1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMISelLowering.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMRegisterInfo.h"
23 #include "ARMSelectionDAGInfo.h"
24 #include "ARMSubtarget.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/VectorUtils.h"
43 #include "llvm/CodeGen/CallingConvLower.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcalls.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGNodes.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InlineAsm.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
114 
115 using namespace llvm;
116 
117 #define DEBUG_TYPE "arm-isel"
118 
119 STATISTIC(NumTailCalls, "Number of tail calls");
120 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
121 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
122 STATISTIC(NumConstpoolPromoted,
123   "Number of constants with their storage promoted into constant pools");
124 
125 static cl::opt<bool>
126 ARMInterworking("arm-interworking", cl::Hidden,
127   cl::desc("Enable / disable ARM interworking (for debugging only)"),
128   cl::init(true));
129 
130 static cl::opt<bool> EnableConstpoolPromotion(
131     "arm-promote-constant", cl::Hidden,
132     cl::desc("Enable / disable promotion of unnamed_addr constants into "
133              "constant pools"),
134     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
135 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
136     "arm-promote-constant-max-size", cl::Hidden,
137     cl::desc("Maximum size of constant to promote into a constant pool"),
138     cl::init(64));
139 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
140     "arm-promote-constant-max-total", cl::Hidden,
141     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
142     cl::init(128));
143 
144 // The APCS parameter registers.
145 static const MCPhysReg GPRArgRegs[] = {
146   ARM::R0, ARM::R1, ARM::R2, ARM::R3
147 };
148 
149 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
150                                        MVT PromotedBitwiseVT) {
151   if (VT != PromotedLdStVT) {
152     setOperationAction(ISD::LOAD, VT, Promote);
153     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
154 
155     setOperationAction(ISD::STORE, VT, Promote);
156     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
157   }
158 
159   MVT ElemTy = VT.getVectorElementType();
160   if (ElemTy != MVT::f64)
161     setOperationAction(ISD::SETCC, VT, Custom);
162   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
163   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
164   if (ElemTy == MVT::i32) {
165     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
166     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
167     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
168     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
169   } else {
170     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
171     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
172     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
173     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
174   }
175   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
176   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
177   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
178   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
179   setOperationAction(ISD::SELECT,            VT, Expand);
180   setOperationAction(ISD::SELECT_CC,         VT, Expand);
181   setOperationAction(ISD::VSELECT,           VT, Expand);
182   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
183   if (VT.isInteger()) {
184     setOperationAction(ISD::SHL, VT, Custom);
185     setOperationAction(ISD::SRA, VT, Custom);
186     setOperationAction(ISD::SRL, VT, Custom);
187   }
188 
189   // Promote all bit-wise operations.
190   if (VT.isInteger() && VT != PromotedBitwiseVT) {
191     setOperationAction(ISD::AND, VT, Promote);
192     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
193     setOperationAction(ISD::OR,  VT, Promote);
194     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
195     setOperationAction(ISD::XOR, VT, Promote);
196     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
197   }
198 
199   // Neon does not support vector divide/remainder operations.
200   setOperationAction(ISD::SDIV, VT, Expand);
201   setOperationAction(ISD::UDIV, VT, Expand);
202   setOperationAction(ISD::FDIV, VT, Expand);
203   setOperationAction(ISD::SREM, VT, Expand);
204   setOperationAction(ISD::UREM, VT, Expand);
205   setOperationAction(ISD::FREM, VT, Expand);
206 
207   if (!VT.isFloatingPoint() &&
208       VT != MVT::v2i64 && VT != MVT::v1i64)
209     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
210       setOperationAction(Opcode, VT, Legal);
211 }
212 
213 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
214   addRegisterClass(VT, &ARM::DPRRegClass);
215   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
216 }
217 
218 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
219   addRegisterClass(VT, &ARM::DPairRegClass);
220   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
221 }
222 
223 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
224                                      const ARMSubtarget &STI)
225     : TargetLowering(TM), Subtarget(&STI) {
226   RegInfo = Subtarget->getRegisterInfo();
227   Itins = Subtarget->getInstrItineraryData();
228 
229   setBooleanContents(ZeroOrOneBooleanContent);
230   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
231 
232   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
233       !Subtarget->isTargetWatchOS()) {
234     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
235     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
236       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
237                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
238                                        : CallingConv::ARM_AAPCS);
239   }
240 
241   if (Subtarget->isTargetMachO()) {
242     // Uses VFP for Thumb libfuncs if available.
243     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
244         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
245       static const struct {
246         const RTLIB::Libcall Op;
247         const char * const Name;
248         const ISD::CondCode Cond;
249       } LibraryCalls[] = {
250         // Single-precision floating-point arithmetic.
251         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
252         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
253         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
254         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
255 
256         // Double-precision floating-point arithmetic.
257         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
258         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
259         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
260         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
261 
262         // Single-precision comparisons.
263         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
264         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
265         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
266         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
267         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
268         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
269         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
270         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
271 
272         // Double-precision comparisons.
273         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
274         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
275         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
276         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
277         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
278         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
279         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
280         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
281 
282         // Floating-point to integer conversions.
283         // i64 conversions are done via library routines even when generating VFP
284         // instructions, so use the same ones.
285         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
286         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
287         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
288         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
289 
290         // Conversions between floating types.
291         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
292         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
293 
294         // Integer to floating-point conversions.
295         // i64 conversions are done via library routines even when generating VFP
296         // instructions, so use the same ones.
297         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
298         // e.g., __floatunsidf vs. __floatunssidfvfp.
299         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
300         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
301         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
302         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
303       };
304 
305       for (const auto &LC : LibraryCalls) {
306         setLibcallName(LC.Op, LC.Name);
307         if (LC.Cond != ISD::SETCC_INVALID)
308           setCmpLibcallCC(LC.Op, LC.Cond);
309       }
310     }
311 
312     // Set the correct calling convention for ARMv7k WatchOS. It's just
313     // AAPCS_VFP for functions as simple as libcalls.
314     if (Subtarget->isTargetWatchABI()) {
315       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
316         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
317     }
318   }
319 
320   // These libcalls are not available in 32-bit.
321   setLibcallName(RTLIB::SHL_I128, nullptr);
322   setLibcallName(RTLIB::SRL_I128, nullptr);
323   setLibcallName(RTLIB::SRA_I128, nullptr);
324 
325   // RTLIB
326   if (Subtarget->isAAPCS_ABI() &&
327       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
328        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
329     static const struct {
330       const RTLIB::Libcall Op;
331       const char * const Name;
332       const CallingConv::ID CC;
333       const ISD::CondCode Cond;
334     } LibraryCalls[] = {
335       // Double-precision floating-point arithmetic helper functions
336       // RTABI chapter 4.1.2, Table 2
337       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
340       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
341 
342       // Double-precision floating-point comparison helper functions
343       // RTABI chapter 4.1.2, Table 3
344       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
345       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
346       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
347       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
348       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
349       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
350       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
351       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
352 
353       // Single-precision floating-point arithmetic helper functions
354       // RTABI chapter 4.1.2, Table 4
355       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
356       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
357       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
358       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
359 
360       // Single-precision floating-point comparison helper functions
361       // RTABI chapter 4.1.2, Table 5
362       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
363       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
364       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
365       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
366       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
367       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
368       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
369       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
370 
371       // Floating-point to integer conversions.
372       // RTABI chapter 4.1.2, Table 6
373       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
374       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
375       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
376       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
377       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
378       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
379       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
380       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
381 
382       // Conversions between floating types.
383       // RTABI chapter 4.1.2, Table 7
384       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
385       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
386       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
387 
388       // Integer to floating-point conversions.
389       // RTABI chapter 4.1.2, Table 8
390       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
391       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
392       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
393       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
394       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
395       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
396       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
397       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
398 
399       // Long long helper functions
400       // RTABI chapter 4.2, Table 9
401       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
402       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
403       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
404       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
405 
406       // Integer division functions
407       // RTABI chapter 4.3.1
408       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
409       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
410       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
411       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
412       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
413       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
414       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
415       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
416     };
417 
418     for (const auto &LC : LibraryCalls) {
419       setLibcallName(LC.Op, LC.Name);
420       setLibcallCallingConv(LC.Op, LC.CC);
421       if (LC.Cond != ISD::SETCC_INVALID)
422         setCmpLibcallCC(LC.Op, LC.Cond);
423     }
424 
425     // EABI dependent RTLIB
426     if (TM.Options.EABIVersion == EABI::EABI4 ||
427         TM.Options.EABIVersion == EABI::EABI5) {
428       static const struct {
429         const RTLIB::Libcall Op;
430         const char *const Name;
431         const CallingConv::ID CC;
432         const ISD::CondCode Cond;
433       } MemOpsLibraryCalls[] = {
434         // Memory operations
435         // RTABI chapter 4.3.4
436         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
437         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
438         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
439       };
440 
441       for (const auto &LC : MemOpsLibraryCalls) {
442         setLibcallName(LC.Op, LC.Name);
443         setLibcallCallingConv(LC.Op, LC.CC);
444         if (LC.Cond != ISD::SETCC_INVALID)
445           setCmpLibcallCC(LC.Op, LC.Cond);
446       }
447     }
448   }
449 
450   if (Subtarget->isTargetWindows()) {
451     static const struct {
452       const RTLIB::Libcall Op;
453       const char * const Name;
454       const CallingConv::ID CC;
455     } LibraryCalls[] = {
456       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
457       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
458       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
459       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
460       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
461       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
462       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
463       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
464     };
465 
466     for (const auto &LC : LibraryCalls) {
467       setLibcallName(LC.Op, LC.Name);
468       setLibcallCallingConv(LC.Op, LC.CC);
469     }
470   }
471 
472   // Use divmod compiler-rt calls for iOS 5.0 and later.
473   if (Subtarget->isTargetMachO() &&
474       !(Subtarget->isTargetIOS() &&
475         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
476     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
477     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
478   }
479 
480   // The half <-> float conversion functions are always soft-float on
481   // non-watchos platforms, but are needed for some targets which use a
482   // hard-float calling convention by default.
483   if (!Subtarget->isTargetWatchABI()) {
484     if (Subtarget->isAAPCS_ABI()) {
485       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
486       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
487       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
488     } else {
489       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
490       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
491       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
492     }
493   }
494 
495   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
496   // a __gnu_ prefix (which is the default).
497   if (Subtarget->isTargetAEABI()) {
498     static const struct {
499       const RTLIB::Libcall Op;
500       const char * const Name;
501       const CallingConv::ID CC;
502     } LibraryCalls[] = {
503       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
504       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
505       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
506     };
507 
508     for (const auto &LC : LibraryCalls) {
509       setLibcallName(LC.Op, LC.Name);
510       setLibcallCallingConv(LC.Op, LC.CC);
511     }
512   }
513 
514   if (Subtarget->isThumb1Only())
515     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
516   else
517     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
518 
519   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
520       !Subtarget->isThumb1Only()) {
521     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
522     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
523   }
524 
525   if (Subtarget->hasFullFP16()) {
526     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
527     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
528     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
529     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
530 
531     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
532     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
533   }
534 
535   for (MVT VT : MVT::vector_valuetypes()) {
536     for (MVT InnerVT : MVT::vector_valuetypes()) {
537       setTruncStoreAction(VT, InnerVT, Expand);
538       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
539       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
540       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
541     }
542 
543     setOperationAction(ISD::MULHS, VT, Expand);
544     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
545     setOperationAction(ISD::MULHU, VT, Expand);
546     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
547 
548     setOperationAction(ISD::BSWAP, VT, Expand);
549   }
550 
551   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
552   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
553 
554   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
555   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
556 
557   if (Subtarget->hasNEON()) {
558     addDRTypeForNEON(MVT::v2f32);
559     addDRTypeForNEON(MVT::v8i8);
560     addDRTypeForNEON(MVT::v4i16);
561     addDRTypeForNEON(MVT::v2i32);
562     addDRTypeForNEON(MVT::v1i64);
563 
564     addQRTypeForNEON(MVT::v4f32);
565     addQRTypeForNEON(MVT::v2f64);
566     addQRTypeForNEON(MVT::v16i8);
567     addQRTypeForNEON(MVT::v8i16);
568     addQRTypeForNEON(MVT::v4i32);
569     addQRTypeForNEON(MVT::v2i64);
570 
571     if (Subtarget->hasFullFP16()) {
572       addQRTypeForNEON(MVT::v8f16);
573       addDRTypeForNEON(MVT::v4f16);
574     }
575 
576     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
577     // neither Neon nor VFP support any arithmetic operations on it.
578     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
579     // supported for v4f32.
580     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
581     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
582     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
583     // FIXME: Code duplication: FDIV and FREM are expanded always, see
584     // ARMTargetLowering::addTypeForNEON method for details.
585     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
586     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
587     // FIXME: Create unittest.
588     // In another words, find a way when "copysign" appears in DAG with vector
589     // operands.
590     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
591     // FIXME: Code duplication: SETCC has custom operation action, see
592     // ARMTargetLowering::addTypeForNEON method for details.
593     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
594     // FIXME: Create unittest for FNEG and for FABS.
595     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
596     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
597     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
598     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
599     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
600     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
601     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
602     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
603     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
604     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
605     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
606     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
607     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
608     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
609     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
610     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
611     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
612     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
613 
614     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
615     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
616     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
617     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
618     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
619     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
620     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
621     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
622     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
623     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
624     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
625     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
626     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
627     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
628 
629     // Mark v2f32 intrinsics.
630     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
631     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
632     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
633     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
634     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
635     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
636     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
637     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
638     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
639     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
640     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
641     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
642     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
643     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
644 
645     // Neon does not support some operations on v1i64 and v2i64 types.
646     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
647     // Custom handling for some quad-vector types to detect VMULL.
648     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
649     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
650     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
651     // Custom handling for some vector types to avoid expensive expansions
652     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
653     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
654     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
655     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
656     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
657     // a destination type that is wider than the source, and nor does
658     // it have a FP_TO_[SU]INT instruction with a narrower destination than
659     // source.
660     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
661     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
662     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
663     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
664 
665     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
666     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
667 
668     // NEON does not have single instruction CTPOP for vectors with element
669     // types wider than 8-bits.  However, custom lowering can leverage the
670     // v8i8/v16i8 vcnt instruction.
671     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
672     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
673     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
674     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
675     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
676     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
677 
678     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
679     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
680 
681     // NEON does not have single instruction CTTZ for vectors.
682     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
683     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
684     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
685     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
686 
687     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
688     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
689     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
690     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
691 
692     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
693     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
694     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
695     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
696 
697     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
698     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
699     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
700     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
701 
702     // NEON only has FMA instructions as of VFP4.
703     if (!Subtarget->hasVFP4()) {
704       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
705       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
706     }
707 
708     setTargetDAGCombine(ISD::INTRINSIC_VOID);
709     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
710     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
711     setTargetDAGCombine(ISD::SHL);
712     setTargetDAGCombine(ISD::SRL);
713     setTargetDAGCombine(ISD::SRA);
714     setTargetDAGCombine(ISD::SIGN_EXTEND);
715     setTargetDAGCombine(ISD::ZERO_EXTEND);
716     setTargetDAGCombine(ISD::ANY_EXTEND);
717     setTargetDAGCombine(ISD::BUILD_VECTOR);
718     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
719     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
720     setTargetDAGCombine(ISD::STORE);
721     setTargetDAGCombine(ISD::FP_TO_SINT);
722     setTargetDAGCombine(ISD::FP_TO_UINT);
723     setTargetDAGCombine(ISD::FDIV);
724     setTargetDAGCombine(ISD::LOAD);
725 
726     // It is legal to extload from v4i8 to v4i16 or v4i32.
727     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
728                    MVT::v2i32}) {
729       for (MVT VT : MVT::integer_vector_valuetypes()) {
730         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
731         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
732         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
733       }
734     }
735   }
736 
737   if (Subtarget->isFPOnlySP()) {
738     // When targeting a floating-point unit with only single-precision
739     // operations, f64 is legal for the few double-precision instructions which
740     // are present However, no double-precision operations other than moves,
741     // loads and stores are provided by the hardware.
742     setOperationAction(ISD::FADD,       MVT::f64, Expand);
743     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
744     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
745     setOperationAction(ISD::FMA,        MVT::f64, Expand);
746     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
747     setOperationAction(ISD::FREM,       MVT::f64, Expand);
748     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
749     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
750     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
751     setOperationAction(ISD::FABS,       MVT::f64, Expand);
752     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
753     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
754     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
755     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
756     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
757     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
758     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
759     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
760     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
761     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
762     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
763     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
764     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
765     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
766     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
767     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
768     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
769     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
770     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
771     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
772     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
773     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
774   }
775 
776   computeRegisterProperties(Subtarget->getRegisterInfo());
777 
778   // ARM does not have floating-point extending loads.
779   for (MVT VT : MVT::fp_valuetypes()) {
780     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
781     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
782   }
783 
784   // ... or truncating stores
785   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
786   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
787   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
788 
789   // ARM does not have i1 sign extending load.
790   for (MVT VT : MVT::integer_valuetypes())
791     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
792 
793   // ARM supports all 4 flavors of integer indexed load / store.
794   if (!Subtarget->isThumb1Only()) {
795     for (unsigned im = (unsigned)ISD::PRE_INC;
796          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
797       setIndexedLoadAction(im,  MVT::i1,  Legal);
798       setIndexedLoadAction(im,  MVT::i8,  Legal);
799       setIndexedLoadAction(im,  MVT::i16, Legal);
800       setIndexedLoadAction(im,  MVT::i32, Legal);
801       setIndexedStoreAction(im, MVT::i1,  Legal);
802       setIndexedStoreAction(im, MVT::i8,  Legal);
803       setIndexedStoreAction(im, MVT::i16, Legal);
804       setIndexedStoreAction(im, MVT::i32, Legal);
805     }
806   } else {
807     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
808     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
809     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
810   }
811 
812   setOperationAction(ISD::SADDO, MVT::i32, Custom);
813   setOperationAction(ISD::UADDO, MVT::i32, Custom);
814   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
815   setOperationAction(ISD::USUBO, MVT::i32, Custom);
816 
817   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
818   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
819 
820   // i64 operation support.
821   setOperationAction(ISD::MUL,     MVT::i64, Expand);
822   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
823   if (Subtarget->isThumb1Only()) {
824     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
825     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
826   }
827   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
828       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
829     setOperationAction(ISD::MULHS, MVT::i32, Expand);
830 
831   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
832   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
833   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
834   setOperationAction(ISD::SRL,       MVT::i64, Custom);
835   setOperationAction(ISD::SRA,       MVT::i64, Custom);
836   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
837 
838   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
839   if (Subtarget->isThumb1Only()) {
840     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
841     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
842     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
843   }
844 
845   setOperationAction(ISD::ADDC,      MVT::i32, Custom);
846   setOperationAction(ISD::ADDE,      MVT::i32, Custom);
847   setOperationAction(ISD::SUBC,      MVT::i32, Custom);
848   setOperationAction(ISD::SUBE,      MVT::i32, Custom);
849 
850   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
851     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
852 
853   // ARM does not have ROTL.
854   setOperationAction(ISD::ROTL, MVT::i32, Expand);
855   for (MVT VT : MVT::vector_valuetypes()) {
856     setOperationAction(ISD::ROTL, VT, Expand);
857     setOperationAction(ISD::ROTR, VT, Expand);
858   }
859   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
860   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
861   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
862     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
863 
864   // @llvm.readcyclecounter requires the Performance Monitors extension.
865   // Default to the 0 expansion on unsupported platforms.
866   // FIXME: Technically there are older ARM CPUs that have
867   // implementation-specific ways of obtaining this information.
868   if (Subtarget->hasPerfMon())
869     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
870 
871   // Only ARMv6 has BSWAP.
872   if (!Subtarget->hasV6Ops())
873     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
874 
875   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
876                                         : Subtarget->hasDivideInARMMode();
877   if (!hasDivide) {
878     // These are expanded into libcalls if the cpu doesn't have HW divider.
879     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
880     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
881   }
882 
883   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
884     setOperationAction(ISD::SDIV, MVT::i32, Custom);
885     setOperationAction(ISD::UDIV, MVT::i32, Custom);
886 
887     setOperationAction(ISD::SDIV, MVT::i64, Custom);
888     setOperationAction(ISD::UDIV, MVT::i64, Custom);
889   }
890 
891   setOperationAction(ISD::SREM,  MVT::i32, Expand);
892   setOperationAction(ISD::UREM,  MVT::i32, Expand);
893 
894   // Register based DivRem for AEABI (RTABI 4.2)
895   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
896       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
897       Subtarget->isTargetWindows()) {
898     setOperationAction(ISD::SREM, MVT::i64, Custom);
899     setOperationAction(ISD::UREM, MVT::i64, Custom);
900     HasStandaloneRem = false;
901 
902     if (Subtarget->isTargetWindows()) {
903       const struct {
904         const RTLIB::Libcall Op;
905         const char * const Name;
906         const CallingConv::ID CC;
907       } LibraryCalls[] = {
908         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
909         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
910         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
911         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
912 
913         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
914         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
915         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
916         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
917       };
918 
919       for (const auto &LC : LibraryCalls) {
920         setLibcallName(LC.Op, LC.Name);
921         setLibcallCallingConv(LC.Op, LC.CC);
922       }
923     } else {
924       const struct {
925         const RTLIB::Libcall Op;
926         const char * const Name;
927         const CallingConv::ID CC;
928       } LibraryCalls[] = {
929         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
930         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
931         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
932         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
933 
934         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
935         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
936         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
937         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
938       };
939 
940       for (const auto &LC : LibraryCalls) {
941         setLibcallName(LC.Op, LC.Name);
942         setLibcallCallingConv(LC.Op, LC.CC);
943       }
944     }
945 
946     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
947     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
948     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
949     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
950   } else {
951     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
952     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
953   }
954 
955   if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
956     for (auto &VT : {MVT::f32, MVT::f64})
957       setOperationAction(ISD::FPOWI, VT, Custom);
958 
959   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
960   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
961   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
962   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
963 
964   setOperationAction(ISD::TRAP, MVT::Other, Legal);
965 
966   // Use the default implementation.
967   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
968   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
969   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
970   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
971   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
972   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
973 
974   if (Subtarget->isTargetWindows())
975     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
976   else
977     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
978 
979   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
980   // the default expansion.
981   InsertFencesForAtomic = false;
982   if (Subtarget->hasAnyDataBarrier() &&
983       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
984     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
985     // to ldrex/strex loops already.
986     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
987     if (!Subtarget->isThumb() || !Subtarget->isMClass())
988       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
989 
990     // On v8, we have particularly efficient implementations of atomic fences
991     // if they can be combined with nearby atomic loads and stores.
992     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
993       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
994       InsertFencesForAtomic = true;
995     }
996   } else {
997     // If there's anything we can use as a barrier, go through custom lowering
998     // for ATOMIC_FENCE.
999     // If target has DMB in thumb, Fences can be inserted.
1000     if (Subtarget->hasDataBarrier())
1001       InsertFencesForAtomic = true;
1002 
1003     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1004                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1005 
1006     // Set them all for expansion, which will force libcalls.
1007     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1008     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1009     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1010     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1011     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1012     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1013     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1014     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1015     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1016     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1017     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1018     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1019     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1020     // Unordered/Monotonic case.
1021     if (!InsertFencesForAtomic) {
1022       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1023       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1024     }
1025   }
1026 
1027   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1028 
1029   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1030   if (!Subtarget->hasV6Ops()) {
1031     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1032     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1033   }
1034   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1035 
1036   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1037       !Subtarget->isThumb1Only()) {
1038     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1039     // iff target supports vfp2.
1040     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1041     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1042   }
1043 
1044   // We want to custom lower some of our intrinsics.
1045   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1046   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1047   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1048   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1049   if (Subtarget->useSjLjEH())
1050     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1051 
1052   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1053   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1054   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1055   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1056   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1057   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1058   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1059   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1060   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1061   if (Subtarget->hasFullFP16()) {
1062     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1063     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1064     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1065   }
1066 
1067   // Thumb-1 cannot currently select ARMISD::SUBE.
1068   if (!Subtarget->isThumb1Only())
1069     setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1070 
1071   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1072   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1073   if (Subtarget->hasFullFP16())
1074       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1075   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1076   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1077   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1078 
1079   // We don't support sin/cos/fmod/copysign/pow
1080   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1081   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1082   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1083   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1084   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1085   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1086   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1087   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1088   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1089       !Subtarget->isThumb1Only()) {
1090     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1091     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1092   }
1093   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1094   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1095 
1096   if (!Subtarget->hasVFP4()) {
1097     setOperationAction(ISD::FMA, MVT::f64, Expand);
1098     setOperationAction(ISD::FMA, MVT::f32, Expand);
1099   }
1100 
1101   // Various VFP goodness
1102   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1103     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1104     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
1105       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1106       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1107     }
1108 
1109     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1110     if (!Subtarget->hasFP16()) {
1111       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1112       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1113     }
1114   }
1115 
1116   // Use __sincos_stret if available.
1117   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1118       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1119     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1120     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1121   }
1122 
1123   // FP-ARMv8 implements a lot of rounding-like FP operations.
1124   if (Subtarget->hasFPARMv8()) {
1125     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1126     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1127     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1128     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1129     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1130     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1131     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1132     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1133     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1134     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1135     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1136     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1137 
1138     if (!Subtarget->isFPOnlySP()) {
1139       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1140       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1141       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1142       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1143       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1144       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1145       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1146       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1147     }
1148   }
1149 
1150   if (Subtarget->hasNEON()) {
1151     // vmin and vmax aren't available in a scalar form, so we use
1152     // a NEON instruction with an undef lane instead.
1153     setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
1154     setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
1155     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1156     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1157     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1158     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1159     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1160     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1161   }
1162 
1163   // We have target-specific dag combine patterns for the following nodes:
1164   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1165   setTargetDAGCombine(ISD::ADD);
1166   setTargetDAGCombine(ISD::SUB);
1167   setTargetDAGCombine(ISD::MUL);
1168   setTargetDAGCombine(ISD::AND);
1169   setTargetDAGCombine(ISD::OR);
1170   setTargetDAGCombine(ISD::XOR);
1171 
1172   if (Subtarget->hasV6Ops())
1173     setTargetDAGCombine(ISD::SRL);
1174 
1175   setStackPointerRegisterToSaveRestore(ARM::SP);
1176 
1177   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1178       !Subtarget->hasVFP2())
1179     setSchedulingPreference(Sched::RegPressure);
1180   else
1181     setSchedulingPreference(Sched::Hybrid);
1182 
1183   //// temporary - rewrite interface to use type
1184   MaxStoresPerMemset = 8;
1185   MaxStoresPerMemsetOptSize = 4;
1186   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1187   MaxStoresPerMemcpyOptSize = 2;
1188   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1189   MaxStoresPerMemmoveOptSize = 2;
1190 
1191   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1192   // are at least 4 bytes aligned.
1193   setMinStackArgumentAlignment(4);
1194 
1195   // Prefer likely predicted branches to selects on out-of-order cores.
1196   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1197 
1198   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1199 }
1200 
1201 bool ARMTargetLowering::useSoftFloat() const {
1202   return Subtarget->useSoftFloat();
1203 }
1204 
1205 // FIXME: It might make sense to define the representative register class as the
1206 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1207 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1208 // SPR's representative would be DPR_VFP2. This should work well if register
1209 // pressure tracking were modified such that a register use would increment the
1210 // pressure of the register class's representative and all of it's super
1211 // classes' representatives transitively. We have not implemented this because
1212 // of the difficulty prior to coalescing of modeling operand register classes
1213 // due to the common occurrence of cross class copies and subregister insertions
1214 // and extractions.
1215 std::pair<const TargetRegisterClass *, uint8_t>
1216 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1217                                            MVT VT) const {
1218   const TargetRegisterClass *RRC = nullptr;
1219   uint8_t Cost = 1;
1220   switch (VT.SimpleTy) {
1221   default:
1222     return TargetLowering::findRepresentativeClass(TRI, VT);
1223   // Use DPR as representative register class for all floating point
1224   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1225   // the cost is 1 for both f32 and f64.
1226   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1227   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1228     RRC = &ARM::DPRRegClass;
1229     // When NEON is used for SP, only half of the register file is available
1230     // because operations that define both SP and DP results will be constrained
1231     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1232     // coalescing by double-counting the SP regs. See the FIXME above.
1233     if (Subtarget->useNEONForSinglePrecisionFP())
1234       Cost = 2;
1235     break;
1236   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1237   case MVT::v4f32: case MVT::v2f64:
1238     RRC = &ARM::DPRRegClass;
1239     Cost = 2;
1240     break;
1241   case MVT::v4i64:
1242     RRC = &ARM::DPRRegClass;
1243     Cost = 4;
1244     break;
1245   case MVT::v8i64:
1246     RRC = &ARM::DPRRegClass;
1247     Cost = 8;
1248     break;
1249   }
1250   return std::make_pair(RRC, Cost);
1251 }
1252 
1253 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1254   switch ((ARMISD::NodeType)Opcode) {
1255   case ARMISD::FIRST_NUMBER:  break;
1256   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1257   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1258   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1259   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1260   case ARMISD::CALL:          return "ARMISD::CALL";
1261   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1262   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1263   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1264   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1265   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1266   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1267   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1268   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1269   case ARMISD::CMP:           return "ARMISD::CMP";
1270   case ARMISD::CMN:           return "ARMISD::CMN";
1271   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1272   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1273   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1274   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1275   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1276 
1277   case ARMISD::CMOV:          return "ARMISD::CMOV";
1278 
1279   case ARMISD::SSAT:          return "ARMISD::SSAT";
1280   case ARMISD::USAT:          return "ARMISD::USAT";
1281 
1282   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1283   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1284   case ARMISD::RRX:           return "ARMISD::RRX";
1285 
1286   case ARMISD::ADDC:          return "ARMISD::ADDC";
1287   case ARMISD::ADDE:          return "ARMISD::ADDE";
1288   case ARMISD::SUBC:          return "ARMISD::SUBC";
1289   case ARMISD::SUBE:          return "ARMISD::SUBE";
1290 
1291   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1292   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1293   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
1294   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
1295   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
1296 
1297   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1298   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1299   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1300 
1301   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1302 
1303   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1304 
1305   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1306 
1307   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1308 
1309   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1310 
1311   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1312   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1313 
1314   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1315   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1316   case ARMISD::VCGE:          return "ARMISD::VCGE";
1317   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1318   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1319   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1320   case ARMISD::VCGT:          return "ARMISD::VCGT";
1321   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1322   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1323   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1324   case ARMISD::VTST:          return "ARMISD::VTST";
1325 
1326   case ARMISD::VSHL:          return "ARMISD::VSHL";
1327   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1328   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1329   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1330   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1331   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1332   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1333   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1334   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1335   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1336   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1337   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1338   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1339   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1340   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1341   case ARMISD::VSLI:          return "ARMISD::VSLI";
1342   case ARMISD::VSRI:          return "ARMISD::VSRI";
1343   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1344   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1345   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1346   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1347   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1348   case ARMISD::VDUP:          return "ARMISD::VDUP";
1349   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1350   case ARMISD::VEXT:          return "ARMISD::VEXT";
1351   case ARMISD::VREV64:        return "ARMISD::VREV64";
1352   case ARMISD::VREV32:        return "ARMISD::VREV32";
1353   case ARMISD::VREV16:        return "ARMISD::VREV16";
1354   case ARMISD::VZIP:          return "ARMISD::VZIP";
1355   case ARMISD::VUZP:          return "ARMISD::VUZP";
1356   case ARMISD::VTRN:          return "ARMISD::VTRN";
1357   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1358   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1359   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1360   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1361   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1362   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1363   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1364   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
1365   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
1366   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
1367   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
1368   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
1369   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
1370   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
1371   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
1372   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
1373   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
1374   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
1375   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
1376   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1377   case ARMISD::BFI:           return "ARMISD::BFI";
1378   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1379   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1380   case ARMISD::VBSL:          return "ARMISD::VBSL";
1381   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1382   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1383   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1384   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1385   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1386   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1387   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1388   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1389   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1390   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1391   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1392   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1393   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1394   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1395   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1396   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1397   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1398   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1399   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1400   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1401   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1402   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1403   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1404   }
1405   return nullptr;
1406 }
1407 
1408 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1409                                           EVT VT) const {
1410   if (!VT.isVector())
1411     return getPointerTy(DL);
1412   return VT.changeVectorElementTypeToInteger();
1413 }
1414 
1415 /// getRegClassFor - Return the register class that should be used for the
1416 /// specified value type.
1417 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1418   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1419   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1420   // load / store 4 to 8 consecutive D registers.
1421   if (Subtarget->hasNEON()) {
1422     if (VT == MVT::v4i64)
1423       return &ARM::QQPRRegClass;
1424     if (VT == MVT::v8i64)
1425       return &ARM::QQQQPRRegClass;
1426   }
1427   return TargetLowering::getRegClassFor(VT);
1428 }
1429 
1430 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1431 // source/dest is aligned and the copy size is large enough. We therefore want
1432 // to align such objects passed to memory intrinsics.
1433 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1434                                                unsigned &PrefAlign) const {
1435   if (!isa<MemIntrinsic>(CI))
1436     return false;
1437   MinSize = 8;
1438   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1439   // cycle faster than 4-byte aligned LDM.
1440   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1441   return true;
1442 }
1443 
1444 // Create a fast isel object.
1445 FastISel *
1446 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1447                                   const TargetLibraryInfo *libInfo) const {
1448   return ARM::createFastISel(funcInfo, libInfo);
1449 }
1450 
1451 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1452   unsigned NumVals = N->getNumValues();
1453   if (!NumVals)
1454     return Sched::RegPressure;
1455 
1456   for (unsigned i = 0; i != NumVals; ++i) {
1457     EVT VT = N->getValueType(i);
1458     if (VT == MVT::Glue || VT == MVT::Other)
1459       continue;
1460     if (VT.isFloatingPoint() || VT.isVector())
1461       return Sched::ILP;
1462   }
1463 
1464   if (!N->isMachineOpcode())
1465     return Sched::RegPressure;
1466 
1467   // Load are scheduled for latency even if there instruction itinerary
1468   // is not available.
1469   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1470   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1471 
1472   if (MCID.getNumDefs() == 0)
1473     return Sched::RegPressure;
1474   if (!Itins->isEmpty() &&
1475       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1476     return Sched::ILP;
1477 
1478   return Sched::RegPressure;
1479 }
1480 
1481 //===----------------------------------------------------------------------===//
1482 // Lowering Code
1483 //===----------------------------------------------------------------------===//
1484 
1485 static bool isSRL16(const SDValue &Op) {
1486   if (Op.getOpcode() != ISD::SRL)
1487     return false;
1488   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1489     return Const->getZExtValue() == 16;
1490   return false;
1491 }
1492 
1493 static bool isSRA16(const SDValue &Op) {
1494   if (Op.getOpcode() != ISD::SRA)
1495     return false;
1496   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1497     return Const->getZExtValue() == 16;
1498   return false;
1499 }
1500 
1501 static bool isSHL16(const SDValue &Op) {
1502   if (Op.getOpcode() != ISD::SHL)
1503     return false;
1504   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1505     return Const->getZExtValue() == 16;
1506   return false;
1507 }
1508 
1509 // Check for a signed 16-bit value. We special case SRA because it makes it
1510 // more simple when also looking for SRAs that aren't sign extending a
1511 // smaller value. Without the check, we'd need to take extra care with
1512 // checking order for some operations.
1513 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1514   if (isSRA16(Op))
1515     return isSHL16(Op.getOperand(0));
1516   return DAG.ComputeNumSignBits(Op) == 17;
1517 }
1518 
1519 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1520 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1521   switch (CC) {
1522   default: llvm_unreachable("Unknown condition code!");
1523   case ISD::SETNE:  return ARMCC::NE;
1524   case ISD::SETEQ:  return ARMCC::EQ;
1525   case ISD::SETGT:  return ARMCC::GT;
1526   case ISD::SETGE:  return ARMCC::GE;
1527   case ISD::SETLT:  return ARMCC::LT;
1528   case ISD::SETLE:  return ARMCC::LE;
1529   case ISD::SETUGT: return ARMCC::HI;
1530   case ISD::SETUGE: return ARMCC::HS;
1531   case ISD::SETULT: return ARMCC::LO;
1532   case ISD::SETULE: return ARMCC::LS;
1533   }
1534 }
1535 
1536 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1537 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1538                         ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1539   CondCode2 = ARMCC::AL;
1540   InvalidOnQNaN = true;
1541   switch (CC) {
1542   default: llvm_unreachable("Unknown FP condition!");
1543   case ISD::SETEQ:
1544   case ISD::SETOEQ:
1545     CondCode = ARMCC::EQ;
1546     InvalidOnQNaN = false;
1547     break;
1548   case ISD::SETGT:
1549   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1550   case ISD::SETGE:
1551   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1552   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1553   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1554   case ISD::SETONE:
1555     CondCode = ARMCC::MI;
1556     CondCode2 = ARMCC::GT;
1557     InvalidOnQNaN = false;
1558     break;
1559   case ISD::SETO:   CondCode = ARMCC::VC; break;
1560   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1561   case ISD::SETUEQ:
1562     CondCode = ARMCC::EQ;
1563     CondCode2 = ARMCC::VS;
1564     InvalidOnQNaN = false;
1565     break;
1566   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1567   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1568   case ISD::SETLT:
1569   case ISD::SETULT: CondCode = ARMCC::LT; break;
1570   case ISD::SETLE:
1571   case ISD::SETULE: CondCode = ARMCC::LE; break;
1572   case ISD::SETNE:
1573   case ISD::SETUNE:
1574     CondCode = ARMCC::NE;
1575     InvalidOnQNaN = false;
1576     break;
1577   }
1578 }
1579 
1580 //===----------------------------------------------------------------------===//
1581 //                      Calling Convention Implementation
1582 //===----------------------------------------------------------------------===//
1583 
1584 #include "ARMGenCallingConv.inc"
1585 
1586 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1587 /// account presence of floating point hardware and calling convention
1588 /// limitations, such as support for variadic functions.
1589 CallingConv::ID
1590 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1591                                            bool isVarArg) const {
1592   switch (CC) {
1593   default:
1594     report_fatal_error("Unsupported calling convention");
1595   case CallingConv::ARM_AAPCS:
1596   case CallingConv::ARM_APCS:
1597   case CallingConv::GHC:
1598     return CC;
1599   case CallingConv::PreserveMost:
1600     return CallingConv::PreserveMost;
1601   case CallingConv::ARM_AAPCS_VFP:
1602   case CallingConv::Swift:
1603     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1604   case CallingConv::C:
1605     if (!Subtarget->isAAPCS_ABI())
1606       return CallingConv::ARM_APCS;
1607     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1608              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1609              !isVarArg)
1610       return CallingConv::ARM_AAPCS_VFP;
1611     else
1612       return CallingConv::ARM_AAPCS;
1613   case CallingConv::Fast:
1614   case CallingConv::CXX_FAST_TLS:
1615     if (!Subtarget->isAAPCS_ABI()) {
1616       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1617         return CallingConv::Fast;
1618       return CallingConv::ARM_APCS;
1619     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1620       return CallingConv::ARM_AAPCS_VFP;
1621     else
1622       return CallingConv::ARM_AAPCS;
1623   }
1624 }
1625 
1626 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1627                                                  bool isVarArg) const {
1628   return CCAssignFnForNode(CC, false, isVarArg);
1629 }
1630 
1631 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1632                                                    bool isVarArg) const {
1633   return CCAssignFnForNode(CC, true, isVarArg);
1634 }
1635 
1636 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1637 /// CallingConvention.
1638 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1639                                                  bool Return,
1640                                                  bool isVarArg) const {
1641   switch (getEffectiveCallingConv(CC, isVarArg)) {
1642   default:
1643     report_fatal_error("Unsupported calling convention");
1644   case CallingConv::ARM_APCS:
1645     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1646   case CallingConv::ARM_AAPCS:
1647     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1648   case CallingConv::ARM_AAPCS_VFP:
1649     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1650   case CallingConv::Fast:
1651     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1652   case CallingConv::GHC:
1653     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1654   case CallingConv::PreserveMost:
1655     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1656   }
1657 }
1658 
1659 /// LowerCallResult - Lower the result values of a call into the
1660 /// appropriate copies out of appropriate physical registers.
1661 SDValue ARMTargetLowering::LowerCallResult(
1662     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1663     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1664     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1665     SDValue ThisVal) const {
1666   // Assign locations to each value returned by this call.
1667   SmallVector<CCValAssign, 16> RVLocs;
1668   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1669                  *DAG.getContext());
1670   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1671 
1672   // Copy all of the result registers out of their specified physreg.
1673   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1674     CCValAssign VA = RVLocs[i];
1675 
1676     // Pass 'this' value directly from the argument to return value, to avoid
1677     // reg unit interference
1678     if (i == 0 && isThisReturn) {
1679       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1680              "unexpected return calling convention register assignment");
1681       InVals.push_back(ThisVal);
1682       continue;
1683     }
1684 
1685     SDValue Val;
1686     if (VA.needsCustom()) {
1687       // Handle f64 or half of a v2f64.
1688       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1689                                       InFlag);
1690       Chain = Lo.getValue(1);
1691       InFlag = Lo.getValue(2);
1692       VA = RVLocs[++i]; // skip ahead to next loc
1693       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1694                                       InFlag);
1695       Chain = Hi.getValue(1);
1696       InFlag = Hi.getValue(2);
1697       if (!Subtarget->isLittle())
1698         std::swap (Lo, Hi);
1699       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1700 
1701       if (VA.getLocVT() == MVT::v2f64) {
1702         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1703         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1704                           DAG.getConstant(0, dl, MVT::i32));
1705 
1706         VA = RVLocs[++i]; // skip ahead to next loc
1707         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1708         Chain = Lo.getValue(1);
1709         InFlag = Lo.getValue(2);
1710         VA = RVLocs[++i]; // skip ahead to next loc
1711         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1712         Chain = Hi.getValue(1);
1713         InFlag = Hi.getValue(2);
1714         if (!Subtarget->isLittle())
1715           std::swap (Lo, Hi);
1716         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1717         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1718                           DAG.getConstant(1, dl, MVT::i32));
1719       }
1720     } else {
1721       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1722                                InFlag);
1723       Chain = Val.getValue(1);
1724       InFlag = Val.getValue(2);
1725     }
1726 
1727     switch (VA.getLocInfo()) {
1728     default: llvm_unreachable("Unknown loc info!");
1729     case CCValAssign::Full: break;
1730     case CCValAssign::BCvt:
1731       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1732       break;
1733     }
1734 
1735     InVals.push_back(Val);
1736   }
1737 
1738   return Chain;
1739 }
1740 
1741 /// LowerMemOpCallTo - Store the argument to the stack.
1742 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1743                                             SDValue Arg, const SDLoc &dl,
1744                                             SelectionDAG &DAG,
1745                                             const CCValAssign &VA,
1746                                             ISD::ArgFlagsTy Flags) const {
1747   unsigned LocMemOffset = VA.getLocMemOffset();
1748   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1749   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1750                        StackPtr, PtrOff);
1751   return DAG.getStore(
1752       Chain, dl, Arg, PtrOff,
1753       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1754 }
1755 
1756 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1757                                          SDValue Chain, SDValue &Arg,
1758                                          RegsToPassVector &RegsToPass,
1759                                          CCValAssign &VA, CCValAssign &NextVA,
1760                                          SDValue &StackPtr,
1761                                          SmallVectorImpl<SDValue> &MemOpChains,
1762                                          ISD::ArgFlagsTy Flags) const {
1763   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1764                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1765   unsigned id = Subtarget->isLittle() ? 0 : 1;
1766   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1767 
1768   if (NextVA.isRegLoc())
1769     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1770   else {
1771     assert(NextVA.isMemLoc());
1772     if (!StackPtr.getNode())
1773       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1774                                     getPointerTy(DAG.getDataLayout()));
1775 
1776     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1777                                            dl, DAG, NextVA,
1778                                            Flags));
1779   }
1780 }
1781 
1782 /// LowerCall - Lowering a call into a callseq_start <-
1783 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1784 /// nodes.
1785 SDValue
1786 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1787                              SmallVectorImpl<SDValue> &InVals) const {
1788   SelectionDAG &DAG                     = CLI.DAG;
1789   SDLoc &dl                             = CLI.DL;
1790   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1791   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1792   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1793   SDValue Chain                         = CLI.Chain;
1794   SDValue Callee                        = CLI.Callee;
1795   bool &isTailCall                      = CLI.IsTailCall;
1796   CallingConv::ID CallConv              = CLI.CallConv;
1797   bool doesNotRet                       = CLI.DoesNotReturn;
1798   bool isVarArg                         = CLI.IsVarArg;
1799 
1800   MachineFunction &MF = DAG.getMachineFunction();
1801   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1802   bool isThisReturn   = false;
1803   bool isSibCall      = false;
1804   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
1805 
1806   // Disable tail calls if they're not supported.
1807   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1808     isTailCall = false;
1809 
1810   if (isTailCall) {
1811     // Check if it's really possible to do a tail call.
1812     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1813                     isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(),
1814                                                    Outs, OutVals, Ins, DAG);
1815     if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
1816       report_fatal_error("failed to perform tail call elimination on a call "
1817                          "site marked musttail");
1818     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1819     // detected sibcalls.
1820     if (isTailCall) {
1821       ++NumTailCalls;
1822       isSibCall = true;
1823     }
1824   }
1825 
1826   // Analyze operands of the call, assigning locations to each operand.
1827   SmallVector<CCValAssign, 16> ArgLocs;
1828   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1829                  *DAG.getContext());
1830   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
1831 
1832   // Get a count of how many bytes are to be pushed on the stack.
1833   unsigned NumBytes = CCInfo.getNextStackOffset();
1834 
1835   // For tail calls, memory operands are available in our caller's stack.
1836   if (isSibCall)
1837     NumBytes = 0;
1838 
1839   // Adjust the stack pointer for the new arguments...
1840   // These operations are automatically eliminated by the prolog/epilog pass
1841   if (!isSibCall)
1842     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1843 
1844   SDValue StackPtr =
1845       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1846 
1847   RegsToPassVector RegsToPass;
1848   SmallVector<SDValue, 8> MemOpChains;
1849 
1850   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1851   // of tail call optimization, arguments are handled later.
1852   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1853        i != e;
1854        ++i, ++realArgIdx) {
1855     CCValAssign &VA = ArgLocs[i];
1856     SDValue Arg = OutVals[realArgIdx];
1857     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1858     bool isByVal = Flags.isByVal();
1859 
1860     // Promote the value if needed.
1861     switch (VA.getLocInfo()) {
1862     default: llvm_unreachable("Unknown loc info!");
1863     case CCValAssign::Full: break;
1864     case CCValAssign::SExt:
1865       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1866       break;
1867     case CCValAssign::ZExt:
1868       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1869       break;
1870     case CCValAssign::AExt:
1871       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1872       break;
1873     case CCValAssign::BCvt:
1874       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1875       break;
1876     }
1877 
1878     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1879     if (VA.needsCustom()) {
1880       if (VA.getLocVT() == MVT::v2f64) {
1881         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1882                                   DAG.getConstant(0, dl, MVT::i32));
1883         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1884                                   DAG.getConstant(1, dl, MVT::i32));
1885 
1886         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1887                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1888 
1889         VA = ArgLocs[++i]; // skip ahead to next loc
1890         if (VA.isRegLoc()) {
1891           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1892                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1893         } else {
1894           assert(VA.isMemLoc());
1895 
1896           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1897                                                  dl, DAG, VA, Flags));
1898         }
1899       } else {
1900         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1901                          StackPtr, MemOpChains, Flags);
1902       }
1903     } else if (VA.isRegLoc()) {
1904       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
1905           Outs[0].VT == MVT::i32) {
1906         assert(VA.getLocVT() == MVT::i32 &&
1907                "unexpected calling convention register assignment");
1908         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1909                "unexpected use of 'returned'");
1910         isThisReturn = true;
1911       }
1912       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1913     } else if (isByVal) {
1914       assert(VA.isMemLoc());
1915       unsigned offset = 0;
1916 
1917       // True if this byval aggregate will be split between registers
1918       // and memory.
1919       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1920       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1921 
1922       if (CurByValIdx < ByValArgsCount) {
1923 
1924         unsigned RegBegin, RegEnd;
1925         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1926 
1927         EVT PtrVT =
1928             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1929         unsigned int i, j;
1930         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1931           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1932           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1933           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1934                                      MachinePointerInfo(),
1935                                      DAG.InferPtrAlignment(AddArg));
1936           MemOpChains.push_back(Load.getValue(1));
1937           RegsToPass.push_back(std::make_pair(j, Load));
1938         }
1939 
1940         // If parameter size outsides register area, "offset" value
1941         // helps us to calculate stack slot for remained part properly.
1942         offset = RegEnd - RegBegin;
1943 
1944         CCInfo.nextInRegsParam();
1945       }
1946 
1947       if (Flags.getByValSize() > 4*offset) {
1948         auto PtrVT = getPointerTy(DAG.getDataLayout());
1949         unsigned LocMemOffset = VA.getLocMemOffset();
1950         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1951         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1952         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1953         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1954         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1955                                            MVT::i32);
1956         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1957                                             MVT::i32);
1958 
1959         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1960         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1961         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1962                                           Ops));
1963       }
1964     } else if (!isSibCall) {
1965       assert(VA.isMemLoc());
1966 
1967       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1968                                              dl, DAG, VA, Flags));
1969     }
1970   }
1971 
1972   if (!MemOpChains.empty())
1973     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1974 
1975   // Build a sequence of copy-to-reg nodes chained together with token chain
1976   // and flag operands which copy the outgoing args into the appropriate regs.
1977   SDValue InFlag;
1978   // Tail call byval lowering might overwrite argument registers so in case of
1979   // tail call optimization the copies to registers are lowered later.
1980   if (!isTailCall)
1981     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1982       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1983                                RegsToPass[i].second, InFlag);
1984       InFlag = Chain.getValue(1);
1985     }
1986 
1987   // For tail calls lower the arguments to the 'real' stack slot.
1988   if (isTailCall) {
1989     // Force all the incoming stack arguments to be loaded from the stack
1990     // before any new outgoing arguments are stored to the stack, because the
1991     // outgoing stack slots may alias the incoming argument stack slots, and
1992     // the alias isn't otherwise explicit. This is slightly more conservative
1993     // than necessary, because it means that each store effectively depends
1994     // on every argument instead of just those arguments it would clobber.
1995 
1996     // Do not flag preceding copytoreg stuff together with the following stuff.
1997     InFlag = SDValue();
1998     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1999       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2000                                RegsToPass[i].second, InFlag);
2001       InFlag = Chain.getValue(1);
2002     }
2003     InFlag = SDValue();
2004   }
2005 
2006   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2007   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2008   // node so that legalize doesn't hack it.
2009   bool isDirect = false;
2010 
2011   const TargetMachine &TM = getTargetMachine();
2012   const Module *Mod = MF.getFunction().getParent();
2013   const GlobalValue *GV = nullptr;
2014   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2015     GV = G->getGlobal();
2016   bool isStub =
2017       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2018 
2019   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2020   bool isLocalARMFunc = false;
2021   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2022   auto PtrVt = getPointerTy(DAG.getDataLayout());
2023 
2024   if (Subtarget->genLongCalls()) {
2025     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2026            "long-calls codegen is not position independent!");
2027     // Handle a global address or an external symbol. If it's not one of
2028     // those, the target's already in a register, so we don't need to do
2029     // anything extra.
2030     if (isa<GlobalAddressSDNode>(Callee)) {
2031       // Create a constant pool entry for the callee address
2032       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2033       ARMConstantPoolValue *CPV =
2034         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2035 
2036       // Get the address of the callee into a register
2037       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2038       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2039       Callee = DAG.getLoad(
2040           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2041           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2042     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2043       const char *Sym = S->getSymbol();
2044 
2045       // Create a constant pool entry for the callee address
2046       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2047       ARMConstantPoolValue *CPV =
2048         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2049                                       ARMPCLabelIndex, 0);
2050       // Get the address of the callee into a register
2051       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2052       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2053       Callee = DAG.getLoad(
2054           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2055           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2056     }
2057   } else if (isa<GlobalAddressSDNode>(Callee)) {
2058     // If we're optimizing for minimum size and the function is called three or
2059     // more times in this block, we can improve codesize by calling indirectly
2060     // as BLXr has a 16-bit encoding.
2061     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2062     auto *BB = CLI.CS.getParent();
2063     bool PreferIndirect =
2064         Subtarget->isThumb() && MF.getFunction().optForMinSize() &&
2065         count_if(GV->users(), [&BB](const User *U) {
2066           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
2067         }) > 2;
2068 
2069     if (!PreferIndirect) {
2070       isDirect = true;
2071       bool isDef = GV->isStrongDefinitionForLinker();
2072 
2073       // ARM call to a local ARM function is predicable.
2074       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2075       // tBX takes a register source operand.
2076       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2077         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2078         Callee = DAG.getNode(
2079             ARMISD::WrapperPIC, dl, PtrVt,
2080             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2081         Callee = DAG.getLoad(
2082             PtrVt, dl, DAG.getEntryNode(), Callee,
2083             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2084             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2085                                      MachineMemOperand::MOInvariant);
2086       } else if (Subtarget->isTargetCOFF()) {
2087         assert(Subtarget->isTargetWindows() &&
2088                "Windows is the only supported COFF target");
2089         unsigned TargetFlags = GV->hasDLLImportStorageClass()
2090                                    ? ARMII::MO_DLLIMPORT
2091                                    : ARMII::MO_NO_FLAG;
2092         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
2093                                             TargetFlags);
2094         if (GV->hasDLLImportStorageClass())
2095           Callee =
2096               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2097                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2098                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2099       } else {
2100         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2101       }
2102     }
2103   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2104     isDirect = true;
2105     // tBX takes a register source operand.
2106     const char *Sym = S->getSymbol();
2107     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2108       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2109       ARMConstantPoolValue *CPV =
2110         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2111                                       ARMPCLabelIndex, 4);
2112       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2113       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2114       Callee = DAG.getLoad(
2115           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2116           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2117       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2118       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2119     } else {
2120       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2121     }
2122   }
2123 
2124   // FIXME: handle tail calls differently.
2125   unsigned CallOpc;
2126   if (Subtarget->isThumb()) {
2127     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2128       CallOpc = ARMISD::CALL_NOLINK;
2129     else
2130       CallOpc = ARMISD::CALL;
2131   } else {
2132     if (!isDirect && !Subtarget->hasV5TOps())
2133       CallOpc = ARMISD::CALL_NOLINK;
2134     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2135              // Emit regular call when code size is the priority
2136              !MF.getFunction().optForMinSize())
2137       // "mov lr, pc; b _foo" to avoid confusing the RSP
2138       CallOpc = ARMISD::CALL_NOLINK;
2139     else
2140       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2141   }
2142 
2143   std::vector<SDValue> Ops;
2144   Ops.push_back(Chain);
2145   Ops.push_back(Callee);
2146 
2147   // Add argument registers to the end of the list so that they are known live
2148   // into the call.
2149   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2150     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2151                                   RegsToPass[i].second.getValueType()));
2152 
2153   // Add a register mask operand representing the call-preserved registers.
2154   if (!isTailCall) {
2155     const uint32_t *Mask;
2156     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2157     if (isThisReturn) {
2158       // For 'this' returns, use the R0-preserving mask if applicable
2159       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2160       if (!Mask) {
2161         // Set isThisReturn to false if the calling convention is not one that
2162         // allows 'returned' to be modeled in this way, so LowerCallResult does
2163         // not try to pass 'this' straight through
2164         isThisReturn = false;
2165         Mask = ARI->getCallPreservedMask(MF, CallConv);
2166       }
2167     } else
2168       Mask = ARI->getCallPreservedMask(MF, CallConv);
2169 
2170     assert(Mask && "Missing call preserved mask for calling convention");
2171     Ops.push_back(DAG.getRegisterMask(Mask));
2172   }
2173 
2174   if (InFlag.getNode())
2175     Ops.push_back(InFlag);
2176 
2177   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2178   if (isTailCall) {
2179     MF.getFrameInfo().setHasTailCall();
2180     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2181   }
2182 
2183   // Returns a chain and a flag for retval copy to use.
2184   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2185   InFlag = Chain.getValue(1);
2186 
2187   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2188                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2189   if (!Ins.empty())
2190     InFlag = Chain.getValue(1);
2191 
2192   // Handle result values, copying them out of physregs into vregs that we
2193   // return.
2194   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2195                          InVals, isThisReturn,
2196                          isThisReturn ? OutVals[0] : SDValue());
2197 }
2198 
2199 /// HandleByVal - Every parameter *after* a byval parameter is passed
2200 /// on the stack.  Remember the next parameter register to allocate,
2201 /// and then confiscate the rest of the parameter registers to insure
2202 /// this.
2203 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2204                                     unsigned Align) const {
2205   // Byval (as with any stack) slots are always at least 4 byte aligned.
2206   Align = std::max(Align, 4U);
2207 
2208   unsigned Reg = State->AllocateReg(GPRArgRegs);
2209   if (!Reg)
2210     return;
2211 
2212   unsigned AlignInRegs = Align / 4;
2213   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2214   for (unsigned i = 0; i < Waste; ++i)
2215     Reg = State->AllocateReg(GPRArgRegs);
2216 
2217   if (!Reg)
2218     return;
2219 
2220   unsigned Excess = 4 * (ARM::R4 - Reg);
2221 
2222   // Special case when NSAA != SP and parameter size greater than size of
2223   // all remained GPR regs. In that case we can't split parameter, we must
2224   // send it to stack. We also must set NCRN to R4, so waste all
2225   // remained registers.
2226   const unsigned NSAAOffset = State->getNextStackOffset();
2227   if (NSAAOffset != 0 && Size > Excess) {
2228     while (State->AllocateReg(GPRArgRegs))
2229       ;
2230     return;
2231   }
2232 
2233   // First register for byval parameter is the first register that wasn't
2234   // allocated before this method call, so it would be "reg".
2235   // If parameter is small enough to be saved in range [reg, r4), then
2236   // the end (first after last) register would be reg + param-size-in-regs,
2237   // else parameter would be splitted between registers and stack,
2238   // end register would be r4 in this case.
2239   unsigned ByValRegBegin = Reg;
2240   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2241   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2242   // Note, first register is allocated in the beginning of function already,
2243   // allocate remained amount of registers we need.
2244   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2245     State->AllocateReg(GPRArgRegs);
2246   // A byval parameter that is split between registers and memory needs its
2247   // size truncated here.
2248   // In the case where the entire structure fits in registers, we set the
2249   // size in memory to zero.
2250   Size = std::max<int>(Size - Excess, 0);
2251 }
2252 
2253 /// MatchingStackOffset - Return true if the given stack call argument is
2254 /// already available in the same position (relatively) of the caller's
2255 /// incoming argument stack.
2256 static
2257 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2258                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2259                          const TargetInstrInfo *TII) {
2260   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2261   int FI = std::numeric_limits<int>::max();
2262   if (Arg.getOpcode() == ISD::CopyFromReg) {
2263     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2264     if (!TargetRegisterInfo::isVirtualRegister(VR))
2265       return false;
2266     MachineInstr *Def = MRI->getVRegDef(VR);
2267     if (!Def)
2268       return false;
2269     if (!Flags.isByVal()) {
2270       if (!TII->isLoadFromStackSlot(*Def, FI))
2271         return false;
2272     } else {
2273       return false;
2274     }
2275   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2276     if (Flags.isByVal())
2277       // ByVal argument is passed in as a pointer but it's now being
2278       // dereferenced. e.g.
2279       // define @foo(%struct.X* %A) {
2280       //   tail call @bar(%struct.X* byval %A)
2281       // }
2282       return false;
2283     SDValue Ptr = Ld->getBasePtr();
2284     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2285     if (!FINode)
2286       return false;
2287     FI = FINode->getIndex();
2288   } else
2289     return false;
2290 
2291   assert(FI != std::numeric_limits<int>::max());
2292   if (!MFI.isFixedObjectIndex(FI))
2293     return false;
2294   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2295 }
2296 
2297 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2298 /// for tail call optimization. Targets which want to do tail call
2299 /// optimization should implement this function.
2300 bool
2301 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2302                                                      CallingConv::ID CalleeCC,
2303                                                      bool isVarArg,
2304                                                      bool isCalleeStructRet,
2305                                                      bool isCallerStructRet,
2306                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2307                                     const SmallVectorImpl<SDValue> &OutVals,
2308                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2309                                                      SelectionDAG& DAG) const {
2310   MachineFunction &MF = DAG.getMachineFunction();
2311   const Function &CallerF = MF.getFunction();
2312   CallingConv::ID CallerCC = CallerF.getCallingConv();
2313 
2314   assert(Subtarget->supportsTailCall());
2315 
2316   // Tail calls to function pointers cannot be optimized for Thumb1 if the args
2317   // to the call take up r0-r3. The reason is that there are no legal registers
2318   // left to hold the pointer to the function to be called.
2319   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2320       !isa<GlobalAddressSDNode>(Callee.getNode()))
2321       return false;
2322 
2323   // Look for obvious safe cases to perform tail call optimization that do not
2324   // require ABI changes. This is what gcc calls sibcall.
2325 
2326   // Exception-handling functions need a special set of instructions to indicate
2327   // a return to the hardware. Tail-calling another function would probably
2328   // break this.
2329   if (CallerF.hasFnAttribute("interrupt"))
2330     return false;
2331 
2332   // Also avoid sibcall optimization if either caller or callee uses struct
2333   // return semantics.
2334   if (isCalleeStructRet || isCallerStructRet)
2335     return false;
2336 
2337   // Externally-defined functions with weak linkage should not be
2338   // tail-called on ARM when the OS does not support dynamic
2339   // pre-emption of symbols, as the AAELF spec requires normal calls
2340   // to undefined weak functions to be replaced with a NOP or jump to the
2341   // next instruction. The behaviour of branch instructions in this
2342   // situation (as used for tail calls) is implementation-defined, so we
2343   // cannot rely on the linker replacing the tail call with a return.
2344   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2345     const GlobalValue *GV = G->getGlobal();
2346     const Triple &TT = getTargetMachine().getTargetTriple();
2347     if (GV->hasExternalWeakLinkage() &&
2348         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2349       return false;
2350   }
2351 
2352   // Check that the call results are passed in the same way.
2353   LLVMContext &C = *DAG.getContext();
2354   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2355                                   CCAssignFnForReturn(CalleeCC, isVarArg),
2356                                   CCAssignFnForReturn(CallerCC, isVarArg)))
2357     return false;
2358   // The callee has to preserve all registers the caller needs to preserve.
2359   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2360   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2361   if (CalleeCC != CallerCC) {
2362     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2363     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2364       return false;
2365   }
2366 
2367   // If Caller's vararg or byval argument has been split between registers and
2368   // stack, do not perform tail call, since part of the argument is in caller's
2369   // local frame.
2370   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2371   if (AFI_Caller->getArgRegsSaveSize())
2372     return false;
2373 
2374   // If the callee takes no arguments then go on to check the results of the
2375   // call.
2376   if (!Outs.empty()) {
2377     // Check if stack adjustment is needed. For now, do not do this if any
2378     // argument is passed on the stack.
2379     SmallVector<CCValAssign, 16> ArgLocs;
2380     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2381     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2382     if (CCInfo.getNextStackOffset()) {
2383       // Check if the arguments are already laid out in the right way as
2384       // the caller's fixed stack objects.
2385       MachineFrameInfo &MFI = MF.getFrameInfo();
2386       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2387       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2388       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2389            i != e;
2390            ++i, ++realArgIdx) {
2391         CCValAssign &VA = ArgLocs[i];
2392         EVT RegVT = VA.getLocVT();
2393         SDValue Arg = OutVals[realArgIdx];
2394         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2395         if (VA.getLocInfo() == CCValAssign::Indirect)
2396           return false;
2397         if (VA.needsCustom()) {
2398           // f64 and vector types are split into multiple registers or
2399           // register/stack-slot combinations.  The types will not match
2400           // the registers; give up on memory f64 refs until we figure
2401           // out what to do about this.
2402           if (!VA.isRegLoc())
2403             return false;
2404           if (!ArgLocs[++i].isRegLoc())
2405             return false;
2406           if (RegVT == MVT::v2f64) {
2407             if (!ArgLocs[++i].isRegLoc())
2408               return false;
2409             if (!ArgLocs[++i].isRegLoc())
2410               return false;
2411           }
2412         } else if (!VA.isRegLoc()) {
2413           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2414                                    MFI, MRI, TII))
2415             return false;
2416         }
2417       }
2418     }
2419 
2420     const MachineRegisterInfo &MRI = MF.getRegInfo();
2421     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2422       return false;
2423   }
2424 
2425   return true;
2426 }
2427 
2428 bool
2429 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2430                                   MachineFunction &MF, bool isVarArg,
2431                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2432                                   LLVMContext &Context) const {
2433   SmallVector<CCValAssign, 16> RVLocs;
2434   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2435   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2436 }
2437 
2438 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2439                                     const SDLoc &DL, SelectionDAG &DAG) {
2440   const MachineFunction &MF = DAG.getMachineFunction();
2441   const Function &F = MF.getFunction();
2442 
2443   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2444 
2445   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2446   // version of the "preferred return address". These offsets affect the return
2447   // instruction if this is a return from PL1 without hypervisor extensions.
2448   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2449   //    SWI:     0      "subs pc, lr, #0"
2450   //    ABORT:   +4     "subs pc, lr, #4"
2451   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2452   // UNDEF varies depending on where the exception came from ARM or Thumb
2453   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2454 
2455   int64_t LROffset;
2456   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2457       IntKind == "ABORT")
2458     LROffset = 4;
2459   else if (IntKind == "SWI" || IntKind == "UNDEF")
2460     LROffset = 0;
2461   else
2462     report_fatal_error("Unsupported interrupt attribute. If present, value "
2463                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2464 
2465   RetOps.insert(RetOps.begin() + 1,
2466                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2467 
2468   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2469 }
2470 
2471 SDValue
2472 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2473                                bool isVarArg,
2474                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2475                                const SmallVectorImpl<SDValue> &OutVals,
2476                                const SDLoc &dl, SelectionDAG &DAG) const {
2477   // CCValAssign - represent the assignment of the return value to a location.
2478   SmallVector<CCValAssign, 16> RVLocs;
2479 
2480   // CCState - Info about the registers and stack slots.
2481   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2482                  *DAG.getContext());
2483 
2484   // Analyze outgoing return values.
2485   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2486 
2487   SDValue Flag;
2488   SmallVector<SDValue, 4> RetOps;
2489   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2490   bool isLittleEndian = Subtarget->isLittle();
2491 
2492   MachineFunction &MF = DAG.getMachineFunction();
2493   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2494   AFI->setReturnRegsCount(RVLocs.size());
2495 
2496   // Copy the result values into the output registers.
2497   for (unsigned i = 0, realRVLocIdx = 0;
2498        i != RVLocs.size();
2499        ++i, ++realRVLocIdx) {
2500     CCValAssign &VA = RVLocs[i];
2501     assert(VA.isRegLoc() && "Can only return in registers!");
2502 
2503     SDValue Arg = OutVals[realRVLocIdx];
2504     bool ReturnF16 = false;
2505 
2506     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2507       // Half-precision return values can be returned like this:
2508       //
2509       // t11 f16 = fadd ...
2510       // t12: i16 = bitcast t11
2511       //   t13: i32 = zero_extend t12
2512       // t14: f32 = bitcast t13  <~~~~~~~ Arg
2513       //
2514       // to avoid code generation for bitcasts, we simply set Arg to the node
2515       // that produces the f16 value, t11 in this case.
2516       //
2517       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2518         SDValue ZE = Arg.getOperand(0);
2519         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2520           SDValue BC = ZE.getOperand(0);
2521           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2522             Arg = BC.getOperand(0);
2523             ReturnF16 = true;
2524           }
2525         }
2526       }
2527     }
2528 
2529     switch (VA.getLocInfo()) {
2530     default: llvm_unreachable("Unknown loc info!");
2531     case CCValAssign::Full: break;
2532     case CCValAssign::BCvt:
2533       if (!ReturnF16)
2534         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2535       break;
2536     }
2537 
2538     if (VA.needsCustom()) {
2539       if (VA.getLocVT() == MVT::v2f64) {
2540         // Extract the first half and return it in two registers.
2541         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2542                                    DAG.getConstant(0, dl, MVT::i32));
2543         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2544                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2545 
2546         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2547                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2548                                  Flag);
2549         Flag = Chain.getValue(1);
2550         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2551         VA = RVLocs[++i]; // skip ahead to next loc
2552         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2553                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2554                                  Flag);
2555         Flag = Chain.getValue(1);
2556         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2557         VA = RVLocs[++i]; // skip ahead to next loc
2558 
2559         // Extract the 2nd half and fall through to handle it as an f64 value.
2560         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2561                           DAG.getConstant(1, dl, MVT::i32));
2562       }
2563       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2564       // available.
2565       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2566                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2567       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2568                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2569                                Flag);
2570       Flag = Chain.getValue(1);
2571       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2572       VA = RVLocs[++i]; // skip ahead to next loc
2573       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2574                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2575                                Flag);
2576     } else
2577       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2578 
2579     // Guarantee that all emitted copies are
2580     // stuck together, avoiding something bad.
2581     Flag = Chain.getValue(1);
2582     RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2583                                      ReturnF16 ? MVT::f16 : VA.getLocVT()));
2584   }
2585   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2586   const MCPhysReg *I =
2587       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2588   if (I) {
2589     for (; *I; ++I) {
2590       if (ARM::GPRRegClass.contains(*I))
2591         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2592       else if (ARM::DPRRegClass.contains(*I))
2593         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2594       else
2595         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2596     }
2597   }
2598 
2599   // Update chain and glue.
2600   RetOps[0] = Chain;
2601   if (Flag.getNode())
2602     RetOps.push_back(Flag);
2603 
2604   // CPUs which aren't M-class use a special sequence to return from
2605   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2606   // though we use "subs pc, lr, #N").
2607   //
2608   // M-class CPUs actually use a normal return sequence with a special
2609   // (hardware-provided) value in LR, so the normal code path works.
2610   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2611       !Subtarget->isMClass()) {
2612     if (Subtarget->isThumb1Only())
2613       report_fatal_error("interrupt attribute is not supported in Thumb1");
2614     return LowerInterruptReturn(RetOps, dl, DAG);
2615   }
2616 
2617   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2618 }
2619 
2620 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2621   if (N->getNumValues() != 1)
2622     return false;
2623   if (!N->hasNUsesOfValue(1, 0))
2624     return false;
2625 
2626   SDValue TCChain = Chain;
2627   SDNode *Copy = *N->use_begin();
2628   if (Copy->getOpcode() == ISD::CopyToReg) {
2629     // If the copy has a glue operand, we conservatively assume it isn't safe to
2630     // perform a tail call.
2631     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2632       return false;
2633     TCChain = Copy->getOperand(0);
2634   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2635     SDNode *VMov = Copy;
2636     // f64 returned in a pair of GPRs.
2637     SmallPtrSet<SDNode*, 2> Copies;
2638     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2639          UI != UE; ++UI) {
2640       if (UI->getOpcode() != ISD::CopyToReg)
2641         return false;
2642       Copies.insert(*UI);
2643     }
2644     if (Copies.size() > 2)
2645       return false;
2646 
2647     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2648          UI != UE; ++UI) {
2649       SDValue UseChain = UI->getOperand(0);
2650       if (Copies.count(UseChain.getNode()))
2651         // Second CopyToReg
2652         Copy = *UI;
2653       else {
2654         // We are at the top of this chain.
2655         // If the copy has a glue operand, we conservatively assume it
2656         // isn't safe to perform a tail call.
2657         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2658           return false;
2659         // First CopyToReg
2660         TCChain = UseChain;
2661       }
2662     }
2663   } else if (Copy->getOpcode() == ISD::BITCAST) {
2664     // f32 returned in a single GPR.
2665     if (!Copy->hasOneUse())
2666       return false;
2667     Copy = *Copy->use_begin();
2668     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2669       return false;
2670     // If the copy has a glue operand, we conservatively assume it isn't safe to
2671     // perform a tail call.
2672     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2673       return false;
2674     TCChain = Copy->getOperand(0);
2675   } else {
2676     return false;
2677   }
2678 
2679   bool HasRet = false;
2680   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2681        UI != UE; ++UI) {
2682     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2683         UI->getOpcode() != ARMISD::INTRET_FLAG)
2684       return false;
2685     HasRet = true;
2686   }
2687 
2688   if (!HasRet)
2689     return false;
2690 
2691   Chain = TCChain;
2692   return true;
2693 }
2694 
2695 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2696   if (!Subtarget->supportsTailCall())
2697     return false;
2698 
2699   auto Attr =
2700       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2701   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2702     return false;
2703 
2704   return true;
2705 }
2706 
2707 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2708 // and pass the lower and high parts through.
2709 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2710   SDLoc DL(Op);
2711   SDValue WriteValue = Op->getOperand(2);
2712 
2713   // This function is only supposed to be called for i64 type argument.
2714   assert(WriteValue.getValueType() == MVT::i64
2715           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2716 
2717   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2718                            DAG.getConstant(0, DL, MVT::i32));
2719   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2720                            DAG.getConstant(1, DL, MVT::i32));
2721   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2722   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2723 }
2724 
2725 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2726 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2727 // one of the above mentioned nodes. It has to be wrapped because otherwise
2728 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2729 // be used to form addressing mode. These wrapped nodes will be selected
2730 // into MOVi.
2731 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2732                                              SelectionDAG &DAG) const {
2733   EVT PtrVT = Op.getValueType();
2734   // FIXME there is no actual debug info here
2735   SDLoc dl(Op);
2736   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2737   SDValue Res;
2738 
2739   // When generating execute-only code Constant Pools must be promoted to the
2740   // global data section. It's a bit ugly that we can't share them across basic
2741   // blocks, but this way we guarantee that execute-only behaves correct with
2742   // position-independent addressing modes.
2743   if (Subtarget->genExecuteOnly()) {
2744     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2745     auto T = const_cast<Type*>(CP->getType());
2746     auto C = const_cast<Constant*>(CP->getConstVal());
2747     auto M = const_cast<Module*>(DAG.getMachineFunction().
2748                                  getFunction().getParent());
2749     auto GV = new GlobalVariable(
2750                     *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
2751                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2752                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2753                     Twine(AFI->createPICLabelUId())
2754                   );
2755     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2756                                             dl, PtrVT);
2757     return LowerGlobalAddress(GA, DAG);
2758   }
2759 
2760   if (CP->isMachineConstantPoolEntry())
2761     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2762                                     CP->getAlignment());
2763   else
2764     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2765                                     CP->getAlignment());
2766   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2767 }
2768 
2769 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2770   return MachineJumpTableInfo::EK_Inline;
2771 }
2772 
2773 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2774                                              SelectionDAG &DAG) const {
2775   MachineFunction &MF = DAG.getMachineFunction();
2776   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2777   unsigned ARMPCLabelIndex = 0;
2778   SDLoc DL(Op);
2779   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2780   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2781   SDValue CPAddr;
2782   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2783   if (!IsPositionIndependent) {
2784     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2785   } else {
2786     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2787     ARMPCLabelIndex = AFI->createPICLabelUId();
2788     ARMConstantPoolValue *CPV =
2789       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2790                                       ARMCP::CPBlockAddress, PCAdj);
2791     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2792   }
2793   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2794   SDValue Result = DAG.getLoad(
2795       PtrVT, DL, DAG.getEntryNode(), CPAddr,
2796       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2797   if (!IsPositionIndependent)
2798     return Result;
2799   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2800   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2801 }
2802 
2803 /// Convert a TLS address reference into the correct sequence of loads
2804 /// and calls to compute the variable's address for Darwin, and return an
2805 /// SDValue containing the final node.
2806 
2807 /// Darwin only has one TLS scheme which must be capable of dealing with the
2808 /// fully general situation, in the worst case. This means:
2809 ///     + "extern __thread" declaration.
2810 ///     + Defined in a possibly unknown dynamic library.
2811 ///
2812 /// The general system is that each __thread variable has a [3 x i32] descriptor
2813 /// which contains information used by the runtime to calculate the address. The
2814 /// only part of this the compiler needs to know about is the first word, which
2815 /// contains a function pointer that must be called with the address of the
2816 /// entire descriptor in "r0".
2817 ///
2818 /// Since this descriptor may be in a different unit, in general access must
2819 /// proceed along the usual ARM rules. A common sequence to produce is:
2820 ///
2821 ///     movw rT1, :lower16:_var$non_lazy_ptr
2822 ///     movt rT1, :upper16:_var$non_lazy_ptr
2823 ///     ldr r0, [rT1]
2824 ///     ldr rT2, [r0]
2825 ///     blx rT2
2826 ///     [...address now in r0...]
2827 SDValue
2828 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2829                                                SelectionDAG &DAG) const {
2830   assert(Subtarget->isTargetDarwin() &&
2831          "This function expects a Darwin target");
2832   SDLoc DL(Op);
2833 
2834   // First step is to get the address of the actua global symbol. This is where
2835   // the TLS descriptor lives.
2836   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2837 
2838   // The first entry in the descriptor is a function pointer that we must call
2839   // to obtain the address of the variable.
2840   SDValue Chain = DAG.getEntryNode();
2841   SDValue FuncTLVGet = DAG.getLoad(
2842       MVT::i32, DL, Chain, DescAddr,
2843       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2844       /* Alignment = */ 4,
2845       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2846           MachineMemOperand::MOInvariant);
2847   Chain = FuncTLVGet.getValue(1);
2848 
2849   MachineFunction &F = DAG.getMachineFunction();
2850   MachineFrameInfo &MFI = F.getFrameInfo();
2851   MFI.setAdjustsStack(true);
2852 
2853   // TLS calls preserve all registers except those that absolutely must be
2854   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2855   // silly).
2856   auto TRI =
2857       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
2858   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2859   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2860 
2861   // Finally, we can make the call. This is just a degenerate version of a
2862   // normal AArch64 call node: r0 takes the address of the descriptor, and
2863   // returns the address of the variable in this thread.
2864   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2865   Chain =
2866       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2867                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2868                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2869   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2870 }
2871 
2872 SDValue
2873 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2874                                                 SelectionDAG &DAG) const {
2875   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2876 
2877   SDValue Chain = DAG.getEntryNode();
2878   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2879   SDLoc DL(Op);
2880 
2881   // Load the current TEB (thread environment block)
2882   SDValue Ops[] = {Chain,
2883                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2884                    DAG.getConstant(15, DL, MVT::i32),
2885                    DAG.getConstant(0, DL, MVT::i32),
2886                    DAG.getConstant(13, DL, MVT::i32),
2887                    DAG.getConstant(0, DL, MVT::i32),
2888                    DAG.getConstant(2, DL, MVT::i32)};
2889   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2890                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2891 
2892   SDValue TEB = CurrentTEB.getValue(0);
2893   Chain = CurrentTEB.getValue(1);
2894 
2895   // Load the ThreadLocalStoragePointer from the TEB
2896   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2897   SDValue TLSArray =
2898       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2899   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
2900 
2901   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2902   // offset into the TLSArray.
2903 
2904   // Load the TLS index from the C runtime
2905   SDValue TLSIndex =
2906       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2907   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2908   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
2909 
2910   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2911                               DAG.getConstant(2, DL, MVT::i32));
2912   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2913                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2914                             MachinePointerInfo());
2915 
2916   // Get the offset of the start of the .tls section (section base)
2917   const auto *GA = cast<GlobalAddressSDNode>(Op);
2918   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2919   SDValue Offset = DAG.getLoad(
2920       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2921                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2922       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2923 
2924   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2925 }
2926 
2927 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2928 SDValue
2929 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2930                                                  SelectionDAG &DAG) const {
2931   SDLoc dl(GA);
2932   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2933   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2934   MachineFunction &MF = DAG.getMachineFunction();
2935   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2936   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2937   ARMConstantPoolValue *CPV =
2938     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2939                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2940   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2941   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2942   Argument = DAG.getLoad(
2943       PtrVT, dl, DAG.getEntryNode(), Argument,
2944       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2945   SDValue Chain = Argument.getValue(1);
2946 
2947   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2948   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2949 
2950   // call __tls_get_addr.
2951   ArgListTy Args;
2952   ArgListEntry Entry;
2953   Entry.Node = Argument;
2954   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2955   Args.push_back(Entry);
2956 
2957   // FIXME: is there useful debug info available here?
2958   TargetLowering::CallLoweringInfo CLI(DAG);
2959   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2960       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2961       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2962 
2963   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2964   return CallResult.first;
2965 }
2966 
2967 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2968 // "local exec" model.
2969 SDValue
2970 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2971                                         SelectionDAG &DAG,
2972                                         TLSModel::Model model) const {
2973   const GlobalValue *GV = GA->getGlobal();
2974   SDLoc dl(GA);
2975   SDValue Offset;
2976   SDValue Chain = DAG.getEntryNode();
2977   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2978   // Get the Thread Pointer
2979   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2980 
2981   if (model == TLSModel::InitialExec) {
2982     MachineFunction &MF = DAG.getMachineFunction();
2983     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2984     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2985     // Initial exec model.
2986     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2987     ARMConstantPoolValue *CPV =
2988       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2989                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2990                                       true);
2991     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2992     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2993     Offset = DAG.getLoad(
2994         PtrVT, dl, Chain, Offset,
2995         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2996     Chain = Offset.getValue(1);
2997 
2998     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2999     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3000 
3001     Offset = DAG.getLoad(
3002         PtrVT, dl, Chain, Offset,
3003         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3004   } else {
3005     // local exec model
3006     assert(model == TLSModel::LocalExec);
3007     ARMConstantPoolValue *CPV =
3008       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3009     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3010     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3011     Offset = DAG.getLoad(
3012         PtrVT, dl, Chain, Offset,
3013         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3014   }
3015 
3016   // The address of the thread local variable is the add of the thread
3017   // pointer with the offset of the variable.
3018   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3019 }
3020 
3021 SDValue
3022 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3023   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3024   if (DAG.getTarget().useEmulatedTLS())
3025     return LowerToTLSEmulatedModel(GA, DAG);
3026 
3027   if (Subtarget->isTargetDarwin())
3028     return LowerGlobalTLSAddressDarwin(Op, DAG);
3029 
3030   if (Subtarget->isTargetWindows())
3031     return LowerGlobalTLSAddressWindows(Op, DAG);
3032 
3033   // TODO: implement the "local dynamic" model
3034   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3035   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3036 
3037   switch (model) {
3038     case TLSModel::GeneralDynamic:
3039     case TLSModel::LocalDynamic:
3040       return LowerToTLSGeneralDynamicModel(GA, DAG);
3041     case TLSModel::InitialExec:
3042     case TLSModel::LocalExec:
3043       return LowerToTLSExecModels(GA, DAG, model);
3044   }
3045   llvm_unreachable("bogus TLS model");
3046 }
3047 
3048 /// Return true if all users of V are within function F, looking through
3049 /// ConstantExprs.
3050 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3051   SmallVector<const User*,4> Worklist;
3052   for (auto *U : V->users())
3053     Worklist.push_back(U);
3054   while (!Worklist.empty()) {
3055     auto *U = Worklist.pop_back_val();
3056     if (isa<ConstantExpr>(U)) {
3057       for (auto *UU : U->users())
3058         Worklist.push_back(UU);
3059       continue;
3060     }
3061 
3062     auto *I = dyn_cast<Instruction>(U);
3063     if (!I || I->getParent()->getParent() != F)
3064       return false;
3065   }
3066   return true;
3067 }
3068 
3069 /// Return true if all users of V are within some (any) function, looking through
3070 /// ConstantExprs. In other words, are there any global constant users?
3071 static bool allUsersAreInFunctions(const Value *V) {
3072   SmallVector<const User*,4> Worklist;
3073   for (auto *U : V->users())
3074     Worklist.push_back(U);
3075   while (!Worklist.empty()) {
3076     auto *U = Worklist.pop_back_val();
3077     if (isa<ConstantExpr>(U)) {
3078       for (auto *UU : U->users())
3079         Worklist.push_back(UU);
3080       continue;
3081     }
3082 
3083     if (!isa<Instruction>(U))
3084       return false;
3085   }
3086   return true;
3087 }
3088 
3089 // Return true if T is an integer, float or an array/vector of either.
3090 static bool isSimpleType(Type *T) {
3091   if (T->isIntegerTy() || T->isFloatingPointTy())
3092     return true;
3093   Type *SubT = nullptr;
3094   if (T->isArrayTy())
3095     SubT = T->getArrayElementType();
3096   else if (T->isVectorTy())
3097     SubT = T->getVectorElementType();
3098   else
3099     return false;
3100   return SubT->isIntegerTy() || SubT->isFloatingPointTy();
3101 }
3102 
3103 static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG,
3104                                      EVT PtrVT, const SDLoc &dl) {
3105   // If we're creating a pool entry for a constant global with unnamed address,
3106   // and the global is small enough, we can emit it inline into the constant pool
3107   // to save ourselves an indirection.
3108   //
3109   // This is a win if the constant is only used in one function (so it doesn't
3110   // need to be duplicated) or duplicating the constant wouldn't increase code
3111   // size (implying the constant is no larger than 4 bytes).
3112   const Function &F = DAG.getMachineFunction().getFunction();
3113 
3114   // We rely on this decision to inline being idemopotent and unrelated to the
3115   // use-site. We know that if we inline a variable at one use site, we'll
3116   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3117   // doesn't know about this optimization, so bail out if it's enabled else
3118   // we could decide to inline here (and thus never emit the GV) but require
3119   // the GV from fast-isel generated code.
3120   if (!EnableConstpoolPromotion ||
3121       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3122       return SDValue();
3123 
3124   auto *GVar = dyn_cast<GlobalVariable>(GV);
3125   if (!GVar || !GVar->hasInitializer() ||
3126       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3127       !GVar->hasLocalLinkage())
3128     return SDValue();
3129 
3130   // Ensure that we don't try and inline any type that contains pointers. If
3131   // we inline a value that contains relocations, we move the relocations from
3132   // .data to .text which is not ideal.
3133   auto *Init = GVar->getInitializer();
3134   if (!isSimpleType(Init->getType()))
3135     return SDValue();
3136 
3137   // The constant islands pass can only really deal with alignment requests
3138   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3139   // any type wanting greater alignment requirements than 4 bytes. We also
3140   // can only promote constants that are multiples of 4 bytes in size or
3141   // are paddable to a multiple of 4. Currently we only try and pad constants
3142   // that are strings for simplicity.
3143   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3144   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3145   unsigned Align = GVar->getAlignment();
3146   unsigned RequiredPadding = 4 - (Size % 4);
3147   bool PaddingPossible =
3148     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3149   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3150       Size == 0)
3151     return SDValue();
3152 
3153   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3154   MachineFunction &MF = DAG.getMachineFunction();
3155   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3156 
3157   // We can't bloat the constant pool too much, else the ConstantIslands pass
3158   // may fail to converge. If we haven't promoted this global yet (it may have
3159   // multiple uses), and promoting it would increase the constant pool size (Sz
3160   // > 4), ensure we have space to do so up to MaxTotal.
3161   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3162     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3163         ConstpoolPromotionMaxTotal)
3164       return SDValue();
3165 
3166   // This is only valid if all users are in a single function OR it has users
3167   // in multiple functions but it no larger than a pointer. We also check if
3168   // GVar has constant (non-ConstantExpr) users. If so, it essentially has its
3169   // address taken.
3170   if (!allUsersAreInFunction(GVar, &F) &&
3171       !(Size <= 4 && allUsersAreInFunctions(GVar)))
3172     return SDValue();
3173 
3174   // We're going to inline this global. Pad it out if needed.
3175   if (RequiredPadding != 4) {
3176     StringRef S = CDAInit->getAsString();
3177 
3178     SmallVector<uint8_t,16> V(S.size());
3179     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3180     while (RequiredPadding--)
3181       V.push_back(0);
3182     Init = ConstantDataArray::get(*DAG.getContext(), V);
3183   }
3184 
3185   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3186   SDValue CPAddr =
3187     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3188   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3189     AFI->markGlobalAsPromotedToConstantPool(GVar);
3190     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3191                                       PaddedSize - 4);
3192   }
3193   ++NumConstpoolPromoted;
3194   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3195 }
3196 
3197 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3198   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3199     GV = GA->getBaseObject();
3200   return (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
3201          isa<Function>(GV);
3202 }
3203 
3204 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3205                                               SelectionDAG &DAG) const {
3206   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3207   default: llvm_unreachable("unknown object format");
3208   case Triple::COFF:
3209     return LowerGlobalAddressWindows(Op, DAG);
3210   case Triple::ELF:
3211     return LowerGlobalAddressELF(Op, DAG);
3212   case Triple::MachO:
3213     return LowerGlobalAddressDarwin(Op, DAG);
3214   }
3215 }
3216 
3217 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3218                                                  SelectionDAG &DAG) const {
3219   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3220   SDLoc dl(Op);
3221   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3222   const TargetMachine &TM = getTargetMachine();
3223   bool IsRO = isReadOnly(GV);
3224 
3225   // promoteToConstantPool only if not generating XO text section
3226   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3227     if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl))
3228       return V;
3229 
3230   if (isPositionIndependent()) {
3231     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3232     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3233                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3234     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3235     if (UseGOT_PREL)
3236       Result =
3237           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3238                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3239     return Result;
3240   } else if (Subtarget->isROPI() && IsRO) {
3241     // PC-relative.
3242     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3243     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3244     return Result;
3245   } else if (Subtarget->isRWPI() && !IsRO) {
3246     // SB-relative.
3247     SDValue RelAddr;
3248     if (Subtarget->useMovt(DAG.getMachineFunction())) {
3249       ++NumMovwMovt;
3250       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3251       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3252     } else { // use literal pool for address constant
3253       ARMConstantPoolValue *CPV =
3254         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3255       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3256       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3257       RelAddr = DAG.getLoad(
3258           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3259           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3260     }
3261     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3262     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3263     return Result;
3264   }
3265 
3266   // If we have T2 ops, we can materialize the address directly via movt/movw
3267   // pair. This is always cheaper.
3268   if (Subtarget->useMovt(DAG.getMachineFunction())) {
3269     ++NumMovwMovt;
3270     // FIXME: Once remat is capable of dealing with instructions with register
3271     // operands, expand this into two nodes.
3272     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3273                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3274   } else {
3275     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3276     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3277     return DAG.getLoad(
3278         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3279         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3280   }
3281 }
3282 
3283 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3284                                                     SelectionDAG &DAG) const {
3285   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3286          "ROPI/RWPI not currently supported for Darwin");
3287   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3288   SDLoc dl(Op);
3289   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3290 
3291   if (Subtarget->useMovt(DAG.getMachineFunction()))
3292     ++NumMovwMovt;
3293 
3294   // FIXME: Once remat is capable of dealing with instructions with register
3295   // operands, expand this into multiple nodes
3296   unsigned Wrapper =
3297       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3298 
3299   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3300   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3301 
3302   if (Subtarget->isGVIndirectSymbol(GV))
3303     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3304                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3305   return Result;
3306 }
3307 
3308 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3309                                                      SelectionDAG &DAG) const {
3310   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3311   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
3312          "Windows on ARM expects to use movw/movt");
3313   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3314          "ROPI/RWPI not currently supported for Windows");
3315 
3316   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3317   const ARMII::TOF TargetFlags =
3318     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
3319   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3320   SDValue Result;
3321   SDLoc DL(Op);
3322 
3323   ++NumMovwMovt;
3324 
3325   // FIXME: Once remat is capable of dealing with instructions with register
3326   // operands, expand this into two nodes.
3327   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3328                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3329                                                   TargetFlags));
3330   if (GV->hasDLLImportStorageClass())
3331     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3332                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3333   return Result;
3334 }
3335 
3336 SDValue
3337 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3338   SDLoc dl(Op);
3339   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3340   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3341                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3342                      Op.getOperand(1), Val);
3343 }
3344 
3345 SDValue
3346 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3347   SDLoc dl(Op);
3348   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3349                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3350 }
3351 
3352 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3353                                                       SelectionDAG &DAG) const {
3354   SDLoc dl(Op);
3355   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3356                      Op.getOperand(0));
3357 }
3358 
3359 SDValue
3360 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3361                                           const ARMSubtarget *Subtarget) const {
3362   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3363   SDLoc dl(Op);
3364   switch (IntNo) {
3365   default: return SDValue();    // Don't custom lower most intrinsics.
3366   case Intrinsic::thread_pointer: {
3367     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3368     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3369   }
3370   case Intrinsic::eh_sjlj_lsda: {
3371     MachineFunction &MF = DAG.getMachineFunction();
3372     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3373     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3374     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3375     SDValue CPAddr;
3376     bool IsPositionIndependent = isPositionIndependent();
3377     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3378     ARMConstantPoolValue *CPV =
3379       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3380                                       ARMCP::CPLSDA, PCAdj);
3381     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3382     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3383     SDValue Result = DAG.getLoad(
3384         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3385         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3386 
3387     if (IsPositionIndependent) {
3388       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3389       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3390     }
3391     return Result;
3392   }
3393   case Intrinsic::arm_neon_vabs:
3394     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3395                         Op.getOperand(1));
3396   case Intrinsic::arm_neon_vmulls:
3397   case Intrinsic::arm_neon_vmullu: {
3398     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3399       ? ARMISD::VMULLs : ARMISD::VMULLu;
3400     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3401                        Op.getOperand(1), Op.getOperand(2));
3402   }
3403   case Intrinsic::arm_neon_vminnm:
3404   case Intrinsic::arm_neon_vmaxnm: {
3405     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3406       ? ISD::FMINNUM : ISD::FMAXNUM;
3407     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3408                        Op.getOperand(1), Op.getOperand(2));
3409   }
3410   case Intrinsic::arm_neon_vminu:
3411   case Intrinsic::arm_neon_vmaxu: {
3412     if (Op.getValueType().isFloatingPoint())
3413       return SDValue();
3414     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3415       ? ISD::UMIN : ISD::UMAX;
3416     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3417                          Op.getOperand(1), Op.getOperand(2));
3418   }
3419   case Intrinsic::arm_neon_vmins:
3420   case Intrinsic::arm_neon_vmaxs: {
3421     // v{min,max}s is overloaded between signed integers and floats.
3422     if (!Op.getValueType().isFloatingPoint()) {
3423       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3424         ? ISD::SMIN : ISD::SMAX;
3425       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3426                          Op.getOperand(1), Op.getOperand(2));
3427     }
3428     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3429       ? ISD::FMINNAN : ISD::FMAXNAN;
3430     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3431                        Op.getOperand(1), Op.getOperand(2));
3432   }
3433   case Intrinsic::arm_neon_vtbl1:
3434     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3435                        Op.getOperand(1), Op.getOperand(2));
3436   case Intrinsic::arm_neon_vtbl2:
3437     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3438                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3439   }
3440 }
3441 
3442 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3443                                  const ARMSubtarget *Subtarget) {
3444   SDLoc dl(Op);
3445   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3446   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3447   if (SSID == SyncScope::SingleThread)
3448     return Op;
3449 
3450   if (!Subtarget->hasDataBarrier()) {
3451     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3452     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3453     // here.
3454     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3455            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3456     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3457                        DAG.getConstant(0, dl, MVT::i32));
3458   }
3459 
3460   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3461   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3462   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3463   if (Subtarget->isMClass()) {
3464     // Only a full system barrier exists in the M-class architectures.
3465     Domain = ARM_MB::SY;
3466   } else if (Subtarget->preferISHSTBarriers() &&
3467              Ord == AtomicOrdering::Release) {
3468     // Swift happens to implement ISHST barriers in a way that's compatible with
3469     // Release semantics but weaker than ISH so we'd be fools not to use
3470     // it. Beware: other processors probably don't!
3471     Domain = ARM_MB::ISHST;
3472   }
3473 
3474   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3475                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3476                      DAG.getConstant(Domain, dl, MVT::i32));
3477 }
3478 
3479 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3480                              const ARMSubtarget *Subtarget) {
3481   // ARM pre v5TE and Thumb1 does not have preload instructions.
3482   if (!(Subtarget->isThumb2() ||
3483         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3484     // Just preserve the chain.
3485     return Op.getOperand(0);
3486 
3487   SDLoc dl(Op);
3488   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3489   if (!isRead &&
3490       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3491     // ARMv7 with MP extension has PLDW.
3492     return Op.getOperand(0);
3493 
3494   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3495   if (Subtarget->isThumb()) {
3496     // Invert the bits.
3497     isRead = ~isRead & 1;
3498     isData = ~isData & 1;
3499   }
3500 
3501   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3502                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3503                      DAG.getConstant(isData, dl, MVT::i32));
3504 }
3505 
3506 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3507   MachineFunction &MF = DAG.getMachineFunction();
3508   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3509 
3510   // vastart just stores the address of the VarArgsFrameIndex slot into the
3511   // memory location argument.
3512   SDLoc dl(Op);
3513   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3514   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3515   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3516   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3517                       MachinePointerInfo(SV));
3518 }
3519 
3520 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3521                                                 CCValAssign &NextVA,
3522                                                 SDValue &Root,
3523                                                 SelectionDAG &DAG,
3524                                                 const SDLoc &dl) const {
3525   MachineFunction &MF = DAG.getMachineFunction();
3526   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3527 
3528   const TargetRegisterClass *RC;
3529   if (AFI->isThumb1OnlyFunction())
3530     RC = &ARM::tGPRRegClass;
3531   else
3532     RC = &ARM::GPRRegClass;
3533 
3534   // Transform the arguments stored in physical registers into virtual ones.
3535   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3536   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3537 
3538   SDValue ArgValue2;
3539   if (NextVA.isMemLoc()) {
3540     MachineFrameInfo &MFI = MF.getFrameInfo();
3541     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3542 
3543     // Create load node to retrieve arguments from the stack.
3544     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3545     ArgValue2 = DAG.getLoad(
3546         MVT::i32, dl, Root, FIN,
3547         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3548   } else {
3549     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3550     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3551   }
3552   if (!Subtarget->isLittle())
3553     std::swap (ArgValue, ArgValue2);
3554   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3555 }
3556 
3557 // The remaining GPRs hold either the beginning of variable-argument
3558 // data, or the beginning of an aggregate passed by value (usually
3559 // byval).  Either way, we allocate stack slots adjacent to the data
3560 // provided by our caller, and store the unallocated registers there.
3561 // If this is a variadic function, the va_list pointer will begin with
3562 // these values; otherwise, this reassembles a (byval) structure that
3563 // was split between registers and memory.
3564 // Return: The frame index registers were stored into.
3565 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3566                                       const SDLoc &dl, SDValue &Chain,
3567                                       const Value *OrigArg,
3568                                       unsigned InRegsParamRecordIdx,
3569                                       int ArgOffset, unsigned ArgSize) const {
3570   // Currently, two use-cases possible:
3571   // Case #1. Non-var-args function, and we meet first byval parameter.
3572   //          Setup first unallocated register as first byval register;
3573   //          eat all remained registers
3574   //          (these two actions are performed by HandleByVal method).
3575   //          Then, here, we initialize stack frame with
3576   //          "store-reg" instructions.
3577   // Case #2. Var-args function, that doesn't contain byval parameters.
3578   //          The same: eat all remained unallocated registers,
3579   //          initialize stack frame.
3580 
3581   MachineFunction &MF = DAG.getMachineFunction();
3582   MachineFrameInfo &MFI = MF.getFrameInfo();
3583   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3584   unsigned RBegin, REnd;
3585   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3586     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3587   } else {
3588     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3589     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3590     REnd = ARM::R4;
3591   }
3592 
3593   if (REnd != RBegin)
3594     ArgOffset = -4 * (ARM::R4 - RBegin);
3595 
3596   auto PtrVT = getPointerTy(DAG.getDataLayout());
3597   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3598   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3599 
3600   SmallVector<SDValue, 4> MemOps;
3601   const TargetRegisterClass *RC =
3602       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3603 
3604   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3605     unsigned VReg = MF.addLiveIn(Reg, RC);
3606     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3607     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3608                                  MachinePointerInfo(OrigArg, 4 * i));
3609     MemOps.push_back(Store);
3610     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3611   }
3612 
3613   if (!MemOps.empty())
3614     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3615   return FrameIndex;
3616 }
3617 
3618 // Setup stack frame, the va_list pointer will start from.
3619 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3620                                              const SDLoc &dl, SDValue &Chain,
3621                                              unsigned ArgOffset,
3622                                              unsigned TotalArgRegsSaveSize,
3623                                              bool ForceMutable) const {
3624   MachineFunction &MF = DAG.getMachineFunction();
3625   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3626 
3627   // Try to store any remaining integer argument regs
3628   // to their spots on the stack so that they may be loaded by dereferencing
3629   // the result of va_next.
3630   // If there is no regs to be stored, just point address after last
3631   // argument passed via stack.
3632   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3633                                   CCInfo.getInRegsParamsCount(),
3634                                   CCInfo.getNextStackOffset(), 4);
3635   AFI->setVarArgsFrameIndex(FrameIndex);
3636 }
3637 
3638 SDValue ARMTargetLowering::LowerFormalArguments(
3639     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3640     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3641     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3642   MachineFunction &MF = DAG.getMachineFunction();
3643   MachineFrameInfo &MFI = MF.getFrameInfo();
3644 
3645   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3646 
3647   // Assign locations to all of the incoming arguments.
3648   SmallVector<CCValAssign, 16> ArgLocs;
3649   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3650                  *DAG.getContext());
3651   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3652 
3653   SmallVector<SDValue, 16> ArgValues;
3654   SDValue ArgValue;
3655   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3656   unsigned CurArgIdx = 0;
3657 
3658   // Initially ArgRegsSaveSize is zero.
3659   // Then we increase this value each time we meet byval parameter.
3660   // We also increase this value in case of varargs function.
3661   AFI->setArgRegsSaveSize(0);
3662 
3663   // Calculate the amount of stack space that we need to allocate to store
3664   // byval and variadic arguments that are passed in registers.
3665   // We need to know this before we allocate the first byval or variadic
3666   // argument, as they will be allocated a stack slot below the CFA (Canonical
3667   // Frame Address, the stack pointer at entry to the function).
3668   unsigned ArgRegBegin = ARM::R4;
3669   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3670     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3671       break;
3672 
3673     CCValAssign &VA = ArgLocs[i];
3674     unsigned Index = VA.getValNo();
3675     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3676     if (!Flags.isByVal())
3677       continue;
3678 
3679     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3680     unsigned RBegin, REnd;
3681     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3682     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3683 
3684     CCInfo.nextInRegsParam();
3685   }
3686   CCInfo.rewindByValRegsInfo();
3687 
3688   int lastInsIndex = -1;
3689   if (isVarArg && MFI.hasVAStart()) {
3690     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3691     if (RegIdx != array_lengthof(GPRArgRegs))
3692       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3693   }
3694 
3695   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3696   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3697   auto PtrVT = getPointerTy(DAG.getDataLayout());
3698 
3699   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3700     CCValAssign &VA = ArgLocs[i];
3701     if (Ins[VA.getValNo()].isOrigArg()) {
3702       std::advance(CurOrigArg,
3703                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3704       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3705     }
3706     // Arguments stored in registers.
3707     if (VA.isRegLoc()) {
3708       EVT RegVT = VA.getLocVT();
3709 
3710       if (VA.needsCustom()) {
3711         // f64 and vector types are split up into multiple registers or
3712         // combinations of registers and stack slots.
3713         if (VA.getLocVT() == MVT::v2f64) {
3714           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3715                                                    Chain, DAG, dl);
3716           VA = ArgLocs[++i]; // skip ahead to next loc
3717           SDValue ArgValue2;
3718           if (VA.isMemLoc()) {
3719             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3720             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3721             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3722                                     MachinePointerInfo::getFixedStack(
3723                                         DAG.getMachineFunction(), FI));
3724           } else {
3725             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3726                                              Chain, DAG, dl);
3727           }
3728           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3729           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3730                                  ArgValue, ArgValue1,
3731                                  DAG.getIntPtrConstant(0, dl));
3732           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3733                                  ArgValue, ArgValue2,
3734                                  DAG.getIntPtrConstant(1, dl));
3735         } else
3736           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3737       } else {
3738         const TargetRegisterClass *RC;
3739 
3740 
3741         if (RegVT == MVT::f16)
3742           RC = &ARM::HPRRegClass;
3743         else if (RegVT == MVT::f32)
3744           RC = &ARM::SPRRegClass;
3745         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3746           RC = &ARM::DPRRegClass;
3747         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3748           RC = &ARM::QPRRegClass;
3749         else if (RegVT == MVT::i32)
3750           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3751                                            : &ARM::GPRRegClass;
3752         else
3753           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3754 
3755         // Transform the arguments in physical registers into virtual ones.
3756         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3757         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3758       }
3759 
3760       // If this is an 8 or 16-bit value, it is really passed promoted
3761       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3762       // truncate to the right size.
3763       switch (VA.getLocInfo()) {
3764       default: llvm_unreachable("Unknown loc info!");
3765       case CCValAssign::Full: break;
3766       case CCValAssign::BCvt:
3767         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3768         break;
3769       case CCValAssign::SExt:
3770         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3771                                DAG.getValueType(VA.getValVT()));
3772         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3773         break;
3774       case CCValAssign::ZExt:
3775         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3776                                DAG.getValueType(VA.getValVT()));
3777         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3778         break;
3779       }
3780 
3781       InVals.push_back(ArgValue);
3782     } else { // VA.isRegLoc()
3783       // sanity check
3784       assert(VA.isMemLoc());
3785       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3786 
3787       int index = VA.getValNo();
3788 
3789       // Some Ins[] entries become multiple ArgLoc[] entries.
3790       // Process them only once.
3791       if (index != lastInsIndex)
3792         {
3793           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3794           // FIXME: For now, all byval parameter objects are marked mutable.
3795           // This can be changed with more analysis.
3796           // In case of tail call optimization mark all arguments mutable.
3797           // Since they could be overwritten by lowering of arguments in case of
3798           // a tail call.
3799           if (Flags.isByVal()) {
3800             assert(Ins[index].isOrigArg() &&
3801                    "Byval arguments cannot be implicit");
3802             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3803 
3804             int FrameIndex = StoreByValRegs(
3805                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3806                 VA.getLocMemOffset(), Flags.getByValSize());
3807             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3808             CCInfo.nextInRegsParam();
3809           } else {
3810             unsigned FIOffset = VA.getLocMemOffset();
3811             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3812                                            FIOffset, true);
3813 
3814             // Create load nodes to retrieve arguments from the stack.
3815             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3816             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3817                                          MachinePointerInfo::getFixedStack(
3818                                              DAG.getMachineFunction(), FI)));
3819           }
3820           lastInsIndex = index;
3821         }
3822     }
3823   }
3824 
3825   // varargs
3826   if (isVarArg && MFI.hasVAStart())
3827     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3828                          CCInfo.getNextStackOffset(),
3829                          TotalArgRegsSaveSize);
3830 
3831   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3832 
3833   return Chain;
3834 }
3835 
3836 /// isFloatingPointZero - Return true if this is +0.0.
3837 static bool isFloatingPointZero(SDValue Op) {
3838   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3839     return CFP->getValueAPF().isPosZero();
3840   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3841     // Maybe this has already been legalized into the constant pool?
3842     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3843       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3844       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3845         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3846           return CFP->getValueAPF().isPosZero();
3847     }
3848   } else if (Op->getOpcode() == ISD::BITCAST &&
3849              Op->getValueType(0) == MVT::f64) {
3850     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3851     // created by LowerConstantFP().
3852     SDValue BitcastOp = Op->getOperand(0);
3853     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3854         isNullConstant(BitcastOp->getOperand(0)))
3855       return true;
3856   }
3857   return false;
3858 }
3859 
3860 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3861 /// the given operands.
3862 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3863                                      SDValue &ARMcc, SelectionDAG &DAG,
3864                                      const SDLoc &dl) const {
3865   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3866     unsigned C = RHSC->getZExtValue();
3867     if (!isLegalICmpImmediate(C)) {
3868       // Constant does not fit, try adjusting it by one?
3869       switch (CC) {
3870       default: break;
3871       case ISD::SETLT:
3872       case ISD::SETGE:
3873         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3874           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3875           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3876         }
3877         break;
3878       case ISD::SETULT:
3879       case ISD::SETUGE:
3880         if (C != 0 && isLegalICmpImmediate(C-1)) {
3881           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3882           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3883         }
3884         break;
3885       case ISD::SETLE:
3886       case ISD::SETGT:
3887         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3888           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3889           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3890         }
3891         break;
3892       case ISD::SETULE:
3893       case ISD::SETUGT:
3894         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3895           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3896           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3897         }
3898         break;
3899       }
3900     }
3901   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
3902              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
3903     // In ARM and Thumb-2, the compare instructions can shift their second
3904     // operand.
3905     CC = ISD::getSetCCSwappedOperands(CC);
3906     std::swap(LHS, RHS);
3907   }
3908 
3909   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3910   ARMISD::NodeType CompareType;
3911   switch (CondCode) {
3912   default:
3913     CompareType = ARMISD::CMP;
3914     break;
3915   case ARMCC::EQ:
3916   case ARMCC::NE:
3917     // Uses only Z Flag
3918     CompareType = ARMISD::CMPZ;
3919     break;
3920   }
3921   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3922   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3923 }
3924 
3925 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3926 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3927                                      SelectionDAG &DAG, const SDLoc &dl,
3928                                      bool InvalidOnQNaN) const {
3929   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3930   SDValue Cmp;
3931   SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
3932   if (!isFloatingPointZero(RHS))
3933     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
3934   else
3935     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
3936   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3937 }
3938 
3939 /// duplicateCmp - Glue values can have only one use, so this function
3940 /// duplicates a comparison node.
3941 SDValue
3942 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3943   unsigned Opc = Cmp.getOpcode();
3944   SDLoc DL(Cmp);
3945   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3946     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3947 
3948   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3949   Cmp = Cmp.getOperand(0);
3950   Opc = Cmp.getOpcode();
3951   if (Opc == ARMISD::CMPFP)
3952     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3953                       Cmp.getOperand(1), Cmp.getOperand(2));
3954   else {
3955     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3956     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3957                       Cmp.getOperand(1));
3958   }
3959   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3960 }
3961 
3962 // This function returns three things: the arithmetic computation itself
3963 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
3964 // comparison and the condition code define the case in which the arithmetic
3965 // computation *does not* overflow.
3966 std::pair<SDValue, SDValue>
3967 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3968                                  SDValue &ARMcc) const {
3969   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3970 
3971   SDValue Value, OverflowCmp;
3972   SDValue LHS = Op.getOperand(0);
3973   SDValue RHS = Op.getOperand(1);
3974   SDLoc dl(Op);
3975 
3976   // FIXME: We are currently always generating CMPs because we don't support
3977   // generating CMN through the backend. This is not as good as the natural
3978   // CMP case because it causes a register dependency and cannot be folded
3979   // later.
3980 
3981   switch (Op.getOpcode()) {
3982   default:
3983     llvm_unreachable("Unknown overflow instruction!");
3984   case ISD::SADDO:
3985     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3986     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3987     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3988     break;
3989   case ISD::UADDO:
3990     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3991     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
3992     // We do not use it in the USUBO case as Value may not be used.
3993     Value = DAG.getNode(ARMISD::ADDC, dl,
3994                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
3995                 .getValue(0);
3996     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3997     break;
3998   case ISD::SSUBO:
3999     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4000     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4001     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4002     break;
4003   case ISD::USUBO:
4004     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4005     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4006     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4007     break;
4008   case ISD::UMULO:
4009     // We generate a UMUL_LOHI and then check if the high word is 0.
4010     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4011     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4012                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4013                         LHS, RHS);
4014     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4015                               DAG.getConstant(0, dl, MVT::i32));
4016     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4017     break;
4018   case ISD::SMULO:
4019     // We generate a SMUL_LOHI and then check if all the bits of the high word
4020     // are the same as the sign bit of the low word.
4021     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4022     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4023                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4024                         LHS, RHS);
4025     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4026                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4027                                           Value.getValue(0),
4028                                           DAG.getConstant(31, dl, MVT::i32)));
4029     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4030     break;
4031   } // switch (...)
4032 
4033   return std::make_pair(Value, OverflowCmp);
4034 }
4035 
4036 SDValue
4037 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4038   // Let legalize expand this if it isn't a legal type yet.
4039   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4040     return SDValue();
4041 
4042   SDValue Value, OverflowCmp;
4043   SDValue ARMcc;
4044   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4045   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4046   SDLoc dl(Op);
4047   // We use 0 and 1 as false and true values.
4048   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4049   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4050   EVT VT = Op.getValueType();
4051 
4052   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4053                                  ARMcc, CCR, OverflowCmp);
4054 
4055   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4056   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4057 }
4058 
4059 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4060                                               SelectionDAG &DAG) {
4061   SDLoc DL(BoolCarry);
4062   EVT CarryVT = BoolCarry.getValueType();
4063 
4064   // This converts the boolean value carry into the carry flag by doing
4065   // ARMISD::SUBC Carry, 1
4066   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4067                               DAG.getVTList(CarryVT, MVT::i32),
4068                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4069   return Carry.getValue(1);
4070 }
4071 
4072 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4073                                               SelectionDAG &DAG) {
4074   SDLoc DL(Flags);
4075 
4076   // Now convert the carry flag into a boolean carry. We do this
4077   // using ARMISD:ADDE 0, 0, Carry
4078   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4079                      DAG.getConstant(0, DL, MVT::i32),
4080                      DAG.getConstant(0, DL, MVT::i32), Flags);
4081 }
4082 
4083 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4084                                              SelectionDAG &DAG) const {
4085   // Let legalize expand this if it isn't a legal type yet.
4086   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4087     return SDValue();
4088 
4089   SDValue LHS = Op.getOperand(0);
4090   SDValue RHS = Op.getOperand(1);
4091   SDLoc dl(Op);
4092 
4093   EVT VT = Op.getValueType();
4094   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4095   SDValue Value;
4096   SDValue Overflow;
4097   switch (Op.getOpcode()) {
4098   default:
4099     llvm_unreachable("Unknown overflow instruction!");
4100   case ISD::UADDO:
4101     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4102     // Convert the carry flag into a boolean value.
4103     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4104     break;
4105   case ISD::USUBO: {
4106     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4107     // Convert the carry flag into a boolean value.
4108     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4109     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4110     // value. So compute 1 - C.
4111     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4112                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4113     break;
4114   }
4115   }
4116 
4117   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4118 }
4119 
4120 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4121   SDValue Cond = Op.getOperand(0);
4122   SDValue SelectTrue = Op.getOperand(1);
4123   SDValue SelectFalse = Op.getOperand(2);
4124   SDLoc dl(Op);
4125   unsigned Opc = Cond.getOpcode();
4126 
4127   if (Cond.getResNo() == 1 &&
4128       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4129        Opc == ISD::USUBO)) {
4130     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4131       return SDValue();
4132 
4133     SDValue Value, OverflowCmp;
4134     SDValue ARMcc;
4135     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4136     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4137     EVT VT = Op.getValueType();
4138 
4139     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4140                    OverflowCmp, DAG);
4141   }
4142 
4143   // Convert:
4144   //
4145   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4146   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4147   //
4148   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4149     const ConstantSDNode *CMOVTrue =
4150       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4151     const ConstantSDNode *CMOVFalse =
4152       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4153 
4154     if (CMOVTrue && CMOVFalse) {
4155       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4156       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4157 
4158       SDValue True;
4159       SDValue False;
4160       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4161         True = SelectTrue;
4162         False = SelectFalse;
4163       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4164         True = SelectFalse;
4165         False = SelectTrue;
4166       }
4167 
4168       if (True.getNode() && False.getNode()) {
4169         EVT VT = Op.getValueType();
4170         SDValue ARMcc = Cond.getOperand(2);
4171         SDValue CCR = Cond.getOperand(3);
4172         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4173         assert(True.getValueType() == VT);
4174         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4175       }
4176     }
4177   }
4178 
4179   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4180   // undefined bits before doing a full-word comparison with zero.
4181   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4182                      DAG.getConstant(1, dl, Cond.getValueType()));
4183 
4184   return DAG.getSelectCC(dl, Cond,
4185                          DAG.getConstant(0, dl, Cond.getValueType()),
4186                          SelectTrue, SelectFalse, ISD::SETNE);
4187 }
4188 
4189 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4190                                  bool &swpCmpOps, bool &swpVselOps) {
4191   // Start by selecting the GE condition code for opcodes that return true for
4192   // 'equality'
4193   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4194       CC == ISD::SETULE)
4195     CondCode = ARMCC::GE;
4196 
4197   // and GT for opcodes that return false for 'equality'.
4198   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4199            CC == ISD::SETULT)
4200     CondCode = ARMCC::GT;
4201 
4202   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4203   // to swap the compare operands.
4204   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4205       CC == ISD::SETULT)
4206     swpCmpOps = true;
4207 
4208   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4209   // If we have an unordered opcode, we need to swap the operands to the VSEL
4210   // instruction (effectively negating the condition).
4211   //
4212   // This also has the effect of swapping which one of 'less' or 'greater'
4213   // returns true, so we also swap the compare operands. It also switches
4214   // whether we return true for 'equality', so we compensate by picking the
4215   // opposite condition code to our original choice.
4216   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4217       CC == ISD::SETUGT) {
4218     swpCmpOps = !swpCmpOps;
4219     swpVselOps = !swpVselOps;
4220     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4221   }
4222 
4223   // 'ordered' is 'anything but unordered', so use the VS condition code and
4224   // swap the VSEL operands.
4225   if (CC == ISD::SETO) {
4226     CondCode = ARMCC::VS;
4227     swpVselOps = true;
4228   }
4229 
4230   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4231   // code and swap the VSEL operands.
4232   if (CC == ISD::SETUNE) {
4233     CondCode = ARMCC::EQ;
4234     swpVselOps = true;
4235   }
4236 }
4237 
4238 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4239                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4240                                    SDValue Cmp, SelectionDAG &DAG) const {
4241   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
4242     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4243                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4244     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4245                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4246 
4247     SDValue TrueLow = TrueVal.getValue(0);
4248     SDValue TrueHigh = TrueVal.getValue(1);
4249     SDValue FalseLow = FalseVal.getValue(0);
4250     SDValue FalseHigh = FalseVal.getValue(1);
4251 
4252     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4253                               ARMcc, CCR, Cmp);
4254     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4255                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4256 
4257     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4258   } else {
4259     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4260                        Cmp);
4261   }
4262 }
4263 
4264 static bool isGTorGE(ISD::CondCode CC) {
4265   return CC == ISD::SETGT || CC == ISD::SETGE;
4266 }
4267 
4268 static bool isLTorLE(ISD::CondCode CC) {
4269   return CC == ISD::SETLT || CC == ISD::SETLE;
4270 }
4271 
4272 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4273 // All of these conditions (and their <= and >= counterparts) will do:
4274 //          x < k ? k : x
4275 //          x > k ? x : k
4276 //          k < x ? x : k
4277 //          k > x ? k : x
4278 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4279                             const SDValue TrueVal, const SDValue FalseVal,
4280                             const ISD::CondCode CC, const SDValue K) {
4281   return (isGTorGE(CC) &&
4282           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4283          (isLTorLE(CC) &&
4284           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4285 }
4286 
4287 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4288 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4289                             const SDValue TrueVal, const SDValue FalseVal,
4290                             const ISD::CondCode CC, const SDValue K) {
4291   return (isGTorGE(CC) &&
4292           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4293          (isLTorLE(CC) &&
4294           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4295 }
4296 
4297 // Check if two chained conditionals could be converted into SSAT or USAT.
4298 //
4299 // SSAT can replace a set of two conditional selectors that bound a number to an
4300 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4301 //
4302 //     x < -k ? -k : (x > k ? k : x)
4303 //     x < -k ? -k : (x < k ? x : k)
4304 //     x > -k ? (x > k ? k : x) : -k
4305 //     x < k ? (x < -k ? -k : x) : k
4306 //     etc.
4307 //
4308 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4309 // a power of 2.
4310 //
4311 // It returns true if the conversion can be done, false otherwise.
4312 // Additionally, the variable is returned in parameter V, the constant in K and
4313 // usat is set to true if the conditional represents an unsigned saturation
4314 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4315                                     uint64_t &K, bool &usat) {
4316   SDValue LHS1 = Op.getOperand(0);
4317   SDValue RHS1 = Op.getOperand(1);
4318   SDValue TrueVal1 = Op.getOperand(2);
4319   SDValue FalseVal1 = Op.getOperand(3);
4320   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4321 
4322   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4323   if (Op2.getOpcode() != ISD::SELECT_CC)
4324     return false;
4325 
4326   SDValue LHS2 = Op2.getOperand(0);
4327   SDValue RHS2 = Op2.getOperand(1);
4328   SDValue TrueVal2 = Op2.getOperand(2);
4329   SDValue FalseVal2 = Op2.getOperand(3);
4330   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4331 
4332   // Find out which are the constants and which are the variables
4333   // in each conditional
4334   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4335                                                         ? &RHS1
4336                                                         : nullptr;
4337   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4338                                                         ? &RHS2
4339                                                         : nullptr;
4340   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4341   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4342   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4343   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4344 
4345   // We must detect cases where the original operations worked with 16- or
4346   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4347   // must work with sign-extended values but the select operations return
4348   // the original non-extended value.
4349   SDValue V2TmpReg = V2Tmp;
4350   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4351     V2TmpReg = V2Tmp->getOperand(0);
4352 
4353   // Check that the registers and the constants have the correct values
4354   // in both conditionals
4355   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4356       V2TmpReg != V2)
4357     return false;
4358 
4359   // Figure out which conditional is saturating the lower/upper bound.
4360   const SDValue *LowerCheckOp =
4361       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4362           ? &Op
4363           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4364                 ? &Op2
4365                 : nullptr;
4366   const SDValue *UpperCheckOp =
4367       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4368           ? &Op
4369           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4370                 ? &Op2
4371                 : nullptr;
4372 
4373   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4374     return false;
4375 
4376   // Check that the constant in the lower-bound check is
4377   // the opposite of the constant in the upper-bound check
4378   // in 1's complement.
4379   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4380   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4381   int64_t PosVal = std::max(Val1, Val2);
4382   int64_t NegVal = std::min(Val1, Val2);
4383 
4384   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4385        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4386       isPowerOf2_64(PosVal + 1)) {
4387 
4388     // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4389     if (Val1 == ~Val2)
4390       usat = false;
4391     else if (NegVal == 0)
4392       usat = true;
4393     else
4394       return false;
4395 
4396     V = V2;
4397     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4398 
4399     return true;
4400   }
4401 
4402   return false;
4403 }
4404 
4405 // Check if a condition of the type x < k ? k : x can be converted into a
4406 // bit operation instead of conditional moves.
4407 // Currently this is allowed given:
4408 // - The conditions and values match up
4409 // - k is 0 or -1 (all ones)
4410 // This function will not check the last condition, thats up to the caller
4411 // It returns true if the transformation can be made, and in such case
4412 // returns x in V, and k in SatK.
4413 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4414                                          SDValue &SatK)
4415 {
4416   SDValue LHS = Op.getOperand(0);
4417   SDValue RHS = Op.getOperand(1);
4418   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4419   SDValue TrueVal = Op.getOperand(2);
4420   SDValue FalseVal = Op.getOperand(3);
4421 
4422   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4423                                                ? &RHS
4424                                                : nullptr;
4425 
4426   // No constant operation in comparison, early out
4427   if (!K)
4428     return false;
4429 
4430   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4431   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4432   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4433 
4434   // If the constant on left and right side, or variable on left and right,
4435   // does not match, early out
4436   if (*K != KTmp || V != VTmp)
4437     return false;
4438 
4439   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4440     SatK = *K;
4441     return true;
4442   }
4443 
4444   return false;
4445 }
4446 
4447 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4448   EVT VT = Op.getValueType();
4449   SDLoc dl(Op);
4450 
4451   // Try to convert two saturating conditional selects into a single SSAT
4452   SDValue SatValue;
4453   uint64_t SatConstant;
4454   bool SatUSat;
4455   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4456       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4457     if (SatUSat)
4458       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4459                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4460     else
4461       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4462                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4463   }
4464 
4465   // Try to convert expressions of the form x < k ? k : x (and similar forms)
4466   // into more efficient bit operations, which is possible when k is 0 or -1
4467   // On ARM and Thumb-2 which have flexible operand 2 this will result in
4468   // single instructions. On Thumb the shift and the bit operation will be two
4469   // instructions.
4470   // Only allow this transformation on full-width (32-bit) operations
4471   SDValue LowerSatConstant;
4472   if (VT == MVT::i32 &&
4473       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4474     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4475                                  DAG.getConstant(31, dl, VT));
4476     if (isNullConstant(LowerSatConstant)) {
4477       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4478                                       DAG.getAllOnesConstant(dl, VT));
4479       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4480     } else if (isAllOnesConstant(LowerSatConstant))
4481       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4482   }
4483 
4484   SDValue LHS = Op.getOperand(0);
4485   SDValue RHS = Op.getOperand(1);
4486   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4487   SDValue TrueVal = Op.getOperand(2);
4488   SDValue FalseVal = Op.getOperand(3);
4489 
4490   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4491     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4492                                                     dl);
4493 
4494     // If softenSetCCOperands only returned one value, we should compare it to
4495     // zero.
4496     if (!RHS.getNode()) {
4497       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4498       CC = ISD::SETNE;
4499     }
4500   }
4501 
4502   if (LHS.getValueType() == MVT::i32) {
4503     // Try to generate VSEL on ARMv8.
4504     // The VSEL instruction can't use all the usual ARM condition
4505     // codes: it only has two bits to select the condition code, so it's
4506     // constrained to use only GE, GT, VS and EQ.
4507     //
4508     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4509     // swap the operands of the previous compare instruction (effectively
4510     // inverting the compare condition, swapping 'less' and 'greater') and
4511     // sometimes need to swap the operands to the VSEL (which inverts the
4512     // condition in the sense of firing whenever the previous condition didn't)
4513     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4514                                     TrueVal.getValueType() == MVT::f64)) {
4515       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4516       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4517           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4518         CC = ISD::getSetCCInverse(CC, true);
4519         std::swap(TrueVal, FalseVal);
4520       }
4521     }
4522 
4523     SDValue ARMcc;
4524     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4525     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4526     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4527   }
4528 
4529   ARMCC::CondCodes CondCode, CondCode2;
4530   bool InvalidOnQNaN;
4531   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4532 
4533   // Normalize the fp compare. If RHS is zero we keep it there so we match
4534   // CMPFPw0 instead of CMPFP.
4535   if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) &&
4536      (TrueVal.getValueType() == MVT::f16 ||
4537       TrueVal.getValueType() == MVT::f32 ||
4538       TrueVal.getValueType() == MVT::f64)) {
4539     bool swpCmpOps = false;
4540     bool swpVselOps = false;
4541     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4542 
4543     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4544         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4545       if (swpCmpOps)
4546         std::swap(LHS, RHS);
4547       if (swpVselOps)
4548         std::swap(TrueVal, FalseVal);
4549     }
4550   }
4551 
4552   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4553   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4554   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4555   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4556   if (CondCode2 != ARMCC::AL) {
4557     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4558     // FIXME: Needs another CMP because flag can have but one use.
4559     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4560     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4561   }
4562   return Result;
4563 }
4564 
4565 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4566 /// to morph to an integer compare sequence.
4567 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4568                            const ARMSubtarget *Subtarget) {
4569   SDNode *N = Op.getNode();
4570   if (!N->hasOneUse())
4571     // Otherwise it requires moving the value from fp to integer registers.
4572     return false;
4573   if (!N->getNumValues())
4574     return false;
4575   EVT VT = Op.getValueType();
4576   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4577     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4578     // vmrs are very slow, e.g. cortex-a8.
4579     return false;
4580 
4581   if (isFloatingPointZero(Op)) {
4582     SeenZero = true;
4583     return true;
4584   }
4585   return ISD::isNormalLoad(N);
4586 }
4587 
4588 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4589   if (isFloatingPointZero(Op))
4590     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4591 
4592   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4593     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4594                        Ld->getPointerInfo(), Ld->getAlignment(),
4595                        Ld->getMemOperand()->getFlags());
4596 
4597   llvm_unreachable("Unknown VFP cmp argument!");
4598 }
4599 
4600 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4601                            SDValue &RetVal1, SDValue &RetVal2) {
4602   SDLoc dl(Op);
4603 
4604   if (isFloatingPointZero(Op)) {
4605     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4606     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4607     return;
4608   }
4609 
4610   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4611     SDValue Ptr = Ld->getBasePtr();
4612     RetVal1 =
4613         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4614                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4615 
4616     EVT PtrType = Ptr.getValueType();
4617     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4618     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4619                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4620     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4621                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
4622                           Ld->getMemOperand()->getFlags());
4623     return;
4624   }
4625 
4626   llvm_unreachable("Unknown VFP cmp argument!");
4627 }
4628 
4629 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4630 /// f32 and even f64 comparisons to integer ones.
4631 SDValue
4632 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4633   SDValue Chain = Op.getOperand(0);
4634   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4635   SDValue LHS = Op.getOperand(2);
4636   SDValue RHS = Op.getOperand(3);
4637   SDValue Dest = Op.getOperand(4);
4638   SDLoc dl(Op);
4639 
4640   bool LHSSeenZero = false;
4641   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4642   bool RHSSeenZero = false;
4643   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4644   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4645     // If unsafe fp math optimization is enabled and there are no other uses of
4646     // the CMP operands, and the condition code is EQ or NE, we can optimize it
4647     // to an integer comparison.
4648     if (CC == ISD::SETOEQ)
4649       CC = ISD::SETEQ;
4650     else if (CC == ISD::SETUNE)
4651       CC = ISD::SETNE;
4652 
4653     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4654     SDValue ARMcc;
4655     if (LHS.getValueType() == MVT::f32) {
4656       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4657                         bitcastf32Toi32(LHS, DAG), Mask);
4658       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4659                         bitcastf32Toi32(RHS, DAG), Mask);
4660       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4661       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4662       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4663                          Chain, Dest, ARMcc, CCR, Cmp);
4664     }
4665 
4666     SDValue LHS1, LHS2;
4667     SDValue RHS1, RHS2;
4668     expandf64Toi32(LHS, DAG, LHS1, LHS2);
4669     expandf64Toi32(RHS, DAG, RHS1, RHS2);
4670     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4671     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4672     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4673     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4674     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4675     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4676     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4677   }
4678 
4679   return SDValue();
4680 }
4681 
4682 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4683   SDValue Chain = Op.getOperand(0);
4684   SDValue Cond = Op.getOperand(1);
4685   SDValue Dest = Op.getOperand(2);
4686   SDLoc dl(Op);
4687 
4688   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4689   // instruction.
4690   unsigned Opc = Cond.getOpcode();
4691   if (Cond.getResNo() == 1 &&
4692       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4693        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4694     // Only lower legal XALUO ops.
4695     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4696       return SDValue();
4697 
4698     // The actual operation with overflow check.
4699     SDValue Value, OverflowCmp;
4700     SDValue ARMcc;
4701     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4702 
4703     // Reverse the condition code.
4704     ARMCC::CondCodes CondCode =
4705         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4706     CondCode = ARMCC::getOppositeCondition(CondCode);
4707     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4708     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4709 
4710     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4711                        OverflowCmp);
4712   }
4713 
4714   return SDValue();
4715 }
4716 
4717 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4718   SDValue Chain = Op.getOperand(0);
4719   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4720   SDValue LHS = Op.getOperand(2);
4721   SDValue RHS = Op.getOperand(3);
4722   SDValue Dest = Op.getOperand(4);
4723   SDLoc dl(Op);
4724 
4725   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4726     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4727                                                     dl);
4728 
4729     // If softenSetCCOperands only returned one value, we should compare it to
4730     // zero.
4731     if (!RHS.getNode()) {
4732       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4733       CC = ISD::SETNE;
4734     }
4735   }
4736 
4737   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4738   // instruction.
4739   unsigned Opc = LHS.getOpcode();
4740   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
4741       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4742        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4743       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4744     // Only lower legal XALUO ops.
4745     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4746       return SDValue();
4747 
4748     // The actual operation with overflow check.
4749     SDValue Value, OverflowCmp;
4750     SDValue ARMcc;
4751     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
4752 
4753     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
4754       // Reverse the condition code.
4755       ARMCC::CondCodes CondCode =
4756           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4757       CondCode = ARMCC::getOppositeCondition(CondCode);
4758       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4759     }
4760     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4761 
4762     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4763                        OverflowCmp);
4764   }
4765 
4766   if (LHS.getValueType() == MVT::i32) {
4767     SDValue ARMcc;
4768     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4769     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4770     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4771                        Chain, Dest, ARMcc, CCR, Cmp);
4772   }
4773 
4774   if (getTargetMachine().Options.UnsafeFPMath &&
4775       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4776        CC == ISD::SETNE || CC == ISD::SETUNE)) {
4777     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4778       return Result;
4779   }
4780 
4781   ARMCC::CondCodes CondCode, CondCode2;
4782   bool InvalidOnQNaN;
4783   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4784 
4785   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4786   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4787   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4788   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4789   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4790   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4791   if (CondCode2 != ARMCC::AL) {
4792     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4793     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4794     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4795   }
4796   return Res;
4797 }
4798 
4799 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4800   SDValue Chain = Op.getOperand(0);
4801   SDValue Table = Op.getOperand(1);
4802   SDValue Index = Op.getOperand(2);
4803   SDLoc dl(Op);
4804 
4805   EVT PTy = getPointerTy(DAG.getDataLayout());
4806   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4807   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4808   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4809   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4810   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
4811   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
4812     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4813     // which does another jump to the destination. This also makes it easier
4814     // to translate it to TBB / TBH later (Thumb2 only).
4815     // FIXME: This might not work if the function is extremely large.
4816     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4817                        Addr, Op.getOperand(2), JTI);
4818   }
4819   if (isPositionIndependent() || Subtarget->isROPI()) {
4820     Addr =
4821         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4822                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4823     Chain = Addr.getValue(1);
4824     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
4825     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4826   } else {
4827     Addr =
4828         DAG.getLoad(PTy, dl, Chain, Addr,
4829                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4830     Chain = Addr.getValue(1);
4831     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4832   }
4833 }
4834 
4835 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4836   EVT VT = Op.getValueType();
4837   SDLoc dl(Op);
4838 
4839   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4840     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4841       return Op;
4842     return DAG.UnrollVectorOp(Op.getNode());
4843   }
4844 
4845   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4846          "Invalid type for custom lowering!");
4847   if (VT != MVT::v4i16)
4848     return DAG.UnrollVectorOp(Op.getNode());
4849 
4850   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4851   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4852 }
4853 
4854 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4855   EVT VT = Op.getValueType();
4856   if (VT.isVector())
4857     return LowerVectorFP_TO_INT(Op, DAG);
4858   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4859     RTLIB::Libcall LC;
4860     if (Op.getOpcode() == ISD::FP_TO_SINT)
4861       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4862                               Op.getValueType());
4863     else
4864       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4865                               Op.getValueType());
4866     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4867                        /*isSigned*/ false, SDLoc(Op)).first;
4868   }
4869 
4870   return Op;
4871 }
4872 
4873 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4874   EVT VT = Op.getValueType();
4875   SDLoc dl(Op);
4876 
4877   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4878     if (VT.getVectorElementType() == MVT::f32)
4879       return Op;
4880     return DAG.UnrollVectorOp(Op.getNode());
4881   }
4882 
4883   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4884          "Invalid type for custom lowering!");
4885   if (VT != MVT::v4f32)
4886     return DAG.UnrollVectorOp(Op.getNode());
4887 
4888   unsigned CastOpc;
4889   unsigned Opc;
4890   switch (Op.getOpcode()) {
4891   default: llvm_unreachable("Invalid opcode!");
4892   case ISD::SINT_TO_FP:
4893     CastOpc = ISD::SIGN_EXTEND;
4894     Opc = ISD::SINT_TO_FP;
4895     break;
4896   case ISD::UINT_TO_FP:
4897     CastOpc = ISD::ZERO_EXTEND;
4898     Opc = ISD::UINT_TO_FP;
4899     break;
4900   }
4901 
4902   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4903   return DAG.getNode(Opc, dl, VT, Op);
4904 }
4905 
4906 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4907   EVT VT = Op.getValueType();
4908   if (VT.isVector())
4909     return LowerVectorINT_TO_FP(Op, DAG);
4910   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4911     RTLIB::Libcall LC;
4912     if (Op.getOpcode() == ISD::SINT_TO_FP)
4913       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4914                               Op.getValueType());
4915     else
4916       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4917                               Op.getValueType());
4918     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4919                        /*isSigned*/ false, SDLoc(Op)).first;
4920   }
4921 
4922   return Op;
4923 }
4924 
4925 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4926   // Implement fcopysign with a fabs and a conditional fneg.
4927   SDValue Tmp0 = Op.getOperand(0);
4928   SDValue Tmp1 = Op.getOperand(1);
4929   SDLoc dl(Op);
4930   EVT VT = Op.getValueType();
4931   EVT SrcVT = Tmp1.getValueType();
4932   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4933     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4934   bool UseNEON = !InGPR && Subtarget->hasNEON();
4935 
4936   if (UseNEON) {
4937     // Use VBSL to copy the sign bit.
4938     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4939     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4940                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4941     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4942     if (VT == MVT::f64)
4943       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4944                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4945                          DAG.getConstant(32, dl, MVT::i32));
4946     else /*if (VT == MVT::f32)*/
4947       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4948     if (SrcVT == MVT::f32) {
4949       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4950       if (VT == MVT::f64)
4951         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4952                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4953                            DAG.getConstant(32, dl, MVT::i32));
4954     } else if (VT == MVT::f32)
4955       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4956                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4957                          DAG.getConstant(32, dl, MVT::i32));
4958     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4959     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4960 
4961     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4962                                             dl, MVT::i32);
4963     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4964     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4965                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4966 
4967     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4968                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4969                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4970     if (VT == MVT::f32) {
4971       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4972       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4973                         DAG.getConstant(0, dl, MVT::i32));
4974     } else {
4975       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4976     }
4977 
4978     return Res;
4979   }
4980 
4981   // Bitcast operand 1 to i32.
4982   if (SrcVT == MVT::f64)
4983     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4984                        Tmp1).getValue(1);
4985   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4986 
4987   // Or in the signbit with integer operations.
4988   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4989   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4990   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4991   if (VT == MVT::f32) {
4992     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4993                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4994     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4995                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4996   }
4997 
4998   // f64: Or the high part with signbit and then combine two parts.
4999   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5000                      Tmp0);
5001   SDValue Lo = Tmp0.getValue(0);
5002   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5003   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5004   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5005 }
5006 
5007 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5008   MachineFunction &MF = DAG.getMachineFunction();
5009   MachineFrameInfo &MFI = MF.getFrameInfo();
5010   MFI.setReturnAddressIsTaken(true);
5011 
5012   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5013     return SDValue();
5014 
5015   EVT VT = Op.getValueType();
5016   SDLoc dl(Op);
5017   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5018   if (Depth) {
5019     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5020     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5021     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5022                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5023                        MachinePointerInfo());
5024   }
5025 
5026   // Return LR, which contains the return address. Mark it an implicit live-in.
5027   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5028   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5029 }
5030 
5031 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5032   const ARMBaseRegisterInfo &ARI =
5033     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5034   MachineFunction &MF = DAG.getMachineFunction();
5035   MachineFrameInfo &MFI = MF.getFrameInfo();
5036   MFI.setFrameAddressIsTaken(true);
5037 
5038   EVT VT = Op.getValueType();
5039   SDLoc dl(Op);  // FIXME probably not meaningful
5040   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5041   unsigned FrameReg = ARI.getFrameRegister(MF);
5042   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5043   while (Depth--)
5044     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5045                             MachinePointerInfo());
5046   return FrameAddr;
5047 }
5048 
5049 // FIXME? Maybe this could be a TableGen attribute on some registers and
5050 // this table could be generated automatically from RegInfo.
5051 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5052                                               SelectionDAG &DAG) const {
5053   unsigned Reg = StringSwitch<unsigned>(RegName)
5054                        .Case("sp", ARM::SP)
5055                        .Default(0);
5056   if (Reg)
5057     return Reg;
5058   report_fatal_error(Twine("Invalid register name \""
5059                               + StringRef(RegName)  + "\"."));
5060 }
5061 
5062 // Result is 64 bit value so split into two 32 bit values and return as a
5063 // pair of values.
5064 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5065                                 SelectionDAG &DAG) {
5066   SDLoc DL(N);
5067 
5068   // This function is only supposed to be called for i64 type destination.
5069   assert(N->getValueType(0) == MVT::i64
5070           && "ExpandREAD_REGISTER called for non-i64 type result.");
5071 
5072   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5073                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5074                              N->getOperand(0),
5075                              N->getOperand(1));
5076 
5077   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5078                     Read.getValue(1)));
5079   Results.push_back(Read.getOperand(0));
5080 }
5081 
5082 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5083 /// When \p DstVT, the destination type of \p BC, is on the vector
5084 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5085 /// it might be possible to combine them, such that everything stays on the
5086 /// vector register bank.
5087 /// \p return The node that would replace \p BT, if the combine
5088 /// is possible.
5089 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5090                                                 SelectionDAG &DAG) {
5091   SDValue Op = BC->getOperand(0);
5092   EVT DstVT = BC->getValueType(0);
5093 
5094   // The only vector instruction that can produce a scalar (remember,
5095   // since the bitcast was about to be turned into VMOVDRR, the source
5096   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5097   // Moreover, we can do this combine only if there is one use.
5098   // Finally, if the destination type is not a vector, there is not
5099   // much point on forcing everything on the vector bank.
5100   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5101       !Op.hasOneUse())
5102     return SDValue();
5103 
5104   // If the index is not constant, we will introduce an additional
5105   // multiply that will stick.
5106   // Give up in that case.
5107   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5108   if (!Index)
5109     return SDValue();
5110   unsigned DstNumElt = DstVT.getVectorNumElements();
5111 
5112   // Compute the new index.
5113   const APInt &APIntIndex = Index->getAPIntValue();
5114   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5115   NewIndex *= APIntIndex;
5116   // Check if the new constant index fits into i32.
5117   if (NewIndex.getBitWidth() > 32)
5118     return SDValue();
5119 
5120   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5121   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5122   SDLoc dl(Op);
5123   SDValue ExtractSrc = Op.getOperand(0);
5124   EVT VecVT = EVT::getVectorVT(
5125       *DAG.getContext(), DstVT.getScalarType(),
5126       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5127   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5128   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5129                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5130 }
5131 
5132 /// ExpandBITCAST - If the target supports VFP, this function is called to
5133 /// expand a bit convert where either the source or destination type is i64 to
5134 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5135 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5136 /// vectors), since the legalizer won't know what to do with that.
5137 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5138                              const ARMSubtarget *Subtarget) {
5139   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5140   SDLoc dl(N);
5141   SDValue Op = N->getOperand(0);
5142 
5143   // This function is only supposed to be called for i64 types, either as the
5144   // source or destination of the bit convert.
5145   EVT SrcVT = Op.getValueType();
5146   EVT DstVT = N->getValueType(0);
5147   const bool HasFullFP16 = Subtarget->hasFullFP16();
5148 
5149   if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5150      // FullFP16: half values are passed in S-registers, and we don't
5151      // need any of the bitcast and moves:
5152      //
5153      // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5154      //   t5: i32 = bitcast t2
5155      // t18: f16 = ARMISD::VMOVhr t5
5156      if (Op.getOpcode() != ISD::CopyFromReg ||
5157          Op.getValueType() != MVT::f32)
5158        return SDValue();
5159 
5160      auto Move = N->use_begin();
5161      if (Move->getOpcode() != ARMISD::VMOVhr)
5162        return SDValue();
5163 
5164      SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5165      SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5166      DAG.ReplaceAllUsesWith(*Move, &Copy);
5167      return Copy;
5168   }
5169 
5170   if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5171     if (!HasFullFP16)
5172       return SDValue();
5173     // SoftFP: read half-precision arguments:
5174     //
5175     // t2: i32,ch = ...
5176     //        t7: i16 = truncate t2 <~~~~ Op
5177     //      t8: f16 = bitcast t7    <~~~~ N
5178     //
5179     if (Op.getOperand(0).getValueType() == MVT::i32)
5180       return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5181                          MVT::f16, Op.getOperand(0));
5182 
5183     return SDValue();
5184   }
5185 
5186   // Half-precision return values
5187   if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5188     if (!HasFullFP16)
5189       return SDValue();
5190     //
5191     //          t11: f16 = fadd t8, t10
5192     //        t12: i16 = bitcast t11       <~~~ SDNode N
5193     //      t13: i32 = zero_extend t12
5194     //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5195     //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5196     //
5197     // transform this into:
5198     //
5199     //    t20: i32 = ARMISD::VMOVrh t11
5200     //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5201     //
5202     auto ZeroExtend = N->use_begin();
5203     if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5204         ZeroExtend->getValueType(0) != MVT::i32)
5205       return SDValue();
5206 
5207     auto Copy = ZeroExtend->use_begin();
5208     if (Copy->getOpcode() == ISD::CopyToReg &&
5209         Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5210       SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5211       DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5212       return Cvt;
5213     }
5214     return SDValue();
5215   }
5216 
5217   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5218     return SDValue();
5219 
5220   // Turn i64->f64 into VMOVDRR.
5221   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5222     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5223     // if we can combine the bitcast with its source.
5224     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5225       return Val;
5226 
5227     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5228                              DAG.getConstant(0, dl, MVT::i32));
5229     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5230                              DAG.getConstant(1, dl, MVT::i32));
5231     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5232                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5233   }
5234 
5235   // Turn f64->i64 into VMOVRRD.
5236   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5237     SDValue Cvt;
5238     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5239         SrcVT.getVectorNumElements() > 1)
5240       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5241                         DAG.getVTList(MVT::i32, MVT::i32),
5242                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5243     else
5244       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5245                         DAG.getVTList(MVT::i32, MVT::i32), Op);
5246     // Merge the pieces into a single i64 value.
5247     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5248   }
5249 
5250   return SDValue();
5251 }
5252 
5253 /// getZeroVector - Returns a vector of specified type with all zero elements.
5254 /// Zero vectors are used to represent vector negation and in those cases
5255 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
5256 /// not support i64 elements, so sometimes the zero vectors will need to be
5257 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
5258 /// zero vector.
5259 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5260   assert(VT.isVector() && "Expected a vector type");
5261   // The canonical modified immediate encoding of a zero vector is....0!
5262   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5263   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5264   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5265   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5266 }
5267 
5268 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5269 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5270 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5271                                                 SelectionDAG &DAG) const {
5272   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5273   EVT VT = Op.getValueType();
5274   unsigned VTBits = VT.getSizeInBits();
5275   SDLoc dl(Op);
5276   SDValue ShOpLo = Op.getOperand(0);
5277   SDValue ShOpHi = Op.getOperand(1);
5278   SDValue ShAmt  = Op.getOperand(2);
5279   SDValue ARMcc;
5280   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5281   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5282 
5283   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5284 
5285   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5286                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5287   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5288   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5289                                    DAG.getConstant(VTBits, dl, MVT::i32));
5290   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5291   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5292   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5293   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5294                             ISD::SETGE, ARMcc, DAG, dl);
5295   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5296                            ARMcc, CCR, CmpLo);
5297 
5298   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5299   SDValue HiBigShift = Opc == ISD::SRA
5300                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
5301                                          DAG.getConstant(VTBits - 1, dl, VT))
5302                            : DAG.getConstant(0, dl, VT);
5303   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5304                             ISD::SETGE, ARMcc, DAG, dl);
5305   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5306                            ARMcc, CCR, CmpHi);
5307 
5308   SDValue Ops[2] = { Lo, Hi };
5309   return DAG.getMergeValues(Ops, dl);
5310 }
5311 
5312 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5313 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5314 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5315                                                SelectionDAG &DAG) const {
5316   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5317   EVT VT = Op.getValueType();
5318   unsigned VTBits = VT.getSizeInBits();
5319   SDLoc dl(Op);
5320   SDValue ShOpLo = Op.getOperand(0);
5321   SDValue ShOpHi = Op.getOperand(1);
5322   SDValue ShAmt  = Op.getOperand(2);
5323   SDValue ARMcc;
5324   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5325 
5326   assert(Op.getOpcode() == ISD::SHL_PARTS);
5327   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5328                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5329   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5330   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5331   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5332 
5333   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5334                                    DAG.getConstant(VTBits, dl, MVT::i32));
5335   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5336   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5337                             ISD::SETGE, ARMcc, DAG, dl);
5338   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5339                            ARMcc, CCR, CmpHi);
5340 
5341   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5342                           ISD::SETGE, ARMcc, DAG, dl);
5343   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5344   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5345                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5346 
5347   SDValue Ops[2] = { Lo, Hi };
5348   return DAG.getMergeValues(Ops, dl);
5349 }
5350 
5351 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5352                                             SelectionDAG &DAG) const {
5353   // The rounding mode is in bits 23:22 of the FPSCR.
5354   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5355   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5356   // so that the shift + and get folded into a bitfield extract.
5357   SDLoc dl(Op);
5358   SDValue Ops[] = { DAG.getEntryNode(),
5359                     DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5360 
5361   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5362   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5363                                   DAG.getConstant(1U << 22, dl, MVT::i32));
5364   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5365                               DAG.getConstant(22, dl, MVT::i32));
5366   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5367                      DAG.getConstant(3, dl, MVT::i32));
5368 }
5369 
5370 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5371                          const ARMSubtarget *ST) {
5372   SDLoc dl(N);
5373   EVT VT = N->getValueType(0);
5374   if (VT.isVector()) {
5375     assert(ST->hasNEON());
5376 
5377     // Compute the least significant set bit: LSB = X & -X
5378     SDValue X = N->getOperand(0);
5379     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5380     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5381 
5382     EVT ElemTy = VT.getVectorElementType();
5383 
5384     if (ElemTy == MVT::i8) {
5385       // Compute with: cttz(x) = ctpop(lsb - 1)
5386       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5387                                 DAG.getTargetConstant(1, dl, ElemTy));
5388       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5389       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5390     }
5391 
5392     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5393         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5394       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5395       unsigned NumBits = ElemTy.getSizeInBits();
5396       SDValue WidthMinus1 =
5397           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5398                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5399       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5400       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5401     }
5402 
5403     // Compute with: cttz(x) = ctpop(lsb - 1)
5404 
5405     // Since we can only compute the number of bits in a byte with vcnt.8, we
5406     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
5407     // and i64.
5408 
5409     // Compute LSB - 1.
5410     SDValue Bits;
5411     if (ElemTy == MVT::i64) {
5412       // Load constant 0xffff'ffff'ffff'ffff to register.
5413       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5414                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5415       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5416     } else {
5417       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5418                                 DAG.getTargetConstant(1, dl, ElemTy));
5419       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5420     }
5421 
5422     // Count #bits with vcnt.8.
5423     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5424     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
5425     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
5426 
5427     // Gather the #bits with vpaddl (pairwise add.)
5428     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5429     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
5430         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5431         Cnt8);
5432     if (ElemTy == MVT::i16)
5433       return Cnt16;
5434 
5435     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
5436     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
5437         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5438         Cnt16);
5439     if (ElemTy == MVT::i32)
5440       return Cnt32;
5441 
5442     assert(ElemTy == MVT::i64);
5443     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5444         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5445         Cnt32);
5446     return Cnt64;
5447   }
5448 
5449   if (!ST->hasV6T2Ops())
5450     return SDValue();
5451 
5452   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5453   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5454 }
5455 
5456 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
5457 /// for each 16-bit element from operand, repeated.  The basic idea is to
5458 /// leverage vcnt to get the 8-bit counts, gather and add the results.
5459 ///
5460 /// Trace for v4i16:
5461 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
5462 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
5463 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
5464 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
5465 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
5466 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
5467 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
5468 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
5469 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
5470   EVT VT = N->getValueType(0);
5471   SDLoc DL(N);
5472 
5473   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5474   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
5475   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
5476   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
5477   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
5478   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
5479 }
5480 
5481 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
5482 /// bit-count for each 16-bit element from the operand.  We need slightly
5483 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
5484 /// 64/128-bit registers.
5485 ///
5486 /// Trace for v4i16:
5487 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
5488 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
5489 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
5490 /// v4i16:Extracted = [k0    k1    k2    k3    ]
5491 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
5492   EVT VT = N->getValueType(0);
5493   SDLoc DL(N);
5494 
5495   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
5496   if (VT.is64BitVector()) {
5497     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
5498     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
5499                        DAG.getIntPtrConstant(0, DL));
5500   } else {
5501     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
5502                                     BitCounts, DAG.getIntPtrConstant(0, DL));
5503     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
5504   }
5505 }
5506 
5507 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
5508 /// bit-count for each 32-bit element from the operand.  The idea here is
5509 /// to split the vector into 16-bit elements, leverage the 16-bit count
5510 /// routine, and then combine the results.
5511 ///
5512 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
5513 /// input    = [v0    v1    ] (vi: 32-bit elements)
5514 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
5515 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
5516 /// vrev: N0 = [k1 k0 k3 k2 ]
5517 ///            [k0 k1 k2 k3 ]
5518 ///       N1 =+[k1 k0 k3 k2 ]
5519 ///            [k0 k2 k1 k3 ]
5520 ///       N2 =+[k1 k3 k0 k2 ]
5521 ///            [k0    k2    k1    k3    ]
5522 /// Extended =+[k1    k3    k0    k2    ]
5523 ///            [k0    k2    ]
5524 /// Extracted=+[k1    k3    ]
5525 ///
5526 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
5527   EVT VT = N->getValueType(0);
5528   SDLoc DL(N);
5529 
5530   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5531 
5532   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
5533   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
5534   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
5535   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
5536   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
5537 
5538   if (VT.is64BitVector()) {
5539     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
5540     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
5541                        DAG.getIntPtrConstant(0, DL));
5542   } else {
5543     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
5544                                     DAG.getIntPtrConstant(0, DL));
5545     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
5546   }
5547 }
5548 
5549 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5550                           const ARMSubtarget *ST) {
5551   EVT VT = N->getValueType(0);
5552 
5553   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5554   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
5555           VT == MVT::v4i16 || VT == MVT::v8i16) &&
5556          "Unexpected type for custom ctpop lowering");
5557 
5558   if (VT.getVectorElementType() == MVT::i32)
5559     return lowerCTPOP32BitElements(N, DAG);
5560   else
5561     return lowerCTPOP16BitElements(N, DAG);
5562 }
5563 
5564 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5565                           const ARMSubtarget *ST) {
5566   EVT VT = N->getValueType(0);
5567   SDLoc dl(N);
5568 
5569   if (!VT.isVector())
5570     return SDValue();
5571 
5572   // Lower vector shifts on NEON to use VSHL.
5573   assert(ST->hasNEON() && "unexpected vector shift");
5574 
5575   // Left shifts translate directly to the vshiftu intrinsic.
5576   if (N->getOpcode() == ISD::SHL)
5577     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5578                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
5579                                        MVT::i32),
5580                        N->getOperand(0), N->getOperand(1));
5581 
5582   assert((N->getOpcode() == ISD::SRA ||
5583           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5584 
5585   // NEON uses the same intrinsics for both left and right shifts.  For
5586   // right shifts, the shift amounts are negative, so negate the vector of
5587   // shift amounts.
5588   EVT ShiftVT = N->getOperand(1).getValueType();
5589   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5590                                      getZeroVector(ShiftVT, DAG, dl),
5591                                      N->getOperand(1));
5592   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5593                              Intrinsic::arm_neon_vshifts :
5594                              Intrinsic::arm_neon_vshiftu);
5595   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5596                      DAG.getConstant(vshiftInt, dl, MVT::i32),
5597                      N->getOperand(0), NegatedCount);
5598 }
5599 
5600 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5601                                 const ARMSubtarget *ST) {
5602   EVT VT = N->getValueType(0);
5603   SDLoc dl(N);
5604 
5605   // We can get here for a node like i32 = ISD::SHL i32, i64
5606   if (VT != MVT::i64)
5607     return SDValue();
5608 
5609   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
5610          "Unknown shift to lower!");
5611 
5612   // We only lower SRA, SRL of 1 here, all others use generic lowering.
5613   if (!isOneConstant(N->getOperand(1)))
5614     return SDValue();
5615 
5616   // If we are in thumb mode, we don't have RRX.
5617   if (ST->isThumb1Only()) return SDValue();
5618 
5619   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
5620   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5621                            DAG.getConstant(0, dl, MVT::i32));
5622   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5623                            DAG.getConstant(1, dl, MVT::i32));
5624 
5625   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5626   // captures the result into a carry flag.
5627   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5628   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5629 
5630   // The low part is an ARMISD::RRX operand, which shifts the carry in.
5631   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5632 
5633   // Merge the pieces into a single i64 value.
5634  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5635 }
5636 
5637 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5638   SDValue TmpOp0, TmpOp1;
5639   bool Invert = false;
5640   bool Swap = false;
5641   unsigned Opc = 0;
5642 
5643   SDValue Op0 = Op.getOperand(0);
5644   SDValue Op1 = Op.getOperand(1);
5645   SDValue CC = Op.getOperand(2);
5646   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5647   EVT VT = Op.getValueType();
5648   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5649   SDLoc dl(Op);
5650 
5651   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5652       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5653     // Special-case integer 64-bit equality comparisons. They aren't legal,
5654     // but they can be lowered with a few vector instructions.
5655     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5656     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5657     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5658     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5659     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5660                               DAG.getCondCode(ISD::SETEQ));
5661     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5662     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5663     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5664     if (SetCCOpcode == ISD::SETNE)
5665       Merged = DAG.getNOT(dl, Merged, CmpVT);
5666     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5667     return Merged;
5668   }
5669 
5670   if (CmpVT.getVectorElementType() == MVT::i64)
5671     // 64-bit comparisons are not legal in general.
5672     return SDValue();
5673 
5674   if (Op1.getValueType().isFloatingPoint()) {
5675     switch (SetCCOpcode) {
5676     default: llvm_unreachable("Illegal FP comparison");
5677     case ISD::SETUNE:
5678     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5679     case ISD::SETOEQ:
5680     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5681     case ISD::SETOLT:
5682     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5683     case ISD::SETOGT:
5684     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5685     case ISD::SETOLE:
5686     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5687     case ISD::SETOGE:
5688     case ISD::SETGE: Opc = ARMISD::VCGE; break;
5689     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5690     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5691     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5692     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5693     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5694     case ISD::SETONE:
5695       // Expand this to (OLT | OGT).
5696       TmpOp0 = Op0;
5697       TmpOp1 = Op1;
5698       Opc = ISD::OR;
5699       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5700       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5701       break;
5702     case ISD::SETUO:
5703       Invert = true;
5704       LLVM_FALLTHROUGH;
5705     case ISD::SETO:
5706       // Expand this to (OLT | OGE).
5707       TmpOp0 = Op0;
5708       TmpOp1 = Op1;
5709       Opc = ISD::OR;
5710       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5711       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5712       break;
5713     }
5714   } else {
5715     // Integer comparisons.
5716     switch (SetCCOpcode) {
5717     default: llvm_unreachable("Illegal integer comparison");
5718     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5719     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5720     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
5721     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5722     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5723     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
5724     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
5725     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5726     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
5727     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5728     }
5729 
5730     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5731     if (Opc == ARMISD::VCEQ) {
5732       SDValue AndOp;
5733       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5734         AndOp = Op0;
5735       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5736         AndOp = Op1;
5737 
5738       // Ignore bitconvert.
5739       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5740         AndOp = AndOp.getOperand(0);
5741 
5742       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5743         Opc = ARMISD::VTST;
5744         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5745         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5746         Invert = !Invert;
5747       }
5748     }
5749   }
5750 
5751   if (Swap)
5752     std::swap(Op0, Op1);
5753 
5754   // If one of the operands is a constant vector zero, attempt to fold the
5755   // comparison to a specialized compare-against-zero form.
5756   SDValue SingleOp;
5757   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5758     SingleOp = Op0;
5759   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5760     if (Opc == ARMISD::VCGE)
5761       Opc = ARMISD::VCLEZ;
5762     else if (Opc == ARMISD::VCGT)
5763       Opc = ARMISD::VCLTZ;
5764     SingleOp = Op1;
5765   }
5766 
5767   SDValue Result;
5768   if (SingleOp.getNode()) {
5769     switch (Opc) {
5770     case ARMISD::VCEQ:
5771       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5772     case ARMISD::VCGE:
5773       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5774     case ARMISD::VCLEZ:
5775       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5776     case ARMISD::VCGT:
5777       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5778     case ARMISD::VCLTZ:
5779       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5780     default:
5781       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5782     }
5783   } else {
5784      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5785   }
5786 
5787   Result = DAG.getSExtOrTrunc(Result, dl, VT);
5788 
5789   if (Invert)
5790     Result = DAG.getNOT(dl, Result, VT);
5791 
5792   return Result;
5793 }
5794 
5795 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
5796   SDValue LHS = Op.getOperand(0);
5797   SDValue RHS = Op.getOperand(1);
5798   SDValue Carry = Op.getOperand(2);
5799   SDValue Cond = Op.getOperand(3);
5800   SDLoc DL(Op);
5801 
5802   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
5803 
5804   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
5805   // have to invert the carry first.
5806   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
5807                       DAG.getConstant(1, DL, MVT::i32), Carry);
5808   // This converts the boolean value carry into the carry flag.
5809   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
5810 
5811   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5812   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5813 
5814   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5815   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5816   SDValue ARMcc = DAG.getConstant(
5817       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5818   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5819   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5820                                    Cmp.getValue(1), SDValue());
5821   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5822                      CCR, Chain.getValue(1));
5823 }
5824 
5825 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5826 /// valid vector constant for a NEON instruction with a "modified immediate"
5827 /// operand (e.g., VMOV).  If so, return the encoded value.
5828 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5829                                  unsigned SplatBitSize, SelectionDAG &DAG,
5830                                  const SDLoc &dl, EVT &VT, bool is128Bits,
5831                                  NEONModImmType type) {
5832   unsigned OpCmode, Imm;
5833 
5834   // SplatBitSize is set to the smallest size that splats the vector, so a
5835   // zero vector will always have SplatBitSize == 8.  However, NEON modified
5836   // immediate instructions others than VMOV do not support the 8-bit encoding
5837   // of a zero vector, and the default encoding of zero is supposed to be the
5838   // 32-bit version.
5839   if (SplatBits == 0)
5840     SplatBitSize = 32;
5841 
5842   switch (SplatBitSize) {
5843   case 8:
5844     if (type != VMOVModImm)
5845       return SDValue();
5846     // Any 1-byte value is OK.  Op=0, Cmode=1110.
5847     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5848     OpCmode = 0xe;
5849     Imm = SplatBits;
5850     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5851     break;
5852 
5853   case 16:
5854     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5855     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5856     if ((SplatBits & ~0xff) == 0) {
5857       // Value = 0x00nn: Op=x, Cmode=100x.
5858       OpCmode = 0x8;
5859       Imm = SplatBits;
5860       break;
5861     }
5862     if ((SplatBits & ~0xff00) == 0) {
5863       // Value = 0xnn00: Op=x, Cmode=101x.
5864       OpCmode = 0xa;
5865       Imm = SplatBits >> 8;
5866       break;
5867     }
5868     return SDValue();
5869 
5870   case 32:
5871     // NEON's 32-bit VMOV supports splat values where:
5872     // * only one byte is nonzero, or
5873     // * the least significant byte is 0xff and the second byte is nonzero, or
5874     // * the least significant 2 bytes are 0xff and the third is nonzero.
5875     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5876     if ((SplatBits & ~0xff) == 0) {
5877       // Value = 0x000000nn: Op=x, Cmode=000x.
5878       OpCmode = 0;
5879       Imm = SplatBits;
5880       break;
5881     }
5882     if ((SplatBits & ~0xff00) == 0) {
5883       // Value = 0x0000nn00: Op=x, Cmode=001x.
5884       OpCmode = 0x2;
5885       Imm = SplatBits >> 8;
5886       break;
5887     }
5888     if ((SplatBits & ~0xff0000) == 0) {
5889       // Value = 0x00nn0000: Op=x, Cmode=010x.
5890       OpCmode = 0x4;
5891       Imm = SplatBits >> 16;
5892       break;
5893     }
5894     if ((SplatBits & ~0xff000000) == 0) {
5895       // Value = 0xnn000000: Op=x, Cmode=011x.
5896       OpCmode = 0x6;
5897       Imm = SplatBits >> 24;
5898       break;
5899     }
5900 
5901     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5902     if (type == OtherModImm) return SDValue();
5903 
5904     if ((SplatBits & ~0xffff) == 0 &&
5905         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5906       // Value = 0x0000nnff: Op=x, Cmode=1100.
5907       OpCmode = 0xc;
5908       Imm = SplatBits >> 8;
5909       break;
5910     }
5911 
5912     if ((SplatBits & ~0xffffff) == 0 &&
5913         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5914       // Value = 0x00nnffff: Op=x, Cmode=1101.
5915       OpCmode = 0xd;
5916       Imm = SplatBits >> 16;
5917       break;
5918     }
5919 
5920     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5921     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5922     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5923     // and fall through here to test for a valid 64-bit splat.  But, then the
5924     // caller would also need to check and handle the change in size.
5925     return SDValue();
5926 
5927   case 64: {
5928     if (type != VMOVModImm)
5929       return SDValue();
5930     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5931     uint64_t BitMask = 0xff;
5932     uint64_t Val = 0;
5933     unsigned ImmMask = 1;
5934     Imm = 0;
5935     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5936       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5937         Val |= BitMask;
5938         Imm |= ImmMask;
5939       } else if ((SplatBits & BitMask) != 0) {
5940         return SDValue();
5941       }
5942       BitMask <<= 8;
5943       ImmMask <<= 1;
5944     }
5945 
5946     if (DAG.getDataLayout().isBigEndian())
5947       // swap higher and lower 32 bit word
5948       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5949 
5950     // Op=1, Cmode=1110.
5951     OpCmode = 0x1e;
5952     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5953     break;
5954   }
5955 
5956   default:
5957     llvm_unreachable("unexpected size for isNEONModifiedImm");
5958   }
5959 
5960   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5961   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5962 }
5963 
5964 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5965                                            const ARMSubtarget *ST) const {
5966   EVT VT = Op.getValueType();
5967   bool IsDouble = (VT == MVT::f64);
5968   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5969   const APFloat &FPVal = CFP->getValueAPF();
5970 
5971   // Prevent floating-point constants from using literal loads
5972   // when execute-only is enabled.
5973   if (ST->genExecuteOnly()) {
5974     // If we can represent the constant as an immediate, don't lower it
5975     if (isFPImmLegal(FPVal, VT))
5976       return Op;
5977     // Otherwise, construct as integer, and move to float register
5978     APInt INTVal = FPVal.bitcastToAPInt();
5979     SDLoc DL(CFP);
5980     switch (VT.getSimpleVT().SimpleTy) {
5981       default:
5982         llvm_unreachable("Unknown floating point type!");
5983         break;
5984       case MVT::f64: {
5985         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
5986         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
5987         if (!ST->isLittle())
5988           std::swap(Lo, Hi);
5989         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
5990       }
5991       case MVT::f32:
5992           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
5993               DAG.getConstant(INTVal, DL, MVT::i32));
5994     }
5995   }
5996 
5997   if (!ST->hasVFP3())
5998     return SDValue();
5999 
6000   // Use the default (constant pool) lowering for double constants when we have
6001   // an SP-only FPU
6002   if (IsDouble && Subtarget->isFPOnlySP())
6003     return SDValue();
6004 
6005   // Try splatting with a VMOV.f32...
6006   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6007 
6008   if (ImmVal != -1) {
6009     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6010       // We have code in place to select a valid ConstantFP already, no need to
6011       // do any mangling.
6012       return Op;
6013     }
6014 
6015     // It's a float and we are trying to use NEON operations where
6016     // possible. Lower it to a splat followed by an extract.
6017     SDLoc DL(Op);
6018     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6019     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6020                                       NewVal);
6021     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6022                        DAG.getConstant(0, DL, MVT::i32));
6023   }
6024 
6025   // The rest of our options are NEON only, make sure that's allowed before
6026   // proceeding..
6027   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6028     return SDValue();
6029 
6030   EVT VMovVT;
6031   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6032 
6033   // It wouldn't really be worth bothering for doubles except for one very
6034   // important value, which does happen to match: 0.0. So make sure we don't do
6035   // anything stupid.
6036   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6037     return SDValue();
6038 
6039   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6040   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6041                                      VMovVT, false, VMOVModImm);
6042   if (NewVal != SDValue()) {
6043     SDLoc DL(Op);
6044     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6045                                       NewVal);
6046     if (IsDouble)
6047       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6048 
6049     // It's a float: cast and extract a vector element.
6050     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6051                                        VecConstant);
6052     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6053                        DAG.getConstant(0, DL, MVT::i32));
6054   }
6055 
6056   // Finally, try a VMVN.i32
6057   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6058                              false, VMVNModImm);
6059   if (NewVal != SDValue()) {
6060     SDLoc DL(Op);
6061     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6062 
6063     if (IsDouble)
6064       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6065 
6066     // It's a float: cast and extract a vector element.
6067     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6068                                        VecConstant);
6069     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6070                        DAG.getConstant(0, DL, MVT::i32));
6071   }
6072 
6073   return SDValue();
6074 }
6075 
6076 // check if an VEXT instruction can handle the shuffle mask when the
6077 // vector sources of the shuffle are the same.
6078 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6079   unsigned NumElts = VT.getVectorNumElements();
6080 
6081   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6082   if (M[0] < 0)
6083     return false;
6084 
6085   Imm = M[0];
6086 
6087   // If this is a VEXT shuffle, the immediate value is the index of the first
6088   // element.  The other shuffle indices must be the successive elements after
6089   // the first one.
6090   unsigned ExpectedElt = Imm;
6091   for (unsigned i = 1; i < NumElts; ++i) {
6092     // Increment the expected index.  If it wraps around, just follow it
6093     // back to index zero and keep going.
6094     ++ExpectedElt;
6095     if (ExpectedElt == NumElts)
6096       ExpectedElt = 0;
6097 
6098     if (M[i] < 0) continue; // ignore UNDEF indices
6099     if (ExpectedElt != static_cast<unsigned>(M[i]))
6100       return false;
6101   }
6102 
6103   return true;
6104 }
6105 
6106 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6107                        bool &ReverseVEXT, unsigned &Imm) {
6108   unsigned NumElts = VT.getVectorNumElements();
6109   ReverseVEXT = false;
6110 
6111   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6112   if (M[0] < 0)
6113     return false;
6114 
6115   Imm = M[0];
6116 
6117   // If this is a VEXT shuffle, the immediate value is the index of the first
6118   // element.  The other shuffle indices must be the successive elements after
6119   // the first one.
6120   unsigned ExpectedElt = Imm;
6121   for (unsigned i = 1; i < NumElts; ++i) {
6122     // Increment the expected index.  If it wraps around, it may still be
6123     // a VEXT but the source vectors must be swapped.
6124     ExpectedElt += 1;
6125     if (ExpectedElt == NumElts * 2) {
6126       ExpectedElt = 0;
6127       ReverseVEXT = true;
6128     }
6129 
6130     if (M[i] < 0) continue; // ignore UNDEF indices
6131     if (ExpectedElt != static_cast<unsigned>(M[i]))
6132       return false;
6133   }
6134 
6135   // Adjust the index value if the source operands will be swapped.
6136   if (ReverseVEXT)
6137     Imm -= NumElts;
6138 
6139   return true;
6140 }
6141 
6142 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6143 /// instruction with the specified blocksize.  (The order of the elements
6144 /// within each block of the vector is reversed.)
6145 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6146   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6147          "Only possible block sizes for VREV are: 16, 32, 64");
6148 
6149   unsigned EltSz = VT.getScalarSizeInBits();
6150   if (EltSz == 64)
6151     return false;
6152 
6153   unsigned NumElts = VT.getVectorNumElements();
6154   unsigned BlockElts = M[0] + 1;
6155   // If the first shuffle index is UNDEF, be optimistic.
6156   if (M[0] < 0)
6157     BlockElts = BlockSize / EltSz;
6158 
6159   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6160     return false;
6161 
6162   for (unsigned i = 0; i < NumElts; ++i) {
6163     if (M[i] < 0) continue; // ignore UNDEF indices
6164     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6165       return false;
6166   }
6167 
6168   return true;
6169 }
6170 
6171 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6172   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6173   // range, then 0 is placed into the resulting vector. So pretty much any mask
6174   // of 8 elements can work here.
6175   return VT == MVT::v8i8 && M.size() == 8;
6176 }
6177 
6178 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6179                                unsigned Index) {
6180   if (Mask.size() == Elements * 2)
6181     return Index / Elements;
6182   return Mask[Index] == 0 ? 0 : 1;
6183 }
6184 
6185 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6186 // checking that pairs of elements in the shuffle mask represent the same index
6187 // in each vector, incrementing the expected index by 2 at each step.
6188 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6189 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6190 //  v2={e,f,g,h}
6191 // WhichResult gives the offset for each element in the mask based on which
6192 // of the two results it belongs to.
6193 //
6194 // The transpose can be represented either as:
6195 // result1 = shufflevector v1, v2, result1_shuffle_mask
6196 // result2 = shufflevector v1, v2, result2_shuffle_mask
6197 // where v1/v2 and the shuffle masks have the same number of elements
6198 // (here WhichResult (see below) indicates which result is being checked)
6199 //
6200 // or as:
6201 // results = shufflevector v1, v2, shuffle_mask
6202 // where both results are returned in one vector and the shuffle mask has twice
6203 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6204 // want to check the low half and high half of the shuffle mask as if it were
6205 // the other case
6206 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6207   unsigned EltSz = VT.getScalarSizeInBits();
6208   if (EltSz == 64)
6209     return false;
6210 
6211   unsigned NumElts = VT.getVectorNumElements();
6212   if (M.size() != NumElts && M.size() != NumElts*2)
6213     return false;
6214 
6215   // If the mask is twice as long as the input vector then we need to check the
6216   // upper and lower parts of the mask with a matching value for WhichResult
6217   // FIXME: A mask with only even values will be rejected in case the first
6218   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6219   // M[0] is used to determine WhichResult
6220   for (unsigned i = 0; i < M.size(); i += NumElts) {
6221     WhichResult = SelectPairHalf(NumElts, M, i);
6222     for (unsigned j = 0; j < NumElts; j += 2) {
6223       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6224           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6225         return false;
6226     }
6227   }
6228 
6229   if (M.size() == NumElts*2)
6230     WhichResult = 0;
6231 
6232   return true;
6233 }
6234 
6235 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6236 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6237 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6238 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6239   unsigned EltSz = VT.getScalarSizeInBits();
6240   if (EltSz == 64)
6241     return false;
6242 
6243   unsigned NumElts = VT.getVectorNumElements();
6244   if (M.size() != NumElts && M.size() != NumElts*2)
6245     return false;
6246 
6247   for (unsigned i = 0; i < M.size(); i += NumElts) {
6248     WhichResult = SelectPairHalf(NumElts, M, i);
6249     for (unsigned j = 0; j < NumElts; j += 2) {
6250       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6251           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6252         return false;
6253     }
6254   }
6255 
6256   if (M.size() == NumElts*2)
6257     WhichResult = 0;
6258 
6259   return true;
6260 }
6261 
6262 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6263 // that the mask elements are either all even and in steps of size 2 or all odd
6264 // and in steps of size 2.
6265 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6266 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6267 //  v2={e,f,g,h}
6268 // Requires similar checks to that of isVTRNMask with
6269 // respect the how results are returned.
6270 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6271   unsigned EltSz = VT.getScalarSizeInBits();
6272   if (EltSz == 64)
6273     return false;
6274 
6275   unsigned NumElts = VT.getVectorNumElements();
6276   if (M.size() != NumElts && M.size() != NumElts*2)
6277     return false;
6278 
6279   for (unsigned i = 0; i < M.size(); i += NumElts) {
6280     WhichResult = SelectPairHalf(NumElts, M, i);
6281     for (unsigned j = 0; j < NumElts; ++j) {
6282       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6283         return false;
6284     }
6285   }
6286 
6287   if (M.size() == NumElts*2)
6288     WhichResult = 0;
6289 
6290   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6291   if (VT.is64BitVector() && EltSz == 32)
6292     return false;
6293 
6294   return true;
6295 }
6296 
6297 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6298 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6299 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6300 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6301   unsigned EltSz = VT.getScalarSizeInBits();
6302   if (EltSz == 64)
6303     return false;
6304 
6305   unsigned NumElts = VT.getVectorNumElements();
6306   if (M.size() != NumElts && M.size() != NumElts*2)
6307     return false;
6308 
6309   unsigned Half = NumElts / 2;
6310   for (unsigned i = 0; i < M.size(); i += NumElts) {
6311     WhichResult = SelectPairHalf(NumElts, M, i);
6312     for (unsigned j = 0; j < NumElts; j += Half) {
6313       unsigned Idx = WhichResult;
6314       for (unsigned k = 0; k < Half; ++k) {
6315         int MIdx = M[i + j + k];
6316         if (MIdx >= 0 && (unsigned) MIdx != Idx)
6317           return false;
6318         Idx += 2;
6319       }
6320     }
6321   }
6322 
6323   if (M.size() == NumElts*2)
6324     WhichResult = 0;
6325 
6326   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6327   if (VT.is64BitVector() && EltSz == 32)
6328     return false;
6329 
6330   return true;
6331 }
6332 
6333 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6334 // that pairs of elements of the shufflemask represent the same index in each
6335 // vector incrementing sequentially through the vectors.
6336 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6337 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6338 //  v2={e,f,g,h}
6339 // Requires similar checks to that of isVTRNMask with respect the how results
6340 // are returned.
6341 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6342   unsigned EltSz = VT.getScalarSizeInBits();
6343   if (EltSz == 64)
6344     return false;
6345 
6346   unsigned NumElts = VT.getVectorNumElements();
6347   if (M.size() != NumElts && M.size() != NumElts*2)
6348     return false;
6349 
6350   for (unsigned i = 0; i < M.size(); i += NumElts) {
6351     WhichResult = SelectPairHalf(NumElts, M, i);
6352     unsigned Idx = WhichResult * NumElts / 2;
6353     for (unsigned j = 0; j < NumElts; j += 2) {
6354       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6355           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6356         return false;
6357       Idx += 1;
6358     }
6359   }
6360 
6361   if (M.size() == NumElts*2)
6362     WhichResult = 0;
6363 
6364   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6365   if (VT.is64BitVector() && EltSz == 32)
6366     return false;
6367 
6368   return true;
6369 }
6370 
6371 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6372 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6373 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6374 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6375   unsigned EltSz = VT.getScalarSizeInBits();
6376   if (EltSz == 64)
6377     return false;
6378 
6379   unsigned NumElts = VT.getVectorNumElements();
6380   if (M.size() != NumElts && M.size() != NumElts*2)
6381     return false;
6382 
6383   for (unsigned i = 0; i < M.size(); i += NumElts) {
6384     WhichResult = SelectPairHalf(NumElts, M, i);
6385     unsigned Idx = WhichResult * NumElts / 2;
6386     for (unsigned j = 0; j < NumElts; j += 2) {
6387       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6388           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6389         return false;
6390       Idx += 1;
6391     }
6392   }
6393 
6394   if (M.size() == NumElts*2)
6395     WhichResult = 0;
6396 
6397   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6398   if (VT.is64BitVector() && EltSz == 32)
6399     return false;
6400 
6401   return true;
6402 }
6403 
6404 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6405 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6406 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6407                                            unsigned &WhichResult,
6408                                            bool &isV_UNDEF) {
6409   isV_UNDEF = false;
6410   if (isVTRNMask(ShuffleMask, VT, WhichResult))
6411     return ARMISD::VTRN;
6412   if (isVUZPMask(ShuffleMask, VT, WhichResult))
6413     return ARMISD::VUZP;
6414   if (isVZIPMask(ShuffleMask, VT, WhichResult))
6415     return ARMISD::VZIP;
6416 
6417   isV_UNDEF = true;
6418   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6419     return ARMISD::VTRN;
6420   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6421     return ARMISD::VUZP;
6422   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6423     return ARMISD::VZIP;
6424 
6425   return 0;
6426 }
6427 
6428 /// \return true if this is a reverse operation on an vector.
6429 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6430   unsigned NumElts = VT.getVectorNumElements();
6431   // Make sure the mask has the right size.
6432   if (NumElts != M.size())
6433       return false;
6434 
6435   // Look for <15, ..., 3, -1, 1, 0>.
6436   for (unsigned i = 0; i != NumElts; ++i)
6437     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6438       return false;
6439 
6440   return true;
6441 }
6442 
6443 // If N is an integer constant that can be moved into a register in one
6444 // instruction, return an SDValue of such a constant (will become a MOV
6445 // instruction).  Otherwise return null.
6446 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6447                                      const ARMSubtarget *ST, const SDLoc &dl) {
6448   uint64_t Val;
6449   if (!isa<ConstantSDNode>(N))
6450     return SDValue();
6451   Val = cast<ConstantSDNode>(N)->getZExtValue();
6452 
6453   if (ST->isThumb1Only()) {
6454     if (Val <= 255 || ~Val <= 255)
6455       return DAG.getConstant(Val, dl, MVT::i32);
6456   } else {
6457     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6458       return DAG.getConstant(Val, dl, MVT::i32);
6459   }
6460   return SDValue();
6461 }
6462 
6463 // If this is a case we can't handle, return null and let the default
6464 // expansion code take care of it.
6465 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6466                                              const ARMSubtarget *ST) const {
6467   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6468   SDLoc dl(Op);
6469   EVT VT = Op.getValueType();
6470 
6471   APInt SplatBits, SplatUndef;
6472   unsigned SplatBitSize;
6473   bool HasAnyUndefs;
6474   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6475     if (SplatUndef.isAllOnesValue())
6476       return DAG.getUNDEF(VT);
6477 
6478     if (SplatBitSize <= 64) {
6479       // Check if an immediate VMOV works.
6480       EVT VmovVT;
6481       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6482                                       SplatUndef.getZExtValue(), SplatBitSize,
6483                                       DAG, dl, VmovVT, VT.is128BitVector(),
6484                                       VMOVModImm);
6485       if (Val.getNode()) {
6486         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6487         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6488       }
6489 
6490       // Try an immediate VMVN.
6491       uint64_t NegatedImm = (~SplatBits).getZExtValue();
6492       Val = isNEONModifiedImm(NegatedImm,
6493                                       SplatUndef.getZExtValue(), SplatBitSize,
6494                                       DAG, dl, VmovVT, VT.is128BitVector(),
6495                                       VMVNModImm);
6496       if (Val.getNode()) {
6497         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6498         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6499       }
6500 
6501       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6502       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6503         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6504         if (ImmVal != -1) {
6505           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6506           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6507         }
6508       }
6509     }
6510   }
6511 
6512   // Scan through the operands to see if only one value is used.
6513   //
6514   // As an optimisation, even if more than one value is used it may be more
6515   // profitable to splat with one value then change some lanes.
6516   //
6517   // Heuristically we decide to do this if the vector has a "dominant" value,
6518   // defined as splatted to more than half of the lanes.
6519   unsigned NumElts = VT.getVectorNumElements();
6520   bool isOnlyLowElement = true;
6521   bool usesOnlyOneValue = true;
6522   bool hasDominantValue = false;
6523   bool isConstant = true;
6524 
6525   // Map of the number of times a particular SDValue appears in the
6526   // element list.
6527   DenseMap<SDValue, unsigned> ValueCounts;
6528   SDValue Value;
6529   for (unsigned i = 0; i < NumElts; ++i) {
6530     SDValue V = Op.getOperand(i);
6531     if (V.isUndef())
6532       continue;
6533     if (i > 0)
6534       isOnlyLowElement = false;
6535     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6536       isConstant = false;
6537 
6538     ValueCounts.insert(std::make_pair(V, 0));
6539     unsigned &Count = ValueCounts[V];
6540 
6541     // Is this value dominant? (takes up more than half of the lanes)
6542     if (++Count > (NumElts / 2)) {
6543       hasDominantValue = true;
6544       Value = V;
6545     }
6546   }
6547   if (ValueCounts.size() != 1)
6548     usesOnlyOneValue = false;
6549   if (!Value.getNode() && !ValueCounts.empty())
6550     Value = ValueCounts.begin()->first;
6551 
6552   if (ValueCounts.empty())
6553     return DAG.getUNDEF(VT);
6554 
6555   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6556   // Keep going if we are hitting this case.
6557   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6558     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6559 
6560   unsigned EltSize = VT.getScalarSizeInBits();
6561 
6562   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
6563   // i32 and try again.
6564   if (hasDominantValue && EltSize <= 32) {
6565     if (!isConstant) {
6566       SDValue N;
6567 
6568       // If we are VDUPing a value that comes directly from a vector, that will
6569       // cause an unnecessary move to and from a GPR, where instead we could
6570       // just use VDUPLANE. We can only do this if the lane being extracted
6571       // is at a constant index, as the VDUP from lane instructions only have
6572       // constant-index forms.
6573       ConstantSDNode *constIndex;
6574       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6575           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6576         // We need to create a new undef vector to use for the VDUPLANE if the
6577         // size of the vector from which we get the value is different than the
6578         // size of the vector that we need to create. We will insert the element
6579         // such that the register coalescer will remove unnecessary copies.
6580         if (VT != Value->getOperand(0).getValueType()) {
6581           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6582                              VT.getVectorNumElements();
6583           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6584                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6585                         Value, DAG.getConstant(index, dl, MVT::i32)),
6586                            DAG.getConstant(index, dl, MVT::i32));
6587         } else
6588           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6589                         Value->getOperand(0), Value->getOperand(1));
6590       } else
6591         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6592 
6593       if (!usesOnlyOneValue) {
6594         // The dominant value was splatted as 'N', but we now have to insert
6595         // all differing elements.
6596         for (unsigned I = 0; I < NumElts; ++I) {
6597           if (Op.getOperand(I) == Value)
6598             continue;
6599           SmallVector<SDValue, 3> Ops;
6600           Ops.push_back(N);
6601           Ops.push_back(Op.getOperand(I));
6602           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6603           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6604         }
6605       }
6606       return N;
6607     }
6608     if (VT.getVectorElementType().isFloatingPoint()) {
6609       SmallVector<SDValue, 8> Ops;
6610       for (unsigned i = 0; i < NumElts; ++i)
6611         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
6612                                   Op.getOperand(i)));
6613       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
6614       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6615       Val = LowerBUILD_VECTOR(Val, DAG, ST);
6616       if (Val.getNode())
6617         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6618     }
6619     if (usesOnlyOneValue) {
6620       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6621       if (isConstant && Val.getNode())
6622         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6623     }
6624   }
6625 
6626   // If all elements are constants and the case above didn't get hit, fall back
6627   // to the default expansion, which will generate a load from the constant
6628   // pool.
6629   if (isConstant)
6630     return SDValue();
6631 
6632   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6633   if (NumElts >= 4) {
6634     SDValue shuffle = ReconstructShuffle(Op, DAG);
6635     if (shuffle != SDValue())
6636       return shuffle;
6637   }
6638 
6639   if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
6640     // If we haven't found an efficient lowering, try splitting a 128-bit vector
6641     // into two 64-bit vectors; we might discover a better way to lower it.
6642     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
6643     EVT ExtVT = VT.getVectorElementType();
6644     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
6645     SDValue Lower =
6646         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
6647     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
6648       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
6649     SDValue Upper = DAG.getBuildVector(
6650         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
6651     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
6652       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
6653     if (Lower && Upper)
6654       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
6655   }
6656 
6657   // Vectors with 32- or 64-bit elements can be built by directly assigning
6658   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
6659   // will be legalized.
6660   if (EltSize >= 32) {
6661     // Do the expansion with floating-point types, since that is what the VFP
6662     // registers are defined to use, and since i64 is not legal.
6663     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6664     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6665     SmallVector<SDValue, 8> Ops;
6666     for (unsigned i = 0; i < NumElts; ++i)
6667       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6668     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6669     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6670   }
6671 
6672   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6673   // know the default expansion would otherwise fall back on something even
6674   // worse. For a vector with one or two non-undef values, that's
6675   // scalar_to_vector for the elements followed by a shuffle (provided the
6676   // shuffle is valid for the target) and materialization element by element
6677   // on the stack followed by a load for everything else.
6678   if (!isConstant && !usesOnlyOneValue) {
6679     SDValue Vec = DAG.getUNDEF(VT);
6680     for (unsigned i = 0 ; i < NumElts; ++i) {
6681       SDValue V = Op.getOperand(i);
6682       if (V.isUndef())
6683         continue;
6684       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6685       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6686     }
6687     return Vec;
6688   }
6689 
6690   return SDValue();
6691 }
6692 
6693 // Gather data to see if the operation can be modelled as a
6694 // shuffle in combination with VEXTs.
6695 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6696                                               SelectionDAG &DAG) const {
6697   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6698   SDLoc dl(Op);
6699   EVT VT = Op.getValueType();
6700   unsigned NumElts = VT.getVectorNumElements();
6701 
6702   struct ShuffleSourceInfo {
6703     SDValue Vec;
6704     unsigned MinElt = std::numeric_limits<unsigned>::max();
6705     unsigned MaxElt = 0;
6706 
6707     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6708     // be compatible with the shuffle we intend to construct. As a result
6709     // ShuffleVec will be some sliding window into the original Vec.
6710     SDValue ShuffleVec;
6711 
6712     // Code should guarantee that element i in Vec starts at element "WindowBase
6713     // + i * WindowScale in ShuffleVec".
6714     int WindowBase = 0;
6715     int WindowScale = 1;
6716 
6717     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
6718 
6719     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6720   };
6721 
6722   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6723   // node.
6724   SmallVector<ShuffleSourceInfo, 2> Sources;
6725   for (unsigned i = 0; i < NumElts; ++i) {
6726     SDValue V = Op.getOperand(i);
6727     if (V.isUndef())
6728       continue;
6729     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6730       // A shuffle can only come from building a vector from various
6731       // elements of other vectors.
6732       return SDValue();
6733     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6734       // Furthermore, shuffles require a constant mask, whereas extractelts
6735       // accept variable indices.
6736       return SDValue();
6737     }
6738 
6739     // Add this element source to the list if it's not already there.
6740     SDValue SourceVec = V.getOperand(0);
6741     auto Source = llvm::find(Sources, SourceVec);
6742     if (Source == Sources.end())
6743       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6744 
6745     // Update the minimum and maximum lane number seen.
6746     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6747     Source->MinElt = std::min(Source->MinElt, EltNo);
6748     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6749   }
6750 
6751   // Currently only do something sane when at most two source vectors
6752   // are involved.
6753   if (Sources.size() > 2)
6754     return SDValue();
6755 
6756   // Find out the smallest element size among result and two sources, and use
6757   // it as element size to build the shuffle_vector.
6758   EVT SmallestEltTy = VT.getVectorElementType();
6759   for (auto &Source : Sources) {
6760     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6761     if (SrcEltTy.bitsLT(SmallestEltTy))
6762       SmallestEltTy = SrcEltTy;
6763   }
6764   unsigned ResMultiplier =
6765       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6766   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6767   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6768 
6769   // If the source vector is too wide or too narrow, we may nevertheless be able
6770   // to construct a compatible shuffle either by concatenating it with UNDEF or
6771   // extracting a suitable range of elements.
6772   for (auto &Src : Sources) {
6773     EVT SrcVT = Src.ShuffleVec.getValueType();
6774 
6775     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6776       continue;
6777 
6778     // This stage of the search produces a source with the same element type as
6779     // the original, but with a total width matching the BUILD_VECTOR output.
6780     EVT EltVT = SrcVT.getVectorElementType();
6781     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6782     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6783 
6784     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6785       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6786         return SDValue();
6787       // We can pad out the smaller vector for free, so if it's part of a
6788       // shuffle...
6789       Src.ShuffleVec =
6790           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6791                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6792       continue;
6793     }
6794 
6795     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6796       return SDValue();
6797 
6798     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6799       // Span too large for a VEXT to cope
6800       return SDValue();
6801     }
6802 
6803     if (Src.MinElt >= NumSrcElts) {
6804       // The extraction can just take the second half
6805       Src.ShuffleVec =
6806           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6807                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6808       Src.WindowBase = -NumSrcElts;
6809     } else if (Src.MaxElt < NumSrcElts) {
6810       // The extraction can just take the first half
6811       Src.ShuffleVec =
6812           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6813                       DAG.getConstant(0, dl, MVT::i32));
6814     } else {
6815       // An actual VEXT is needed
6816       SDValue VEXTSrc1 =
6817           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6818                       DAG.getConstant(0, dl, MVT::i32));
6819       SDValue VEXTSrc2 =
6820           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6821                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6822 
6823       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6824                                    VEXTSrc2,
6825                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
6826       Src.WindowBase = -Src.MinElt;
6827     }
6828   }
6829 
6830   // Another possible incompatibility occurs from the vector element types. We
6831   // can fix this by bitcasting the source vectors to the same type we intend
6832   // for the shuffle.
6833   for (auto &Src : Sources) {
6834     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6835     if (SrcEltTy == SmallestEltTy)
6836       continue;
6837     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6838     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6839     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6840     Src.WindowBase *= Src.WindowScale;
6841   }
6842 
6843   // Final sanity check before we try to actually produce a shuffle.
6844   DEBUG(
6845     for (auto Src : Sources)
6846       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
6847   );
6848 
6849   // The stars all align, our next step is to produce the mask for the shuffle.
6850   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6851   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6852   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6853     SDValue Entry = Op.getOperand(i);
6854     if (Entry.isUndef())
6855       continue;
6856 
6857     auto Src = llvm::find(Sources, Entry.getOperand(0));
6858     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6859 
6860     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6861     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6862     // segment.
6863     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6864     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6865                                VT.getScalarSizeInBits());
6866     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6867 
6868     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6869     // starting at the appropriate offset.
6870     int *LaneMask = &Mask[i * ResMultiplier];
6871 
6872     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6873     ExtractBase += NumElts * (Src - Sources.begin());
6874     for (int j = 0; j < LanesDefined; ++j)
6875       LaneMask[j] = ExtractBase + j;
6876   }
6877 
6878   // Final check before we try to produce nonsense...
6879   if (!isShuffleMaskLegal(Mask, ShuffleVT))
6880     return SDValue();
6881 
6882   // We can't handle more than two sources. This should have already
6883   // been checked before this point.
6884   assert(Sources.size() <= 2 && "Too many sources!");
6885 
6886   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6887   for (unsigned i = 0; i < Sources.size(); ++i)
6888     ShuffleOps[i] = Sources[i].ShuffleVec;
6889 
6890   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6891                                          ShuffleOps[1], Mask);
6892   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6893 }
6894 
6895 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6896 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6897 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6898 /// are assumed to be legal.
6899 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
6900   if (VT.getVectorNumElements() == 4 &&
6901       (VT.is128BitVector() || VT.is64BitVector())) {
6902     unsigned PFIndexes[4];
6903     for (unsigned i = 0; i != 4; ++i) {
6904       if (M[i] < 0)
6905         PFIndexes[i] = 8;
6906       else
6907         PFIndexes[i] = M[i];
6908     }
6909 
6910     // Compute the index in the perfect shuffle table.
6911     unsigned PFTableIndex =
6912       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6913     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6914     unsigned Cost = (PFEntry >> 30);
6915 
6916     if (Cost <= 4)
6917       return true;
6918   }
6919 
6920   bool ReverseVEXT, isV_UNDEF;
6921   unsigned Imm, WhichResult;
6922 
6923   unsigned EltSize = VT.getScalarSizeInBits();
6924   return (EltSize >= 32 ||
6925           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6926           isVREVMask(M, VT, 64) ||
6927           isVREVMask(M, VT, 32) ||
6928           isVREVMask(M, VT, 16) ||
6929           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6930           isVTBLMask(M, VT) ||
6931           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6932           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6933 }
6934 
6935 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6936 /// the specified operations to build the shuffle.
6937 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6938                                       SDValue RHS, SelectionDAG &DAG,
6939                                       const SDLoc &dl) {
6940   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6941   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6942   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
6943 
6944   enum {
6945     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6946     OP_VREV,
6947     OP_VDUP0,
6948     OP_VDUP1,
6949     OP_VDUP2,
6950     OP_VDUP3,
6951     OP_VEXT1,
6952     OP_VEXT2,
6953     OP_VEXT3,
6954     OP_VUZPL, // VUZP, left result
6955     OP_VUZPR, // VUZP, right result
6956     OP_VZIPL, // VZIP, left result
6957     OP_VZIPR, // VZIP, right result
6958     OP_VTRNL, // VTRN, left result
6959     OP_VTRNR  // VTRN, right result
6960   };
6961 
6962   if (OpNum == OP_COPY) {
6963     if (LHSID == (1*9+2)*9+3) return LHS;
6964     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6965     return RHS;
6966   }
6967 
6968   SDValue OpLHS, OpRHS;
6969   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6970   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6971   EVT VT = OpLHS.getValueType();
6972 
6973   switch (OpNum) {
6974   default: llvm_unreachable("Unknown shuffle opcode!");
6975   case OP_VREV:
6976     // VREV divides the vector in half and swaps within the half.
6977     if (VT.getVectorElementType() == MVT::i32 ||
6978         VT.getVectorElementType() == MVT::f32)
6979       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6980     // vrev <4 x i16> -> VREV32
6981     if (VT.getVectorElementType() == MVT::i16)
6982       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6983     // vrev <4 x i8> -> VREV16
6984     assert(VT.getVectorElementType() == MVT::i8);
6985     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6986   case OP_VDUP0:
6987   case OP_VDUP1:
6988   case OP_VDUP2:
6989   case OP_VDUP3:
6990     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6991                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6992   case OP_VEXT1:
6993   case OP_VEXT2:
6994   case OP_VEXT3:
6995     return DAG.getNode(ARMISD::VEXT, dl, VT,
6996                        OpLHS, OpRHS,
6997                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6998   case OP_VUZPL:
6999   case OP_VUZPR:
7000     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
7001                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
7002   case OP_VZIPL:
7003   case OP_VZIPR:
7004     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
7005                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
7006   case OP_VTRNL:
7007   case OP_VTRNR:
7008     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
7009                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
7010   }
7011 }
7012 
7013 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7014                                        ArrayRef<int> ShuffleMask,
7015                                        SelectionDAG &DAG) {
7016   // Check to see if we can use the VTBL instruction.
7017   SDValue V1 = Op.getOperand(0);
7018   SDValue V2 = Op.getOperand(1);
7019   SDLoc DL(Op);
7020 
7021   SmallVector<SDValue, 8> VTBLMask;
7022   for (ArrayRef<int>::iterator
7023          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7024     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7025 
7026   if (V2.getNode()->isUndef())
7027     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7028                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7029 
7030   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7031                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7032 }
7033 
7034 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7035                                                       SelectionDAG &DAG) {
7036   SDLoc DL(Op);
7037   SDValue OpLHS = Op.getOperand(0);
7038   EVT VT = OpLHS.getValueType();
7039 
7040   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7041          "Expect an v8i16/v16i8 type");
7042   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7043   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7044   // extract the first 8 bytes into the top double word and the last 8 bytes
7045   // into the bottom double word. The v8i16 case is similar.
7046   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7047   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7048                      DAG.getConstant(ExtractNum, DL, MVT::i32));
7049 }
7050 
7051 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
7052   SDValue V1 = Op.getOperand(0);
7053   SDValue V2 = Op.getOperand(1);
7054   SDLoc dl(Op);
7055   EVT VT = Op.getValueType();
7056   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7057 
7058   // Convert shuffles that are directly supported on NEON to target-specific
7059   // DAG nodes, instead of keeping them as shuffles and matching them again
7060   // during code selection.  This is more efficient and avoids the possibility
7061   // of inconsistencies between legalization and selection.
7062   // FIXME: floating-point vectors should be canonicalized to integer vectors
7063   // of the same time so that they get CSEd properly.
7064   ArrayRef<int> ShuffleMask = SVN->getMask();
7065 
7066   unsigned EltSize = VT.getScalarSizeInBits();
7067   if (EltSize <= 32) {
7068     if (SVN->isSplat()) {
7069       int Lane = SVN->getSplatIndex();
7070       // If this is undef splat, generate it via "just" vdup, if possible.
7071       if (Lane == -1) Lane = 0;
7072 
7073       // Test if V1 is a SCALAR_TO_VECTOR.
7074       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7075         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7076       }
7077       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7078       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7079       // reaches it).
7080       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7081           !isa<ConstantSDNode>(V1.getOperand(0))) {
7082         bool IsScalarToVector = true;
7083         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7084           if (!V1.getOperand(i).isUndef()) {
7085             IsScalarToVector = false;
7086             break;
7087           }
7088         if (IsScalarToVector)
7089           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7090       }
7091       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7092                          DAG.getConstant(Lane, dl, MVT::i32));
7093     }
7094 
7095     bool ReverseVEXT;
7096     unsigned Imm;
7097     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7098       if (ReverseVEXT)
7099         std::swap(V1, V2);
7100       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7101                          DAG.getConstant(Imm, dl, MVT::i32));
7102     }
7103 
7104     if (isVREVMask(ShuffleMask, VT, 64))
7105       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7106     if (isVREVMask(ShuffleMask, VT, 32))
7107       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7108     if (isVREVMask(ShuffleMask, VT, 16))
7109       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7110 
7111     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7112       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7113                          DAG.getConstant(Imm, dl, MVT::i32));
7114     }
7115 
7116     // Check for Neon shuffles that modify both input vectors in place.
7117     // If both results are used, i.e., if there are two shuffles with the same
7118     // source operands and with masks corresponding to both results of one of
7119     // these operations, DAG memoization will ensure that a single node is
7120     // used for both shuffles.
7121     unsigned WhichResult;
7122     bool isV_UNDEF;
7123     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7124             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7125       if (isV_UNDEF)
7126         V2 = V1;
7127       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7128           .getValue(WhichResult);
7129     }
7130 
7131     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7132     // shuffles that produce a result larger than their operands with:
7133     //   shuffle(concat(v1, undef), concat(v2, undef))
7134     // ->
7135     //   shuffle(concat(v1, v2), undef)
7136     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7137     //
7138     // This is useful in the general case, but there are special cases where
7139     // native shuffles produce larger results: the two-result ops.
7140     //
7141     // Look through the concat when lowering them:
7142     //   shuffle(concat(v1, v2), undef)
7143     // ->
7144     //   concat(VZIP(v1, v2):0, :1)
7145     //
7146     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7147       SDValue SubV1 = V1->getOperand(0);
7148       SDValue SubV2 = V1->getOperand(1);
7149       EVT SubVT = SubV1.getValueType();
7150 
7151       // We expect these to have been canonicalized to -1.
7152       assert(llvm::all_of(ShuffleMask, [&](int i) {
7153         return i < (int)VT.getVectorNumElements();
7154       }) && "Unexpected shuffle index into UNDEF operand!");
7155 
7156       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7157               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7158         if (isV_UNDEF)
7159           SubV2 = SubV1;
7160         assert((WhichResult == 0) &&
7161                "In-place shuffle of concat can only have one result!");
7162         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7163                                   SubV1, SubV2);
7164         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7165                            Res.getValue(1));
7166       }
7167     }
7168   }
7169 
7170   // If the shuffle is not directly supported and it has 4 elements, use
7171   // the PerfectShuffle-generated table to synthesize it from other shuffles.
7172   unsigned NumElts = VT.getVectorNumElements();
7173   if (NumElts == 4) {
7174     unsigned PFIndexes[4];
7175     for (unsigned i = 0; i != 4; ++i) {
7176       if (ShuffleMask[i] < 0)
7177         PFIndexes[i] = 8;
7178       else
7179         PFIndexes[i] = ShuffleMask[i];
7180     }
7181 
7182     // Compute the index in the perfect shuffle table.
7183     unsigned PFTableIndex =
7184       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7185     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7186     unsigned Cost = (PFEntry >> 30);
7187 
7188     if (Cost <= 4)
7189       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7190   }
7191 
7192   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7193   if (EltSize >= 32) {
7194     // Do the expansion with floating-point types, since that is what the VFP
7195     // registers are defined to use, and since i64 is not legal.
7196     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7197     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7198     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7199     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7200     SmallVector<SDValue, 8> Ops;
7201     for (unsigned i = 0; i < NumElts; ++i) {
7202       if (ShuffleMask[i] < 0)
7203         Ops.push_back(DAG.getUNDEF(EltVT));
7204       else
7205         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7206                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
7207                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7208                                                   dl, MVT::i32)));
7209     }
7210     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7211     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7212   }
7213 
7214   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7215     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7216 
7217   if (VT == MVT::v8i8)
7218     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7219       return NewOp;
7220 
7221   return SDValue();
7222 }
7223 
7224 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7225   // INSERT_VECTOR_ELT is legal only for immediate indexes.
7226   SDValue Lane = Op.getOperand(2);
7227   if (!isa<ConstantSDNode>(Lane))
7228     return SDValue();
7229 
7230   return Op;
7231 }
7232 
7233 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7234   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7235   SDValue Lane = Op.getOperand(1);
7236   if (!isa<ConstantSDNode>(Lane))
7237     return SDValue();
7238 
7239   SDValue Vec = Op.getOperand(0);
7240   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7241     SDLoc dl(Op);
7242     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7243   }
7244 
7245   return Op;
7246 }
7247 
7248 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7249   // The only time a CONCAT_VECTORS operation can have legal types is when
7250   // two 64-bit vectors are concatenated to a 128-bit vector.
7251   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7252          "unexpected CONCAT_VECTORS");
7253   SDLoc dl(Op);
7254   SDValue Val = DAG.getUNDEF(MVT::v2f64);
7255   SDValue Op0 = Op.getOperand(0);
7256   SDValue Op1 = Op.getOperand(1);
7257   if (!Op0.isUndef())
7258     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7259                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7260                       DAG.getIntPtrConstant(0, dl));
7261   if (!Op1.isUndef())
7262     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7263                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7264                       DAG.getIntPtrConstant(1, dl));
7265   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7266 }
7267 
7268 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7269 /// element has been zero/sign-extended, depending on the isSigned parameter,
7270 /// from an integer type half its size.
7271 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7272                                    bool isSigned) {
7273   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7274   EVT VT = N->getValueType(0);
7275   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7276     SDNode *BVN = N->getOperand(0).getNode();
7277     if (BVN->getValueType(0) != MVT::v4i32 ||
7278         BVN->getOpcode() != ISD::BUILD_VECTOR)
7279       return false;
7280     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7281     unsigned HiElt = 1 - LoElt;
7282     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7283     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7284     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7285     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7286     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7287       return false;
7288     if (isSigned) {
7289       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7290           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7291         return true;
7292     } else {
7293       if (Hi0->isNullValue() && Hi1->isNullValue())
7294         return true;
7295     }
7296     return false;
7297   }
7298 
7299   if (N->getOpcode() != ISD::BUILD_VECTOR)
7300     return false;
7301 
7302   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7303     SDNode *Elt = N->getOperand(i).getNode();
7304     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
7305       unsigned EltSize = VT.getScalarSizeInBits();
7306       unsigned HalfSize = EltSize / 2;
7307       if (isSigned) {
7308         if (!isIntN(HalfSize, C->getSExtValue()))
7309           return false;
7310       } else {
7311         if (!isUIntN(HalfSize, C->getZExtValue()))
7312           return false;
7313       }
7314       continue;
7315     }
7316     return false;
7317   }
7318 
7319   return true;
7320 }
7321 
7322 /// isSignExtended - Check if a node is a vector value that is sign-extended
7323 /// or a constant BUILD_VECTOR with sign-extended elements.
7324 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
7325   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
7326     return true;
7327   if (isExtendedBUILD_VECTOR(N, DAG, true))
7328     return true;
7329   return false;
7330 }
7331 
7332 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7333 /// or a constant BUILD_VECTOR with zero-extended elements.
7334 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
7335   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
7336     return true;
7337   if (isExtendedBUILD_VECTOR(N, DAG, false))
7338     return true;
7339   return false;
7340 }
7341 
7342 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
7343   if (OrigVT.getSizeInBits() >= 64)
7344     return OrigVT;
7345 
7346   assert(OrigVT.isSimple() && "Expecting a simple value type");
7347 
7348   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
7349   switch (OrigSimpleTy) {
7350   default: llvm_unreachable("Unexpected Vector Type");
7351   case MVT::v2i8:
7352   case MVT::v2i16:
7353      return MVT::v2i32;
7354   case MVT::v4i8:
7355     return  MVT::v4i16;
7356   }
7357 }
7358 
7359 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7360 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7361 /// We insert the required extension here to get the vector to fill a D register.
7362 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
7363                                             const EVT &OrigTy,
7364                                             const EVT &ExtTy,
7365                                             unsigned ExtOpcode) {
7366   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7367   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7368   // 64-bits we need to insert a new extension so that it will be 64-bits.
7369   assert(ExtTy.is128BitVector() && "Unexpected extension size");
7370   if (OrigTy.getSizeInBits() >= 64)
7371     return N;
7372 
7373   // Must extend size to at least 64 bits to be used as an operand for VMULL.
7374   EVT NewVT = getExtensionTo64Bits(OrigTy);
7375 
7376   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
7377 }
7378 
7379 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7380 /// does not do any sign/zero extension. If the original vector is less
7381 /// than 64 bits, an appropriate extension will be added after the load to
7382 /// reach a total size of 64 bits. We have to add the extension separately
7383 /// because ARM does not have a sign/zero extending load for vectors.
7384 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
7385   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
7386 
7387   // The load already has the right type.
7388   if (ExtendedTy == LD->getMemoryVT())
7389     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
7390                        LD->getBasePtr(), LD->getPointerInfo(),
7391                        LD->getAlignment(), LD->getMemOperand()->getFlags());
7392 
7393   // We need to create a zextload/sextload. We cannot just create a load
7394   // followed by a zext/zext node because LowerMUL is also run during normal
7395   // operation legalization where we can't create illegal types.
7396   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
7397                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
7398                         LD->getMemoryVT(), LD->getAlignment(),
7399                         LD->getMemOperand()->getFlags());
7400 }
7401 
7402 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
7403 /// extending load, or BUILD_VECTOR with extended elements, return the
7404 /// unextended value. The unextended vector should be 64 bits so that it can
7405 /// be used as an operand to a VMULL instruction. If the original vector size
7406 /// before extension is less than 64 bits we add a an extension to resize
7407 /// the vector to 64 bits.
7408 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
7409   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
7410     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
7411                                         N->getOperand(0)->getValueType(0),
7412                                         N->getValueType(0),
7413                                         N->getOpcode());
7414 
7415   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7416     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
7417            "Expected extending load");
7418 
7419     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
7420     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
7421     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
7422     SDValue extLoad =
7423         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
7424     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
7425 
7426     return newLoad;
7427   }
7428 
7429   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
7430   // have been legalized as a BITCAST from v4i32.
7431   if (N->getOpcode() == ISD::BITCAST) {
7432     SDNode *BVN = N->getOperand(0).getNode();
7433     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
7434            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
7435     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7436     return DAG.getBuildVector(
7437         MVT::v2i32, SDLoc(N),
7438         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
7439   }
7440   // Construct a new BUILD_VECTOR with elements truncated to half the size.
7441   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
7442   EVT VT = N->getValueType(0);
7443   unsigned EltSize = VT.getScalarSizeInBits() / 2;
7444   unsigned NumElts = VT.getVectorNumElements();
7445   MVT TruncVT = MVT::getIntegerVT(EltSize);
7446   SmallVector<SDValue, 8> Ops;
7447   SDLoc dl(N);
7448   for (unsigned i = 0; i != NumElts; ++i) {
7449     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
7450     const APInt &CInt = C->getAPIntValue();
7451     // Element types smaller than 32 bits are not legal, so use i32 elements.
7452     // The values are implicitly truncated so sext vs. zext doesn't matter.
7453     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
7454   }
7455   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
7456 }
7457 
7458 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
7459   unsigned Opcode = N->getOpcode();
7460   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7461     SDNode *N0 = N->getOperand(0).getNode();
7462     SDNode *N1 = N->getOperand(1).getNode();
7463     return N0->hasOneUse() && N1->hasOneUse() &&
7464       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
7465   }
7466   return false;
7467 }
7468 
7469 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
7470   unsigned Opcode = N->getOpcode();
7471   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7472     SDNode *N0 = N->getOperand(0).getNode();
7473     SDNode *N1 = N->getOperand(1).getNode();
7474     return N0->hasOneUse() && N1->hasOneUse() &&
7475       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
7476   }
7477   return false;
7478 }
7479 
7480 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
7481   // Multiplications are only custom-lowered for 128-bit vectors so that
7482   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
7483   EVT VT = Op.getValueType();
7484   assert(VT.is128BitVector() && VT.isInteger() &&
7485          "unexpected type for custom-lowering ISD::MUL");
7486   SDNode *N0 = Op.getOperand(0).getNode();
7487   SDNode *N1 = Op.getOperand(1).getNode();
7488   unsigned NewOpc = 0;
7489   bool isMLA = false;
7490   bool isN0SExt = isSignExtended(N0, DAG);
7491   bool isN1SExt = isSignExtended(N1, DAG);
7492   if (isN0SExt && isN1SExt)
7493     NewOpc = ARMISD::VMULLs;
7494   else {
7495     bool isN0ZExt = isZeroExtended(N0, DAG);
7496     bool isN1ZExt = isZeroExtended(N1, DAG);
7497     if (isN0ZExt && isN1ZExt)
7498       NewOpc = ARMISD::VMULLu;
7499     else if (isN1SExt || isN1ZExt) {
7500       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
7501       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
7502       if (isN1SExt && isAddSubSExt(N0, DAG)) {
7503         NewOpc = ARMISD::VMULLs;
7504         isMLA = true;
7505       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
7506         NewOpc = ARMISD::VMULLu;
7507         isMLA = true;
7508       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
7509         std::swap(N0, N1);
7510         NewOpc = ARMISD::VMULLu;
7511         isMLA = true;
7512       }
7513     }
7514 
7515     if (!NewOpc) {
7516       if (VT == MVT::v2i64)
7517         // Fall through to expand this.  It is not legal.
7518         return SDValue();
7519       else
7520         // Other vector multiplications are legal.
7521         return Op;
7522     }
7523   }
7524 
7525   // Legalize to a VMULL instruction.
7526   SDLoc DL(Op);
7527   SDValue Op0;
7528   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
7529   if (!isMLA) {
7530     Op0 = SkipExtensionForVMULL(N0, DAG);
7531     assert(Op0.getValueType().is64BitVector() &&
7532            Op1.getValueType().is64BitVector() &&
7533            "unexpected types for extended operands to VMULL");
7534     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
7535   }
7536 
7537   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7538   // isel lowering to take advantage of no-stall back to back vmul + vmla.
7539   //   vmull q0, d4, d6
7540   //   vmlal q0, d5, d6
7541   // is faster than
7542   //   vaddl q0, d4, d5
7543   //   vmovl q1, d6
7544   //   vmul  q0, q0, q1
7545   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
7546   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
7547   EVT Op1VT = Op1.getValueType();
7548   return DAG.getNode(N0->getOpcode(), DL, VT,
7549                      DAG.getNode(NewOpc, DL, VT,
7550                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
7551                      DAG.getNode(NewOpc, DL, VT,
7552                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
7553 }
7554 
7555 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
7556                               SelectionDAG &DAG) {
7557   // TODO: Should this propagate fast-math-flags?
7558 
7559   // Convert to float
7560   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7561   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7562   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
7563   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
7564   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
7565   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
7566   // Get reciprocal estimate.
7567   // float4 recip = vrecpeq_f32(yf);
7568   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7569                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7570                    Y);
7571   // Because char has a smaller range than uchar, we can actually get away
7572   // without any newton steps.  This requires that we use a weird bias
7573   // of 0xb000, however (again, this has been exhaustively tested).
7574   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7575   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
7576   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
7577   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
7578   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
7579   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
7580   // Convert back to short.
7581   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
7582   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
7583   return X;
7584 }
7585 
7586 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
7587                                SelectionDAG &DAG) {
7588   // TODO: Should this propagate fast-math-flags?
7589 
7590   SDValue N2;
7591   // Convert to float.
7592   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7593   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7594   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
7595   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
7596   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7597   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7598 
7599   // Use reciprocal estimate and one refinement step.
7600   // float4 recip = vrecpeq_f32(yf);
7601   // recip *= vrecpsq_f32(yf, recip);
7602   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7603                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7604                    N1);
7605   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7606                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7607                    N1, N2);
7608   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7609   // Because short has a smaller range than ushort, we can actually get away
7610   // with only a single newton step.  This requires that we use a weird bias
7611   // of 89, however (again, this has been exhaustively tested).
7612   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7613   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7614   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7615   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
7616   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7617   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7618   // Convert back to integer and return.
7619   // return vmovn_s32(vcvt_s32_f32(result));
7620   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7621   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7622   return N0;
7623 }
7624 
7625 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
7626   EVT VT = Op.getValueType();
7627   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7628          "unexpected type for custom-lowering ISD::SDIV");
7629 
7630   SDLoc dl(Op);
7631   SDValue N0 = Op.getOperand(0);
7632   SDValue N1 = Op.getOperand(1);
7633   SDValue N2, N3;
7634 
7635   if (VT == MVT::v8i8) {
7636     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
7637     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
7638 
7639     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7640                      DAG.getIntPtrConstant(4, dl));
7641     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7642                      DAG.getIntPtrConstant(4, dl));
7643     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7644                      DAG.getIntPtrConstant(0, dl));
7645     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7646                      DAG.getIntPtrConstant(0, dl));
7647 
7648     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
7649     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
7650 
7651     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7652     N0 = LowerCONCAT_VECTORS(N0, DAG);
7653 
7654     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
7655     return N0;
7656   }
7657   return LowerSDIV_v4i16(N0, N1, dl, DAG);
7658 }
7659 
7660 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7661   // TODO: Should this propagate fast-math-flags?
7662   EVT VT = Op.getValueType();
7663   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7664          "unexpected type for custom-lowering ISD::UDIV");
7665 
7666   SDLoc dl(Op);
7667   SDValue N0 = Op.getOperand(0);
7668   SDValue N1 = Op.getOperand(1);
7669   SDValue N2, N3;
7670 
7671   if (VT == MVT::v8i8) {
7672     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7673     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7674 
7675     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7676                      DAG.getIntPtrConstant(4, dl));
7677     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7678                      DAG.getIntPtrConstant(4, dl));
7679     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7680                      DAG.getIntPtrConstant(0, dl));
7681     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7682                      DAG.getIntPtrConstant(0, dl));
7683 
7684     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7685     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7686 
7687     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7688     N0 = LowerCONCAT_VECTORS(N0, DAG);
7689 
7690     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7691                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7692                                      MVT::i32),
7693                      N0);
7694     return N0;
7695   }
7696 
7697   // v4i16 sdiv ... Convert to float.
7698   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7699   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7700   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7701   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7702   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7703   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7704 
7705   // Use reciprocal estimate and two refinement steps.
7706   // float4 recip = vrecpeq_f32(yf);
7707   // recip *= vrecpsq_f32(yf, recip);
7708   // recip *= vrecpsq_f32(yf, recip);
7709   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7710                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7711                    BN1);
7712   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7713                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7714                    BN1, N2);
7715   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7716   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7717                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7718                    BN1, N2);
7719   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7720   // Simply multiplying by the reciprocal estimate can leave us a few ulps
7721   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7722   // and that it will never cause us to return an answer too large).
7723   // float4 result = as_float4(as_int4(xf*recip) + 2);
7724   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7725   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7726   N1 = DAG.getConstant(2, dl, MVT::v4i32);
7727   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7728   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7729   // Convert back to integer and return.
7730   // return vmovn_u32(vcvt_s32_f32(result));
7731   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7732   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7733   return N0;
7734 }
7735 
7736 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
7737   EVT VT = Op.getNode()->getValueType(0);
7738   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7739 
7740   unsigned Opc;
7741   bool ExtraOp = false;
7742   switch (Op.getOpcode()) {
7743   default: llvm_unreachable("Invalid code");
7744   case ISD::ADDC: Opc = ARMISD::ADDC; break;
7745   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
7746   case ISD::SUBC: Opc = ARMISD::SUBC; break;
7747   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
7748   }
7749 
7750   if (!ExtraOp)
7751     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
7752                        Op.getOperand(1));
7753   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
7754                      Op.getOperand(1), Op.getOperand(2));
7755 }
7756 
7757 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
7758   SDNode *N = Op.getNode();
7759   EVT VT = N->getValueType(0);
7760   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7761 
7762   SDValue Carry = Op.getOperand(2);
7763 
7764   SDLoc DL(Op);
7765 
7766   SDValue Result;
7767   if (Op.getOpcode() == ISD::ADDCARRY) {
7768     // This converts the boolean value carry into the carry flag.
7769     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7770 
7771     // Do the addition proper using the carry flag we wanted.
7772     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
7773                          Op.getOperand(1), Carry);
7774 
7775     // Now convert the carry flag into a boolean value.
7776     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7777   } else {
7778     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
7779     // have to invert the carry first.
7780     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7781                         DAG.getConstant(1, DL, MVT::i32), Carry);
7782     // This converts the boolean value carry into the carry flag.
7783     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7784 
7785     // Do the subtraction proper using the carry flag we wanted.
7786     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
7787                          Op.getOperand(1), Carry);
7788 
7789     // Now convert the carry flag into a boolean value.
7790     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7791     // But the carry returned by ARMISD::SUBE is not a borrow as expected
7792     // by ISD::SUBCARRY, so compute 1 - C.
7793     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7794                         DAG.getConstant(1, DL, MVT::i32), Carry);
7795   }
7796 
7797   // Return both values.
7798   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
7799 }
7800 
7801 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7802   assert(Subtarget->isTargetDarwin());
7803 
7804   // For iOS, we want to call an alternative entry point: __sincos_stret,
7805   // return values are passed via sret.
7806   SDLoc dl(Op);
7807   SDValue Arg = Op.getOperand(0);
7808   EVT ArgVT = Arg.getValueType();
7809   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7810   auto PtrVT = getPointerTy(DAG.getDataLayout());
7811 
7812   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7814 
7815   // Pair of floats / doubles used to pass the result.
7816   Type *RetTy = StructType::get(ArgTy, ArgTy);
7817   auto &DL = DAG.getDataLayout();
7818 
7819   ArgListTy Args;
7820   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7821   SDValue SRet;
7822   if (ShouldUseSRet) {
7823     // Create stack object for sret.
7824     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7825     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7826     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7827     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7828 
7829     ArgListEntry Entry;
7830     Entry.Node = SRet;
7831     Entry.Ty = RetTy->getPointerTo();
7832     Entry.IsSExt = false;
7833     Entry.IsZExt = false;
7834     Entry.IsSRet = true;
7835     Args.push_back(Entry);
7836     RetTy = Type::getVoidTy(*DAG.getContext());
7837   }
7838 
7839   ArgListEntry Entry;
7840   Entry.Node = Arg;
7841   Entry.Ty = ArgTy;
7842   Entry.IsSExt = false;
7843   Entry.IsZExt = false;
7844   Args.push_back(Entry);
7845 
7846   RTLIB::Libcall LC =
7847       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
7848   const char *LibcallName = getLibcallName(LC);
7849   CallingConv::ID CC = getLibcallCallingConv(LC);
7850   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7851 
7852   TargetLowering::CallLoweringInfo CLI(DAG);
7853   CLI.setDebugLoc(dl)
7854       .setChain(DAG.getEntryNode())
7855       .setCallee(CC, RetTy, Callee, std::move(Args))
7856       .setDiscardResult(ShouldUseSRet);
7857   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7858 
7859   if (!ShouldUseSRet)
7860     return CallResult.first;
7861 
7862   SDValue LoadSin =
7863       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
7864 
7865   // Address of cos field.
7866   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
7867                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
7868   SDValue LoadCos =
7869       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
7870 
7871   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
7872   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
7873                      LoadSin.getValue(0), LoadCos.getValue(0));
7874 }
7875 
7876 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
7877                                                   bool Signed,
7878                                                   SDValue &Chain) const {
7879   EVT VT = Op.getValueType();
7880   assert((VT == MVT::i32 || VT == MVT::i64) &&
7881          "unexpected type for custom lowering DIV");
7882   SDLoc dl(Op);
7883 
7884   const auto &DL = DAG.getDataLayout();
7885   const auto &TLI = DAG.getTargetLoweringInfo();
7886 
7887   const char *Name = nullptr;
7888   if (Signed)
7889     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7890   else
7891     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7892 
7893   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7894 
7895   ARMTargetLowering::ArgListTy Args;
7896 
7897   for (auto AI : {1, 0}) {
7898     ArgListEntry Arg;
7899     Arg.Node = Op.getOperand(AI);
7900     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7901     Args.push_back(Arg);
7902   }
7903 
7904   CallLoweringInfo CLI(DAG);
7905   CLI.setDebugLoc(dl)
7906     .setChain(Chain)
7907     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7908                ES, std::move(Args));
7909 
7910   return LowerCallTo(CLI).first;
7911 }
7912 
7913 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7914                                             bool Signed) const {
7915   assert(Op.getValueType() == MVT::i32 &&
7916          "unexpected type for custom lowering DIV");
7917   SDLoc dl(Op);
7918 
7919   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7920                                DAG.getEntryNode(), Op.getOperand(1));
7921 
7922   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7923 }
7924 
7925 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
7926   SDLoc DL(N);
7927   SDValue Op = N->getOperand(1);
7928   if (N->getValueType(0) == MVT::i32)
7929     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
7930   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7931                            DAG.getConstant(0, DL, MVT::i32));
7932   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7933                            DAG.getConstant(1, DL, MVT::i32));
7934   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
7935                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
7936 }
7937 
7938 void ARMTargetLowering::ExpandDIV_Windows(
7939     SDValue Op, SelectionDAG &DAG, bool Signed,
7940     SmallVectorImpl<SDValue> &Results) const {
7941   const auto &DL = DAG.getDataLayout();
7942   const auto &TLI = DAG.getTargetLoweringInfo();
7943 
7944   assert(Op.getValueType() == MVT::i64 &&
7945          "unexpected type for custom lowering DIV");
7946   SDLoc dl(Op);
7947 
7948   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
7949 
7950   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7951 
7952   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7953   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7954                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7955   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7956 
7957   Results.push_back(Lower);
7958   Results.push_back(Upper);
7959 }
7960 
7961 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7962   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7963     // Acquire/Release load/store is not legal for targets without a dmb or
7964     // equivalent available.
7965     return SDValue();
7966 
7967   // Monotonic load/store is legal for all targets.
7968   return Op;
7969 }
7970 
7971 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7972                                     SmallVectorImpl<SDValue> &Results,
7973                                     SelectionDAG &DAG,
7974                                     const ARMSubtarget *Subtarget) {
7975   SDLoc DL(N);
7976   // Under Power Management extensions, the cycle-count is:
7977   //    mrc p15, #0, <Rt>, c9, c13, #0
7978   SDValue Ops[] = { N->getOperand(0), // Chain
7979                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7980                     DAG.getConstant(15, DL, MVT::i32),
7981                     DAG.getConstant(0, DL, MVT::i32),
7982                     DAG.getConstant(9, DL, MVT::i32),
7983                     DAG.getConstant(13, DL, MVT::i32),
7984                     DAG.getConstant(0, DL, MVT::i32)
7985   };
7986 
7987   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7988                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
7989   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7990                                 DAG.getConstant(0, DL, MVT::i32)));
7991   Results.push_back(Cycles32.getValue(1));
7992 }
7993 
7994 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7995   SDLoc dl(V.getNode());
7996   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7997   SDValue VHi = DAG.getAnyExtOrTrunc(
7998       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7999       dl, MVT::i32);
8000   bool isBigEndian = DAG.getDataLayout().isBigEndian();
8001   if (isBigEndian)
8002     std::swap (VLo, VHi);
8003   SDValue RegClass =
8004       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
8005   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
8006   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
8007   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
8008   return SDValue(
8009       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
8010 }
8011 
8012 static void ReplaceCMP_SWAP_64Results(SDNode *N,
8013                                        SmallVectorImpl<SDValue> & Results,
8014                                        SelectionDAG &DAG) {
8015   assert(N->getValueType(0) == MVT::i64 &&
8016          "AtomicCmpSwap on types less than 64 should be legal");
8017   SDValue Ops[] = {N->getOperand(1),
8018                    createGPRPairNode(DAG, N->getOperand(2)),
8019                    createGPRPairNode(DAG, N->getOperand(3)),
8020                    N->getOperand(0)};
8021   SDNode *CmpSwap = DAG.getMachineNode(
8022       ARM::CMP_SWAP_64, SDLoc(N),
8023       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
8024 
8025   MachineFunction &MF = DAG.getMachineFunction();
8026   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
8027   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
8028   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
8029 
8030   bool isBigEndian = DAG.getDataLayout().isBigEndian();
8031 
8032   Results.push_back(
8033       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
8034                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8035   Results.push_back(
8036       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
8037                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8038   Results.push_back(SDValue(CmpSwap, 2));
8039 }
8040 
8041 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
8042                           SelectionDAG &DAG) {
8043   const auto &TLI = DAG.getTargetLoweringInfo();
8044 
8045   assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
8046          "Custom lowering is MSVCRT specific!");
8047 
8048   SDLoc dl(Op);
8049   SDValue Val = Op.getOperand(0);
8050   MVT Ty = Val->getSimpleValueType(0);
8051   SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
8052   SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
8053                                          TLI.getPointerTy(DAG.getDataLayout()));
8054 
8055   TargetLowering::ArgListTy Args;
8056   TargetLowering::ArgListEntry Entry;
8057 
8058   Entry.Node = Val;
8059   Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
8060   Entry.IsZExt = true;
8061   Args.push_back(Entry);
8062 
8063   Entry.Node = Exponent;
8064   Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
8065   Entry.IsZExt = true;
8066   Args.push_back(Entry);
8067 
8068   Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
8069 
8070   // In the in-chain to the call is the entry node  If we are emitting a
8071   // tailcall, the chain will be mutated if the node has a non-entry input
8072   // chain.
8073   SDValue InChain = DAG.getEntryNode();
8074   SDValue TCChain = InChain;
8075 
8076   const Function &F = DAG.getMachineFunction().getFunction();
8077   bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
8078               F.getReturnType() == LCRTy;
8079   if (IsTC)
8080     InChain = TCChain;
8081 
8082   TargetLowering::CallLoweringInfo CLI(DAG);
8083   CLI.setDebugLoc(dl)
8084       .setChain(InChain)
8085       .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
8086       .setTailCall(IsTC);
8087   std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
8088 
8089   // Return the chain (the DAG root) if it is a tail call
8090   return !CI.second.getNode() ? DAG.getRoot() : CI.first;
8091 }
8092 
8093 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8094   DEBUG(dbgs() << "Lowering node: "; Op.dump());
8095   switch (Op.getOpcode()) {
8096   default: llvm_unreachable("Don't know how to custom lower this!");
8097   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8098   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8099   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
8100   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8101   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8102   case ISD::SELECT:        return LowerSELECT(Op, DAG);
8103   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
8104   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
8105   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
8106   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
8107   case ISD::VASTART:       return LowerVASTART(Op, DAG);
8108   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8109   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
8110   case ISD::SINT_TO_FP:
8111   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
8112   case ISD::FP_TO_SINT:
8113   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
8114   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
8115   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
8116   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
8117   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8118   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8119   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8120   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8121                                                                Subtarget);
8122   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8123   case ISD::SHL:
8124   case ISD::SRL:
8125   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
8126   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
8127   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
8128   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
8129   case ISD::SRL_PARTS:
8130   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
8131   case ISD::CTTZ:
8132   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8133   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8134   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
8135   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
8136   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
8137   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8138   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8139   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8140   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8141   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8142   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
8143   case ISD::MUL:           return LowerMUL(Op, DAG);
8144   case ISD::SDIV:
8145     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8146       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8147     return LowerSDIV(Op, DAG);
8148   case ISD::UDIV:
8149     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8150       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8151     return LowerUDIV(Op, DAG);
8152   case ISD::ADDC:
8153   case ISD::ADDE:
8154   case ISD::SUBC:
8155   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
8156   case ISD::ADDCARRY:
8157   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
8158   case ISD::SADDO:
8159   case ISD::SSUBO:
8160     return LowerSignedALUO(Op, DAG);
8161   case ISD::UADDO:
8162   case ISD::USUBO:
8163     return LowerUnsignedALUO(Op, DAG);
8164   case ISD::ATOMIC_LOAD:
8165   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
8166   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
8167   case ISD::SDIVREM:
8168   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
8169   case ISD::DYNAMIC_STACKALLOC:
8170     if (Subtarget->isTargetWindows())
8171       return LowerDYNAMIC_STACKALLOC(Op, DAG);
8172     llvm_unreachable("Don't know how to custom lower this!");
8173   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8174   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8175   case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8176   case ARMISD::WIN__DBZCHK: return SDValue();
8177   }
8178 }
8179 
8180 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8181                                  SelectionDAG &DAG) {
8182   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8183   unsigned Opc = 0;
8184   if (IntNo == Intrinsic::arm_smlald)
8185     Opc = ARMISD::SMLALD;
8186   else if (IntNo == Intrinsic::arm_smlaldx)
8187     Opc = ARMISD::SMLALDX;
8188   else if (IntNo == Intrinsic::arm_smlsld)
8189     Opc = ARMISD::SMLSLD;
8190   else if (IntNo == Intrinsic::arm_smlsldx)
8191     Opc = ARMISD::SMLSLDX;
8192   else
8193     return;
8194 
8195   SDLoc dl(N);
8196   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8197                            N->getOperand(3),
8198                            DAG.getConstant(0, dl, MVT::i32));
8199   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8200                            N->getOperand(3),
8201                            DAG.getConstant(1, dl, MVT::i32));
8202 
8203   SDValue LongMul = DAG.getNode(Opc, dl,
8204                                 DAG.getVTList(MVT::i32, MVT::i32),
8205                                 N->getOperand(1), N->getOperand(2),
8206                                 Lo, Hi);
8207   Results.push_back(LongMul.getValue(0));
8208   Results.push_back(LongMul.getValue(1));
8209 }
8210 
8211 /// ReplaceNodeResults - Replace the results of node with an illegal result
8212 /// type with new values built out of custom code.
8213 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8214                                            SmallVectorImpl<SDValue> &Results,
8215                                            SelectionDAG &DAG) const {
8216   SDValue Res;
8217   switch (N->getOpcode()) {
8218   default:
8219     llvm_unreachable("Don't know how to custom expand this!");
8220   case ISD::READ_REGISTER:
8221     ExpandREAD_REGISTER(N, Results, DAG);
8222     break;
8223   case ISD::BITCAST:
8224     Res = ExpandBITCAST(N, DAG, Subtarget);
8225     break;
8226   case ISD::SRL:
8227   case ISD::SRA:
8228     Res = Expand64BitShift(N, DAG, Subtarget);
8229     break;
8230   case ISD::SREM:
8231   case ISD::UREM:
8232     Res = LowerREM(N, DAG);
8233     break;
8234   case ISD::SDIVREM:
8235   case ISD::UDIVREM:
8236     Res = LowerDivRem(SDValue(N, 0), DAG);
8237     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8238     Results.push_back(Res.getValue(0));
8239     Results.push_back(Res.getValue(1));
8240     return;
8241   case ISD::READCYCLECOUNTER:
8242     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8243     return;
8244   case ISD::UDIV:
8245   case ISD::SDIV:
8246     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8247     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8248                              Results);
8249   case ISD::ATOMIC_CMP_SWAP:
8250     ReplaceCMP_SWAP_64Results(N, Results, DAG);
8251     return;
8252   case ISD::INTRINSIC_WO_CHAIN:
8253     return ReplaceLongIntrinsic(N, Results, DAG);
8254   }
8255   if (Res.getNode())
8256     Results.push_back(Res);
8257 }
8258 
8259 //===----------------------------------------------------------------------===//
8260 //                           ARM Scheduler Hooks
8261 //===----------------------------------------------------------------------===//
8262 
8263 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8264 /// registers the function context.
8265 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8266                                                MachineBasicBlock *MBB,
8267                                                MachineBasicBlock *DispatchBB,
8268                                                int FI) const {
8269   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8270          "ROPI/RWPI not currently supported with SjLj");
8271   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8272   DebugLoc dl = MI.getDebugLoc();
8273   MachineFunction *MF = MBB->getParent();
8274   MachineRegisterInfo *MRI = &MF->getRegInfo();
8275   MachineConstantPool *MCP = MF->getConstantPool();
8276   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8277   const Function &F = MF->getFunction();
8278 
8279   bool isThumb = Subtarget->isThumb();
8280   bool isThumb2 = Subtarget->isThumb2();
8281 
8282   unsigned PCLabelId = AFI->createPICLabelUId();
8283   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
8284   ARMConstantPoolValue *CPV =
8285     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
8286   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
8287 
8288   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
8289                                            : &ARM::GPRRegClass;
8290 
8291   // Grab constant pool and fixed stack memory operands.
8292   MachineMemOperand *CPMMO =
8293       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
8294                                MachineMemOperand::MOLoad, 4, 4);
8295 
8296   MachineMemOperand *FIMMOSt =
8297       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
8298                                MachineMemOperand::MOStore, 4, 4);
8299 
8300   // Load the address of the dispatch MBB into the jump buffer.
8301   if (isThumb2) {
8302     // Incoming value: jbuf
8303     //   ldr.n  r5, LCPI1_1
8304     //   orr    r5, r5, #1
8305     //   add    r5, pc
8306     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
8307     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8308     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
8309         .addConstantPoolIndex(CPI)
8310         .addMemOperand(CPMMO)
8311         .add(predOps(ARMCC::AL));
8312     // Set the low bit because of thumb mode.
8313     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8314     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
8315         .addReg(NewVReg1, RegState::Kill)
8316         .addImm(0x01)
8317         .add(predOps(ARMCC::AL))
8318         .add(condCodeOp());
8319     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8320     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
8321       .addReg(NewVReg2, RegState::Kill)
8322       .addImm(PCLabelId);
8323     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
8324         .addReg(NewVReg3, RegState::Kill)
8325         .addFrameIndex(FI)
8326         .addImm(36) // &jbuf[1] :: pc
8327         .addMemOperand(FIMMOSt)
8328         .add(predOps(ARMCC::AL));
8329   } else if (isThumb) {
8330     // Incoming value: jbuf
8331     //   ldr.n  r1, LCPI1_4
8332     //   add    r1, pc
8333     //   mov    r2, #1
8334     //   orrs   r1, r2
8335     //   add    r2, $jbuf, #+4 ; &jbuf[1]
8336     //   str    r1, [r2]
8337     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8338     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
8339         .addConstantPoolIndex(CPI)
8340         .addMemOperand(CPMMO)
8341         .add(predOps(ARMCC::AL));
8342     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8343     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
8344       .addReg(NewVReg1, RegState::Kill)
8345       .addImm(PCLabelId);
8346     // Set the low bit because of thumb mode.
8347     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8348     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
8349         .addReg(ARM::CPSR, RegState::Define)
8350         .addImm(1)
8351         .add(predOps(ARMCC::AL));
8352     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8353     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
8354         .addReg(ARM::CPSR, RegState::Define)
8355         .addReg(NewVReg2, RegState::Kill)
8356         .addReg(NewVReg3, RegState::Kill)
8357         .add(predOps(ARMCC::AL));
8358     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8359     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
8360             .addFrameIndex(FI)
8361             .addImm(36); // &jbuf[1] :: pc
8362     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
8363         .addReg(NewVReg4, RegState::Kill)
8364         .addReg(NewVReg5, RegState::Kill)
8365         .addImm(0)
8366         .addMemOperand(FIMMOSt)
8367         .add(predOps(ARMCC::AL));
8368   } else {
8369     // Incoming value: jbuf
8370     //   ldr  r1, LCPI1_1
8371     //   add  r1, pc, r1
8372     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
8373     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8374     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
8375         .addConstantPoolIndex(CPI)
8376         .addImm(0)
8377         .addMemOperand(CPMMO)
8378         .add(predOps(ARMCC::AL));
8379     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8380     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
8381         .addReg(NewVReg1, RegState::Kill)
8382         .addImm(PCLabelId)
8383         .add(predOps(ARMCC::AL));
8384     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
8385         .addReg(NewVReg2, RegState::Kill)
8386         .addFrameIndex(FI)
8387         .addImm(36) // &jbuf[1] :: pc
8388         .addMemOperand(FIMMOSt)
8389         .add(predOps(ARMCC::AL));
8390   }
8391 }
8392 
8393 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
8394                                               MachineBasicBlock *MBB) const {
8395   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8396   DebugLoc dl = MI.getDebugLoc();
8397   MachineFunction *MF = MBB->getParent();
8398   MachineRegisterInfo *MRI = &MF->getRegInfo();
8399   MachineFrameInfo &MFI = MF->getFrameInfo();
8400   int FI = MFI.getFunctionContextIndex();
8401 
8402   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
8403                                                         : &ARM::GPRnopcRegClass;
8404 
8405   // Get a mapping of the call site numbers to all of the landing pads they're
8406   // associated with.
8407   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
8408   unsigned MaxCSNum = 0;
8409   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
8410        ++BB) {
8411     if (!BB->isEHPad()) continue;
8412 
8413     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
8414     // pad.
8415     for (MachineBasicBlock::iterator
8416            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
8417       if (!II->isEHLabel()) continue;
8418 
8419       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
8420       if (!MF->hasCallSiteLandingPad(Sym)) continue;
8421 
8422       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
8423       for (SmallVectorImpl<unsigned>::iterator
8424              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
8425            CSI != CSE; ++CSI) {
8426         CallSiteNumToLPad[*CSI].push_back(&*BB);
8427         MaxCSNum = std::max(MaxCSNum, *CSI);
8428       }
8429       break;
8430     }
8431   }
8432 
8433   // Get an ordered list of the machine basic blocks for the jump table.
8434   std::vector<MachineBasicBlock*> LPadList;
8435   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
8436   LPadList.reserve(CallSiteNumToLPad.size());
8437   for (unsigned I = 1; I <= MaxCSNum; ++I) {
8438     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
8439     for (SmallVectorImpl<MachineBasicBlock*>::iterator
8440            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
8441       LPadList.push_back(*II);
8442       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
8443     }
8444   }
8445 
8446   assert(!LPadList.empty() &&
8447          "No landing pad destinations for the dispatch jump table!");
8448 
8449   // Create the jump table and associated information.
8450   MachineJumpTableInfo *JTI =
8451     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
8452   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
8453 
8454   // Create the MBBs for the dispatch code.
8455 
8456   // Shove the dispatch's address into the return slot in the function context.
8457   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
8458   DispatchBB->setIsEHPad();
8459 
8460   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8461   unsigned trap_opcode;
8462   if (Subtarget->isThumb())
8463     trap_opcode = ARM::tTRAP;
8464   else
8465     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
8466 
8467   BuildMI(TrapBB, dl, TII->get(trap_opcode));
8468   DispatchBB->addSuccessor(TrapBB);
8469 
8470   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
8471   DispatchBB->addSuccessor(DispContBB);
8472 
8473   // Insert and MBBs.
8474   MF->insert(MF->end(), DispatchBB);
8475   MF->insert(MF->end(), DispContBB);
8476   MF->insert(MF->end(), TrapBB);
8477 
8478   // Insert code into the entry block that creates and registers the function
8479   // context.
8480   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
8481 
8482   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
8483       MachinePointerInfo::getFixedStack(*MF, FI),
8484       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
8485 
8486   MachineInstrBuilder MIB;
8487   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
8488 
8489   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
8490   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
8491 
8492   // Add a register mask with no preserved registers.  This results in all
8493   // registers being marked as clobbered. This can't work if the dispatch block
8494   // is in a Thumb1 function and is linked with ARM code which uses the FP
8495   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
8496   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
8497 
8498   bool IsPositionIndependent = isPositionIndependent();
8499   unsigned NumLPads = LPadList.size();
8500   if (Subtarget->isThumb2()) {
8501     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8502     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
8503         .addFrameIndex(FI)
8504         .addImm(4)
8505         .addMemOperand(FIMMOLd)
8506         .add(predOps(ARMCC::AL));
8507 
8508     if (NumLPads < 256) {
8509       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
8510           .addReg(NewVReg1)
8511           .addImm(LPadList.size())
8512           .add(predOps(ARMCC::AL));
8513     } else {
8514       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8515       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
8516           .addImm(NumLPads & 0xFFFF)
8517           .add(predOps(ARMCC::AL));
8518 
8519       unsigned VReg2 = VReg1;
8520       if ((NumLPads & 0xFFFF0000) != 0) {
8521         VReg2 = MRI->createVirtualRegister(TRC);
8522         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
8523             .addReg(VReg1)
8524             .addImm(NumLPads >> 16)
8525             .add(predOps(ARMCC::AL));
8526       }
8527 
8528       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
8529           .addReg(NewVReg1)
8530           .addReg(VReg2)
8531           .add(predOps(ARMCC::AL));
8532     }
8533 
8534     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
8535       .addMBB(TrapBB)
8536       .addImm(ARMCC::HI)
8537       .addReg(ARM::CPSR);
8538 
8539     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8540     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
8541         .addJumpTableIndex(MJTI)
8542         .add(predOps(ARMCC::AL));
8543 
8544     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8545     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
8546         .addReg(NewVReg3, RegState::Kill)
8547         .addReg(NewVReg1)
8548         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8549         .add(predOps(ARMCC::AL))
8550         .add(condCodeOp());
8551 
8552     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
8553       .addReg(NewVReg4, RegState::Kill)
8554       .addReg(NewVReg1)
8555       .addJumpTableIndex(MJTI);
8556   } else if (Subtarget->isThumb()) {
8557     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8558     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
8559         .addFrameIndex(FI)
8560         .addImm(1)
8561         .addMemOperand(FIMMOLd)
8562         .add(predOps(ARMCC::AL));
8563 
8564     if (NumLPads < 256) {
8565       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
8566           .addReg(NewVReg1)
8567           .addImm(NumLPads)
8568           .add(predOps(ARMCC::AL));
8569     } else {
8570       MachineConstantPool *ConstantPool = MF->getConstantPool();
8571       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8572       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8573 
8574       // MachineConstantPool wants an explicit alignment.
8575       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8576       if (Align == 0)
8577         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8578       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8579 
8580       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8581       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
8582           .addReg(VReg1, RegState::Define)
8583           .addConstantPoolIndex(Idx)
8584           .add(predOps(ARMCC::AL));
8585       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
8586           .addReg(NewVReg1)
8587           .addReg(VReg1)
8588           .add(predOps(ARMCC::AL));
8589     }
8590 
8591     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
8592       .addMBB(TrapBB)
8593       .addImm(ARMCC::HI)
8594       .addReg(ARM::CPSR);
8595 
8596     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8597     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
8598         .addReg(ARM::CPSR, RegState::Define)
8599         .addReg(NewVReg1)
8600         .addImm(2)
8601         .add(predOps(ARMCC::AL));
8602 
8603     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8604     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
8605         .addJumpTableIndex(MJTI)
8606         .add(predOps(ARMCC::AL));
8607 
8608     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8609     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
8610         .addReg(ARM::CPSR, RegState::Define)
8611         .addReg(NewVReg2, RegState::Kill)
8612         .addReg(NewVReg3)
8613         .add(predOps(ARMCC::AL));
8614 
8615     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8616         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8617 
8618     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8619     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
8620         .addReg(NewVReg4, RegState::Kill)
8621         .addImm(0)
8622         .addMemOperand(JTMMOLd)
8623         .add(predOps(ARMCC::AL));
8624 
8625     unsigned NewVReg6 = NewVReg5;
8626     if (IsPositionIndependent) {
8627       NewVReg6 = MRI->createVirtualRegister(TRC);
8628       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
8629           .addReg(ARM::CPSR, RegState::Define)
8630           .addReg(NewVReg5, RegState::Kill)
8631           .addReg(NewVReg3)
8632           .add(predOps(ARMCC::AL));
8633     }
8634 
8635     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
8636       .addReg(NewVReg6, RegState::Kill)
8637       .addJumpTableIndex(MJTI);
8638   } else {
8639     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8640     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
8641         .addFrameIndex(FI)
8642         .addImm(4)
8643         .addMemOperand(FIMMOLd)
8644         .add(predOps(ARMCC::AL));
8645 
8646     if (NumLPads < 256) {
8647       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
8648           .addReg(NewVReg1)
8649           .addImm(NumLPads)
8650           .add(predOps(ARMCC::AL));
8651     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
8652       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8653       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
8654           .addImm(NumLPads & 0xFFFF)
8655           .add(predOps(ARMCC::AL));
8656 
8657       unsigned VReg2 = VReg1;
8658       if ((NumLPads & 0xFFFF0000) != 0) {
8659         VReg2 = MRI->createVirtualRegister(TRC);
8660         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
8661             .addReg(VReg1)
8662             .addImm(NumLPads >> 16)
8663             .add(predOps(ARMCC::AL));
8664       }
8665 
8666       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8667           .addReg(NewVReg1)
8668           .addReg(VReg2)
8669           .add(predOps(ARMCC::AL));
8670     } else {
8671       MachineConstantPool *ConstantPool = MF->getConstantPool();
8672       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8673       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8674 
8675       // MachineConstantPool wants an explicit alignment.
8676       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8677       if (Align == 0)
8678         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8679       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8680 
8681       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8682       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
8683           .addReg(VReg1, RegState::Define)
8684           .addConstantPoolIndex(Idx)
8685           .addImm(0)
8686           .add(predOps(ARMCC::AL));
8687       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8688           .addReg(NewVReg1)
8689           .addReg(VReg1, RegState::Kill)
8690           .add(predOps(ARMCC::AL));
8691     }
8692 
8693     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
8694       .addMBB(TrapBB)
8695       .addImm(ARMCC::HI)
8696       .addReg(ARM::CPSR);
8697 
8698     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8699     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
8700         .addReg(NewVReg1)
8701         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8702         .add(predOps(ARMCC::AL))
8703         .add(condCodeOp());
8704     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8705     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
8706         .addJumpTableIndex(MJTI)
8707         .add(predOps(ARMCC::AL));
8708 
8709     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8710         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8711     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8712     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
8713         .addReg(NewVReg3, RegState::Kill)
8714         .addReg(NewVReg4)
8715         .addImm(0)
8716         .addMemOperand(JTMMOLd)
8717         .add(predOps(ARMCC::AL));
8718 
8719     if (IsPositionIndependent) {
8720       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
8721         .addReg(NewVReg5, RegState::Kill)
8722         .addReg(NewVReg4)
8723         .addJumpTableIndex(MJTI);
8724     } else {
8725       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
8726         .addReg(NewVReg5, RegState::Kill)
8727         .addJumpTableIndex(MJTI);
8728     }
8729   }
8730 
8731   // Add the jump table entries as successors to the MBB.
8732   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
8733   for (std::vector<MachineBasicBlock*>::iterator
8734          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
8735     MachineBasicBlock *CurMBB = *I;
8736     if (SeenMBBs.insert(CurMBB).second)
8737       DispContBB->addSuccessor(CurMBB);
8738   }
8739 
8740   // N.B. the order the invoke BBs are processed in doesn't matter here.
8741   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
8742   SmallVector<MachineBasicBlock*, 64> MBBLPads;
8743   for (MachineBasicBlock *BB : InvokeBBs) {
8744 
8745     // Remove the landing pad successor from the invoke block and replace it
8746     // with the new dispatch block.
8747     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
8748                                                   BB->succ_end());
8749     while (!Successors.empty()) {
8750       MachineBasicBlock *SMBB = Successors.pop_back_val();
8751       if (SMBB->isEHPad()) {
8752         BB->removeSuccessor(SMBB);
8753         MBBLPads.push_back(SMBB);
8754       }
8755     }
8756 
8757     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
8758     BB->normalizeSuccProbs();
8759 
8760     // Find the invoke call and mark all of the callee-saved registers as
8761     // 'implicit defined' so that they're spilled. This prevents code from
8762     // moving instructions to before the EH block, where they will never be
8763     // executed.
8764     for (MachineBasicBlock::reverse_iterator
8765            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
8766       if (!II->isCall()) continue;
8767 
8768       DenseMap<unsigned, bool> DefRegs;
8769       for (MachineInstr::mop_iterator
8770              OI = II->operands_begin(), OE = II->operands_end();
8771            OI != OE; ++OI) {
8772         if (!OI->isReg()) continue;
8773         DefRegs[OI->getReg()] = true;
8774       }
8775 
8776       MachineInstrBuilder MIB(*MF, &*II);
8777 
8778       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
8779         unsigned Reg = SavedRegs[i];
8780         if (Subtarget->isThumb2() &&
8781             !ARM::tGPRRegClass.contains(Reg) &&
8782             !ARM::hGPRRegClass.contains(Reg))
8783           continue;
8784         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
8785           continue;
8786         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
8787           continue;
8788         if (!DefRegs[Reg])
8789           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
8790       }
8791 
8792       break;
8793     }
8794   }
8795 
8796   // Mark all former landing pads as non-landing pads. The dispatch is the only
8797   // landing pad now.
8798   for (SmallVectorImpl<MachineBasicBlock*>::iterator
8799          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
8800     (*I)->setIsEHPad(false);
8801 
8802   // The instruction is gone now.
8803   MI.eraseFromParent();
8804 }
8805 
8806 static
8807 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
8808   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
8809        E = MBB->succ_end(); I != E; ++I)
8810     if (*I != Succ)
8811       return *I;
8812   llvm_unreachable("Expecting a BB with two successors!");
8813 }
8814 
8815 /// Return the load opcode for a given load size. If load size >= 8,
8816 /// neon opcode will be returned.
8817 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
8818   if (LdSize >= 8)
8819     return LdSize == 16 ? ARM::VLD1q32wb_fixed
8820                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
8821   if (IsThumb1)
8822     return LdSize == 4 ? ARM::tLDRi
8823                        : LdSize == 2 ? ARM::tLDRHi
8824                                      : LdSize == 1 ? ARM::tLDRBi : 0;
8825   if (IsThumb2)
8826     return LdSize == 4 ? ARM::t2LDR_POST
8827                        : LdSize == 2 ? ARM::t2LDRH_POST
8828                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
8829   return LdSize == 4 ? ARM::LDR_POST_IMM
8830                      : LdSize == 2 ? ARM::LDRH_POST
8831                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
8832 }
8833 
8834 /// Return the store opcode for a given store size. If store size >= 8,
8835 /// neon opcode will be returned.
8836 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
8837   if (StSize >= 8)
8838     return StSize == 16 ? ARM::VST1q32wb_fixed
8839                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
8840   if (IsThumb1)
8841     return StSize == 4 ? ARM::tSTRi
8842                        : StSize == 2 ? ARM::tSTRHi
8843                                      : StSize == 1 ? ARM::tSTRBi : 0;
8844   if (IsThumb2)
8845     return StSize == 4 ? ARM::t2STR_POST
8846                        : StSize == 2 ? ARM::t2STRH_POST
8847                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
8848   return StSize == 4 ? ARM::STR_POST_IMM
8849                      : StSize == 2 ? ARM::STRH_POST
8850                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
8851 }
8852 
8853 /// Emit a post-increment load operation with given size. The instructions
8854 /// will be added to BB at Pos.
8855 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8856                        const TargetInstrInfo *TII, const DebugLoc &dl,
8857                        unsigned LdSize, unsigned Data, unsigned AddrIn,
8858                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8859   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
8860   assert(LdOpc != 0 && "Should have a load opcode");
8861   if (LdSize >= 8) {
8862     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8863         .addReg(AddrOut, RegState::Define)
8864         .addReg(AddrIn)
8865         .addImm(0)
8866         .add(predOps(ARMCC::AL));
8867   } else if (IsThumb1) {
8868     // load + update AddrIn
8869     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8870         .addReg(AddrIn)
8871         .addImm(0)
8872         .add(predOps(ARMCC::AL));
8873     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8874         .add(t1CondCodeOp())
8875         .addReg(AddrIn)
8876         .addImm(LdSize)
8877         .add(predOps(ARMCC::AL));
8878   } else if (IsThumb2) {
8879     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8880         .addReg(AddrOut, RegState::Define)
8881         .addReg(AddrIn)
8882         .addImm(LdSize)
8883         .add(predOps(ARMCC::AL));
8884   } else { // arm
8885     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8886         .addReg(AddrOut, RegState::Define)
8887         .addReg(AddrIn)
8888         .addReg(0)
8889         .addImm(LdSize)
8890         .add(predOps(ARMCC::AL));
8891   }
8892 }
8893 
8894 /// Emit a post-increment store operation with given size. The instructions
8895 /// will be added to BB at Pos.
8896 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8897                        const TargetInstrInfo *TII, const DebugLoc &dl,
8898                        unsigned StSize, unsigned Data, unsigned AddrIn,
8899                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8900   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
8901   assert(StOpc != 0 && "Should have a store opcode");
8902   if (StSize >= 8) {
8903     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8904         .addReg(AddrIn)
8905         .addImm(0)
8906         .addReg(Data)
8907         .add(predOps(ARMCC::AL));
8908   } else if (IsThumb1) {
8909     // store + update AddrIn
8910     BuildMI(*BB, Pos, dl, TII->get(StOpc))
8911         .addReg(Data)
8912         .addReg(AddrIn)
8913         .addImm(0)
8914         .add(predOps(ARMCC::AL));
8915     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8916         .add(t1CondCodeOp())
8917         .addReg(AddrIn)
8918         .addImm(StSize)
8919         .add(predOps(ARMCC::AL));
8920   } else if (IsThumb2) {
8921     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8922         .addReg(Data)
8923         .addReg(AddrIn)
8924         .addImm(StSize)
8925         .add(predOps(ARMCC::AL));
8926   } else { // arm
8927     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8928         .addReg(Data)
8929         .addReg(AddrIn)
8930         .addReg(0)
8931         .addImm(StSize)
8932         .add(predOps(ARMCC::AL));
8933   }
8934 }
8935 
8936 MachineBasicBlock *
8937 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
8938                                    MachineBasicBlock *BB) const {
8939   // This pseudo instruction has 3 operands: dst, src, size
8940   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
8941   // Otherwise, we will generate unrolled scalar copies.
8942   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8943   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8944   MachineFunction::iterator It = ++BB->getIterator();
8945 
8946   unsigned dest = MI.getOperand(0).getReg();
8947   unsigned src = MI.getOperand(1).getReg();
8948   unsigned SizeVal = MI.getOperand(2).getImm();
8949   unsigned Align = MI.getOperand(3).getImm();
8950   DebugLoc dl = MI.getDebugLoc();
8951 
8952   MachineFunction *MF = BB->getParent();
8953   MachineRegisterInfo &MRI = MF->getRegInfo();
8954   unsigned UnitSize = 0;
8955   const TargetRegisterClass *TRC = nullptr;
8956   const TargetRegisterClass *VecTRC = nullptr;
8957 
8958   bool IsThumb1 = Subtarget->isThumb1Only();
8959   bool IsThumb2 = Subtarget->isThumb2();
8960   bool IsThumb = Subtarget->isThumb();
8961 
8962   if (Align & 1) {
8963     UnitSize = 1;
8964   } else if (Align & 2) {
8965     UnitSize = 2;
8966   } else {
8967     // Check whether we can use NEON instructions.
8968     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
8969         Subtarget->hasNEON()) {
8970       if ((Align % 16 == 0) && SizeVal >= 16)
8971         UnitSize = 16;
8972       else if ((Align % 8 == 0) && SizeVal >= 8)
8973         UnitSize = 8;
8974     }
8975     // Can't use NEON instructions.
8976     if (UnitSize == 0)
8977       UnitSize = 4;
8978   }
8979 
8980   // Select the correct opcode and register class for unit size load/store
8981   bool IsNeon = UnitSize >= 8;
8982   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
8983   if (IsNeon)
8984     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
8985                             : UnitSize == 8 ? &ARM::DPRRegClass
8986                                             : nullptr;
8987 
8988   unsigned BytesLeft = SizeVal % UnitSize;
8989   unsigned LoopSize = SizeVal - BytesLeft;
8990 
8991   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
8992     // Use LDR and STR to copy.
8993     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
8994     // [destOut] = STR_POST(scratch, destIn, UnitSize)
8995     unsigned srcIn = src;
8996     unsigned destIn = dest;
8997     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
8998       unsigned srcOut = MRI.createVirtualRegister(TRC);
8999       unsigned destOut = MRI.createVirtualRegister(TRC);
9000       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9001       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
9002                  IsThumb1, IsThumb2);
9003       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
9004                  IsThumb1, IsThumb2);
9005       srcIn = srcOut;
9006       destIn = destOut;
9007     }
9008 
9009     // Handle the leftover bytes with LDRB and STRB.
9010     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9011     // [destOut] = STRB_POST(scratch, destIn, 1)
9012     for (unsigned i = 0; i < BytesLeft; i++) {
9013       unsigned srcOut = MRI.createVirtualRegister(TRC);
9014       unsigned destOut = MRI.createVirtualRegister(TRC);
9015       unsigned scratch = MRI.createVirtualRegister(TRC);
9016       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
9017                  IsThumb1, IsThumb2);
9018       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
9019                  IsThumb1, IsThumb2);
9020       srcIn = srcOut;
9021       destIn = destOut;
9022     }
9023     MI.eraseFromParent(); // The instruction is gone now.
9024     return BB;
9025   }
9026 
9027   // Expand the pseudo op to a loop.
9028   // thisMBB:
9029   //   ...
9030   //   movw varEnd, # --> with thumb2
9031   //   movt varEnd, #
9032   //   ldrcp varEnd, idx --> without thumb2
9033   //   fallthrough --> loopMBB
9034   // loopMBB:
9035   //   PHI varPhi, varEnd, varLoop
9036   //   PHI srcPhi, src, srcLoop
9037   //   PHI destPhi, dst, destLoop
9038   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9039   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9040   //   subs varLoop, varPhi, #UnitSize
9041   //   bne loopMBB
9042   //   fallthrough --> exitMBB
9043   // exitMBB:
9044   //   epilogue to handle left-over bytes
9045   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9046   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9047   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9048   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9049   MF->insert(It, loopMBB);
9050   MF->insert(It, exitMBB);
9051 
9052   // Transfer the remainder of BB and its successor edges to exitMBB.
9053   exitMBB->splice(exitMBB->begin(), BB,
9054                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9055   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9056 
9057   // Load an immediate to varEnd.
9058   unsigned varEnd = MRI.createVirtualRegister(TRC);
9059   if (Subtarget->useMovt(*MF)) {
9060     unsigned Vtmp = varEnd;
9061     if ((LoopSize & 0xFFFF0000) != 0)
9062       Vtmp = MRI.createVirtualRegister(TRC);
9063     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
9064         .addImm(LoopSize & 0xFFFF)
9065         .add(predOps(ARMCC::AL));
9066 
9067     if ((LoopSize & 0xFFFF0000) != 0)
9068       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
9069           .addReg(Vtmp)
9070           .addImm(LoopSize >> 16)
9071           .add(predOps(ARMCC::AL));
9072   } else {
9073     MachineConstantPool *ConstantPool = MF->getConstantPool();
9074     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9075     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
9076 
9077     // MachineConstantPool wants an explicit alignment.
9078     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9079     if (Align == 0)
9080       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9081     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9082 
9083     if (IsThumb)
9084       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
9085           .addReg(varEnd, RegState::Define)
9086           .addConstantPoolIndex(Idx)
9087           .add(predOps(ARMCC::AL));
9088     else
9089       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
9090           .addReg(varEnd, RegState::Define)
9091           .addConstantPoolIndex(Idx)
9092           .addImm(0)
9093           .add(predOps(ARMCC::AL));
9094   }
9095   BB->addSuccessor(loopMBB);
9096 
9097   // Generate the loop body:
9098   //   varPhi = PHI(varLoop, varEnd)
9099   //   srcPhi = PHI(srcLoop, src)
9100   //   destPhi = PHI(destLoop, dst)
9101   MachineBasicBlock *entryBB = BB;
9102   BB = loopMBB;
9103   unsigned varLoop = MRI.createVirtualRegister(TRC);
9104   unsigned varPhi = MRI.createVirtualRegister(TRC);
9105   unsigned srcLoop = MRI.createVirtualRegister(TRC);
9106   unsigned srcPhi = MRI.createVirtualRegister(TRC);
9107   unsigned destLoop = MRI.createVirtualRegister(TRC);
9108   unsigned destPhi = MRI.createVirtualRegister(TRC);
9109 
9110   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9111     .addReg(varLoop).addMBB(loopMBB)
9112     .addReg(varEnd).addMBB(entryBB);
9113   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9114     .addReg(srcLoop).addMBB(loopMBB)
9115     .addReg(src).addMBB(entryBB);
9116   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9117     .addReg(destLoop).addMBB(loopMBB)
9118     .addReg(dest).addMBB(entryBB);
9119 
9120   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9121   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9122   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9123   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9124              IsThumb1, IsThumb2);
9125   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9126              IsThumb1, IsThumb2);
9127 
9128   // Decrement loop variable by UnitSize.
9129   if (IsThumb1) {
9130     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9131         .add(t1CondCodeOp())
9132         .addReg(varPhi)
9133         .addImm(UnitSize)
9134         .add(predOps(ARMCC::AL));
9135   } else {
9136     MachineInstrBuilder MIB =
9137         BuildMI(*BB, BB->end(), dl,
9138                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9139     MIB.addReg(varPhi)
9140         .addImm(UnitSize)
9141         .add(predOps(ARMCC::AL))
9142         .add(condCodeOp());
9143     MIB->getOperand(5).setReg(ARM::CPSR);
9144     MIB->getOperand(5).setIsDef(true);
9145   }
9146   BuildMI(*BB, BB->end(), dl,
9147           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9148       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9149 
9150   // loopMBB can loop back to loopMBB or fall through to exitMBB.
9151   BB->addSuccessor(loopMBB);
9152   BB->addSuccessor(exitMBB);
9153 
9154   // Add epilogue to handle BytesLeft.
9155   BB = exitMBB;
9156   auto StartOfExit = exitMBB->begin();
9157 
9158   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9159   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9160   unsigned srcIn = srcLoop;
9161   unsigned destIn = destLoop;
9162   for (unsigned i = 0; i < BytesLeft; i++) {
9163     unsigned srcOut = MRI.createVirtualRegister(TRC);
9164     unsigned destOut = MRI.createVirtualRegister(TRC);
9165     unsigned scratch = MRI.createVirtualRegister(TRC);
9166     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9167                IsThumb1, IsThumb2);
9168     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9169                IsThumb1, IsThumb2);
9170     srcIn = srcOut;
9171     destIn = destOut;
9172   }
9173 
9174   MI.eraseFromParent(); // The instruction is gone now.
9175   return BB;
9176 }
9177 
9178 MachineBasicBlock *
9179 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9180                                        MachineBasicBlock *MBB) const {
9181   const TargetMachine &TM = getTargetMachine();
9182   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9183   DebugLoc DL = MI.getDebugLoc();
9184 
9185   assert(Subtarget->isTargetWindows() &&
9186          "__chkstk is only supported on Windows");
9187   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9188 
9189   // __chkstk takes the number of words to allocate on the stack in R4, and
9190   // returns the stack adjustment in number of bytes in R4.  This will not
9191   // clober any other registers (other than the obvious lr).
9192   //
9193   // Although, technically, IP should be considered a register which may be
9194   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
9195   // thumb-2 environment, so there is no interworking required.  As a result, we
9196   // do not expect a veneer to be emitted by the linker, clobbering IP.
9197   //
9198   // Each module receives its own copy of __chkstk, so no import thunk is
9199   // required, again, ensuring that IP is not clobbered.
9200   //
9201   // Finally, although some linkers may theoretically provide a trampoline for
9202   // out of range calls (which is quite common due to a 32M range limitation of
9203   // branches for Thumb), we can generate the long-call version via
9204   // -mcmodel=large, alleviating the need for the trampoline which may clobber
9205   // IP.
9206 
9207   switch (TM.getCodeModel()) {
9208   case CodeModel::Small:
9209   case CodeModel::Medium:
9210   case CodeModel::Kernel:
9211     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9212         .add(predOps(ARMCC::AL))
9213         .addExternalSymbol("__chkstk")
9214         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9215         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9216         .addReg(ARM::R12,
9217                 RegState::Implicit | RegState::Define | RegState::Dead)
9218         .addReg(ARM::CPSR,
9219                 RegState::Implicit | RegState::Define | RegState::Dead);
9220     break;
9221   case CodeModel::Large: {
9222     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9223     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9224 
9225     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9226       .addExternalSymbol("__chkstk");
9227     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9228         .add(predOps(ARMCC::AL))
9229         .addReg(Reg, RegState::Kill)
9230         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9231         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9232         .addReg(ARM::R12,
9233                 RegState::Implicit | RegState::Define | RegState::Dead)
9234         .addReg(ARM::CPSR,
9235                 RegState::Implicit | RegState::Define | RegState::Dead);
9236     break;
9237   }
9238   }
9239 
9240   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9241       .addReg(ARM::SP, RegState::Kill)
9242       .addReg(ARM::R4, RegState::Kill)
9243       .setMIFlags(MachineInstr::FrameSetup)
9244       .add(predOps(ARMCC::AL))
9245       .add(condCodeOp());
9246 
9247   MI.eraseFromParent();
9248   return MBB;
9249 }
9250 
9251 MachineBasicBlock *
9252 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9253                                        MachineBasicBlock *MBB) const {
9254   DebugLoc DL = MI.getDebugLoc();
9255   MachineFunction *MF = MBB->getParent();
9256   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9257 
9258   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9259   MF->insert(++MBB->getIterator(), ContBB);
9260   ContBB->splice(ContBB->begin(), MBB,
9261                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9262   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9263   MBB->addSuccessor(ContBB);
9264 
9265   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9266   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9267   MF->push_back(TrapBB);
9268   MBB->addSuccessor(TrapBB);
9269 
9270   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9271       .addReg(MI.getOperand(0).getReg())
9272       .addImm(0)
9273       .add(predOps(ARMCC::AL));
9274   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
9275       .addMBB(TrapBB)
9276       .addImm(ARMCC::EQ)
9277       .addReg(ARM::CPSR);
9278 
9279   MI.eraseFromParent();
9280   return ContBB;
9281 }
9282 
9283 MachineBasicBlock *
9284 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9285                                                MachineBasicBlock *BB) const {
9286   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9287   DebugLoc dl = MI.getDebugLoc();
9288   bool isThumb2 = Subtarget->isThumb2();
9289   switch (MI.getOpcode()) {
9290   default: {
9291     MI.print(errs());
9292     llvm_unreachable("Unexpected instr type to insert");
9293   }
9294 
9295   // Thumb1 post-indexed loads are really just single-register LDMs.
9296   case ARM::tLDR_postidx: {
9297     MachineOperand Def(MI.getOperand(1));
9298     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
9299         .add(Def)  // Rn_wb
9300         .add(MI.getOperand(2))  // Rn
9301         .add(MI.getOperand(3))  // PredImm
9302         .add(MI.getOperand(4))  // PredReg
9303         .add(MI.getOperand(0)); // Rt
9304     MI.eraseFromParent();
9305     return BB;
9306   }
9307 
9308   // The Thumb2 pre-indexed stores have the same MI operands, they just
9309   // define them differently in the .td files from the isel patterns, so
9310   // they need pseudos.
9311   case ARM::t2STR_preidx:
9312     MI.setDesc(TII->get(ARM::t2STR_PRE));
9313     return BB;
9314   case ARM::t2STRB_preidx:
9315     MI.setDesc(TII->get(ARM::t2STRB_PRE));
9316     return BB;
9317   case ARM::t2STRH_preidx:
9318     MI.setDesc(TII->get(ARM::t2STRH_PRE));
9319     return BB;
9320 
9321   case ARM::STRi_preidx:
9322   case ARM::STRBi_preidx: {
9323     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
9324                                                          : ARM::STRB_PRE_IMM;
9325     // Decode the offset.
9326     unsigned Offset = MI.getOperand(4).getImm();
9327     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
9328     Offset = ARM_AM::getAM2Offset(Offset);
9329     if (isSub)
9330       Offset = -Offset;
9331 
9332     MachineMemOperand *MMO = *MI.memoperands_begin();
9333     BuildMI(*BB, MI, dl, TII->get(NewOpc))
9334         .add(MI.getOperand(0)) // Rn_wb
9335         .add(MI.getOperand(1)) // Rt
9336         .add(MI.getOperand(2)) // Rn
9337         .addImm(Offset)        // offset (skip GPR==zero_reg)
9338         .add(MI.getOperand(5)) // pred
9339         .add(MI.getOperand(6))
9340         .addMemOperand(MMO);
9341     MI.eraseFromParent();
9342     return BB;
9343   }
9344   case ARM::STRr_preidx:
9345   case ARM::STRBr_preidx:
9346   case ARM::STRH_preidx: {
9347     unsigned NewOpc;
9348     switch (MI.getOpcode()) {
9349     default: llvm_unreachable("unexpected opcode!");
9350     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
9351     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
9352     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
9353     }
9354     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
9355     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
9356       MIB.add(MI.getOperand(i));
9357     MI.eraseFromParent();
9358     return BB;
9359   }
9360 
9361   case ARM::tMOVCCr_pseudo: {
9362     // To "insert" a SELECT_CC instruction, we actually have to insert the
9363     // diamond control-flow pattern.  The incoming instruction knows the
9364     // destination vreg to set, the condition code register to branch on, the
9365     // true/false values to select between, and a branch opcode to use.
9366     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9367     MachineFunction::iterator It = ++BB->getIterator();
9368 
9369     //  thisMBB:
9370     //  ...
9371     //   TrueVal = ...
9372     //   cmpTY ccX, r1, r2
9373     //   bCC copy1MBB
9374     //   fallthrough --> copy0MBB
9375     MachineBasicBlock *thisMBB  = BB;
9376     MachineFunction *F = BB->getParent();
9377     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9378     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
9379     F->insert(It, copy0MBB);
9380     F->insert(It, sinkMBB);
9381 
9382     // Transfer the remainder of BB and its successor edges to sinkMBB.
9383     sinkMBB->splice(sinkMBB->begin(), BB,
9384                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9385     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9386 
9387     BB->addSuccessor(copy0MBB);
9388     BB->addSuccessor(sinkMBB);
9389 
9390     BuildMI(BB, dl, TII->get(ARM::tBcc))
9391         .addMBB(sinkMBB)
9392         .addImm(MI.getOperand(3).getImm())
9393         .addReg(MI.getOperand(4).getReg());
9394 
9395     //  copy0MBB:
9396     //   %FalseValue = ...
9397     //   # fallthrough to sinkMBB
9398     BB = copy0MBB;
9399 
9400     // Update machine-CFG edges
9401     BB->addSuccessor(sinkMBB);
9402 
9403     //  sinkMBB:
9404     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9405     //  ...
9406     BB = sinkMBB;
9407     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
9408         .addReg(MI.getOperand(1).getReg())
9409         .addMBB(copy0MBB)
9410         .addReg(MI.getOperand(2).getReg())
9411         .addMBB(thisMBB);
9412 
9413     MI.eraseFromParent(); // The pseudo instruction is gone now.
9414     return BB;
9415   }
9416 
9417   case ARM::BCCi64:
9418   case ARM::BCCZi64: {
9419     // If there is an unconditional branch to the other successor, remove it.
9420     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
9421 
9422     // Compare both parts that make up the double comparison separately for
9423     // equality.
9424     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
9425 
9426     unsigned LHS1 = MI.getOperand(1).getReg();
9427     unsigned LHS2 = MI.getOperand(2).getReg();
9428     if (RHSisZero) {
9429       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9430           .addReg(LHS1)
9431           .addImm(0)
9432           .add(predOps(ARMCC::AL));
9433       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9434         .addReg(LHS2).addImm(0)
9435         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9436     } else {
9437       unsigned RHS1 = MI.getOperand(3).getReg();
9438       unsigned RHS2 = MI.getOperand(4).getReg();
9439       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9440           .addReg(LHS1)
9441           .addReg(RHS1)
9442           .add(predOps(ARMCC::AL));
9443       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9444         .addReg(LHS2).addReg(RHS2)
9445         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9446     }
9447 
9448     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
9449     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
9450     if (MI.getOperand(0).getImm() == ARMCC::NE)
9451       std::swap(destMBB, exitMBB);
9452 
9453     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
9454       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
9455     if (isThumb2)
9456       BuildMI(BB, dl, TII->get(ARM::t2B))
9457           .addMBB(exitMBB)
9458           .add(predOps(ARMCC::AL));
9459     else
9460       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
9461 
9462     MI.eraseFromParent(); // The pseudo instruction is gone now.
9463     return BB;
9464   }
9465 
9466   case ARM::Int_eh_sjlj_setjmp:
9467   case ARM::Int_eh_sjlj_setjmp_nofp:
9468   case ARM::tInt_eh_sjlj_setjmp:
9469   case ARM::t2Int_eh_sjlj_setjmp:
9470   case ARM::t2Int_eh_sjlj_setjmp_nofp:
9471     return BB;
9472 
9473   case ARM::Int_eh_sjlj_setup_dispatch:
9474     EmitSjLjDispatchBlock(MI, BB);
9475     return BB;
9476 
9477   case ARM::ABS:
9478   case ARM::t2ABS: {
9479     // To insert an ABS instruction, we have to insert the
9480     // diamond control-flow pattern.  The incoming instruction knows the
9481     // source vreg to test against 0, the destination vreg to set,
9482     // the condition code register to branch on, the
9483     // true/false values to select between, and a branch opcode to use.
9484     // It transforms
9485     //     V1 = ABS V0
9486     // into
9487     //     V2 = MOVS V0
9488     //     BCC                      (branch to SinkBB if V0 >= 0)
9489     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
9490     //     SinkBB: V1 = PHI(V2, V3)
9491     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9492     MachineFunction::iterator BBI = ++BB->getIterator();
9493     MachineFunction *Fn = BB->getParent();
9494     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9495     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
9496     Fn->insert(BBI, RSBBB);
9497     Fn->insert(BBI, SinkBB);
9498 
9499     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
9500     unsigned int ABSDstReg = MI.getOperand(0).getReg();
9501     bool ABSSrcKIll = MI.getOperand(1).isKill();
9502     bool isThumb2 = Subtarget->isThumb2();
9503     MachineRegisterInfo &MRI = Fn->getRegInfo();
9504     // In Thumb mode S must not be specified if source register is the SP or
9505     // PC and if destination register is the SP, so restrict register class
9506     unsigned NewRsbDstReg =
9507       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
9508 
9509     // Transfer the remainder of BB and its successor edges to sinkMBB.
9510     SinkBB->splice(SinkBB->begin(), BB,
9511                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
9512     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
9513 
9514     BB->addSuccessor(RSBBB);
9515     BB->addSuccessor(SinkBB);
9516 
9517     // fall through to SinkMBB
9518     RSBBB->addSuccessor(SinkBB);
9519 
9520     // insert a cmp at the end of BB
9521     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9522         .addReg(ABSSrcReg)
9523         .addImm(0)
9524         .add(predOps(ARMCC::AL));
9525 
9526     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
9527     BuildMI(BB, dl,
9528       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
9529       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
9530 
9531     // insert rsbri in RSBBB
9532     // Note: BCC and rsbri will be converted into predicated rsbmi
9533     // by if-conversion pass
9534     BuildMI(*RSBBB, RSBBB->begin(), dl,
9535             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
9536         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
9537         .addImm(0)
9538         .add(predOps(ARMCC::AL))
9539         .add(condCodeOp());
9540 
9541     // insert PHI in SinkBB,
9542     // reuse ABSDstReg to not change uses of ABS instruction
9543     BuildMI(*SinkBB, SinkBB->begin(), dl,
9544       TII->get(ARM::PHI), ABSDstReg)
9545       .addReg(NewRsbDstReg).addMBB(RSBBB)
9546       .addReg(ABSSrcReg).addMBB(BB);
9547 
9548     // remove ABS instruction
9549     MI.eraseFromParent();
9550 
9551     // return last added BB
9552     return SinkBB;
9553   }
9554   case ARM::COPY_STRUCT_BYVAL_I32:
9555     ++NumLoopByVals;
9556     return EmitStructByval(MI, BB);
9557   case ARM::WIN__CHKSTK:
9558     return EmitLowered__chkstk(MI, BB);
9559   case ARM::WIN__DBZCHK:
9560     return EmitLowered__dbzchk(MI, BB);
9561   }
9562 }
9563 
9564 /// Attaches vregs to MEMCPY that it will use as scratch registers
9565 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
9566 /// instead of as a custom inserter because we need the use list from the SDNode.
9567 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
9568                                     MachineInstr &MI, const SDNode *Node) {
9569   bool isThumb1 = Subtarget->isThumb1Only();
9570 
9571   DebugLoc DL = MI.getDebugLoc();
9572   MachineFunction *MF = MI.getParent()->getParent();
9573   MachineRegisterInfo &MRI = MF->getRegInfo();
9574   MachineInstrBuilder MIB(*MF, MI);
9575 
9576   // If the new dst/src is unused mark it as dead.
9577   if (!Node->hasAnyUseOfValue(0)) {
9578     MI.getOperand(0).setIsDead(true);
9579   }
9580   if (!Node->hasAnyUseOfValue(1)) {
9581     MI.getOperand(1).setIsDead(true);
9582   }
9583 
9584   // The MEMCPY both defines and kills the scratch registers.
9585   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
9586     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
9587                                                          : &ARM::GPRRegClass);
9588     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
9589   }
9590 }
9591 
9592 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9593                                                       SDNode *Node) const {
9594   if (MI.getOpcode() == ARM::MEMCPY) {
9595     attachMEMCPYScratchRegs(Subtarget, MI, Node);
9596     return;
9597   }
9598 
9599   const MCInstrDesc *MCID = &MI.getDesc();
9600   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
9601   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
9602   // operand is still set to noreg. If needed, set the optional operand's
9603   // register to CPSR, and remove the redundant implicit def.
9604   //
9605   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
9606 
9607   // Rename pseudo opcodes.
9608   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
9609   unsigned ccOutIdx;
9610   if (NewOpc) {
9611     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
9612     MCID = &TII->get(NewOpc);
9613 
9614     assert(MCID->getNumOperands() ==
9615            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
9616         && "converted opcode should be the same except for cc_out"
9617            " (and, on Thumb1, pred)");
9618 
9619     MI.setDesc(*MCID);
9620 
9621     // Add the optional cc_out operand
9622     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9623 
9624     // On Thumb1, move all input operands to the end, then add the predicate
9625     if (Subtarget->isThumb1Only()) {
9626       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
9627         MI.addOperand(MI.getOperand(1));
9628         MI.RemoveOperand(1);
9629       }
9630 
9631       // Restore the ties
9632       for (unsigned i = MI.getNumOperands(); i--;) {
9633         const MachineOperand& op = MI.getOperand(i);
9634         if (op.isReg() && op.isUse()) {
9635           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
9636           if (DefIdx != -1)
9637             MI.tieOperands(DefIdx, i);
9638         }
9639       }
9640 
9641       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
9642       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
9643       ccOutIdx = 1;
9644     } else
9645       ccOutIdx = MCID->getNumOperands() - 1;
9646   } else
9647     ccOutIdx = MCID->getNumOperands() - 1;
9648 
9649   // Any ARM instruction that sets the 's' bit should specify an optional
9650   // "cc_out" operand in the last operand position.
9651   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
9652     assert(!NewOpc && "Optional cc_out operand required");
9653     return;
9654   }
9655   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9656   // since we already have an optional CPSR def.
9657   bool definesCPSR = false;
9658   bool deadCPSR = false;
9659   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
9660        ++i) {
9661     const MachineOperand &MO = MI.getOperand(i);
9662     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
9663       definesCPSR = true;
9664       if (MO.isDead())
9665         deadCPSR = true;
9666       MI.RemoveOperand(i);
9667       break;
9668     }
9669   }
9670   if (!definesCPSR) {
9671     assert(!NewOpc && "Optional cc_out operand required");
9672     return;
9673   }
9674   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
9675   if (deadCPSR) {
9676     assert(!MI.getOperand(ccOutIdx).getReg() &&
9677            "expect uninitialized optional cc_out operand");
9678     // Thumb1 instructions must have the S bit even if the CPSR is dead.
9679     if (!Subtarget->isThumb1Only())
9680       return;
9681   }
9682 
9683   // If this instruction was defined with an optional CPSR def and its dag node
9684   // had a live implicit CPSR def, then activate the optional CPSR def.
9685   MachineOperand &MO = MI.getOperand(ccOutIdx);
9686   MO.setReg(ARM::CPSR);
9687   MO.setIsDef(true);
9688 }
9689 
9690 //===----------------------------------------------------------------------===//
9691 //                           ARM Optimization Hooks
9692 //===----------------------------------------------------------------------===//
9693 
9694 // Helper function that checks if N is a null or all ones constant.
9695 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
9696   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
9697 }
9698 
9699 // Return true if N is conditionally 0 or all ones.
9700 // Detects these expressions where cc is an i1 value:
9701 //
9702 //   (select cc 0, y)   [AllOnes=0]
9703 //   (select cc y, 0)   [AllOnes=0]
9704 //   (zext cc)          [AllOnes=0]
9705 //   (sext cc)          [AllOnes=0/1]
9706 //   (select cc -1, y)  [AllOnes=1]
9707 //   (select cc y, -1)  [AllOnes=1]
9708 //
9709 // Invert is set when N is the null/all ones constant when CC is false.
9710 // OtherOp is set to the alternative value of N.
9711 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
9712                                        SDValue &CC, bool &Invert,
9713                                        SDValue &OtherOp,
9714                                        SelectionDAG &DAG) {
9715   switch (N->getOpcode()) {
9716   default: return false;
9717   case ISD::SELECT: {
9718     CC = N->getOperand(0);
9719     SDValue N1 = N->getOperand(1);
9720     SDValue N2 = N->getOperand(2);
9721     if (isZeroOrAllOnes(N1, AllOnes)) {
9722       Invert = false;
9723       OtherOp = N2;
9724       return true;
9725     }
9726     if (isZeroOrAllOnes(N2, AllOnes)) {
9727       Invert = true;
9728       OtherOp = N1;
9729       return true;
9730     }
9731     return false;
9732   }
9733   case ISD::ZERO_EXTEND:
9734     // (zext cc) can never be the all ones value.
9735     if (AllOnes)
9736       return false;
9737     LLVM_FALLTHROUGH;
9738   case ISD::SIGN_EXTEND: {
9739     SDLoc dl(N);
9740     EVT VT = N->getValueType(0);
9741     CC = N->getOperand(0);
9742     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
9743       return false;
9744     Invert = !AllOnes;
9745     if (AllOnes)
9746       // When looking for an AllOnes constant, N is an sext, and the 'other'
9747       // value is 0.
9748       OtherOp = DAG.getConstant(0, dl, VT);
9749     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9750       // When looking for a 0 constant, N can be zext or sext.
9751       OtherOp = DAG.getConstant(1, dl, VT);
9752     else
9753       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
9754                                 VT);
9755     return true;
9756   }
9757   }
9758 }
9759 
9760 // Combine a constant select operand into its use:
9761 //
9762 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
9763 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
9764 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
9765 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
9766 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
9767 //
9768 // The transform is rejected if the select doesn't have a constant operand that
9769 // is null, or all ones when AllOnes is set.
9770 //
9771 // Also recognize sext/zext from i1:
9772 //
9773 //   (add (zext cc), x) -> (select cc (add x, 1), x)
9774 //   (add (sext cc), x) -> (select cc (add x, -1), x)
9775 //
9776 // These transformations eventually create predicated instructions.
9777 //
9778 // @param N       The node to transform.
9779 // @param Slct    The N operand that is a select.
9780 // @param OtherOp The other N operand (x above).
9781 // @param DCI     Context.
9782 // @param AllOnes Require the select constant to be all ones instead of null.
9783 // @returns The new node, or SDValue() on failure.
9784 static
9785 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
9786                             TargetLowering::DAGCombinerInfo &DCI,
9787                             bool AllOnes = false) {
9788   SelectionDAG &DAG = DCI.DAG;
9789   EVT VT = N->getValueType(0);
9790   SDValue NonConstantVal;
9791   SDValue CCOp;
9792   bool SwapSelectOps;
9793   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
9794                                   NonConstantVal, DAG))
9795     return SDValue();
9796 
9797   // Slct is now know to be the desired identity constant when CC is true.
9798   SDValue TrueVal = OtherOp;
9799   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
9800                                  OtherOp, NonConstantVal);
9801   // Unless SwapSelectOps says CC should be false.
9802   if (SwapSelectOps)
9803     std::swap(TrueVal, FalseVal);
9804 
9805   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
9806                      CCOp, TrueVal, FalseVal);
9807 }
9808 
9809 // Attempt combineSelectAndUse on each operand of a commutative operator N.
9810 static
9811 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
9812                                        TargetLowering::DAGCombinerInfo &DCI) {
9813   SDValue N0 = N->getOperand(0);
9814   SDValue N1 = N->getOperand(1);
9815   if (N0.getNode()->hasOneUse())
9816     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
9817       return Result;
9818   if (N1.getNode()->hasOneUse())
9819     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
9820       return Result;
9821   return SDValue();
9822 }
9823 
9824 static bool IsVUZPShuffleNode(SDNode *N) {
9825   // VUZP shuffle node.
9826   if (N->getOpcode() == ARMISD::VUZP)
9827     return true;
9828 
9829   // "VUZP" on i32 is an alias for VTRN.
9830   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
9831     return true;
9832 
9833   return false;
9834 }
9835 
9836 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
9837                                  TargetLowering::DAGCombinerInfo &DCI,
9838                                  const ARMSubtarget *Subtarget) {
9839   // Look for ADD(VUZP.0, VUZP.1).
9840   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
9841       N0 == N1)
9842    return SDValue();
9843 
9844   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
9845   if (!N->getValueType(0).is64BitVector())
9846     return SDValue();
9847 
9848   // Generate vpadd.
9849   SelectionDAG &DAG = DCI.DAG;
9850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9851   SDLoc dl(N);
9852   SDNode *Unzip = N0.getNode();
9853   EVT VT = N->getValueType(0);
9854 
9855   SmallVector<SDValue, 8> Ops;
9856   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
9857                                 TLI.getPointerTy(DAG.getDataLayout())));
9858   Ops.push_back(Unzip->getOperand(0));
9859   Ops.push_back(Unzip->getOperand(1));
9860 
9861   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9862 }
9863 
9864 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9865                                       TargetLowering::DAGCombinerInfo &DCI,
9866                                       const ARMSubtarget *Subtarget) {
9867   // Check for two extended operands.
9868   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
9869         N1.getOpcode() == ISD::SIGN_EXTEND) &&
9870       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
9871         N1.getOpcode() == ISD::ZERO_EXTEND))
9872     return SDValue();
9873 
9874   SDValue N00 = N0.getOperand(0);
9875   SDValue N10 = N1.getOperand(0);
9876 
9877   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
9878   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
9879       N00 == N10)
9880     return SDValue();
9881 
9882   // We only recognize Q register paddl here; this can't be reached until
9883   // after type legalization.
9884   if (!N00.getValueType().is64BitVector() ||
9885       !N0.getValueType().is128BitVector())
9886     return SDValue();
9887 
9888   // Generate vpaddl.
9889   SelectionDAG &DAG = DCI.DAG;
9890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9891   SDLoc dl(N);
9892   EVT VT = N->getValueType(0);
9893 
9894   SmallVector<SDValue, 8> Ops;
9895   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
9896   unsigned Opcode;
9897   if (N0.getOpcode() == ISD::SIGN_EXTEND)
9898     Opcode = Intrinsic::arm_neon_vpaddls;
9899   else
9900     Opcode = Intrinsic::arm_neon_vpaddlu;
9901   Ops.push_back(DAG.getConstant(Opcode, dl,
9902                                 TLI.getPointerTy(DAG.getDataLayout())));
9903   EVT ElemTy = N00.getValueType().getVectorElementType();
9904   unsigned NumElts = VT.getVectorNumElements();
9905   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
9906   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
9907                                N00.getOperand(0), N00.getOperand(1));
9908   Ops.push_back(Concat);
9909 
9910   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9911 }
9912 
9913 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
9914 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
9915 // much easier to match.
9916 static SDValue
9917 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9918                                TargetLowering::DAGCombinerInfo &DCI,
9919                                const ARMSubtarget *Subtarget) {
9920   // Only perform optimization if after legalize, and if NEON is available. We
9921   // also expected both operands to be BUILD_VECTORs.
9922   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
9923       || N0.getOpcode() != ISD::BUILD_VECTOR
9924       || N1.getOpcode() != ISD::BUILD_VECTOR)
9925     return SDValue();
9926 
9927   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
9928   EVT VT = N->getValueType(0);
9929   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
9930     return SDValue();
9931 
9932   // Check that the vector operands are of the right form.
9933   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
9934   // operands, where N is the size of the formed vector.
9935   // Each EXTRACT_VECTOR should have the same input vector and odd or even
9936   // index such that we have a pair wise add pattern.
9937 
9938   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
9939   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9940     return SDValue();
9941   SDValue Vec = N0->getOperand(0)->getOperand(0);
9942   SDNode *V = Vec.getNode();
9943   unsigned nextIndex = 0;
9944 
9945   // For each operands to the ADD which are BUILD_VECTORs,
9946   // check to see if each of their operands are an EXTRACT_VECTOR with
9947   // the same vector and appropriate index.
9948   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
9949     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
9950         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9951 
9952       SDValue ExtVec0 = N0->getOperand(i);
9953       SDValue ExtVec1 = N1->getOperand(i);
9954 
9955       // First operand is the vector, verify its the same.
9956       if (V != ExtVec0->getOperand(0).getNode() ||
9957           V != ExtVec1->getOperand(0).getNode())
9958         return SDValue();
9959 
9960       // Second is the constant, verify its correct.
9961       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
9962       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
9963 
9964       // For the constant, we want to see all the even or all the odd.
9965       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
9966           || C1->getZExtValue() != nextIndex+1)
9967         return SDValue();
9968 
9969       // Increment index.
9970       nextIndex+=2;
9971     } else
9972       return SDValue();
9973   }
9974 
9975   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
9976   // we're using the entire input vector, otherwise there's a size/legality
9977   // mismatch somewhere.
9978   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
9979       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
9980     return SDValue();
9981 
9982   // Create VPADDL node.
9983   SelectionDAG &DAG = DCI.DAG;
9984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9985 
9986   SDLoc dl(N);
9987 
9988   // Build operand list.
9989   SmallVector<SDValue, 8> Ops;
9990   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
9991                                 TLI.getPointerTy(DAG.getDataLayout())));
9992 
9993   // Input is the vector.
9994   Ops.push_back(Vec);
9995 
9996   // Get widened type and narrowed type.
9997   MVT widenType;
9998   unsigned numElem = VT.getVectorNumElements();
9999 
10000   EVT inputLaneType = Vec.getValueType().getVectorElementType();
10001   switch (inputLaneType.getSimpleVT().SimpleTy) {
10002     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
10003     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
10004     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
10005     default:
10006       llvm_unreachable("Invalid vector element type for padd optimization.");
10007   }
10008 
10009   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
10010   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
10011   return DAG.getNode(ExtOp, dl, VT, tmp);
10012 }
10013 
10014 static SDValue findMUL_LOHI(SDValue V) {
10015   if (V->getOpcode() == ISD::UMUL_LOHI ||
10016       V->getOpcode() == ISD::SMUL_LOHI)
10017     return V;
10018   return SDValue();
10019 }
10020 
10021 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
10022                                         TargetLowering::DAGCombinerInfo &DCI,
10023                                         const ARMSubtarget *Subtarget) {
10024   if (Subtarget->isThumb()) {
10025     if (!Subtarget->hasDSP())
10026       return SDValue();
10027   } else if (!Subtarget->hasV5TEOps())
10028     return SDValue();
10029 
10030   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10031   // accumulates the product into a 64-bit value. The 16-bit values will
10032   // be sign extended somehow or SRA'd into 32-bit values
10033   // (addc (adde (mul 16bit, 16bit), lo), hi)
10034   SDValue Mul = AddcNode->getOperand(0);
10035   SDValue Lo = AddcNode->getOperand(1);
10036   if (Mul.getOpcode() != ISD::MUL) {
10037     Lo = AddcNode->getOperand(0);
10038     Mul = AddcNode->getOperand(1);
10039     if (Mul.getOpcode() != ISD::MUL)
10040       return SDValue();
10041   }
10042 
10043   SDValue SRA = AddeNode->getOperand(0);
10044   SDValue Hi = AddeNode->getOperand(1);
10045   if (SRA.getOpcode() != ISD::SRA) {
10046     SRA = AddeNode->getOperand(1);
10047     Hi = AddeNode->getOperand(0);
10048     if (SRA.getOpcode() != ISD::SRA)
10049       return SDValue();
10050   }
10051   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10052     if (Const->getZExtValue() != 31)
10053       return SDValue();
10054   } else
10055     return SDValue();
10056 
10057   if (SRA.getOperand(0) != Mul)
10058     return SDValue();
10059 
10060   SelectionDAG &DAG = DCI.DAG;
10061   SDLoc dl(AddcNode);
10062   unsigned Opcode = 0;
10063   SDValue Op0;
10064   SDValue Op1;
10065 
10066   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10067     Opcode = ARMISD::SMLALBB;
10068     Op0 = Mul.getOperand(0);
10069     Op1 = Mul.getOperand(1);
10070   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10071     Opcode = ARMISD::SMLALBT;
10072     Op0 = Mul.getOperand(0);
10073     Op1 = Mul.getOperand(1).getOperand(0);
10074   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10075     Opcode = ARMISD::SMLALTB;
10076     Op0 = Mul.getOperand(0).getOperand(0);
10077     Op1 = Mul.getOperand(1);
10078   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10079     Opcode = ARMISD::SMLALTT;
10080     Op0 = Mul->getOperand(0).getOperand(0);
10081     Op1 = Mul->getOperand(1).getOperand(0);
10082   }
10083 
10084   if (!Op0 || !Op1)
10085     return SDValue();
10086 
10087   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10088                               Op0, Op1, Lo, Hi);
10089   // Replace the ADDs' nodes uses by the MLA node's values.
10090   SDValue HiMLALResult(SMLAL.getNode(), 1);
10091   SDValue LoMLALResult(SMLAL.getNode(), 0);
10092 
10093   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10094   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10095 
10096   // Return original node to notify the driver to stop replacing.
10097   SDValue resNode(AddcNode, 0);
10098   return resNode;
10099 }
10100 
10101 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10102                                      TargetLowering::DAGCombinerInfo &DCI,
10103                                      const ARMSubtarget *Subtarget) {
10104   // Look for multiply add opportunities.
10105   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10106   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10107   // a glue link from the first add to the second add.
10108   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10109   // a S/UMLAL instruction.
10110   //                  UMUL_LOHI
10111   //                 / :lo    \ :hi
10112   //                V          \          [no multiline comment]
10113   //    loAdd ->  ADDC         |
10114   //                 \ :carry /
10115   //                  V      V
10116   //                    ADDE   <- hiAdd
10117   //
10118   // In the special case where only the higher part of a signed result is used
10119   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10120   // a constant with the exact value of 0x80000000, we recognize we are dealing
10121   // with a "rounded multiply and add" (or subtract) and transform it into
10122   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10123 
10124   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10125           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10126          "Expect an ADDE or SUBE");
10127 
10128   assert(AddeSubeNode->getNumOperands() == 3 &&
10129          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10130          "ADDE node has the wrong inputs");
10131 
10132   // Check that we are chained to the right ADDC or SUBC node.
10133   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10134   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10135        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10136       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10137        AddcSubcNode->getOpcode() != ARMISD::SUBC))
10138     return SDValue();
10139 
10140   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10141   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10142 
10143   // Check if the two operands are from the same mul_lohi node.
10144   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10145     return SDValue();
10146 
10147   assert(AddcSubcNode->getNumValues() == 2 &&
10148          AddcSubcNode->getValueType(0) == MVT::i32 &&
10149          "Expect ADDC with two result values. First: i32");
10150 
10151   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10152   // maybe a SMLAL which multiplies two 16-bit values.
10153   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10154       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10155       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10156       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10157       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10158     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10159 
10160   // Check for the triangle shape.
10161   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10162   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10163 
10164   // Make sure that the ADDE/SUBE operands are not coming from the same node.
10165   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10166     return SDValue();
10167 
10168   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10169   bool IsLeftOperandMUL = false;
10170   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10171   if (MULOp == SDValue())
10172     MULOp = findMUL_LOHI(AddeSubeOp1);
10173   else
10174     IsLeftOperandMUL = true;
10175   if (MULOp == SDValue())
10176     return SDValue();
10177 
10178   // Figure out the right opcode.
10179   unsigned Opc = MULOp->getOpcode();
10180   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10181 
10182   // Figure out the high and low input values to the MLAL node.
10183   SDValue *HiAddSub = nullptr;
10184   SDValue *LoMul = nullptr;
10185   SDValue *LowAddSub = nullptr;
10186 
10187   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10188   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10189     return SDValue();
10190 
10191   if (IsLeftOperandMUL)
10192     HiAddSub = &AddeSubeOp1;
10193   else
10194     HiAddSub = &AddeSubeOp0;
10195 
10196   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10197   // whose low result is fed to the ADDC/SUBC we are checking.
10198 
10199   if (AddcSubcOp0 == MULOp.getValue(0)) {
10200     LoMul = &AddcSubcOp0;
10201     LowAddSub = &AddcSubcOp1;
10202   }
10203   if (AddcSubcOp1 == MULOp.getValue(0)) {
10204     LoMul = &AddcSubcOp1;
10205     LowAddSub = &AddcSubcOp0;
10206   }
10207 
10208   if (!LoMul)
10209     return SDValue();
10210 
10211   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10212   // the replacement below will create a cycle.
10213   if (AddcSubcNode == HiAddSub->getNode() ||
10214       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10215     return SDValue();
10216 
10217   // Create the merged node.
10218   SelectionDAG &DAG = DCI.DAG;
10219 
10220   // Start building operand list.
10221   SmallVector<SDValue, 8> Ops;
10222   Ops.push_back(LoMul->getOperand(0));
10223   Ops.push_back(LoMul->getOperand(1));
10224 
10225   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
10226   // the case, we must be doing signed multiplication and only use the higher
10227   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10228   // addition or subtraction with the value of 0x800000.
10229   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
10230       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
10231       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
10232       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
10233           0x80000000) {
10234     Ops.push_back(*HiAddSub);
10235     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
10236       FinalOpc = ARMISD::SMMLSR;
10237     } else {
10238       FinalOpc = ARMISD::SMMLAR;
10239     }
10240     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
10241     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
10242 
10243     return SDValue(AddeSubeNode, 0);
10244   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
10245     // SMMLS is generated during instruction selection and the rest of this
10246     // function can not handle the case where AddcSubcNode is a SUBC.
10247     return SDValue();
10248 
10249   // Finish building the operand list for {U/S}MLAL
10250   Ops.push_back(*LowAddSub);
10251   Ops.push_back(*HiAddSub);
10252 
10253   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
10254                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10255 
10256   // Replace the ADDs' nodes uses by the MLA node's values.
10257   SDValue HiMLALResult(MLALNode.getNode(), 1);
10258   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
10259 
10260   SDValue LoMLALResult(MLALNode.getNode(), 0);
10261   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
10262 
10263   // Return original node to notify the driver to stop replacing.
10264   return SDValue(AddeSubeNode, 0);
10265 }
10266 
10267 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
10268                                       TargetLowering::DAGCombinerInfo &DCI,
10269                                       const ARMSubtarget *Subtarget) {
10270   // UMAAL is similar to UMLAL except that it adds two unsigned values.
10271   // While trying to combine for the other MLAL nodes, first search for the
10272   // chance to use UMAAL. Check if Addc uses a node which has already
10273   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10274   // as the addend, and it's handled in PerformUMLALCombine.
10275 
10276   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10277     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10278 
10279   // Check that we have a glued ADDC node.
10280   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
10281   if (AddcNode->getOpcode() != ARMISD::ADDC)
10282     return SDValue();
10283 
10284   // Find the converted UMAAL or quit if it doesn't exist.
10285   SDNode *UmlalNode = nullptr;
10286   SDValue AddHi;
10287   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
10288     UmlalNode = AddcNode->getOperand(0).getNode();
10289     AddHi = AddcNode->getOperand(1);
10290   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
10291     UmlalNode = AddcNode->getOperand(1).getNode();
10292     AddHi = AddcNode->getOperand(0);
10293   } else {
10294     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10295   }
10296 
10297   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10298   // the ADDC as well as Zero.
10299   if (!isNullConstant(UmlalNode->getOperand(3)))
10300     return SDValue();
10301 
10302   if ((isNullConstant(AddeNode->getOperand(0)) &&
10303        AddeNode->getOperand(1).getNode() == UmlalNode) ||
10304       (AddeNode->getOperand(0).getNode() == UmlalNode &&
10305        isNullConstant(AddeNode->getOperand(1)))) {
10306     SelectionDAG &DAG = DCI.DAG;
10307     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
10308                       UmlalNode->getOperand(2), AddHi };
10309     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
10310                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10311 
10312     // Replace the ADDs' nodes uses by the UMAAL node's values.
10313     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
10314     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
10315 
10316     // Return original node to notify the driver to stop replacing.
10317     return SDValue(AddeNode, 0);
10318   }
10319   return SDValue();
10320 }
10321 
10322 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
10323                                    const ARMSubtarget *Subtarget) {
10324   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10325     return SDValue();
10326 
10327   // Check that we have a pair of ADDC and ADDE as operands.
10328   // Both addends of the ADDE must be zero.
10329   SDNode* AddcNode = N->getOperand(2).getNode();
10330   SDNode* AddeNode = N->getOperand(3).getNode();
10331   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
10332       (AddeNode->getOpcode() == ARMISD::ADDE) &&
10333       isNullConstant(AddeNode->getOperand(0)) &&
10334       isNullConstant(AddeNode->getOperand(1)) &&
10335       (AddeNode->getOperand(2).getNode() == AddcNode))
10336     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
10337                        DAG.getVTList(MVT::i32, MVT::i32),
10338                        {N->getOperand(0), N->getOperand(1),
10339                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
10340   else
10341     return SDValue();
10342 }
10343 
10344 static SDValue PerformAddcSubcCombine(SDNode *N,
10345                                       TargetLowering::DAGCombinerInfo &DCI,
10346                                       const ARMSubtarget *Subtarget) {
10347   SelectionDAG &DAG(DCI.DAG);
10348 
10349   if (N->getOpcode() == ARMISD::SUBC) {
10350     // (SUBC (ADDE 0, 0, C), 1) -> C
10351     SDValue LHS = N->getOperand(0);
10352     SDValue RHS = N->getOperand(1);
10353     if (LHS->getOpcode() == ARMISD::ADDE &&
10354         isNullConstant(LHS->getOperand(0)) &&
10355         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
10356       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
10357     }
10358   }
10359 
10360   if (Subtarget->isThumb1Only()) {
10361     SDValue RHS = N->getOperand(1);
10362     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10363       int32_t imm = C->getSExtValue();
10364       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
10365         SDLoc DL(N);
10366         RHS = DAG.getConstant(-imm, DL, MVT::i32);
10367         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
10368                                                            : ARMISD::ADDC;
10369         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
10370       }
10371     }
10372   }
10373 
10374   return SDValue();
10375 }
10376 
10377 static SDValue PerformAddeSubeCombine(SDNode *N,
10378                                       TargetLowering::DAGCombinerInfo &DCI,
10379                                       const ARMSubtarget *Subtarget) {
10380   if (Subtarget->isThumb1Only()) {
10381     SelectionDAG &DAG = DCI.DAG;
10382     SDValue RHS = N->getOperand(1);
10383     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10384       int64_t imm = C->getSExtValue();
10385       if (imm < 0) {
10386         SDLoc DL(N);
10387 
10388         // The with-carry-in form matches bitwise not instead of the negation.
10389         // Effectively, the inverse interpretation of the carry flag already
10390         // accounts for part of the negation.
10391         RHS = DAG.getConstant(~imm, DL, MVT::i32);
10392 
10393         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
10394                                                            : ARMISD::ADDE;
10395         return DAG.getNode(Opcode, DL, N->getVTList(),
10396                            N->getOperand(0), RHS, N->getOperand(2));
10397       }
10398     }
10399   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
10400     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
10401   }
10402   return SDValue();
10403 }
10404 
10405 /// PerformADDECombine - Target-specific dag combine transform from
10406 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
10407 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
10408 static SDValue PerformADDECombine(SDNode *N,
10409                                   TargetLowering::DAGCombinerInfo &DCI,
10410                                   const ARMSubtarget *Subtarget) {
10411   // Only ARM and Thumb2 support UMLAL/SMLAL.
10412   if (Subtarget->isThumb1Only())
10413     return PerformAddeSubeCombine(N, DCI, Subtarget);
10414 
10415   // Only perform the checks after legalize when the pattern is available.
10416   if (DCI.isBeforeLegalize()) return SDValue();
10417 
10418   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
10419 }
10420 
10421 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
10422 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
10423 /// called with the default operands, and if that fails, with commuted
10424 /// operands.
10425 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
10426                                           TargetLowering::DAGCombinerInfo &DCI,
10427                                           const ARMSubtarget *Subtarget){
10428   // Attempt to create vpadd for this add.
10429   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
10430     return Result;
10431 
10432   // Attempt to create vpaddl for this add.
10433   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
10434     return Result;
10435   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
10436                                                       Subtarget))
10437     return Result;
10438 
10439   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10440   if (N0.getNode()->hasOneUse())
10441     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
10442       return Result;
10443   return SDValue();
10444 }
10445 
10446 static SDValue PerformSHLSimplify(SDNode *N,
10447                                 TargetLowering::DAGCombinerInfo &DCI,
10448                                 const ARMSubtarget *ST) {
10449   // Allow the generic combiner to identify potential bswaps.
10450   if (DCI.isBeforeLegalize())
10451     return SDValue();
10452 
10453   // DAG combiner will fold:
10454   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10455   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
10456   // Other code patterns that can be also be modified have the following form:
10457   // b + ((a << 1) | 510)
10458   // b + ((a << 1) & 510)
10459   // b + ((a << 1) ^ 510)
10460   // b + ((a << 1) + 510)
10461 
10462   // Many instructions can  perform the shift for free, but it requires both
10463   // the operands to be registers. If c1 << c2 is too large, a mov immediate
10464   // instruction will needed. So, unfold back to the original pattern if:
10465   // - if c1 and c2 are small enough that they don't require mov imms.
10466   // - the user(s) of the node can perform an shl
10467 
10468   // No shifted operands for 16-bit instructions.
10469   if (ST->isThumb() && ST->isThumb1Only())
10470     return SDValue();
10471 
10472   // Check that all the users could perform the shl themselves.
10473   for (auto U : N->uses()) {
10474     switch(U->getOpcode()) {
10475     default:
10476       return SDValue();
10477     case ISD::SUB:
10478     case ISD::ADD:
10479     case ISD::AND:
10480     case ISD::OR:
10481     case ISD::XOR:
10482     case ISD::SETCC:
10483     case ARMISD::CMP:
10484       // Check that the user isn't already using a constant because there
10485       // aren't any instructions that support an immediate operand and a
10486       // shifted operand.
10487       if (isa<ConstantSDNode>(U->getOperand(0)) ||
10488           isa<ConstantSDNode>(U->getOperand(1)))
10489         return SDValue();
10490 
10491       // Check that it's not already using a shift.
10492       if (U->getOperand(0).getOpcode() == ISD::SHL ||
10493           U->getOperand(1).getOpcode() == ISD::SHL)
10494         return SDValue();
10495       break;
10496     }
10497   }
10498 
10499   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
10500       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
10501     return SDValue();
10502 
10503   if (N->getOperand(0).getOpcode() != ISD::SHL)
10504     return SDValue();
10505 
10506   SDValue SHL = N->getOperand(0);
10507 
10508   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
10509   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
10510   if (!C1ShlC2 || !C2)
10511     return SDValue();
10512 
10513   APInt C2Int = C2->getAPIntValue();
10514   APInt C1Int = C1ShlC2->getAPIntValue();
10515 
10516   // Check that performing a lshr will not lose any information.
10517   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
10518                                      C2Int.getBitWidth() - C2->getZExtValue());
10519   if ((C1Int & Mask) != C1Int)
10520     return SDValue();
10521 
10522   // Shift the first constant.
10523   C1Int.lshrInPlace(C2Int);
10524 
10525   // The immediates are encoded as an 8-bit value that can be rotated.
10526   auto LargeImm = [](const APInt &Imm) {
10527     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
10528     return Imm.getBitWidth() - Zeros > 8;
10529   };
10530 
10531   if (LargeImm(C1Int) || LargeImm(C2Int))
10532     return SDValue();
10533 
10534   SelectionDAG &DAG = DCI.DAG;
10535   SDLoc dl(N);
10536   SDValue X = SHL.getOperand(0);
10537   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
10538                               DAG.getConstant(C1Int, dl, MVT::i32));
10539   // Shift left to compensate for the lshr of C1Int.
10540   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
10541 
10542   DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump(); SHL.dump();
10543         N->dump());
10544   DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
10545 
10546   DAG.ReplaceAllUsesWith(SDValue(N, 0), Res);
10547   return SDValue(N, 0);
10548 }
10549 
10550 
10551 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
10552 ///
10553 static SDValue PerformADDCombine(SDNode *N,
10554                                  TargetLowering::DAGCombinerInfo &DCI,
10555                                  const ARMSubtarget *Subtarget) {
10556   SDValue N0 = N->getOperand(0);
10557   SDValue N1 = N->getOperand(1);
10558 
10559   // Only works one way, because it needs an immediate operand.
10560   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10561     return Result;
10562 
10563   // First try with the default operand order.
10564   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
10565     return Result;
10566 
10567   // If that didn't work, try again with the operands commuted.
10568   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
10569 }
10570 
10571 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
10572 ///
10573 static SDValue PerformSUBCombine(SDNode *N,
10574                                  TargetLowering::DAGCombinerInfo &DCI) {
10575   SDValue N0 = N->getOperand(0);
10576   SDValue N1 = N->getOperand(1);
10577 
10578   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10579   if (N1.getNode()->hasOneUse())
10580     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
10581       return Result;
10582 
10583   return SDValue();
10584 }
10585 
10586 /// PerformVMULCombine
10587 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
10588 /// special multiplier accumulator forwarding.
10589 ///   vmul d3, d0, d2
10590 ///   vmla d3, d1, d2
10591 /// is faster than
10592 ///   vadd d3, d0, d1
10593 ///   vmul d3, d3, d2
10594 //  However, for (A + B) * (A + B),
10595 //    vadd d2, d0, d1
10596 //    vmul d3, d0, d2
10597 //    vmla d3, d1, d2
10598 //  is slower than
10599 //    vadd d2, d0, d1
10600 //    vmul d3, d2, d2
10601 static SDValue PerformVMULCombine(SDNode *N,
10602                                   TargetLowering::DAGCombinerInfo &DCI,
10603                                   const ARMSubtarget *Subtarget) {
10604   if (!Subtarget->hasVMLxForwarding())
10605     return SDValue();
10606 
10607   SelectionDAG &DAG = DCI.DAG;
10608   SDValue N0 = N->getOperand(0);
10609   SDValue N1 = N->getOperand(1);
10610   unsigned Opcode = N0.getOpcode();
10611   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10612       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
10613     Opcode = N1.getOpcode();
10614     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10615         Opcode != ISD::FADD && Opcode != ISD::FSUB)
10616       return SDValue();
10617     std::swap(N0, N1);
10618   }
10619 
10620   if (N0 == N1)
10621     return SDValue();
10622 
10623   EVT VT = N->getValueType(0);
10624   SDLoc DL(N);
10625   SDValue N00 = N0->getOperand(0);
10626   SDValue N01 = N0->getOperand(1);
10627   return DAG.getNode(Opcode, DL, VT,
10628                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
10629                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
10630 }
10631 
10632 static SDValue PerformMULCombine(SDNode *N,
10633                                  TargetLowering::DAGCombinerInfo &DCI,
10634                                  const ARMSubtarget *Subtarget) {
10635   SelectionDAG &DAG = DCI.DAG;
10636 
10637   if (Subtarget->isThumb1Only())
10638     return SDValue();
10639 
10640   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10641     return SDValue();
10642 
10643   EVT VT = N->getValueType(0);
10644   if (VT.is64BitVector() || VT.is128BitVector())
10645     return PerformVMULCombine(N, DCI, Subtarget);
10646   if (VT != MVT::i32)
10647     return SDValue();
10648 
10649   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10650   if (!C)
10651     return SDValue();
10652 
10653   int64_t MulAmt = C->getSExtValue();
10654   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
10655 
10656   ShiftAmt = ShiftAmt & (32 - 1);
10657   SDValue V = N->getOperand(0);
10658   SDLoc DL(N);
10659 
10660   SDValue Res;
10661   MulAmt >>= ShiftAmt;
10662 
10663   if (MulAmt >= 0) {
10664     if (isPowerOf2_32(MulAmt - 1)) {
10665       // (mul x, 2^N + 1) => (add (shl x, N), x)
10666       Res = DAG.getNode(ISD::ADD, DL, VT,
10667                         V,
10668                         DAG.getNode(ISD::SHL, DL, VT,
10669                                     V,
10670                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
10671                                                     MVT::i32)));
10672     } else if (isPowerOf2_32(MulAmt + 1)) {
10673       // (mul x, 2^N - 1) => (sub (shl x, N), x)
10674       Res = DAG.getNode(ISD::SUB, DL, VT,
10675                         DAG.getNode(ISD::SHL, DL, VT,
10676                                     V,
10677                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
10678                                                     MVT::i32)),
10679                         V);
10680     } else
10681       return SDValue();
10682   } else {
10683     uint64_t MulAmtAbs = -MulAmt;
10684     if (isPowerOf2_32(MulAmtAbs + 1)) {
10685       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
10686       Res = DAG.getNode(ISD::SUB, DL, VT,
10687                         V,
10688                         DAG.getNode(ISD::SHL, DL, VT,
10689                                     V,
10690                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
10691                                                     MVT::i32)));
10692     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
10693       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
10694       Res = DAG.getNode(ISD::ADD, DL, VT,
10695                         V,
10696                         DAG.getNode(ISD::SHL, DL, VT,
10697                                     V,
10698                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
10699                                                     MVT::i32)));
10700       Res = DAG.getNode(ISD::SUB, DL, VT,
10701                         DAG.getConstant(0, DL, MVT::i32), Res);
10702     } else
10703       return SDValue();
10704   }
10705 
10706   if (ShiftAmt != 0)
10707     Res = DAG.getNode(ISD::SHL, DL, VT,
10708                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
10709 
10710   // Do not add new nodes to DAG combiner worklist.
10711   DCI.CombineTo(N, Res, false);
10712   return SDValue();
10713 }
10714 
10715 static SDValue PerformANDCombine(SDNode *N,
10716                                  TargetLowering::DAGCombinerInfo &DCI,
10717                                  const ARMSubtarget *Subtarget) {
10718   // Attempt to use immediate-form VBIC
10719   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10720   SDLoc dl(N);
10721   EVT VT = N->getValueType(0);
10722   SelectionDAG &DAG = DCI.DAG;
10723 
10724   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10725     return SDValue();
10726 
10727   APInt SplatBits, SplatUndef;
10728   unsigned SplatBitSize;
10729   bool HasAnyUndefs;
10730   if (BVN &&
10731       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
10732     if (SplatBitSize <= 64) {
10733       EVT VbicVT;
10734       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
10735                                       SplatUndef.getZExtValue(), SplatBitSize,
10736                                       DAG, dl, VbicVT, VT.is128BitVector(),
10737                                       OtherModImm);
10738       if (Val.getNode()) {
10739         SDValue Input =
10740           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
10741         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
10742         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
10743       }
10744     }
10745   }
10746 
10747   if (!Subtarget->isThumb1Only()) {
10748     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
10749     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
10750       return Result;
10751 
10752     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10753       return Result;
10754   }
10755 
10756   return SDValue();
10757 }
10758 
10759 // Try combining OR nodes to SMULWB, SMULWT.
10760 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
10761                                          TargetLowering::DAGCombinerInfo &DCI,
10762                                          const ARMSubtarget *Subtarget) {
10763   if (!Subtarget->hasV6Ops() ||
10764       (Subtarget->isThumb() &&
10765        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
10766     return SDValue();
10767 
10768   SDValue SRL = OR->getOperand(0);
10769   SDValue SHL = OR->getOperand(1);
10770 
10771   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
10772     SRL = OR->getOperand(1);
10773     SHL = OR->getOperand(0);
10774   }
10775   if (!isSRL16(SRL) || !isSHL16(SHL))
10776     return SDValue();
10777 
10778   // The first operands to the shifts need to be the two results from the
10779   // same smul_lohi node.
10780   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
10781        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
10782     return SDValue();
10783 
10784   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
10785   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
10786       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
10787     return SDValue();
10788 
10789   // Now we have:
10790   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
10791   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
10792   // For SMUWB the 16-bit value will signed extended somehow.
10793   // For SMULWT only the SRA is required.
10794   // Check both sides of SMUL_LOHI
10795   SDValue OpS16 = SMULLOHI->getOperand(0);
10796   SDValue OpS32 = SMULLOHI->getOperand(1);
10797 
10798   SelectionDAG &DAG = DCI.DAG;
10799   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
10800     OpS16 = OpS32;
10801     OpS32 = SMULLOHI->getOperand(0);
10802   }
10803 
10804   SDLoc dl(OR);
10805   unsigned Opcode = 0;
10806   if (isS16(OpS16, DAG))
10807     Opcode = ARMISD::SMULWB;
10808   else if (isSRA16(OpS16)) {
10809     Opcode = ARMISD::SMULWT;
10810     OpS16 = OpS16->getOperand(0);
10811   }
10812   else
10813     return SDValue();
10814 
10815   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
10816   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
10817   return SDValue(OR, 0);
10818 }
10819 
10820 static SDValue PerformORCombineToBFI(SDNode *N,
10821                                      TargetLowering::DAGCombinerInfo &DCI,
10822                                      const ARMSubtarget *Subtarget) {
10823   // BFI is only available on V6T2+
10824   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
10825     return SDValue();
10826 
10827   EVT VT = N->getValueType(0);
10828   SDValue N0 = N->getOperand(0);
10829   SDValue N1 = N->getOperand(1);
10830   SelectionDAG &DAG = DCI.DAG;
10831   SDLoc DL(N);
10832   // 1) or (and A, mask), val => ARMbfi A, val, mask
10833   //      iff (val & mask) == val
10834   //
10835   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10836   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
10837   //          && mask == ~mask2
10838   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
10839   //          && ~mask == mask2
10840   //  (i.e., copy a bitfield value into another bitfield of the same width)
10841 
10842   if (VT != MVT::i32)
10843     return SDValue();
10844 
10845   SDValue N00 = N0.getOperand(0);
10846 
10847   // The value and the mask need to be constants so we can verify this is
10848   // actually a bitfield set. If the mask is 0xffff, we can do better
10849   // via a movt instruction, so don't use BFI in that case.
10850   SDValue MaskOp = N0.getOperand(1);
10851   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
10852   if (!MaskC)
10853     return SDValue();
10854   unsigned Mask = MaskC->getZExtValue();
10855   if (Mask == 0xffff)
10856     return SDValue();
10857   SDValue Res;
10858   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
10859   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10860   if (N1C) {
10861     unsigned Val = N1C->getZExtValue();
10862     if ((Val & ~Mask) != Val)
10863       return SDValue();
10864 
10865     if (ARM::isBitFieldInvertedMask(Mask)) {
10866       Val >>= countTrailingZeros(~Mask);
10867 
10868       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
10869                         DAG.getConstant(Val, DL, MVT::i32),
10870                         DAG.getConstant(Mask, DL, MVT::i32));
10871 
10872       DCI.CombineTo(N, Res, false);
10873       // Return value from the original node to inform the combiner than N is
10874       // now dead.
10875       return SDValue(N, 0);
10876     }
10877   } else if (N1.getOpcode() == ISD::AND) {
10878     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10879     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
10880     if (!N11C)
10881       return SDValue();
10882     unsigned Mask2 = N11C->getZExtValue();
10883 
10884     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
10885     // as is to match.
10886     if (ARM::isBitFieldInvertedMask(Mask) &&
10887         (Mask == ~Mask2)) {
10888       // The pack halfword instruction works better for masks that fit it,
10889       // so use that when it's available.
10890       if (Subtarget->hasDSP() &&
10891           (Mask == 0xffff || Mask == 0xffff0000))
10892         return SDValue();
10893       // 2a
10894       unsigned amt = countTrailingZeros(Mask2);
10895       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
10896                         DAG.getConstant(amt, DL, MVT::i32));
10897       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
10898                         DAG.getConstant(Mask, DL, MVT::i32));
10899       DCI.CombineTo(N, Res, false);
10900       // Return value from the original node to inform the combiner than N is
10901       // now dead.
10902       return SDValue(N, 0);
10903     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
10904                (~Mask == Mask2)) {
10905       // The pack halfword instruction works better for masks that fit it,
10906       // so use that when it's available.
10907       if (Subtarget->hasDSP() &&
10908           (Mask2 == 0xffff || Mask2 == 0xffff0000))
10909         return SDValue();
10910       // 2b
10911       unsigned lsb = countTrailingZeros(Mask);
10912       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
10913                         DAG.getConstant(lsb, DL, MVT::i32));
10914       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
10915                         DAG.getConstant(Mask2, DL, MVT::i32));
10916       DCI.CombineTo(N, Res, false);
10917       // Return value from the original node to inform the combiner than N is
10918       // now dead.
10919       return SDValue(N, 0);
10920     }
10921   }
10922 
10923   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
10924       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
10925       ARM::isBitFieldInvertedMask(~Mask)) {
10926     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
10927     // where lsb(mask) == #shamt and masked bits of B are known zero.
10928     SDValue ShAmt = N00.getOperand(1);
10929     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10930     unsigned LSB = countTrailingZeros(Mask);
10931     if (ShAmtC != LSB)
10932       return SDValue();
10933 
10934     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
10935                       DAG.getConstant(~Mask, DL, MVT::i32));
10936 
10937     DCI.CombineTo(N, Res, false);
10938     // Return value from the original node to inform the combiner than N is
10939     // now dead.
10940     return SDValue(N, 0);
10941   }
10942 
10943   return SDValue();
10944 }
10945 
10946 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
10947 static SDValue PerformORCombine(SDNode *N,
10948                                 TargetLowering::DAGCombinerInfo &DCI,
10949                                 const ARMSubtarget *Subtarget) {
10950   // Attempt to use immediate-form VORR
10951   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10952   SDLoc dl(N);
10953   EVT VT = N->getValueType(0);
10954   SelectionDAG &DAG = DCI.DAG;
10955 
10956   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10957     return SDValue();
10958 
10959   APInt SplatBits, SplatUndef;
10960   unsigned SplatBitSize;
10961   bool HasAnyUndefs;
10962   if (BVN && Subtarget->hasNEON() &&
10963       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
10964     if (SplatBitSize <= 64) {
10965       EVT VorrVT;
10966       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
10967                                       SplatUndef.getZExtValue(), SplatBitSize,
10968                                       DAG, dl, VorrVT, VT.is128BitVector(),
10969                                       OtherModImm);
10970       if (Val.getNode()) {
10971         SDValue Input =
10972           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
10973         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
10974         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
10975       }
10976     }
10977   }
10978 
10979   if (!Subtarget->isThumb1Only()) {
10980     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10981     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
10982       return Result;
10983     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
10984       return Result;
10985   }
10986 
10987   SDValue N0 = N->getOperand(0);
10988   SDValue N1 = N->getOperand(1);
10989 
10990   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
10991   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
10992       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10993 
10994     // The code below optimizes (or (and X, Y), Z).
10995     // The AND operand needs to have a single user to make these optimizations
10996     // profitable.
10997     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
10998       return SDValue();
10999 
11000     APInt SplatUndef;
11001     unsigned SplatBitSize;
11002     bool HasAnyUndefs;
11003 
11004     APInt SplatBits0, SplatBits1;
11005     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
11006     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
11007     // Ensure that the second operand of both ands are constants
11008     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
11009                                       HasAnyUndefs) && !HasAnyUndefs) {
11010         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
11011                                           HasAnyUndefs) && !HasAnyUndefs) {
11012             // Ensure that the bit width of the constants are the same and that
11013             // the splat arguments are logical inverses as per the pattern we
11014             // are trying to simplify.
11015             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
11016                 SplatBits0 == ~SplatBits1) {
11017                 // Canonicalize the vector type to make instruction selection
11018                 // simpler.
11019                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
11020                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
11021                                              N0->getOperand(1),
11022                                              N0->getOperand(0),
11023                                              N1->getOperand(0));
11024                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
11025             }
11026         }
11027     }
11028   }
11029 
11030   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11031   // reasonable.
11032   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
11033     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
11034       return Res;
11035   }
11036 
11037   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11038     return Result;
11039 
11040   return SDValue();
11041 }
11042 
11043 static SDValue PerformXORCombine(SDNode *N,
11044                                  TargetLowering::DAGCombinerInfo &DCI,
11045                                  const ARMSubtarget *Subtarget) {
11046   EVT VT = N->getValueType(0);
11047   SelectionDAG &DAG = DCI.DAG;
11048 
11049   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11050     return SDValue();
11051 
11052   if (!Subtarget->isThumb1Only()) {
11053     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11054     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11055       return Result;
11056 
11057     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11058       return Result;
11059   }
11060 
11061   return SDValue();
11062 }
11063 
11064 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11065 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
11066 // their position in "to" (Rd).
11067 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
11068   assert(N->getOpcode() == ARMISD::BFI);
11069 
11070   SDValue From = N->getOperand(1);
11071   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
11072   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
11073 
11074   // If the Base came from a SHR #C, we can deduce that it is really testing bit
11075   // #C in the base of the SHR.
11076   if (From->getOpcode() == ISD::SRL &&
11077       isa<ConstantSDNode>(From->getOperand(1))) {
11078     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
11079     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
11080     FromMask <<= Shift.getLimitedValue(31);
11081     From = From->getOperand(0);
11082   }
11083 
11084   return From;
11085 }
11086 
11087 // If A and B contain one contiguous set of bits, does A | B == A . B?
11088 //
11089 // Neither A nor B must be zero.
11090 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
11091   unsigned LastActiveBitInA =  A.countTrailingZeros();
11092   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
11093   return LastActiveBitInA - 1 == FirstActiveBitInB;
11094 }
11095 
11096 static SDValue FindBFIToCombineWith(SDNode *N) {
11097   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
11098   // if one exists.
11099   APInt ToMask, FromMask;
11100   SDValue From = ParseBFI(N, ToMask, FromMask);
11101   SDValue To = N->getOperand(0);
11102 
11103   // Now check for a compatible BFI to merge with. We can pass through BFIs that
11104   // aren't compatible, but not if they set the same bit in their destination as
11105   // we do (or that of any BFI we're going to combine with).
11106   SDValue V = To;
11107   APInt CombinedToMask = ToMask;
11108   while (V.getOpcode() == ARMISD::BFI) {
11109     APInt NewToMask, NewFromMask;
11110     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
11111     if (NewFrom != From) {
11112       // This BFI has a different base. Keep going.
11113       CombinedToMask |= NewToMask;
11114       V = V.getOperand(0);
11115       continue;
11116     }
11117 
11118     // Do the written bits conflict with any we've seen so far?
11119     if ((NewToMask & CombinedToMask).getBoolValue())
11120       // Conflicting bits - bail out because going further is unsafe.
11121       return SDValue();
11122 
11123     // Are the new bits contiguous when combined with the old bits?
11124     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
11125         BitsProperlyConcatenate(FromMask, NewFromMask))
11126       return V;
11127     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
11128         BitsProperlyConcatenate(NewFromMask, FromMask))
11129       return V;
11130 
11131     // We've seen a write to some bits, so track it.
11132     CombinedToMask |= NewToMask;
11133     // Keep going...
11134     V = V.getOperand(0);
11135   }
11136 
11137   return SDValue();
11138 }
11139 
11140 static SDValue PerformBFICombine(SDNode *N,
11141                                  TargetLowering::DAGCombinerInfo &DCI) {
11142   SDValue N1 = N->getOperand(1);
11143   if (N1.getOpcode() == ISD::AND) {
11144     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
11145     // the bits being cleared by the AND are not demanded by the BFI.
11146     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11147     if (!N11C)
11148       return SDValue();
11149     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11150     unsigned LSB = countTrailingZeros(~InvMask);
11151     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
11152     assert(Width <
11153                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
11154            "undefined behavior");
11155     unsigned Mask = (1u << Width) - 1;
11156     unsigned Mask2 = N11C->getZExtValue();
11157     if ((Mask & (~Mask2)) == 0)
11158       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
11159                              N->getOperand(0), N1.getOperand(0),
11160                              N->getOperand(2));
11161   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
11162     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
11163     // Keep track of any consecutive bits set that all come from the same base
11164     // value. We can combine these together into a single BFI.
11165     SDValue CombineBFI = FindBFIToCombineWith(N);
11166     if (CombineBFI == SDValue())
11167       return SDValue();
11168 
11169     // We've found a BFI.
11170     APInt ToMask1, FromMask1;
11171     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
11172 
11173     APInt ToMask2, FromMask2;
11174     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
11175     assert(From1 == From2);
11176     (void)From2;
11177 
11178     // First, unlink CombineBFI.
11179     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
11180     // Then create a new BFI, combining the two together.
11181     APInt NewFromMask = FromMask1 | FromMask2;
11182     APInt NewToMask = ToMask1 | ToMask2;
11183 
11184     EVT VT = N->getValueType(0);
11185     SDLoc dl(N);
11186 
11187     if (NewFromMask[0] == 0)
11188       From1 = DCI.DAG.getNode(
11189         ISD::SRL, dl, VT, From1,
11190         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
11191     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
11192                            DCI.DAG.getConstant(~NewToMask, dl, VT));
11193   }
11194   return SDValue();
11195 }
11196 
11197 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
11198 /// ARMISD::VMOVRRD.
11199 static SDValue PerformVMOVRRDCombine(SDNode *N,
11200                                      TargetLowering::DAGCombinerInfo &DCI,
11201                                      const ARMSubtarget *Subtarget) {
11202   // vmovrrd(vmovdrr x, y) -> x,y
11203   SDValue InDouble = N->getOperand(0);
11204   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
11205     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
11206 
11207   // vmovrrd(load f64) -> (load i32), (load i32)
11208   SDNode *InNode = InDouble.getNode();
11209   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
11210       InNode->getValueType(0) == MVT::f64 &&
11211       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
11212       !cast<LoadSDNode>(InNode)->isVolatile()) {
11213     // TODO: Should this be done for non-FrameIndex operands?
11214     LoadSDNode *LD = cast<LoadSDNode>(InNode);
11215 
11216     SelectionDAG &DAG = DCI.DAG;
11217     SDLoc DL(LD);
11218     SDValue BasePtr = LD->getBasePtr();
11219     SDValue NewLD1 =
11220         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
11221                     LD->getAlignment(), LD->getMemOperand()->getFlags());
11222 
11223     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11224                                     DAG.getConstant(4, DL, MVT::i32));
11225     SDValue NewLD2 = DAG.getLoad(
11226         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
11227         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
11228 
11229     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
11230     if (DCI.DAG.getDataLayout().isBigEndian())
11231       std::swap (NewLD1, NewLD2);
11232     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
11233     return Result;
11234   }
11235 
11236   return SDValue();
11237 }
11238 
11239 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
11240 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
11241 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
11242   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
11243   SDValue Op0 = N->getOperand(0);
11244   SDValue Op1 = N->getOperand(1);
11245   if (Op0.getOpcode() == ISD::BITCAST)
11246     Op0 = Op0.getOperand(0);
11247   if (Op1.getOpcode() == ISD::BITCAST)
11248     Op1 = Op1.getOperand(0);
11249   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
11250       Op0.getNode() == Op1.getNode() &&
11251       Op0.getResNo() == 0 && Op1.getResNo() == 1)
11252     return DAG.getNode(ISD::BITCAST, SDLoc(N),
11253                        N->getValueType(0), Op0.getOperand(0));
11254   return SDValue();
11255 }
11256 
11257 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
11258 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
11259 /// i64 vector to have f64 elements, since the value can then be loaded
11260 /// directly into a VFP register.
11261 static bool hasNormalLoadOperand(SDNode *N) {
11262   unsigned NumElts = N->getValueType(0).getVectorNumElements();
11263   for (unsigned i = 0; i < NumElts; ++i) {
11264     SDNode *Elt = N->getOperand(i).getNode();
11265     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
11266       return true;
11267   }
11268   return false;
11269 }
11270 
11271 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
11272 /// ISD::BUILD_VECTOR.
11273 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
11274                                           TargetLowering::DAGCombinerInfo &DCI,
11275                                           const ARMSubtarget *Subtarget) {
11276   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
11277   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
11278   // into a pair of GPRs, which is fine when the value is used as a scalar,
11279   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
11280   SelectionDAG &DAG = DCI.DAG;
11281   if (N->getNumOperands() == 2)
11282     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
11283       return RV;
11284 
11285   // Load i64 elements as f64 values so that type legalization does not split
11286   // them up into i32 values.
11287   EVT VT = N->getValueType(0);
11288   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
11289     return SDValue();
11290   SDLoc dl(N);
11291   SmallVector<SDValue, 8> Ops;
11292   unsigned NumElts = VT.getVectorNumElements();
11293   for (unsigned i = 0; i < NumElts; ++i) {
11294     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
11295     Ops.push_back(V);
11296     // Make the DAGCombiner fold the bitcast.
11297     DCI.AddToWorklist(V.getNode());
11298   }
11299   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
11300   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
11301   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
11302 }
11303 
11304 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
11305 static SDValue
11306 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11307   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
11308   // At that time, we may have inserted bitcasts from integer to float.
11309   // If these bitcasts have survived DAGCombine, change the lowering of this
11310   // BUILD_VECTOR in something more vector friendly, i.e., that does not
11311   // force to use floating point types.
11312 
11313   // Make sure we can change the type of the vector.
11314   // This is possible iff:
11315   // 1. The vector is only used in a bitcast to a integer type. I.e.,
11316   //    1.1. Vector is used only once.
11317   //    1.2. Use is a bit convert to an integer type.
11318   // 2. The size of its operands are 32-bits (64-bits are not legal).
11319   EVT VT = N->getValueType(0);
11320   EVT EltVT = VT.getVectorElementType();
11321 
11322   // Check 1.1. and 2.
11323   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
11324     return SDValue();
11325 
11326   // By construction, the input type must be float.
11327   assert(EltVT == MVT::f32 && "Unexpected type!");
11328 
11329   // Check 1.2.
11330   SDNode *Use = *N->use_begin();
11331   if (Use->getOpcode() != ISD::BITCAST ||
11332       Use->getValueType(0).isFloatingPoint())
11333     return SDValue();
11334 
11335   // Check profitability.
11336   // Model is, if more than half of the relevant operands are bitcast from
11337   // i32, turn the build_vector into a sequence of insert_vector_elt.
11338   // Relevant operands are everything that is not statically
11339   // (i.e., at compile time) bitcasted.
11340   unsigned NumOfBitCastedElts = 0;
11341   unsigned NumElts = VT.getVectorNumElements();
11342   unsigned NumOfRelevantElts = NumElts;
11343   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
11344     SDValue Elt = N->getOperand(Idx);
11345     if (Elt->getOpcode() == ISD::BITCAST) {
11346       // Assume only bit cast to i32 will go away.
11347       if (Elt->getOperand(0).getValueType() == MVT::i32)
11348         ++NumOfBitCastedElts;
11349     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
11350       // Constants are statically casted, thus do not count them as
11351       // relevant operands.
11352       --NumOfRelevantElts;
11353   }
11354 
11355   // Check if more than half of the elements require a non-free bitcast.
11356   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
11357     return SDValue();
11358 
11359   SelectionDAG &DAG = DCI.DAG;
11360   // Create the new vector type.
11361   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
11362   // Check if the type is legal.
11363   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11364   if (!TLI.isTypeLegal(VecVT))
11365     return SDValue();
11366 
11367   // Combine:
11368   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
11369   // => BITCAST INSERT_VECTOR_ELT
11370   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
11371   //                      (BITCAST EN), N.
11372   SDValue Vec = DAG.getUNDEF(VecVT);
11373   SDLoc dl(N);
11374   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
11375     SDValue V = N->getOperand(Idx);
11376     if (V.isUndef())
11377       continue;
11378     if (V.getOpcode() == ISD::BITCAST &&
11379         V->getOperand(0).getValueType() == MVT::i32)
11380       // Fold obvious case.
11381       V = V.getOperand(0);
11382     else {
11383       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
11384       // Make the DAGCombiner fold the bitcasts.
11385       DCI.AddToWorklist(V.getNode());
11386     }
11387     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
11388     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
11389   }
11390   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
11391   // Make the DAGCombiner fold the bitcasts.
11392   DCI.AddToWorklist(Vec.getNode());
11393   return Vec;
11394 }
11395 
11396 /// PerformInsertEltCombine - Target-specific dag combine xforms for
11397 /// ISD::INSERT_VECTOR_ELT.
11398 static SDValue PerformInsertEltCombine(SDNode *N,
11399                                        TargetLowering::DAGCombinerInfo &DCI) {
11400   // Bitcast an i64 load inserted into a vector to f64.
11401   // Otherwise, the i64 value will be legalized to a pair of i32 values.
11402   EVT VT = N->getValueType(0);
11403   SDNode *Elt = N->getOperand(1).getNode();
11404   if (VT.getVectorElementType() != MVT::i64 ||
11405       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
11406     return SDValue();
11407 
11408   SelectionDAG &DAG = DCI.DAG;
11409   SDLoc dl(N);
11410   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11411                                  VT.getVectorNumElements());
11412   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
11413   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
11414   // Make the DAGCombiner fold the bitcasts.
11415   DCI.AddToWorklist(Vec.getNode());
11416   DCI.AddToWorklist(V.getNode());
11417   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
11418                                Vec, V, N->getOperand(2));
11419   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
11420 }
11421 
11422 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
11423 /// ISD::VECTOR_SHUFFLE.
11424 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
11425   // The LLVM shufflevector instruction does not require the shuffle mask
11426   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
11427   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
11428   // operands do not match the mask length, they are extended by concatenating
11429   // them with undef vectors.  That is probably the right thing for other
11430   // targets, but for NEON it is better to concatenate two double-register
11431   // size vector operands into a single quad-register size vector.  Do that
11432   // transformation here:
11433   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
11434   //   shuffle(concat(v1, v2), undef)
11435   SDValue Op0 = N->getOperand(0);
11436   SDValue Op1 = N->getOperand(1);
11437   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
11438       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
11439       Op0.getNumOperands() != 2 ||
11440       Op1.getNumOperands() != 2)
11441     return SDValue();
11442   SDValue Concat0Op1 = Op0.getOperand(1);
11443   SDValue Concat1Op1 = Op1.getOperand(1);
11444   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
11445     return SDValue();
11446   // Skip the transformation if any of the types are illegal.
11447   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11448   EVT VT = N->getValueType(0);
11449   if (!TLI.isTypeLegal(VT) ||
11450       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
11451       !TLI.isTypeLegal(Concat1Op1.getValueType()))
11452     return SDValue();
11453 
11454   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
11455                                   Op0.getOperand(0), Op1.getOperand(0));
11456   // Translate the shuffle mask.
11457   SmallVector<int, 16> NewMask;
11458   unsigned NumElts = VT.getVectorNumElements();
11459   unsigned HalfElts = NumElts/2;
11460   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
11461   for (unsigned n = 0; n < NumElts; ++n) {
11462     int MaskElt = SVN->getMaskElt(n);
11463     int NewElt = -1;
11464     if (MaskElt < (int)HalfElts)
11465       NewElt = MaskElt;
11466     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
11467       NewElt = HalfElts + MaskElt - NumElts;
11468     NewMask.push_back(NewElt);
11469   }
11470   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
11471                               DAG.getUNDEF(VT), NewMask);
11472 }
11473 
11474 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
11475 /// NEON load/store intrinsics, and generic vector load/stores, to merge
11476 /// base address updates.
11477 /// For generic load/stores, the memory type is assumed to be a vector.
11478 /// The caller is assumed to have checked legality.
11479 static SDValue CombineBaseUpdate(SDNode *N,
11480                                  TargetLowering::DAGCombinerInfo &DCI) {
11481   SelectionDAG &DAG = DCI.DAG;
11482   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
11483                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
11484   const bool isStore = N->getOpcode() == ISD::STORE;
11485   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
11486   SDValue Addr = N->getOperand(AddrOpIdx);
11487   MemSDNode *MemN = cast<MemSDNode>(N);
11488   SDLoc dl(N);
11489 
11490   // Search for a use of the address operand that is an increment.
11491   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11492          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11493     SDNode *User = *UI;
11494     if (User->getOpcode() != ISD::ADD ||
11495         UI.getUse().getResNo() != Addr.getResNo())
11496       continue;
11497 
11498     // Check that the add is independent of the load/store.  Otherwise, folding
11499     // it would create a cycle.
11500     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
11501       continue;
11502 
11503     // Find the new opcode for the updating load/store.
11504     bool isLoadOp = true;
11505     bool isLaneOp = false;
11506     unsigned NewOpc = 0;
11507     unsigned NumVecs = 0;
11508     if (isIntrinsic) {
11509       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11510       switch (IntNo) {
11511       default: llvm_unreachable("unexpected intrinsic for Neon base update");
11512       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
11513         NumVecs = 1; break;
11514       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
11515         NumVecs = 2; break;
11516       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
11517         NumVecs = 3; break;
11518       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
11519         NumVecs = 4; break;
11520       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
11521         NumVecs = 2; isLaneOp = true; break;
11522       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
11523         NumVecs = 3; isLaneOp = true; break;
11524       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
11525         NumVecs = 4; isLaneOp = true; break;
11526       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
11527         NumVecs = 1; isLoadOp = false; break;
11528       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
11529         NumVecs = 2; isLoadOp = false; break;
11530       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
11531         NumVecs = 3; isLoadOp = false; break;
11532       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
11533         NumVecs = 4; isLoadOp = false; break;
11534       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
11535         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
11536       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
11537         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
11538       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
11539         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
11540       }
11541     } else {
11542       isLaneOp = true;
11543       switch (N->getOpcode()) {
11544       default: llvm_unreachable("unexpected opcode for Neon base update");
11545       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
11546       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
11547       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
11548       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
11549       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
11550         NumVecs = 1; isLaneOp = false; break;
11551       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
11552         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
11553       }
11554     }
11555 
11556     // Find the size of memory referenced by the load/store.
11557     EVT VecTy;
11558     if (isLoadOp) {
11559       VecTy = N->getValueType(0);
11560     } else if (isIntrinsic) {
11561       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
11562     } else {
11563       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
11564       VecTy = N->getOperand(1).getValueType();
11565     }
11566 
11567     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11568     if (isLaneOp)
11569       NumBytes /= VecTy.getVectorNumElements();
11570 
11571     // If the increment is a constant, it must match the memory ref size.
11572     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11573     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
11574     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
11575       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
11576       // separate instructions that make it harder to use a non-constant update.
11577       continue;
11578     }
11579 
11580     // OK, we found an ADD we can fold into the base update.
11581     // Now, create a _UPD node, taking care of not breaking alignment.
11582 
11583     EVT AlignedVecTy = VecTy;
11584     unsigned Alignment = MemN->getAlignment();
11585 
11586     // If this is a less-than-standard-aligned load/store, change the type to
11587     // match the standard alignment.
11588     // The alignment is overlooked when selecting _UPD variants; and it's
11589     // easier to introduce bitcasts here than fix that.
11590     // There are 3 ways to get to this base-update combine:
11591     // - intrinsics: they are assumed to be properly aligned (to the standard
11592     //   alignment of the memory type), so we don't need to do anything.
11593     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
11594     //   intrinsics, so, likewise, there's nothing to do.
11595     // - generic load/store instructions: the alignment is specified as an
11596     //   explicit operand, rather than implicitly as the standard alignment
11597     //   of the memory type (like the intrisics).  We need to change the
11598     //   memory type to match the explicit alignment.  That way, we don't
11599     //   generate non-standard-aligned ARMISD::VLDx nodes.
11600     if (isa<LSBaseSDNode>(N)) {
11601       if (Alignment == 0)
11602         Alignment = 1;
11603       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
11604         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
11605         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
11606         assert(!isLaneOp && "Unexpected generic load/store lane.");
11607         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
11608         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
11609       }
11610       // Don't set an explicit alignment on regular load/stores that we want
11611       // to transform to VLD/VST 1_UPD nodes.
11612       // This matches the behavior of regular load/stores, which only get an
11613       // explicit alignment if the MMO alignment is larger than the standard
11614       // alignment of the memory type.
11615       // Intrinsics, however, always get an explicit alignment, set to the
11616       // alignment of the MMO.
11617       Alignment = 1;
11618     }
11619 
11620     // Create the new updating load/store node.
11621     // First, create an SDVTList for the new updating node's results.
11622     EVT Tys[6];
11623     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
11624     unsigned n;
11625     for (n = 0; n < NumResultVecs; ++n)
11626       Tys[n] = AlignedVecTy;
11627     Tys[n++] = MVT::i32;
11628     Tys[n] = MVT::Other;
11629     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
11630 
11631     // Then, gather the new node's operands.
11632     SmallVector<SDValue, 8> Ops;
11633     Ops.push_back(N->getOperand(0)); // incoming chain
11634     Ops.push_back(N->getOperand(AddrOpIdx));
11635     Ops.push_back(Inc);
11636 
11637     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
11638       // Try to match the intrinsic's signature
11639       Ops.push_back(StN->getValue());
11640     } else {
11641       // Loads (and of course intrinsics) match the intrinsics' signature,
11642       // so just add all but the alignment operand.
11643       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
11644         Ops.push_back(N->getOperand(i));
11645     }
11646 
11647     // For all node types, the alignment operand is always the last one.
11648     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
11649 
11650     // If this is a non-standard-aligned STORE, the penultimate operand is the
11651     // stored value.  Bitcast it to the aligned type.
11652     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
11653       SDValue &StVal = Ops[Ops.size()-2];
11654       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
11655     }
11656 
11657     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
11658     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
11659                                            MemN->getMemOperand());
11660 
11661     // Update the uses.
11662     SmallVector<SDValue, 5> NewResults;
11663     for (unsigned i = 0; i < NumResultVecs; ++i)
11664       NewResults.push_back(SDValue(UpdN.getNode(), i));
11665 
11666     // If this is an non-standard-aligned LOAD, the first result is the loaded
11667     // value.  Bitcast it to the expected result type.
11668     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
11669       SDValue &LdVal = NewResults[0];
11670       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
11671     }
11672 
11673     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
11674     DCI.CombineTo(N, NewResults);
11675     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
11676 
11677     break;
11678   }
11679   return SDValue();
11680 }
11681 
11682 static SDValue PerformVLDCombine(SDNode *N,
11683                                  TargetLowering::DAGCombinerInfo &DCI) {
11684   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11685     return SDValue();
11686 
11687   return CombineBaseUpdate(N, DCI);
11688 }
11689 
11690 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
11691 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
11692 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
11693 /// return true.
11694 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11695   SelectionDAG &DAG = DCI.DAG;
11696   EVT VT = N->getValueType(0);
11697   // vldN-dup instructions only support 64-bit vectors for N > 1.
11698   if (!VT.is64BitVector())
11699     return false;
11700 
11701   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
11702   SDNode *VLD = N->getOperand(0).getNode();
11703   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
11704     return false;
11705   unsigned NumVecs = 0;
11706   unsigned NewOpc = 0;
11707   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
11708   if (IntNo == Intrinsic::arm_neon_vld2lane) {
11709     NumVecs = 2;
11710     NewOpc = ARMISD::VLD2DUP;
11711   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
11712     NumVecs = 3;
11713     NewOpc = ARMISD::VLD3DUP;
11714   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
11715     NumVecs = 4;
11716     NewOpc = ARMISD::VLD4DUP;
11717   } else {
11718     return false;
11719   }
11720 
11721   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
11722   // numbers match the load.
11723   unsigned VLDLaneNo =
11724     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
11725   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11726        UI != UE; ++UI) {
11727     // Ignore uses of the chain result.
11728     if (UI.getUse().getResNo() == NumVecs)
11729       continue;
11730     SDNode *User = *UI;
11731     if (User->getOpcode() != ARMISD::VDUPLANE ||
11732         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
11733       return false;
11734   }
11735 
11736   // Create the vldN-dup node.
11737   EVT Tys[5];
11738   unsigned n;
11739   for (n = 0; n < NumVecs; ++n)
11740     Tys[n] = VT;
11741   Tys[n] = MVT::Other;
11742   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
11743   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
11744   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
11745   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
11746                                            Ops, VLDMemInt->getMemoryVT(),
11747                                            VLDMemInt->getMemOperand());
11748 
11749   // Update the uses.
11750   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11751        UI != UE; ++UI) {
11752     unsigned ResNo = UI.getUse().getResNo();
11753     // Ignore uses of the chain result.
11754     if (ResNo == NumVecs)
11755       continue;
11756     SDNode *User = *UI;
11757     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
11758   }
11759 
11760   // Now the vldN-lane intrinsic is dead except for its chain result.
11761   // Update uses of the chain.
11762   std::vector<SDValue> VLDDupResults;
11763   for (unsigned n = 0; n < NumVecs; ++n)
11764     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
11765   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
11766   DCI.CombineTo(VLD, VLDDupResults);
11767 
11768   return true;
11769 }
11770 
11771 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
11772 /// ARMISD::VDUPLANE.
11773 static SDValue PerformVDUPLANECombine(SDNode *N,
11774                                       TargetLowering::DAGCombinerInfo &DCI) {
11775   SDValue Op = N->getOperand(0);
11776 
11777   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
11778   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
11779   if (CombineVLDDUP(N, DCI))
11780     return SDValue(N, 0);
11781 
11782   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
11783   // redundant.  Ignore bit_converts for now; element sizes are checked below.
11784   while (Op.getOpcode() == ISD::BITCAST)
11785     Op = Op.getOperand(0);
11786   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
11787     return SDValue();
11788 
11789   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
11790   unsigned EltSize = Op.getScalarValueSizeInBits();
11791   // The canonical VMOV for a zero vector uses a 32-bit element size.
11792   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11793   unsigned EltBits;
11794   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
11795     EltSize = 8;
11796   EVT VT = N->getValueType(0);
11797   if (EltSize > VT.getScalarSizeInBits())
11798     return SDValue();
11799 
11800   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
11801 }
11802 
11803 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
11804 static SDValue PerformVDUPCombine(SDNode *N,
11805                                   TargetLowering::DAGCombinerInfo &DCI) {
11806   SelectionDAG &DAG = DCI.DAG;
11807   SDValue Op = N->getOperand(0);
11808 
11809   // Match VDUP(LOAD) -> VLD1DUP.
11810   // We match this pattern here rather than waiting for isel because the
11811   // transform is only legal for unindexed loads.
11812   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
11813   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
11814       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
11815     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
11816                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
11817     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
11818     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
11819                                              Ops, LD->getMemoryVT(),
11820                                              LD->getMemOperand());
11821     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
11822     return VLDDup;
11823   }
11824 
11825   return SDValue();
11826 }
11827 
11828 static SDValue PerformLOADCombine(SDNode *N,
11829                                   TargetLowering::DAGCombinerInfo &DCI) {
11830   EVT VT = N->getValueType(0);
11831 
11832   // If this is a legal vector load, try to combine it into a VLD1_UPD.
11833   if (ISD::isNormalLoad(N) && VT.isVector() &&
11834       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
11835     return CombineBaseUpdate(N, DCI);
11836 
11837   return SDValue();
11838 }
11839 
11840 /// PerformSTORECombine - Target-specific dag combine xforms for
11841 /// ISD::STORE.
11842 static SDValue PerformSTORECombine(SDNode *N,
11843                                    TargetLowering::DAGCombinerInfo &DCI) {
11844   StoreSDNode *St = cast<StoreSDNode>(N);
11845   if (St->isVolatile())
11846     return SDValue();
11847 
11848   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
11849   // pack all of the elements in one place.  Next, store to memory in fewer
11850   // chunks.
11851   SDValue StVal = St->getValue();
11852   EVT VT = StVal.getValueType();
11853   if (St->isTruncatingStore() && VT.isVector()) {
11854     SelectionDAG &DAG = DCI.DAG;
11855     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11856     EVT StVT = St->getMemoryVT();
11857     unsigned NumElems = VT.getVectorNumElements();
11858     assert(StVT != VT && "Cannot truncate to the same type");
11859     unsigned FromEltSz = VT.getScalarSizeInBits();
11860     unsigned ToEltSz = StVT.getScalarSizeInBits();
11861 
11862     // From, To sizes and ElemCount must be pow of two
11863     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
11864 
11865     // We are going to use the original vector elt for storing.
11866     // Accumulated smaller vector elements must be a multiple of the store size.
11867     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
11868 
11869     unsigned SizeRatio  = FromEltSz / ToEltSz;
11870     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
11871 
11872     // Create a type on which we perform the shuffle.
11873     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
11874                                      NumElems*SizeRatio);
11875     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
11876 
11877     SDLoc DL(St);
11878     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
11879     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
11880     for (unsigned i = 0; i < NumElems; ++i)
11881       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
11882                           ? (i + 1) * SizeRatio - 1
11883                           : i * SizeRatio;
11884 
11885     // Can't shuffle using an illegal type.
11886     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
11887 
11888     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
11889                                 DAG.getUNDEF(WideVec.getValueType()),
11890                                 ShuffleVec);
11891     // At this point all of the data is stored at the bottom of the
11892     // register. We now need to save it to mem.
11893 
11894     // Find the largest store unit
11895     MVT StoreType = MVT::i8;
11896     for (MVT Tp : MVT::integer_valuetypes()) {
11897       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
11898         StoreType = Tp;
11899     }
11900     // Didn't find a legal store type.
11901     if (!TLI.isTypeLegal(StoreType))
11902       return SDValue();
11903 
11904     // Bitcast the original vector into a vector of store-size units
11905     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
11906             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
11907     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
11908     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
11909     SmallVector<SDValue, 8> Chains;
11910     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
11911                                         TLI.getPointerTy(DAG.getDataLayout()));
11912     SDValue BasePtr = St->getBasePtr();
11913 
11914     // Perform one or more big stores into memory.
11915     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
11916     for (unsigned I = 0; I < E; I++) {
11917       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
11918                                    StoreType, ShuffWide,
11919                                    DAG.getIntPtrConstant(I, DL));
11920       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
11921                                 St->getPointerInfo(), St->getAlignment(),
11922                                 St->getMemOperand()->getFlags());
11923       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
11924                             Increment);
11925       Chains.push_back(Ch);
11926     }
11927     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
11928   }
11929 
11930   if (!ISD::isNormalStore(St))
11931     return SDValue();
11932 
11933   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
11934   // ARM stores of arguments in the same cache line.
11935   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
11936       StVal.getNode()->hasOneUse()) {
11937     SelectionDAG  &DAG = DCI.DAG;
11938     bool isBigEndian = DAG.getDataLayout().isBigEndian();
11939     SDLoc DL(St);
11940     SDValue BasePtr = St->getBasePtr();
11941     SDValue NewST1 = DAG.getStore(
11942         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
11943         BasePtr, St->getPointerInfo(), St->getAlignment(),
11944         St->getMemOperand()->getFlags());
11945 
11946     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11947                                     DAG.getConstant(4, DL, MVT::i32));
11948     return DAG.getStore(NewST1.getValue(0), DL,
11949                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
11950                         OffsetPtr, St->getPointerInfo(),
11951                         std::min(4U, St->getAlignment() / 2),
11952                         St->getMemOperand()->getFlags());
11953   }
11954 
11955   if (StVal.getValueType() == MVT::i64 &&
11956       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
11957 
11958     // Bitcast an i64 store extracted from a vector to f64.
11959     // Otherwise, the i64 value will be legalized to a pair of i32 values.
11960     SelectionDAG &DAG = DCI.DAG;
11961     SDLoc dl(StVal);
11962     SDValue IntVec = StVal.getOperand(0);
11963     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11964                                    IntVec.getValueType().getVectorNumElements());
11965     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
11966     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
11967                                  Vec, StVal.getOperand(1));
11968     dl = SDLoc(N);
11969     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
11970     // Make the DAGCombiner fold the bitcasts.
11971     DCI.AddToWorklist(Vec.getNode());
11972     DCI.AddToWorklist(ExtElt.getNode());
11973     DCI.AddToWorklist(V.getNode());
11974     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
11975                         St->getPointerInfo(), St->getAlignment(),
11976                         St->getMemOperand()->getFlags(), St->getAAInfo());
11977   }
11978 
11979   // If this is a legal vector store, try to combine it into a VST1_UPD.
11980   if (ISD::isNormalStore(N) && VT.isVector() &&
11981       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
11982     return CombineBaseUpdate(N, DCI);
11983 
11984   return SDValue();
11985 }
11986 
11987 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
11988 /// can replace combinations of VMUL and VCVT (floating-point to integer)
11989 /// when the VMUL has a constant operand that is a power of 2.
11990 ///
11991 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
11992 ///  vmul.f32        d16, d17, d16
11993 ///  vcvt.s32.f32    d16, d16
11994 /// becomes:
11995 ///  vcvt.s32.f32    d16, d16, #3
11996 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
11997                                   const ARMSubtarget *Subtarget) {
11998   if (!Subtarget->hasNEON())
11999     return SDValue();
12000 
12001   SDValue Op = N->getOperand(0);
12002   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
12003       Op.getOpcode() != ISD::FMUL)
12004     return SDValue();
12005 
12006   SDValue ConstVec = Op->getOperand(1);
12007   if (!isa<BuildVectorSDNode>(ConstVec))
12008     return SDValue();
12009 
12010   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
12011   uint32_t FloatBits = FloatTy.getSizeInBits();
12012   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
12013   uint32_t IntBits = IntTy.getSizeInBits();
12014   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12015   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12016     // These instructions only exist converting from f32 to i32. We can handle
12017     // smaller integers by generating an extra truncate, but larger ones would
12018     // be lossy. We also can't handle more then 4 lanes, since these intructions
12019     // only support v2i32/v4i32 types.
12020     return SDValue();
12021   }
12022 
12023   BitVector UndefElements;
12024   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12025   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12026   if (C == -1 || C == 0 || C > 32)
12027     return SDValue();
12028 
12029   SDLoc dl(N);
12030   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
12031   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
12032     Intrinsic::arm_neon_vcvtfp2fxu;
12033   SDValue FixConv = DAG.getNode(
12034       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12035       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
12036       DAG.getConstant(C, dl, MVT::i32));
12037 
12038   if (IntBits < FloatBits)
12039     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
12040 
12041   return FixConv;
12042 }
12043 
12044 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12045 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12046 /// when the VDIV has a constant operand that is a power of 2.
12047 ///
12048 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12049 ///  vcvt.f32.s32    d16, d16
12050 ///  vdiv.f32        d16, d17, d16
12051 /// becomes:
12052 ///  vcvt.f32.s32    d16, d16, #3
12053 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
12054                                   const ARMSubtarget *Subtarget) {
12055   if (!Subtarget->hasNEON())
12056     return SDValue();
12057 
12058   SDValue Op = N->getOperand(0);
12059   unsigned OpOpcode = Op.getNode()->getOpcode();
12060   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
12061       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
12062     return SDValue();
12063 
12064   SDValue ConstVec = N->getOperand(1);
12065   if (!isa<BuildVectorSDNode>(ConstVec))
12066     return SDValue();
12067 
12068   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
12069   uint32_t FloatBits = FloatTy.getSizeInBits();
12070   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
12071   uint32_t IntBits = IntTy.getSizeInBits();
12072   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12073   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12074     // These instructions only exist converting from i32 to f32. We can handle
12075     // smaller integers by generating an extra extend, but larger ones would
12076     // be lossy. We also can't handle more then 4 lanes, since these intructions
12077     // only support v2i32/v4i32 types.
12078     return SDValue();
12079   }
12080 
12081   BitVector UndefElements;
12082   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12083   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12084   if (C == -1 || C == 0 || C > 32)
12085     return SDValue();
12086 
12087   SDLoc dl(N);
12088   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
12089   SDValue ConvInput = Op.getOperand(0);
12090   if (IntBits < FloatBits)
12091     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
12092                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12093                             ConvInput);
12094 
12095   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
12096     Intrinsic::arm_neon_vcvtfxu2fp;
12097   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
12098                      Op.getValueType(),
12099                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
12100                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
12101 }
12102 
12103 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
12104 /// operand of a vector shift operation, where all the elements of the
12105 /// build_vector must have the same constant integer value.
12106 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
12107   // Ignore bit_converts.
12108   while (Op.getOpcode() == ISD::BITCAST)
12109     Op = Op.getOperand(0);
12110   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
12111   APInt SplatBits, SplatUndef;
12112   unsigned SplatBitSize;
12113   bool HasAnyUndefs;
12114   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
12115                                       HasAnyUndefs, ElementBits) ||
12116       SplatBitSize > ElementBits)
12117     return false;
12118   Cnt = SplatBits.getSExtValue();
12119   return true;
12120 }
12121 
12122 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
12123 /// operand of a vector shift left operation.  That value must be in the range:
12124 ///   0 <= Value < ElementBits for a left shift; or
12125 ///   0 <= Value <= ElementBits for a long left shift.
12126 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
12127   assert(VT.isVector() && "vector shift count is not a vector type");
12128   int64_t ElementBits = VT.getScalarSizeInBits();
12129   if (! getVShiftImm(Op, ElementBits, Cnt))
12130     return false;
12131   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
12132 }
12133 
12134 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
12135 /// operand of a vector shift right operation.  For a shift opcode, the value
12136 /// is positive, but for an intrinsic the value count must be negative. The
12137 /// absolute value must be in the range:
12138 ///   1 <= |Value| <= ElementBits for a right shift; or
12139 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
12140 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
12141                          int64_t &Cnt) {
12142   assert(VT.isVector() && "vector shift count is not a vector type");
12143   int64_t ElementBits = VT.getScalarSizeInBits();
12144   if (! getVShiftImm(Op, ElementBits, Cnt))
12145     return false;
12146   if (!isIntrinsic)
12147     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
12148   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
12149     Cnt = -Cnt;
12150     return true;
12151   }
12152   return false;
12153 }
12154 
12155 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
12156 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
12157   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12158   switch (IntNo) {
12159   default:
12160     // Don't do anything for most intrinsics.
12161     break;
12162 
12163   // Vector shifts: check for immediate versions and lower them.
12164   // Note: This is done during DAG combining instead of DAG legalizing because
12165   // the build_vectors for 64-bit vector element shift counts are generally
12166   // not legal, and it is hard to see their values after they get legalized to
12167   // loads from a constant pool.
12168   case Intrinsic::arm_neon_vshifts:
12169   case Intrinsic::arm_neon_vshiftu:
12170   case Intrinsic::arm_neon_vrshifts:
12171   case Intrinsic::arm_neon_vrshiftu:
12172   case Intrinsic::arm_neon_vrshiftn:
12173   case Intrinsic::arm_neon_vqshifts:
12174   case Intrinsic::arm_neon_vqshiftu:
12175   case Intrinsic::arm_neon_vqshiftsu:
12176   case Intrinsic::arm_neon_vqshiftns:
12177   case Intrinsic::arm_neon_vqshiftnu:
12178   case Intrinsic::arm_neon_vqshiftnsu:
12179   case Intrinsic::arm_neon_vqrshiftns:
12180   case Intrinsic::arm_neon_vqrshiftnu:
12181   case Intrinsic::arm_neon_vqrshiftnsu: {
12182     EVT VT = N->getOperand(1).getValueType();
12183     int64_t Cnt;
12184     unsigned VShiftOpc = 0;
12185 
12186     switch (IntNo) {
12187     case Intrinsic::arm_neon_vshifts:
12188     case Intrinsic::arm_neon_vshiftu:
12189       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
12190         VShiftOpc = ARMISD::VSHL;
12191         break;
12192       }
12193       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
12194         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
12195                      ARMISD::VSHRs : ARMISD::VSHRu);
12196         break;
12197       }
12198       return SDValue();
12199 
12200     case Intrinsic::arm_neon_vrshifts:
12201     case Intrinsic::arm_neon_vrshiftu:
12202       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
12203         break;
12204       return SDValue();
12205 
12206     case Intrinsic::arm_neon_vqshifts:
12207     case Intrinsic::arm_neon_vqshiftu:
12208       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12209         break;
12210       return SDValue();
12211 
12212     case Intrinsic::arm_neon_vqshiftsu:
12213       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12214         break;
12215       llvm_unreachable("invalid shift count for vqshlu intrinsic");
12216 
12217     case Intrinsic::arm_neon_vrshiftn:
12218     case Intrinsic::arm_neon_vqshiftns:
12219     case Intrinsic::arm_neon_vqshiftnu:
12220     case Intrinsic::arm_neon_vqshiftnsu:
12221     case Intrinsic::arm_neon_vqrshiftns:
12222     case Intrinsic::arm_neon_vqrshiftnu:
12223     case Intrinsic::arm_neon_vqrshiftnsu:
12224       // Narrowing shifts require an immediate right shift.
12225       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
12226         break;
12227       llvm_unreachable("invalid shift count for narrowing vector shift "
12228                        "intrinsic");
12229 
12230     default:
12231       llvm_unreachable("unhandled vector shift");
12232     }
12233 
12234     switch (IntNo) {
12235     case Intrinsic::arm_neon_vshifts:
12236     case Intrinsic::arm_neon_vshiftu:
12237       // Opcode already set above.
12238       break;
12239     case Intrinsic::arm_neon_vrshifts:
12240       VShiftOpc = ARMISD::VRSHRs; break;
12241     case Intrinsic::arm_neon_vrshiftu:
12242       VShiftOpc = ARMISD::VRSHRu; break;
12243     case Intrinsic::arm_neon_vrshiftn:
12244       VShiftOpc = ARMISD::VRSHRN; break;
12245     case Intrinsic::arm_neon_vqshifts:
12246       VShiftOpc = ARMISD::VQSHLs; break;
12247     case Intrinsic::arm_neon_vqshiftu:
12248       VShiftOpc = ARMISD::VQSHLu; break;
12249     case Intrinsic::arm_neon_vqshiftsu:
12250       VShiftOpc = ARMISD::VQSHLsu; break;
12251     case Intrinsic::arm_neon_vqshiftns:
12252       VShiftOpc = ARMISD::VQSHRNs; break;
12253     case Intrinsic::arm_neon_vqshiftnu:
12254       VShiftOpc = ARMISD::VQSHRNu; break;
12255     case Intrinsic::arm_neon_vqshiftnsu:
12256       VShiftOpc = ARMISD::VQSHRNsu; break;
12257     case Intrinsic::arm_neon_vqrshiftns:
12258       VShiftOpc = ARMISD::VQRSHRNs; break;
12259     case Intrinsic::arm_neon_vqrshiftnu:
12260       VShiftOpc = ARMISD::VQRSHRNu; break;
12261     case Intrinsic::arm_neon_vqrshiftnsu:
12262       VShiftOpc = ARMISD::VQRSHRNsu; break;
12263     }
12264 
12265     SDLoc dl(N);
12266     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12267                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
12268   }
12269 
12270   case Intrinsic::arm_neon_vshiftins: {
12271     EVT VT = N->getOperand(1).getValueType();
12272     int64_t Cnt;
12273     unsigned VShiftOpc = 0;
12274 
12275     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
12276       VShiftOpc = ARMISD::VSLI;
12277     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
12278       VShiftOpc = ARMISD::VSRI;
12279     else {
12280       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
12281     }
12282 
12283     SDLoc dl(N);
12284     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12285                        N->getOperand(1), N->getOperand(2),
12286                        DAG.getConstant(Cnt, dl, MVT::i32));
12287   }
12288 
12289   case Intrinsic::arm_neon_vqrshifts:
12290   case Intrinsic::arm_neon_vqrshiftu:
12291     // No immediate versions of these to check for.
12292     break;
12293   }
12294 
12295   return SDValue();
12296 }
12297 
12298 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
12299 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
12300 /// combining instead of DAG legalizing because the build_vectors for 64-bit
12301 /// vector element shift counts are generally not legal, and it is hard to see
12302 /// their values after they get legalized to loads from a constant pool.
12303 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
12304                                    const ARMSubtarget *ST) {
12305   EVT VT = N->getValueType(0);
12306   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
12307     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
12308     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
12309     SDValue N1 = N->getOperand(1);
12310     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
12311       SDValue N0 = N->getOperand(0);
12312       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
12313           DAG.MaskedValueIsZero(N0.getOperand(0),
12314                                 APInt::getHighBitsSet(32, 16)))
12315         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
12316     }
12317   }
12318 
12319   // Nothing to be done for scalar shifts.
12320   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12321   if (!VT.isVector() || !TLI.isTypeLegal(VT))
12322     return SDValue();
12323 
12324   assert(ST->hasNEON() && "unexpected vector shift");
12325   int64_t Cnt;
12326 
12327   switch (N->getOpcode()) {
12328   default: llvm_unreachable("unexpected shift opcode");
12329 
12330   case ISD::SHL:
12331     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
12332       SDLoc dl(N);
12333       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
12334                          DAG.getConstant(Cnt, dl, MVT::i32));
12335     }
12336     break;
12337 
12338   case ISD::SRA:
12339   case ISD::SRL:
12340     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
12341       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
12342                             ARMISD::VSHRs : ARMISD::VSHRu);
12343       SDLoc dl(N);
12344       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
12345                          DAG.getConstant(Cnt, dl, MVT::i32));
12346     }
12347   }
12348   return SDValue();
12349 }
12350 
12351 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
12352 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
12353 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
12354                                     const ARMSubtarget *ST) {
12355   SDValue N0 = N->getOperand(0);
12356 
12357   // Check for sign- and zero-extensions of vector extract operations of 8-
12358   // and 16-bit vector elements.  NEON supports these directly.  They are
12359   // handled during DAG combining because type legalization will promote them
12360   // to 32-bit types and it is messy to recognize the operations after that.
12361   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12362     SDValue Vec = N0.getOperand(0);
12363     SDValue Lane = N0.getOperand(1);
12364     EVT VT = N->getValueType(0);
12365     EVT EltVT = N0.getValueType();
12366     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12367 
12368     if (VT == MVT::i32 &&
12369         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
12370         TLI.isTypeLegal(Vec.getValueType()) &&
12371         isa<ConstantSDNode>(Lane)) {
12372 
12373       unsigned Opc = 0;
12374       switch (N->getOpcode()) {
12375       default: llvm_unreachable("unexpected opcode");
12376       case ISD::SIGN_EXTEND:
12377         Opc = ARMISD::VGETLANEs;
12378         break;
12379       case ISD::ZERO_EXTEND:
12380       case ISD::ANY_EXTEND:
12381         Opc = ARMISD::VGETLANEu;
12382         break;
12383       }
12384       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
12385     }
12386   }
12387 
12388   return SDValue();
12389 }
12390 
12391 static const APInt *isPowerOf2Constant(SDValue V) {
12392   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12393   if (!C)
12394     return nullptr;
12395   const APInt *CV = &C->getAPIntValue();
12396   return CV->isPowerOf2() ? CV : nullptr;
12397 }
12398 
12399 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
12400   // If we have a CMOV, OR and AND combination such as:
12401   //   if (x & CN)
12402   //     y |= CM;
12403   //
12404   // And:
12405   //   * CN is a single bit;
12406   //   * All bits covered by CM are known zero in y
12407   //
12408   // Then we can convert this into a sequence of BFI instructions. This will
12409   // always be a win if CM is a single bit, will always be no worse than the
12410   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
12411   // three bits (due to the extra IT instruction).
12412 
12413   SDValue Op0 = CMOV->getOperand(0);
12414   SDValue Op1 = CMOV->getOperand(1);
12415   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
12416   auto CC = CCNode->getAPIntValue().getLimitedValue();
12417   SDValue CmpZ = CMOV->getOperand(4);
12418 
12419   // The compare must be against zero.
12420   if (!isNullConstant(CmpZ->getOperand(1)))
12421     return SDValue();
12422 
12423   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
12424   SDValue And = CmpZ->getOperand(0);
12425   if (And->getOpcode() != ISD::AND)
12426     return SDValue();
12427   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
12428   if (!AndC)
12429     return SDValue();
12430   SDValue X = And->getOperand(0);
12431 
12432   if (CC == ARMCC::EQ) {
12433     // We're performing an "equal to zero" compare. Swap the operands so we
12434     // canonicalize on a "not equal to zero" compare.
12435     std::swap(Op0, Op1);
12436   } else {
12437     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
12438   }
12439 
12440   if (Op1->getOpcode() != ISD::OR)
12441     return SDValue();
12442 
12443   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
12444   if (!OrC)
12445     return SDValue();
12446   SDValue Y = Op1->getOperand(0);
12447 
12448   if (Op0 != Y)
12449     return SDValue();
12450 
12451   // Now, is it profitable to continue?
12452   APInt OrCI = OrC->getAPIntValue();
12453   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
12454   if (OrCI.countPopulation() > Heuristic)
12455     return SDValue();
12456 
12457   // Lastly, can we determine that the bits defined by OrCI
12458   // are zero in Y?
12459   KnownBits Known;
12460   DAG.computeKnownBits(Y, Known);
12461   if ((OrCI & Known.Zero) != OrCI)
12462     return SDValue();
12463 
12464   // OK, we can do the combine.
12465   SDValue V = Y;
12466   SDLoc dl(X);
12467   EVT VT = X.getValueType();
12468   unsigned BitInX = AndC->logBase2();
12469 
12470   if (BitInX != 0) {
12471     // We must shift X first.
12472     X = DAG.getNode(ISD::SRL, dl, VT, X,
12473                     DAG.getConstant(BitInX, dl, VT));
12474   }
12475 
12476   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
12477        BitInY < NumActiveBits; ++BitInY) {
12478     if (OrCI[BitInY] == 0)
12479       continue;
12480     APInt Mask(VT.getSizeInBits(), 0);
12481     Mask.setBit(BitInY);
12482     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
12483                     // Confusingly, the operand is an *inverted* mask.
12484                     DAG.getConstant(~Mask, dl, VT));
12485   }
12486 
12487   return V;
12488 }
12489 
12490 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
12491 SDValue
12492 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
12493   SDValue Cmp = N->getOperand(4);
12494   if (Cmp.getOpcode() != ARMISD::CMPZ)
12495     // Only looking at NE cases.
12496     return SDValue();
12497 
12498   EVT VT = N->getValueType(0);
12499   SDLoc dl(N);
12500   SDValue LHS = Cmp.getOperand(0);
12501   SDValue RHS = Cmp.getOperand(1);
12502   SDValue Chain = N->getOperand(0);
12503   SDValue BB = N->getOperand(1);
12504   SDValue ARMcc = N->getOperand(2);
12505   ARMCC::CondCodes CC =
12506     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12507 
12508   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
12509   // -> (brcond Chain BB CC CPSR Cmp)
12510   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
12511       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
12512       LHS->getOperand(0)->hasOneUse()) {
12513     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
12514     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
12515     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12516     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12517     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
12518         (LHS01C && LHS01C->getZExtValue() == 1) &&
12519         (LHS1C && LHS1C->getZExtValue() == 1) &&
12520         (RHSC && RHSC->getZExtValue() == 0)) {
12521       return DAG.getNode(
12522           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
12523           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
12524     }
12525   }
12526 
12527   return SDValue();
12528 }
12529 
12530 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
12531 SDValue
12532 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
12533   SDValue Cmp = N->getOperand(4);
12534   if (Cmp.getOpcode() != ARMISD::CMPZ)
12535     // Only looking at EQ and NE cases.
12536     return SDValue();
12537 
12538   EVT VT = N->getValueType(0);
12539   SDLoc dl(N);
12540   SDValue LHS = Cmp.getOperand(0);
12541   SDValue RHS = Cmp.getOperand(1);
12542   SDValue FalseVal = N->getOperand(0);
12543   SDValue TrueVal = N->getOperand(1);
12544   SDValue ARMcc = N->getOperand(2);
12545   ARMCC::CondCodes CC =
12546     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12547 
12548   // BFI is only available on V6T2+.
12549   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
12550     SDValue R = PerformCMOVToBFICombine(N, DAG);
12551     if (R)
12552       return R;
12553   }
12554 
12555   // Simplify
12556   //   mov     r1, r0
12557   //   cmp     r1, x
12558   //   mov     r0, y
12559   //   moveq   r0, x
12560   // to
12561   //   cmp     r0, x
12562   //   movne   r0, y
12563   //
12564   //   mov     r1, r0
12565   //   cmp     r1, x
12566   //   mov     r0, x
12567   //   movne   r0, y
12568   // to
12569   //   cmp     r0, x
12570   //   movne   r0, y
12571   /// FIXME: Turn this into a target neutral optimization?
12572   SDValue Res;
12573   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
12574     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
12575                       N->getOperand(3), Cmp);
12576   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
12577     SDValue ARMcc;
12578     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
12579     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
12580                       N->getOperand(3), NewCmp);
12581   }
12582 
12583   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
12584   // -> (cmov F T CC CPSR Cmp)
12585   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
12586     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
12587     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12588     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12589     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
12590         (LHS1C && LHS1C->getZExtValue() == 1) &&
12591         (RHSC && RHSC->getZExtValue() == 0)) {
12592       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
12593                          LHS->getOperand(2), LHS->getOperand(3),
12594                          LHS->getOperand(4));
12595     }
12596   }
12597 
12598   if (!VT.isInteger())
12599       return SDValue();
12600 
12601   // Materialize a boolean comparison for integers so we can avoid branching.
12602   if (isNullConstant(FalseVal)) {
12603     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
12604       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
12605         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
12606         // right 5 bits will make that 32 be 1, otherwise it will be 0.
12607         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
12608         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12609         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
12610                           DAG.getConstant(5, dl, MVT::i32));
12611       } else {
12612         // CMOV 0, 1, ==, (CMPZ x, y) ->
12613         //     (ADDCARRY (SUB x, y), t:0, t:1)
12614         // where t = (SUBCARRY 0, (SUB x, y), 0)
12615         //
12616         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
12617         // x != y. In other words, a carry C == 1 when x == y, C == 0
12618         // otherwise.
12619         // The final ADDCARRY computes
12620         //     x - y + (0 - (x - y)) + C == C
12621         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12622         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12623         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
12624         // ISD::SUBCARRY returns a borrow but we want the carry here
12625         // actually.
12626         SDValue Carry =
12627             DAG.getNode(ISD::SUB, dl, MVT::i32,
12628                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
12629         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
12630       }
12631     } else if (CC == ARMCC::NE && LHS != RHS &&
12632                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
12633       // This seems pointless but will allow us to combine it further below.
12634       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
12635       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12636       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
12637                         N->getOperand(3), Cmp);
12638     }
12639   } else if (isNullConstant(TrueVal)) {
12640     if (CC == ARMCC::EQ && LHS != RHS &&
12641         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
12642       // This seems pointless but will allow us to combine it further below
12643       // Note that we change == for != as this is the dual for the case above.
12644       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
12645       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12646       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
12647                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
12648                         N->getOperand(3), Cmp);
12649     }
12650   }
12651 
12652   // On Thumb1, the DAG above may be further combined if z is a power of 2
12653   // (z == 2 ^ K).
12654   // CMOV (SUB x, y), z, !=, (CMPZ x, y) ->
12655   //       merge t3, t4
12656   // where t1 = (SUBCARRY (SUB x, y), z, 0)
12657   //       t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
12658   //       t3 = if K != 0 then (SHL t2:0, K) else t2:0
12659   //       t4 = (SUB 1, t2:1)   [ we want a carry, not a borrow ]
12660   const APInt *TrueConst;
12661   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
12662       (FalseVal.getOpcode() == ISD::SUB) && (FalseVal.getOperand(0) == LHS) &&
12663       (FalseVal.getOperand(1) == RHS) &&
12664       (TrueConst = isPowerOf2Constant(TrueVal))) {
12665     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12666     unsigned ShiftAmount = TrueConst->logBase2();
12667     if (ShiftAmount)
12668       TrueVal = DAG.getConstant(1, dl, VT);
12669     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
12670     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
12671     // Make it a carry, not a borrow.
12672     SDValue Carry = DAG.getNode(
12673         ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1));
12674     Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry);
12675 
12676     if (ShiftAmount)
12677       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
12678                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
12679   }
12680 
12681   if (Res.getNode()) {
12682     KnownBits Known;
12683     DAG.computeKnownBits(SDValue(N,0), Known);
12684     // Capture demanded bits information that would be otherwise lost.
12685     if (Known.Zero == 0xfffffffe)
12686       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12687                         DAG.getValueType(MVT::i1));
12688     else if (Known.Zero == 0xffffff00)
12689       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12690                         DAG.getValueType(MVT::i8));
12691     else if (Known.Zero == 0xffff0000)
12692       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12693                         DAG.getValueType(MVT::i16));
12694   }
12695 
12696   return Res;
12697 }
12698 
12699 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
12700                                              DAGCombinerInfo &DCI) const {
12701   switch (N->getOpcode()) {
12702   default: break;
12703   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
12704   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
12705   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
12706   case ISD::SUB:        return PerformSUBCombine(N, DCI);
12707   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
12708   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
12709   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
12710   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
12711   case ARMISD::ADDC:
12712   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
12713   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
12714   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
12715   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
12716   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
12717   case ISD::STORE:      return PerformSTORECombine(N, DCI);
12718   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
12719   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
12720   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
12721   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
12722   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
12723   case ISD::FP_TO_SINT:
12724   case ISD::FP_TO_UINT:
12725     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
12726   case ISD::FDIV:
12727     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
12728   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
12729   case ISD::SHL:
12730   case ISD::SRA:
12731   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
12732   case ISD::SIGN_EXTEND:
12733   case ISD::ZERO_EXTEND:
12734   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
12735   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
12736   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
12737   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
12738   case ARMISD::VLD1DUP:
12739   case ARMISD::VLD2DUP:
12740   case ARMISD::VLD3DUP:
12741   case ARMISD::VLD4DUP:
12742     return PerformVLDCombine(N, DCI);
12743   case ARMISD::BUILD_VECTOR:
12744     return PerformARMBUILD_VECTORCombine(N, DCI);
12745   case ARMISD::SMULWB: {
12746     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12747     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12748     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12749       return SDValue();
12750     break;
12751   }
12752   case ARMISD::SMULWT: {
12753     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12754     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12755     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12756       return SDValue();
12757     break;
12758   }
12759   case ARMISD::SMLALBB: {
12760     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12761     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12762     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12763         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12764       return SDValue();
12765     break;
12766   }
12767   case ARMISD::SMLALBT: {
12768     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
12769     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12770     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
12771     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12772     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
12773         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
12774       return SDValue();
12775     break;
12776   }
12777   case ARMISD::SMLALTB: {
12778     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
12779     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12780     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
12781     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12782     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
12783         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
12784       return SDValue();
12785     break;
12786   }
12787   case ARMISD::SMLALTT: {
12788     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12789     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12790     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12791         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12792       return SDValue();
12793     break;
12794   }
12795   case ISD::INTRINSIC_VOID:
12796   case ISD::INTRINSIC_W_CHAIN:
12797     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12798     case Intrinsic::arm_neon_vld1:
12799     case Intrinsic::arm_neon_vld2:
12800     case Intrinsic::arm_neon_vld3:
12801     case Intrinsic::arm_neon_vld4:
12802     case Intrinsic::arm_neon_vld2lane:
12803     case Intrinsic::arm_neon_vld3lane:
12804     case Intrinsic::arm_neon_vld4lane:
12805     case Intrinsic::arm_neon_vst1:
12806     case Intrinsic::arm_neon_vst2:
12807     case Intrinsic::arm_neon_vst3:
12808     case Intrinsic::arm_neon_vst4:
12809     case Intrinsic::arm_neon_vst2lane:
12810     case Intrinsic::arm_neon_vst3lane:
12811     case Intrinsic::arm_neon_vst4lane:
12812       return PerformVLDCombine(N, DCI);
12813     default: break;
12814     }
12815     break;
12816   }
12817   return SDValue();
12818 }
12819 
12820 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
12821                                                           EVT VT) const {
12822   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
12823 }
12824 
12825 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
12826                                                        unsigned,
12827                                                        unsigned,
12828                                                        bool *Fast) const {
12829   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
12830   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
12831 
12832   switch (VT.getSimpleVT().SimpleTy) {
12833   default:
12834     return false;
12835   case MVT::i8:
12836   case MVT::i16:
12837   case MVT::i32: {
12838     // Unaligned access can use (for example) LRDB, LRDH, LDR
12839     if (AllowsUnaligned) {
12840       if (Fast)
12841         *Fast = Subtarget->hasV7Ops();
12842       return true;
12843     }
12844     return false;
12845   }
12846   case MVT::f64:
12847   case MVT::v2f64: {
12848     // For any little-endian targets with neon, we can support unaligned ld/st
12849     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
12850     // A big-endian target may also explicitly support unaligned accesses
12851     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
12852       if (Fast)
12853         *Fast = true;
12854       return true;
12855     }
12856     return false;
12857   }
12858   }
12859 }
12860 
12861 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
12862                        unsigned AlignCheck) {
12863   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
12864           (DstAlign == 0 || DstAlign % AlignCheck == 0));
12865 }
12866 
12867 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
12868                                            unsigned DstAlign, unsigned SrcAlign,
12869                                            bool IsMemset, bool ZeroMemset,
12870                                            bool MemcpyStrSrc,
12871                                            MachineFunction &MF) const {
12872   const Function &F = MF.getFunction();
12873 
12874   // See if we can use NEON instructions for this...
12875   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
12876       !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
12877     bool Fast;
12878     if (Size >= 16 &&
12879         (memOpAlign(SrcAlign, DstAlign, 16) ||
12880          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
12881       return MVT::v2f64;
12882     } else if (Size >= 8 &&
12883                (memOpAlign(SrcAlign, DstAlign, 8) ||
12884                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
12885                  Fast))) {
12886       return MVT::f64;
12887     }
12888   }
12889 
12890   // Let the target-independent logic figure it out.
12891   return MVT::Other;
12892 }
12893 
12894 // 64-bit integers are split into their high and low parts and held in two
12895 // different registers, so the trunc is free since the low register can just
12896 // be used.
12897 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
12898   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
12899     return false;
12900   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
12901   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
12902   return (SrcBits == 64 && DestBits == 32);
12903 }
12904 
12905 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
12906   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
12907       !DstVT.isInteger())
12908     return false;
12909   unsigned SrcBits = SrcVT.getSizeInBits();
12910   unsigned DestBits = DstVT.getSizeInBits();
12911   return (SrcBits == 64 && DestBits == 32);
12912 }
12913 
12914 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12915   if (Val.getOpcode() != ISD::LOAD)
12916     return false;
12917 
12918   EVT VT1 = Val.getValueType();
12919   if (!VT1.isSimple() || !VT1.isInteger() ||
12920       !VT2.isSimple() || !VT2.isInteger())
12921     return false;
12922 
12923   switch (VT1.getSimpleVT().SimpleTy) {
12924   default: break;
12925   case MVT::i1:
12926   case MVT::i8:
12927   case MVT::i16:
12928     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
12929     return true;
12930   }
12931 
12932   return false;
12933 }
12934 
12935 bool ARMTargetLowering::isFNegFree(EVT VT) const {
12936   if (!VT.isSimple())
12937     return false;
12938 
12939   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
12940   // negate values directly (fneg is free). So, we don't want to let the DAG
12941   // combiner rewrite fneg into xors and some other instructions.  For f16 and
12942   // FullFP16 argument passing, some bitcast nodes may be introduced,
12943   // triggering this DAG combine rewrite, so we are avoiding that with this.
12944   switch (VT.getSimpleVT().SimpleTy) {
12945   default: break;
12946   case MVT::f16:
12947     return Subtarget->hasFullFP16();
12948   }
12949 
12950   return false;
12951 }
12952 
12953 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
12954   EVT VT = ExtVal.getValueType();
12955 
12956   if (!isTypeLegal(VT))
12957     return false;
12958 
12959   // Don't create a loadext if we can fold the extension into a wide/long
12960   // instruction.
12961   // If there's more than one user instruction, the loadext is desirable no
12962   // matter what.  There can be two uses by the same instruction.
12963   if (ExtVal->use_empty() ||
12964       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
12965     return true;
12966 
12967   SDNode *U = *ExtVal->use_begin();
12968   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
12969        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
12970     return false;
12971 
12972   return true;
12973 }
12974 
12975 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
12976   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12977     return false;
12978 
12979   if (!isTypeLegal(EVT::getEVT(Ty1)))
12980     return false;
12981 
12982   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
12983 
12984   // Assuming the caller doesn't have a zeroext or signext return parameter,
12985   // truncation all the way down to i1 is valid.
12986   return true;
12987 }
12988 
12989 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
12990                                                 const AddrMode &AM, Type *Ty,
12991                                                 unsigned AS) const {
12992   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
12993     if (Subtarget->hasFPAO())
12994       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
12995     return 0;
12996   }
12997   return -1;
12998 }
12999 
13000 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
13001   if (V < 0)
13002     return false;
13003 
13004   unsigned Scale = 1;
13005   switch (VT.getSimpleVT().SimpleTy) {
13006   default: return false;
13007   case MVT::i1:
13008   case MVT::i8:
13009     // Scale == 1;
13010     break;
13011   case MVT::i16:
13012     // Scale == 2;
13013     Scale = 2;
13014     break;
13015   case MVT::i32:
13016     // Scale == 4;
13017     Scale = 4;
13018     break;
13019   }
13020 
13021   if ((V & (Scale - 1)) != 0)
13022     return false;
13023   V /= Scale;
13024   return V == (V & ((1LL << 5) - 1));
13025 }
13026 
13027 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
13028                                       const ARMSubtarget *Subtarget) {
13029   bool isNeg = false;
13030   if (V < 0) {
13031     isNeg = true;
13032     V = - V;
13033   }
13034 
13035   switch (VT.getSimpleVT().SimpleTy) {
13036   default: return false;
13037   case MVT::i1:
13038   case MVT::i8:
13039   case MVT::i16:
13040   case MVT::i32:
13041     // + imm12 or - imm8
13042     if (isNeg)
13043       return V == (V & ((1LL << 8) - 1));
13044     return V == (V & ((1LL << 12) - 1));
13045   case MVT::f32:
13046   case MVT::f64:
13047     // Same as ARM mode. FIXME: NEON?
13048     if (!Subtarget->hasVFP2())
13049       return false;
13050     if ((V & 3) != 0)
13051       return false;
13052     V >>= 2;
13053     return V == (V & ((1LL << 8) - 1));
13054   }
13055 }
13056 
13057 /// isLegalAddressImmediate - Return true if the integer value can be used
13058 /// as the offset of the target addressing mode for load / store of the
13059 /// given type.
13060 static bool isLegalAddressImmediate(int64_t V, EVT VT,
13061                                     const ARMSubtarget *Subtarget) {
13062   if (V == 0)
13063     return true;
13064 
13065   if (!VT.isSimple())
13066     return false;
13067 
13068   if (Subtarget->isThumb1Only())
13069     return isLegalT1AddressImmediate(V, VT);
13070   else if (Subtarget->isThumb2())
13071     return isLegalT2AddressImmediate(V, VT, Subtarget);
13072 
13073   // ARM mode.
13074   if (V < 0)
13075     V = - V;
13076   switch (VT.getSimpleVT().SimpleTy) {
13077   default: return false;
13078   case MVT::i1:
13079   case MVT::i8:
13080   case MVT::i32:
13081     // +- imm12
13082     return V == (V & ((1LL << 12) - 1));
13083   case MVT::i16:
13084     // +- imm8
13085     return V == (V & ((1LL << 8) - 1));
13086   case MVT::f32:
13087   case MVT::f64:
13088     if (!Subtarget->hasVFP2()) // FIXME: NEON?
13089       return false;
13090     if ((V & 3) != 0)
13091       return false;
13092     V >>= 2;
13093     return V == (V & ((1LL << 8) - 1));
13094   }
13095 }
13096 
13097 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
13098                                                       EVT VT) const {
13099   int Scale = AM.Scale;
13100   if (Scale < 0)
13101     return false;
13102 
13103   switch (VT.getSimpleVT().SimpleTy) {
13104   default: return false;
13105   case MVT::i1:
13106   case MVT::i8:
13107   case MVT::i16:
13108   case MVT::i32:
13109     if (Scale == 1)
13110       return true;
13111     // r + r << imm
13112     Scale = Scale & ~1;
13113     return Scale == 2 || Scale == 4 || Scale == 8;
13114   case MVT::i64:
13115     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
13116     // version in Thumb mode.
13117     // r + r
13118     if (Scale == 1)
13119       return true;
13120     // r * 2 (this can be lowered to r + r).
13121     if (!AM.HasBaseReg && Scale == 2)
13122       return true;
13123     return false;
13124   case MVT::isVoid:
13125     // Note, we allow "void" uses (basically, uses that aren't loads or
13126     // stores), because arm allows folding a scale into many arithmetic
13127     // operations.  This should be made more precise and revisited later.
13128 
13129     // Allow r << imm, but the imm has to be a multiple of two.
13130     if (Scale & 1) return false;
13131     return isPowerOf2_32(Scale);
13132   }
13133 }
13134 
13135 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
13136                                                       EVT VT) const {
13137   const int Scale = AM.Scale;
13138 
13139   // Negative scales are not supported in Thumb1.
13140   if (Scale < 0)
13141     return false;
13142 
13143   // Thumb1 addressing modes do not support register scaling excepting the
13144   // following cases:
13145   // 1. Scale == 1 means no scaling.
13146   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
13147   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
13148 }
13149 
13150 /// isLegalAddressingMode - Return true if the addressing mode represented
13151 /// by AM is legal for this target, for a load/store of the specified type.
13152 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13153                                               const AddrMode &AM, Type *Ty,
13154                                               unsigned AS, Instruction *I) const {
13155   EVT VT = getValueType(DL, Ty, true);
13156   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
13157     return false;
13158 
13159   // Can never fold addr of global into load/store.
13160   if (AM.BaseGV)
13161     return false;
13162 
13163   switch (AM.Scale) {
13164   case 0:  // no scale reg, must be "r+i" or "r", or "i".
13165     break;
13166   default:
13167     // ARM doesn't support any R+R*scale+imm addr modes.
13168     if (AM.BaseOffs)
13169       return false;
13170 
13171     if (!VT.isSimple())
13172       return false;
13173 
13174     if (Subtarget->isThumb1Only())
13175       return isLegalT1ScaledAddressingMode(AM, VT);
13176 
13177     if (Subtarget->isThumb2())
13178       return isLegalT2ScaledAddressingMode(AM, VT);
13179 
13180     int Scale = AM.Scale;
13181     switch (VT.getSimpleVT().SimpleTy) {
13182     default: return false;
13183     case MVT::i1:
13184     case MVT::i8:
13185     case MVT::i32:
13186       if (Scale < 0) Scale = -Scale;
13187       if (Scale == 1)
13188         return true;
13189       // r + r << imm
13190       return isPowerOf2_32(Scale & ~1);
13191     case MVT::i16:
13192     case MVT::i64:
13193       // r +/- r
13194       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
13195         return true;
13196       // r * 2 (this can be lowered to r + r).
13197       if (!AM.HasBaseReg && Scale == 2)
13198         return true;
13199       return false;
13200 
13201     case MVT::isVoid:
13202       // Note, we allow "void" uses (basically, uses that aren't loads or
13203       // stores), because arm allows folding a scale into many arithmetic
13204       // operations.  This should be made more precise and revisited later.
13205 
13206       // Allow r << imm, but the imm has to be a multiple of two.
13207       if (Scale & 1) return false;
13208       return isPowerOf2_32(Scale);
13209     }
13210   }
13211   return true;
13212 }
13213 
13214 /// isLegalICmpImmediate - Return true if the specified immediate is legal
13215 /// icmp immediate, that is the target has icmp instructions which can compare
13216 /// a register against the immediate without having to materialize the
13217 /// immediate into a register.
13218 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13219   // Thumb2 and ARM modes can use cmn for negative immediates.
13220   if (!Subtarget->isThumb())
13221     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
13222   if (Subtarget->isThumb2())
13223     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
13224   // Thumb1 doesn't have cmn, and only 8-bit immediates.
13225   return Imm >= 0 && Imm <= 255;
13226 }
13227 
13228 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
13229 /// *or sub* immediate, that is the target has add or sub instructions which can
13230 /// add a register with the immediate without having to materialize the
13231 /// immediate into a register.
13232 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13233   // Same encoding for add/sub, just flip the sign.
13234   int64_t AbsImm = std::abs(Imm);
13235   if (!Subtarget->isThumb())
13236     return ARM_AM::getSOImmVal(AbsImm) != -1;
13237   if (Subtarget->isThumb2())
13238     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
13239   // Thumb1 only has 8-bit unsigned immediate.
13240   return AbsImm >= 0 && AbsImm <= 255;
13241 }
13242 
13243 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
13244                                       bool isSEXTLoad, SDValue &Base,
13245                                       SDValue &Offset, bool &isInc,
13246                                       SelectionDAG &DAG) {
13247   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13248     return false;
13249 
13250   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
13251     // AddressingMode 3
13252     Base = Ptr->getOperand(0);
13253     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13254       int RHSC = (int)RHS->getZExtValue();
13255       if (RHSC < 0 && RHSC > -256) {
13256         assert(Ptr->getOpcode() == ISD::ADD);
13257         isInc = false;
13258         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13259         return true;
13260       }
13261     }
13262     isInc = (Ptr->getOpcode() == ISD::ADD);
13263     Offset = Ptr->getOperand(1);
13264     return true;
13265   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
13266     // AddressingMode 2
13267     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13268       int RHSC = (int)RHS->getZExtValue();
13269       if (RHSC < 0 && RHSC > -0x1000) {
13270         assert(Ptr->getOpcode() == ISD::ADD);
13271         isInc = false;
13272         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13273         Base = Ptr->getOperand(0);
13274         return true;
13275       }
13276     }
13277 
13278     if (Ptr->getOpcode() == ISD::ADD) {
13279       isInc = true;
13280       ARM_AM::ShiftOpc ShOpcVal=
13281         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
13282       if (ShOpcVal != ARM_AM::no_shift) {
13283         Base = Ptr->getOperand(1);
13284         Offset = Ptr->getOperand(0);
13285       } else {
13286         Base = Ptr->getOperand(0);
13287         Offset = Ptr->getOperand(1);
13288       }
13289       return true;
13290     }
13291 
13292     isInc = (Ptr->getOpcode() == ISD::ADD);
13293     Base = Ptr->getOperand(0);
13294     Offset = Ptr->getOperand(1);
13295     return true;
13296   }
13297 
13298   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
13299   return false;
13300 }
13301 
13302 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
13303                                      bool isSEXTLoad, SDValue &Base,
13304                                      SDValue &Offset, bool &isInc,
13305                                      SelectionDAG &DAG) {
13306   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13307     return false;
13308 
13309   Base = Ptr->getOperand(0);
13310   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13311     int RHSC = (int)RHS->getZExtValue();
13312     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
13313       assert(Ptr->getOpcode() == ISD::ADD);
13314       isInc = false;
13315       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13316       return true;
13317     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
13318       isInc = Ptr->getOpcode() == ISD::ADD;
13319       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
13320       return true;
13321     }
13322   }
13323 
13324   return false;
13325 }
13326 
13327 /// getPreIndexedAddressParts - returns true by value, base pointer and
13328 /// offset pointer and addressing mode by reference if the node's address
13329 /// can be legally represented as pre-indexed load / store address.
13330 bool
13331 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
13332                                              SDValue &Offset,
13333                                              ISD::MemIndexedMode &AM,
13334                                              SelectionDAG &DAG) const {
13335   if (Subtarget->isThumb1Only())
13336     return false;
13337 
13338   EVT VT;
13339   SDValue Ptr;
13340   bool isSEXTLoad = false;
13341   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13342     Ptr = LD->getBasePtr();
13343     VT  = LD->getMemoryVT();
13344     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13345   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13346     Ptr = ST->getBasePtr();
13347     VT  = ST->getMemoryVT();
13348   } else
13349     return false;
13350 
13351   bool isInc;
13352   bool isLegal = false;
13353   if (Subtarget->isThumb2())
13354     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13355                                        Offset, isInc, DAG);
13356   else
13357     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13358                                         Offset, isInc, DAG);
13359   if (!isLegal)
13360     return false;
13361 
13362   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
13363   return true;
13364 }
13365 
13366 /// getPostIndexedAddressParts - returns true by value, base pointer and
13367 /// offset pointer and addressing mode by reference if this node can be
13368 /// combined with a load / store to form a post-indexed load / store.
13369 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
13370                                                    SDValue &Base,
13371                                                    SDValue &Offset,
13372                                                    ISD::MemIndexedMode &AM,
13373                                                    SelectionDAG &DAG) const {
13374   EVT VT;
13375   SDValue Ptr;
13376   bool isSEXTLoad = false, isNonExt;
13377   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13378     VT  = LD->getMemoryVT();
13379     Ptr = LD->getBasePtr();
13380     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13381     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
13382   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13383     VT  = ST->getMemoryVT();
13384     Ptr = ST->getBasePtr();
13385     isNonExt = !ST->isTruncatingStore();
13386   } else
13387     return false;
13388 
13389   if (Subtarget->isThumb1Only()) {
13390     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
13391     // must be non-extending/truncating, i32, with an offset of 4.
13392     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
13393     if (Op->getOpcode() != ISD::ADD || !isNonExt)
13394       return false;
13395     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13396     if (!RHS || RHS->getZExtValue() != 4)
13397       return false;
13398 
13399     Offset = Op->getOperand(1);
13400     Base = Op->getOperand(0);
13401     AM = ISD::POST_INC;
13402     return true;
13403   }
13404 
13405   bool isInc;
13406   bool isLegal = false;
13407   if (Subtarget->isThumb2())
13408     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13409                                        isInc, DAG);
13410   else
13411     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13412                                         isInc, DAG);
13413   if (!isLegal)
13414     return false;
13415 
13416   if (Ptr != Base) {
13417     // Swap base ptr and offset to catch more post-index load / store when
13418     // it's legal. In Thumb2 mode, offset must be an immediate.
13419     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
13420         !Subtarget->isThumb2())
13421       std::swap(Base, Offset);
13422 
13423     // Post-indexed load / store update the base pointer.
13424     if (Ptr != Base)
13425       return false;
13426   }
13427 
13428   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
13429   return true;
13430 }
13431 
13432 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13433                                                       KnownBits &Known,
13434                                                       const APInt &DemandedElts,
13435                                                       const SelectionDAG &DAG,
13436                                                       unsigned Depth) const {
13437   unsigned BitWidth = Known.getBitWidth();
13438   Known.resetAll();
13439   switch (Op.getOpcode()) {
13440   default: break;
13441   case ARMISD::ADDC:
13442   case ARMISD::ADDE:
13443   case ARMISD::SUBC:
13444   case ARMISD::SUBE:
13445     // Special cases when we convert a carry to a boolean.
13446     if (Op.getResNo() == 0) {
13447       SDValue LHS = Op.getOperand(0);
13448       SDValue RHS = Op.getOperand(1);
13449       // (ADDE 0, 0, C) will give us a single bit.
13450       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
13451           isNullConstant(RHS)) {
13452         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13453         return;
13454       }
13455     }
13456     break;
13457   case ARMISD::CMOV: {
13458     // Bits are known zero/one if known on the LHS and RHS.
13459     DAG.computeKnownBits(Op.getOperand(0), Known, Depth+1);
13460     if (Known.isUnknown())
13461       return;
13462 
13463     KnownBits KnownRHS;
13464     DAG.computeKnownBits(Op.getOperand(1), KnownRHS, Depth+1);
13465     Known.Zero &= KnownRHS.Zero;
13466     Known.One  &= KnownRHS.One;
13467     return;
13468   }
13469   case ISD::INTRINSIC_W_CHAIN: {
13470     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
13471     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
13472     switch (IntID) {
13473     default: return;
13474     case Intrinsic::arm_ldaex:
13475     case Intrinsic::arm_ldrex: {
13476       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
13477       unsigned MemBits = VT.getScalarSizeInBits();
13478       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
13479       return;
13480     }
13481     }
13482   }
13483   case ARMISD::BFI: {
13484     // Conservatively, we can recurse down the first operand
13485     // and just mask out all affected bits.
13486     DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1);
13487 
13488     // The operand to BFI is already a mask suitable for removing the bits it
13489     // sets.
13490     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
13491     const APInt &Mask = CI->getAPIntValue();
13492     Known.Zero &= Mask;
13493     Known.One &= Mask;
13494     return;
13495   }
13496   }
13497 }
13498 
13499 //===----------------------------------------------------------------------===//
13500 //                           ARM Inline Assembly Support
13501 //===----------------------------------------------------------------------===//
13502 
13503 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
13504   // Looking for "rev" which is V6+.
13505   if (!Subtarget->hasV6Ops())
13506     return false;
13507 
13508   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13509   std::string AsmStr = IA->getAsmString();
13510   SmallVector<StringRef, 4> AsmPieces;
13511   SplitString(AsmStr, AsmPieces, ";\n");
13512 
13513   switch (AsmPieces.size()) {
13514   default: return false;
13515   case 1:
13516     AsmStr = AsmPieces[0];
13517     AsmPieces.clear();
13518     SplitString(AsmStr, AsmPieces, " \t,");
13519 
13520     // rev $0, $1
13521     if (AsmPieces.size() == 3 &&
13522         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
13523         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
13524       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13525       if (Ty && Ty->getBitWidth() == 32)
13526         return IntrinsicLowering::LowerToByteSwap(CI);
13527     }
13528     break;
13529   }
13530 
13531   return false;
13532 }
13533 
13534 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
13535   // At this point, we have to lower this constraint to something else, so we
13536   // lower it to an "r" or "w". However, by doing this we will force the result
13537   // to be in register, while the X constraint is much more permissive.
13538   //
13539   // Although we are correct (we are free to emit anything, without
13540   // constraints), we might break use cases that would expect us to be more
13541   // efficient and emit something else.
13542   if (!Subtarget->hasVFP2())
13543     return "r";
13544   if (ConstraintVT.isFloatingPoint())
13545     return "w";
13546   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
13547      (ConstraintVT.getSizeInBits() == 64 ||
13548       ConstraintVT.getSizeInBits() == 128))
13549     return "w";
13550 
13551   return "r";
13552 }
13553 
13554 /// getConstraintType - Given a constraint letter, return the type of
13555 /// constraint it is for this target.
13556 ARMTargetLowering::ConstraintType
13557 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
13558   if (Constraint.size() == 1) {
13559     switch (Constraint[0]) {
13560     default:  break;
13561     case 'l': return C_RegisterClass;
13562     case 'w': return C_RegisterClass;
13563     case 'h': return C_RegisterClass;
13564     case 'x': return C_RegisterClass;
13565     case 't': return C_RegisterClass;
13566     case 'j': return C_Other; // Constant for movw.
13567       // An address with a single base register. Due to the way we
13568       // currently handle addresses it is the same as an 'r' memory constraint.
13569     case 'Q': return C_Memory;
13570     }
13571   } else if (Constraint.size() == 2) {
13572     switch (Constraint[0]) {
13573     default: break;
13574     // All 'U+' constraints are addresses.
13575     case 'U': return C_Memory;
13576     }
13577   }
13578   return TargetLowering::getConstraintType(Constraint);
13579 }
13580 
13581 /// Examine constraint type and operand type and determine a weight value.
13582 /// This object must already have been set up with the operand type
13583 /// and the current alternative constraint selected.
13584 TargetLowering::ConstraintWeight
13585 ARMTargetLowering::getSingleConstraintMatchWeight(
13586     AsmOperandInfo &info, const char *constraint) const {
13587   ConstraintWeight weight = CW_Invalid;
13588   Value *CallOperandVal = info.CallOperandVal;
13589     // If we don't have a value, we can't do a match,
13590     // but allow it at the lowest weight.
13591   if (!CallOperandVal)
13592     return CW_Default;
13593   Type *type = CallOperandVal->getType();
13594   // Look at the constraint type.
13595   switch (*constraint) {
13596   default:
13597     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13598     break;
13599   case 'l':
13600     if (type->isIntegerTy()) {
13601       if (Subtarget->isThumb())
13602         weight = CW_SpecificReg;
13603       else
13604         weight = CW_Register;
13605     }
13606     break;
13607   case 'w':
13608     if (type->isFloatingPointTy())
13609       weight = CW_Register;
13610     break;
13611   }
13612   return weight;
13613 }
13614 
13615 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
13616 
13617 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
13618     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
13619   if (Constraint.size() == 1) {
13620     // GCC ARM Constraint Letters
13621     switch (Constraint[0]) {
13622     case 'l': // Low regs or general regs.
13623       if (Subtarget->isThumb())
13624         return RCPair(0U, &ARM::tGPRRegClass);
13625       return RCPair(0U, &ARM::GPRRegClass);
13626     case 'h': // High regs or no regs.
13627       if (Subtarget->isThumb())
13628         return RCPair(0U, &ARM::hGPRRegClass);
13629       break;
13630     case 'r':
13631       if (Subtarget->isThumb1Only())
13632         return RCPair(0U, &ARM::tGPRRegClass);
13633       return RCPair(0U, &ARM::GPRRegClass);
13634     case 'w':
13635       if (VT == MVT::Other)
13636         break;
13637       if (VT == MVT::f32)
13638         return RCPair(0U, &ARM::SPRRegClass);
13639       if (VT.getSizeInBits() == 64)
13640         return RCPair(0U, &ARM::DPRRegClass);
13641       if (VT.getSizeInBits() == 128)
13642         return RCPair(0U, &ARM::QPRRegClass);
13643       break;
13644     case 'x':
13645       if (VT == MVT::Other)
13646         break;
13647       if (VT == MVT::f32)
13648         return RCPair(0U, &ARM::SPR_8RegClass);
13649       if (VT.getSizeInBits() == 64)
13650         return RCPair(0U, &ARM::DPR_8RegClass);
13651       if (VT.getSizeInBits() == 128)
13652         return RCPair(0U, &ARM::QPR_8RegClass);
13653       break;
13654     case 't':
13655       if (VT == MVT::Other)
13656         break;
13657       if (VT == MVT::f32 || VT == MVT::i32)
13658         return RCPair(0U, &ARM::SPRRegClass);
13659       if (VT.getSizeInBits() == 64)
13660         return RCPair(0U, &ARM::DPR_VFP2RegClass);
13661       if (VT.getSizeInBits() == 128)
13662         return RCPair(0U, &ARM::QPR_VFP2RegClass);
13663       break;
13664     }
13665   }
13666   if (StringRef("{cc}").equals_lower(Constraint))
13667     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
13668 
13669   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13670 }
13671 
13672 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13673 /// vector.  If it is invalid, don't add anything to Ops.
13674 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13675                                                      std::string &Constraint,
13676                                                      std::vector<SDValue>&Ops,
13677                                                      SelectionDAG &DAG) const {
13678   SDValue Result;
13679 
13680   // Currently only support length 1 constraints.
13681   if (Constraint.length() != 1) return;
13682 
13683   char ConstraintLetter = Constraint[0];
13684   switch (ConstraintLetter) {
13685   default: break;
13686   case 'j':
13687   case 'I': case 'J': case 'K': case 'L':
13688   case 'M': case 'N': case 'O':
13689     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
13690     if (!C)
13691       return;
13692 
13693     int64_t CVal64 = C->getSExtValue();
13694     int CVal = (int) CVal64;
13695     // None of these constraints allow values larger than 32 bits.  Check
13696     // that the value fits in an int.
13697     if (CVal != CVal64)
13698       return;
13699 
13700     switch (ConstraintLetter) {
13701       case 'j':
13702         // Constant suitable for movw, must be between 0 and
13703         // 65535.
13704         if (Subtarget->hasV6T2Ops())
13705           if (CVal >= 0 && CVal <= 65535)
13706             break;
13707         return;
13708       case 'I':
13709         if (Subtarget->isThumb1Only()) {
13710           // This must be a constant between 0 and 255, for ADD
13711           // immediates.
13712           if (CVal >= 0 && CVal <= 255)
13713             break;
13714         } else if (Subtarget->isThumb2()) {
13715           // A constant that can be used as an immediate value in a
13716           // data-processing instruction.
13717           if (ARM_AM::getT2SOImmVal(CVal) != -1)
13718             break;
13719         } else {
13720           // A constant that can be used as an immediate value in a
13721           // data-processing instruction.
13722           if (ARM_AM::getSOImmVal(CVal) != -1)
13723             break;
13724         }
13725         return;
13726 
13727       case 'J':
13728         if (Subtarget->isThumb1Only()) {
13729           // This must be a constant between -255 and -1, for negated ADD
13730           // immediates. This can be used in GCC with an "n" modifier that
13731           // prints the negated value, for use with SUB instructions. It is
13732           // not useful otherwise but is implemented for compatibility.
13733           if (CVal >= -255 && CVal <= -1)
13734             break;
13735         } else {
13736           // This must be a constant between -4095 and 4095. It is not clear
13737           // what this constraint is intended for. Implemented for
13738           // compatibility with GCC.
13739           if (CVal >= -4095 && CVal <= 4095)
13740             break;
13741         }
13742         return;
13743 
13744       case 'K':
13745         if (Subtarget->isThumb1Only()) {
13746           // A 32-bit value where only one byte has a nonzero value. Exclude
13747           // zero to match GCC. This constraint is used by GCC internally for
13748           // constants that can be loaded with a move/shift combination.
13749           // It is not useful otherwise but is implemented for compatibility.
13750           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
13751             break;
13752         } else if (Subtarget->isThumb2()) {
13753           // A constant whose bitwise inverse can be used as an immediate
13754           // value in a data-processing instruction. This can be used in GCC
13755           // with a "B" modifier that prints the inverted value, for use with
13756           // BIC and MVN instructions. It is not useful otherwise but is
13757           // implemented for compatibility.
13758           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
13759             break;
13760         } else {
13761           // A constant whose bitwise inverse can be used as an immediate
13762           // value in a data-processing instruction. This can be used in GCC
13763           // with a "B" modifier that prints the inverted value, for use with
13764           // BIC and MVN instructions. It is not useful otherwise but is
13765           // implemented for compatibility.
13766           if (ARM_AM::getSOImmVal(~CVal) != -1)
13767             break;
13768         }
13769         return;
13770 
13771       case 'L':
13772         if (Subtarget->isThumb1Only()) {
13773           // This must be a constant between -7 and 7,
13774           // for 3-operand ADD/SUB immediate instructions.
13775           if (CVal >= -7 && CVal < 7)
13776             break;
13777         } else if (Subtarget->isThumb2()) {
13778           // A constant whose negation can be used as an immediate value in a
13779           // data-processing instruction. This can be used in GCC with an "n"
13780           // modifier that prints the negated value, for use with SUB
13781           // instructions. It is not useful otherwise but is implemented for
13782           // compatibility.
13783           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
13784             break;
13785         } else {
13786           // A constant whose negation can be used as an immediate value in a
13787           // data-processing instruction. This can be used in GCC with an "n"
13788           // modifier that prints the negated value, for use with SUB
13789           // instructions. It is not useful otherwise but is implemented for
13790           // compatibility.
13791           if (ARM_AM::getSOImmVal(-CVal) != -1)
13792             break;
13793         }
13794         return;
13795 
13796       case 'M':
13797         if (Subtarget->isThumb1Only()) {
13798           // This must be a multiple of 4 between 0 and 1020, for
13799           // ADD sp + immediate.
13800           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
13801             break;
13802         } else {
13803           // A power of two or a constant between 0 and 32.  This is used in
13804           // GCC for the shift amount on shifted register operands, but it is
13805           // useful in general for any shift amounts.
13806           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
13807             break;
13808         }
13809         return;
13810 
13811       case 'N':
13812         if (Subtarget->isThumb()) {  // FIXME thumb2
13813           // This must be a constant between 0 and 31, for shift amounts.
13814           if (CVal >= 0 && CVal <= 31)
13815             break;
13816         }
13817         return;
13818 
13819       case 'O':
13820         if (Subtarget->isThumb()) {  // FIXME thumb2
13821           // This must be a multiple of 4 between -508 and 508, for
13822           // ADD/SUB sp = sp + immediate.
13823           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
13824             break;
13825         }
13826         return;
13827     }
13828     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
13829     break;
13830   }
13831 
13832   if (Result.getNode()) {
13833     Ops.push_back(Result);
13834     return;
13835   }
13836   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13837 }
13838 
13839 static RTLIB::Libcall getDivRemLibcall(
13840     const SDNode *N, MVT::SimpleValueType SVT) {
13841   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
13842           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
13843          "Unhandled Opcode in getDivRemLibcall");
13844   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
13845                   N->getOpcode() == ISD::SREM;
13846   RTLIB::Libcall LC;
13847   switch (SVT) {
13848   default: llvm_unreachable("Unexpected request for libcall!");
13849   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
13850   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
13851   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
13852   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
13853   }
13854   return LC;
13855 }
13856 
13857 static TargetLowering::ArgListTy getDivRemArgList(
13858     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
13859   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
13860           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
13861          "Unhandled Opcode in getDivRemArgList");
13862   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
13863                   N->getOpcode() == ISD::SREM;
13864   TargetLowering::ArgListTy Args;
13865   TargetLowering::ArgListEntry Entry;
13866   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
13867     EVT ArgVT = N->getOperand(i).getValueType();
13868     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
13869     Entry.Node = N->getOperand(i);
13870     Entry.Ty = ArgTy;
13871     Entry.IsSExt = isSigned;
13872     Entry.IsZExt = !isSigned;
13873     Args.push_back(Entry);
13874   }
13875   if (Subtarget->isTargetWindows() && Args.size() >= 2)
13876     std::swap(Args[0], Args[1]);
13877   return Args;
13878 }
13879 
13880 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
13881   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
13882           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
13883           Subtarget->isTargetWindows()) &&
13884          "Register-based DivRem lowering only");
13885   unsigned Opcode = Op->getOpcode();
13886   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
13887          "Invalid opcode for Div/Rem lowering");
13888   bool isSigned = (Opcode == ISD::SDIVREM);
13889   EVT VT = Op->getValueType(0);
13890   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
13891   SDLoc dl(Op);
13892 
13893   // If the target has hardware divide, use divide + multiply + subtract:
13894   //     div = a / b
13895   //     rem = a - b * div
13896   //     return {div, rem}
13897   // This should be lowered into UDIV/SDIV + MLS later on.
13898   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
13899                                         : Subtarget->hasDivideInARMMode();
13900   if (hasDivide && Op->getValueType(0).isSimple() &&
13901       Op->getSimpleValueType(0) == MVT::i32) {
13902     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
13903     const SDValue Dividend = Op->getOperand(0);
13904     const SDValue Divisor = Op->getOperand(1);
13905     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
13906     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
13907     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
13908 
13909     SDValue Values[2] = {Div, Rem};
13910     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
13911   }
13912 
13913   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
13914                                        VT.getSimpleVT().SimpleTy);
13915   SDValue InChain = DAG.getEntryNode();
13916 
13917   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
13918                                                     DAG.getContext(),
13919                                                     Subtarget);
13920 
13921   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
13922                                          getPointerTy(DAG.getDataLayout()));
13923 
13924   Type *RetTy = StructType::get(Ty, Ty);
13925 
13926   if (Subtarget->isTargetWindows())
13927     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
13928 
13929   TargetLowering::CallLoweringInfo CLI(DAG);
13930   CLI.setDebugLoc(dl).setChain(InChain)
13931     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
13932     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
13933 
13934   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
13935   return CallInfo.first;
13936 }
13937 
13938 // Lowers REM using divmod helpers
13939 // see RTABI section 4.2/4.3
13940 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
13941   // Build return types (div and rem)
13942   std::vector<Type*> RetTyParams;
13943   Type *RetTyElement;
13944 
13945   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
13946   default: llvm_unreachable("Unexpected request for libcall!");
13947   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
13948   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
13949   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
13950   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
13951   }
13952 
13953   RetTyParams.push_back(RetTyElement);
13954   RetTyParams.push_back(RetTyElement);
13955   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
13956   Type *RetTy = StructType::get(*DAG.getContext(), ret);
13957 
13958   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
13959                                                              SimpleTy);
13960   SDValue InChain = DAG.getEntryNode();
13961   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
13962                                                     Subtarget);
13963   bool isSigned = N->getOpcode() == ISD::SREM;
13964   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
13965                                          getPointerTy(DAG.getDataLayout()));
13966 
13967   if (Subtarget->isTargetWindows())
13968     InChain = WinDBZCheckDenominator(DAG, N, InChain);
13969 
13970   // Lower call
13971   CallLoweringInfo CLI(DAG);
13972   CLI.setChain(InChain)
13973      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
13974      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
13975   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
13976 
13977   // Return second (rem) result operand (first contains div)
13978   SDNode *ResNode = CallResult.first.getNode();
13979   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
13980   return ResNode->getOperand(1);
13981 }
13982 
13983 SDValue
13984 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
13985   assert(Subtarget->isTargetWindows() && "unsupported target platform");
13986   SDLoc DL(Op);
13987 
13988   // Get the inputs.
13989   SDValue Chain = Op.getOperand(0);
13990   SDValue Size  = Op.getOperand(1);
13991 
13992   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
13993           "no-stack-arg-probe")) {
13994     unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
13995     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
13996     Chain = SP.getValue(1);
13997     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
13998     if (Align)
13999       SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
14000                        DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
14001     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
14002     SDValue Ops[2] = { SP, Chain };
14003     return DAG.getMergeValues(Ops, DL);
14004   }
14005 
14006   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
14007                               DAG.getConstant(2, DL, MVT::i32));
14008 
14009   SDValue Flag;
14010   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
14011   Flag = Chain.getValue(1);
14012 
14013   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14014   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
14015 
14016   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14017   Chain = NewSP.getValue(1);
14018 
14019   SDValue Ops[2] = { NewSP, Chain };
14020   return DAG.getMergeValues(Ops, DL);
14021 }
14022 
14023 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
14024   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
14025          "Unexpected type for custom-lowering FP_EXTEND");
14026 
14027   RTLIB::Libcall LC;
14028   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
14029 
14030   SDValue SrcVal = Op.getOperand(0);
14031   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14032                      SDLoc(Op)).first;
14033 }
14034 
14035 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
14036   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
14037          Subtarget->isFPOnlySP() &&
14038          "Unexpected type for custom-lowering FP_ROUND");
14039 
14040   RTLIB::Libcall LC;
14041   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
14042 
14043   SDValue SrcVal = Op.getOperand(0);
14044   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14045                      SDLoc(Op)).first;
14046 }
14047 
14048 bool
14049 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14050   // The ARM target isn't yet aware of offsets.
14051   return false;
14052 }
14053 
14054 bool ARM::isBitFieldInvertedMask(unsigned v) {
14055   if (v == 0xffffffff)
14056     return false;
14057 
14058   // there can be 1's on either or both "outsides", all the "inside"
14059   // bits must be 0's
14060   return isShiftedMask_32(~v);
14061 }
14062 
14063 /// isFPImmLegal - Returns true if the target can instruction select the
14064 /// specified FP immediate natively. If false, the legalizer will
14065 /// materialize the FP immediate as a load from a constant pool.
14066 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14067   if (!Subtarget->hasVFP3())
14068     return false;
14069   if (VT == MVT::f16 && Subtarget->hasFullFP16())
14070     return ARM_AM::getFP16Imm(Imm) != -1;
14071   if (VT == MVT::f32)
14072     return ARM_AM::getFP32Imm(Imm) != -1;
14073   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
14074     return ARM_AM::getFP64Imm(Imm) != -1;
14075   return false;
14076 }
14077 
14078 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
14079 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
14080 /// specified in the intrinsic calls.
14081 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14082                                            const CallInst &I,
14083                                            MachineFunction &MF,
14084                                            unsigned Intrinsic) const {
14085   switch (Intrinsic) {
14086   case Intrinsic::arm_neon_vld1:
14087   case Intrinsic::arm_neon_vld2:
14088   case Intrinsic::arm_neon_vld3:
14089   case Intrinsic::arm_neon_vld4:
14090   case Intrinsic::arm_neon_vld2lane:
14091   case Intrinsic::arm_neon_vld3lane:
14092   case Intrinsic::arm_neon_vld4lane: {
14093     Info.opc = ISD::INTRINSIC_W_CHAIN;
14094     // Conservatively set memVT to the entire set of vectors loaded.
14095     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14096     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14097     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14098     Info.ptrVal = I.getArgOperand(0);
14099     Info.offset = 0;
14100     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14101     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14102     // volatile loads with NEON intrinsics not supported
14103     Info.flags = MachineMemOperand::MOLoad;
14104     return true;
14105   }
14106   case Intrinsic::arm_neon_vst1:
14107   case Intrinsic::arm_neon_vst2:
14108   case Intrinsic::arm_neon_vst3:
14109   case Intrinsic::arm_neon_vst4:
14110   case Intrinsic::arm_neon_vst2lane:
14111   case Intrinsic::arm_neon_vst3lane:
14112   case Intrinsic::arm_neon_vst4lane: {
14113     Info.opc = ISD::INTRINSIC_VOID;
14114     // Conservatively set memVT to the entire set of vectors stored.
14115     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14116     unsigned NumElts = 0;
14117     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14118       Type *ArgTy = I.getArgOperand(ArgI)->getType();
14119       if (!ArgTy->isVectorTy())
14120         break;
14121       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14122     }
14123     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14124     Info.ptrVal = I.getArgOperand(0);
14125     Info.offset = 0;
14126     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14127     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14128     // volatile stores with NEON intrinsics not supported
14129     Info.flags = MachineMemOperand::MOStore;
14130     return true;
14131   }
14132   case Intrinsic::arm_ldaex:
14133   case Intrinsic::arm_ldrex: {
14134     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14135     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
14136     Info.opc = ISD::INTRINSIC_W_CHAIN;
14137     Info.memVT = MVT::getVT(PtrTy->getElementType());
14138     Info.ptrVal = I.getArgOperand(0);
14139     Info.offset = 0;
14140     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14141     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14142     return true;
14143   }
14144   case Intrinsic::arm_stlex:
14145   case Intrinsic::arm_strex: {
14146     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14147     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
14148     Info.opc = ISD::INTRINSIC_W_CHAIN;
14149     Info.memVT = MVT::getVT(PtrTy->getElementType());
14150     Info.ptrVal = I.getArgOperand(1);
14151     Info.offset = 0;
14152     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14153     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14154     return true;
14155   }
14156   case Intrinsic::arm_stlexd:
14157   case Intrinsic::arm_strexd:
14158     Info.opc = ISD::INTRINSIC_W_CHAIN;
14159     Info.memVT = MVT::i64;
14160     Info.ptrVal = I.getArgOperand(2);
14161     Info.offset = 0;
14162     Info.align = 8;
14163     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14164     return true;
14165 
14166   case Intrinsic::arm_ldaexd:
14167   case Intrinsic::arm_ldrexd:
14168     Info.opc = ISD::INTRINSIC_W_CHAIN;
14169     Info.memVT = MVT::i64;
14170     Info.ptrVal = I.getArgOperand(0);
14171     Info.offset = 0;
14172     Info.align = 8;
14173     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14174     return true;
14175 
14176   default:
14177     break;
14178   }
14179 
14180   return false;
14181 }
14182 
14183 /// Returns true if it is beneficial to convert a load of a constant
14184 /// to just the constant itself.
14185 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14186                                                           Type *Ty) const {
14187   assert(Ty->isIntegerTy());
14188 
14189   unsigned Bits = Ty->getPrimitiveSizeInBits();
14190   if (Bits == 0 || Bits > 32)
14191     return false;
14192   return true;
14193 }
14194 
14195 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
14196                                                 unsigned Index) const {
14197   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
14198     return false;
14199 
14200   return (Index == 0 || Index == ResVT.getVectorNumElements());
14201 }
14202 
14203 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
14204                                         ARM_MB::MemBOpt Domain) const {
14205   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14206 
14207   // First, if the target has no DMB, see what fallback we can use.
14208   if (!Subtarget->hasDataBarrier()) {
14209     // Some ARMv6 cpus can support data barriers with an mcr instruction.
14210     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
14211     // here.
14212     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
14213       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
14214       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
14215                         Builder.getInt32(0), Builder.getInt32(7),
14216                         Builder.getInt32(10), Builder.getInt32(5)};
14217       return Builder.CreateCall(MCR, args);
14218     } else {
14219       // Instead of using barriers, atomic accesses on these subtargets use
14220       // libcalls.
14221       llvm_unreachable("makeDMB on a target so old that it has no barriers");
14222     }
14223   } else {
14224     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
14225     // Only a full system barrier exists in the M-class architectures.
14226     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
14227     Constant *CDomain = Builder.getInt32(Domain);
14228     return Builder.CreateCall(DMB, CDomain);
14229   }
14230 }
14231 
14232 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
14233 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
14234                                                  Instruction *Inst,
14235                                                  AtomicOrdering Ord) const {
14236   switch (Ord) {
14237   case AtomicOrdering::NotAtomic:
14238   case AtomicOrdering::Unordered:
14239     llvm_unreachable("Invalid fence: unordered/non-atomic");
14240   case AtomicOrdering::Monotonic:
14241   case AtomicOrdering::Acquire:
14242     return nullptr; // Nothing to do
14243   case AtomicOrdering::SequentiallyConsistent:
14244     if (!Inst->hasAtomicStore())
14245       return nullptr; // Nothing to do
14246     LLVM_FALLTHROUGH;
14247   case AtomicOrdering::Release:
14248   case AtomicOrdering::AcquireRelease:
14249     if (Subtarget->preferISHSTBarriers())
14250       return makeDMB(Builder, ARM_MB::ISHST);
14251     // FIXME: add a comment with a link to documentation justifying this.
14252     else
14253       return makeDMB(Builder, ARM_MB::ISH);
14254   }
14255   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
14256 }
14257 
14258 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
14259                                                   Instruction *Inst,
14260                                                   AtomicOrdering Ord) const {
14261   switch (Ord) {
14262   case AtomicOrdering::NotAtomic:
14263   case AtomicOrdering::Unordered:
14264     llvm_unreachable("Invalid fence: unordered/not-atomic");
14265   case AtomicOrdering::Monotonic:
14266   case AtomicOrdering::Release:
14267     return nullptr; // Nothing to do
14268   case AtomicOrdering::Acquire:
14269   case AtomicOrdering::AcquireRelease:
14270   case AtomicOrdering::SequentiallyConsistent:
14271     return makeDMB(Builder, ARM_MB::ISH);
14272   }
14273   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
14274 }
14275 
14276 // Loads and stores less than 64-bits are already atomic; ones above that
14277 // are doomed anyway, so defer to the default libcall and blame the OS when
14278 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14279 // anything for those.
14280 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
14281   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
14282   return (Size == 64) && !Subtarget->isMClass();
14283 }
14284 
14285 // Loads and stores less than 64-bits are already atomic; ones above that
14286 // are doomed anyway, so defer to the default libcall and blame the OS when
14287 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14288 // anything for those.
14289 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
14290 // guarantee, see DDI0406C ARM architecture reference manual,
14291 // sections A8.8.72-74 LDRD)
14292 TargetLowering::AtomicExpansionKind
14293 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
14294   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
14295   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
14296                                                   : AtomicExpansionKind::None;
14297 }
14298 
14299 // For the real atomic operations, we have ldrex/strex up to 32 bits,
14300 // and up to 64 bits on the non-M profiles
14301 TargetLowering::AtomicExpansionKind
14302 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
14303   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
14304   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14305   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
14306              ? AtomicExpansionKind::LLSC
14307              : AtomicExpansionKind::None;
14308 }
14309 
14310 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
14311     AtomicCmpXchgInst *AI) const {
14312   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
14313   // implement cmpxchg without spilling. If the address being exchanged is also
14314   // on the stack and close enough to the spill slot, this can lead to a
14315   // situation where the monitor always gets cleared and the atomic operation
14316   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
14317   bool hasAtomicCmpXchg =
14318       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14319   return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg;
14320 }
14321 
14322 bool ARMTargetLowering::shouldInsertFencesForAtomic(
14323     const Instruction *I) const {
14324   return InsertFencesForAtomic;
14325 }
14326 
14327 // This has so far only been implemented for MachO.
14328 bool ARMTargetLowering::useLoadStackGuardNode() const {
14329   return Subtarget->isTargetMachO();
14330 }
14331 
14332 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
14333                                                   unsigned &Cost) const {
14334   // If we do not have NEON, vector types are not natively supported.
14335   if (!Subtarget->hasNEON())
14336     return false;
14337 
14338   // Floating point values and vector values map to the same register file.
14339   // Therefore, although we could do a store extract of a vector type, this is
14340   // better to leave at float as we have more freedom in the addressing mode for
14341   // those.
14342   if (VectorTy->isFPOrFPVectorTy())
14343     return false;
14344 
14345   // If the index is unknown at compile time, this is very expensive to lower
14346   // and it is not possible to combine the store with the extract.
14347   if (!isa<ConstantInt>(Idx))
14348     return false;
14349 
14350   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
14351   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
14352   // We can do a store + vector extract on any vector that fits perfectly in a D
14353   // or Q register.
14354   if (BitWidth == 64 || BitWidth == 128) {
14355     Cost = 0;
14356     return true;
14357   }
14358   return false;
14359 }
14360 
14361 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
14362   return Subtarget->hasV6T2Ops();
14363 }
14364 
14365 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
14366   return Subtarget->hasV6T2Ops();
14367 }
14368 
14369 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
14370                                          AtomicOrdering Ord) const {
14371   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14372   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
14373   bool IsAcquire = isAcquireOrStronger(Ord);
14374 
14375   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
14376   // intrinsic must return {i32, i32} and we have to recombine them into a
14377   // single i64 here.
14378   if (ValTy->getPrimitiveSizeInBits() == 64) {
14379     Intrinsic::ID Int =
14380         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
14381     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
14382 
14383     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14384     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
14385 
14386     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
14387     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
14388     if (!Subtarget->isLittle())
14389       std::swap (Lo, Hi);
14390     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
14391     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
14392     return Builder.CreateOr(
14393         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
14394   }
14395 
14396   Type *Tys[] = { Addr->getType() };
14397   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
14398   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
14399 
14400   return Builder.CreateTruncOrBitCast(
14401       Builder.CreateCall(Ldrex, Addr),
14402       cast<PointerType>(Addr->getType())->getElementType());
14403 }
14404 
14405 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
14406     IRBuilder<> &Builder) const {
14407   if (!Subtarget->hasV7Ops())
14408     return;
14409   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14410   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
14411 }
14412 
14413 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
14414                                                Value *Addr,
14415                                                AtomicOrdering Ord) const {
14416   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14417   bool IsRelease = isReleaseOrStronger(Ord);
14418 
14419   // Since the intrinsics must have legal type, the i64 intrinsics take two
14420   // parameters: "i32, i32". We must marshal Val into the appropriate form
14421   // before the call.
14422   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
14423     Intrinsic::ID Int =
14424         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
14425     Function *Strex = Intrinsic::getDeclaration(M, Int);
14426     Type *Int32Ty = Type::getInt32Ty(M->getContext());
14427 
14428     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
14429     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
14430     if (!Subtarget->isLittle())
14431       std::swap(Lo, Hi);
14432     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14433     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
14434   }
14435 
14436   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
14437   Type *Tys[] = { Addr->getType() };
14438   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
14439 
14440   return Builder.CreateCall(
14441       Strex, {Builder.CreateZExtOrBitCast(
14442                   Val, Strex->getFunctionType()->getParamType(0)),
14443               Addr});
14444 }
14445 
14446 /// A helper function for determining the number of interleaved accesses we
14447 /// will generate when lowering accesses of the given type.
14448 unsigned
14449 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
14450                                              const DataLayout &DL) const {
14451   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
14452 }
14453 
14454 bool ARMTargetLowering::isLegalInterleavedAccessType(
14455     VectorType *VecTy, const DataLayout &DL) const {
14456 
14457   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
14458   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
14459 
14460   // Ensure the vector doesn't have f16 elements. Even though we could do an
14461   // i16 vldN, we can't hold the f16 vectors and will end up converting via
14462   // f32.
14463   if (VecTy->getElementType()->isHalfTy())
14464     return false;
14465 
14466   // Ensure the number of vector elements is greater than 1.
14467   if (VecTy->getNumElements() < 2)
14468     return false;
14469 
14470   // Ensure the element type is legal.
14471   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
14472     return false;
14473 
14474   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
14475   // 128 will be split into multiple interleaved accesses.
14476   return VecSize == 64 || VecSize % 128 == 0;
14477 }
14478 
14479 /// Lower an interleaved load into a vldN intrinsic.
14480 ///
14481 /// E.g. Lower an interleaved load (Factor = 2):
14482 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
14483 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
14484 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
14485 ///
14486 ///      Into:
14487 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
14488 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
14489 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
14490 bool ARMTargetLowering::lowerInterleavedLoad(
14491     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
14492     ArrayRef<unsigned> Indices, unsigned Factor) const {
14493   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14494          "Invalid interleave factor");
14495   assert(!Shuffles.empty() && "Empty shufflevector input");
14496   assert(Shuffles.size() == Indices.size() &&
14497          "Unmatched number of shufflevectors and indices");
14498 
14499   VectorType *VecTy = Shuffles[0]->getType();
14500   Type *EltTy = VecTy->getVectorElementType();
14501 
14502   const DataLayout &DL = LI->getModule()->getDataLayout();
14503 
14504   // Skip if we do not have NEON and skip illegal vector types. We can
14505   // "legalize" wide vector types into multiple interleaved accesses as long as
14506   // the vector types are divisible by 128.
14507   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
14508     return false;
14509 
14510   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
14511 
14512   // A pointer vector can not be the return type of the ldN intrinsics. Need to
14513   // load integer vectors first and then convert to pointer vectors.
14514   if (EltTy->isPointerTy())
14515     VecTy =
14516         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
14517 
14518   IRBuilder<> Builder(LI);
14519 
14520   // The base address of the load.
14521   Value *BaseAddr = LI->getPointerOperand();
14522 
14523   if (NumLoads > 1) {
14524     // If we're going to generate more than one load, reset the sub-vector type
14525     // to something legal.
14526     VecTy = VectorType::get(VecTy->getVectorElementType(),
14527                             VecTy->getVectorNumElements() / NumLoads);
14528 
14529     // We will compute the pointer operand of each load from the original base
14530     // address using GEPs. Cast the base address to a pointer to the scalar
14531     // element type.
14532     BaseAddr = Builder.CreateBitCast(
14533         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
14534                       LI->getPointerAddressSpace()));
14535   }
14536 
14537   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
14538 
14539   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
14540   Type *Tys[] = {VecTy, Int8Ptr};
14541   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
14542                                             Intrinsic::arm_neon_vld3,
14543                                             Intrinsic::arm_neon_vld4};
14544   Function *VldnFunc =
14545       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
14546 
14547   // Holds sub-vectors extracted from the load intrinsic return values. The
14548   // sub-vectors are associated with the shufflevector instructions they will
14549   // replace.
14550   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
14551 
14552   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
14553     // If we're generating more than one load, compute the base address of
14554     // subsequent loads as an offset from the previous.
14555     if (LoadCount > 0)
14556       BaseAddr = Builder.CreateConstGEP1_32(
14557           BaseAddr, VecTy->getVectorNumElements() * Factor);
14558 
14559     SmallVector<Value *, 2> Ops;
14560     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14561     Ops.push_back(Builder.getInt32(LI->getAlignment()));
14562 
14563     CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
14564 
14565     // Replace uses of each shufflevector with the corresponding vector loaded
14566     // by ldN.
14567     for (unsigned i = 0; i < Shuffles.size(); i++) {
14568       ShuffleVectorInst *SV = Shuffles[i];
14569       unsigned Index = Indices[i];
14570 
14571       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
14572 
14573       // Convert the integer vector to pointer vector if the element is pointer.
14574       if (EltTy->isPointerTy())
14575         SubVec = Builder.CreateIntToPtr(
14576             SubVec, VectorType::get(SV->getType()->getVectorElementType(),
14577                                     VecTy->getVectorNumElements()));
14578 
14579       SubVecs[SV].push_back(SubVec);
14580     }
14581   }
14582 
14583   // Replace uses of the shufflevector instructions with the sub-vectors
14584   // returned by the load intrinsic. If a shufflevector instruction is
14585   // associated with more than one sub-vector, those sub-vectors will be
14586   // concatenated into a single wide vector.
14587   for (ShuffleVectorInst *SVI : Shuffles) {
14588     auto &SubVec = SubVecs[SVI];
14589     auto *WideVec =
14590         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
14591     SVI->replaceAllUsesWith(WideVec);
14592   }
14593 
14594   return true;
14595 }
14596 
14597 /// Lower an interleaved store into a vstN intrinsic.
14598 ///
14599 /// E.g. Lower an interleaved store (Factor = 3):
14600 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
14601 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
14602 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
14603 ///
14604 ///      Into:
14605 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
14606 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
14607 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
14608 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
14609 ///
14610 /// Note that the new shufflevectors will be removed and we'll only generate one
14611 /// vst3 instruction in CodeGen.
14612 ///
14613 /// Example for a more general valid mask (Factor 3). Lower:
14614 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
14615 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
14616 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
14617 ///
14618 ///      Into:
14619 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
14620 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
14621 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
14622 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
14623 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
14624                                               ShuffleVectorInst *SVI,
14625                                               unsigned Factor) const {
14626   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14627          "Invalid interleave factor");
14628 
14629   VectorType *VecTy = SVI->getType();
14630   assert(VecTy->getVectorNumElements() % Factor == 0 &&
14631          "Invalid interleaved store");
14632 
14633   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
14634   Type *EltTy = VecTy->getVectorElementType();
14635   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
14636 
14637   const DataLayout &DL = SI->getModule()->getDataLayout();
14638 
14639   // Skip if we do not have NEON and skip illegal vector types. We can
14640   // "legalize" wide vector types into multiple interleaved accesses as long as
14641   // the vector types are divisible by 128.
14642   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
14643     return false;
14644 
14645   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
14646 
14647   Value *Op0 = SVI->getOperand(0);
14648   Value *Op1 = SVI->getOperand(1);
14649   IRBuilder<> Builder(SI);
14650 
14651   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
14652   // vectors to integer vectors.
14653   if (EltTy->isPointerTy()) {
14654     Type *IntTy = DL.getIntPtrType(EltTy);
14655 
14656     // Convert to the corresponding integer vector.
14657     Type *IntVecTy =
14658         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
14659     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
14660     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
14661 
14662     SubVecTy = VectorType::get(IntTy, LaneLen);
14663   }
14664 
14665   // The base address of the store.
14666   Value *BaseAddr = SI->getPointerOperand();
14667 
14668   if (NumStores > 1) {
14669     // If we're going to generate more than one store, reset the lane length
14670     // and sub-vector type to something legal.
14671     LaneLen /= NumStores;
14672     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
14673 
14674     // We will compute the pointer operand of each store from the original base
14675     // address using GEPs. Cast the base address to a pointer to the scalar
14676     // element type.
14677     BaseAddr = Builder.CreateBitCast(
14678         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
14679                       SI->getPointerAddressSpace()));
14680   }
14681 
14682   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
14683 
14684   auto Mask = SVI->getShuffleMask();
14685 
14686   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
14687   Type *Tys[] = {Int8Ptr, SubVecTy};
14688   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
14689                                              Intrinsic::arm_neon_vst3,
14690                                              Intrinsic::arm_neon_vst4};
14691 
14692   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
14693     // If we generating more than one store, we compute the base address of
14694     // subsequent stores as an offset from the previous.
14695     if (StoreCount > 0)
14696       BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
14697 
14698     SmallVector<Value *, 6> Ops;
14699     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14700 
14701     Function *VstNFunc =
14702         Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
14703 
14704     // Split the shufflevector operands into sub vectors for the new vstN call.
14705     for (unsigned i = 0; i < Factor; i++) {
14706       unsigned IdxI = StoreCount * LaneLen * Factor + i;
14707       if (Mask[IdxI] >= 0) {
14708         Ops.push_back(Builder.CreateShuffleVector(
14709             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
14710       } else {
14711         unsigned StartMask = 0;
14712         for (unsigned j = 1; j < LaneLen; j++) {
14713           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
14714           if (Mask[IdxJ * Factor + IdxI] >= 0) {
14715             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
14716             break;
14717           }
14718         }
14719         // Note: If all elements in a chunk are undefs, StartMask=0!
14720         // Note: Filling undef gaps with random elements is ok, since
14721         // those elements were being written anyway (with undefs).
14722         // In the case of all undefs we're defaulting to using elems from 0
14723         // Note: StartMask cannot be negative, it's checked in
14724         // isReInterleaveMask
14725         Ops.push_back(Builder.CreateShuffleVector(
14726             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
14727       }
14728     }
14729 
14730     Ops.push_back(Builder.getInt32(SI->getAlignment()));
14731     Builder.CreateCall(VstNFunc, Ops);
14732   }
14733   return true;
14734 }
14735 
14736 enum HABaseType {
14737   HA_UNKNOWN = 0,
14738   HA_FLOAT,
14739   HA_DOUBLE,
14740   HA_VECT64,
14741   HA_VECT128
14742 };
14743 
14744 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
14745                                    uint64_t &Members) {
14746   if (auto *ST = dyn_cast<StructType>(Ty)) {
14747     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
14748       uint64_t SubMembers = 0;
14749       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
14750         return false;
14751       Members += SubMembers;
14752     }
14753   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
14754     uint64_t SubMembers = 0;
14755     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
14756       return false;
14757     Members += SubMembers * AT->getNumElements();
14758   } else if (Ty->isFloatTy()) {
14759     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
14760       return false;
14761     Members = 1;
14762     Base = HA_FLOAT;
14763   } else if (Ty->isDoubleTy()) {
14764     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
14765       return false;
14766     Members = 1;
14767     Base = HA_DOUBLE;
14768   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
14769     Members = 1;
14770     switch (Base) {
14771     case HA_FLOAT:
14772     case HA_DOUBLE:
14773       return false;
14774     case HA_VECT64:
14775       return VT->getBitWidth() == 64;
14776     case HA_VECT128:
14777       return VT->getBitWidth() == 128;
14778     case HA_UNKNOWN:
14779       switch (VT->getBitWidth()) {
14780       case 64:
14781         Base = HA_VECT64;
14782         return true;
14783       case 128:
14784         Base = HA_VECT128;
14785         return true;
14786       default:
14787         return false;
14788       }
14789     }
14790   }
14791 
14792   return (Members > 0 && Members <= 4);
14793 }
14794 
14795 /// Return the correct alignment for the current calling convention.
14796 unsigned
14797 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
14798                                                  DataLayout DL) const {
14799   if (!ArgTy->isVectorTy())
14800     return DL.getABITypeAlignment(ArgTy);
14801 
14802   // Avoid over-aligning vector parameters. It would require realigning the
14803   // stack and waste space for no real benefit.
14804   return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
14805 }
14806 
14807 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
14808 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
14809 /// passing according to AAPCS rules.
14810 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
14811     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
14812   if (getEffectiveCallingConv(CallConv, isVarArg) !=
14813       CallingConv::ARM_AAPCS_VFP)
14814     return false;
14815 
14816   HABaseType Base = HA_UNKNOWN;
14817   uint64_t Members = 0;
14818   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
14819   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
14820 
14821   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
14822   return IsHA || IsIntArray;
14823 }
14824 
14825 unsigned ARMTargetLowering::getExceptionPointerRegister(
14826     const Constant *PersonalityFn) const {
14827   // Platforms which do not use SjLj EH may return values in these registers
14828   // via the personality function.
14829   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
14830 }
14831 
14832 unsigned ARMTargetLowering::getExceptionSelectorRegister(
14833     const Constant *PersonalityFn) const {
14834   // Platforms which do not use SjLj EH may return values in these registers
14835   // via the personality function.
14836   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
14837 }
14838 
14839 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14840   // Update IsSplitCSR in ARMFunctionInfo.
14841   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
14842   AFI->setIsSplitCSR(true);
14843 }
14844 
14845 void ARMTargetLowering::insertCopiesSplitCSR(
14846     MachineBasicBlock *Entry,
14847     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14848   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
14849   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14850   if (!IStart)
14851     return;
14852 
14853   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
14854   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14855   MachineBasicBlock::iterator MBBI = Entry->begin();
14856   for (const MCPhysReg *I = IStart; *I; ++I) {
14857     const TargetRegisterClass *RC = nullptr;
14858     if (ARM::GPRRegClass.contains(*I))
14859       RC = &ARM::GPRRegClass;
14860     else if (ARM::DPRRegClass.contains(*I))
14861       RC = &ARM::DPRRegClass;
14862     else
14863       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14864 
14865     unsigned NewVR = MRI->createVirtualRegister(RC);
14866     // Create copy from CSR to a virtual register.
14867     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14868     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14869     // nounwind. If we want to generalize this later, we may need to emit
14870     // CFI pseudo-instructions.
14871     assert(Entry->getParent()->getFunction().hasFnAttribute(
14872                Attribute::NoUnwind) &&
14873            "Function should be nounwind in insertCopiesSplitCSR!");
14874     Entry->addLiveIn(*I);
14875     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14876         .addReg(*I);
14877 
14878     // Insert the copy-back instructions right before the terminator.
14879     for (auto *Exit : Exits)
14880       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14881               TII->get(TargetOpcode::COPY), *I)
14882           .addReg(NewVR);
14883   }
14884 }
14885 
14886 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
14887   MF.getFrameInfo().computeMaxCallFrameSize(MF);
14888   TargetLoweringBase::finalizeLowering(MF);
14889 }
14890