or);
7240 
7241   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7242 
7243   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7244   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7245                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7246   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7247 
7248   Results.push_back(Lower);
7249   Results.push_back(Upper);
7250 }
7251 
7252 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7253   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7254     // Acquire/Release load/store is not legal for targets without a dmb or
7255     // equivalent available.
7256     return SDValue();
7257 
7258   // Monotonic load/store is legal for all targets.
7259   return Op;
7260 }
7261 
7262 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7263                                     SmallVectorImpl<SDValue> &Results,
7264                                     SelectionDAG &DAG,
7265                                     const ARMSubtarget *Subtarget) {
7266   SDLoc DL(N);
7267   // Under Power Management extensions, the cycle-count is:
7268   //    mrc p15, #0, <Rt>, c9, c13, #0
7269   SDValue Ops[] = { N->getOperand(0), // Chain
7270                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7271                     DAG.getConstant(15, DL, MVT::i32),
7272                     DAG.getConstant(0, DL, MVT::i32),
7273                     DAG.getConstant(9, DL, MVT::i32),
7274                     DAG.getConstant(13, DL, MVT::i32),
7275                     DAG.getConstant(0, DL, MVT::i32)
7276   };
7277 
7278   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7279                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
7280   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7281                                 DAG.getConstant(0, DL, MVT::i32)));
7282   Results.push_back(Cycles32.getValue(1));
7283 }
7284 
7285 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7286   SDLoc dl(V.getNode());
7287   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7288   SDValue VHi = DAG.getAnyExtOrTrunc(
7289       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7290       dl, MVT::i32);
7291   SDValue RegClass =
7292       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
7293   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
7294   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
7295   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
7296   return SDValue(
7297       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
7298 }
7299 
7300 static void ReplaceCMP_SWAP_64Results(SDNode *N,
7301                                        SmallVectorImpl<SDValue> & Results,
7302                                        SelectionDAG &DAG) {
7303   assert(N->getValueType(0) == MVT::i64 &&
7304          "AtomicCmpSwap on types less than 64 should be legal");
7305   SDValue Ops[] = {N->getOperand(1),
7306                    createGPRPairNode(DAG, N->getOperand(2)),
7307                    createGPRPairNode(DAG, N->getOperand(3)),
7308                    N->getOperand(0)};
7309   SDNode *CmpSwap = DAG.getMachineNode(
7310       ARM::CMP_SWAP_64, SDLoc(N),
7311       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
7312 
7313   MachineFunction &MF = DAG.getMachineFunction();
7314   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
7315   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
7316   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
7317 
7318   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_0, SDLoc(N), MVT::i32,
7319                                                SDValue(CmpSwap, 0)));
7320   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_1, SDLoc(N), MVT::i32,
7321                                                SDValue(CmpSwap, 0)));
7322   Results.push_back(SDValue(CmpSwap, 2));
7323 }
7324 
7325 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7326   switch (Op.getOpcode()) {
7327   default: llvm_unreachable("Don't know how to custom lower this!");
7328   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
7329   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
7330   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
7331   case ISD::GlobalAddress:
7332     switch (Subtarget->getTargetTriple().getObjectFormat()) {
7333     default: llvm_unreachable("unknown object format");
7334     case Triple::COFF:
7335       return LowerGlobalAddressWindows(Op, DAG);
7336     case Triple::ELF:
7337       return LowerGlobalAddressELF(Op, DAG);
7338     case Triple::MachO:
7339       return LowerGlobalAddressDarwin(Op, DAG);
7340     }
7341   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
7342   case ISD::SELECT:        return LowerSELECT(Op, DAG);
7343   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
7344   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
7345   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
7346   case ISD::VASTART:       return LowerVASTART(Op, DAG);
7347   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
7348   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
7349   case ISD::SINT_TO_FP:
7350   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
7351   case ISD::FP_TO_SINT:
7352   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
7353   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
7354   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
7355   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
7356   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
7357   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
7358   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
7359   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
7360                                                                Subtarget);
7361   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
7362   case ISD::SHL:
7363   case ISD::SRL:
7364   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
7365   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
7366   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
7367   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
7368   case ISD::SRL_PARTS:
7369   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
7370   case ISD::CTTZ:
7371   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
7372   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
7373   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
7374   case ISD::SETCCE:        return LowerSETCCE(Op, DAG);
7375   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
7376   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
7377   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
7378   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
7379   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7380   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
7381   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
7382   case ISD::MUL:           return LowerMUL(Op, DAG);
7383   case ISD::SDIV:
7384     if (Subtarget->isTargetWindows())
7385       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
7386     return LowerSDIV(Op, DAG);
7387   case ISD::UDIV:
7388     if (Subtarget->isTargetWindows())
7389       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
7390     return LowerUDIV(Op, DAG);
7391   case ISD::ADDC:
7392   case ISD::ADDE:
7393   case ISD::SUBC:
7394   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
7395   case ISD::SADDO:
7396   case ISD::UADDO:
7397   case ISD::SSUBO:
7398   case ISD::USUBO:
7399     return LowerXALUO(Op, DAG);
7400   case ISD::ATOMIC_LOAD:
7401   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
7402   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
7403   case ISD::SDIVREM:
7404   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
7405   case ISD::DYNAMIC_STACKALLOC:
7406     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
7407       return LowerDYNAMIC_STACKALLOC(Op, DAG);
7408     llvm_unreachable("Don't know how to custom lower this!");
7409   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
7410   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
7411   case ARMISD::WIN__DBZCHK: return SDValue();
7412   }
7413 }
7414 
7415 /// ReplaceNodeResults - Replace the results of node with an illegal result
7416 /// type with new values built out of custom code.
7417 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
7418                                            SmallVectorImpl<SDValue> &Results,
7419                                            SelectionDAG &DAG) const {
7420   SDValue Res;
7421   switch (N->getOpcode()) {
7422   default:
7423     llvm_unreachable("Don't know how to custom expand this!");
7424   case ISD::READ_REGISTER:
7425     ExpandREAD_REGISTER(N, Results, DAG);
7426     break;
7427   case ISD::BITCAST:
7428     Res = ExpandBITCAST(N, DAG);
7429     break;
7430   case ISD::SRL:
7431   case ISD::SRA:
7432     Res = Expand64BitShift(N, DAG, Subtarget);
7433     break;
7434   case ISD::SREM:
7435   case ISD::UREM:
7436     Res = LowerREM(N, DAG);
7437     break;
7438   case ISD::SDIVREM:
7439   case ISD::UDIVREM:
7440     Res = LowerDivRem(SDValue(N, 0), DAG);
7441     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
7442     Results.push_back(Res.getValue(0));
7443     Results.push_back(Res.getValue(1));
7444     return;
7445   case ISD::READCYCLECOUNTER:
7446     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
7447     return;
7448   case ISD::UDIV:
7449   case ISD::SDIV:
7450     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
7451     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
7452                              Results);
7453   case ISD::ATOMIC_CMP_SWAP:
7454     ReplaceCMP_SWAP_64Results(N, Results, DAG);
7455     return;
7456   }
7457   if (Res.getNode())
7458     Results.push_back(Res);
7459 }
7460 
7461 //===----------------------------------------------------------------------===//
7462 //                           ARM Scheduler Hooks
7463 //===----------------------------------------------------------------------===//
7464 
7465 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
7466 /// registers the function context.
7467 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
7468                                                MachineBasicBlock *MBB,
7469                                                MachineBasicBlock *DispatchBB,
7470                                                int FI) const {
7471   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
7472          "ROPI/RWPI not currently supported with SjLj");
7473   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7474   DebugLoc dl = MI.getDebugLoc();
7475   MachineFunction *MF = MBB->getParent();
7476   MachineRegisterInfo *MRI = &MF->getRegInfo();
7477   MachineConstantPool *MCP = MF->getConstantPool();
7478   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
7479   const Function *F = MF->getFunction();
7480 
7481   bool isThumb = Subtarget->isThumb();
7482   bool isThumb2 = Subtarget->isThumb2();
7483 
7484   unsigned PCLabelId = AFI->createPICLabelUId();
7485   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
7486   ARMConstantPoolValue *CPV =
7487     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
7488   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
7489 
7490   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
7491                                            : &ARM::GPRRegClass;
7492 
7493   // Grab constant pool and fixed stack memory operands.
7494   MachineMemOperand *CPMMO =
7495       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
7496                                MachineMemOperand::MOLoad, 4, 4);
7497 
7498   MachineMemOperand *FIMMOSt =
7499       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
7500                                MachineMemOperand::MOStore, 4, 4);
7501 
7502   // Load the address of the dispatch MBB into the jump buffer.
7503   if (isThumb2) {
7504     // Incoming value: jbuf
7505     //   ldr.n  r5, LCPI1_1
7506     //   orr    r5, r5, #1
7507     //   add    r5, pc
7508     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
7509     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7510     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
7511                    .addConstantPoolIndex(CPI)
7512                    .addMemOperand(CPMMO));
7513     // Set the low bit because of thumb mode.
7514     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7515     AddDefaultCC(
7516       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
7517                      .addReg(NewVReg1, RegState::Kill)
7518                      .addImm(0x01)));
7519     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7520     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
7521       .addReg(NewVReg2, RegState::Kill)
7522       .addImm(PCLabelId);
7523     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
7524                    .addReg(NewVReg3, RegState::Kill)
7525                    .addFrameIndex(FI)
7526                    .addImm(36)  // &jbuf[1] :: pc
7527                    .addMemOperand(FIMMOSt));
7528   } else if (isThumb) {
7529     // Incoming value: jbuf
7530     //   ldr.n  r1, LCPI1_4
7531     //   add    r1, pc
7532     //   mov    r2, #1
7533     //   orrs   r1, r2
7534     //   add    r2, $jbuf, #+4 ; &jbuf[1]
7535     //   str    r1, [r2]
7536     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7537     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
7538                    .addConstantPoolIndex(CPI)
7539                    .addMemOperand(CPMMO));
7540     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7541     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
7542       .addReg(NewVReg1, RegState::Kill)
7543       .addImm(PCLabelId);
7544     // Set the low bit because of thumb mode.
7545     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7546     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
7547                    .addReg(ARM::CPSR, RegState::Define)
7548                    .addImm(1));
7549     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7550     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
7551                    .addReg(ARM::CPSR, RegState::Define)
7552                    .addReg(NewVReg2, RegState::Kill)
7553                    .addReg(NewVReg3, RegState::Kill));
7554     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7555     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
7556             .addFrameIndex(FI)
7557             .addImm(36); // &jbuf[1] :: pc
7558     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
7559                    .addReg(NewVReg4, RegState::Kill)
7560                    .addReg(NewVReg5, RegState::Kill)
7561                    .addImm(0)
7562                    .addMemOperand(FIMMOSt));
7563   } else {
7564     // Incoming value: jbuf
7565     //   ldr  r1, LCPI1_1
7566     //   add  r1, pc, r1
7567     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
7568     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7569     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
7570                    .addConstantPoolIndex(CPI)
7571                    .addImm(0)
7572                    .addMemOperand(CPMMO));
7573     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7574     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
7575                    .addReg(NewVReg1, RegState::Kill)
7576                    .addImm(PCLabelId));
7577     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
7578                    .addReg(NewVReg2, RegState::Kill)
7579                    .addFrameIndex(FI)
7580                    .addImm(36)  // &jbuf[1] :: pc
7581                    .addMemOperand(FIMMOSt));
7582   }
7583 }
7584 
7585 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
7586                                               MachineBasicBlock *MBB) const {
7587   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7588   DebugLoc dl = MI.getDebugLoc();
7589   MachineFunction *MF = MBB->getParent();
7590   MachineRegisterInfo *MRI = &MF->getRegInfo();
7591   MachineFrameInfo &MFI = MF->getFrameInfo();
7592   int FI = MFI.getFunctionContextIndex();
7593 
7594   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
7595                                                         : &ARM::GPRnopcRegClass;
7596 
7597   // Get a mapping of the call site numbers to all of the landing pads they're
7598   // associated with.
7599   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
7600   unsigned MaxCSNum = 0;
7601   MachineModuleInfo &MMI = MF->getMMI();
7602   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
7603        ++BB) {
7604     if (!BB->isEHPad()) continue;
7605 
7606     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
7607     // pad.
7608     for (MachineBasicBlock::iterator
7609            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
7610       if (!II->isEHLabel()) continue;
7611 
7612       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
7613       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
7614 
7615       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
7616       for (SmallVectorImpl<unsigned>::iterator
7617              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
7618            CSI != CSE; ++CSI) {
7619         CallSiteNumToLPad[*CSI].push_back(&*BB);
7620         MaxCSNum = std::max(MaxCSNum, *CSI);
7621       }
7622       break;
7623     }
7624   }
7625 
7626   // Get an ordered list of the machine basic blocks for the jump table.
7627   std::vector<MachineBasicBlock*> LPadList;
7628   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
7629   LPadList.reserve(CallSiteNumToLPad.size());
7630   for (unsigned I = 1; I <= MaxCSNum; ++I) {
7631     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
7632     for (SmallVectorImpl<MachineBasicBlock*>::iterator
7633            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
7634       LPadList.push_back(*II);
7635       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
7636     }
7637   }
7638 
7639   assert(!LPadList.empty() &&
7640          "No landing pad destinations for the dispatch jump table!");
7641 
7642   // Create the jump table and associated information.
7643   MachineJumpTableInfo *JTI =
7644     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
7645   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
7646 
7647   // Create the MBBs for the dispatch code.
7648 
7649   // Shove the dispatch's address into the return slot in the function context.
7650   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
7651   DispatchBB->setIsEHPad();
7652 
7653   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
7654   unsigned trap_opcode;
7655   if (Subtarget->isThumb())
7656     trap_opcode = ARM::tTRAP;
7657   else
7658     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
7659 
7660   BuildMI(TrapBB, dl, TII->get(trap_opcode));
7661   DispatchBB->addSuccessor(TrapBB);
7662 
7663   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
7664   DispatchBB->addSuccessor(DispContBB);
7665 
7666   // Insert and MBBs.
7667   MF->insert(MF->end(), DispatchBB);
7668   MF->insert(MF->end(), DispContBB);
7669   MF->insert(MF->end(), TrapBB);
7670 
7671   // Insert code into the entry block that creates and registers the function
7672   // context.
7673   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
7674 
7675   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
7676       MachinePointerInfo::getFixedStack(*MF, FI),
7677       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
7678 
7679   MachineInstrBuilder MIB;
7680   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
7681 
7682   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
7683   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
7684 
7685   // Add a register mask with no preserved registers.  This results in all
7686   // registers being marked as clobbered.
7687   MIB.addRegMask(RI.getNoPreservedMask());
7688 
7689   bool IsPositionIndependent = isPositionIndependent();
7690   unsigned NumLPads = LPadList.size();
7691   if (Subtarget->isThumb2()) {
7692     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7693     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
7694                    .addFrameIndex(FI)
7695                    .addImm(4)
7696                    .addMemOperand(FIMMOLd));
7697 
7698     if (NumLPads < 256) {
7699       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
7700                      .addReg(NewVReg1)
7701                      .addImm(LPadList.size()));
7702     } else {
7703       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7704       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
7705                      .addImm(NumLPads & 0xFFFF));
7706 
7707       unsigned VReg2 = VReg1;
7708       if ((NumLPads & 0xFFFF0000) != 0) {
7709         VReg2 = MRI->createVirtualRegister(TRC);
7710         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
7711                        .addReg(VReg1)
7712                        .addImm(NumLPads >> 16));
7713       }
7714 
7715       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
7716                      .addReg(NewVReg1)
7717                      .addReg(VReg2));
7718     }
7719 
7720     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
7721       .addMBB(TrapBB)
7722       .addImm(ARMCC::HI)
7723       .addReg(ARM::CPSR);
7724 
7725     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7726     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
7727                    .addJumpTableIndex(MJTI));
7728 
7729     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7730     AddDefaultCC(
7731       AddDefaultPred(
7732         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
7733         .addReg(NewVReg3, RegState::Kill)
7734         .addReg(NewVReg1)
7735         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
7736 
7737     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
7738       .addReg(NewVReg4, RegState::Kill)
7739       .addReg(NewVReg1)
7740       .addJumpTableIndex(MJTI);
7741   } else if (Subtarget->isThumb()) {
7742     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7743     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
7744                    .addFrameIndex(FI)
7745                    .addImm(1)
7746                    .addMemOperand(FIMMOLd));
7747 
7748     if (NumLPads < 256) {
7749       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
7750                      .addReg(NewVReg1)
7751                      .addImm(NumLPads));
7752     } else {
7753       MachineConstantPool *ConstantPool = MF->getConstantPool();
7754       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7755       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7756 
7757       // MachineConstantPool wants an explicit alignment.
7758       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7759       if (Align == 0)
7760         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7761       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7762 
7763       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7764       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
7765                      .addReg(VReg1, RegState::Define)
7766                      .addConstantPoolIndex(Idx));
7767       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
7768                      .addReg(NewVReg1)
7769                      .addReg(VReg1));
7770     }
7771 
7772     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
7773       .addMBB(TrapBB)
7774       .addImm(ARMCC::HI)
7775       .addReg(ARM::CPSR);
7776 
7777     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7778     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
7779                    .addReg(ARM::CPSR, RegState::Define)
7780                    .addReg(NewVReg1)
7781                    .addImm(2));
7782 
7783     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7784     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
7785                    .addJumpTableIndex(MJTI));
7786 
7787     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7788     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
7789                    .addReg(ARM::CPSR, RegState::Define)
7790                    .addReg(NewVReg2, RegState::Kill)
7791                    .addReg(NewVReg3));
7792 
7793     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
7794         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
7795 
7796     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7797     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
7798                    .addReg(NewVReg4, RegState::Kill)
7799                    .addImm(0)
7800                    .addMemOperand(JTMMOLd));
7801 
7802     unsigned NewVReg6 = NewVReg5;
7803     if (IsPositionIndependent) {
7804       NewVReg6 = MRI->createVirtualRegister(TRC);
7805       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
7806                      .addReg(ARM::CPSR, RegState::Define)
7807                      .addReg(NewVReg5, RegState::Kill)
7808                      .addReg(NewVReg3));
7809     }
7810 
7811     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
7812       .addReg(NewVReg6, RegState::Kill)
7813       .addJumpTableIndex(MJTI);
7814   } else {
7815     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7816     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
7817                    .addFrameIndex(FI)
7818                    .addImm(4)
7819                    .addMemOperand(FIMMOLd));
7820 
7821     if (NumLPads < 256) {
7822       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
7823                      .addReg(NewVReg1)
7824                      .addImm(NumLPads));
7825     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
7826       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7827       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
7828                      .addImm(NumLPads & 0xFFFF));
7829 
7830       unsigned VReg2 = VReg1;
7831       if ((NumLPads & 0xFFFF0000) != 0) {
7832         VReg2 = MRI->createVirtualRegister(TRC);
7833         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
7834                        .addReg(VReg1)
7835                        .addImm(NumLPads >> 16));
7836       }
7837 
7838       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7839                      .addReg(NewVReg1)
7840                      .addReg(VReg2));
7841     } else {
7842       MachineConstantPool *ConstantPool = MF->getConstantPool();
7843       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7844       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7845 
7846       // MachineConstantPool wants an explicit alignment.
7847       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7848       if (Align == 0)
7849         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7850       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7851 
7852       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7853       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
7854                      .addReg(VReg1, RegState::Define)
7855                      .addConstantPoolIndex(Idx)
7856                      .addImm(0));
7857       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7858                      .addReg(NewVReg1)
7859                      .addReg(VReg1, RegState::Kill));
7860     }
7861 
7862     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
7863       .addMBB(TrapBB)
7864       .addImm(ARMCC::HI)
7865       .addReg(ARM::CPSR);
7866 
7867     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7868     AddDefaultCC(
7869       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
7870                      .addReg(NewVReg1)
7871                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
7872     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7873     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
7874                    .addJumpTableIndex(MJTI));
7875 
7876     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
7877         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
7878     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7879     AddDefaultPred(
7880       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
7881       .addReg(NewVReg3, RegState::Kill)
7882       .addReg(NewVReg4)
7883       .addImm(0)
7884       .addMemOperand(JTMMOLd));
7885 
7886     if (IsPositionIndependent) {
7887       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
7888         .addReg(NewVReg5, RegState::Kill)
7889         .addReg(NewVReg4)
7890         .addJumpTableIndex(MJTI);
7891     } else {
7892       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
7893         .addReg(NewVReg5, RegState::Kill)
7894         .addJumpTableIndex(MJTI);
7895     }
7896   }
7897 
7898   // Add the jump table entries as successors to the MBB.
7899   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
7900   for (std::vector<MachineBasicBlock*>::iterator
7901          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
7902     MachineBasicBlock *CurMBB = *I;
7903     if (SeenMBBs.insert(CurMBB).second)
7904       DispContBB->addSuccessor(CurMBB);
7905   }
7906 
7907   // N.B. the order the invoke BBs are processed in doesn't matter here.
7908   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
7909   SmallVector<MachineBasicBlock*, 64> MBBLPads;
7910   for (MachineBasicBlock *BB : InvokeBBs) {
7911 
7912     // Remove the landing pad successor from the invoke block and replace it
7913     // with the new dispatch block.
7914     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
7915                                                   BB->succ_end());
7916     while (!Successors.empty()) {
7917       MachineBasicBlock *SMBB = Successors.pop_back_val();
7918       if (SMBB->isEHPad()) {
7919         BB->removeSuccessor(SMBB);
7920         MBBLPads.push_back(SMBB);
7921       }
7922     }
7923 
7924     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
7925     BB->normalizeSuccProbs();
7926 
7927     // Find the invoke call and mark all of the callee-saved registers as
7928     // 'implicit defined' so that they're spilled. This prevents code from
7929     // moving instructions to before the EH block, where they will never be
7930     // executed.
7931     for (MachineBasicBlock::reverse_iterator
7932            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
7933       if (!II->isCall()) continue;
7934 
7935       DenseMap<unsigned, bool> DefRegs;
7936       for (MachineInstr::mop_iterator
7937              OI = II->operands_begin(), OE = II->operands_end();
7938            OI != OE; ++OI) {
7939         if (!OI->isReg()) continue;
7940         DefRegs[OI->getReg()] = true;
7941       }
7942 
7943       MachineInstrBuilder MIB(*MF, &*II);
7944 
7945       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
7946         unsigned Reg = SavedRegs[i];
7947         if (Subtarget->isThumb2() &&
7948             !ARM::tGPRRegClass.contains(Reg) &&
7949             !ARM::hGPRRegClass.contains(Reg))
7950           continue;
7951         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
7952           continue;
7953         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
7954           continue;
7955         if (!DefRegs[Reg])
7956           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
7957       }
7958 
7959       break;
7960     }
7961   }
7962 
7963   // Mark all former landing pads as non-landing pads. The dispatch is the only
7964   // landing pad now.
7965   for (SmallVectorImpl<MachineBasicBlock*>::iterator
7966          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
7967     (*I)->setIsEHPad(false);
7968 
7969   // The instruction is gone now.
7970   MI.eraseFromParent();
7971 }
7972 
7973 static
7974 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
7975   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
7976        E = MBB->succ_end(); I != E; ++I)
7977     if (*I != Succ)
7978       return *I;
7979   llvm_unreachable("Expecting a BB with two successors!");
7980 }
7981 
7982 /// Return the load opcode for a given load size. If load size >= 8,
7983 /// neon opcode will be returned.
7984 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
7985   if (LdSize >= 8)
7986     return LdSize == 16 ? ARM::VLD1q32wb_fixed
7987                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
7988   if (IsThumb1)
7989     return LdSize == 4 ? ARM::tLDRi
7990                        : LdSize == 2 ? ARM::tLDRHi
7991                                      : LdSize == 1 ? ARM::tLDRBi : 0;
7992   if (IsThumb2)
7993     return LdSize == 4 ? ARM::t2LDR_POST
7994                        : LdSize == 2 ? ARM::t2LDRH_POST
7995                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
7996   return LdSize == 4 ? ARM::LDR_POST_IMM
7997                      : LdSize == 2 ? ARM::LDRH_POST
7998                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
7999 }
8000 
8001 /// Return the store opcode for a given store size. If store size >= 8,
8002 /// neon opcode will be returned.
8003 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
8004   if (StSize >= 8)
8005     return StSize == 16 ? ARM::VST1q32wb_fixed
8006                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
8007   if (IsThumb1)
8008     return StSize == 4 ? ARM::tSTRi
8009                        : StSize == 2 ? ARM::tSTRHi
8010                                      : StSize == 1 ? ARM::tSTRBi : 0;
8011   if (IsThumb2)
8012     return StSize == 4 ? ARM::t2STR_POST
8013                        : StSize == 2 ? ARM::t2STRH_POST
8014                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
8015   return StSize == 4 ? ARM::STR_POST_IMM
8016                      : StSize == 2 ? ARM::STRH_POST
8017                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
8018 }
8019 
8020 /// Emit a post-increment load operation with given size. The instructions
8021 /// will be added to BB at Pos.
8022 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8023                        const TargetInstrInfo *TII, const DebugLoc &dl,
8024                        unsigned LdSize, unsigned Data, unsigned AddrIn,
8025                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8026   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
8027   assert(LdOpc != 0 && "Should have a load opcode");
8028   if (LdSize >= 8) {
8029     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8030                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
8031                        .addImm(0));
8032   } else if (IsThumb1) {
8033     // load + update AddrIn
8034     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8035                        .addReg(AddrIn).addImm(0));
8036     MachineInstrBuilder MIB =
8037         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
8038     MIB = AddDefaultT1CC(MIB);
8039     MIB.addReg(AddrIn).addImm(LdSize);
8040     AddDefaultPred(MIB);
8041   } else if (IsThumb2) {
8042     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8043                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
8044                        .addImm(LdSize));
8045   } else { // arm
8046     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8047                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
8048                        .addReg(0).addImm(LdSize));
8049   }
8050 }
8051 
8052 /// Emit a post-increment store operation with given size. The instructions
8053 /// will be added to BB at Pos.
8054 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8055                        const TargetInstrInfo *TII, const DebugLoc &dl,
8056                        unsigned StSize, unsigned Data, unsigned AddrIn,
8057                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8058   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
8059   assert(StOpc != 0 && "Should have a store opcode");
8060   if (StSize >= 8) {
8061     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8062                        .addReg(AddrIn).addImm(0).addReg(Data));
8063   } else if (IsThumb1) {
8064     // store + update AddrIn
8065     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
8066                        .addReg(AddrIn).addImm(0));
8067     MachineInstrBuilder MIB =
8068         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
8069     MIB = AddDefaultT1CC(MIB);
8070     MIB.addReg(AddrIn).addImm(StSize);
8071     AddDefaultPred(MIB);
8072   } else if (IsThumb2) {
8073     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8074                        .addReg(Data).addReg(AddrIn).addImm(StSize));
8075   } else { // arm
8076     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8077                        .addReg(Data).addReg(AddrIn).addReg(0)
8078                        .addImm(StSize));
8079   }
8080 }
8081 
8082 MachineBasicBlock *
8083 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
8084                                    MachineBasicBlock *BB) const {
8085   // This pseudo instruction has 3 operands: dst, src, size
8086   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
8087   // Otherwise, we will generate unrolled scalar copies.
8088   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8089   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8090   MachineFunction::iterator It = ++BB->getIterator();
8091 
8092   unsigned dest = MI.getOperand(0).getReg();
8093   unsigned src = MI.getOperand(1).getReg();
8094   unsigned SizeVal = MI.getOperand(2).getImm();
8095   unsigned Align = MI.getOperand(3).getImm();
8096   DebugLoc dl = MI.getDebugLoc();
8097 
8098   MachineFunction *MF = BB->getParent();
8099   MachineRegisterInfo &MRI = MF->getRegInfo();
8100   unsigned UnitSize = 0;
8101   const TargetRegisterClass *TRC = nullptr;
8102   const TargetRegisterClass *VecTRC = nullptr;
8103 
8104   bool IsThumb1 = Subtarget->isThumb1Only();
8105   bool IsThumb2 = Subtarget->isThumb2();
8106   bool IsThumb = Subtarget->isThumb();
8107 
8108   if (Align & 1) {
8109     UnitSize = 1;
8110   } else if (Align & 2) {
8111     UnitSize = 2;
8112   } else {
8113     // Check whether we can use NEON instructions.
8114     if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
8115         Subtarget->hasNEON()) {
8116       if ((Align % 16 == 0) && SizeVal >= 16)
8117         UnitSize = 16;
8118       else if ((Align % 8 == 0) && SizeVal >= 8)
8119         UnitSize = 8;
8120     }
8121     // Can't use NEON instructions.
8122     if (UnitSize == 0)
8123       UnitSize = 4;
8124   }
8125 
8126   // Select the correct opcode and register class for unit size load/store
8127   bool IsNeon = UnitSize >= 8;
8128   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
8129   if (IsNeon)
8130     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
8131                             : UnitSize == 8 ? &ARM::DPRRegClass
8132                                             : nullptr;
8133 
8134   unsigned BytesLeft = SizeVal % UnitSize;
8135   unsigned LoopSize = SizeVal - BytesLeft;
8136 
8137   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
8138     // Use LDR and STR to copy.
8139     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
8140     // [destOut] = STR_POST(scratch, destIn, UnitSize)
8141     unsigned srcIn = src;
8142     unsigned destIn = dest;
8143     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
8144       unsigned srcOut = MRI.createVirtualRegister(TRC);
8145       unsigned destOut = MRI.createVirtualRegister(TRC);
8146       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8147       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
8148                  IsThumb1, IsThumb2);
8149       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
8150                  IsThumb1, IsThumb2);
8151       srcIn = srcOut;
8152       destIn = destOut;
8153     }
8154 
8155     // Handle the leftover bytes with LDRB and STRB.
8156     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
8157     // [destOut] = STRB_POST(scratch, destIn, 1)
8158     for (unsigned i = 0; i < BytesLeft; i++) {
8159       unsigned srcOut = MRI.createVirtualRegister(TRC);
8160       unsigned destOut = MRI.createVirtualRegister(TRC);
8161       unsigned scratch = MRI.createVirtualRegister(TRC);
8162       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
8163                  IsThumb1, IsThumb2);
8164       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
8165                  IsThumb1, IsThumb2);
8166       srcIn = srcOut;
8167       destIn = destOut;
8168     }
8169     MI.eraseFromParent(); // The instruction is gone now.
8170     return BB;
8171   }
8172 
8173   // Expand the pseudo op to a loop.
8174   // thisMBB:
8175   //   ...
8176   //   movw varEnd, # --> with thumb2
8177   //   movt varEnd, #
8178   //   ldrcp varEnd, idx --> without thumb2
8179   //   fallthrough --> loopMBB
8180   // loopMBB:
8181   //   PHI varPhi, varEnd, varLoop
8182   //   PHI srcPhi, src, srcLoop
8183   //   PHI destPhi, dst, destLoop
8184   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
8185   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
8186   //   subs varLoop, varPhi, #UnitSize
8187   //   bne loopMBB
8188   //   fallthrough --> exitMBB
8189   // exitMBB:
8190   //   epilogue to handle left-over bytes
8191   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
8192   //   [destOut] = STRB_POST(scratch, destLoop, 1)
8193   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8194   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8195   MF->insert(It, loopMBB);
8196   MF->insert(It, exitMBB);
8197 
8198   // Transfer the remainder of BB and its successor edges to exitMBB.
8199   exitMBB->splice(exitMBB->begin(), BB,
8200                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8201   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8202 
8203   // Load an immediate to varEnd.
8204   unsigned varEnd = MRI.createVirtualRegister(TRC);
8205   if (Subtarget->useMovt(*MF)) {
8206     unsigned Vtmp = varEnd;
8207     if ((LoopSize & 0xFFFF0000) != 0)
8208       Vtmp = MRI.createVirtualRegister(TRC);
8209     AddDefaultPred(BuildMI(BB, dl,
8210                            TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16),
8211                            Vtmp).addImm(LoopSize & 0xFFFF));
8212 
8213     if ((LoopSize & 0xFFFF0000) != 0)
8214       AddDefaultPred(BuildMI(BB, dl,
8215                              TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16),
8216                              varEnd)
8217                          .addReg(Vtmp)
8218                          .addImm(LoopSize >> 16));
8219   } else {
8220     MachineConstantPool *ConstantPool = MF->getConstantPool();
8221     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
8222     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
8223 
8224     // MachineConstantPool wants an explicit alignment.
8225     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8226     if (Align == 0)
8227       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8228     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8229 
8230     if (IsThumb)
8231       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
8232           varEnd, RegState::Define).addConstantPoolIndex(Idx));
8233     else
8234       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
8235           varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
8236   }
8237   BB->addSuccessor(loopMBB);
8238 
8239   // Generate the loop body:
8240   //   varPhi = PHI(varLoop, varEnd)
8241   //   srcPhi = PHI(srcLoop, src)
8242   //   destPhi = PHI(destLoop, dst)
8243   MachineBasicBlock *entryBB = BB;
8244   BB = loopMBB;
8245   unsigned varLoop = MRI.createVirtualRegister(TRC);
8246   unsigned varPhi = MRI.createVirtualRegister(TRC);
8247   unsigned srcLoop = MRI.createVirtualRegister(TRC);
8248   unsigned srcPhi = MRI.createVirtualRegister(TRC);
8249   unsigned destLoop = MRI.createVirtualRegister(TRC);
8250   unsigned destPhi = MRI.createVirtualRegister(TRC);
8251 
8252   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
8253     .addReg(varLoop).addMBB(loopMBB)
8254     .addReg(varEnd).addMBB(entryBB);
8255   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
8256     .addReg(srcLoop).addMBB(loopMBB)
8257     .addReg(src).addMBB(entryBB);
8258   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
8259     .addReg(destLoop).addMBB(loopMBB)
8260     .addReg(dest).addMBB(entryBB);
8261 
8262   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
8263   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
8264   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8265   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
8266              IsThumb1, IsThumb2);
8267   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
8268              IsThumb1, IsThumb2);
8269 
8270   // Decrement loop variable by UnitSize.
8271   if (IsThumb1) {
8272     MachineInstrBuilder MIB =
8273         BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
8274     MIB = AddDefaultT1CC(MIB);
8275     MIB.addReg(varPhi).addImm(UnitSize);
8276     AddDefaultPred(MIB);
8277   } else {
8278     MachineInstrBuilder MIB =
8279         BuildMI(*BB, BB->end(), dl,
8280                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
8281     AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
8282     MIB->getOperand(5).setReg(ARM::CPSR);
8283     MIB->getOperand(5).setIsDef(true);
8284   }
8285   BuildMI(*BB, BB->end(), dl,
8286           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
8287       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
8288 
8289   // loopMBB can loop back to loopMBB or fall through to exitMBB.
8290   BB->addSuccessor(loopMBB);
8291   BB->addSuccessor(exitMBB);
8292 
8293   // Add epilogue to handle BytesLeft.
8294   BB = exitMBB;
8295   auto StartOfExit = exitMBB->begin();
8296 
8297   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
8298   //   [destOut] = STRB_POST(scratch, destLoop, 1)
8299   unsigned srcIn = srcLoop;
8300   unsigned destIn = destLoop;
8301   for (unsigned i = 0; i < BytesLeft; i++) {
8302     unsigned srcOut = MRI.createVirtualRegister(TRC);
8303     unsigned destOut = MRI.createVirtualRegister(TRC);
8304     unsigned scratch = MRI.createVirtualRegister(TRC);
8305     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
8306                IsThumb1, IsThumb2);
8307     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
8308                IsThumb1, IsThumb2);
8309     srcIn = srcOut;
8310     destIn = destOut;
8311   }
8312 
8313   MI.eraseFromParent(); // The instruction is gone now.
8314   return BB;
8315 }
8316 
8317 MachineBasicBlock *
8318 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
8319                                        MachineBasicBlock *MBB) const {
8320   const TargetMachine &TM = getTargetMachine();
8321   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
8322   DebugLoc DL = MI.getDebugLoc();
8323 
8324   assert(Subtarget->isTargetWindows() &&
8325          "__chkstk is only supported on Windows");
8326   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
8327 
8328   // __chkstk takes the number of words to allocate on the stack in R4, and
8329   // returns the stack adjustment in number of bytes in R4.  This will not
8330   // clober any other registers (other than the obvious lr).
8331   //
8332   // Although, technically, IP should be considered a register which may be
8333   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
8334   // thumb-2 environment, so there is no interworking required.  As a result, we
8335   // do not expect a veneer to be emitted by the linker, clobbering IP.
8336   //
8337   // Each module receives its own copy of __chkstk, so no import thunk is
8338   // required, again, ensuring that IP is not clobbered.
8339   //
8340   // Finally, although some linkers may theoretically provide a trampoline for
8341   // out of range calls (which is quite common due to a 32M range limitation of
8342   // branches for Thumb), we can generate the long-call version via
8343   // -mcmodel=large, alleviating the need for the trampoline which may clobber
8344   // IP.
8345 
8346   switch (TM.getCodeModel()) {
8347   case CodeModel::Small:
8348   case CodeModel::Medium:
8349   case CodeModel::Default:
8350   case CodeModel::Kernel:
8351     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
8352       .addImm((unsigned)ARMCC::AL).addReg(0)
8353       .addExternalSymbol("__chkstk")
8354       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8355       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8356       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
8357     break;
8358   case CodeModel::Large:
8359   case CodeModel::JITDefault: {
8360     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
8361     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
8362 
8363     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
8364       .addExternalSymbol("__chkstk");
8365     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
8366       .addImm((unsigned)ARMCC::AL).addReg(0)
8367       .addReg(Reg, RegState::Kill)
8368       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8369       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8370       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
8371     break;
8372   }
8373   }
8374 
8375   AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
8376                                       ARM::SP)
8377                          .addReg(ARM::SP, RegState::Kill)
8378                          .addReg(ARM::R4, RegState::Kill)
8379                          .setMIFlags(MachineInstr::FrameSetup)));
8380 
8381   MI.eraseFromParent();
8382   return MBB;
8383 }
8384 
8385 MachineBasicBlock *
8386 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
8387                                        MachineBasicBlock *MBB) const {
8388   DebugLoc DL = MI.getDebugLoc();
8389   MachineFunction *MF = MBB->getParent();
8390   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8391 
8392   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
8393   MF->insert(++MBB->getIterator(), ContBB);
8394   ContBB->splice(ContBB->begin(), MBB,
8395                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8396   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
8397 
8398   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8399   MF->push_back(TrapBB);
8400   BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249);
8401   MBB->addSuccessor(TrapBB);
8402 
8403   BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ))
8404       .addReg(MI.getOperand(0).getReg())
8405       .addMBB(TrapBB);
8406   AddDefaultPred(BuildMI(*MBB, MI, DL, TII->get(ARM::t2B)).addMBB(ContBB));
8407   MBB->addSuccessor(ContBB);
8408 
8409   MI.eraseFromParent();
8410   return ContBB;
8411 }
8412 
8413 MachineBasicBlock *
8414 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8415                                                MachineBasicBlock *BB) const {
8416   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8417   DebugLoc dl = MI.getDebugLoc();
8418   bool isThumb2 = Subtarget->isThumb2();
8419   switch (MI.getOpcode()) {
8420   default: {
8421     MI.dump();
8422     llvm_unreachable("Unexpected instr type to insert");
8423   }
8424 
8425   // Thumb1 post-indexed loads are really just single-register LDMs.
8426   case ARM::tLDR_postidx: {
8427     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
8428       .addOperand(MI.getOperand(1)) // Rn_wb
8429       .addOperand(MI.getOperand(2)) // Rn
8430       .addOperand(MI.getOperand(3)) // PredImm
8431       .addOperand(MI.getOperand(4)) // PredReg
8432       .addOperand(MI.getOperand(0)); // Rt
8433     MI.eraseFromParent();
8434     return BB;
8435   }
8436 
8437   // The Thumb2 pre-indexed stores have the same MI operands, they just
8438   // define them differently in the .td files from the isel patterns, so
8439   // they need pseudos.
8440   case ARM::t2STR_preidx:
8441     MI.setDesc(TII->get(ARM::t2STR_PRE));
8442     return BB;
8443   case ARM::t2STRB_preidx:
8444     MI.setDesc(TII->get(ARM::t2STRB_PRE));
8445     return BB;
8446   case ARM::t2STRH_preidx:
8447     MI.setDesc(TII->get(ARM::t2STRH_PRE));
8448     return BB;
8449 
8450   case ARM::STRi_preidx:
8451   case ARM::STRBi_preidx: {
8452     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
8453                                                          : ARM::STRB_PRE_IMM;
8454     // Decode the offset.
8455     unsigned Offset = MI.getOperand(4).getImm();
8456     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
8457     Offset = ARM_AM::getAM2Offset(Offset);
8458     if (isSub)
8459       Offset = -Offset;
8460 
8461     MachineMemOperand *MMO = *MI.memoperands_begin();
8462     BuildMI(*BB, MI, dl, TII->get(NewOpc))
8463         .addOperand(MI.getOperand(0)) // Rn_wb
8464         .addOperand(MI.getOperand(1)) // Rt
8465         .addOperand(MI.getOperand(2)) // Rn
8466         .addImm(Offset)               // offset (skip GPR==zero_reg)
8467         .addOperand(MI.getOperand(5)) // pred
8468         .addOperand(MI.getOperand(6))
8469         .addMemOperand(MMO);
8470     MI.eraseFromParent();
8471     return BB;
8472   }
8473   case ARM::STRr_preidx:
8474   case ARM::STRBr_preidx:
8475   case ARM::STRH_preidx: {
8476     unsigned NewOpc;
8477     switch (MI.getOpcode()) {
8478     default: llvm_unreachable("unexpected opcode!");
8479     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
8480     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
8481     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
8482     }
8483     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
8484     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
8485       MIB.addOperand(MI.getOperand(i));
8486     MI.eraseFromParent();
8487     return BB;
8488   }
8489 
8490   case ARM::tMOVCCr_pseudo: {
8491     // To "insert" a SELECT_CC instruction, we actually have to insert the
8492     // diamond control-flow pattern.  The incoming instruction knows the
8493     // destination vreg to set, the condition code register to branch on, the
8494     // true/false values to select between, and a branch opcode to use.
8495     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8496     MachineFunction::iterator It = ++BB->getIterator();
8497 
8498     //  thisMBB:
8499     //  ...
8500     //   TrueVal = ...
8501     //   cmpTY ccX, r1, r2
8502     //   bCC copy1MBB
8503     //   fallthrough --> copy0MBB
8504     MachineBasicBlock *thisMBB  = BB;
8505     MachineFunction *F = BB->getParent();
8506     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8507     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
8508     F->insert(It, copy0MBB);
8509     F->insert(It, sinkMBB);
8510 
8511     // Transfer the remainder of BB and its successor edges to sinkMBB.
8512     sinkMBB->splice(sinkMBB->begin(), BB,
8513                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8514     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8515 
8516     BB->addSuccessor(copy0MBB);
8517     BB->addSuccessor(sinkMBB);
8518 
8519     BuildMI(BB, dl, TII->get(ARM::tBcc))
8520         .addMBB(sinkMBB)
8521         .addImm(MI.getOperand(3).getImm())
8522         .addReg(MI.getOperand(4).getReg());
8523 
8524     //  copy0MBB:
8525     //   %FalseValue = ...
8526     //   # fallthrough to sinkMBB
8527     BB = copy0MBB;
8528 
8529     // Update machine-CFG edges
8530     BB->addSuccessor(sinkMBB);
8531 
8532     //  sinkMBB:
8533     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8534     //  ...
8535     BB = sinkMBB;
8536     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
8537         .addReg(MI.getOperand(1).getReg())
8538         .addMBB(copy0MBB)
8539         .addReg(MI.getOperand(2).getReg())
8540         .addMBB(thisMBB);
8541 
8542     MI.eraseFromParent(); // The pseudo instruction is gone now.
8543     return BB;
8544   }
8545 
8546   case ARM::BCCi64:
8547   case ARM::BCCZi64: {
8548     // If there is an unconditional branch to the other successor, remove it.
8549     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
8550 
8551     // Compare both parts that make up the double comparison separately for
8552     // equality.
8553     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
8554 
8555     unsigned LHS1 = MI.getOperand(1).getReg();
8556     unsigned LHS2 = MI.getOperand(2).getReg();
8557     if (RHSisZero) {
8558       AddDefaultPred(BuildMI(BB, dl,
8559                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8560                      .addReg(LHS1).addImm(0));
8561       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8562         .addReg(LHS2).addImm(0)
8563         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8564     } else {
8565       unsigned RHS1 = MI.getOperand(3).getReg();
8566       unsigned RHS2 = MI.getOperand(4).getReg();
8567       AddDefaultPred(BuildMI(BB, dl,
8568                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8569                      .addReg(LHS1).addReg(RHS1));
8570       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8571         .addReg(LHS2).addReg(RHS2)
8572         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8573     }
8574 
8575     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
8576     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
8577     if (MI.getOperand(0).getImm() == ARMCC::NE)
8578       std::swap(destMBB, exitMBB);
8579 
8580     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
8581       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
8582     if (isThumb2)
8583       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
8584     else
8585       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
8586 
8587     MI.eraseFromParent(); // The pseudo instruction is gone now.
8588     return BB;
8589   }
8590 
8591   case ARM::Int_eh_sjlj_setjmp:
8592   case ARM::Int_eh_sjlj_setjmp_nofp:
8593   case ARM::tInt_eh_sjlj_setjmp:
8594   case ARM::t2Int_eh_sjlj_setjmp:
8595   case ARM::t2Int_eh_sjlj_setjmp_nofp:
8596     return BB;
8597 
8598   case ARM::Int_eh_sjlj_setup_dispatch:
8599     EmitSjLjDispatchBlock(MI, BB);
8600     return BB;
8601 
8602   case ARM::ABS:
8603   case ARM::t2ABS: {
8604     // To insert an ABS instruction, we have to insert the
8605     // diamond control-flow pattern.  The incoming instruction knows the
8606     // source vreg to test against 0, the destination vreg to set,
8607     // the condition code register to branch on, the
8608     // true/false values to select between, and a branch opcode to use.
8609     // It transforms
8610     //     V1 = ABS V0
8611     // into
8612     //     V2 = MOVS V0
8613     //     BCC                      (branch to SinkBB if V0 >= 0)
8614     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
8615     //     SinkBB: V1 = PHI(V2, V3)
8616     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8617     MachineFunction::iterator BBI = ++BB->getIterator();
8618     MachineFunction *Fn = BB->getParent();
8619     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
8620     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
8621     Fn->insert(BBI, RSBBB);
8622     Fn->insert(BBI, SinkBB);
8623 
8624     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
8625     unsigned int ABSDstReg = MI.getOperand(0).getReg();
8626     bool ABSSrcKIll = MI.getOperand(1).isKill();
8627     bool isThumb2 = Subtarget->isThumb2();
8628     MachineRegisterInfo &MRI = Fn->getRegInfo();
8629     // In Thumb mode S must not be specified if source register is the SP or
8630     // PC and if destination register is the SP, so restrict register class
8631     unsigned NewRsbDstReg =
8632       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
8633 
8634     // Transfer the remainder of BB and its successor edges to sinkMBB.
8635     SinkBB->splice(SinkBB->begin(), BB,
8636                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8637     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
8638 
8639     BB->addSuccessor(RSBBB);
8640     BB->addSuccessor(SinkBB);
8641 
8642     // fall through to SinkMBB
8643     RSBBB->addSuccessor(SinkBB);
8644 
8645     // insert a cmp at the end of BB
8646     AddDefaultPred(BuildMI(BB, dl,
8647                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8648                    .addReg(ABSSrcReg).addImm(0));
8649 
8650     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
8651     BuildMI(BB, dl,
8652       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
8653       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
8654 
8655     // insert rsbri in RSBBB
8656     // Note: BCC and rsbri will be converted into predicated rsbmi
8657     // by if-conversion pass
8658     BuildMI(*RSBBB, RSBBB->begin(), dl,
8659       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
8660       .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
8661       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
8662 
8663     // insert PHI in SinkBB,
8664     // reuse ABSDstReg to not change uses of ABS instruction
8665     BuildMI(*SinkBB, SinkBB->begin(), dl,
8666       TII->get(ARM::PHI), ABSDstReg)
8667       .addReg(NewRsbDstReg).addMBB(RSBBB)
8668       .addReg(ABSSrcReg).addMBB(BB);
8669 
8670     // remove ABS instruction
8671     MI.eraseFromParent();
8672 
8673     // return last added BB
8674     return SinkBB;
8675   }
8676   case ARM::COPY_STRUCT_BYVAL_I32:
8677     ++NumLoopByVals;
8678     return EmitStructByval(MI, BB);
8679   case ARM::WIN__CHKSTK:
8680     return EmitLowered__chkstk(MI, BB);
8681   case ARM::WIN__DBZCHK:
8682     return EmitLowered__dbzchk(MI, BB);
8683   }
8684 }
8685 
8686 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers
8687 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
8688 /// instead of as a custom inserter because we need the use list from the SDNode.
8689 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
8690                                     MachineInstr &MI, const SDNode *Node) {
8691   bool isThumb1 = Subtarget->isThumb1Only();
8692 
8693   DebugLoc DL = MI.getDebugLoc();
8694   MachineFunction *MF = MI.getParent()->getParent();
8695   MachineRegisterInfo &MRI = MF->getRegInfo();
8696   MachineInstrBuilder MIB(*MF, MI);
8697 
8698   // If the new dst/src is unused mark it as dead.
8699   if (!Node->hasAnyUseOfValue(0)) {
8700     MI.getOperand(0).setIsDead(true);
8701   }
8702   if (!Node->hasAnyUseOfValue(1)) {
8703     MI.getOperand(1).setIsDead(true);
8704   }
8705 
8706   // The MEMCPY both defines and kills the scratch registers.
8707   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
8708     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
8709                                                          : &ARM::GPRRegClass);
8710     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
8711   }
8712 }
8713 
8714 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8715                                                       SDNode *Node) const {
8716   if (MI.getOpcode() == ARM::MEMCPY) {
8717     attachMEMCPYScratchRegs(Subtarget, MI, Node);
8718     return;
8719   }
8720 
8721   const MCInstrDesc *MCID = &MI.getDesc();
8722   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
8723   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
8724   // operand is still set to noreg. If needed, set the optional operand's
8725   // register to CPSR, and remove the redundant implicit def.
8726   //
8727   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
8728 
8729   // Rename pseudo opcodes.
8730   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
8731   if (NewOpc) {
8732     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
8733     MCID = &TII->get(NewOpc);
8734 
8735     assert(MCID->getNumOperands() == MI.getDesc().getNumOperands() + 1 &&
8736            "converted opcode should be the same except for cc_out");
8737 
8738     MI.setDesc(*MCID);
8739 
8740     // Add the optional cc_out operand
8741     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
8742   }
8743   unsigned ccOutIdx = MCID->getNumOperands() - 1;
8744 
8745   // Any ARM instruction that sets the 's' bit should specify an optional
8746   // "cc_out" operand in the last operand position.
8747   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
8748     assert(!NewOpc && "Optional cc_out operand required");
8749     return;
8750   }
8751   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
8752   // since we already have an optional CPSR def.
8753   bool definesCPSR = false;
8754   bool deadCPSR = false;
8755   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
8756        ++i) {
8757     const MachineOperand &MO = MI.getOperand(i);
8758     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
8759       definesCPSR = true;
8760       if (MO.isDead())
8761         deadCPSR = true;
8762       MI.RemoveOperand(i);
8763       break;
8764     }
8765   }
8766   if (!definesCPSR) {
8767     assert(!NewOpc && "Optional cc_out operand required");
8768     return;
8769   }
8770   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
8771   if (deadCPSR) {
8772     assert(!MI.getOperand(ccOutIdx).getReg() &&
8773            "expect uninitialized optional cc_out operand");
8774     return;
8775   }
8776 
8777   // If this instruction was defined with an optional CPSR def and its dag node
8778   // had a live implicit CPSR def, then activate the optional CPSR def.
8779   MachineOperand &MO = MI.getOperand(ccOutIdx);
8780   MO.setReg(ARM::CPSR);
8781   MO.setIsDef(true);
8782 }
8783 
8784 //===----------------------------------------------------------------------===//
8785 //                           ARM Optimization Hooks
8786 //===----------------------------------------------------------------------===//
8787 
8788 // Helper function that checks if N is a null or all ones constant.
8789 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
8790   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
8791 }
8792 
8793 // Return true if N is conditionally 0 or all ones.
8794 // Detects these expressions where cc is an i1 value:
8795 //
8796 //   (select cc 0, y)   [AllOnes=0]
8797 //   (select cc y, 0)   [AllOnes=0]
8798 //   (zext cc)          [AllOnes=0]
8799 //   (sext cc)          [AllOnes=0/1]
8800 //   (select cc -1, y)  [AllOnes=1]
8801 //   (select cc y, -1)  [AllOnes=1]
8802 //
8803 // Invert is set when N is the null/all ones constant when CC is false.
8804 // OtherOp is set to the alternative value of N.
8805 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
8806                                        SDValue &CC, bool &Invert,
8807                                        SDValue &OtherOp,
8808                                        SelectionDAG &DAG) {
8809   switch (N->getOpcode()) {
8810   default: return false;
8811   case ISD::SELECT: {
8812     CC = N->getOperand(0);
8813     SDValue N1 = N->getOperand(1);
8814     SDValue N2 = N->getOperand(2);
8815     if (isZeroOrAllOnes(N1, AllOnes)) {
8816       Invert = false;
8817       OtherOp = N2;
8818       return true;
8819     }
8820     if (isZeroOrAllOnes(N2, AllOnes)) {
8821       Invert = true;
8822       OtherOp = N1;
8823       return true;
8824     }
8825     return false;
8826   }
8827   case ISD::ZERO_EXTEND:
8828     // (zext cc) can never be the all ones value.
8829     if (AllOnes)
8830       return false;
8831     LLVM_FALLTHROUGH;
8832   case ISD::SIGN_EXTEND: {
8833     SDLoc dl(N);
8834     EVT VT = N->getValueType(0);
8835     CC = N->getOperand(0);
8836     if (CC.getValueType() != MVT::i1)
8837       return false;
8838     Invert = !AllOnes;
8839     if (AllOnes)
8840       // When looking for an AllOnes constant, N is an sext, and the 'other'
8841       // value is 0.
8842       OtherOp = DAG.getConstant(0, dl, VT);
8843     else if (N->getOpcode() == ISD::ZERO_EXTEND)
8844       // When looking for a 0 constant, N can be zext or sext.
8845       OtherOp = DAG.getConstant(1, dl, VT);
8846     else
8847       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
8848                                 VT);
8849     return true;
8850   }
8851   }
8852 }
8853 
8854 // Combine a constant select operand into its use:
8855 //
8856 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
8857 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
8858 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
8859 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
8860 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
8861 //
8862 // The transform is rejected if the select doesn't have a constant operand that
8863 // is null, or all ones when AllOnes is set.
8864 //
8865 // Also recognize sext/zext from i1:
8866 //
8867 //   (add (zext cc), x) -> (select cc (add x, 1), x)
8868 //   (add (sext cc), x) -> (select cc (add x, -1), x)
8869 //
8870 // These transformations eventually create predicated instructions.
8871 //
8872 // @param N       The node to transform.
8873 // @param Slct    The N operand that is a select.
8874 // @param OtherOp The other N operand (x above).
8875 // @param DCI     Context.
8876 // @param AllOnes Require the select constant to be all ones instead of null.
8877 // @returns The new node, or SDValue() on failure.
8878 static
8879 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
8880                             TargetLowering::DAGCombinerInfo &DCI,
8881                             bool AllOnes = false) {
8882   SelectionDAG &DAG = DCI.DAG;
8883   EVT VT = N->getValueType(0);
8884   SDValue NonConstantVal;
8885   SDValue CCOp;
8886   bool SwapSelectOps;
8887   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
8888                                   NonConstantVal, DAG))
8889     return SDValue();
8890 
8891   // Slct is now know to be the desired identity constant when CC is true.
8892   SDValue TrueVal = OtherOp;
8893   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
8894                                  OtherOp, NonConstantVal);
8895   // Unless SwapSelectOps says CC should be false.
8896   if (SwapSelectOps)
8897     std::swap(TrueVal, FalseVal);
8898 
8899   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
8900                      CCOp, TrueVal, FalseVal);
8901 }
8902 
8903 // Attempt combineSelectAndUse on each operand of a commutative operator N.
8904 static
8905 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
8906                                        TargetLowering::DAGCombinerInfo &DCI) {
8907   SDValue N0 = N->getOperand(0);
8908   SDValue N1 = N->getOperand(1);
8909   if (N0.getNode()->hasOneUse())
8910     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
8911       return Result;
8912   if (N1.getNode()->hasOneUse())
8913     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
8914       return Result;
8915   return SDValue();
8916 }
8917 
8918 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
8919 // (only after legalization).
8920 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
8921                                  TargetLowering::DAGCombinerInfo &DCI,
8922                                  const ARMSubtarget *Subtarget) {
8923 
8924   // Only perform optimization if after legalize, and if NEON is available. We
8925   // also expected both operands to be BUILD_VECTORs.
8926   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
8927       || N0.getOpcode() != ISD::BUILD_VECTOR
8928       || N1.getOpcode() != ISD::BUILD_VECTOR)
8929     return SDValue();
8930 
8931   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
8932   EVT VT = N->getValueType(0);
8933   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
8934     return SDValue();
8935 
8936   // Check that the vector operands are of the right form.
8937   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
8938   // operands, where N is the size of the formed vector.
8939   // Each EXTRACT_VECTOR should have the same input vector and odd or even
8940   // index such that we have a pair wise add pattern.
8941 
8942   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
8943   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8944     return SDValue();
8945   SDValue Vec = N0->getOperand(0)->getOperand(0);
8946   SDNode *V = Vec.getNode();
8947   unsigned nextIndex = 0;
8948 
8949   // For each operands to the ADD which are BUILD_VECTORs,
8950   // check to see if each of their operands are an EXTRACT_VECTOR with
8951   // the same vector and appropriate index.
8952   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
8953     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
8954         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8955 
8956       SDValue ExtVec0 = N0->getOperand(i);
8957       SDValue ExtVec1 = N1->getOperand(i);
8958 
8959       // First operand is the vector, verify its the same.
8960       if (V != ExtVec0->getOperand(0).getNode() ||
8961           V != ExtVec1->getOperand(0).getNode())
8962         return SDValue();
8963 
8964       // Second is the constant, verify its correct.
8965       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
8966       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
8967 
8968       // For the constant, we want to see all the even or all the odd.
8969       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
8970           || C1->getZExtValue() != nextIndex+1)
8971         return SDValue();
8972 
8973       // Increment index.
8974       nextIndex+=2;
8975     } else
8976       return SDValue();
8977   }
8978 
8979   // Create VPADDL node.
8980   SelectionDAG &DAG = DCI.DAG;
8981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8982 
8983   SDLoc dl(N);
8984 
8985   // Build operand list.
8986   SmallVector<SDValue, 8> Ops;
8987   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
8988                                 TLI.getPointerTy(DAG.getDataLayout())));
8989 
8990   // Input is the vector.
8991   Ops.push_back(Vec);
8992 
8993   // Get widened type and narrowed type.
8994   MVT widenType;
8995   unsigned numElem = VT.getVectorNumElements();
8996 
8997   EVT inputLaneType = Vec.getValueType().getVectorElementType();
8998   switch (inputLaneType.getSimpleVT().SimpleTy) {
8999     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
9000     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
9001     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
9002     default:
9003       llvm_unreachable("Invalid vector element type for padd optimization.");
9004   }
9005 
9006   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
9007   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
9008   return DAG.getNode(ExtOp, dl, VT, tmp);
9009 }
9010 
9011 static SDValue findMUL_LOHI(SDValue V) {
9012   if (V->getOpcode() == ISD::UMUL_LOHI ||
9013       V->getOpcode() == ISD::SMUL_LOHI)
9014     return V;
9015   return SDValue();
9016 }
9017 
9018 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
9019                                      TargetLowering::DAGCombinerInfo &DCI,
9020                                      const ARMSubtarget *Subtarget) {
9021 
9022   // Look for multiply add opportunities.
9023   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
9024   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
9025   // a glue link from the first add to the second add.
9026   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
9027   // a S/UMLAL instruction.
9028   //                  UMUL_LOHI
9029   //                 / :lo    \ :hi
9030   //                /          \          [no multiline comment]
9031   //    loAdd ->  ADDE         |
9032   //                 \ :glue  /
9033   //                  \      /
9034   //                    ADDC   <- hiAdd
9035   //
9036   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
9037   SDValue AddcOp0 = AddcNode->getOperand(0);
9038   SDValue AddcOp1 = AddcNode->getOperand(1);
9039 
9040   // Check if the two operands are from the same mul_lohi node.
9041   if (AddcOp0.getNode() == AddcOp1.getNode())
9042     return SDValue();
9043 
9044   assert(AddcNode->getNumValues() == 2 &&
9045          AddcNode->getValueType(0) == MVT::i32 &&
9046          "Expect ADDC with two result values. First: i32");
9047 
9048   // Check that we have a glued ADDC node.
9049   if (AddcNode->getValueType(1) != MVT::Glue)
9050     return SDValue();
9051 
9052   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
9053   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
9054       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
9055       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
9056       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
9057     return SDValue();
9058 
9059   // Look for the glued ADDE.
9060   SDNode* AddeNode = AddcNode->getGluedUser();
9061   if (!AddeNode)
9062     return SDValue();
9063 
9064   // Make sure it is really an ADDE.
9065   if (AddeNode->getOpcode() != ISD::ADDE)
9066     return SDValue();
9067 
9068   assert(AddeNode->getNumOperands() == 3 &&
9069          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
9070          "ADDE node has the wrong inputs");
9071 
9072   // Check for the triangle shape.
9073   SDValue AddeOp0 = AddeNode->getOperand(0);
9074   SDValue AddeOp1 = AddeNode->getOperand(1);
9075 
9076   // Make sure that the ADDE operands are not coming from the same node.
9077   if (AddeOp0.getNode() == AddeOp1.getNode())
9078     return SDValue();
9079 
9080   // Find the MUL_LOHI node walking up ADDE's operands.
9081   bool IsLeftOperandMUL = false;
9082   SDValue MULOp = findMUL_LOHI(AddeOp0);
9083   if (MULOp == SDValue())
9084    MULOp = findMUL_LOHI(AddeOp1);
9085   else
9086     IsLeftOperandMUL = true;
9087   if (MULOp == SDValue())
9088     return SDValue();
9089 
9090   // Figure out the right opcode.
9091   unsigned Opc = MULOp->getOpcode();
9092   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
9093 
9094   // Figure out the high and low input values to the MLAL node.
9095   SDValue* HiAdd = nullptr;
9096   SDValue* LoMul = nullptr;
9097   SDValue* LowAdd = nullptr;
9098 
9099   // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
9100   if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
9101     return SDValue();
9102 
9103   if (IsLeftOperandMUL)
9104     HiAdd = &AddeOp1;
9105   else
9106     HiAdd = &AddeOp0;
9107 
9108 
9109   // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
9110   // whose low result is fed to the ADDC we are checking.
9111 
9112   if (AddcOp0 == MULOp.getValue(0)) {
9113     LoMul = &AddcOp0;
9114     LowAdd = &AddcOp1;
9115   }
9116   if (AddcOp1 == MULOp.getValue(0)) {
9117     LoMul = &AddcOp1;
9118     LowAdd = &AddcOp0;
9119   }
9120 
9121   if (!LoMul)
9122     return SDValue();
9123 
9124   // Create the merged node.
9125   SelectionDAG &DAG = DCI.DAG;
9126 
9127   // Build operand list.
9128   SmallVector<SDValue, 8> Ops;
9129   Ops.push_back(LoMul->getOperand(0));
9130   Ops.push_back(LoMul->getOperand(1));
9131   Ops.push_back(*LowAdd);
9132   Ops.push_back(*HiAdd);
9133 
9134   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
9135                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
9136 
9137   // Replace the ADDs' nodes uses by the MLA node's values.
9138   SDValue HiMLALResult(MLALNode.getNode(), 1);
9139   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
9140 
9141   SDValue LoMLALResult(MLALNode.getNode(), 0);
9142   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
9143 
9144   // Return original node to notify the driver to stop replacing.
9145   SDValue resNode(AddcNode, 0);
9146   return resNode;
9147 }
9148 
9149 static SDValue AddCombineTo64bitUMAAL(SDNode *AddcNode,
9150                                       TargetLowering::DAGCombinerInfo &DCI,
9151                                       const ARMSubtarget *Subtarget) {
9152   // UMAAL is similar to UMLAL except that it adds two unsigned values.
9153   // While trying to combine for the other MLAL nodes, first search for the
9154   // chance to use UMAAL. Check if Addc uses another addc node which can first
9155   // be combined into a UMLAL. The other pattern is AddcNode being combined
9156   // into an UMLAL and then using another addc is handled in ISelDAGToDAG.
9157 
9158   if (!Subtarget->hasV6Ops() ||
9159       (Subtarget->isThumb() && !Subtarget->hasThumb2()))
9160     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
9161 
9162   SDNode *PrevAddc = nullptr;
9163   if (AddcNode->getOperand(0).getOpcode() == ISD::ADDC)
9164     PrevAddc = AddcNode->getOperand(0).getNode();
9165   else if (AddcNode->getOperand(1).getOpcode() == ISD::ADDC)
9166     PrevAddc = AddcNode->getOperand(1).getNode();
9167 
9168   // If there's no addc chains, just return a search for any MLAL.
9169   if (PrevAddc == nullptr)
9170     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
9171 
9172   // Try to convert the addc operand to an MLAL and if that fails try to
9173   // combine AddcNode.
9174   SDValue MLAL = AddCombineTo64bitMLAL(PrevAddc, DCI, Subtarget);
9175   if (MLAL != SDValue(PrevAddc, 0))
9176     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
9177 
9178   // Find the converted UMAAL or quit if it doesn't exist.
9179   SDNode *UmlalNode = nullptr;
9180   SDValue AddHi;
9181   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
9182     UmlalNode = AddcNode->getOperand(0).getNode();
9183     AddHi = AddcNode->getOperand(1);
9184   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
9185     UmlalNode = AddcNode->getOperand(1).getNode();
9186     AddHi = AddcNode->getOperand(0);
9187   } else {
9188     return SDValue();
9189   }
9190 
9191   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
9192   // the ADDC as well as Zero.
9193   auto *Zero = dyn_cast<ConstantSDNode>(UmlalNode->getOperand(3));
9194 
9195   if (!Zero || Zero->getZExtValue() != 0)
9196     return SDValue();
9197 
9198   // Check that we have a glued ADDC node.
9199   if (AddcNode->getValueType(1) != MVT::Glue)
9200     return SDValue();
9201 
9202   // Look for the glued ADDE.
9203   SDNode* AddeNode = AddcNode->getGluedUser();
9204   if (!AddeNode)
9205     return SDValue();
9206 
9207   if ((AddeNode->getOperand(0).getNode() == Zero &&
9208        AddeNode->getOperand(1).getNode() == UmlalNode) ||
9209       (AddeNode->getOperand(0).getNode() == UmlalNode &&
9210        AddeNode->getOperand(1).getNode() == Zero)) {
9211 
9212     SelectionDAG &DAG = DCI.DAG;
9213     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
9214                       UmlalNode->getOperand(2), AddHi };
9215     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
9216                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
9217 
9218     // Replace the ADDs' nodes uses by the UMAAL node's values.
9219     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
9220     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
9221 
9222     // Return original node to notify the driver to stop replacing.
9223     return SDValue(AddcNode, 0);
9224   }
9225   return SDValue();
9226 }
9227 
9228 /// PerformADDCCombine - Target-specific dag combine transform from
9229 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL or
9230 /// ISD::ADDC, ISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
9231 static SDValue PerformADDCCombine(SDNode *N,
9232                                  TargetLowering::DAGCombinerInfo &DCI,
9233                                  const ARMSubtarget *Subtarget) {
9234 
9235   if (Subtarget->isThumb1Only()) return SDValue();
9236 
9237   // Only perform the checks after legalize when the pattern is available.
9238   if (DCI.isBeforeLegalize()) return SDValue();
9239 
9240   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
9241 }
9242 
9243 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
9244 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
9245 /// called with the default operands, and if that fails, with commuted
9246 /// operands.
9247 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
9248                                           TargetLowering::DAGCombinerInfo &DCI,
9249                                           const ARMSubtarget *Subtarget){
9250 
9251   // Attempt to create vpaddl for this add.
9252   if (SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget))
9253     return Result;
9254 
9255   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
9256   if (N0.getNode()->hasOneUse())
9257     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
9258       return Result;
9259   return SDValue();
9260 }
9261 
9262 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
9263 ///
9264 static SDValue PerformADDCombine(SDNode *N,
9265                                  TargetLowering::DAGCombinerInfo &DCI,
9266                                  const ARMSubtarget *Subtarget) {
9267   SDValue N0 = N->getOperand(0);
9268   SDValue N1 = N->getOperand(1);
9269 
9270   // First try with the default operand order.
9271   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
9272     return Result;
9273 
9274   // If that didn't work, try again with the operands commuted.
9275   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
9276 }
9277 
9278 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
9279 ///
9280 static SDValue PerformSUBCombine(SDNode *N,
9281                                  TargetLowering::DAGCombinerInfo &DCI) {
9282   SDValue N0 = N->getOperand(0);
9283   SDValue N1 = N->getOperand(1);
9284 
9285   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
9286   if (N1.getNode()->hasOneUse())
9287     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
9288       return Result;
9289 
9290   return SDValue();
9291 }
9292 
9293 /// PerformVMULCombine
9294 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
9295 /// special multiplier accumulator forwarding.
9296 ///   vmul d3, d0, d2
9297 ///   vmla d3, d1, d2
9298 /// is faster than
9299 ///   vadd d3, d0, d1
9300 ///   vmul d3, d3, d2
9301 //  However, for (A + B) * (A + B),
9302 //    vadd d2, d0, d1
9303 //    vmul d3, d0, d2
9304 //    vmla d3, d1, d2
9305 //  is slower than
9306 //    vadd d2, d0, d1
9307 //    vmul d3, d2, d2
9308 static SDValue PerformVMULCombine(SDNode *N,
9309                                   TargetLowering::DAGCombinerInfo &DCI,
9310                                   const ARMSubtarget *Subtarget) {
9311   if (!Subtarget->hasVMLxForwarding())
9312     return SDValue();
9313 
9314   SelectionDAG &DAG = DCI.DAG;
9315   SDValue N0 = N->getOperand(0);
9316   SDValue N1 = N->getOperand(1);
9317   unsigned Opcode = N0.getOpcode();
9318   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
9319       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
9320     Opcode = N1.getOpcode();
9321     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
9322         Opcode != ISD::FADD && Opcode != ISD::FSUB)
9323       return SDValue();
9324     std::swap(N0, N1);
9325   }
9326 
9327   if (N0 == N1)
9328     return SDValue();
9329 
9330   EVT VT = N->getValueType(0);
9331   SDLoc DL(N);
9332   SDValue N00 = N0->getOperand(0);
9333   SDValue N01 = N0->getOperand(1);
9334   return DAG.getNode(Opcode, DL, VT,
9335                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
9336                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
9337 }
9338 
9339 static SDValue PerformMULCombine(SDNode *N,
9340                                  TargetLowering::DAGCombinerInfo &DCI,
9341                                  const ARMSubtarget *Subtarget) {
9342   SelectionDAG &DAG = DCI.DAG;
9343 
9344   if (Subtarget->isThumb1Only())
9345     return SDValue();
9346 
9347   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9348     return SDValue();
9349 
9350   EVT VT = N->getValueType(0);
9351   if (VT.is64BitVector() || VT.is128BitVector())
9352     return PerformVMULCombine(N, DCI, Subtarget);
9353   if (VT != MVT::i32)
9354     return SDValue();
9355 
9356   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9357   if (!C)
9358     return SDValue();
9359 
9360   int64_t MulAmt = C->getSExtValue();
9361   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
9362 
9363   ShiftAmt = ShiftAmt & (32 - 1);
9364   SDValue V = N->getOperand(0);
9365   SDLoc DL(N);
9366 
9367   SDValue Res;
9368   MulAmt >>= ShiftAmt;
9369 
9370   if (MulAmt >= 0) {
9371     if (isPowerOf2_32(MulAmt - 1)) {
9372       // (mul x, 2^N + 1) => (add (shl x, N), x)
9373       Res = DAG.getNode(ISD::ADD, DL, VT,
9374                         V,
9375                         DAG.getNode(ISD::SHL, DL, VT,
9376                                     V,
9377                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
9378                                                     MVT::i32)));
9379     } else if (isPowerOf2_32(MulAmt + 1)) {
9380       // (mul x, 2^N - 1) => (sub (shl x, N), x)
9381       Res = DAG.getNode(ISD::SUB, DL, VT,
9382                         DAG.getNode(ISD::SHL, DL, VT,
9383                                     V,
9384                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
9385                                                     MVT::i32)),
9386                         V);
9387     } else
9388       return SDValue();
9389   } else {
9390     uint64_t MulAmtAbs = -MulAmt;
9391     if (isPowerOf2_32(MulAmtAbs + 1)) {
9392       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9393       Res = DAG.getNode(ISD::SUB, DL, VT,
9394                         V,
9395                         DAG.getNode(ISD::SHL, DL, VT,
9396                                     V,
9397                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
9398                                                     MVT::i32)));
9399     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
9400       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9401       Res = DAG.getNode(ISD::ADD, DL, VT,
9402                         V,
9403                         DAG.getNode(ISD::SHL, DL, VT,
9404                                     V,
9405                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
9406                                                     MVT::i32)));
9407       Res = DAG.getNode(ISD::SUB, DL, VT,
9408                         DAG.getConstant(0, DL, MVT::i32), Res);
9409 
9410     } else
9411       return SDValue();
9412   }
9413 
9414   if (ShiftAmt != 0)
9415     Res = DAG.getNode(ISD::SHL, DL, VT,
9416                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
9417 
9418   // Do not add new nodes to DAG combiner worklist.
9419   DCI.CombineTo(N, Res, false);
9420   return SDValue();
9421 }
9422 
9423 static SDValue PerformANDCombine(SDNode *N,
9424                                  TargetLowering::DAGCombinerInfo &DCI,
9425                                  const ARMSubtarget *Subtarget) {
9426 
9427   // Attempt to use immediate-form VBIC
9428   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9429   SDLoc dl(N);
9430   EVT VT = N->getValueType(0);
9431   SelectionDAG &DAG = DCI.DAG;
9432 
9433   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9434     return SDValue();
9435 
9436   APInt SplatBits, SplatUndef;
9437   unsigned SplatBitSize;
9438   bool HasAnyUndefs;
9439   if (BVN &&
9440       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9441     if (SplatBitSize <= 64) {
9442       EVT VbicVT;
9443       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
9444                                       SplatUndef.getZExtValue(), SplatBitSize,
9445                                       DAG, dl, VbicVT, VT.is128BitVector(),
9446                                       OtherModImm);
9447       if (Val.getNode()) {
9448         SDValue Input =
9449           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
9450         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
9451         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
9452       }
9453     }
9454   }
9455 
9456   if (!Subtarget->isThumb1Only()) {
9457     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
9458     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
9459       return Result;
9460   }
9461 
9462   return SDValue();
9463 }
9464 
9465 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
9466 static SDValue PerformORCombine(SDNode *N,
9467                                 TargetLowering::DAGCombinerInfo &DCI,
9468                                 const ARMSubtarget *Subtarget) {
9469   // Attempt to use immediate-form VORR
9470   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9471   SDLoc dl(N);
9472   EVT VT = N->getValueType(0);
9473   SelectionDAG &DAG = DCI.DAG;
9474 
9475   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9476     return SDValue();
9477 
9478   APInt SplatBits, SplatUndef;
9479   unsigned SplatBitSize;
9480   bool HasAnyUndefs;
9481   if (BVN && Subtarget->hasNEON() &&
9482       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9483     if (SplatBitSize <= 64) {
9484       EVT VorrVT;
9485       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
9486                                       SplatUndef.getZExtValue(), SplatBitSize,
9487                                       DAG, dl, VorrVT, VT.is128BitVector(),
9488                                       OtherModImm);
9489       if (Val.getNode()) {
9490         SDValue Input =
9491           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
9492         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
9493         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
9494       }
9495     }
9496   }
9497 
9498   if (!Subtarget->isThumb1Only()) {
9499     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
9500     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9501       return Result;
9502   }
9503 
9504   // The code below optimizes (or (and X, Y), Z).
9505   // The AND operand needs to have a single user to make these optimizations
9506   // profitable.
9507   SDValue N0 = N->getOperand(0);
9508   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
9509     return SDValue();
9510   SDValue N1 = N->getOperand(1);
9511 
9512   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
9513   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
9514       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
9515     APInt SplatUndef;
9516     unsigned SplatBitSize;
9517     bool HasAnyUndefs;
9518 
9519     APInt SplatBits0, SplatBits1;
9520     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
9521     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
9522     // Ensure that the second operand of both ands are constants
9523     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
9524                                       HasAnyUndefs) && !HasAnyUndefs) {
9525         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
9526                                           HasAnyUndefs) && !HasAnyUndefs) {
9527             // Ensure that the bit width of the constants are the same and that
9528             // the splat arguments are logical inverses as per the pattern we
9529             // are trying to simplify.
9530             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
9531                 SplatBits0 == ~SplatBits1) {
9532                 // Canonicalize the vector type to make instruction selection
9533                 // simpler.
9534                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
9535                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
9536                                              N0->getOperand(1),
9537                                              N0->getOperand(0),
9538                                              N1->getOperand(0));
9539                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9540             }
9541         }
9542     }
9543   }
9544 
9545   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
9546   // reasonable.
9547 
9548   // BFI is only available on V6T2+
9549   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
9550     return SDValue();
9551 
9552   SDLoc DL(N);
9553   // 1) or (and A, mask), val => ARMbfi A, val, mask
9554   //      iff (val & mask) == val
9555   //
9556   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9557   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
9558   //          && mask == ~mask2
9559   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
9560   //          && ~mask == mask2
9561   //  (i.e., copy a bitfield value into another bitfield of the same width)
9562 
9563   if (VT != MVT::i32)
9564     return SDValue();
9565 
9566   SDValue N00 = N0.getOperand(0);
9567 
9568   // The value and the mask need to be constants so we can verify this is
9569   // actually a bitfield set. If the mask is 0xffff, we can do better
9570   // via a movt instruction, so don't use BFI in that case.
9571   SDValue MaskOp = N0.getOperand(1);
9572   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
9573   if (!MaskC)
9574     return SDValue();
9575   unsigned Mask = MaskC->getZExtValue();
9576   if (Mask == 0xffff)
9577     return SDValue();
9578   SDValue Res;
9579   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
9580   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9581   if (N1C) {
9582     unsigned Val = N1C->getZExtValue();
9583     if ((Val & ~Mask) != Val)
9584       return SDValue();
9585 
9586     if (ARM::isBitFieldInvertedMask(Mask)) {
9587       Val >>= countTrailingZeros(~Mask);
9588 
9589       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
9590                         DAG.getConstant(Val, DL, MVT::i32),
9591                         DAG.getConstant(Mask, DL, MVT::i32));
9592 
9593       // Do not add new nodes to DAG combiner worklist.
9594       DCI.CombineTo(N, Res, false);
9595       return SDValue();
9596     }
9597   } else if (N1.getOpcode() == ISD::AND) {
9598     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9599     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9600     if (!N11C)
9601       return SDValue();
9602     unsigned Mask2 = N11C->getZExtValue();
9603 
9604     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
9605     // as is to match.
9606     if (ARM::isBitFieldInvertedMask(Mask) &&
9607         (Mask == ~Mask2)) {
9608       // The pack halfword instruction works better for masks that fit it,
9609       // so use that when it's available.
9610       if (Subtarget->hasT2ExtractPack() &&
9611           (Mask == 0xffff || Mask == 0xffff0000))
9612         return SDValue();
9613       // 2a
9614       unsigned amt = countTrailingZeros(Mask2);
9615       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
9616                         DAG.getConstant(amt, DL, MVT::i32));
9617       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
9618                         DAG.getConstant(Mask, DL, MVT::i32));
9619       // Do not add new nodes to DAG combiner worklist.
9620       DCI.CombineTo(N, Res, false);
9621       return SDValue();
9622     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
9623                (~Mask == Mask2)) {
9624       // The pack halfword instruction works better for masks that fit it,
9625       // so use that when it's available.
9626       if (Subtarget->hasT2ExtractPack() &&
9627           (Mask2 == 0xffff || Mask2 == 0xffff0000))
9628         return SDValue();
9629       // 2b
9630       unsigned lsb = countTrailingZeros(Mask);
9631       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
9632                         DAG.getConstant(lsb, DL, MVT::i32));
9633       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
9634                         DAG.getConstant(Mask2, DL, MVT::i32));
9635       // Do not add new nodes to DAG combiner worklist.
9636       DCI.CombineTo(N, Res, false);
9637       return SDValue();
9638     }
9639   }
9640 
9641   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
9642       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
9643       ARM::isBitFieldInvertedMask(~Mask)) {
9644     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
9645     // where lsb(mask) == #shamt and masked bits of B are known zero.
9646     SDValue ShAmt = N00.getOperand(1);
9647     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9648     unsigned LSB = countTrailingZeros(Mask);
9649     if (ShAmtC != LSB)
9650       return SDValue();
9651 
9652     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
9653                       DAG.getConstant(~Mask, DL, MVT::i32));
9654 
9655     // Do not add new nodes to DAG combiner worklist.
9656     DCI.CombineTo(N, Res, false);
9657   }
9658 
9659   return SDValue();
9660 }
9661 
9662 static SDValue PerformXORCombine(SDNode *N,
9663                                  TargetLowering::DAGCombinerInfo &DCI,
9664                                  const ARMSubtarget *Subtarget) {
9665   EVT VT = N->getValueType(0);
9666   SelectionDAG &DAG = DCI.DAG;
9667 
9668   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9669     return SDValue();
9670 
9671   if (!Subtarget->isThumb1Only()) {
9672     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
9673     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9674       return Result;
9675   }
9676 
9677   return SDValue();
9678 }
9679 
9680 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
9681 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
9682 // their position in "to" (Rd).
9683 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
9684   assert(N->getOpcode() == ARMISD::BFI);
9685 
9686   SDValue From = N->getOperand(1);
9687   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
9688   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
9689 
9690   // If the Base came from a SHR #C, we can deduce that it is really testing bit
9691   // #C in the base of the SHR.
9692   if (From->getOpcode() == ISD::SRL &&
9693       isa<ConstantSDNode>(From->getOperand(1))) {
9694     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
9695     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
9696     FromMask <<= Shift.getLimitedValue(31);
9697     From = From->getOperand(0);
9698   }
9699 
9700   return From;
9701 }
9702 
9703 // If A and B contain one contiguous set of bits, does A | B == A . B?
9704 //
9705 // Neither A nor B must be zero.
9706 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
9707   unsigned LastActiveBitInA =  A.countTrailingZeros();
9708   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
9709   return LastActiveBitInA - 1 == FirstActiveBitInB;
9710 }
9711 
9712 static SDValue FindBFIToCombineWith(SDNode *N) {
9713   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
9714   // if one exists.
9715   APInt ToMask, FromMask;
9716   SDValue From = ParseBFI(N, ToMask, FromMask);
9717   SDValue To = N->getOperand(0);
9718 
9719   // Now check for a compatible BFI to merge with. We can pass through BFIs that
9720   // aren't compatible, but not if they set the same bit in their destination as
9721   // we do (or that of any BFI we're going to combine with).
9722   SDValue V = To;
9723   APInt CombinedToMask = ToMask;
9724   while (V.getOpcode() == ARMISD::BFI) {
9725     APInt NewToMask, NewFromMask;
9726     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
9727     if (NewFrom != From) {
9728       // This BFI has a different base. Keep going.
9729       CombinedToMask |= NewToMask;
9730       V = V.getOperand(0);
9731       continue;
9732     }
9733 
9734     // Do the written bits conflict with any we've seen so far?
9735     if ((NewToMask & CombinedToMask).getBoolValue())
9736       // Conflicting bits - bail out because going further is unsafe.
9737       return SDValue();
9738 
9739     // Are the new bits contiguous when combined with the old bits?
9740     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
9741         BitsProperlyConcatenate(FromMask, NewFromMask))
9742       return V;
9743     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
9744         BitsProperlyConcatenate(NewFromMask, FromMask))
9745       return V;
9746 
9747     // We've seen a write to some bits, so track it.
9748     CombinedToMask |= NewToMask;
9749     // Keep going...
9750     V = V.getOperand(0);
9751   }
9752 
9753   return SDValue();
9754 }
9755 
9756 static SDValue PerformBFICombine(SDNode *N,
9757                                  TargetLowering::DAGCombinerInfo &DCI) {
9758   SDValue N1 = N->getOperand(1);
9759   if (N1.getOpcode() == ISD::AND) {
9760     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
9761     // the bits being cleared by the AND are not demanded by the BFI.
9762     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9763     if (!N11C)
9764       return SDValue();
9765     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
9766     unsigned LSB = countTrailingZeros(~InvMask);
9767     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
9768     assert(Width <
9769                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
9770            "undefined behavior");
9771     unsigned Mask = (1u << Width) - 1;
9772     unsigned Mask2 = N11C->getZExtValue();
9773     if ((Mask & (~Mask2)) == 0)
9774       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
9775                              N->getOperand(0), N1.getOperand(0),
9776                              N->getOperand(2));
9777   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
9778     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
9779     // Keep track of any consecutive bits set that all come from the same base
9780     // value. We can combine these together into a single BFI.
9781     SDValue CombineBFI = FindBFIToCombineWith(N);
9782     if (CombineBFI == SDValue())
9783       return SDValue();
9784 
9785     // We've found a BFI.
9786     APInt ToMask1, FromMask1;
9787     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
9788 
9789     APInt ToMask2, FromMask2;
9790     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
9791     assert(From1 == From2);
9792     (void)From2;
9793 
9794     // First, unlink CombineBFI.
9795     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
9796     // Then create a new BFI, combining the two together.
9797     APInt NewFromMask = FromMask1 | FromMask2;
9798     APInt NewToMask = ToMask1 | ToMask2;
9799 
9800     EVT VT = N->getValueType(0);
9801     SDLoc dl(N);
9802 
9803     if (NewFromMask[0] == 0)
9804       From1 = DCI.DAG.getNode(
9805         ISD::SRL, dl, VT, From1,
9806         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
9807     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
9808                            DCI.DAG.getConstant(~NewToMask, dl, VT));
9809   }
9810   return SDValue();
9811 }
9812 
9813 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
9814 /// ARMISD::VMOVRRD.
9815 static SDValue PerformVMOVRRDCombine(SDNode *N,
9816                                      TargetLowering::DAGCombinerInfo &DCI,
9817                                      const ARMSubtarget *Subtarget) {
9818   // vmovrrd(vmovdrr x, y) -> x,y
9819   SDValue InDouble = N->getOperand(0);
9820   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
9821     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
9822 
9823   // vmovrrd(load f64) -> (load i32), (load i32)
9824   SDNode *InNode = InDouble.getNode();
9825   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
9826       InNode->getValueType(0) == MVT::f64 &&
9827       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
9828       !cast<LoadSDNode>(InNode)->isVolatile()) {
9829     // TODO: Should this be done for non-FrameIndex operands?
9830     LoadSDNode *LD = cast<LoadSDNode>(InNode);
9831 
9832     SelectionDAG &DAG = DCI.DAG;
9833     SDLoc DL(LD);
9834     SDValue BasePtr = LD->getBasePtr();
9835     SDValue NewLD1 =
9836         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
9837                     LD->getAlignment(), LD->getMemOperand()->getFlags());
9838 
9839     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
9840                                     DAG.getConstant(4, DL, MVT::i32));
9841     SDValue NewLD2 = DAG.getLoad(
9842         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
9843         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
9844 
9845     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
9846     if (DCI.DAG.getDataLayout().isBigEndian())
9847       std::swap (NewLD1, NewLD2);
9848     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
9849     return Result;
9850   }
9851 
9852   return SDValue();
9853 }
9854 
9855 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
9856 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
9857 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
9858   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
9859   SDValue Op0 = N->getOperand(0);
9860   SDValue Op1 = N->getOperand(1);
9861   if (Op0.getOpcode() == ISD::BITCAST)
9862     Op0 = Op0.getOperand(0);
9863   if (Op1.getOpcode() == ISD::BITCAST)
9864     Op1 = Op1.getOperand(0);
9865   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
9866       Op0.getNode() == Op1.getNode() &&
9867       Op0.getResNo() == 0 && Op1.getResNo() == 1)
9868     return DAG.getNode(ISD::BITCAST, SDLoc(N),
9869                        N->getValueType(0), Op0.getOperand(0));
9870   return SDValue();
9871 }
9872 
9873 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
9874 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
9875 /// i64 vector to have f64 elements, since the value can then be loaded
9876 /// directly into a VFP register.
9877 static bool hasNormalLoadOperand(SDNode *N) {
9878   unsigned NumElts = N->getValueType(0).getVectorNumElements();
9879   for (unsigned i = 0; i < NumElts; ++i) {
9880     SDNode *Elt = N->getOperand(i).getNode();
9881     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
9882       return true;
9883   }
9884   return false;
9885 }
9886 
9887 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
9888 /// ISD::BUILD_VECTOR.
9889 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
9890                                           TargetLowering::DAGCombinerInfo &DCI,
9891                                           const ARMSubtarget *Subtarget) {
9892   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
9893   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
9894   // into a pair of GPRs, which is fine when the value is used as a scalar,
9895   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
9896   SelectionDAG &DAG = DCI.DAG;
9897   if (N->getNumOperands() == 2)
9898     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
9899       return RV;
9900 
9901   // Load i64 elements as f64 values so that type legalization does not split
9902   // them up into i32 values.
9903   EVT VT = N->getValueType(0);
9904   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
9905     return SDValue();
9906   SDLoc dl(N);
9907   SmallVector<SDValue, 8> Ops;
9908   unsigned NumElts = VT.getVectorNumElements();
9909   for (unsigned i = 0; i < NumElts; ++i) {
9910     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
9911     Ops.push_back(V);
9912     // Make the DAGCombiner fold the bitcast.
9913     DCI.AddToWorklist(V.getNode());
9914   }
9915   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
9916   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
9917   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9918 }
9919 
9920 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
9921 static SDValue
9922 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9923   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
9924   // At that time, we may have inserted bitcasts from integer to float.
9925   // If these bitcasts have survived DAGCombine, change the lowering of this
9926   // BUILD_VECTOR in something more vector friendly, i.e., that does not
9927   // force to use floating point types.
9928 
9929   // Make sure we can change the type of the vector.
9930   // This is possible iff:
9931   // 1. The vector is only used in a bitcast to a integer type. I.e.,
9932   //    1.1. Vector is used only once.
9933   //    1.2. Use is a bit convert to an integer type.
9934   // 2. The size of its operands are 32-bits (64-bits are not legal).
9935   EVT VT = N->getValueType(0);
9936   EVT EltVT = VT.getVectorElementType();
9937 
9938   // Check 1.1. and 2.
9939   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
9940     return SDValue();
9941 
9942   // By construction, the input type must be float.
9943   assert(EltVT == MVT::f32 && "Unexpected type!");
9944 
9945   // Check 1.2.
9946   SDNode *Use = *N->use_begin();
9947   if (Use->getOpcode() != ISD::BITCAST ||
9948       Use->getValueType(0).isFloatingPoint())
9949     return SDValue();
9950 
9951   // Check profitability.
9952   // Model is, if more than half of the relevant operands are bitcast from
9953   // i32, turn the build_vector into a sequence of insert_vector_elt.
9954   // Relevant operands are everything that is not statically
9955   // (i.e., at compile time) bitcasted.
9956   unsigned NumOfBitCastedElts = 0;
9957   unsigned NumElts = VT.getVectorNumElements();
9958   unsigned NumOfRelevantElts = NumElts;
9959   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
9960     SDValue Elt = N->getOperand(Idx);
9961     if (Elt->getOpcode() == ISD::BITCAST) {
9962       // Assume only bit cast to i32 will go away.
9963       if (Elt->getOperand(0).getValueType() == MVT::i32)
9964         ++NumOfBitCastedElts;
9965     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
9966       // Constants are statically casted, thus do not count them as
9967       // relevant operands.
9968       --NumOfRelevantElts;
9969   }
9970 
9971   // Check if more than half of the elements require a non-free bitcast.
9972   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
9973     return SDValue();
9974 
9975   SelectionDAG &DAG = DCI.DAG;
9976   // Create the new vector type.
9977   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
9978   // Check if the type is legal.
9979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9980   if (!TLI.isTypeLegal(VecVT))
9981     return SDValue();
9982 
9983   // Combine:
9984   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
9985   // => BITCAST INSERT_VECTOR_ELT
9986   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
9987   //                      (BITCAST EN), N.
9988   SDValue Vec = DAG.getUNDEF(VecVT);
9989   SDLoc dl(N);
9990   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
9991     SDValue V = N->getOperand(Idx);
9992     if (V.isUndef())
9993       continue;
9994     if (V.getOpcode() == ISD::BITCAST &&
9995         V->getOperand(0).getValueType() == MVT::i32)
9996       // Fold obvious case.
9997       V = V.getOperand(0);
9998     else {
9999       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
10000       // Make the DAGCombiner fold the bitcasts.
10001       DCI.AddToWorklist(V.getNode());
10002     }
10003     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
10004     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
10005   }
10006   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
10007   // Make the DAGCombiner fold the bitcasts.
10008   DCI.AddToWorklist(Vec.getNode());
10009   return Vec;
10010 }
10011 
10012 /// PerformInsertEltCombine - Target-specific dag combine xforms for
10013 /// ISD::INSERT_VECTOR_ELT.
10014 static SDValue PerformInsertEltCombine(SDNode *N,
10015                                        TargetLowering::DAGCombinerInfo &DCI) {
10016   // Bitcast an i64 load inserted into a vector to f64.
10017   // Otherwise, the i64 value will be legalized to a pair of i32 values.
10018   EVT VT = N->getValueType(0);
10019   SDNode *Elt = N->getOperand(1).getNode();
10020   if (VT.getVectorElementType() != MVT::i64 ||
10021       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
10022     return SDValue();
10023 
10024   SelectionDAG &DAG = DCI.DAG;
10025   SDLoc dl(N);
10026   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
10027                                  VT.getVectorNumElements());
10028   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
10029   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
10030   // Make the DAGCombiner fold the bitcasts.
10031   DCI.AddToWorklist(Vec.getNode());
10032   DCI.AddToWorklist(V.getNode());
10033   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
10034                                Vec, V, N->getOperand(2));
10035   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
10036 }
10037 
10038 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
10039 /// ISD::VECTOR_SHUFFLE.
10040 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
10041   // The LLVM shufflevector instruction does not require the shuffle mask
10042   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
10043   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
10044   // operands do not match the mask length, they are extended by concatenating
10045   // them with undef vectors.  That is probably the right thing for other
10046   // targets, but for NEON it is better to concatenate two double-register
10047   // size vector operands into a single quad-register size vector.  Do that
10048   // transformation here:
10049   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
10050   //   shuffle(concat(v1, v2), undef)
10051   SDValue Op0 = N->getOperand(0);
10052   SDValue Op1 = N->getOperand(1);
10053   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
10054       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
10055       Op0.getNumOperands() != 2 ||
10056       Op1.getNumOperands() != 2)
10057     return SDValue();
10058   SDValue Concat0Op1 = Op0.getOperand(1);
10059   SDValue Concat1Op1 = Op1.getOperand(1);
10060   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
10061     return SDValue();
10062   // Skip the transformation if any of the types are illegal.
10063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10064   EVT VT = N->getValueType(0);
10065   if (!TLI.isTypeLegal(VT) ||
10066       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
10067       !TLI.isTypeLegal(Concat1Op1.getValueType()))
10068     return SDValue();
10069 
10070   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
10071                                   Op0.getOperand(0), Op1.getOperand(0));
10072   // Translate the shuffle mask.
10073   SmallVector<int, 16> NewMask;
10074   unsigned NumElts = VT.getVectorNumElements();
10075   unsigned HalfElts = NumElts/2;
10076   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10077   for (unsigned n = 0; n < NumElts; ++n) {
10078     int MaskElt = SVN->getMaskElt(n);
10079     int NewElt = -1;
10080     if (MaskElt < (int)HalfElts)
10081       NewElt = MaskElt;
10082     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
10083       NewElt = HalfElts + MaskElt - NumElts;
10084     NewMask.push_back(NewElt);
10085   }
10086   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
10087                               DAG.getUNDEF(VT), NewMask);
10088 }
10089 
10090 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
10091 /// NEON load/store intrinsics, and generic vector load/stores, to merge
10092 /// base address updates.
10093 /// For generic load/stores, the memory type is assumed to be a vector.
10094 /// The caller is assumed to have checked legality.
10095 static SDValue CombineBaseUpdate(SDNode *N,
10096                                  TargetLowering::DAGCombinerInfo &DCI) {
10097   SelectionDAG &DAG = DCI.DAG;
10098   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
10099                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
10100   const bool isStore = N->getOpcode() == ISD::STORE;
10101   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
10102   SDValue Addr = N->getOperand(AddrOpIdx);
10103   MemSDNode *MemN = cast<MemSDNode>(N);
10104   SDLoc dl(N);
10105 
10106   // Search for a use of the address operand that is an increment.
10107   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
10108          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
10109     SDNode *User = *UI;
10110     if (User->getOpcode() != ISD::ADD ||
10111         UI.getUse().getResNo() != Addr.getResNo())
10112       continue;
10113 
10114     // Check that the add is independent of the load/store.  Otherwise, folding
10115     // it would create a cycle.
10116     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
10117       continue;
10118 
10119     // Find the new opcode for the updating load/store.
10120     bool isLoadOp = true;
10121     bool isLaneOp = false;
10122     unsigned NewOpc = 0;
10123     unsigned NumVecs = 0;
10124     if (isIntrinsic) {
10125       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10126       switch (IntNo) {
10127       default: llvm_unreachable("unexpected intrinsic for Neon base update");
10128       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
10129         NumVecs = 1; break;
10130       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
10131         NumVecs = 2; break;
10132       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
10133         NumVecs = 3; break;
10134       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
10135         NumVecs = 4; break;
10136       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
10137         NumVecs = 2; isLaneOp = true; break;
10138       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
10139         NumVecs = 3; isLaneOp = true; break;
10140       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
10141         NumVecs = 4; isLaneOp = true; break;
10142       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
10143         NumVecs = 1; isLoadOp = false; break;
10144       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
10145         NumVecs = 2; isLoadOp = false; break;
10146       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
10147         NumVecs = 3; isLoadOp = false; break;
10148       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
10149         NumVecs = 4; isLoadOp = false; break;
10150       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
10151         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
10152       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
10153         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
10154       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
10155         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
10156       }
10157     } else {
10158       isLaneOp = true;
10159       switch (N->getOpcode()) {
10160       default: llvm_unreachable("unexpected opcode for Neon base update");
10161       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
10162       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
10163       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
10164       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
10165         NumVecs = 1; isLaneOp = false; break;
10166       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
10167         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
10168       }
10169     }
10170 
10171     // Find the size of memory referenced by the load/store.
10172     EVT VecTy;
10173     if (isLoadOp) {
10174       VecTy = N->getValueType(0);
10175     } else if (isIntrinsic) {
10176       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
10177     } else {
10178       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
10179       VecTy = N->getOperand(1).getValueType();
10180     }
10181 
10182     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
10183     if (isLaneOp)
10184       NumBytes /= VecTy.getVectorNumElements();
10185 
10186     // If the increment is a constant, it must match the memory ref size.
10187     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10188     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10189       uint64_t IncVal = CInc->getZExtValue();
10190       if (IncVal != NumBytes)
10191         continue;
10192     } else if (NumBytes >= 3 * 16) {
10193       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
10194       // separate instructions that make it harder to use a non-constant update.
10195       continue;
10196     }
10197 
10198     // OK, we found an ADD we can fold into the base update.
10199     // Now, create a _UPD node, taking care of not breaking alignment.
10200 
10201     EVT AlignedVecTy = VecTy;
10202     unsigned Alignment = MemN->getAlignment();
10203 
10204     // If this is a less-than-standard-aligned load/store, change the type to
10205     // match the standard alignment.
10206     // The alignment is overlooked when selecting _UPD variants; and it's
10207     // easier to introduce bitcasts here than fix that.
10208     // There are 3 ways to get to this base-update combine:
10209     // - intrinsics: they are assumed to be properly aligned (to the standard
10210     //   alignment of the memory type), so we don't need to do anything.
10211     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
10212     //   intrinsics, so, likewise, there's nothing to do.
10213     // - generic load/store instructions: the alignment is specified as an
10214     //   explicit operand, rather than implicitly as the standard alignment
10215     //   of the memory type (like the intrisics).  We need to change the
10216     //   memory type to match the explicit alignment.  That way, we don't
10217     //   generate non-standard-aligned ARMISD::VLDx nodes.
10218     if (isa<LSBaseSDNode>(N)) {
10219       if (Alignment == 0)
10220         Alignment = 1;
10221       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
10222         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
10223         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
10224         assert(!isLaneOp && "Unexpected generic load/store lane.");
10225         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
10226         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
10227       }
10228       // Don't set an explicit alignment on regular load/stores that we want
10229       // to transform to VLD/VST 1_UPD nodes.
10230       // This matches the behavior of regular load/stores, which only get an
10231       // explicit alignment if the MMO alignment is larger than the standard
10232       // alignment of the memory type.
10233       // Intrinsics, however, always get an explicit alignment, set to the
10234       // alignment of the MMO.
10235       Alignment = 1;
10236     }
10237 
10238     // Create the new updating load/store node.
10239     // First, create an SDVTList for the new updating node's results.
10240     EVT Tys[6];
10241     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
10242     unsigned n;
10243     for (n = 0; n < NumResultVecs; ++n)
10244       Tys[n] = AlignedVecTy;
10245     Tys[n++] = MVT::i32;
10246     Tys[n] = MVT::Other;
10247     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
10248 
10249     // Then, gather the new node's operands.
10250     SmallVector<SDValue, 8> Ops;
10251     Ops.push_back(N->getOperand(0)); // incoming chain
10252     Ops.push_back(N->getOperand(AddrOpIdx));
10253     Ops.push_back(Inc);
10254 
10255     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
10256       // Try to match the intrinsic's signature
10257       Ops.push_back(StN->getValue());
10258     } else {
10259       // Loads (and of course intrinsics) match the intrinsics' signature,
10260       // so just add all but the alignment operand.
10261       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
10262         Ops.push_back(N->getOperand(i));
10263     }
10264 
10265     // For all node types, the alignment operand is always the last one.
10266     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
10267 
10268     // If this is a non-standard-aligned STORE, the penultimate operand is the
10269     // stored value.  Bitcast it to the aligned type.
10270     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
10271       SDValue &StVal = Ops[Ops.size()-2];
10272       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
10273     }
10274 
10275     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys,
10276                                            Ops, AlignedVecTy,
10277                                            MemN->getMemOperand());
10278 
10279     // Update the uses.
10280     SmallVector<SDValue, 5> NewResults;
10281     for (unsigned i = 0; i < NumResultVecs; ++i)
10282       NewResults.push_back(SDValue(UpdN.getNode(), i));
10283 
10284     // If this is an non-standard-aligned LOAD, the first result is the loaded
10285     // value.  Bitcast it to the expected result type.
10286     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
10287       SDValue &LdVal = NewResults[0];
10288       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
10289     }
10290 
10291     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
10292     DCI.CombineTo(N, NewResults);
10293     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
10294 
10295     break;
10296   }
10297   return SDValue();
10298 }
10299 
10300 static SDValue PerformVLDCombine(SDNode *N,
10301                                  TargetLowering::DAGCombinerInfo &DCI) {
10302   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10303     return SDValue();
10304 
10305   return CombineBaseUpdate(N, DCI);
10306 }
10307 
10308 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
10309 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
10310 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
10311 /// return true.
10312 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
10313   SelectionDAG &DAG = DCI.DAG;
10314   EVT VT = N->getValueType(0);
10315   // vldN-dup instructions only support 64-bit vectors for N > 1.
10316   if (!VT.is64BitVector())
10317     return false;
10318 
10319   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
10320   SDNode *VLD = N->getOperand(0).getNode();
10321   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
10322     return false;
10323   unsigned NumVecs = 0;
10324   unsigned NewOpc = 0;
10325   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
10326   if (IntNo == Intrinsic::arm_neon_vld2lane) {
10327     NumVecs = 2;
10328     NewOpc = ARMISD::VLD2DUP;
10329   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
10330     NumVecs = 3;
10331     NewOpc = ARMISD::VLD3DUP;
10332   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
10333     NumVecs = 4;
10334     NewOpc = ARMISD::VLD4DUP;
10335   } else {
10336     return false;
10337   }
10338 
10339   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
10340   // numbers match the load.
10341   unsigned VLDLaneNo =
10342     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
10343   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
10344        UI != UE; ++UI) {
10345     // Ignore uses of the chain result.
10346     if (UI.getUse().getResNo() == NumVecs)
10347       continue;
10348     SDNode *User = *UI;
10349     if (User->getOpcode() != ARMISD::VDUPLANE ||
10350         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
10351       return false;
10352   }
10353 
10354   // Create the vldN-dup node.
10355   EVT Tys[5];
10356   unsigned n;
10357   for (n = 0; n < NumVecs; ++n)
10358     Tys[n] = VT;
10359   Tys[n] = MVT::Other;
10360   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
10361   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
10362   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
10363   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
10364                                            Ops, VLDMemInt->getMemoryVT(),
10365                                            VLDMemInt->getMemOperand());
10366 
10367   // Update the uses.
10368   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
10369        UI != UE; ++UI) {
10370     unsigned ResNo = UI.getUse().getResNo();
10371     // Ignore uses of the chain result.
10372     if (ResNo == NumVecs)
10373       continue;
10374     SDNode *User = *UI;
10375     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
10376   }
10377 
10378   // Now the vldN-lane intrinsic is dead except for its chain result.
10379   // Update uses of the chain.
10380   std::vector<SDValue> VLDDupResults;
10381   for (unsigned n = 0; n < NumVecs; ++n)
10382     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
10383   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
10384   DCI.CombineTo(VLD, VLDDupResults);
10385 
10386   return true;
10387 }
10388 
10389 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
10390 /// ARMISD::VDUPLANE.
10391 static SDValue PerformVDUPLANECombine(SDNode *N,
10392                                       TargetLowering::DAGCombinerInfo &DCI) {
10393   SDValue Op = N->getOperand(0);
10394 
10395   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
10396   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
10397   if (CombineVLDDUP(N, DCI))
10398     return SDValue(N, 0);
10399 
10400   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
10401   // redundant.  Ignore bit_converts for now; element sizes are checked below.
10402   while (Op.getOpcode() == ISD::BITCAST)
10403     Op = Op.getOperand(0);
10404   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
10405     return SDValue();
10406 
10407   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
10408   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
10409   // The canonical VMOV for a zero vector uses a 32-bit element size.
10410   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10411   unsigned EltBits;
10412   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
10413     EltSize = 8;
10414   EVT VT = N->getValueType(0);
10415   if (EltSize > VT.getVectorElementType().getSizeInBits())
10416     return SDValue();
10417 
10418   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
10419 }
10420 
10421 static SDValue PerformLOADCombine(SDNode *N,
10422                                   TargetLowering::DAGCombinerInfo &DCI) {
10423   EVT VT = N->getValueType(0);
10424 
10425   // If this is a legal vector load, try to combine it into a VLD1_UPD.
10426   if (ISD::isNormalLoad(N) && VT.isVector() &&
10427       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10428     return CombineBaseUpdate(N, DCI);
10429 
10430   return SDValue();
10431 }
10432 
10433 /// PerformSTORECombine - Target-specific dag combine xforms for
10434 /// ISD::STORE.
10435 static SDValue PerformSTORECombine(SDNode *N,
10436                                    TargetLowering::DAGCombinerInfo &DCI) {
10437   StoreSDNode *St = cast<StoreSDNode>(N);
10438   if (St->isVolatile())
10439     return SDValue();
10440 
10441   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
10442   // pack all of the elements in one place.  Next, store to memory in fewer
10443   // chunks.
10444   SDValue StVal = St->getValue();
10445   EVT VT = StVal.getValueType();
10446   if (St->isTruncatingStore() && VT.isVector()) {
10447     SelectionDAG &DAG = DCI.DAG;
10448     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10449     EVT StVT = St->getMemoryVT();
10450     unsigned NumElems = VT.getVectorNumElements();
10451     assert(StVT != VT && "Cannot truncate to the same type");
10452     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
10453     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
10454 
10455     // From, To sizes and ElemCount must be pow of two
10456     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
10457 
10458     // We are going to use the original vector elt for storing.
10459     // Accumulated smaller vector elements must be a multiple of the store size.
10460     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
10461 
10462     unsigned SizeRatio  = FromEltSz / ToEltSz;
10463     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
10464 
10465     // Create a type on which we perform the shuffle.
10466     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
10467                                      NumElems*SizeRatio);
10468     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
10469 
10470     SDLoc DL(St);
10471     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
10472     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
10473     for (unsigned i = 0; i < NumElems; ++i)
10474       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
10475                           ? (i + 1) * SizeRatio - 1
10476                           : i * SizeRatio;
10477 
10478     // Can't shuffle using an illegal type.
10479     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
10480 
10481     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
10482                                 DAG.getUNDEF(WideVec.getValueType()),
10483                                 ShuffleVec);
10484     // At this point all of the data is stored at the bottom of the
10485     // register. We now need to save it to mem.
10486 
10487     // Find the largest store unit
10488     MVT StoreType = MVT::i8;
10489     for (MVT Tp : MVT::integer_valuetypes()) {
10490       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
10491         StoreType = Tp;
10492     }
10493     // Didn't find a legal store type.
10494     if (!TLI.isTypeLegal(StoreType))
10495       return SDValue();
10496 
10497     // Bitcast the original vector into a vector of store-size units
10498     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
10499             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
10500     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
10501     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
10502     SmallVector<SDValue, 8> Chains;
10503     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
10504                                         TLI.getPointerTy(DAG.getDataLayout()));
10505     SDValue BasePtr = St->getBasePtr();
10506 
10507     // Perform one or more big stores into memory.
10508     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
10509     for (unsigned I = 0; I < E; I++) {
10510       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
10511                                    StoreType, ShuffWide,
10512                                    DAG.getIntPtrConstant(I, DL));
10513       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
10514                                 St->getPointerInfo(), St->getAlignment(),
10515                                 St->getMemOperand()->getFlags());
10516       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
10517                             Increment);
10518       Chains.push_back(Ch);
10519     }
10520     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
10521   }
10522 
10523   if (!ISD::isNormalStore(St))
10524     return SDValue();
10525 
10526   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
10527   // ARM stores of arguments in the same cache line.
10528   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
10529       StVal.getNode()->hasOneUse()) {
10530     SelectionDAG  &DAG = DCI.DAG;
10531     bool isBigEndian = DAG.getDataLayout().isBigEndian();
10532     SDLoc DL(St);
10533     SDValue BasePtr = St->getBasePtr();
10534     SDValue NewST1 = DAG.getStore(
10535         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
10536         BasePtr, St->getPointerInfo(), St->getAlignment(),
10537         St->getMemOperand()->getFlags());
10538 
10539     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
10540                                     DAG.getConstant(4, DL, MVT::i32));
10541     return DAG.getStore(NewST1.getValue(0), DL,
10542                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
10543                         OffsetPtr, St->getPointerInfo(),
10544                         std::min(4U, St->getAlignment() / 2),
10545                         St->getMemOperand()->getFlags());
10546   }
10547 
10548   if (StVal.getValueType() == MVT::i64 &&
10549       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10550 
10551     // Bitcast an i64 store extracted from a vector to f64.
10552     // Otherwise, the i64 value will be legalized to a pair of i32 values.
10553     SelectionDAG &DAG = DCI.DAG;
10554     SDLoc dl(StVal);
10555     SDValue IntVec = StVal.getOperand(0);
10556     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
10557                                    IntVec.getValueType().getVectorNumElements());
10558     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
10559     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
10560                                  Vec, StVal.getOperand(1));
10561     dl = SDLoc(N);
10562     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
10563     // Make the DAGCombiner fold the bitcasts.
10564     DCI.AddToWorklist(Vec.getNode());
10565     DCI.AddToWorklist(ExtElt.getNode());
10566     DCI.AddToWorklist(V.getNode());
10567     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
10568                         St->getPointerInfo(), St->getAlignment(),
10569                         St->getMemOperand()->getFlags(), St->getAAInfo());
10570   }
10571 
10572   // If this is a legal vector store, try to combine it into a VST1_UPD.
10573   if (ISD::isNormalStore(N) && VT.isVector() &&
10574       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10575     return CombineBaseUpdate(N, DCI);
10576 
10577   return SDValue();
10578 }
10579 
10580 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
10581 /// can replace combinations of VMUL and VCVT (floating-point to integer)
10582 /// when the VMUL has a constant operand that is a power of 2.
10583 ///
10584 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10585 ///  vmul.f32        d16, d17, d16
10586 ///  vcvt.s32.f32    d16, d16
10587 /// becomes:
10588 ///  vcvt.s32.f32    d16, d16, #3
10589 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
10590                                   const ARMSubtarget *Subtarget) {
10591   if (!Subtarget->hasNEON())
10592     return SDValue();
10593 
10594   SDValue Op = N->getOperand(0);
10595   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
10596       Op.getOpcode() != ISD::FMUL)
10597     return SDValue();
10598 
10599   SDValue ConstVec = Op->getOperand(1);
10600   if (!isa<BuildVectorSDNode>(ConstVec))
10601     return SDValue();
10602 
10603   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
10604   uint32_t FloatBits = FloatTy.getSizeInBits();
10605   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
10606   uint32_t IntBits = IntTy.getSizeInBits();
10607   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10608   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
10609     // These instructions only exist converting from f32 to i32. We can handle
10610     // smaller integers by generating an extra truncate, but larger ones would
10611     // be lossy. We also can't handle more then 4 lanes, since these intructions
10612     // only support v2i32/v4i32 types.
10613     return SDValue();
10614   }
10615 
10616   BitVector UndefElements;
10617   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10618   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
10619   if (C == -1 || C == 0 || C > 32)
10620     return SDValue();
10621 
10622   SDLoc dl(N);
10623   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
10624   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
10625     Intrinsic::arm_neon_vcvtfp2fxu;
10626   SDValue FixConv = DAG.getNode(
10627       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
10628       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
10629       DAG.getConstant(C, dl, MVT::i32));
10630 
10631   if (IntBits < FloatBits)
10632     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
10633 
10634   return FixConv;
10635 }
10636 
10637 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
10638 /// can replace combinations of VCVT (integer to floating-point) and VDIV
10639 /// when the VDIV has a constant operand that is a power of 2.
10640 ///
10641 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10642 ///  vcvt.f32.s32    d16, d16
10643 ///  vdiv.f32        d16, d17, d16
10644 /// becomes:
10645 ///  vcvt.f32.s32    d16, d16, #3
10646 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
10647                                   const ARMSubtarget *Subtarget) {
10648   if (!Subtarget->hasNEON())
10649     return SDValue();
10650 
10651   SDValue Op = N->getOperand(0);
10652   unsigned OpOpcode = Op.getNode()->getOpcode();
10653   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
10654       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
10655     return SDValue();
10656 
10657   SDValue ConstVec = N->getOperand(1);
10658   if (!isa<BuildVectorSDNode>(ConstVec))
10659     return SDValue();
10660 
10661   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
10662   uint32_t FloatBits = FloatTy.getSizeInBits();
10663   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
10664   uint32_t IntBits = IntTy.getSizeInBits();
10665   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10666   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
10667     // These instructions only exist converting from i32 to f32. We can handle
10668     // smaller integers by generating an extra extend, but larger ones would
10669     // be lossy. We also can't handle more then 4 lanes, since these intructions
10670     // only support v2i32/v4i32 types.
10671     return SDValue();
10672   }
10673 
10674   BitVector UndefElements;
10675   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10676   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
10677   if (C == -1 || C == 0 || C > 32)
10678     return SDValue();
10679 
10680   SDLoc dl(N);
10681   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
10682   SDValue ConvInput = Op.getOperand(0);
10683   if (IntBits < FloatBits)
10684     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
10685                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
10686                             ConvInput);
10687 
10688   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
10689     Intrinsic::arm_neon_vcvtfxu2fp;
10690   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
10691                      Op.getValueType(),
10692                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
10693                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
10694 }
10695 
10696 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
10697 /// operand of a vector shift operation, where all the elements of the
10698 /// build_vector must have the same constant integer value.
10699 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
10700   // Ignore bit_converts.
10701   while (Op.getOpcode() == ISD::BITCAST)
10702     Op = Op.getOperand(0);
10703   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
10704   APInt SplatBits, SplatUndef;
10705   unsigned SplatBitSize;
10706   bool HasAnyUndefs;
10707   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
10708                                       HasAnyUndefs, ElementBits) ||
10709       SplatBitSize > ElementBits)
10710     return false;
10711   Cnt = SplatBits.getSExtValue();
10712   return true;
10713 }
10714 
10715 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
10716 /// operand of a vector shift left operation.  That value must be in the range:
10717 ///   0 <= Value < ElementBits for a left shift; or
10718 ///   0 <= Value <= ElementBits for a long left shift.
10719 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
10720   assert(VT.isVector() && "vector shift count is not a vector type");
10721   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
10722   if (! getVShiftImm(Op, ElementBits, Cnt))
10723     return false;
10724   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
10725 }
10726 
10727 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
10728 /// operand of a vector shift right operation.  For a shift opcode, the value
10729 /// is positive, but for an intrinsic the value count must be negative. The
10730 /// absolute value must be in the range:
10731 ///   1 <= |Value| <= ElementBits for a right shift; or
10732 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
10733 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
10734                          int64_t &Cnt) {
10735   assert(VT.isVector() && "vector shift count is not a vector type");
10736   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
10737   if (! getVShiftImm(Op, ElementBits, Cnt))
10738     return false;
10739   if (!isIntrinsic)
10740     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
10741   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
10742     Cnt = -Cnt;
10743     return true;
10744   }
10745   return false;
10746 }
10747 
10748 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
10749 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
10750   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10751   switch (IntNo) {
10752   default:
10753     // Don't do anything for most intrinsics.
10754     break;
10755 
10756   // Vector shifts: check for immediate versions and lower them.
10757   // Note: This is done during DAG combining instead of DAG legalizing because
10758   // the build_vectors for 64-bit vector element shift counts are generally
10759   // not legal, and it is hard to see their values after they get legalized to
10760   // loads from a constant pool.
10761   case Intrinsic::arm_neon_vshifts:
10762   case Intrinsic::arm_neon_vshiftu:
10763   case Intrinsic::arm_neon_vrshifts:
10764   case Intrinsic::arm_neon_vrshiftu:
10765   case Intrinsic::arm_neon_vrshiftn:
10766   case Intrinsic::arm_neon_vqshifts:
10767   case Intrinsic::arm_neon_vqshiftu:
10768   case Intrinsic::arm_neon_vqshiftsu:
10769   case Intrinsic::arm_neon_vqshiftns:
10770   case Intrinsic::arm_neon_vqshiftnu:
10771   case Intrinsic::arm_neon_vqshiftnsu:
10772   case Intrinsic::arm_neon_vqrshiftns:
10773   case Intrinsic::arm_neon_vqrshiftnu:
10774   case Intrinsic::arm_neon_vqrshiftnsu: {
10775     EVT VT = N->getOperand(1).getValueType();
10776     int64_t Cnt;
10777     unsigned VShiftOpc = 0;
10778 
10779     switch (IntNo) {
10780     case Intrinsic::arm_neon_vshifts:
10781     case Intrinsic::arm_neon_vshiftu:
10782       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
10783         VShiftOpc = ARMISD::VSHL;
10784         break;
10785       }
10786       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
10787         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
10788                      ARMISD::VSHRs : ARMISD::VSHRu);
10789         break;
10790       }
10791       return SDValue();
10792 
10793     case Intrinsic::arm_neon_vrshifts:
10794     case Intrinsic::arm_neon_vrshiftu:
10795       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
10796         break;
10797       return SDValue();
10798 
10799     case Intrinsic::arm_neon_vqshifts:
10800     case Intrinsic::arm_neon_vqshiftu:
10801       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
10802         break;
10803       return SDValue();
10804 
10805     case Intrinsic::arm_neon_vqshiftsu:
10806       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
10807         break;
10808       llvm_unreachable("invalid shift count for vqshlu intrinsic");
10809 
10810     case Intrinsic::arm_neon_vrshiftn:
10811     case Intrinsic::arm_neon_vqshiftns:
10812     case Intrinsic::arm_neon_vqshiftnu:
10813     case Intrinsic::arm_neon_vqshiftnsu:
10814     case Intrinsic::arm_neon_vqrshiftns:
10815     case Intrinsic::arm_neon_vqrshiftnu:
10816     case Intrinsic::arm_neon_vqrshiftnsu:
10817       // Narrowing shifts require an immediate right shift.
10818       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
10819         break;
10820       llvm_unreachable("invalid shift count for narrowing vector shift "
10821                        "intrinsic");
10822 
10823     default:
10824       llvm_unreachable("unhandled vector shift");
10825     }
10826 
10827     switch (IntNo) {
10828     case Intrinsic::arm_neon_vshifts:
10829     case Intrinsic::arm_neon_vshiftu:
10830       // Opcode already set above.
10831       break;
10832     case Intrinsic::arm_neon_vrshifts:
10833       VShiftOpc = ARMISD::VRSHRs; break;
10834     case Intrinsic::arm_neon_vrshiftu:
10835       VShiftOpc = ARMISD::VRSHRu; break;
10836     case Intrinsic::arm_neon_vrshiftn:
10837       VShiftOpc = ARMISD::VRSHRN; break;
10838     case Intrinsic::arm_neon_vqshifts:
10839       VShiftOpc = ARMISD::VQSHLs; break;
10840     case Intrinsic::arm_neon_vqshiftu:
10841       VShiftOpc = ARMISD::VQSHLu; break;
10842     case Intrinsic::arm_neon_vqshiftsu:
10843       VShiftOpc = ARMISD::VQSHLsu; break;
10844     case Intrinsic::arm_neon_vqshiftns:
10845       VShiftOpc = ARMISD::VQSHRNs; break;
10846     case Intrinsic::arm_neon_vqshiftnu:
10847       VShiftOpc = ARMISD::VQSHRNu; break;
10848     case Intrinsic::arm_neon_vqshiftnsu:
10849       VShiftOpc = ARMISD::VQSHRNsu; break;
10850     case Intrinsic::arm_neon_vqrshiftns:
10851       VShiftOpc = ARMISD::VQRSHRNs; break;
10852     case Intrinsic::arm_neon_vqrshiftnu:
10853       VShiftOpc = ARMISD::VQRSHRNu; break;
10854     case Intrinsic::arm_neon_vqrshiftnsu:
10855       VShiftOpc = ARMISD::VQRSHRNsu; break;
10856     }
10857 
10858     SDLoc dl(N);
10859     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
10860                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
10861   }
10862 
10863   case Intrinsic::arm_neon_vshiftins: {
10864     EVT VT = N->getOperand(1).getValueType();
10865     int64_t Cnt;
10866     unsigned VShiftOpc = 0;
10867 
10868     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
10869       VShiftOpc = ARMISD::VSLI;
10870     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
10871       VShiftOpc = ARMISD::VSRI;
10872     else {
10873       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
10874     }
10875 
10876     SDLoc dl(N);
10877     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
10878                        N->getOperand(1), N->getOperand(2),
10879                        DAG.getConstant(Cnt, dl, MVT::i32));
10880   }
10881 
10882   case Intrinsic::arm_neon_vqrshifts:
10883   case Intrinsic::arm_neon_vqrshiftu:
10884     // No immediate versions of these to check for.
10885     break;
10886   }
10887 
10888   return SDValue();
10889 }
10890 
10891 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
10892 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
10893 /// combining instead of DAG legalizing because the build_vectors for 64-bit
10894 /// vector element shift counts are generally not legal, and it is hard to see
10895 /// their values after they get legalized to loads from a constant pool.
10896 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
10897                                    const ARMSubtarget *ST) {
10898   EVT VT = N->getValueType(0);
10899   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
10900     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
10901     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
10902     SDValue N1 = N->getOperand(1);
10903     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
10904       SDValue N0 = N->getOperand(0);
10905       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
10906           DAG.MaskedValueIsZero(N0.getOperand(0),
10907                                 APInt::getHighBitsSet(32, 16)))
10908         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
10909     }
10910   }
10911 
10912   // Nothing to be done for scalar shifts.
10913   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10914   if (!VT.isVector() || !TLI.isTypeLegal(VT))
10915     return SDValue();
10916 
10917   assert(ST->hasNEON() && "unexpected vector shift");
10918   int64_t Cnt;
10919 
10920   switch (N->getOpcode()) {
10921   default: llvm_unreachable("unexpected shift opcode");
10922 
10923   case ISD::SHL:
10924     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
10925       SDLoc dl(N);
10926       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
10927                          DAG.getConstant(Cnt, dl, MVT::i32));
10928     }
10929     break;
10930 
10931   case ISD::SRA:
10932   case ISD::SRL:
10933     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
10934       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
10935                             ARMISD::VSHRs : ARMISD::VSHRu);
10936       SDLoc dl(N);
10937       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
10938                          DAG.getConstant(Cnt, dl, MVT::i32));
10939     }
10940   }
10941   return SDValue();
10942 }
10943 
10944 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
10945 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
10946 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
10947                                     const ARMSubtarget *ST) {
10948   SDValue N0 = N->getOperand(0);
10949 
10950   // Check for sign- and zero-extensions of vector extract operations of 8-
10951   // and 16-bit vector elements.  NEON supports these directly.  They are
10952   // handled during DAG combining because type legalization will promote them
10953   // to 32-bit types and it is messy to recognize the operations after that.
10954   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10955     SDValue Vec = N0.getOperand(0);
10956     SDValue Lane = N0.getOperand(1);
10957     EVT VT = N->getValueType(0);
10958     EVT EltVT = N0.getValueType();
10959     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10960 
10961     if (VT == MVT::i32 &&
10962         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
10963         TLI.isTypeLegal(Vec.getValueType()) &&
10964         isa<ConstantSDNode>(Lane)) {
10965 
10966       unsigned Opc = 0;
10967       switch (N->getOpcode()) {
10968       default: llvm_unreachable("unexpected opcode");
10969       case ISD::SIGN_EXTEND:
10970         Opc = ARMISD::VGETLANEs;
10971         break;
10972       case ISD::ZERO_EXTEND:
10973       case ISD::ANY_EXTEND:
10974         Opc = ARMISD::VGETLANEu;
10975         break;
10976       }
10977       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
10978     }
10979   }
10980 
10981   return SDValue();
10982 }
10983 
10984 static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
10985                              APInt &KnownOne) {
10986   if (Op.getOpcode() == ARMISD::BFI) {
10987     // Conservatively, we can recurse down the first operand
10988     // and just mask out all affected bits.
10989     computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
10990 
10991     // The operand to BFI is already a mask suitable for removing the bits it
10992     // sets.
10993     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
10994     const APInt &Mask = CI->getAPIntValue();
10995     KnownZero &= Mask;
10996     KnownOne &= Mask;
10997     return;
10998   }
10999   if (Op.getOpcode() == ARMISD::CMOV) {
11000     APInt KZ2(KnownZero.getBitWidth(), 0);
11001     APInt KO2(KnownOne.getBitWidth(), 0);
11002     computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
11003     computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
11004 
11005     KnownZero &= KZ2;
11006     KnownOne &= KO2;
11007     return;
11008   }
11009   return DAG.computeKnownBits(Op, KnownZero, KnownOne);
11010 }
11011 
11012 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
11013   // If we have a CMOV, OR and AND combination such as:
11014   //   if (x & CN)
11015   //     y |= CM;
11016   //
11017   // And:
11018   //   * CN is a single bit;
11019   //   * All bits covered by CM are known zero in y
11020   //
11021   // Then we can convert this into a sequence of BFI instructions. This will
11022   // always be a win if CM is a single bit, will always be no worse than the
11023   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
11024   // three bits (due to the extra IT instruction).
11025 
11026   SDValue Op0 = CMOV->getOperand(0);
11027   SDValue Op1 = CMOV->getOperand(1);
11028   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
11029   auto CC = CCNode->getAPIntValue().getLimitedValue();
11030   SDValue CmpZ = CMOV->getOperand(4);
11031 
11032   // The compare must be against zero.
11033   if (!isNullConstant(CmpZ->getOperand(1)))
11034     return SDValue();
11035 
11036   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
11037   SDValue And = CmpZ->getOperand(0);
11038   if (And->getOpcode() != ISD::AND)
11039     return SDValue();
11040   ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
11041   if (!AndC || !AndC->getAPIntValue().isPowerOf2())
11042     return SDValue();
11043   SDValue X = And->getOperand(0);
11044 
11045   if (CC == ARMCC::EQ) {
11046     // We're performing an "equal to zero" compare. Swap the operands so we
11047     // canonicalize on a "not equal to zero" compare.
11048     std::swap(Op0, Op1);
11049   } else {
11050     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
11051   }
11052 
11053   if (Op1->getOpcode() != ISD::OR)
11054     return SDValue();
11055 
11056   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
11057   if (!OrC)
11058     return SDValue();
11059   SDValue Y = Op1->getOperand(0);
11060 
11061   if (Op0 != Y)
11062     return SDValue();
11063 
11064   // Now, is it profitable to continue?
11065   APInt OrCI = OrC->getAPIntValue();
11066   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
11067   if (OrCI.countPopulation() > Heuristic)
11068     return SDValue();
11069 
11070   // Lastly, can we determine that the bits defined by OrCI
11071   // are zero in Y?
11072   APInt KnownZero, KnownOne;
11073   computeKnownBits(DAG, Y, KnownZero, KnownOne);
11074   if ((OrCI & KnownZero) != OrCI)
11075     return SDValue();
11076 
11077   // OK, we can do the combine.
11078   SDValue V = Y;
11079   SDLoc dl(X);
11080   EVT VT = X.getValueType();
11081   unsigned BitInX = AndC->getAPIntValue().logBase2();
11082 
11083   if (BitInX != 0) {
11084     // We must shift X first.
11085     X = DAG.getNode(ISD::SRL, dl, VT, X,
11086                     DAG.getConstant(BitInX, dl, VT));
11087   }
11088 
11089   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
11090        BitInY < NumActiveBits; ++BitInY) {
11091     if (OrCI[BitInY] == 0)
11092       continue;
11093     APInt Mask(VT.getSizeInBits(), 0);
11094     Mask.setBit(BitInY);
11095     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
11096                     // Confusingly, the operand is an *inverted* mask.
11097                     DAG.getConstant(~Mask, dl, VT));
11098   }
11099 
11100   return V;
11101 }
11102 
11103 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
11104 SDValue
11105 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
11106   SDValue Cmp = N->getOperand(4);
11107   if (Cmp.getOpcode() != ARMISD::CMPZ)
11108     // Only looking at NE cases.
11109     return SDValue();
11110 
11111   EVT VT = N->getValueType(0);
11112   SDLoc dl(N);
11113   SDValue LHS = Cmp.getOperand(0);
11114   SDValue RHS = Cmp.getOperand(1);
11115   SDValue Chain = N->getOperand(0);
11116   SDValue BB = N->getOperand(1);
11117   SDValue ARMcc = N->getOperand(2);
11118   ARMCC::CondCodes CC =
11119     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
11120 
11121   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
11122   // -> (brcond Chain BB CC CPSR Cmp)
11123   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
11124       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
11125       LHS->getOperand(0)->hasOneUse()) {
11126     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
11127     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
11128     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
11129     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
11130     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
11131         (LHS01C && LHS01C->getZExtValue() == 1) &&
11132         (LHS1C && LHS1C->getZExtValue() == 1) &&
11133         (RHSC && RHSC->getZExtValue() == 0)) {
11134       return DAG.getNode(
11135           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
11136           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
11137     }
11138   }
11139 
11140   return SDValue();
11141 }
11142 
11143 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
11144 SDValue
11145 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
11146   SDValue Cmp = N->getOperand(4);
11147   if (Cmp.getOpcode() != ARMISD::CMPZ)
11148     // Only looking at EQ and NE cases.
11149     return SDValue();
11150 
11151   EVT VT = N->getValueType(0);
11152   SDLoc dl(N);
11153   SDValue LHS = Cmp.getOperand(0);
11154   SDValue RHS = Cmp.getOperand(1);
11155   SDValue FalseVal = N->getOperand(0);
11156   SDValue TrueVal = N->getOperand(1);
11157   SDValue ARMcc = N->getOperand(2);
11158   ARMCC::CondCodes CC =
11159     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
11160 
11161   // BFI is only available on V6T2+.
11162   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
11163     SDValue R = PerformCMOVToBFICombine(N, DAG);
11164     if (R)
11165       return R;
11166   }
11167 
11168   // Simplify
11169   //   mov     r1, r0
11170   //   cmp     r1, x
11171   //   mov     r0, y
11172   //   moveq   r0, x
11173   // to
11174   //   cmp     r0, x
11175   //   movne   r0, y
11176   //
11177   //   mov     r1, r0
11178   //   cmp     r1, x
11179   //   mov     r0, x
11180   //   movne   r0, y
11181   // to
11182   //   cmp     r0, x
11183   //   movne   r0, y
11184   /// FIXME: Turn this into a target neutral optimization?
11185   SDValue Res;
11186   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
11187     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
11188                       N->getOperand(3), Cmp);
11189   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
11190     SDValue ARMcc;
11191     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
11192     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
11193                       N->getOperand(3), NewCmp);
11194   }
11195 
11196   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
11197   // -> (cmov F T CC CPSR Cmp)
11198   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
11199     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
11200     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
11201     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
11202     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
11203         (LHS1C && LHS1C->getZExtValue() == 1) &&
11204         (RHSC && RHSC->getZExtValue() == 0)) {
11205       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
11206                          LHS->getOperand(2), LHS->getOperand(3),
11207                          LHS->getOperand(4));
11208     }
11209   }
11210 
11211   if (Res.getNode()) {
11212     APInt KnownZero, KnownOne;
11213     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
11214     // Capture demanded bits information that would be otherwise lost.
11215     if (KnownZero == 0xfffffffe)
11216       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11217                         DAG.getValueType(MVT::i1));
11218     else if (KnownZero == 0xffffff00)
11219       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11220                         DAG.getValueType(MVT::i8));
11221     else if (KnownZero == 0xffff0000)
11222       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11223                         DAG.getValueType(MVT::i16));
11224   }
11225 
11226   return Res;
11227 }
11228 
11229 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
11230                                              DAGCombinerInfo &DCI) const {
11231   switch (N->getOpcode()) {
11232   default: break;
11233   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
11234   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
11235   case ISD::SUB:        return PerformSUBCombine(N, DCI);
11236   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
11237   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
11238   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
11239   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
11240   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
11241   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
11242   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
11243   case ISD::STORE:      return PerformSTORECombine(N, DCI);
11244   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
11245   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
11246   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
11247   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
11248   case ISD::FP_TO_SINT:
11249   case ISD::FP_TO_UINT:
11250     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
11251   case ISD::FDIV:
11252     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
11253   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
11254   case ISD::SHL:
11255   case ISD::SRA:
11256   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
11257   case ISD::SIGN_EXTEND:
11258   case ISD::ZERO_EXTEND:
11259   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
11260   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
11261   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
11262   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
11263   case ARMISD::VLD2DUP:
11264   case ARMISD::VLD3DUP:
11265   case ARMISD::VLD4DUP:
11266     return PerformVLDCombine(N, DCI);
11267   case ARMISD::BUILD_VECTOR:
11268     return PerformARMBUILD_VECTORCombine(N, DCI);
11269   case ISD::INTRINSIC_VOID:
11270   case ISD::INTRINSIC_W_CHAIN:
11271     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11272     case Intrinsic::arm_neon_vld1:
11273     case Intrinsic::arm_neon_vld2:
11274     case Intrinsic::arm_neon_vld3:
11275     case Intrinsic::arm_neon_vld4:
11276     case Intrinsic::arm_neon_vld2lane:
11277     case Intrinsic::arm_neon_vld3lane:
11278     case Intrinsic::arm_neon_vld4lane:
11279     case Intrinsic::arm_neon_vst1:
11280     case Intrinsic::arm_neon_vst2:
11281     case Intrinsic::arm_neon_vst3:
11282     case Intrinsic::arm_neon_vst4:
11283     case Intrinsic::arm_neon_vst2lane:
11284     case Intrinsic::arm_neon_vst3lane:
11285     case Intrinsic::arm_neon_vst4lane:
11286       return PerformVLDCombine(N, DCI);
11287     default: break;
11288     }
11289     break;
11290   }
11291   return SDValue();
11292 }
11293 
11294 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
11295                                                           EVT VT) const {
11296   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
11297 }
11298 
11299 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11300                                                        unsigned,
11301                                                        unsigned,
11302                                                        bool *Fast) const {
11303   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
11304   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
11305 
11306   switch (VT.getSimpleVT().SimpleTy) {
11307   default:
11308     return false;
11309   case MVT::i8:
11310   case MVT::i16:
11311   case MVT::i32: {
11312     // Unaligned access can use (for example) LRDB, LRDH, LDR
11313     if (AllowsUnaligned) {
11314       if (Fast)
11315         *Fast = Subtarget->hasV7Ops();
11316       return true;
11317     }
11318     return false;
11319   }
11320   case MVT::f64:
11321   case MVT::v2f64: {
11322     // For any little-endian targets with neon, we can support unaligned ld/st
11323     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
11324     // A big-endian target may also explicitly support unaligned accesses
11325     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
11326       if (Fast)
11327         *Fast = true;
11328       return true;
11329     }
11330     return false;
11331   }
11332   }
11333 }
11334 
11335 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
11336                        unsigned AlignCheck) {
11337   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
11338           (DstAlign == 0 || DstAlign % AlignCheck == 0));
11339 }
11340 
11341 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
11342                                            unsigned DstAlign, unsigned SrcAlign,
11343                                            bool IsMemset, bool ZeroMemset,
11344                                            bool MemcpyStrSrc,
11345                                            MachineFunction &MF) const {
11346   const Function *F = MF.getFunction();
11347 
11348   // See if we can use NEON instructions for this...
11349   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
11350       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11351     bool Fast;
11352     if (Size >= 16 &&
11353         (memOpAlign(SrcAlign, DstAlign, 16) ||
11354          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
11355       return MVT::v2f64;
11356     } else if (Size >= 8 &&
11357                (memOpAlign(SrcAlign, DstAlign, 8) ||
11358                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
11359                  Fast))) {
11360       return MVT::f64;
11361     }
11362   }
11363 
11364   // Lowering to i32/i16 if the size permits.
11365   if (Size >= 4)
11366     return MVT::i32;
11367   else if (Size >= 2)
11368     return MVT::i16;
11369 
11370   // Let the target-independent logic figure it out.
11371   return MVT::Other;
11372 }
11373 
11374 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11375   if (Val.getOpcode() != ISD::LOAD)
11376     return false;
11377 
11378   EVT VT1 = Val.getValueType();
11379   if (!VT1.isSimple() || !VT1.isInteger() ||
11380       !VT2.isSimple() || !VT2.isInteger())
11381     return false;
11382 
11383   switch (VT1.getSimpleVT().SimpleTy) {
11384   default: break;
11385   case MVT::i1:
11386   case MVT::i8:
11387   case MVT::i16:
11388     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
11389     return true;
11390   }
11391 
11392   return false;
11393 }
11394 
11395 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
11396   EVT VT = ExtVal.getValueType();
11397 
11398   if (!isTypeLegal(VT))
11399     return false;
11400 
11401   // Don't create a loadext if we can fold the extension into a wide/long
11402   // instruction.
11403   // If there's more than one user instruction, the loadext is desirable no
11404   // matter what.  There can be two uses by the same instruction.
11405   if (ExtVal->use_empty() ||
11406       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
11407     return true;
11408 
11409   SDNode *U = *ExtVal->use_begin();
11410   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
11411        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
11412     return false;
11413 
11414   return true;
11415 }
11416 
11417 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
11418   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11419     return false;
11420 
11421   if (!isTypeLegal(EVT::getEVT(Ty1)))
11422     return false;
11423 
11424   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
11425 
11426   // Assuming the caller doesn't have a zeroext or signext return parameter,
11427   // truncation all the way down to i1 is valid.
11428   return true;
11429 }
11430 
11431 
11432 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
11433   if (V < 0)
11434     return false;
11435 
11436   unsigned Scale = 1;
11437   switch (VT.getSimpleVT().SimpleTy) {
11438   default: return false;
11439   case MVT::i1:
11440   case MVT::i8:
11441     // Scale == 1;
11442     break;
11443   case MVT::i16:
11444     // Scale == 2;
11445     Scale = 2;
11446     break;
11447   case MVT::i32:
11448     // Scale == 4;
11449     Scale = 4;
11450     break;
11451   }
11452 
11453   if ((V & (Scale - 1)) != 0)
11454     return false;
11455   V /= Scale;
11456   return V == (V & ((1LL << 5) - 1));
11457 }
11458 
11459 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
11460                                       const ARMSubtarget *Subtarget) {
11461   bool isNeg = false;
11462   if (V < 0) {
11463     isNeg = true;
11464     V = - V;
11465   }
11466 
11467   switch (VT.getSimpleVT().SimpleTy) {
11468   default: return false;
11469   case MVT::i1:
11470   case MVT::i8:
11471   case MVT::i16:
11472   case MVT::i32:
11473     // + imm12 or - imm8
11474     if (isNeg)
11475       return V == (V & ((1LL << 8) - 1));
11476     return V == (V & ((1LL << 12) - 1));
11477   case MVT::f32:
11478   case MVT::f64:
11479     // Same as ARM mode. FIXME: NEON?
11480     if (!Subtarget->hasVFP2())
11481       return false;
11482     if ((V & 3) != 0)
11483       return false;
11484     V >>= 2;
11485     return V == (V & ((1LL << 8) - 1));
11486   }
11487 }
11488 
11489 /// isLegalAddressImmediate - Return true if the integer value can be used
11490 /// as the offset of the target addressing mode for load / store of the
11491 /// given type.
11492 static bool isLegalAddressImmediate(int64_t V, EVT VT,
11493                                     const ARMSubtarget *Subtarget) {
11494   if (V == 0)
11495     return true;
11496 
11497   if (!VT.isSimple())
11498     return false;
11499 
11500   if (Subtarget->isThumb1Only())
11501     return isLegalT1AddressImmediate(V, VT);
11502   else if (Subtarget->isThumb2())
11503     return isLegalT2AddressImmediate(V, VT, Subtarget);
11504 
11505   // ARM mode.
11506   if (V < 0)
11507     V = - V;
11508   switch (VT.getSimpleVT().SimpleTy) {
11509   default: return false;
11510   case MVT::i1:
11511   case MVT::i8:
11512   case MVT::i32:
11513     // +- imm12
11514     return V == (V & ((1LL << 12) - 1));
11515   case MVT::i16:
11516     // +- imm8
11517     return V == (V & ((1LL << 8) - 1));
11518   case MVT::f32:
11519   case MVT::f64:
11520     if (!Subtarget->hasVFP2()) // FIXME: NEON?
11521       return false;
11522     if ((V & 3) != 0)
11523       return false;
11524     V >>= 2;
11525     return V == (V & ((1LL << 8) - 1));
11526   }
11527 }
11528 
11529 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
11530                                                       EVT VT) const {
11531   int Scale = AM.Scale;
11532   if (Scale < 0)
11533     return false;
11534 
11535   switch (VT.getSimpleVT().SimpleTy) {
11536   default: return false;
11537   case MVT::i1:
11538   case MVT::i8:
11539   case MVT::i16:
11540   case MVT::i32:
11541     if (Scale == 1)
11542       return true;
11543     // r + r << imm
11544     Scale = Scale & ~1;
11545     return Scale == 2 || Scale == 4 || Scale == 8;
11546   case MVT::i64:
11547     // r + r
11548     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11549       return true;
11550     return false;
11551   case MVT::isVoid:
11552     // Note, we allow "void" uses (basically, uses that aren't loads or
11553     // stores), because arm allows folding a scale into many arithmetic
11554     // operations.  This should be made more precise and revisited later.
11555 
11556     // Allow r << imm, but the imm has to be a multiple of two.
11557     if (Scale & 1) return false;
11558     return isPowerOf2_32(Scale);
11559   }
11560 }
11561 
11562 /// isLegalAddressingMode - Return true if the addressing mode represented
11563 /// by AM is legal for this target, for a load/store of the specified type.
11564 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11565                                               const AddrMode &AM, Type *Ty,
11566                                               unsigned AS) const {
11567   EVT VT = getValueType(DL, Ty, true);
11568   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
11569     return false;
11570 
11571   // Can never fold addr of global into load/store.
11572   if (AM.BaseGV)
11573     return false;
11574 
11575   switch (AM.Scale) {
11576   case 0:  // no scale reg, must be "r+i" or "r", or "i".
11577     break;
11578   case 1:
11579     if (Subtarget->isThumb1Only())
11580       return false;
11581     LLVM_FALLTHROUGH;
11582   default:
11583     // ARM doesn't support any R+R*scale+imm addr modes.
11584     if (AM.BaseOffs)
11585       return false;
11586 
11587     if (!VT.isSimple())
11588       return false;
11589 
11590     if (Subtarget->isThumb2())
11591       return isLegalT2ScaledAddressingMode(AM, VT);
11592 
11593     int Scale = AM.Scale;
11594     switch (VT.getSimpleVT().SimpleTy) {
11595     default: return false;
11596     case MVT::i1:
11597     case MVT::i8:
11598     case MVT::i32:
11599       if (Scale < 0) Scale = -Scale;
11600       if (Scale == 1)
11601         return true;
11602       // r + r << imm
11603       return isPowerOf2_32(Scale & ~1);
11604     case MVT::i16:
11605     case MVT::i64:
11606       // r + r
11607       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11608         return true;
11609       return false;
11610 
11611     case MVT::isVoid:
11612       // Note, we allow "void" uses (basically, uses that aren't loads or
11613       // stores), because arm allows folding a scale into many arithmetic
11614       // operations.  This should be made more precise and revisited later.
11615 
11616       // Allow r << imm, but the imm has to be a multiple of two.
11617       if (Scale & 1) return false;
11618       return isPowerOf2_32(Scale);
11619     }
11620   }
11621   return true;
11622 }
11623 
11624 /// isLegalICmpImmediate - Return true if the specified immediate is legal
11625 /// icmp immediate, that is the target has icmp instructions which can compare
11626 /// a register against the immediate without having to materialize the
11627 /// immediate into a register.
11628 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11629   // Thumb2 and ARM modes can use cmn for negative immediates.
11630   if (!Subtarget->isThumb())
11631     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
11632   if (Subtarget->isThumb2())
11633     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
11634   // Thumb1 doesn't have cmn, and only 8-bit immediates.
11635   return Imm >= 0 && Imm <= 255;
11636 }
11637 
11638 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
11639 /// *or sub* immediate, that is the target has add or sub instructions which can
11640 /// add a register with the immediate without having to materialize the
11641 /// immediate into a register.
11642 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11643   // Same encoding for add/sub, just flip the sign.
11644   int64_t AbsImm = std::abs(Imm);
11645   if (!Subtarget->isThumb())
11646     return ARM_AM::getSOImmVal(AbsImm) != -1;
11647   if (Subtarget->isThumb2())
11648     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
11649   // Thumb1 only has 8-bit unsigned immediate.
11650   return AbsImm >= 0 && AbsImm <= 255;
11651 }
11652 
11653 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
11654                                       bool isSEXTLoad, SDValue &Base,
11655                                       SDValue &Offset, bool &isInc,
11656                                       SelectionDAG &DAG) {
11657   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
11658     return false;
11659 
11660   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
11661     // AddressingMode 3
11662     Base = Ptr->getOperand(0);
11663     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11664       int RHSC = (int)RHS->getZExtValue();
11665       if (RHSC < 0 && RHSC > -256) {
11666         assert(Ptr->getOpcode() == ISD::ADD);
11667         isInc = false;
11668         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11669         return true;
11670       }
11671     }
11672     isInc = (Ptr->getOpcode() == ISD::ADD);
11673     Offset = Ptr->getOperand(1);
11674     return true;
11675   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
11676     // AddressingMode 2
11677     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11678       int RHSC = (int)RHS->getZExtValue();
11679       if (RHSC < 0 && RHSC > -0x1000) {
11680         assert(Ptr->getOpcode() == ISD::ADD);
11681         isInc = false;
11682         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11683         Base = Ptr->getOperand(0);
11684         return true;
11685       }
11686     }
11687 
11688     if (Ptr->getOpcode() == ISD::ADD) {
11689       isInc = true;
11690       ARM_AM::ShiftOpc ShOpcVal=
11691         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
11692       if (ShOpcVal != ARM_AM::no_shift) {
11693         Base = Ptr->getOperand(1);
11694         Offset = Ptr->getOperand(0);
11695       } else {
11696         Base = Ptr->getOperand(0);
11697         Offset = Ptr->getOperand(1);
11698       }
11699       return true;
11700     }
11701 
11702     isInc = (Ptr->getOpcode() == ISD::ADD);
11703     Base = Ptr->getOperand(0);
11704     Offset = Ptr->getOperand(1);
11705     return true;
11706   }
11707 
11708   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
11709   return false;
11710 }
11711 
11712 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
11713                                      bool isSEXTLoad, SDValue &Base,
11714                                      SDValue &Offset, bool &isInc,
11715                                      SelectionDAG &DAG) {
11716   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
11717     return false;
11718 
11719   Base = Ptr->getOperand(0);
11720   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11721     int RHSC = (int)RHS->getZExtValue();
11722     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
11723       assert(Ptr->getOpcode() == ISD::ADD);
11724       isInc = false;
11725       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11726       return true;
11727     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
11728       isInc = Ptr->getOpcode() == ISD::ADD;
11729       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
11730       return true;
11731     }
11732   }
11733 
11734   return false;
11735 }
11736 
11737 /// getPreIndexedAddressParts - returns true by value, base pointer and
11738 /// offset pointer and addressing mode by reference if the node's address
11739 /// can be legally represented as pre-indexed load / store address.
11740 bool
11741 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11742                                              SDValue &Offset,
11743                                              ISD::MemIndexedMode &AM,
11744                                              SelectionDAG &DAG) const {
11745   if (Subtarget->isThumb1Only())
11746     return false;
11747 
11748   EVT VT;
11749   SDValue Ptr;
11750   bool isSEXTLoad = false;
11751   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11752     Ptr = LD->getBasePtr();
11753     VT  = LD->getMemoryVT();
11754     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
11755   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11756     Ptr = ST->getBasePtr();
11757     VT  = ST->getMemoryVT();
11758   } else
11759     return false;
11760 
11761   bool isInc;
11762   bool isLegal = false;
11763   if (Subtarget->isThumb2())
11764     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
11765                                        Offset, isInc, DAG);
11766   else
11767     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
11768                                         Offset, isInc, DAG);
11769   if (!isLegal)
11770     return false;
11771 
11772   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
11773   return true;
11774 }
11775 
11776 /// getPostIndexedAddressParts - returns true by value, base pointer and
11777 /// offset pointer and addressing mode by reference if this node can be
11778 /// combined with a load / store to form a post-indexed load / store.
11779 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
11780                                                    SDValue &Base,
11781                                                    SDValue &Offset,
11782                                                    ISD::MemIndexedMode &AM,
11783                                                    SelectionDAG &DAG) const {
11784   EVT VT;
11785   SDValue Ptr;
11786   bool isSEXTLoad = false, isNonExt;
11787   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11788     VT  = LD->getMemoryVT();
11789     Ptr = LD->getBasePtr();
11790     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
11791     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
11792   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11793     VT  = ST->getMemoryVT();
11794     Ptr = ST->getBasePtr();
11795     isNonExt = !ST->isTruncatingStore();
11796   } else
11797     return false;
11798 
11799   if (Subtarget->isThumb1Only()) {
11800     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
11801     // must be non-extending/truncating, i32, with an offset of 4.
11802     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
11803     if (Op->getOpcode() != ISD::ADD || !isNonExt)
11804       return false;
11805     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11806     if (!RHS || RHS->getZExtValue() != 4)
11807       return false;
11808 
11809     Offset = Op->getOperand(1);
11810     Base = Op->getOperand(0);
11811     AM = ISD::POST_INC;
11812     return true;
11813   }
11814 
11815   bool isInc;
11816   bool isLegal = false;
11817   if (Subtarget->isThumb2())
11818     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
11819                                        isInc, DAG);
11820   else
11821     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
11822                                         isInc, DAG);
11823   if (!isLegal)
11824     return false;
11825 
11826   if (Ptr != Base) {
11827     // Swap base ptr and offset to catch more post-index load / store when
11828     // it's legal. In Thumb2 mode, offset must be an immediate.
11829     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
11830         !Subtarget->isThumb2())
11831       std::swap(Base, Offset);
11832 
11833     // Post-indexed load / store update the base pointer.
11834     if (Ptr != Base)
11835       return false;
11836   }
11837 
11838   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
11839   return true;
11840 }
11841 
11842 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11843                                                       APInt &KnownZero,
11844                                                       APInt &KnownOne,
11845                                                       const SelectionDAG &DAG,
11846                                                       unsigned Depth) const {
11847   unsigned BitWidth = KnownOne.getBitWidth();
11848   KnownZero = KnownOne = APInt(BitWidth, 0);
11849   switch (Op.getOpcode()) {
11850   default: break;
11851   case ARMISD::ADDC:
11852   case ARMISD::ADDE:
11853   case ARMISD::SUBC:
11854   case ARMISD::SUBE:
11855     // These nodes' second result is a boolean
11856     if (Op.getResNo() == 0)
11857       break;
11858     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
11859     break;
11860   case ARMISD::CMOV: {
11861     // Bits are known zero/one if known on the LHS and RHS.
11862     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
11863     if (KnownZero == 0 && KnownOne == 0) return;
11864 
11865     APInt KnownZeroRHS, KnownOneRHS;
11866     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
11867     KnownZero &= KnownZeroRHS;
11868     KnownOne  &= KnownOneRHS;
11869     return;
11870   }
11871   case ISD::INTRINSIC_W_CHAIN: {
11872     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
11873     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
11874     switch (IntID) {
11875     default: return;
11876     case Intrinsic::arm_ldaex:
11877     case Intrinsic::arm_ldrex: {
11878       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
11879       unsigned MemBits = VT.getScalarType().getSizeInBits();
11880       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
11881       return;
11882     }
11883     }
11884   }
11885   }
11886 }
11887 
11888 //===----------------------------------------------------------------------===//
11889 //                           ARM Inline Assembly Support
11890 //===----------------------------------------------------------------------===//
11891 
11892 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
11893   // Looking for "rev" which is V6+.
11894   if (!Subtarget->hasV6Ops())
11895     return false;
11896 
11897   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11898   std::string AsmStr = IA->getAsmString();
11899   SmallVector<StringRef, 4> AsmPieces;
11900   SplitString(AsmStr, AsmPieces, ";\n");
11901 
11902   switch (AsmPieces.size()) {
11903   default: return false;
11904   case 1:
11905     AsmStr = AsmPieces[0];
11906     AsmPieces.clear();
11907     SplitString(AsmStr, AsmPieces, " \t,");
11908 
11909     // rev $0, $1
11910     if (AsmPieces.size() == 3 &&
11911         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
11912         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
11913       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11914       if (Ty && Ty->getBitWidth() == 32)
11915         return IntrinsicLowering::LowerToByteSwap(CI);
11916     }
11917     break;
11918   }
11919 
11920   return false;
11921 }
11922 
11923 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
11924   // At this point, we have to lower this constraint to something else, so we
11925   // lower it to an "r" or "w". However, by doing this we will force the result
11926   // to be in register, while the X constraint is much more permissive.
11927   //
11928   // Although we are correct (we are free to emit anything, without
11929   // constraints), we might break use cases that would expect us to be more
11930   // efficient and emit something else.
11931   if (!Subtarget->hasVFP2())
11932     return "r";
11933   if (ConstraintVT.isFloatingPoint())
11934     return "w";
11935   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
11936      (ConstraintVT.getSizeInBits() == 64 ||
11937       ConstraintVT.getSizeInBits() == 128))
11938     return "w";
11939 
11940   return "r";
11941 }
11942 
11943 /// getConstraintType - Given a constraint letter, return the type of
11944 /// constraint it is for this target.
11945 ARMTargetLowering::ConstraintType
11946 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
11947   if (Constraint.size() == 1) {
11948     switch (Constraint[0]) {
11949     default:  break;
11950     case 'l': return C_RegisterClass;
11951     case 'w': return C_RegisterClass;
11952     case 'h': return C_RegisterClass;
11953     case 'x': return C_RegisterClass;
11954     case 't': return C_RegisterClass;
11955     case 'j': return C_Other; // Constant for movw.
11956       // An address with a single base register. Due to the way we
11957       // currently handle addresses it is the same as an 'r' memory constraint.
11958     case 'Q': return C_Memory;
11959     }
11960   } else if (Constraint.size() == 2) {
11961     switch (Constraint[0]) {
11962     default: break;
11963     // All 'U+' constraints are addresses.
11964     case 'U': return C_Memory;
11965     }
11966   }
11967   return TargetLowering::getConstraintType(Constraint);
11968 }
11969 
11970 /// Examine constraint type and operand type and determine a weight value.
11971 /// This object must already have been set up with the operand type
11972 /// and the current alternative constraint selected.
11973 TargetLowering::ConstraintWeight
11974 ARMTargetLowering::getSingleConstraintMatchWeight(
11975     AsmOperandInfo &info, const char *constraint) const {
11976   ConstraintWeight weight = CW_Invalid;
11977   Value *CallOperandVal = info.CallOperandVal;
11978     // If we don't have a value, we can't do a match,
11979     // but allow it at the lowest weight.
11980   if (!CallOperandVal)
11981     return CW_Default;
11982   Type *type = CallOperandVal->getType();
11983   // Look at the constraint type.
11984   switch (*constraint) {
11985   default:
11986     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11987     break;
11988   case 'l':
11989     if (type->isIntegerTy()) {
11990       if (Subtarget->isThumb())
11991         weight = CW_SpecificReg;
11992       else
11993         weight = CW_Register;
11994     }
11995     break;
11996   case 'w':
11997     if (type->isFloatingPointTy())
11998       weight = CW_Register;
11999     break;
12000   }
12001   return weight;
12002 }
12003 
12004 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
12005 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
12006     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
12007   if (Constraint.size() == 1) {
12008     // GCC ARM Constraint Letters
12009     switch (Constraint[0]) {
12010     case 'l': // Low regs or general regs.
12011       if (Subtarget->isThumb())
12012         return RCPair(0U, &ARM::tGPRRegClass);
12013       return RCPair(0U, &ARM::GPRRegClass);
12014     case 'h': // High regs or no regs.
12015       if (Subtarget->isThumb())
12016         return RCPair(0U, &ARM::hGPRRegClass);
12017       break;
12018     case 'r':
12019       if (Subtarget->isThumb1Only())
12020         return RCPair(0U, &ARM::tGPRRegClass);
12021       return RCPair(0U, &ARM::GPRRegClass);
12022     case 'w':
12023       if (VT == MVT::Other)
12024         break;
12025       if (VT == MVT::f32)
12026         return RCPair(0U, &ARM::SPRRegClass);
12027       if (VT.getSizeInBits() == 64)
12028         return RCPair(0U, &ARM::DPRRegClass);
12029       if (VT.getSizeInBits() == 128)
12030         return RCPair(0U, &ARM::QPRRegClass);
12031       break;
12032     case 'x':
12033       if (VT == MVT::Other)
12034         break;
12035       if (VT == MVT::f32)
12036         return RCPair(0U, &ARM::SPR_8RegClass);
12037       if (VT.getSizeInBits() == 64)
12038         return RCPair(0U, &ARM::DPR_8RegClass);
12039       if (VT.getSizeInBits() == 128)
12040         return RCPair(0U, &ARM::QPR_8RegClass);
12041       break;
12042     case 't':
12043       if (VT == MVT::f32)
12044         return RCPair(0U, &ARM::SPRRegClass);
12045       break;
12046     }
12047   }
12048   if (StringRef("{cc}").equals_lower(Constraint))
12049     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
12050 
12051   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12052 }
12053 
12054 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12055 /// vector.  If it is invalid, don't add anything to Ops.
12056 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12057                                                      std::string &Constraint,
12058                                                      std::vector<SDValue>&Ops,
12059                                                      SelectionDAG &DAG) const {
12060   SDValue Result;
12061 
12062   // Currently only support length 1 constraints.
12063   if (Constraint.length() != 1) return;
12064 
12065   char ConstraintLetter = Constraint[0];
12066   switch (ConstraintLetter) {
12067   default: break;
12068   case 'j':
12069   case 'I': case 'J': case 'K': case 'L':
12070   case 'M': case 'N': case 'O':
12071     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
12072     if (!C)
12073       return;
12074 
12075     int64_t CVal64 = C->getSExtValue();
12076     int CVal = (int) CVal64;
12077     // None of these constraints allow values larger than 32 bits.  Check
12078     // that the value fits in an int.
12079     if (CVal != CVal64)
12080       return;
12081 
12082     switch (ConstraintLetter) {
12083       case 'j':
12084         // Constant suitable for movw, must be between 0 and
12085         // 65535.
12086         if (Subtarget->hasV6T2Ops())
12087           if (CVal >= 0 && CVal <= 65535)
12088             break;
12089         return;
12090       case 'I':
12091         if (Subtarget->isThumb1Only()) {
12092           // This must be a constant between 0 and 255, for ADD
12093           // immediates.
12094           if (CVal >= 0 && CVal <= 255)
12095             break;
12096         } else if (Subtarget->isThumb2()) {
12097           // A constant that can be used as an immediate value in a
12098           // data-processing instruction.
12099           if (ARM_AM::getT2SOImmVal(CVal) != -1)
12100             break;
12101         } else {
12102           // A constant that can be used as an immediate value in a
12103           // data-processing instruction.
12104           if (ARM_AM::getSOImmVal(CVal) != -1)
12105             break;
12106         }
12107         return;
12108 
12109       case 'J':
12110         if (Subtarget->isThumb1Only()) {
12111           // This must be a constant between -255 and -1, for negated ADD
12112           // immediates. This can be used in GCC with an "n" modifier that
12113           // prints the negated value, for use with SUB instructions. It is
12114           // not useful otherwise but is implemented for compatibility.
12115           if (CVal >= -255 && CVal <= -1)
12116             break;
12117         } else {
12118           // This must be a constant between -4095 and 4095. It is not clear
12119           // what this constraint is intended for. Implemented for
12120           // compatibility with GCC.
12121           if (CVal >= -4095 && CVal <= 4095)
12122             break;
12123         }
12124         return;
12125 
12126       case 'K':
12127         if (Subtarget->isThumb1Only()) {
12128           // A 32-bit value where only one byte has a nonzero value. Exclude
12129           // zero to match GCC. This constraint is used by GCC internally for
12130           // constants that can be loaded with a move/shift combination.
12131           // It is not useful otherwise but is implemented for compatibility.
12132           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
12133             break;
12134         } else if (Subtarget->isThumb2()) {
12135           // A constant whose bitwise inverse can be used as an immediate
12136           // value in a data-processing instruction. This can be used in GCC
12137           // with a "B" modifier that prints the inverted value, for use with
12138           // BIC and MVN instructions. It is not useful otherwise but is
12139           // implemented for compatibility.
12140           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
12141             break;
12142         } else {
12143           // A constant whose bitwise inverse can be used as an immediate
12144           // value in a data-processing instruction. This can be used in GCC
12145           // with a "B" modifier that prints the inverted value, for use with
12146           // BIC and MVN instructions. It is not useful otherwise but is
12147           // implemented for compatibility.
12148           if (ARM_AM::getSOImmVal(~CVal) != -1)
12149             break;
12150         }
12151         return;
12152 
12153       case 'L':
12154         if (Subtarget->isThumb1Only()) {
12155           // This must be a constant between -7 and 7,
12156           // for 3-operand ADD/SUB immediate instructions.
12157           if (CVal >= -7 && CVal < 7)
12158             break;
12159         } else if (Subtarget->isThumb2()) {
12160           // A constant whose negation can be used as an immediate value in a
12161           // data-processing instruction. This can be used in GCC with an "n"
12162           // modifier that prints the negated value, for use with SUB
12163           // instructions. It is not useful otherwise but is implemented for
12164           // compatibility.
12165           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
12166             break;
12167         } else {
12168           // A constant whose negation can be used as an immediate value in a
12169           // data-processing instruction. This can be used in GCC with an "n"
12170           // modifier that prints the negated value, for use with SUB
12171           // instructions. It is not useful otherwise but is implemented for
12172           // compatibility.
12173           if (ARM_AM::getSOImmVal(-CVal) != -1)
12174             break;
12175         }
12176         return;
12177 
12178       case 'M':
12179         if (Subtarget->isThumb1Only()) {
12180           // This must be a multiple of 4 between 0 and 1020, for
12181           // ADD sp + immediate.
12182           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
12183             break;
12184         } else {
12185           // A power of two or a constant between 0 and 32.  This is used in
12186           // GCC for the shift amount on shifted register operands, but it is
12187           // useful in general for any shift amounts.
12188           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
12189             break;
12190         }
12191         return;
12192 
12193       case 'N':
12194         if (Subtarget->isThumb()) {  // FIXME thumb2
12195           // This must be a constant between 0 and 31, for shift amounts.
12196           if (CVal >= 0 && CVal <= 31)
12197             break;
12198         }
12199         return;
12200 
12201       case 'O':
12202         if (Subtarget->isThumb()) {  // FIXME thumb2
12203           // This must be a multiple of 4 between -508 and 508, for
12204           // ADD/SUB sp = sp + immediate.
12205           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
12206             break;
12207         }
12208         return;
12209     }
12210     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
12211     break;
12212   }
12213 
12214   if (Result.getNode()) {
12215     Ops.push_back(Result);
12216     return;
12217   }
12218   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12219 }
12220 
12221 static RTLIB::Libcall getDivRemLibcall(
12222     const SDNode *N, MVT::SimpleValueType SVT) {
12223   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
12224           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
12225          "Unhandled Opcode in getDivRemLibcall");
12226   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
12227                   N->getOpcode() == ISD::SREM;
12228   RTLIB::Libcall LC;
12229   switch (SVT) {
12230   default: llvm_unreachable("Unexpected request for libcall!");
12231   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
12232   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
12233   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
12234   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
12235   }
12236   return LC;
12237 }
12238 
12239 static TargetLowering::ArgListTy getDivRemArgList(
12240     const SDNode *N, LLVMContext *Context) {
12241   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
12242           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
12243          "Unhandled Opcode in getDivRemArgList");
12244   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
12245                   N->getOpcode() == ISD::SREM;
12246   TargetLowering::ArgListTy Args;
12247   TargetLowering::ArgListEntry Entry;
12248   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
12249     EVT ArgVT = N->getOperand(i).getValueType();
12250     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
12251     Entry.Node = N->getOperand(i);
12252     Entry.Ty = ArgTy;
12253     Entry.isSExt = isSigned;
12254     Entry.isZExt = !isSigned;
12255     Args.push_back(Entry);
12256   }
12257   return Args;
12258 }
12259 
12260 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
12261   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
12262           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI()) &&
12263          "Register-based DivRem lowering only");
12264   unsigned Opcode = Op->getOpcode();
12265   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
12266          "Invalid opcode for Div/Rem lowering");
12267   bool isSigned = (Opcode == ISD::SDIVREM);
12268   EVT VT = Op->getValueType(0);
12269   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
12270 
12271   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
12272                                        VT.getSimpleVT().SimpleTy);
12273   SDValue InChain = DAG.getEntryNode();
12274 
12275   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
12276                                                     DAG.getContext());
12277 
12278   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
12279                                          getPointerTy(DAG.getDataLayout()));
12280 
12281   Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
12282 
12283   SDLoc dl(Op);
12284   TargetLowering::CallLoweringInfo CLI(DAG);
12285   CLI.setDebugLoc(dl).setChain(InChain)
12286     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
12287     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
12288 
12289   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
12290   return CallInfo.first;
12291 }
12292 
12293 // Lowers REM using divmod helpers
12294 // see RTABI section 4.2/4.3
12295 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
12296   // Build return types (div and rem)
12297   std::vector<Type*> RetTyParams;
12298   Type *RetTyElement;
12299 
12300   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
12301   default: llvm_unreachable("Unexpected request for libcall!");
12302   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
12303   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
12304   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
12305   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
12306   }
12307 
12308   RetTyParams.push_back(RetTyElement);
12309   RetTyParams.push_back(RetTyElement);
12310   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
12311   Type *RetTy = StructType::get(*DAG.getContext(), ret);
12312 
12313   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
12314                                                              SimpleTy);
12315   SDValue InChain = DAG.getEntryNode();
12316   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext());
12317   bool isSigned = N->getOpcode() == ISD::SREM;
12318   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
12319                                          getPointerTy(DAG.getDataLayout()));
12320 
12321   // Lower call
12322   CallLoweringInfo CLI(DAG);
12323   CLI.setChain(InChain)
12324      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
12325      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
12326   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12327 
12328   // Return second (rem) result operand (first contains div)
12329   SDNode *ResNode = CallResult.first.getNode();
12330   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
12331   return ResNode->getOperand(1);
12332 }
12333 
12334 SDValue
12335 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
12336   assert(Subtarget->isTargetWindows() && "unsupported target platform");
12337   SDLoc DL(Op);
12338 
12339   // Get the inputs.
12340   SDValue Chain = Op.getOperand(0);
12341   SDValue Size  = Op.getOperand(1);
12342 
12343   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
12344                               DAG.getConstant(2, DL, MVT::i32));
12345 
12346   SDValue Flag;
12347   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
12348   Flag = Chain.getValue(1);
12349 
12350   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
12351   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
12352 
12353   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
12354   Chain = NewSP.getValue(1);
12355 
12356   SDValue Ops[2] = { NewSP, Chain };
12357   return DAG.getMergeValues(Ops, DL);
12358 }
12359 
12360 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
12361   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
12362          "Unexpected type for custom-lowering FP_EXTEND");
12363 
12364   RTLIB::Libcall LC;
12365   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
12366 
12367   SDValue SrcVal = Op.getOperand(0);
12368   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
12369                      SDLoc(Op)).first;
12370 }
12371 
12372 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
12373   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
12374          Subtarget->isFPOnlySP() &&
12375          "Unexpected type for custom-lowering FP_ROUND");
12376 
12377   RTLIB::Libcall LC;
12378   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
12379 
12380   SDValue SrcVal = Op.getOperand(0);
12381   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
12382                      SDLoc(Op)).first;
12383 }
12384 
12385 bool
12386 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
12387   // The ARM target isn't yet aware of offsets.
12388   return false;
12389 }
12390 
12391 bool ARM::isBitFieldInvertedMask(unsigned v) {
12392   if (v == 0xffffffff)
12393     return false;
12394 
12395   // there can be 1's on either or both "outsides", all the "inside"
12396   // bits must be 0's
12397   return isShiftedMask_32(~v);
12398 }
12399 
12400 /// isFPImmLegal - Returns true if the target can instruction select the
12401 /// specified FP immediate natively. If false, the legalizer will
12402 /// materialize the FP immediate as a load from a constant pool.
12403 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
12404   if (!Subtarget->hasVFP3())
12405     return false;
12406   if (VT == MVT::f32)
12407     return ARM_AM::getFP32Imm(Imm) != -1;
12408   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
12409     return ARM_AM::getFP64Imm(Imm) != -1;
12410   return false;
12411 }
12412 
12413 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
12414 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
12415 /// specified in the intrinsic calls.
12416 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
12417                                            const CallInst &I,
12418                                            unsigned Intrinsic) const {
12419   switch (Intrinsic) {
12420   case Intrinsic::arm_neon_vld1:
12421   case Intrinsic::arm_neon_vld2:
12422   case Intrinsic::arm_neon_vld3:
12423   case Intrinsic::arm_neon_vld4:
12424   case Intrinsic::arm_neon_vld2lane:
12425   case Intrinsic::arm_neon_vld3lane:
12426   case Intrinsic::arm_neon_vld4lane: {
12427     Info.opc = ISD::INTRINSIC_W_CHAIN;
12428     // Conservatively set memVT to the entire set of vectors loaded.
12429     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12430     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
12431     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12432     Info.ptrVal = I.getArgOperand(0);
12433     Info.offset = 0;
12434     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12435     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12436     Info.vol = false; // volatile loads with NEON intrinsics not supported
12437     Info.readMem = true;
12438     Info.writeMem = false;
12439     return true;
12440   }
12441   case Intrinsic::arm_neon_vst1:
12442   case Intrinsic::arm_neon_vst2:
12443   case Intrinsic::arm_neon_vst3:
12444   case Intrinsic::arm_neon_vst4:
12445   case Intrinsic::arm_neon_vst2lane:
12446   case Intrinsic::arm_neon_vst3lane:
12447   case Intrinsic::arm_neon_vst4lane: {
12448     Info.opc = ISD::INTRINSIC_VOID;
12449     // Conservatively set memVT to the entire set of vectors stored.
12450     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12451     unsigned NumElts = 0;
12452     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
12453       Type *ArgTy = I.getArgOperand(ArgI)->getType();
12454       if (!ArgTy->isVectorTy())
12455         break;
12456       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
12457     }
12458     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12459     Info.ptrVal = I.getArgOperand(0);
12460     Info.offset = 0;
12461     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12462     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12463     Info.vol = false; // volatile stores with NEON intrinsics not supported
12464     Info.readMem = false;
12465     Info.writeMem = true;
12466     return true;
12467   }
12468   case Intrinsic::arm_ldaex:
12469   case Intrinsic::arm_ldrex: {
12470     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12471     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
12472     Info.opc = ISD::INTRINSIC_W_CHAIN;
12473     Info.memVT = MVT::getVT(PtrTy->getElementType());
12474     Info.ptrVal = I.getArgOperand(0);
12475     Info.offset = 0;
12476     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12477     Info.vol = true;
12478     Info.readMem = true;
12479     Info.writeMem = false;
12480     return true;
12481   }
12482   case Intrinsic::arm_stlex:
12483   case Intrinsic::arm_strex: {
12484     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12485     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
12486     Info.opc = ISD::INTRINSIC_W_CHAIN;
12487     Info.memVT = MVT::getVT(PtrTy->getElementType());
12488     Info.ptrVal = I.getArgOperand(1);
12489     Info.offset = 0;
12490     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12491     Info.vol = true;
12492     Info.readMem = false;
12493     Info.writeMem = true;
12494     return true;
12495   }
12496   case Intrinsic::arm_stlexd:
12497   case Intrinsic::arm_strexd: {
12498     Info.opc = ISD::INTRINSIC_W_CHAIN;
12499     Info.memVT = MVT::i64;
12500     Info.ptrVal = I.getArgOperand(2);
12501     Info.offset = 0;
12502     Info.align = 8;
12503     Info.vol = true;
12504     Info.readMem = false;
12505     Info.writeMem = true;
12506     return true;
12507   }
12508   case Intrinsic::arm_ldaexd:
12509   case Intrinsic::arm_ldrexd: {
12510     Info.opc = ISD::INTRINSIC_W_CHAIN;
12511     Info.memVT = MVT::i64;
12512     Info.ptrVal = I.getArgOperand(0);
12513     Info.offset = 0;
12514     Info.align = 8;
12515     Info.vol = true;
12516     Info.readMem = true;
12517     Info.writeMem = false;
12518     return true;
12519   }
12520   default:
12521     break;
12522   }
12523 
12524   return false;
12525 }
12526 
12527 /// \brief Returns true if it is beneficial to convert a load of a constant
12528 /// to just the constant itself.
12529 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
12530                                                           Type *Ty) const {
12531   assert(Ty->isIntegerTy());
12532 
12533   unsigned Bits = Ty->getPrimitiveSizeInBits();
12534   if (Bits == 0 || Bits > 32)
12535     return false;
12536   return true;
12537 }
12538 
12539 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
12540                                         ARM_MB::MemBOpt Domain) const {
12541   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12542 
12543   // First, if the target has no DMB, see what fallback we can use.
12544   if (!Subtarget->hasDataBarrier()) {
12545     // Some ARMv6 cpus can support data barriers with an mcr instruction.
12546     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
12547     // here.
12548     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
12549       Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
12550       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
12551                         Builder.getInt32(0), Builder.getInt32(7),
12552                         Builder.getInt32(10), Builder.getInt32(5)};
12553       return Builder.CreateCall(MCR, args);
12554     } else {
12555       // Instead of using barriers, atomic accesses on these subtargets use
12556       // libcalls.
12557       llvm_unreachable("makeDMB on a target so old that it has no barriers");
12558     }
12559   } else {
12560     Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
12561     // Only a full system barrier exists in the M-class architectures.
12562     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
12563     Constant *CDomain = Builder.getInt32(Domain);
12564     return Builder.CreateCall(DMB, CDomain);
12565   }
12566 }
12567 
12568 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
12569 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
12570                                          AtomicOrdering Ord, bool IsStore,
12571                                          bool IsLoad) const {
12572   switch (Ord) {
12573   case AtomicOrdering::NotAtomic:
12574   case AtomicOrdering::Unordered:
12575     llvm_unreachable("Invalid fence: unordered/non-atomic");
12576   case AtomicOrdering::Monotonic:
12577   case AtomicOrdering::Acquire:
12578     return nullptr; // Nothing to do
12579   case AtomicOrdering::SequentiallyConsistent:
12580     if (!IsStore)
12581       return nullptr; // Nothing to do
12582     /*FALLTHROUGH*/
12583   case AtomicOrdering::Release:
12584   case AtomicOrdering::AcquireRelease:
12585     if (Subtarget->preferISHSTBarriers())
12586       return makeDMB(Builder, ARM_MB::ISHST);
12587     // FIXME: add a comment with a link to documentation justifying this.
12588     else
12589       return makeDMB(Builder, ARM_MB::ISH);
12590   }
12591   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
12592 }
12593 
12594 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
12595                                           AtomicOrdering Ord, bool IsStore,
12596                                           bool IsLoad) const {
12597   switch (Ord) {
12598   case AtomicOrdering::NotAtomic:
12599   case AtomicOrdering::Unordered:
12600     llvm_unreachable("Invalid fence: unordered/not-atomic");
12601   case AtomicOrdering::Monotonic:
12602   case AtomicOrdering::Release:
12603     return nullptr; // Nothing to do
12604   case AtomicOrdering::Acquire:
12605   case AtomicOrdering::AcquireRelease:
12606   case AtomicOrdering::SequentiallyConsistent:
12607     return makeDMB(Builder, ARM_MB::ISH);
12608   }
12609   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
12610 }
12611 
12612 // Loads and stores less than 64-bits are already atomic; ones above that
12613 // are doomed anyway, so defer to the default libcall and blame the OS when
12614 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
12615 // anything for those.
12616 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
12617   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
12618   return (Size == 64) && !Subtarget->isMClass();
12619 }
12620 
12621 // Loads and stores less than 64-bits are already atomic; ones above that
12622 // are doomed anyway, so defer to the default libcall and blame the OS when
12623 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
12624 // anything for those.
12625 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
12626 // guarantee, see DDI0406C ARM architecture reference manual,
12627 // sections A8.8.72-74 LDRD)
12628 TargetLowering::AtomicExpansionKind
12629 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
12630   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
12631   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
12632                                                   : AtomicExpansionKind::None;
12633 }
12634 
12635 // For the real atomic operations, we have ldrex/strex up to 32 bits,
12636 // and up to 64 bits on the non-M profiles
12637 TargetLowering::AtomicExpansionKind
12638 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12639   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12640   return (Size <= (Subtarget->isMClass() ? 32U : 64U))
12641              ? AtomicExpansionKind::LLSC
12642              : AtomicExpansionKind::None;
12643 }
12644 
12645 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
12646     AtomicCmpXchgInst *AI) const {
12647   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
12648   // implement cmpxchg without spilling. If the address being exchanged is also
12649   // on the stack and close enough to the spill slot, this can lead to a
12650   // situation where the monitor always gets cleared and the atomic operation
12651   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
12652   return getTargetMachine().getOptLevel() != 0;
12653 }
12654 
12655 bool ARMTargetLowering::shouldInsertFencesForAtomic(
12656     const Instruction *I) const {
12657   return InsertFencesForAtomic;
12658 }
12659 
12660 // This has so far only been implemented for MachO.
12661 bool ARMTargetLowering::useLoadStackGuardNode() const {
12662   return Subtarget->isTargetMachO();
12663 }
12664 
12665 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
12666                                                   unsigned &Cost) const {
12667   // If we do not have NEON, vector types are not natively supported.
12668   if (!Subtarget->hasNEON())
12669     return false;
12670 
12671   // Floating point values and vector values map to the same register file.
12672   // Therefore, although we could do a store extract of a vector type, this is
12673   // better to leave at float as we have more freedom in the addressing mode for
12674   // those.
12675   if (VectorTy->isFPOrFPVectorTy())
12676     return false;
12677 
12678   // If the index is unknown at compile time, this is very expensive to lower
12679   // and it is not possible to combine the store with the extract.
12680   if (!isa<ConstantInt>(Idx))
12681     return false;
12682 
12683   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
12684   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
12685   // We can do a store + vector extract on any vector that fits perfectly in a D
12686   // or Q register.
12687   if (BitWidth == 64 || BitWidth == 128) {
12688     Cost = 0;
12689     return true;
12690   }
12691   return false;
12692 }
12693 
12694 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
12695   return Subtarget->hasV6T2Ops();
12696 }
12697 
12698 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
12699   return Subtarget->hasV6T2Ops();
12700 }
12701 
12702 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
12703                                          AtomicOrdering Ord) const {
12704   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12705   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
12706   bool IsAcquire = isAcquireOrStronger(Ord);
12707 
12708   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
12709   // intrinsic must return {i32, i32} and we have to recombine them into a
12710   // single i64 here.
12711   if (ValTy->getPrimitiveSizeInBits() == 64) {
12712     Intrinsic::ID Int =
12713         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
12714     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
12715 
12716     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12717     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
12718 
12719     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
12720     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
12721     if (!Subtarget->isLittle())
12722       std::swap (Lo, Hi);
12723     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
12724     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
12725     return Builder.CreateOr(
12726         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
12727   }
12728 
12729   Type *Tys[] = { Addr->getType() };
12730   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
12731   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
12732 
12733   return Builder.CreateTruncOrBitCast(
12734       Builder.CreateCall(Ldrex, Addr),
12735       cast<PointerType>(Addr->getType())->getElementType());
12736 }
12737 
12738 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
12739     IRBuilder<> &Builder) const {
12740   if (!Subtarget->hasV7Ops())
12741     return;
12742   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12743   Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
12744 }
12745 
12746 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
12747                                                Value *Addr,
12748                                                AtomicOrdering Ord) const {
12749   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12750   bool IsRelease = isReleaseOrStronger(Ord);
12751 
12752   // Since the intrinsics must have legal type, the i64 intrinsics take two
12753   // parameters: "i32, i32". We must marshal Val into the appropriate form
12754   // before the call.
12755   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
12756     Intrinsic::ID Int =
12757         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
12758     Function *Strex = Intrinsic::getDeclaration(M, Int);
12759     Type *Int32Ty = Type::getInt32Ty(M->getContext());
12760 
12761     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
12762     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
12763     if (!Subtarget->isLittle())
12764       std::swap (Lo, Hi);
12765     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12766     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
12767   }
12768 
12769   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
12770   Type *Tys[] = { Addr->getType() };
12771   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
12772 
12773   return Builder.CreateCall(
12774       Strex, {Builder.CreateZExtOrBitCast(
12775                   Val, Strex->getFunctionType()->getParamType(0)),
12776               Addr});
12777 }
12778 
12779 /// \brief Lower an interleaved load into a vldN intrinsic.
12780 ///
12781 /// E.g. Lower an interleaved load (Factor = 2):
12782 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
12783 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
12784 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
12785 ///
12786 ///      Into:
12787 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
12788 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
12789 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
12790 bool ARMTargetLowering::lowerInterleavedLoad(
12791     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
12792     ArrayRef<unsigned> Indices, unsigned Factor) const {
12793   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
12794          "Invalid interleave factor");
12795   assert(!Shuffles.empty() && "Empty shufflevector input");
12796   assert(Shuffles.size() == Indices.size() &&
12797          "Unmatched number of shufflevectors and indices");
12798 
12799   VectorType *VecTy = Shuffles[0]->getType();
12800   Type *EltTy = VecTy->getVectorElementType();
12801 
12802   const DataLayout &DL = LI->getModule()->getDataLayout();
12803   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
12804   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
12805 
12806   // Skip if we do not have NEON and skip illegal vector types and vector types
12807   // with i64/f64 elements (vldN doesn't support i64/f64 elements).
12808   if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
12809     return false;
12810 
12811   // A pointer vector can not be the return type of the ldN intrinsics. Need to
12812   // load integer vectors first and then convert to pointer vectors.
12813   if (EltTy->isPointerTy())
12814     VecTy =
12815         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
12816 
12817   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
12818                                             Intrinsic::arm_neon_vld3,
12819                                             Intrinsic::arm_neon_vld4};
12820 
12821   IRBuilder<> Builder(LI);
12822   SmallVector<Value *, 2> Ops;
12823 
12824   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
12825   Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
12826   Ops.push_back(Builder.getInt32(LI->getAlignment()));
12827 
12828   Type *Tys[] = { VecTy, Int8Ptr };
12829   Function *VldnFunc =
12830       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
12831   CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
12832 
12833   // Replace uses of each shufflevector with the corresponding vector loaded
12834   // by ldN.
12835   for (unsigned i = 0; i < Shuffles.size(); i++) {
12836     ShuffleVectorInst *SV = Shuffles[i];
12837     unsigned Index = Indices[i];
12838 
12839     Value *SubVec = Builder.CreateExtractValue(VldN, Index);
12840 
12841     // Convert the integer vector to pointer vector if the element is pointer.
12842     if (EltTy->isPointerTy())
12843       SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
12844 
12845     SV->replaceAllUsesWith(SubVec);
12846   }
12847 
12848   return true;
12849 }
12850 
12851 /// \brief Get a mask consisting of sequential integers starting from \p Start.
12852 ///
12853 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
12854 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
12855                                    unsigned NumElts) {
12856   SmallVector<Constant *, 16> Mask;
12857   for (unsigned i = 0; i < NumElts; i++)
12858     Mask.push_back(Builder.getInt32(Start + i));
12859 
12860   return ConstantVector::get(Mask);
12861 }
12862 
12863 /// \brief Lower an interleaved store into a vstN intrinsic.
12864 ///
12865 /// E.g. Lower an interleaved store (Factor = 3):
12866 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
12867 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
12868 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
12869 ///
12870 ///      Into:
12871 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
12872 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
12873 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
12874 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
12875 ///
12876 /// Note that the new shufflevectors will be removed and we'll only generate one
12877 /// vst3 instruction in CodeGen.
12878 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
12879                                               ShuffleVectorInst *SVI,
12880                                               unsigned Factor) const {
12881   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
12882          "Invalid interleave factor");
12883 
12884   VectorType *VecTy = SVI->getType();
12885   assert(VecTy->getVectorNumElements() % Factor == 0 &&
12886          "Invalid interleaved store");
12887 
12888   unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
12889   Type *EltTy = VecTy->getVectorElementType();
12890   VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
12891 
12892   const DataLayout &DL = SI->getModule()->getDataLayout();
12893   unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
12894   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
12895 
12896   // Skip if we do not have NEON and skip illegal vector types and vector types
12897   // with i64/f64 elements (vstN doesn't support i64/f64 elements).
12898   if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
12899       EltIs64Bits)
12900     return false;
12901 
12902   Value *Op0 = SVI->getOperand(0);
12903   Value *Op1 = SVI->getOperand(1);
12904   IRBuilder<> Builder(SI);
12905 
12906   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
12907   // vectors to integer vectors.
12908   if (EltTy->isPointerTy()) {
12909     Type *IntTy = DL.getIntPtrType(EltTy);
12910 
12911     // Convert to the corresponding integer vector.
12912     Type *IntVecTy =
12913         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
12914     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
12915     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
12916 
12917     SubVecTy = VectorType::get(IntTy, NumSubElts);
12918   }
12919 
12920   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
12921                                              Intrinsic::arm_neon_vst3,
12922                                              Intrinsic::arm_neon_vst4};
12923   SmallVector<Value *, 6> Ops;
12924 
12925   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
12926   Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
12927 
12928   Type *Tys[] = { Int8Ptr, SubVecTy };
12929   Function *VstNFunc = Intrinsic::getDeclaration(
12930       SI->getModule(), StoreInts[Factor - 2], Tys);
12931 
12932   // Split the shufflevector operands into sub vectors for the new vstN call.
12933   for (unsigned i = 0; i < Factor; i++)
12934     Ops.push_back(Builder.CreateShuffleVector(
12935         Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
12936 
12937   Ops.push_back(Builder.getInt32(SI->getAlignment()));
12938   Builder.CreateCall(VstNFunc, Ops);
12939   return true;
12940 }
12941 
12942 enum HABaseType {
12943   HA_UNKNOWN = 0,
12944   HA_FLOAT,
12945   HA_DOUBLE,
12946   HA_VECT64,
12947   HA_VECT128
12948 };
12949 
12950 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
12951                                    uint64_t &Members) {
12952   if (auto *ST = dyn_cast<StructType>(Ty)) {
12953     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
12954       uint64_t SubMembers = 0;
12955       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
12956         return false;
12957       Members += SubMembers;
12958     }
12959   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
12960     uint64_t SubMembers = 0;
12961     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
12962       return false;
12963     Members += SubMembers * AT->getNumElements();
12964   } else if (Ty->isFloatTy()) {
12965     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
12966       return false;
12967     Members = 1;
12968     Base = HA_FLOAT;
12969   } else if (Ty->isDoubleTy()) {
12970     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
12971       return false;
12972     Members = 1;
12973     Base = HA_DOUBLE;
12974   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
12975     Members = 1;
12976     switch (Base) {
12977     case HA_FLOAT:
12978     case HA_DOUBLE:
12979       return false;
12980     case HA_VECT64:
12981       return VT->getBitWidth() == 64;
12982     case HA_VECT128:
12983       return VT->getBitWidth() == 128;
12984     case HA_UNKNOWN:
12985       switch (VT->getBitWidth()) {
12986       case 64:
12987         Base = HA_VECT64;
12988         return true;
12989       case 128:
12990         Base = HA_VECT128;
12991         return true;
12992       default:
12993         return false;
12994       }
12995     }
12996   }
12997 
12998   return (Members > 0 && Members <= 4);
12999 }
13000 
13001 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
13002 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
13003 /// passing according to AAPCS rules.
13004 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
13005     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
13006   if (getEffectiveCallingConv(CallConv, isVarArg) !=
13007       CallingConv::ARM_AAPCS_VFP)
13008     return false;
13009 
13010   HABaseType Base = HA_UNKNOWN;
13011   uint64_t Members = 0;
13012   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
13013   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
13014 
13015   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
13016   return IsHA || IsIntArray;
13017 }
13018 
13019 unsigned ARMTargetLowering::getExceptionPointerRegister(
13020     const Constant *PersonalityFn) const {
13021   // Platforms which do not use SjLj EH may return values in these registers
13022   // via the personality function.
13023   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
13024 }
13025 
13026 unsigned ARMTargetLowering::getExceptionSelectorRegister(
13027     const Constant *PersonalityFn) const {
13028   // Platforms which do not use SjLj EH may return values in these registers
13029   // via the personality function.
13030   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
13031 }
13032 
13033 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13034   // Update IsSplitCSR in ARMFunctionInfo.
13035   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
13036   AFI->setIsSplitCSR(true);
13037 }
13038 
13039 void ARMTargetLowering::insertCopiesSplitCSR(
13040     MachineBasicBlock *Entry,
13041     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
13042   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
13043   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
13044   if (!IStart)
13045     return;
13046 
13047   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
13048   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
13049   MachineBasicBlock::iterator MBBI = Entry->begin();
13050   for (const MCPhysReg *I = IStart; *I; ++I) {
13051     const TargetRegisterClass *RC = nullptr;
13052     if (ARM::GPRRegClass.contains(*I))
13053       RC = &ARM::GPRRegClass;
13054     else if (ARM::DPRRegClass.contains(*I))
13055       RC = &ARM::DPRRegClass;
13056     else
13057       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13058 
13059     unsigned NewVR = MRI->createVirtualRegister(RC);
13060     // Create copy from CSR to a virtual register.
13061     // FIXME: this currently does not emit CFI pseudo-instructions, it works
13062     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13063     // nounwind. If we want to generalize this later, we may need to emit
13064     // CFI pseudo-instructions.
13065     assert(Entry->getParent()->getFunction()->hasFnAttribute(
13066                Attribute::NoUnwind) &&
13067            "Function should be nounwind in insertCopiesSplitCSR!");
13068     Entry->addLiveIn(*I);
13069     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
13070         .addReg(*I);
13071 
13072     // Insert the copy-back instructions right before the terminator.
13073     for (auto *Exit : Exits)
13074       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
13075               TII->get(TargetOpcode::COPY), *I)
13076           .addReg(NewVR);
13077   }
13078 }
13079