1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMISelLowering.h"
16 #include "ARMCallingConv.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMPerfectShuffle.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMTargetObjectFile.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/IntrinsicLowering.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/MC/MCSectionMachO.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include <utility>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "arm-isel"
58 
59 STATISTIC(NumTailCalls, "Number of tail calls");
60 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
61 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
62 
63 static cl::opt<bool>
64 ARMInterworking("arm-interworking", cl::Hidden,
65   cl::desc("Enable / disable ARM interworking (for debugging only)"),
66   cl::init(true));
67 
68 namespace {
69   class ARMCCState : public CCState {
70   public:
71     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
72                SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
73                ParmContext PC)
74         : CCState(CC, isVarArg, MF, locs, C) {
75       assert(((PC == Call) || (PC == Prologue)) &&
76              "ARMCCState users must specify whether their context is call"
77              "or prologue generation.");
78       CallOrPrologue = PC;
79     }
80   };
81 }
82 
83 // The APCS parameter registers.
84 static const MCPhysReg GPRArgRegs[] = {
85   ARM::R0, ARM::R1, ARM::R2, ARM::R3
86 };
87 
88 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
89                                        MVT PromotedBitwiseVT) {
90   if (VT != PromotedLdStVT) {
91     setOperationAction(ISD::LOAD, VT, Promote);
92     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
93 
94     setOperationAction(ISD::STORE, VT, Promote);
95     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
96   }
97 
98   MVT ElemTy = VT.getVectorElementType();
99   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
100     setOperationAction(ISD::SETCC, VT, Custom);
101   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
102   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
103   if (ElemTy == MVT::i32) {
104     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
105     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
106     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
107     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
108   } else {
109     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
110     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
111     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
112     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
113   }
114   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
115   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
116   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
117   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
118   setOperationAction(ISD::SELECT,            VT, Expand);
119   setOperationAction(ISD::SELECT_CC,         VT, Expand);
120   setOperationAction(ISD::VSELECT,           VT, Expand);
121   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
122   if (VT.isInteger()) {
123     setOperationAction(ISD::SHL, VT, Custom);
124     setOperationAction(ISD::SRA, VT, Custom);
125     setOperationAction(ISD::SRL, VT, Custom);
126   }
127 
128   // Promote all bit-wise operations.
129   if (VT.isInteger() && VT != PromotedBitwiseVT) {
130     setOperationAction(ISD::AND, VT, Promote);
131     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
132     setOperationAction(ISD::OR,  VT, Promote);
133     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
134     setOperationAction(ISD::XOR, VT, Promote);
135     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
136   }
137 
138   // Neon does not support vector divide/remainder operations.
139   setOperationAction(ISD::SDIV, VT, Expand);
140   setOperationAction(ISD::UDIV, VT, Expand);
141   setOperationAction(ISD::FDIV, VT, Expand);
142   setOperationAction(ISD::SREM, VT, Expand);
143   setOperationAction(ISD::UREM, VT, Expand);
144   setOperationAction(ISD::FREM, VT, Expand);
145 
146   if (!VT.isFloatingPoint() &&
147       VT != MVT::v2i64 && VT != MVT::v1i64)
148     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
149       setOperationAction(Opcode, VT, Legal);
150 }
151 
152 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153   addRegisterClass(VT, &ARM::DPRRegClass);
154   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155 }
156 
157 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158   addRegisterClass(VT, &ARM::DPairRegClass);
159   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160 }
161 
162 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
163                                      const ARMSubtarget &STI)
164     : TargetLowering(TM), Subtarget(&STI) {
165   RegInfo = Subtarget->getRegisterInfo();
166   Itins = Subtarget->getInstrItineraryData();
167 
168   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
169 
170   if (Subtarget->isTargetMachO()) {
171     // Uses VFP for Thumb libfuncs if available.
172     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
173         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
174       static const struct {
175         const RTLIB::Libcall Op;
176         const char * const Name;
177         const ISD::CondCode Cond;
178       } LibraryCalls[] = {
179         // Single-precision floating-point arithmetic.
180         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
181         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
182         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
183         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
184 
185         // Double-precision floating-point arithmetic.
186         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
187         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
188         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
189         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
190 
191         // Single-precision comparisons.
192         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
193         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
194         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
195         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
196         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
197         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
198         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
199         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
200 
201         // Double-precision comparisons.
202         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
203         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
204         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
205         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
206         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
207         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
208         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
209         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
210 
211         // Floating-point to integer conversions.
212         // i64 conversions are done via library routines even when generating VFP
213         // instructions, so use the same ones.
214         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
215         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
216         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
217         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
218 
219         // Conversions between floating types.
220         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
221         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
222 
223         // Integer to floating-point conversions.
224         // i64 conversions are done via library routines even when generating VFP
225         // instructions, so use the same ones.
226         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
227         // e.g., __floatunsidf vs. __floatunssidfvfp.
228         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
229         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
230         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
231         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
232       };
233 
234       for (const auto &LC : LibraryCalls) {
235         setLibcallName(LC.Op, LC.Name);
236         if (LC.Cond != ISD::SETCC_INVALID)
237           setCmpLibcallCC(LC.Op, LC.Cond);
238       }
239     }
240 
241     // Set the correct calling convention for ARMv7k WatchOS. It's just
242     // AAPCS_VFP for functions as simple as libcalls.
243     if (Subtarget->isTargetWatchABI()) {
244       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
245         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
246     }
247   }
248 
249   // These libcalls are not available in 32-bit.
250   setLibcallName(RTLIB::SHL_I128, nullptr);
251   setLibcallName(RTLIB::SRL_I128, nullptr);
252   setLibcallName(RTLIB::SRA_I128, nullptr);
253 
254   // RTLIB
255   if (Subtarget->isAAPCS_ABI() &&
256       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
257        Subtarget->isTargetAndroid())) {
258     static const struct {
259       const RTLIB::Libcall Op;
260       const char * const Name;
261       const CallingConv::ID CC;
262       const ISD::CondCode Cond;
263     } LibraryCalls[] = {
264       // Double-precision floating-point arithmetic helper functions
265       // RTABI chapter 4.1.2, Table 2
266       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
267       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
268       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
269       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
270 
271       // Double-precision floating-point comparison helper functions
272       // RTABI chapter 4.1.2, Table 3
273       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
274       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
275       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
276       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
277       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
278       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
279       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
280       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
281 
282       // Single-precision floating-point arithmetic helper functions
283       // RTABI chapter 4.1.2, Table 4
284       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
285       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
286       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
287       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
288 
289       // Single-precision floating-point comparison helper functions
290       // RTABI chapter 4.1.2, Table 5
291       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
292       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
293       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
294       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
295       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
296       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
297       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
298       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
299 
300       // Floating-point to integer conversions.
301       // RTABI chapter 4.1.2, Table 6
302       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
303       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
304       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
305       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
306       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
307       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
308       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
309       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
310 
311       // Conversions between floating types.
312       // RTABI chapter 4.1.2, Table 7
313       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
314       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
315       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
316 
317       // Integer to floating-point conversions.
318       // RTABI chapter 4.1.2, Table 8
319       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
320       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
321       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
322       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
323       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
324       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
325       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
326       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
327 
328       // Long long helper functions
329       // RTABI chapter 4.2, Table 9
330       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
331       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334 
335       // Integer division functions
336       // RTABI chapter 4.3.1
337       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
340       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
341       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
342       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
343       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
344       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
345     };
346 
347     for (const auto &LC : LibraryCalls) {
348       setLibcallName(LC.Op, LC.Name);
349       setLibcallCallingConv(LC.Op, LC.CC);
350       if (LC.Cond != ISD::SETCC_INVALID)
351         setCmpLibcallCC(LC.Op, LC.Cond);
352     }
353 
354     // EABI dependent RTLIB
355     if (TM.Options.EABIVersion == EABI::EABI4 ||
356         TM.Options.EABIVersion == EABI::EABI5) {
357       static const struct {
358         const RTLIB::Libcall Op;
359         const char *const Name;
360         const CallingConv::ID CC;
361         const ISD::CondCode Cond;
362       } MemOpsLibraryCalls[] = {
363         // Memory operations
364         // RTABI chapter 4.3.4
365         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
366         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
367         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
368       };
369 
370       for (const auto &LC : MemOpsLibraryCalls) {
371         setLibcallName(LC.Op, LC.Name);
372         setLibcallCallingConv(LC.Op, LC.CC);
373         if (LC.Cond != ISD::SETCC_INVALID)
374           setCmpLibcallCC(LC.Op, LC.Cond);
375       }
376     }
377   }
378 
379   if (Subtarget->isTargetWindows()) {
380     static const struct {
381       const RTLIB::Libcall Op;
382       const char * const Name;
383       const CallingConv::ID CC;
384     } LibraryCalls[] = {
385       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
386       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
387       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
388       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
389       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
390       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
391       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
392       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
393     };
394 
395     for (const auto &LC : LibraryCalls) {
396       setLibcallName(LC.Op, LC.Name);
397       setLibcallCallingConv(LC.Op, LC.CC);
398     }
399   }
400 
401   // Use divmod compiler-rt calls for iOS 5.0 and later.
402   if (Subtarget->isTargetWatchOS() ||
403       (Subtarget->isTargetIOS() &&
404        !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
405     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
406     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
407   }
408 
409   // The half <-> float conversion functions are always soft-float, but are
410   // needed for some targets which use a hard-float calling convention by
411   // default.
412   if (Subtarget->isAAPCS_ABI()) {
413     setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
414     setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
415     setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
416   } else {
417     setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
418     setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
419     setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
420   }
421 
422   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
423   // a __gnu_ prefix (which is the default).
424   if (Subtarget->isTargetAEABI()) {
425     setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h");
426     setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h");
427     setLibcallName(RTLIB::FPEXT_F16_F32,   "__aeabi_h2f");
428   }
429 
430   if (Subtarget->isThumb1Only())
431     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
432   else
433     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
434   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
435       !Subtarget->isThumb1Only()) {
436     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
437     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
438   }
439 
440   for (MVT VT : MVT::vector_valuetypes()) {
441     for (MVT InnerVT : MVT::vector_valuetypes()) {
442       setTruncStoreAction(VT, InnerVT, Expand);
443       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
444       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
445       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
446     }
447 
448     setOperationAction(ISD::MULHS, VT, Expand);
449     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
450     setOperationAction(ISD::MULHU, VT, Expand);
451     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
452 
453     setOperationAction(ISD::BSWAP, VT, Expand);
454   }
455 
456   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
457   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
458 
459   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
460   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
461 
462   if (Subtarget->hasNEON()) {
463     addDRTypeForNEON(MVT::v2f32);
464     addDRTypeForNEON(MVT::v8i8);
465     addDRTypeForNEON(MVT::v4i16);
466     addDRTypeForNEON(MVT::v2i32);
467     addDRTypeForNEON(MVT::v1i64);
468 
469     addQRTypeForNEON(MVT::v4f32);
470     addQRTypeForNEON(MVT::v2f64);
471     addQRTypeForNEON(MVT::v16i8);
472     addQRTypeForNEON(MVT::v8i16);
473     addQRTypeForNEON(MVT::v4i32);
474     addQRTypeForNEON(MVT::v2i64);
475 
476     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
477     // neither Neon nor VFP support any arithmetic operations on it.
478     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
479     // supported for v4f32.
480     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
481     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
482     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
483     // FIXME: Code duplication: FDIV and FREM are expanded always, see
484     // ARMTargetLowering::addTypeForNEON method for details.
485     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
486     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
487     // FIXME: Create unittest.
488     // In another words, find a way when "copysign" appears in DAG with vector
489     // operands.
490     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
491     // FIXME: Code duplication: SETCC has custom operation action, see
492     // ARMTargetLowering::addTypeForNEON method for details.
493     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
494     // FIXME: Create unittest for FNEG and for FABS.
495     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
496     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
497     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
498     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
499     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
500     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
501     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
502     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
503     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
504     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
505     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
506     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
507     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
508     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
509     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
510     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
511     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
512     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
513     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
514 
515     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
516     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
517     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
518     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
519     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
520     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
521     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
522     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
523     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
524     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
525     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
526     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
527     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
528     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
529     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
530 
531     // Mark v2f32 intrinsics.
532     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
533     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
534     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
535     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
536     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
537     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
538     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
539     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
540     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
541     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
542     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
543     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
544     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
545     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
546     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
547 
548     // Neon does not support some operations on v1i64 and v2i64 types.
549     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
550     // Custom handling for some quad-vector types to detect VMULL.
551     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
552     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
553     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
554     // Custom handling for some vector types to avoid expensive expansions
555     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
556     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
557     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
558     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
559     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
560     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
561     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
562     // a destination type that is wider than the source, and nor does
563     // it have a FP_TO_[SU]INT instruction with a narrower destination than
564     // source.
565     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
566     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
567     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
568     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
569 
570     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
571     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
572 
573     // NEON does not have single instruction CTPOP for vectors with element
574     // types wider than 8-bits.  However, custom lowering can leverage the
575     // v8i8/v16i8 vcnt instruction.
576     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
577     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
578     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
579     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
580     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
581     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
582 
583     // NEON does not have single instruction CTTZ for vectors.
584     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
585     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
586     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
587     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
588 
589     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
590     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
591     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
592     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
593 
594     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
595     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
596     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
597     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
598 
599     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
600     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
601     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
602     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
603 
604     // NEON only has FMA instructions as of VFP4.
605     if (!Subtarget->hasVFP4()) {
606       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
607       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
608     }
609 
610     setTargetDAGCombine(ISD::INTRINSIC_VOID);
611     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
612     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
613     setTargetDAGCombine(ISD::SHL);
614     setTargetDAGCombine(ISD::SRL);
615     setTargetDAGCombine(ISD::SRA);
616     setTargetDAGCombine(ISD::SIGN_EXTEND);
617     setTargetDAGCombine(ISD::ZERO_EXTEND);
618     setTargetDAGCombine(ISD::ANY_EXTEND);
619     setTargetDAGCombine(ISD::BUILD_VECTOR);
620     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
621     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
622     setTargetDAGCombine(ISD::STORE);
623     setTargetDAGCombine(ISD::FP_TO_SINT);
624     setTargetDAGCombine(ISD::FP_TO_UINT);
625     setTargetDAGCombine(ISD::FDIV);
626     setTargetDAGCombine(ISD::LOAD);
627 
628     // It is legal to extload from v4i8 to v4i16 or v4i32.
629     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
630                    MVT::v2i32}) {
631       for (MVT VT : MVT::integer_vector_valuetypes()) {
632         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
633         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
634         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
635       }
636     }
637   }
638 
639   // ARM and Thumb2 support UMLAL/SMLAL.
640   if (!Subtarget->isThumb1Only())
641     setTargetDAGCombine(ISD::ADDC);
642 
643   if (Subtarget->isFPOnlySP()) {
644     // When targeting a floating-point unit with only single-precision
645     // operations, f64 is legal for the few double-precision instructions which
646     // are present However, no double-precision operations other than moves,
647     // loads and stores are provided by the hardware.
648     setOperationAction(ISD::FADD,       MVT::f64, Expand);
649     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
650     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
651     setOperationAction(ISD::FMA,        MVT::f64, Expand);
652     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
653     setOperationAction(ISD::FREM,       MVT::f64, Expand);
654     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
655     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
656     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
657     setOperationAction(ISD::FABS,       MVT::f64, Expand);
658     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
659     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
660     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
661     setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
662     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
663     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
664     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
665     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
666     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
667     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
668     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
669     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
670     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
671     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
672     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
673     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
674     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
675     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
676     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
677     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
678     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
679     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
680     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
681   }
682 
683   computeRegisterProperties(Subtarget->getRegisterInfo());
684 
685   // ARM does not have floating-point extending loads.
686   for (MVT VT : MVT::fp_valuetypes()) {
687     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
688     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
689   }
690 
691   // ... or truncating stores
692   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
693   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
694   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
695 
696   // ARM does not have i1 sign extending load.
697   for (MVT VT : MVT::integer_valuetypes())
698     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
699 
700   // ARM supports all 4 flavors of integer indexed load / store.
701   if (!Subtarget->isThumb1Only()) {
702     for (unsigned im = (unsigned)ISD::PRE_INC;
703          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
704       setIndexedLoadAction(im,  MVT::i1,  Legal);
705       setIndexedLoadAction(im,  MVT::i8,  Legal);
706       setIndexedLoadAction(im,  MVT::i16, Legal);
707       setIndexedLoadAction(im,  MVT::i32, Legal);
708       setIndexedStoreAction(im, MVT::i1,  Legal);
709       setIndexedStoreAction(im, MVT::i8,  Legal);
710       setIndexedStoreAction(im, MVT::i16, Legal);
711       setIndexedStoreAction(im, MVT::i32, Legal);
712     }
713   }
714 
715   setOperationAction(ISD::SADDO, MVT::i32, Custom);
716   setOperationAction(ISD::UADDO, MVT::i32, Custom);
717   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
718   setOperationAction(ISD::USUBO, MVT::i32, Custom);
719 
720   // i64 operation support.
721   setOperationAction(ISD::MUL,     MVT::i64, Expand);
722   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
723   if (Subtarget->isThumb1Only()) {
724     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
725     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
726   }
727   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
728       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
729     setOperationAction(ISD::MULHS, MVT::i32, Expand);
730 
731   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
732   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
733   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
734   setOperationAction(ISD::SRL,       MVT::i64, Custom);
735   setOperationAction(ISD::SRA,       MVT::i64, Custom);
736 
737   if (!Subtarget->isThumb1Only()) {
738     // FIXME: We should do this for Thumb1 as well.
739     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
740     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
741     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
742     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
743   }
744 
745   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
746     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
747 
748   // ARM does not have ROTL.
749   setOperationAction(ISD::ROTL, MVT::i32, Expand);
750   for (MVT VT : MVT::vector_valuetypes()) {
751     setOperationAction(ISD::ROTL, VT, Expand);
752     setOperationAction(ISD::ROTR, VT, Expand);
753   }
754   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
755   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
756   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
757     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
758 
759   // These just redirect to CTTZ and CTLZ on ARM.
760   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
761   setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
762 
763   // @llvm.readcyclecounter requires the Performance Monitors extension.
764   // Default to the 0 expansion on unsupported platforms.
765   // FIXME: Technically there are older ARM CPUs that have
766   // implementation-specific ways of obtaining this information.
767   if (Subtarget->hasPerfMon())
768     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
769 
770   // Only ARMv6 has BSWAP.
771   if (!Subtarget->hasV6Ops())
772     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
773 
774   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
775                                         : Subtarget->hasDivideInARMMode();
776   if (!hasDivide) {
777     // These are expanded into libcalls if the cpu doesn't have HW divider.
778     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
779     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
780   }
781 
782   if (Subtarget->isTargetWindows() && !Subtarget->hasDivide()) {
783     setOperationAction(ISD::SDIV, MVT::i32, Custom);
784     setOperationAction(ISD::UDIV, MVT::i32, Custom);
785 
786     setOperationAction(ISD::SDIV, MVT::i64, Custom);
787     setOperationAction(ISD::UDIV, MVT::i64, Custom);
788   }
789 
790   setOperationAction(ISD::SREM,  MVT::i32, Expand);
791   setOperationAction(ISD::UREM,  MVT::i32, Expand);
792   // Register based DivRem for AEABI (RTABI 4.2)
793   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
794       Subtarget->isTargetGNUAEABI()) {
795     setOperationAction(ISD::SREM, MVT::i64, Custom);
796     setOperationAction(ISD::UREM, MVT::i64, Custom);
797 
798     setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
799     setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
800     setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
801     setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
802     setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
803     setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
804     setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
805     setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
806 
807     setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
808     setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
809     setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
810     setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
811     setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
812     setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
813     setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
814     setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
815 
816     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
817     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
818     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
819     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
820   } else {
821     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
822     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
823   }
824 
825   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
826   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
827   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
828   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
829 
830   setOperationAction(ISD::TRAP, MVT::Other, Legal);
831 
832   // Use the default implementation.
833   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
834   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
835   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
836   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
837   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
838   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
839 
840   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
841     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
842   else
843     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
844 
845   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
846   // the default expansion.
847   InsertFencesForAtomic = false;
848   if (Subtarget->hasAnyDataBarrier() &&
849       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
850     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
851     // to ldrex/strex loops already.
852     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
853     if (!Subtarget->isThumb() || !Subtarget->isMClass())
854       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
855 
856     // On v8, we have particularly efficient implementations of atomic fences
857     // if they can be combined with nearby atomic loads and stores.
858     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
859       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
860       InsertFencesForAtomic = true;
861     }
862   } else {
863     // If there's anything we can use as a barrier, go through custom lowering
864     // for ATOMIC_FENCE.
865     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
866                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
867 
868     // Set them all for expansion, which will force libcalls.
869     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
870     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
871     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
872     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
873     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
874     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
875     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
876     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
877     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
878     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
879     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
880     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
881     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
882     // Unordered/Monotonic case.
883     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
884     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
885   }
886 
887   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
888 
889   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
890   if (!Subtarget->hasV6Ops()) {
891     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
892     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
893   }
894   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
895 
896   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
897       !Subtarget->isThumb1Only()) {
898     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
899     // iff target supports vfp2.
900     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
901     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
902   }
903 
904   // We want to custom lower some of our intrinsics.
905   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
906   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
907   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
908   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
909   if (Subtarget->useSjLjEH())
910     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
911 
912   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
913   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
914   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
915   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
916   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
917   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
918   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
919   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
920   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
921 
922   // Thumb-1 cannot currently select ARMISD::SUBE.
923   if (!Subtarget->isThumb1Only())
924     setOperationAction(ISD::SETCCE, MVT::i32, Custom);
925 
926   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
927   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
928   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
929   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
930   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
931 
932   // We don't support sin/cos/fmod/copysign/pow
933   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
934   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
935   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
936   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
937   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
938   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
939   setOperationAction(ISD::FREM,      MVT::f64, Expand);
940   setOperationAction(ISD::FREM,      MVT::f32, Expand);
941   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
942       !Subtarget->isThumb1Only()) {
943     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
944     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
945   }
946   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
947   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
948 
949   if (!Subtarget->hasVFP4()) {
950     setOperationAction(ISD::FMA, MVT::f64, Expand);
951     setOperationAction(ISD::FMA, MVT::f32, Expand);
952   }
953 
954   // Various VFP goodness
955   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
956     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
957     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
958       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
959       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
960     }
961 
962     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
963     if (!Subtarget->hasFP16()) {
964       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
965       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
966     }
967   }
968 
969   // Combine sin / cos into one node or libcall if possible.
970   if (Subtarget->hasSinCos()) {
971     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
972     setLibcallName(RTLIB::SINCOS_F64, "sincos");
973     if (Subtarget->isTargetWatchABI()) {
974       setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
975       setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
976     }
977     if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
978       // For iOS, we don't want to the normal expansion of a libcall to
979       // sincos. We want to issue a libcall to __sincos_stret.
980       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
981       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
982     }
983   }
984 
985   // FP-ARMv8 implements a lot of rounding-like FP operations.
986   if (Subtarget->hasFPARMv8()) {
987     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
988     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
989     setOperationAction(ISD::FROUND, MVT::f32, Legal);
990     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
991     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
992     setOperationAction(ISD::FRINT, MVT::f32, Legal);
993     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
994     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
995     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
996     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
997     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
998     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
999 
1000     if (!Subtarget->isFPOnlySP()) {
1001       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1002       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1003       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1004       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1005       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1006       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1007       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1008       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1009     }
1010   }
1011 
1012   if (Subtarget->hasNEON()) {
1013     // vmin and vmax aren't available in a scalar form, so we use
1014     // a NEON instruction with an undef lane instead.
1015     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1016     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1017     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1018     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1019     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1020     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1021   }
1022 
1023   // We have target-specific dag combine patterns for the following nodes:
1024   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1025   setTargetDAGCombine(ISD::ADD);
1026   setTargetDAGCombine(ISD::SUB);
1027   setTargetDAGCombine(ISD::MUL);
1028   setTargetDAGCombine(ISD::AND);
1029   setTargetDAGCombine(ISD::OR);
1030   setTargetDAGCombine(ISD::XOR);
1031 
1032   if (Subtarget->hasV6Ops())
1033     setTargetDAGCombine(ISD::SRL);
1034 
1035   setStackPointerRegisterToSaveRestore(ARM::SP);
1036 
1037   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1038       !Subtarget->hasVFP2())
1039     setSchedulingPreference(Sched::RegPressure);
1040   else
1041     setSchedulingPreference(Sched::Hybrid);
1042 
1043   //// temporary - rewrite interface to use type
1044   MaxStoresPerMemset = 8;
1045   MaxStoresPerMemsetOptSize = 4;
1046   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1047   MaxStoresPerMemcpyOptSize = 2;
1048   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1049   MaxStoresPerMemmoveOptSize = 2;
1050 
1051   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1052   // are at least 4 bytes aligned.
1053   setMinStackArgumentAlignment(4);
1054 
1055   // Prefer likely predicted branches to selects on out-of-order cores.
1056   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1057 
1058   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1059 }
1060 
1061 bool ARMTargetLowering::useSoftFloat() const {
1062   return Subtarget->useSoftFloat();
1063 }
1064 
1065 // FIXME: It might make sense to define the representative register class as the
1066 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1067 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1068 // SPR's representative would be DPR_VFP2. This should work well if register
1069 // pressure tracking were modified such that a register use would increment the
1070 // pressure of the register class's representative and all of it's super
1071 // classes' representatives transitively. We have not implemented this because
1072 // of the difficulty prior to coalescing of modeling operand register classes
1073 // due to the common occurrence of cross class copies and subregister insertions
1074 // and extractions.
1075 std::pair<const TargetRegisterClass *, uint8_t>
1076 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1077                                            MVT VT) const {
1078   const TargetRegisterClass *RRC = nullptr;
1079   uint8_t Cost = 1;
1080   switch (VT.SimpleTy) {
1081   default:
1082     return TargetLowering::findRepresentativeClass(TRI, VT);
1083   // Use DPR as representative register class for all floating point
1084   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1085   // the cost is 1 for both f32 and f64.
1086   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1087   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1088     RRC = &ARM::DPRRegClass;
1089     // When NEON is used for SP, only half of the register file is available
1090     // because operations that define both SP and DP results will be constrained
1091     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1092     // coalescing by double-counting the SP regs. See the FIXME above.
1093     if (Subtarget->useNEONForSinglePrecisionFP())
1094       Cost = 2;
1095     break;
1096   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1097   case MVT::v4f32: case MVT::v2f64:
1098     RRC = &ARM::DPRRegClass;
1099     Cost = 2;
1100     break;
1101   case MVT::v4i64:
1102     RRC = &ARM::DPRRegClass;
1103     Cost = 4;
1104     break;
1105   case MVT::v8i64:
1106     RRC = &ARM::DPRRegClass;
1107     Cost = 8;
1108     break;
1109   }
1110   return std::make_pair(RRC, Cost);
1111 }
1112 
1113 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1114   switch ((ARMISD::NodeType)Opcode) {
1115   case ARMISD::FIRST_NUMBER:  break;
1116   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1117   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1118   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1119   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1120   case ARMISD::CALL:          return "ARMISD::CALL";
1121   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1122   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1123   case ARMISD::tCALL:         return "ARMISD::tCALL";
1124   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1125   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1126   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1127   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1128   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1129   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1130   case ARMISD::CMP:           return "ARMISD::CMP";
1131   case ARMISD::CMN:           return "ARMISD::CMN";
1132   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1133   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1134   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1135   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1136   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1137 
1138   case ARMISD::CMOV:          return "ARMISD::CMOV";
1139 
1140   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1141   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1142   case ARMISD::RRX:           return "ARMISD::RRX";
1143 
1144   case ARMISD::ADDC:          return "ARMISD::ADDC";
1145   case ARMISD::ADDE:          return "ARMISD::ADDE";
1146   case ARMISD::SUBC:          return "ARMISD::SUBC";
1147   case ARMISD::SUBE:          return "ARMISD::SUBE";
1148 
1149   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1150   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1151 
1152   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1153   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1154   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1155 
1156   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1157 
1158   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1159 
1160   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1161 
1162   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1163 
1164   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1165 
1166   case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
1167   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1168 
1169   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1170   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1171   case ARMISD::VCGE:          return "ARMISD::VCGE";
1172   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1173   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1174   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1175   case ARMISD::VCGT:          return "ARMISD::VCGT";
1176   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1177   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1178   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1179   case ARMISD::VTST:          return "ARMISD::VTST";
1180 
1181   case ARMISD::VSHL:          return "ARMISD::VSHL";
1182   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1183   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1184   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1185   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1186   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1187   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1188   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1189   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1190   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1191   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1192   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1193   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1194   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1195   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1196   case ARMISD::VSLI:          return "ARMISD::VSLI";
1197   case ARMISD::VSRI:          return "ARMISD::VSRI";
1198   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1199   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1200   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1201   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1202   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1203   case ARMISD::VDUP:          return "ARMISD::VDUP";
1204   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1205   case ARMISD::VEXT:          return "ARMISD::VEXT";
1206   case ARMISD::VREV64:        return "ARMISD::VREV64";
1207   case ARMISD::VREV32:        return "ARMISD::VREV32";
1208   case ARMISD::VREV16:        return "ARMISD::VREV16";
1209   case ARMISD::VZIP:          return "ARMISD::VZIP";
1210   case ARMISD::VUZP:          return "ARMISD::VUZP";
1211   case ARMISD::VTRN:          return "ARMISD::VTRN";
1212   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1213   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1214   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1215   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1216   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1217   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1218   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1219   case ARMISD::BFI:           return "ARMISD::BFI";
1220   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1221   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1222   case ARMISD::VBSL:          return "ARMISD::VBSL";
1223   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1224   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1225   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1226   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1227   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1228   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1229   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1230   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1231   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1232   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1233   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1234   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1235   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1236   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1237   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1238   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1239   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1240   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1241   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1242   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1243   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1244   }
1245   return nullptr;
1246 }
1247 
1248 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1249                                           EVT VT) const {
1250   if (!VT.isVector())
1251     return getPointerTy(DL);
1252   return VT.changeVectorElementTypeToInteger();
1253 }
1254 
1255 /// getRegClassFor - Return the register class that should be used for the
1256 /// specified value type.
1257 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1258   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1259   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1260   // load / store 4 to 8 consecutive D registers.
1261   if (Subtarget->hasNEON()) {
1262     if (VT == MVT::v4i64)
1263       return &ARM::QQPRRegClass;
1264     if (VT == MVT::v8i64)
1265       return &ARM::QQQQPRRegClass;
1266   }
1267   return TargetLowering::getRegClassFor(VT);
1268 }
1269 
1270 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1271 // source/dest is aligned and the copy size is large enough. We therefore want
1272 // to align such objects passed to memory intrinsics.
1273 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1274                                                unsigned &PrefAlign) const {
1275   if (!isa<MemIntrinsic>(CI))
1276     return false;
1277   MinSize = 8;
1278   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1279   // cycle faster than 4-byte aligned LDM.
1280   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1281   return true;
1282 }
1283 
1284 // Create a fast isel object.
1285 FastISel *
1286 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1287                                   const TargetLibraryInfo *libInfo) const {
1288   return ARM::createFastISel(funcInfo, libInfo);
1289 }
1290 
1291 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1292   unsigned NumVals = N->getNumValues();
1293   if (!NumVals)
1294     return Sched::RegPressure;
1295 
1296   for (unsigned i = 0; i != NumVals; ++i) {
1297     EVT VT = N->getValueType(i);
1298     if (VT == MVT::Glue || VT == MVT::Other)
1299       continue;
1300     if (VT.isFloatingPoint() || VT.isVector())
1301       return Sched::ILP;
1302   }
1303 
1304   if (!N->isMachineOpcode())
1305     return Sched::RegPressure;
1306 
1307   // Load are scheduled for latency even if there instruction itinerary
1308   // is not available.
1309   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1310   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1311 
1312   if (MCID.getNumDefs() == 0)
1313     return Sched::RegPressure;
1314   if (!Itins->isEmpty() &&
1315       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1316     return Sched::ILP;
1317 
1318   return Sched::RegPressure;
1319 }
1320 
1321 //===----------------------------------------------------------------------===//
1322 // Lowering Code
1323 //===----------------------------------------------------------------------===//
1324 
1325 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1326 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1327   switch (CC) {
1328   default: llvm_unreachable("Unknown condition code!");
1329   case ISD::SETNE:  return ARMCC::NE;
1330   case ISD::SETEQ:  return ARMCC::EQ;
1331   case ISD::SETGT:  return ARMCC::GT;
1332   case ISD::SETGE:  return ARMCC::GE;
1333   case ISD::SETLT:  return ARMCC::LT;
1334   case ISD::SETLE:  return ARMCC::LE;
1335   case ISD::SETUGT: return ARMCC::HI;
1336   case ISD::SETUGE: return ARMCC::HS;
1337   case ISD::SETULT: return ARMCC::LO;
1338   case ISD::SETULE: return ARMCC::LS;
1339   }
1340 }
1341 
1342 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1343 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1344                         ARMCC::CondCodes &CondCode2) {
1345   CondCode2 = ARMCC::AL;
1346   switch (CC) {
1347   default: llvm_unreachable("Unknown FP condition!");
1348   case ISD::SETEQ:
1349   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1350   case ISD::SETGT:
1351   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1352   case ISD::SETGE:
1353   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1354   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1355   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1356   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1357   case ISD::SETO:   CondCode = ARMCC::VC; break;
1358   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1359   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1360   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1361   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1362   case ISD::SETLT:
1363   case ISD::SETULT: CondCode = ARMCC::LT; break;
1364   case ISD::SETLE:
1365   case ISD::SETULE: CondCode = ARMCC::LE; break;
1366   case ISD::SETNE:
1367   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1368   }
1369 }
1370 
1371 //===----------------------------------------------------------------------===//
1372 //                      Calling Convention Implementation
1373 //===----------------------------------------------------------------------===//
1374 
1375 #include "ARMGenCallingConv.inc"
1376 
1377 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1378 /// account presence of floating point hardware and calling convention
1379 /// limitations, such as support for variadic functions.
1380 CallingConv::ID
1381 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1382                                            bool isVarArg) const {
1383   switch (CC) {
1384   default:
1385     llvm_unreachable("Unsupported calling convention");
1386   case CallingConv::ARM_AAPCS:
1387   case CallingConv::ARM_APCS:
1388   case CallingConv::GHC:
1389     return CC;
1390   case CallingConv::PreserveMost:
1391     return CallingConv::PreserveMost;
1392   case CallingConv::ARM_AAPCS_VFP:
1393   case CallingConv::Swift:
1394     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1395   case CallingConv::C:
1396     if (!Subtarget->isAAPCS_ABI())
1397       return CallingConv::ARM_APCS;
1398     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1399              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1400              !isVarArg)
1401       return CallingConv::ARM_AAPCS_VFP;
1402     else
1403       return CallingConv::ARM_AAPCS;
1404   case CallingConv::Fast:
1405   case CallingConv::CXX_FAST_TLS:
1406     if (!Subtarget->isAAPCS_ABI()) {
1407       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1408         return CallingConv::Fast;
1409       return CallingConv::ARM_APCS;
1410     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1411       return CallingConv::ARM_AAPCS_VFP;
1412     else
1413       return CallingConv::ARM_AAPCS;
1414   }
1415 }
1416 
1417 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1418 /// CallingConvention.
1419 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1420                                                  bool Return,
1421                                                  bool isVarArg) const {
1422   switch (getEffectiveCallingConv(CC, isVarArg)) {
1423   default:
1424     llvm_unreachable("Unsupported calling convention");
1425   case CallingConv::ARM_APCS:
1426     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1427   case CallingConv::ARM_AAPCS:
1428     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1429   case CallingConv::ARM_AAPCS_VFP:
1430     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1431   case CallingConv::Fast:
1432     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1433   case CallingConv::GHC:
1434     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1435   case CallingConv::PreserveMost:
1436     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1437   }
1438 }
1439 
1440 /// LowerCallResult - Lower the result values of a call into the
1441 /// appropriate copies out of appropriate physical registers.
1442 SDValue
1443 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1444                                    CallingConv::ID CallConv, bool isVarArg,
1445                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1446                                    SDLoc dl, SelectionDAG &DAG,
1447                                    SmallVectorImpl<SDValue> &InVals,
1448                                    bool isThisReturn, SDValue ThisVal) const {
1449 
1450   // Assign locations to each value returned by this call.
1451   SmallVector<CCValAssign, 16> RVLocs;
1452   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1453                     *DAG.getContext(), Call);
1454   CCInfo.AnalyzeCallResult(Ins,
1455                            CCAssignFnForNode(CallConv, /* Return*/ true,
1456                                              isVarArg));
1457 
1458   // Copy all of the result registers out of their specified physreg.
1459   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1460     CCValAssign VA = RVLocs[i];
1461 
1462     // Pass 'this' value directly from the argument to return value, to avoid
1463     // reg unit interference
1464     if (i == 0 && isThisReturn) {
1465       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1466              "unexpected return calling convention register assignment");
1467       InVals.push_back(ThisVal);
1468       continue;
1469     }
1470 
1471     SDValue Val;
1472     if (VA.needsCustom()) {
1473       // Handle f64 or half of a v2f64.
1474       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1475                                       InFlag);
1476       Chain = Lo.getValue(1);
1477       InFlag = Lo.getValue(2);
1478       VA = RVLocs[++i]; // skip ahead to next loc
1479       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1480                                       InFlag);
1481       Chain = Hi.getValue(1);
1482       InFlag = Hi.getValue(2);
1483       if (!Subtarget->isLittle())
1484         std::swap (Lo, Hi);
1485       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1486 
1487       if (VA.getLocVT() == MVT::v2f64) {
1488         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1489         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1490                           DAG.getConstant(0, dl, MVT::i32));
1491 
1492         VA = RVLocs[++i]; // skip ahead to next loc
1493         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1494         Chain = Lo.getValue(1);
1495         InFlag = Lo.getValue(2);
1496         VA = RVLocs[++i]; // skip ahead to next loc
1497         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1498         Chain = Hi.getValue(1);
1499         InFlag = Hi.getValue(2);
1500         if (!Subtarget->isLittle())
1501           std::swap (Lo, Hi);
1502         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1503         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1504                           DAG.getConstant(1, dl, MVT::i32));
1505       }
1506     } else {
1507       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1508                                InFlag);
1509       Chain = Val.getValue(1);
1510       InFlag = Val.getValue(2);
1511     }
1512 
1513     switch (VA.getLocInfo()) {
1514     default: llvm_unreachable("Unknown loc info!");
1515     case CCValAssign::Full: break;
1516     case CCValAssign::BCvt:
1517       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1518       break;
1519     }
1520 
1521     InVals.push_back(Val);
1522   }
1523 
1524   return Chain;
1525 }
1526 
1527 /// LowerMemOpCallTo - Store the argument to the stack.
1528 SDValue
1529 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1530                                     SDValue StackPtr, SDValue Arg,
1531                                     SDLoc dl, SelectionDAG &DAG,
1532                                     const CCValAssign &VA,
1533                                     ISD::ArgFlagsTy Flags) const {
1534   unsigned LocMemOffset = VA.getLocMemOffset();
1535   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1536   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1537                        StackPtr, PtrOff);
1538   return DAG.getStore(
1539       Chain, dl, Arg, PtrOff,
1540       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
1541       false, false, 0);
1542 }
1543 
1544 void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
1545                                          SDValue Chain, SDValue &Arg,
1546                                          RegsToPassVector &RegsToPass,
1547                                          CCValAssign &VA, CCValAssign &NextVA,
1548                                          SDValue &StackPtr,
1549                                          SmallVectorImpl<SDValue> &MemOpChains,
1550                                          ISD::ArgFlagsTy Flags) const {
1551 
1552   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1553                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1554   unsigned id = Subtarget->isLittle() ? 0 : 1;
1555   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1556 
1557   if (NextVA.isRegLoc())
1558     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1559   else {
1560     assert(NextVA.isMemLoc());
1561     if (!StackPtr.getNode())
1562       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1563                                     getPointerTy(DAG.getDataLayout()));
1564 
1565     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1566                                            dl, DAG, NextVA,
1567                                            Flags));
1568   }
1569 }
1570 
1571 /// LowerCall - Lowering a call into a callseq_start <-
1572 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1573 /// nodes.
1574 SDValue
1575 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1576                              SmallVectorImpl<SDValue> &InVals) const {
1577   SelectionDAG &DAG                     = CLI.DAG;
1578   SDLoc &dl                             = CLI.DL;
1579   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1580   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1581   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1582   SDValue Chain                         = CLI.Chain;
1583   SDValue Callee                        = CLI.Callee;
1584   bool &isTailCall                      = CLI.IsTailCall;
1585   CallingConv::ID CallConv              = CLI.CallConv;
1586   bool doesNotRet                       = CLI.DoesNotReturn;
1587   bool isVarArg                         = CLI.IsVarArg;
1588 
1589   MachineFunction &MF = DAG.getMachineFunction();
1590   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1591   bool isThisReturn   = false;
1592   bool isSibCall      = false;
1593   auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
1594 
1595   // Disable tail calls if they're not supported.
1596   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1597     isTailCall = false;
1598 
1599   if (isTailCall) {
1600     // Check if it's really possible to do a tail call.
1601     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1602                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1603                                                    Outs, OutVals, Ins, DAG);
1604     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
1605       report_fatal_error("failed to perform tail call elimination on a call "
1606                          "site marked musttail");
1607     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1608     // detected sibcalls.
1609     if (isTailCall) {
1610       ++NumTailCalls;
1611       isSibCall = true;
1612     }
1613   }
1614 
1615   // Analyze operands of the call, assigning locations to each operand.
1616   SmallVector<CCValAssign, 16> ArgLocs;
1617   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1618                     *DAG.getContext(), Call);
1619   CCInfo.AnalyzeCallOperands(Outs,
1620                              CCAssignFnForNode(CallConv, /* Return*/ false,
1621                                                isVarArg));
1622 
1623   // Get a count of how many bytes are to be pushed on the stack.
1624   unsigned NumBytes = CCInfo.getNextStackOffset();
1625 
1626   // For tail calls, memory operands are available in our caller's stack.
1627   if (isSibCall)
1628     NumBytes = 0;
1629 
1630   // Adjust the stack pointer for the new arguments...
1631   // These operations are automatically eliminated by the prolog/epilog pass
1632   if (!isSibCall)
1633     Chain = DAG.getCALLSEQ_START(Chain,
1634                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
1635 
1636   SDValue StackPtr =
1637       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1638 
1639   RegsToPassVector RegsToPass;
1640   SmallVector<SDValue, 8> MemOpChains;
1641 
1642   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1643   // of tail call optimization, arguments are handled later.
1644   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1645        i != e;
1646        ++i, ++realArgIdx) {
1647     CCValAssign &VA = ArgLocs[i];
1648     SDValue Arg = OutVals[realArgIdx];
1649     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1650     bool isByVal = Flags.isByVal();
1651 
1652     // Promote the value if needed.
1653     switch (VA.getLocInfo()) {
1654     default: llvm_unreachable("Unknown loc info!");
1655     case CCValAssign::Full: break;
1656     case CCValAssign::SExt:
1657       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1658       break;
1659     case CCValAssign::ZExt:
1660       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1661       break;
1662     case CCValAssign::AExt:
1663       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1664       break;
1665     case CCValAssign::BCvt:
1666       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1667       break;
1668     }
1669 
1670     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1671     if (VA.needsCustom()) {
1672       if (VA.getLocVT() == MVT::v2f64) {
1673         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1674                                   DAG.getConstant(0, dl, MVT::i32));
1675         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1676                                   DAG.getConstant(1, dl, MVT::i32));
1677 
1678         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1679                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1680 
1681         VA = ArgLocs[++i]; // skip ahead to next loc
1682         if (VA.isRegLoc()) {
1683           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1684                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1685         } else {
1686           assert(VA.isMemLoc());
1687 
1688           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1689                                                  dl, DAG, VA, Flags));
1690         }
1691       } else {
1692         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1693                          StackPtr, MemOpChains, Flags);
1694       }
1695     } else if (VA.isRegLoc()) {
1696       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1697         assert(VA.getLocVT() == MVT::i32 &&
1698                "unexpected calling convention register assignment");
1699         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1700                "unexpected use of 'returned'");
1701         isThisReturn = true;
1702       }
1703       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1704     } else if (isByVal) {
1705       assert(VA.isMemLoc());
1706       unsigned offset = 0;
1707 
1708       // True if this byval aggregate will be split between registers
1709       // and memory.
1710       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1711       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1712 
1713       if (CurByValIdx < ByValArgsCount) {
1714 
1715         unsigned RegBegin, RegEnd;
1716         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1717 
1718         EVT PtrVT =
1719             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1720         unsigned int i, j;
1721         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1722           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1723           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1724           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1725                                      MachinePointerInfo(),
1726                                      false, false, false,
1727                                      DAG.InferPtrAlignment(AddArg));
1728           MemOpChains.push_back(Load.getValue(1));
1729           RegsToPass.push_back(std::make_pair(j, Load));
1730         }
1731 
1732         // If parameter size outsides register area, "offset" value
1733         // helps us to calculate stack slot for remained part properly.
1734         offset = RegEnd - RegBegin;
1735 
1736         CCInfo.nextInRegsParam();
1737       }
1738 
1739       if (Flags.getByValSize() > 4*offset) {
1740         auto PtrVT = getPointerTy(DAG.getDataLayout());
1741         unsigned LocMemOffset = VA.getLocMemOffset();
1742         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1743         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1744         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1745         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1746         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1747                                            MVT::i32);
1748         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1749                                             MVT::i32);
1750 
1751         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1752         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1753         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1754                                           Ops));
1755       }
1756     } else if (!isSibCall) {
1757       assert(VA.isMemLoc());
1758 
1759       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1760                                              dl, DAG, VA, Flags));
1761     }
1762   }
1763 
1764   if (!MemOpChains.empty())
1765     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1766 
1767   // Build a sequence of copy-to-reg nodes chained together with token chain
1768   // and flag operands which copy the outgoing args into the appropriate regs.
1769   SDValue InFlag;
1770   // Tail call byval lowering might overwrite argument registers so in case of
1771   // tail call optimization the copies to registers are lowered later.
1772   if (!isTailCall)
1773     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1774       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1775                                RegsToPass[i].second, InFlag);
1776       InFlag = Chain.getValue(1);
1777     }
1778 
1779   // For tail calls lower the arguments to the 'real' stack slot.
1780   if (isTailCall) {
1781     // Force all the incoming stack arguments to be loaded from the stack
1782     // before any new outgoing arguments are stored to the stack, because the
1783     // outgoing stack slots may alias the incoming argument stack slots, and
1784     // the alias isn't otherwise explicit. This is slightly more conservative
1785     // than necessary, because it means that each store effectively depends
1786     // on every argument instead of just those arguments it would clobber.
1787 
1788     // Do not flag preceding copytoreg stuff together with the following stuff.
1789     InFlag = SDValue();
1790     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1791       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1792                                RegsToPass[i].second, InFlag);
1793       InFlag = Chain.getValue(1);
1794     }
1795     InFlag = SDValue();
1796   }
1797 
1798   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1799   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1800   // node so that legalize doesn't hack it.
1801   bool isDirect = false;
1802   bool isARMFunc = false;
1803   bool isLocalARMFunc = false;
1804   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1805   auto PtrVt = getPointerTy(DAG.getDataLayout());
1806 
1807   if (Subtarget->genLongCalls()) {
1808     assert((Subtarget->isTargetWindows() ||
1809             getTargetMachine().getRelocationModel() == Reloc::Static) &&
1810            "long-calls with non-static relocation model!");
1811     // Handle a global address or an external symbol. If it's not one of
1812     // those, the target's already in a register, so we don't need to do
1813     // anything extra.
1814     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1815       const GlobalValue *GV = G->getGlobal();
1816       // Create a constant pool entry for the callee address
1817       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1818       ARMConstantPoolValue *CPV =
1819         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1820 
1821       // Get the address of the callee into a register
1822       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1823       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1824       Callee = DAG.getLoad(
1825           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1826           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1827           false, false, 0);
1828     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1829       const char *Sym = S->getSymbol();
1830 
1831       // Create a constant pool entry for the callee address
1832       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1833       ARMConstantPoolValue *CPV =
1834         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1835                                       ARMPCLabelIndex, 0);
1836       // Get the address of the callee into a register
1837       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1838       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1839       Callee = DAG.getLoad(
1840           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1841           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1842           false, false, 0);
1843     }
1844   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1845     const GlobalValue *GV = G->getGlobal();
1846     isDirect = true;
1847     bool isDef = GV->isStrongDefinitionForLinker();
1848     bool isStub = (!isDef && Subtarget->isTargetMachO()) &&
1849                    getTargetMachine().getRelocationModel() != Reloc::Static;
1850     isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1851     // ARM call to a local ARM function is predicable.
1852     isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
1853     // tBX takes a register source operand.
1854     if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1855       assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
1856       Callee = DAG.getNode(
1857           ARMISD::WrapperPIC, dl, PtrVt,
1858           DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
1859       Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), Callee,
1860                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
1861                            false, false, true, 0);
1862     } else if (Subtarget->isTargetCOFF()) {
1863       assert(Subtarget->isTargetWindows() &&
1864              "Windows is the only supported COFF target");
1865       unsigned TargetFlags = GV->hasDLLImportStorageClass()
1866                                  ? ARMII::MO_DLLIMPORT
1867                                  : ARMII::MO_NO_FLAG;
1868       Callee =
1869           DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, TargetFlags);
1870       if (GV->hasDLLImportStorageClass())
1871         Callee =
1872             DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
1873                         DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
1874                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
1875                         false, false, false, 0);
1876     } else {
1877       // On ELF targets for PIC code, direct calls should go through the PLT
1878       unsigned OpFlags = 0;
1879       if (Subtarget->isTargetELF() &&
1880           getTargetMachine().getRelocationModel() == Reloc::PIC_)
1881         OpFlags = ARMII::MO_PLT;
1882       Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, OpFlags);
1883     }
1884   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1885     isDirect = true;
1886     bool isStub = Subtarget->isTargetMachO() &&
1887                   getTargetMachine().getRelocationModel() != Reloc::Static;
1888     isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1889     // tBX takes a register source operand.
1890     const char *Sym = S->getSymbol();
1891     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1892       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1893       ARMConstantPoolValue *CPV =
1894         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1895                                       ARMPCLabelIndex, 4);
1896       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1897       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1898       Callee = DAG.getLoad(
1899           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1900           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1901           false, false, 0);
1902       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
1903       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
1904     } else {
1905       unsigned OpFlags = 0;
1906       // On ELF targets for PIC code, direct calls should go through the PLT
1907       if (Subtarget->isTargetELF() &&
1908                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
1909         OpFlags = ARMII::MO_PLT;
1910       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, OpFlags);
1911     }
1912   }
1913 
1914   // FIXME: handle tail calls differently.
1915   unsigned CallOpc;
1916   if (Subtarget->isThumb()) {
1917     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1918       CallOpc = ARMISD::CALL_NOLINK;
1919     else
1920       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1921   } else {
1922     if (!isDirect && !Subtarget->hasV5TOps())
1923       CallOpc = ARMISD::CALL_NOLINK;
1924     else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1925              // Emit regular call when code size is the priority
1926              !MF.getFunction()->optForMinSize())
1927       // "mov lr, pc; b _foo" to avoid confusing the RSP
1928       CallOpc = ARMISD::CALL_NOLINK;
1929     else
1930       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1931   }
1932 
1933   std::vector<SDValue> Ops;
1934   Ops.push_back(Chain);
1935   Ops.push_back(Callee);
1936 
1937   // Add argument registers to the end of the list so that they are known live
1938   // into the call.
1939   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1940     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1941                                   RegsToPass[i].second.getValueType()));
1942 
1943   // Add a register mask operand representing the call-preserved registers.
1944   if (!isTailCall) {
1945     const uint32_t *Mask;
1946     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
1947     if (isThisReturn) {
1948       // For 'this' returns, use the R0-preserving mask if applicable
1949       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
1950       if (!Mask) {
1951         // Set isThisReturn to false if the calling convention is not one that
1952         // allows 'returned' to be modeled in this way, so LowerCallResult does
1953         // not try to pass 'this' straight through
1954         isThisReturn = false;
1955         Mask = ARI->getCallPreservedMask(MF, CallConv);
1956       }
1957     } else
1958       Mask = ARI->getCallPreservedMask(MF, CallConv);
1959 
1960     assert(Mask && "Missing call preserved mask for calling convention");
1961     Ops.push_back(DAG.getRegisterMask(Mask));
1962   }
1963 
1964   if (InFlag.getNode())
1965     Ops.push_back(InFlag);
1966 
1967   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1968   if (isTailCall) {
1969     MF.getFrameInfo()->setHasTailCall();
1970     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
1971   }
1972 
1973   // Returns a chain and a flag for retval copy to use.
1974   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
1975   InFlag = Chain.getValue(1);
1976 
1977   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
1978                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
1979   if (!Ins.empty())
1980     InFlag = Chain.getValue(1);
1981 
1982   // Handle result values, copying them out of physregs into vregs that we
1983   // return.
1984   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1985                          InVals, isThisReturn,
1986                          isThisReturn ? OutVals[0] : SDValue());
1987 }
1988 
1989 /// HandleByVal - Every parameter *after* a byval parameter is passed
1990 /// on the stack.  Remember the next parameter register to allocate,
1991 /// and then confiscate the rest of the parameter registers to insure
1992 /// this.
1993 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
1994                                     unsigned Align) const {
1995   assert((State->getCallOrPrologue() == Prologue ||
1996           State->getCallOrPrologue() == Call) &&
1997          "unhandled ParmContext");
1998 
1999   // Byval (as with any stack) slots are always at least 4 byte aligned.
2000   Align = std::max(Align, 4U);
2001 
2002   unsigned Reg = State->AllocateReg(GPRArgRegs);
2003   if (!Reg)
2004     return;
2005 
2006   unsigned AlignInRegs = Align / 4;
2007   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2008   for (unsigned i = 0; i < Waste; ++i)
2009     Reg = State->AllocateReg(GPRArgRegs);
2010 
2011   if (!Reg)
2012     return;
2013 
2014   unsigned Excess = 4 * (ARM::R4 - Reg);
2015 
2016   // Special case when NSAA != SP and parameter size greater than size of
2017   // all remained GPR regs. In that case we can't split parameter, we must
2018   // send it to stack. We also must set NCRN to R4, so waste all
2019   // remained registers.
2020   const unsigned NSAAOffset = State->getNextStackOffset();
2021   if (NSAAOffset != 0 && Size > Excess) {
2022     while (State->AllocateReg(GPRArgRegs))
2023       ;
2024     return;
2025   }
2026 
2027   // First register for byval parameter is the first register that wasn't
2028   // allocated before this method call, so it would be "reg".
2029   // If parameter is small enough to be saved in range [reg, r4), then
2030   // the end (first after last) register would be reg + param-size-in-regs,
2031   // else parameter would be splitted between registers and stack,
2032   // end register would be r4 in this case.
2033   unsigned ByValRegBegin = Reg;
2034   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2035   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2036   // Note, first register is allocated in the beginning of function already,
2037   // allocate remained amount of registers we need.
2038   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2039     State->AllocateReg(GPRArgRegs);
2040   // A byval parameter that is split between registers and memory needs its
2041   // size truncated here.
2042   // In the case where the entire structure fits in registers, we set the
2043   // size in memory to zero.
2044   Size = std::max<int>(Size - Excess, 0);
2045 }
2046 
2047 /// MatchingStackOffset - Return true if the given stack call argument is
2048 /// already available in the same position (relatively) of the caller's
2049 /// incoming argument stack.
2050 static
2051 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2052                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2053                          const TargetInstrInfo *TII) {
2054   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2055   int FI = INT_MAX;
2056   if (Arg.getOpcode() == ISD::CopyFromReg) {
2057     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2058     if (!TargetRegisterInfo::isVirtualRegister(VR))
2059       return false;
2060     MachineInstr *Def = MRI->getVRegDef(VR);
2061     if (!Def)
2062       return false;
2063     if (!Flags.isByVal()) {
2064       if (!TII->isLoadFromStackSlot(Def, FI))
2065         return false;
2066     } else {
2067       return false;
2068     }
2069   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2070     if (Flags.isByVal())
2071       // ByVal argument is passed in as a pointer but it's now being
2072       // dereferenced. e.g.
2073       // define @foo(%struct.X* %A) {
2074       //   tail call @bar(%struct.X* byval %A)
2075       // }
2076       return false;
2077     SDValue Ptr = Ld->getBasePtr();
2078     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2079     if (!FINode)
2080       return false;
2081     FI = FINode->getIndex();
2082   } else
2083     return false;
2084 
2085   assert(FI != INT_MAX);
2086   if (!MFI->isFixedObjectIndex(FI))
2087     return false;
2088   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2089 }
2090 
2091 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2092 /// for tail call optimization. Targets which want to do tail call
2093 /// optimization should implement this function.
2094 bool
2095 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2096                                                      CallingConv::ID CalleeCC,
2097                                                      bool isVarArg,
2098                                                      bool isCalleeStructRet,
2099                                                      bool isCallerStructRet,
2100                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2101                                     const SmallVectorImpl<SDValue> &OutVals,
2102                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2103                                                      SelectionDAG& DAG) const {
2104   MachineFunction &MF = DAG.getMachineFunction();
2105   const Function *CallerF = MF.getFunction();
2106   CallingConv::ID CallerCC = CallerF->getCallingConv();
2107 
2108   assert(Subtarget->supportsTailCall());
2109 
2110   // Look for obvious safe cases to perform tail call optimization that do not
2111   // require ABI changes. This is what gcc calls sibcall.
2112 
2113   // Do not sibcall optimize vararg calls unless the call site is not passing
2114   // any arguments.
2115   if (isVarArg && !Outs.empty())
2116     return false;
2117 
2118   // Exception-handling functions need a special set of instructions to indicate
2119   // a return to the hardware. Tail-calling another function would probably
2120   // break this.
2121   if (CallerF->hasFnAttribute("interrupt"))
2122     return false;
2123 
2124   // Also avoid sibcall optimization if either caller or callee uses struct
2125   // return semantics.
2126   if (isCalleeStructRet || isCallerStructRet)
2127     return false;
2128 
2129   // Externally-defined functions with weak linkage should not be
2130   // tail-called on ARM when the OS does not support dynamic
2131   // pre-emption of symbols, as the AAELF spec requires normal calls
2132   // to undefined weak functions to be replaced with a NOP or jump to the
2133   // next instruction. The behaviour of branch instructions in this
2134   // situation (as used for tail calls) is implementation-defined, so we
2135   // cannot rely on the linker replacing the tail call with a return.
2136   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2137     const GlobalValue *GV = G->getGlobal();
2138     const Triple &TT = getTargetMachine().getTargetTriple();
2139     if (GV->hasExternalWeakLinkage() &&
2140         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2141       return false;
2142   }
2143 
2144   // Check that the call results are passed in the same way.
2145   LLVMContext &C = *DAG.getContext();
2146   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2147                                   CCAssignFnForNode(CalleeCC, true, isVarArg),
2148                                   CCAssignFnForNode(CallerCC, true, isVarArg)))
2149     return false;
2150   // The callee has to preserve all registers the caller needs to preserve.
2151   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2152   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2153   if (CalleeCC != CallerCC) {
2154     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2155     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2156       return false;
2157   }
2158 
2159   // If Caller's vararg or byval argument has been split between registers and
2160   // stack, do not perform tail call, since part of the argument is in caller's
2161   // local frame.
2162   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2163   if (AFI_Caller->getArgRegsSaveSize())
2164     return false;
2165 
2166   // If the callee takes no arguments then go on to check the results of the
2167   // call.
2168   if (!Outs.empty()) {
2169     // Check if stack adjustment is needed. For now, do not do this if any
2170     // argument is passed on the stack.
2171     SmallVector<CCValAssign, 16> ArgLocs;
2172     ARMCCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C, Call);
2173     CCInfo.AnalyzeCallOperands(Outs,
2174                                CCAssignFnForNode(CalleeCC, false, isVarArg));
2175     if (CCInfo.getNextStackOffset()) {
2176       // Check if the arguments are already laid out in the right way as
2177       // the caller's fixed stack objects.
2178       MachineFrameInfo *MFI = MF.getFrameInfo();
2179       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2180       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2181       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2182            i != e;
2183            ++i, ++realArgIdx) {
2184         CCValAssign &VA = ArgLocs[i];
2185         EVT RegVT = VA.getLocVT();
2186         SDValue Arg = OutVals[realArgIdx];
2187         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2188         if (VA.getLocInfo() == CCValAssign::Indirect)
2189           return false;
2190         if (VA.needsCustom()) {
2191           // f64 and vector types are split into multiple registers or
2192           // register/stack-slot combinations.  The types will not match
2193           // the registers; give up on memory f64 refs until we figure
2194           // out what to do about this.
2195           if (!VA.isRegLoc())
2196             return false;
2197           if (!ArgLocs[++i].isRegLoc())
2198             return false;
2199           if (RegVT == MVT::v2f64) {
2200             if (!ArgLocs[++i].isRegLoc())
2201               return false;
2202             if (!ArgLocs[++i].isRegLoc())
2203               return false;
2204           }
2205         } else if (!VA.isRegLoc()) {
2206           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2207                                    MFI, MRI, TII))
2208             return false;
2209         }
2210       }
2211     }
2212 
2213     const MachineRegisterInfo &MRI = MF.getRegInfo();
2214     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2215       return false;
2216   }
2217 
2218   return true;
2219 }
2220 
2221 bool
2222 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2223                                   MachineFunction &MF, bool isVarArg,
2224                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2225                                   LLVMContext &Context) const {
2226   SmallVector<CCValAssign, 16> RVLocs;
2227   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2228   return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2229                                                     isVarArg));
2230 }
2231 
2232 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2233                                     SDLoc DL, SelectionDAG &DAG) {
2234   const MachineFunction &MF = DAG.getMachineFunction();
2235   const Function *F = MF.getFunction();
2236 
2237   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2238 
2239   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2240   // version of the "preferred return address". These offsets affect the return
2241   // instruction if this is a return from PL1 without hypervisor extensions.
2242   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2243   //    SWI:     0      "subs pc, lr, #0"
2244   //    ABORT:   +4     "subs pc, lr, #4"
2245   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2246   // UNDEF varies depending on where the exception came from ARM or Thumb
2247   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2248 
2249   int64_t LROffset;
2250   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2251       IntKind == "ABORT")
2252     LROffset = 4;
2253   else if (IntKind == "SWI" || IntKind == "UNDEF")
2254     LROffset = 0;
2255   else
2256     report_fatal_error("Unsupported interrupt attribute. If present, value "
2257                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2258 
2259   RetOps.insert(RetOps.begin() + 1,
2260                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2261 
2262   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2263 }
2264 
2265 SDValue
2266 ARMTargetLowering::LowerReturn(SDValue Chain,
2267                                CallingConv::ID CallConv, bool isVarArg,
2268                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2269                                const SmallVectorImpl<SDValue> &OutVals,
2270                                SDLoc dl, SelectionDAG &DAG) const {
2271 
2272   // CCValAssign - represent the assignment of the return value to a location.
2273   SmallVector<CCValAssign, 16> RVLocs;
2274 
2275   // CCState - Info about the registers and stack slots.
2276   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2277                     *DAG.getContext(), Call);
2278 
2279   // Analyze outgoing return values.
2280   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2281                                                isVarArg));
2282 
2283   SDValue Flag;
2284   SmallVector<SDValue, 4> RetOps;
2285   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2286   bool isLittleEndian = Subtarget->isLittle();
2287 
2288   MachineFunction &MF = DAG.getMachineFunction();
2289   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2290   AFI->setReturnRegsCount(RVLocs.size());
2291 
2292   // Copy the result values into the output registers.
2293   for (unsigned i = 0, realRVLocIdx = 0;
2294        i != RVLocs.size();
2295        ++i, ++realRVLocIdx) {
2296     CCValAssign &VA = RVLocs[i];
2297     assert(VA.isRegLoc() && "Can only return in registers!");
2298 
2299     SDValue Arg = OutVals[realRVLocIdx];
2300 
2301     switch (VA.getLocInfo()) {
2302     default: llvm_unreachable("Unknown loc info!");
2303     case CCValAssign::Full: break;
2304     case CCValAssign::BCvt:
2305       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2306       break;
2307     }
2308 
2309     if (VA.needsCustom()) {
2310       if (VA.getLocVT() == MVT::v2f64) {
2311         // Extract the first half and return it in two registers.
2312         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2313                                    DAG.getConstant(0, dl, MVT::i32));
2314         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2315                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2316 
2317         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2318                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2319                                  Flag);
2320         Flag = Chain.getValue(1);
2321         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2322         VA = RVLocs[++i]; // skip ahead to next loc
2323         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2324                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2325                                  Flag);
2326         Flag = Chain.getValue(1);
2327         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2328         VA = RVLocs[++i]; // skip ahead to next loc
2329 
2330         // Extract the 2nd half and fall through to handle it as an f64 value.
2331         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2332                           DAG.getConstant(1, dl, MVT::i32));
2333       }
2334       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2335       // available.
2336       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2337                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2338       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2339                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2340                                Flag);
2341       Flag = Chain.getValue(1);
2342       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2343       VA = RVLocs[++i]; // skip ahead to next loc
2344       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2345                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2346                                Flag);
2347     } else
2348       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2349 
2350     // Guarantee that all emitted copies are
2351     // stuck together, avoiding something bad.
2352     Flag = Chain.getValue(1);
2353     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2354   }
2355   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2356   const MCPhysReg *I =
2357       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2358   if (I) {
2359     for (; *I; ++I) {
2360       if (ARM::GPRRegClass.contains(*I))
2361         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2362       else if (ARM::DPRRegClass.contains(*I))
2363         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2364       else
2365         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2366     }
2367   }
2368 
2369   // Update chain and glue.
2370   RetOps[0] = Chain;
2371   if (Flag.getNode())
2372     RetOps.push_back(Flag);
2373 
2374   // CPUs which aren't M-class use a special sequence to return from
2375   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2376   // though we use "subs pc, lr, #N").
2377   //
2378   // M-class CPUs actually use a normal return sequence with a special
2379   // (hardware-provided) value in LR, so the normal code path works.
2380   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2381       !Subtarget->isMClass()) {
2382     if (Subtarget->isThumb1Only())
2383       report_fatal_error("interrupt attribute is not supported in Thumb1");
2384     return LowerInterruptReturn(RetOps, dl, DAG);
2385   }
2386 
2387   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2388 }
2389 
2390 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2391   if (N->getNumValues() != 1)
2392     return false;
2393   if (!N->hasNUsesOfValue(1, 0))
2394     return false;
2395 
2396   SDValue TCChain = Chain;
2397   SDNode *Copy = *N->use_begin();
2398   if (Copy->getOpcode() == ISD::CopyToReg) {
2399     // If the copy has a glue operand, we conservatively assume it isn't safe to
2400     // perform a tail call.
2401     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2402       return false;
2403     TCChain = Copy->getOperand(0);
2404   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2405     SDNode *VMov = Copy;
2406     // f64 returned in a pair of GPRs.
2407     SmallPtrSet<SDNode*, 2> Copies;
2408     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2409          UI != UE; ++UI) {
2410       if (UI->getOpcode() != ISD::CopyToReg)
2411         return false;
2412       Copies.insert(*UI);
2413     }
2414     if (Copies.size() > 2)
2415       return false;
2416 
2417     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2418          UI != UE; ++UI) {
2419       SDValue UseChain = UI->getOperand(0);
2420       if (Copies.count(UseChain.getNode()))
2421         // Second CopyToReg
2422         Copy = *UI;
2423       else {
2424         // We are at the top of this chain.
2425         // If the copy has a glue operand, we conservatively assume it
2426         // isn't safe to perform a tail call.
2427         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2428           return false;
2429         // First CopyToReg
2430         TCChain = UseChain;
2431       }
2432     }
2433   } else if (Copy->getOpcode() == ISD::BITCAST) {
2434     // f32 returned in a single GPR.
2435     if (!Copy->hasOneUse())
2436       return false;
2437     Copy = *Copy->use_begin();
2438     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2439       return false;
2440     // If the copy has a glue operand, we conservatively assume it isn't safe to
2441     // perform a tail call.
2442     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2443       return false;
2444     TCChain = Copy->getOperand(0);
2445   } else {
2446     return false;
2447   }
2448 
2449   bool HasRet = false;
2450   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2451        UI != UE; ++UI) {
2452     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2453         UI->getOpcode() != ARMISD::INTRET_FLAG)
2454       return false;
2455     HasRet = true;
2456   }
2457 
2458   if (!HasRet)
2459     return false;
2460 
2461   Chain = TCChain;
2462   return true;
2463 }
2464 
2465 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2466   if (!Subtarget->supportsTailCall())
2467     return false;
2468 
2469   auto Attr =
2470       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2471   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2472     return false;
2473 
2474   return true;
2475 }
2476 
2477 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2478 // and pass the lower and high parts through.
2479 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2480   SDLoc DL(Op);
2481   SDValue WriteValue = Op->getOperand(2);
2482 
2483   // This function is only supposed to be called for i64 type argument.
2484   assert(WriteValue.getValueType() == MVT::i64
2485           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2486 
2487   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2488                            DAG.getConstant(0, DL, MVT::i32));
2489   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2490                            DAG.getConstant(1, DL, MVT::i32));
2491   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2492   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2493 }
2494 
2495 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2496 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2497 // one of the above mentioned nodes. It has to be wrapped because otherwise
2498 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2499 // be used to form addressing mode. These wrapped nodes will be selected
2500 // into MOVi.
2501 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2502   EVT PtrVT = Op.getValueType();
2503   // FIXME there is no actual debug info here
2504   SDLoc dl(Op);
2505   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2506   SDValue Res;
2507   if (CP->isMachineConstantPoolEntry())
2508     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2509                                     CP->getAlignment());
2510   else
2511     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2512                                     CP->getAlignment());
2513   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2514 }
2515 
2516 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2517   return MachineJumpTableInfo::EK_Inline;
2518 }
2519 
2520 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2521                                              SelectionDAG &DAG) const {
2522   MachineFunction &MF = DAG.getMachineFunction();
2523   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2524   unsigned ARMPCLabelIndex = 0;
2525   SDLoc DL(Op);
2526   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2527   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2528   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2529   SDValue CPAddr;
2530   if (RelocM == Reloc::Static) {
2531     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2532   } else {
2533     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2534     ARMPCLabelIndex = AFI->createPICLabelUId();
2535     ARMConstantPoolValue *CPV =
2536       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2537                                       ARMCP::CPBlockAddress, PCAdj);
2538     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2539   }
2540   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2541   SDValue Result =
2542       DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2543                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2544                   false, false, false, 0);
2545   if (RelocM == Reloc::Static)
2546     return Result;
2547   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2548   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2549 }
2550 
2551 /// \brief Convert a TLS address reference into the correct sequence of loads
2552 /// and calls to compute the variable's address for Darwin, and return an
2553 /// SDValue containing the final node.
2554 
2555 /// Darwin only has one TLS scheme which must be capable of dealing with the
2556 /// fully general situation, in the worst case. This means:
2557 ///     + "extern __thread" declaration.
2558 ///     + Defined in a possibly unknown dynamic library.
2559 ///
2560 /// The general system is that each __thread variable has a [3 x i32] descriptor
2561 /// which contains information used by the runtime to calculate the address. The
2562 /// only part of this the compiler needs to know about is the first word, which
2563 /// contains a function pointer that must be called with the address of the
2564 /// entire descriptor in "r0".
2565 ///
2566 /// Since this descriptor may be in a different unit, in general access must
2567 /// proceed along the usual ARM rules. A common sequence to produce is:
2568 ///
2569 ///     movw rT1, :lower16:_var$non_lazy_ptr
2570 ///     movt rT1, :upper16:_var$non_lazy_ptr
2571 ///     ldr r0, [rT1]
2572 ///     ldr rT2, [r0]
2573 ///     blx rT2
2574 ///     [...address now in r0...]
2575 SDValue
2576 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2577                                                SelectionDAG &DAG) const {
2578   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2579   SDLoc DL(Op);
2580 
2581   // First step is to get the address of the actua global symbol. This is where
2582   // the TLS descriptor lives.
2583   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2584 
2585   // The first entry in the descriptor is a function pointer that we must call
2586   // to obtain the address of the variable.
2587   SDValue Chain = DAG.getEntryNode();
2588   SDValue FuncTLVGet =
2589       DAG.getLoad(MVT::i32, DL, Chain, DescAddr,
2590                   MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2591                   false, true, true, 4);
2592   Chain = FuncTLVGet.getValue(1);
2593 
2594   MachineFunction &F = DAG.getMachineFunction();
2595   MachineFrameInfo *MFI = F.getFrameInfo();
2596   MFI->setAdjustsStack(true);
2597 
2598   // TLS calls preserve all registers except those that absolutely must be
2599   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2600   // silly).
2601   auto TRI =
2602       getTargetMachine().getSubtargetImpl(*F.getFunction())->getRegisterInfo();
2603   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2604   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2605 
2606   // Finally, we can make the call. This is just a degenerate version of a
2607   // normal AArch64 call node: r0 takes the address of the descriptor, and
2608   // returns the address of the variable in this thread.
2609   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2610   Chain =
2611       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2612                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2613                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2614   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2615 }
2616 
2617 SDValue
2618 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2619                                                 SelectionDAG &DAG) const {
2620   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2621   SDValue Chain = DAG.getEntryNode();
2622   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2623   SDLoc DL(Op);
2624 
2625   // Load the current TEB (thread environment block)
2626   SDValue Ops[] = {Chain,
2627                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2628                    DAG.getConstant(15, DL, MVT::i32),
2629                    DAG.getConstant(0, DL, MVT::i32),
2630                    DAG.getConstant(13, DL, MVT::i32),
2631                    DAG.getConstant(0, DL, MVT::i32),
2632                    DAG.getConstant(2, DL, MVT::i32)};
2633   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2634                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2635 
2636   SDValue TEB = CurrentTEB.getValue(0);
2637   Chain = CurrentTEB.getValue(1);
2638 
2639   // Load the ThreadLocalStoragePointer from the TEB
2640   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2641   SDValue TLSArray =
2642       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2643   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo(),
2644                          false, false, false, 0);
2645 
2646   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2647   // offset into the TLSArray.
2648 
2649   // Load the TLS index from the C runtime
2650   SDValue TLSIndex =
2651       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2652   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2653   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo(),
2654                          false, false, false, 0);
2655 
2656   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2657                               DAG.getConstant(2, DL, MVT::i32));
2658   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2659                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2660                             MachinePointerInfo(), false, false, false, 0);
2661 
2662   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS,
2663                      LowerGlobalAddressWindows(Op, DAG));
2664 }
2665 
2666 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2667 SDValue
2668 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2669                                                  SelectionDAG &DAG) const {
2670   SDLoc dl(GA);
2671   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2672   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2673   MachineFunction &MF = DAG.getMachineFunction();
2674   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2675   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2676   ARMConstantPoolValue *CPV =
2677     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2678                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2679   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2680   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2681   Argument =
2682       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2683                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2684                   false, false, false, 0);
2685   SDValue Chain = Argument.getValue(1);
2686 
2687   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2688   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2689 
2690   // call __tls_get_addr.
2691   ArgListTy Args;
2692   ArgListEntry Entry;
2693   Entry.Node = Argument;
2694   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2695   Args.push_back(Entry);
2696 
2697   // FIXME: is there useful debug info available here?
2698   TargetLowering::CallLoweringInfo CLI(DAG);
2699   CLI.setDebugLoc(dl).setChain(Chain)
2700     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2701                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
2702                0);
2703 
2704   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2705   return CallResult.first;
2706 }
2707 
2708 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2709 // "local exec" model.
2710 SDValue
2711 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2712                                         SelectionDAG &DAG,
2713                                         TLSModel::Model model) const {
2714   const GlobalValue *GV = GA->getGlobal();
2715   SDLoc dl(GA);
2716   SDValue Offset;
2717   SDValue Chain = DAG.getEntryNode();
2718   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2719   // Get the Thread Pointer
2720   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2721 
2722   if (model == TLSModel::InitialExec) {
2723     MachineFunction &MF = DAG.getMachineFunction();
2724     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2725     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2726     // Initial exec model.
2727     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2728     ARMConstantPoolValue *CPV =
2729       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2730                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2731                                       true);
2732     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2733     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2734     Offset = DAG.getLoad(
2735         PtrVT, dl, Chain, Offset,
2736         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2737         false, false, 0);
2738     Chain = Offset.getValue(1);
2739 
2740     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2741     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2742 
2743     Offset = DAG.getLoad(
2744         PtrVT, dl, Chain, Offset,
2745         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2746         false, false, 0);
2747   } else {
2748     // local exec model
2749     assert(model == TLSModel::LocalExec);
2750     ARMConstantPoolValue *CPV =
2751       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2752     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2753     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2754     Offset = DAG.getLoad(
2755         PtrVT, dl, Chain, Offset,
2756         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2757         false, false, 0);
2758   }
2759 
2760   // The address of the thread local variable is the add of the thread
2761   // pointer with the offset of the variable.
2762   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2763 }
2764 
2765 SDValue
2766 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2767   if (Subtarget->isTargetDarwin())
2768     return LowerGlobalTLSAddressDarwin(Op, DAG);
2769 
2770   if (Subtarget->isTargetWindows())
2771     return LowerGlobalTLSAddressWindows(Op, DAG);
2772 
2773   // TODO: implement the "local dynamic" model
2774   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
2775   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2776   if (DAG.getTarget().Options.EmulatedTLS)
2777     return LowerToTLSEmulatedModel(GA, DAG);
2778 
2779   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2780 
2781   switch (model) {
2782     case TLSModel::GeneralDynamic:
2783     case TLSModel::LocalDynamic:
2784       return LowerToTLSGeneralDynamicModel(GA, DAG);
2785     case TLSModel::InitialExec:
2786     case TLSModel::LocalExec:
2787       return LowerToTLSExecModels(GA, DAG, model);
2788   }
2789   llvm_unreachable("bogus TLS model");
2790 }
2791 
2792 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2793                                                  SelectionDAG &DAG) const {
2794   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2795   SDLoc dl(Op);
2796   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2797   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2798     bool UseGOT_PREL =
2799         !(GV->hasHiddenVisibility() || GV->hasLocalLinkage());
2800 
2801     MachineFunction &MF = DAG.getMachineFunction();
2802     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2803     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2804     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2805     SDLoc dl(Op);
2806     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2807     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2808         GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2809         UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2810         /*AddCurrentAddress=*/UseGOT_PREL);
2811     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2812     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2813     SDValue Result = DAG.getLoad(
2814         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2815         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2816         false, false, 0);
2817     SDValue Chain = Result.getValue(1);
2818     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2819     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2820     if (UseGOT_PREL)
2821       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2822                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2823                            false, false, false, 0);
2824     return Result;
2825   }
2826 
2827   // If we have T2 ops, we can materialize the address directly via movt/movw
2828   // pair. This is always cheaper.
2829   if (Subtarget->useMovt(DAG.getMachineFunction())) {
2830     ++NumMovwMovt;
2831     // FIXME: Once remat is capable of dealing with instructions with register
2832     // operands, expand this into two nodes.
2833     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2834                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2835   } else {
2836     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2837     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2838     return DAG.getLoad(
2839         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2840         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2841         false, false, 0);
2842   }
2843 }
2844 
2845 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2846                                                     SelectionDAG &DAG) const {
2847   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2848   SDLoc dl(Op);
2849   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2850   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2851 
2852   if (Subtarget->useMovt(DAG.getMachineFunction()))
2853     ++NumMovwMovt;
2854 
2855   // FIXME: Once remat is capable of dealing with instructions with register
2856   // operands, expand this into multiple nodes
2857   unsigned Wrapper =
2858       RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
2859 
2860   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
2861   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
2862 
2863   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2864     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2865                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2866                          false, false, false, 0);
2867   return Result;
2868 }
2869 
2870 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
2871                                                      SelectionDAG &DAG) const {
2872   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
2873   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
2874          "Windows on ARM expects to use movw/movt");
2875 
2876   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2877   const ARMII::TOF TargetFlags =
2878     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
2879   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2880   SDValue Result;
2881   SDLoc DL(Op);
2882 
2883   ++NumMovwMovt;
2884 
2885   // FIXME: Once remat is capable of dealing with instructions with register
2886   // operands, expand this into two nodes.
2887   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
2888                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
2889                                                   TargetFlags));
2890   if (GV->hasDLLImportStorageClass())
2891     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2892                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2893                          false, false, false, 0);
2894   return Result;
2895 }
2896 
2897 SDValue
2898 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2899   SDLoc dl(Op);
2900   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
2901   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2902                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2903                      Op.getOperand(1), Val);
2904 }
2905 
2906 SDValue
2907 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2908   SDLoc dl(Op);
2909   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2910                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
2911 }
2912 
2913 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
2914                                                       SelectionDAG &DAG) const {
2915   SDLoc dl(Op);
2916   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
2917                      Op.getOperand(0));
2918 }
2919 
2920 SDValue
2921 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2922                                           const ARMSubtarget *Subtarget) const {
2923   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2924   SDLoc dl(Op);
2925   switch (IntNo) {
2926   default: return SDValue();    // Don't custom lower most intrinsics.
2927   case Intrinsic::arm_rbit: {
2928     assert(Op.getOperand(1).getValueType() == MVT::i32 &&
2929            "RBIT intrinsic must have i32 type!");
2930     return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1));
2931   }
2932   case Intrinsic::arm_thread_pointer: {
2933     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2934     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2935   }
2936   case Intrinsic::eh_sjlj_lsda: {
2937     MachineFunction &MF = DAG.getMachineFunction();
2938     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2939     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2940     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2941     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2942     SDValue CPAddr;
2943     unsigned PCAdj = (RelocM != Reloc::PIC_)
2944       ? 0 : (Subtarget->isThumb() ? 4 : 8);
2945     ARMConstantPoolValue *CPV =
2946       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2947                                       ARMCP::CPLSDA, PCAdj);
2948     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2949     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2950     SDValue Result = DAG.getLoad(
2951         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2952         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2953         false, false, 0);
2954 
2955     if (RelocM == Reloc::PIC_) {
2956       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2957       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2958     }
2959     return Result;
2960   }
2961   case Intrinsic::arm_neon_vmulls:
2962   case Intrinsic::arm_neon_vmullu: {
2963     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2964       ? ARMISD::VMULLs : ARMISD::VMULLu;
2965     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2966                        Op.getOperand(1), Op.getOperand(2));
2967   }
2968   case Intrinsic::arm_neon_vminnm:
2969   case Intrinsic::arm_neon_vmaxnm: {
2970     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
2971       ? ISD::FMINNUM : ISD::FMAXNUM;
2972     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2973                        Op.getOperand(1), Op.getOperand(2));
2974   }
2975   case Intrinsic::arm_neon_vminu:
2976   case Intrinsic::arm_neon_vmaxu: {
2977     if (Op.getValueType().isFloatingPoint())
2978       return SDValue();
2979     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
2980       ? ISD::UMIN : ISD::UMAX;
2981     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2982                          Op.getOperand(1), Op.getOperand(2));
2983   }
2984   case Intrinsic::arm_neon_vmins:
2985   case Intrinsic::arm_neon_vmaxs: {
2986     // v{min,max}s is overloaded between signed integers and floats.
2987     if (!Op.getValueType().isFloatingPoint()) {
2988       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
2989         ? ISD::SMIN : ISD::SMAX;
2990       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2991                          Op.getOperand(1), Op.getOperand(2));
2992     }
2993     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
2994       ? ISD::FMINNAN : ISD::FMAXNAN;
2995     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2996                        Op.getOperand(1), Op.getOperand(2));
2997   }
2998   }
2999 }
3000 
3001 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3002                                  const ARMSubtarget *Subtarget) {
3003   // FIXME: handle "fence singlethread" more efficiently.
3004   SDLoc dl(Op);
3005   if (!Subtarget->hasDataBarrier()) {
3006     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3007     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3008     // here.
3009     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3010            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3011     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3012                        DAG.getConstant(0, dl, MVT::i32));
3013   }
3014 
3015   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3016   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3017   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3018   if (Subtarget->isMClass()) {
3019     // Only a full system barrier exists in the M-class architectures.
3020     Domain = ARM_MB::SY;
3021   } else if (Subtarget->isSwift() && Ord == AtomicOrdering::Release) {
3022     // Swift happens to implement ISHST barriers in a way that's compatible with
3023     // Release semantics but weaker than ISH so we'd be fools not to use
3024     // it. Beware: other processors probably don't!
3025     Domain = ARM_MB::ISHST;
3026   }
3027 
3028   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3029                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3030                      DAG.getConstant(Domain, dl, MVT::i32));
3031 }
3032 
3033 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3034                              const ARMSubtarget *Subtarget) {
3035   // ARM pre v5TE and Thumb1 does not have preload instructions.
3036   if (!(Subtarget->isThumb2() ||
3037         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3038     // Just preserve the chain.
3039     return Op.getOperand(0);
3040 
3041   SDLoc dl(Op);
3042   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3043   if (!isRead &&
3044       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3045     // ARMv7 with MP extension has PLDW.
3046     return Op.getOperand(0);
3047 
3048   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3049   if (Subtarget->isThumb()) {
3050     // Invert the bits.
3051     isRead = ~isRead & 1;
3052     isData = ~isData & 1;
3053   }
3054 
3055   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3056                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3057                      DAG.getConstant(isData, dl, MVT::i32));
3058 }
3059 
3060 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3061   MachineFunction &MF = DAG.getMachineFunction();
3062   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3063 
3064   // vastart just stores the address of the VarArgsFrameIndex slot into the
3065   // memory location argument.
3066   SDLoc dl(Op);
3067   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3068   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3069   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3070   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3071                       MachinePointerInfo(SV), false, false, 0);
3072 }
3073 
3074 SDValue
3075 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
3076                                         SDValue &Root, SelectionDAG &DAG,
3077                                         SDLoc dl) const {
3078   MachineFunction &MF = DAG.getMachineFunction();
3079   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3080 
3081   const TargetRegisterClass *RC;
3082   if (AFI->isThumb1OnlyFunction())
3083     RC = &ARM::tGPRRegClass;
3084   else
3085     RC = &ARM::GPRRegClass;
3086 
3087   // Transform the arguments stored in physical registers into virtual ones.
3088   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3089   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3090 
3091   SDValue ArgValue2;
3092   if (NextVA.isMemLoc()) {
3093     MachineFrameInfo *MFI = MF.getFrameInfo();
3094     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3095 
3096     // Create load node to retrieve arguments from the stack.
3097     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3098     ArgValue2 = DAG.getLoad(
3099         MVT::i32, dl, Root, FIN,
3100         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
3101         false, false, 0);
3102   } else {
3103     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3104     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3105   }
3106   if (!Subtarget->isLittle())
3107     std::swap (ArgValue, ArgValue2);
3108   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3109 }
3110 
3111 // The remaining GPRs hold either the beginning of variable-argument
3112 // data, or the beginning of an aggregate passed by value (usually
3113 // byval).  Either way, we allocate stack slots adjacent to the data
3114 // provided by our caller, and store the unallocated registers there.
3115 // If this is a variadic function, the va_list pointer will begin with
3116 // these values; otherwise, this reassembles a (byval) structure that
3117 // was split between registers and memory.
3118 // Return: The frame index registers were stored into.
3119 int
3120 ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3121                                   SDLoc dl, SDValue &Chain,
3122                                   const Value *OrigArg,
3123                                   unsigned InRegsParamRecordIdx,
3124                                   int ArgOffset,
3125                                   unsigned ArgSize) const {
3126   // Currently, two use-cases possible:
3127   // Case #1. Non-var-args function, and we meet first byval parameter.
3128   //          Setup first unallocated register as first byval register;
3129   //          eat all remained registers
3130   //          (these two actions are performed by HandleByVal method).
3131   //          Then, here, we initialize stack frame with
3132   //          "store-reg" instructions.
3133   // Case #2. Var-args function, that doesn't contain byval parameters.
3134   //          The same: eat all remained unallocated registers,
3135   //          initialize stack frame.
3136 
3137   MachineFunction &MF = DAG.getMachineFunction();
3138   MachineFrameInfo *MFI = MF.getFrameInfo();
3139   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3140   unsigned RBegin, REnd;
3141   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3142     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3143   } else {
3144     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3145     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3146     REnd = ARM::R4;
3147   }
3148 
3149   if (REnd != RBegin)
3150     ArgOffset = -4 * (ARM::R4 - RBegin);
3151 
3152   auto PtrVT = getPointerTy(DAG.getDataLayout());
3153   int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
3154   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3155 
3156   SmallVector<SDValue, 4> MemOps;
3157   const TargetRegisterClass *RC =
3158       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3159 
3160   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3161     unsigned VReg = MF.addLiveIn(Reg, RC);
3162     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3163     SDValue Store =
3164         DAG.getStore(Val.getValue(1), dl, Val, FIN,
3165                      MachinePointerInfo(OrigArg, 4 * i), false, false, 0);
3166     MemOps.push_back(Store);
3167     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3168   }
3169 
3170   if (!MemOps.empty())
3171     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3172   return FrameIndex;
3173 }
3174 
3175 // Setup stack frame, the va_list pointer will start from.
3176 void
3177 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3178                                         SDLoc dl, SDValue &Chain,
3179                                         unsigned ArgOffset,
3180                                         unsigned TotalArgRegsSaveSize,
3181                                         bool ForceMutable) const {
3182   MachineFunction &MF = DAG.getMachineFunction();
3183   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3184 
3185   // Try to store any remaining integer argument regs
3186   // to their spots on the stack so that they may be loaded by deferencing
3187   // the result of va_next.
3188   // If there is no regs to be stored, just point address after last
3189   // argument passed via stack.
3190   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3191                                   CCInfo.getInRegsParamsCount(),
3192                                   CCInfo.getNextStackOffset(), 4);
3193   AFI->setVarArgsFrameIndex(FrameIndex);
3194 }
3195 
3196 SDValue
3197 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
3198                                         CallingConv::ID CallConv, bool isVarArg,
3199                                         const SmallVectorImpl<ISD::InputArg>
3200                                           &Ins,
3201                                         SDLoc dl, SelectionDAG &DAG,
3202                                         SmallVectorImpl<SDValue> &InVals)
3203                                           const {
3204   MachineFunction &MF = DAG.getMachineFunction();
3205   MachineFrameInfo *MFI = MF.getFrameInfo();
3206 
3207   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3208 
3209   // Assign locations to all of the incoming arguments.
3210   SmallVector<CCValAssign, 16> ArgLocs;
3211   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3212                     *DAG.getContext(), Prologue);
3213   CCInfo.AnalyzeFormalArguments(Ins,
3214                                 CCAssignFnForNode(CallConv, /* Return*/ false,
3215                                                   isVarArg));
3216 
3217   SmallVector<SDValue, 16> ArgValues;
3218   SDValue ArgValue;
3219   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
3220   unsigned CurArgIdx = 0;
3221 
3222   // Initially ArgRegsSaveSize is zero.
3223   // Then we increase this value each time we meet byval parameter.
3224   // We also increase this value in case of varargs function.
3225   AFI->setArgRegsSaveSize(0);
3226 
3227   // Calculate the amount of stack space that we need to allocate to store
3228   // byval and variadic arguments that are passed in registers.
3229   // We need to know this before we allocate the first byval or variadic
3230   // argument, as they will be allocated a stack slot below the CFA (Canonical
3231   // Frame Address, the stack pointer at entry to the function).
3232   unsigned ArgRegBegin = ARM::R4;
3233   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3234     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3235       break;
3236 
3237     CCValAssign &VA = ArgLocs[i];
3238     unsigned Index = VA.getValNo();
3239     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3240     if (!Flags.isByVal())
3241       continue;
3242 
3243     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3244     unsigned RBegin, REnd;
3245     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3246     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3247 
3248     CCInfo.nextInRegsParam();
3249   }
3250   CCInfo.rewindByValRegsInfo();
3251 
3252   int lastInsIndex = -1;
3253   if (isVarArg && MFI->hasVAStart()) {
3254     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3255     if (RegIdx != array_lengthof(GPRArgRegs))
3256       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3257   }
3258 
3259   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3260   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3261   auto PtrVT = getPointerTy(DAG.getDataLayout());
3262 
3263   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3264     CCValAssign &VA = ArgLocs[i];
3265     if (Ins[VA.getValNo()].isOrigArg()) {
3266       std::advance(CurOrigArg,
3267                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3268       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3269     }
3270     // Arguments stored in registers.
3271     if (VA.isRegLoc()) {
3272       EVT RegVT = VA.getLocVT();
3273 
3274       if (VA.needsCustom()) {
3275         // f64 and vector types are split up into multiple registers or
3276         // combinations of registers and stack slots.
3277         if (VA.getLocVT() == MVT::v2f64) {
3278           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3279                                                    Chain, DAG, dl);
3280           VA = ArgLocs[++i]; // skip ahead to next loc
3281           SDValue ArgValue2;
3282           if (VA.isMemLoc()) {
3283             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
3284             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3285             ArgValue2 = DAG.getLoad(
3286                 MVT::f64, dl, Chain, FIN,
3287                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3288                 false, false, false, 0);
3289           } else {
3290             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3291                                              Chain, DAG, dl);
3292           }
3293           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3294           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3295                                  ArgValue, ArgValue1,
3296                                  DAG.getIntPtrConstant(0, dl));
3297           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3298                                  ArgValue, ArgValue2,
3299                                  DAG.getIntPtrConstant(1, dl));
3300         } else
3301           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3302 
3303       } else {
3304         const TargetRegisterClass *RC;
3305 
3306         if (RegVT == MVT::f32)
3307           RC = &ARM::SPRRegClass;
3308         else if (RegVT == MVT::f64)
3309           RC = &ARM::DPRRegClass;
3310         else if (RegVT == MVT::v2f64)
3311           RC = &ARM::QPRRegClass;
3312         else if (RegVT == MVT::i32)
3313           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3314                                            : &ARM::GPRRegClass;
3315         else
3316           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3317 
3318         // Transform the arguments in physical registers into virtual ones.
3319         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3320         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3321       }
3322 
3323       // If this is an 8 or 16-bit value, it is really passed promoted
3324       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3325       // truncate to the right size.
3326       switch (VA.getLocInfo()) {
3327       default: llvm_unreachable("Unknown loc info!");
3328       case CCValAssign::Full: break;
3329       case CCValAssign::BCvt:
3330         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3331         break;
3332       case CCValAssign::SExt:
3333         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3334                                DAG.getValueType(VA.getValVT()));
3335         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3336         break;
3337       case CCValAssign::ZExt:
3338         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3339                                DAG.getValueType(VA.getValVT()));
3340         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3341         break;
3342       }
3343 
3344       InVals.push_back(ArgValue);
3345 
3346     } else { // VA.isRegLoc()
3347 
3348       // sanity check
3349       assert(VA.isMemLoc());
3350       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3351 
3352       int index = VA.getValNo();
3353 
3354       // Some Ins[] entries become multiple ArgLoc[] entries.
3355       // Process them only once.
3356       if (index != lastInsIndex)
3357         {
3358           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3359           // FIXME: For now, all byval parameter objects are marked mutable.
3360           // This can be changed with more analysis.
3361           // In case of tail call optimization mark all arguments mutable.
3362           // Since they could be overwritten by lowering of arguments in case of
3363           // a tail call.
3364           if (Flags.isByVal()) {
3365             assert(Ins[index].isOrigArg() &&
3366                    "Byval arguments cannot be implicit");
3367             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3368 
3369             int FrameIndex = StoreByValRegs(
3370                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3371                 VA.getLocMemOffset(), Flags.getByValSize());
3372             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3373             CCInfo.nextInRegsParam();
3374           } else {
3375             unsigned FIOffset = VA.getLocMemOffset();
3376             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3377                                             FIOffset, true);
3378 
3379             // Create load nodes to retrieve arguments from the stack.
3380             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3381             InVals.push_back(DAG.getLoad(
3382                 VA.getValVT(), dl, Chain, FIN,
3383                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3384                 false, false, false, 0));
3385           }
3386           lastInsIndex = index;
3387         }
3388     }
3389   }
3390 
3391   // varargs
3392   if (isVarArg && MFI->hasVAStart())
3393     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3394                          CCInfo.getNextStackOffset(),
3395                          TotalArgRegsSaveSize);
3396 
3397   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3398 
3399   return Chain;
3400 }
3401 
3402 /// isFloatingPointZero - Return true if this is +0.0.
3403 static bool isFloatingPointZero(SDValue Op) {
3404   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3405     return CFP->getValueAPF().isPosZero();
3406   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3407     // Maybe this has already been legalized into the constant pool?
3408     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3409       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3410       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3411         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3412           return CFP->getValueAPF().isPosZero();
3413     }
3414   } else if (Op->getOpcode() == ISD::BITCAST &&
3415              Op->getValueType(0) == MVT::f64) {
3416     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3417     // created by LowerConstantFP().
3418     SDValue BitcastOp = Op->getOperand(0);
3419     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3420         isNullConstant(BitcastOp->getOperand(0)))
3421       return true;
3422   }
3423   return false;
3424 }
3425 
3426 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3427 /// the given operands.
3428 SDValue
3429 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3430                              SDValue &ARMcc, SelectionDAG &DAG,
3431                              SDLoc dl) const {
3432   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3433     unsigned C = RHSC->getZExtValue();
3434     if (!isLegalICmpImmediate(C)) {
3435       // Constant does not fit, try adjusting it by one?
3436       switch (CC) {
3437       default: break;
3438       case ISD::SETLT:
3439       case ISD::SETGE:
3440         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3441           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3442           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3443         }
3444         break;
3445       case ISD::SETULT:
3446       case ISD::SETUGE:
3447         if (C != 0 && isLegalICmpImmediate(C-1)) {
3448           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3449           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3450         }
3451         break;
3452       case ISD::SETLE:
3453       case ISD::SETGT:
3454         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3455           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3456           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3457         }
3458         break;
3459       case ISD::SETULE:
3460       case ISD::SETUGT:
3461         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3462           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3463           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3464         }
3465         break;
3466       }
3467     }
3468   }
3469 
3470   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3471   ARMISD::NodeType CompareType;
3472   switch (CondCode) {
3473   default:
3474     CompareType = ARMISD::CMP;
3475     break;
3476   case ARMCC::EQ:
3477   case ARMCC::NE:
3478     // Uses only Z Flag
3479     CompareType = ARMISD::CMPZ;
3480     break;
3481   }
3482   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3483   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3484 }
3485 
3486 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3487 SDValue
3488 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
3489                              SDLoc dl) const {
3490   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3491   SDValue Cmp;
3492   if (!isFloatingPointZero(RHS))
3493     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3494   else
3495     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3496   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3497 }
3498 
3499 /// duplicateCmp - Glue values can have only one use, so this function
3500 /// duplicates a comparison node.
3501 SDValue
3502 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3503   unsigned Opc = Cmp.getOpcode();
3504   SDLoc DL(Cmp);
3505   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3506     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3507 
3508   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3509   Cmp = Cmp.getOperand(0);
3510   Opc = Cmp.getOpcode();
3511   if (Opc == ARMISD::CMPFP)
3512     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3513   else {
3514     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3515     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3516   }
3517   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3518 }
3519 
3520 std::pair<SDValue, SDValue>
3521 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3522                                  SDValue &ARMcc) const {
3523   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3524 
3525   SDValue Value, OverflowCmp;
3526   SDValue LHS = Op.getOperand(0);
3527   SDValue RHS = Op.getOperand(1);
3528   SDLoc dl(Op);
3529 
3530   // FIXME: We are currently always generating CMPs because we don't support
3531   // generating CMN through the backend. This is not as good as the natural
3532   // CMP case because it causes a register dependency and cannot be folded
3533   // later.
3534 
3535   switch (Op.getOpcode()) {
3536   default:
3537     llvm_unreachable("Unknown overflow instruction!");
3538   case ISD::SADDO:
3539     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3540     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3541     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3542     break;
3543   case ISD::UADDO:
3544     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3545     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3546     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3547     break;
3548   case ISD::SSUBO:
3549     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3550     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3551     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3552     break;
3553   case ISD::USUBO:
3554     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3555     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3556     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3557     break;
3558   } // switch (...)
3559 
3560   return std::make_pair(Value, OverflowCmp);
3561 }
3562 
3563 
3564 SDValue
3565 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
3566   // Let legalize expand this if it isn't a legal type yet.
3567   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3568     return SDValue();
3569 
3570   SDValue Value, OverflowCmp;
3571   SDValue ARMcc;
3572   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
3573   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3574   SDLoc dl(Op);
3575   // We use 0 and 1 as false and true values.
3576   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
3577   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
3578   EVT VT = Op.getValueType();
3579 
3580   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
3581                                  ARMcc, CCR, OverflowCmp);
3582 
3583   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3584   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
3585 }
3586 
3587 
3588 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3589   SDValue Cond = Op.getOperand(0);
3590   SDValue SelectTrue = Op.getOperand(1);
3591   SDValue SelectFalse = Op.getOperand(2);
3592   SDLoc dl(Op);
3593   unsigned Opc = Cond.getOpcode();
3594 
3595   if (Cond.getResNo() == 1 &&
3596       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3597        Opc == ISD::USUBO)) {
3598     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
3599       return SDValue();
3600 
3601     SDValue Value, OverflowCmp;
3602     SDValue ARMcc;
3603     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
3604     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3605     EVT VT = Op.getValueType();
3606 
3607     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
3608                    OverflowCmp, DAG);
3609   }
3610 
3611   // Convert:
3612   //
3613   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3614   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3615   //
3616   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3617     const ConstantSDNode *CMOVTrue =
3618       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3619     const ConstantSDNode *CMOVFalse =
3620       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3621 
3622     if (CMOVTrue && CMOVFalse) {
3623       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3624       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3625 
3626       SDValue True;
3627       SDValue False;
3628       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3629         True = SelectTrue;
3630         False = SelectFalse;
3631       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3632         True = SelectFalse;
3633         False = SelectTrue;
3634       }
3635 
3636       if (True.getNode() && False.getNode()) {
3637         EVT VT = Op.getValueType();
3638         SDValue ARMcc = Cond.getOperand(2);
3639         SDValue CCR = Cond.getOperand(3);
3640         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3641         assert(True.getValueType() == VT);
3642         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
3643       }
3644     }
3645   }
3646 
3647   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3648   // undefined bits before doing a full-word comparison with zero.
3649   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3650                      DAG.getConstant(1, dl, Cond.getValueType()));
3651 
3652   return DAG.getSelectCC(dl, Cond,
3653                          DAG.getConstant(0, dl, Cond.getValueType()),
3654                          SelectTrue, SelectFalse, ISD::SETNE);
3655 }
3656 
3657 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
3658                                  bool &swpCmpOps, bool &swpVselOps) {
3659   // Start by selecting the GE condition code for opcodes that return true for
3660   // 'equality'
3661   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3662       CC == ISD::SETULE)
3663     CondCode = ARMCC::GE;
3664 
3665   // and GT for opcodes that return false for 'equality'.
3666   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3667            CC == ISD::SETULT)
3668     CondCode = ARMCC::GT;
3669 
3670   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3671   // to swap the compare operands.
3672   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3673       CC == ISD::SETULT)
3674     swpCmpOps = true;
3675 
3676   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3677   // If we have an unordered opcode, we need to swap the operands to the VSEL
3678   // instruction (effectively negating the condition).
3679   //
3680   // This also has the effect of swapping which one of 'less' or 'greater'
3681   // returns true, so we also swap the compare operands. It also switches
3682   // whether we return true for 'equality', so we compensate by picking the
3683   // opposite condition code to our original choice.
3684   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3685       CC == ISD::SETUGT) {
3686     swpCmpOps = !swpCmpOps;
3687     swpVselOps = !swpVselOps;
3688     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3689   }
3690 
3691   // 'ordered' is 'anything but unordered', so use the VS condition code and
3692   // swap the VSEL operands.
3693   if (CC == ISD::SETO) {
3694     CondCode = ARMCC::VS;
3695     swpVselOps = true;
3696   }
3697 
3698   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3699   // code and swap the VSEL operands.
3700   if (CC == ISD::SETUNE) {
3701     CondCode = ARMCC::EQ;
3702     swpVselOps = true;
3703   }
3704 }
3705 
3706 SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal,
3707                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
3708                                    SDValue Cmp, SelectionDAG &DAG) const {
3709   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
3710     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3711                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
3712     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3713                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
3714 
3715     SDValue TrueLow = TrueVal.getValue(0);
3716     SDValue TrueHigh = TrueVal.getValue(1);
3717     SDValue FalseLow = FalseVal.getValue(0);
3718     SDValue FalseHigh = FalseVal.getValue(1);
3719 
3720     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
3721                               ARMcc, CCR, Cmp);
3722     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
3723                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
3724 
3725     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
3726   } else {
3727     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3728                        Cmp);
3729   }
3730 }
3731 
3732 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3733   EVT VT = Op.getValueType();
3734   SDValue LHS = Op.getOperand(0);
3735   SDValue RHS = Op.getOperand(1);
3736   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3737   SDValue TrueVal = Op.getOperand(2);
3738   SDValue FalseVal = Op.getOperand(3);
3739   SDLoc dl(Op);
3740 
3741   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3742     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3743                                                     dl);
3744 
3745     // If softenSetCCOperands only returned one value, we should compare it to
3746     // zero.
3747     if (!RHS.getNode()) {
3748       RHS = DAG.getConstant(0, dl, LHS.getValueType());
3749       CC = ISD::SETNE;
3750     }
3751   }
3752 
3753   if (LHS.getValueType() == MVT::i32) {
3754     // Try to generate VSEL on ARMv8.
3755     // The VSEL instruction can't use all the usual ARM condition
3756     // codes: it only has two bits to select the condition code, so it's
3757     // constrained to use only GE, GT, VS and EQ.
3758     //
3759     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
3760     // swap the operands of the previous compare instruction (effectively
3761     // inverting the compare condition, swapping 'less' and 'greater') and
3762     // sometimes need to swap the operands to the VSEL (which inverts the
3763     // condition in the sense of firing whenever the previous condition didn't)
3764     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3765                                     TrueVal.getValueType() == MVT::f64)) {
3766       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3767       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
3768           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
3769         CC = ISD::getSetCCInverse(CC, true);
3770         std::swap(TrueVal, FalseVal);
3771       }
3772     }
3773 
3774     SDValue ARMcc;
3775     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3776     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3777     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3778   }
3779 
3780   ARMCC::CondCodes CondCode, CondCode2;
3781   FPCCToARMCC(CC, CondCode, CondCode2);
3782 
3783   // Try to generate VMAXNM/VMINNM on ARMv8.
3784   if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3785                                   TrueVal.getValueType() == MVT::f64)) {
3786     bool swpCmpOps = false;
3787     bool swpVselOps = false;
3788     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
3789 
3790     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
3791         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
3792       if (swpCmpOps)
3793         std::swap(LHS, RHS);
3794       if (swpVselOps)
3795         std::swap(TrueVal, FalseVal);
3796     }
3797   }
3798 
3799   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3800   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3801   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3802   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3803   if (CondCode2 != ARMCC::AL) {
3804     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
3805     // FIXME: Needs another CMP because flag can have but one use.
3806     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3807     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
3808   }
3809   return Result;
3810 }
3811 
3812 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
3813 /// to morph to an integer compare sequence.
3814 static bool canChangeToInt(SDValue Op, bool &SeenZero,
3815                            const ARMSubtarget *Subtarget) {
3816   SDNode *N = Op.getNode();
3817   if (!N->hasOneUse())
3818     // Otherwise it requires moving the value from fp to integer registers.
3819     return false;
3820   if (!N->getNumValues())
3821     return false;
3822   EVT VT = Op.getValueType();
3823   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3824     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3825     // vmrs are very slow, e.g. cortex-a8.
3826     return false;
3827 
3828   if (isFloatingPointZero(Op)) {
3829     SeenZero = true;
3830     return true;
3831   }
3832   return ISD::isNormalLoad(N);
3833 }
3834 
3835 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3836   if (isFloatingPointZero(Op))
3837     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
3838 
3839   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3840     return DAG.getLoad(MVT::i32, SDLoc(Op),
3841                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3842                        Ld->isVolatile(), Ld->isNonTemporal(),
3843                        Ld->isInvariant(), Ld->getAlignment());
3844 
3845   llvm_unreachable("Unknown VFP cmp argument!");
3846 }
3847 
3848 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3849                            SDValue &RetVal1, SDValue &RetVal2) {
3850   SDLoc dl(Op);
3851 
3852   if (isFloatingPointZero(Op)) {
3853     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
3854     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
3855     return;
3856   }
3857 
3858   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3859     SDValue Ptr = Ld->getBasePtr();
3860     RetVal1 = DAG.getLoad(MVT::i32, dl,
3861                           Ld->getChain(), Ptr,
3862                           Ld->getPointerInfo(),
3863                           Ld->isVolatile(), Ld->isNonTemporal(),
3864                           Ld->isInvariant(), Ld->getAlignment());
3865 
3866     EVT PtrType = Ptr.getValueType();
3867     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3868     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
3869                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
3870     RetVal2 = DAG.getLoad(MVT::i32, dl,
3871                           Ld->getChain(), NewPtr,
3872                           Ld->getPointerInfo().getWithOffset(4),
3873                           Ld->isVolatile(), Ld->isNonTemporal(),
3874                           Ld->isInvariant(), NewAlign);
3875     return;
3876   }
3877 
3878   llvm_unreachable("Unknown VFP cmp argument!");
3879 }
3880 
3881 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3882 /// f32 and even f64 comparisons to integer ones.
3883 SDValue
3884 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3885   SDValue Chain = Op.getOperand(0);
3886   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3887   SDValue LHS = Op.getOperand(2);
3888   SDValue RHS = Op.getOperand(3);
3889   SDValue Dest = Op.getOperand(4);
3890   SDLoc dl(Op);
3891 
3892   bool LHSSeenZero = false;
3893   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3894   bool RHSSeenZero = false;
3895   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3896   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3897     // If unsafe fp math optimization is enabled and there are no other uses of
3898     // the CMP operands, and the condition code is EQ or NE, we can optimize it
3899     // to an integer comparison.
3900     if (CC == ISD::SETOEQ)
3901       CC = ISD::SETEQ;
3902     else if (CC == ISD::SETUNE)
3903       CC = ISD::SETNE;
3904 
3905     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
3906     SDValue ARMcc;
3907     if (LHS.getValueType() == MVT::f32) {
3908       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3909                         bitcastf32Toi32(LHS, DAG), Mask);
3910       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3911                         bitcastf32Toi32(RHS, DAG), Mask);
3912       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3913       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3914       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3915                          Chain, Dest, ARMcc, CCR, Cmp);
3916     }
3917 
3918     SDValue LHS1, LHS2;
3919     SDValue RHS1, RHS2;
3920     expandf64Toi32(LHS, DAG, LHS1, LHS2);
3921     expandf64Toi32(RHS, DAG, RHS1, RHS2);
3922     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3923     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3924     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3925     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3926     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3927     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3928     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
3929   }
3930 
3931   return SDValue();
3932 }
3933 
3934 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3935   SDValue Chain = Op.getOperand(0);
3936   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3937   SDValue LHS = Op.getOperand(2);
3938   SDValue RHS = Op.getOperand(3);
3939   SDValue Dest = Op.getOperand(4);
3940   SDLoc dl(Op);
3941 
3942   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3943     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3944                                                     dl);
3945 
3946     // If softenSetCCOperands only returned one value, we should compare it to
3947     // zero.
3948     if (!RHS.getNode()) {
3949       RHS = DAG.getConstant(0, dl, LHS.getValueType());
3950       CC = ISD::SETNE;
3951     }
3952   }
3953 
3954   if (LHS.getValueType() == MVT::i32) {
3955     SDValue ARMcc;
3956     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3957     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3958     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3959                        Chain, Dest, ARMcc, CCR, Cmp);
3960   }
3961 
3962   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3963 
3964   if (getTargetMachine().Options.UnsafeFPMath &&
3965       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3966        CC == ISD::SETNE || CC == ISD::SETUNE)) {
3967     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
3968       return Result;
3969   }
3970 
3971   ARMCC::CondCodes CondCode, CondCode2;
3972   FPCCToARMCC(CC, CondCode, CondCode2);
3973 
3974   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3975   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3976   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3977   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3978   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3979   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3980   if (CondCode2 != ARMCC::AL) {
3981     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
3982     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3983     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3984   }
3985   return Res;
3986 }
3987 
3988 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3989   SDValue Chain = Op.getOperand(0);
3990   SDValue Table = Op.getOperand(1);
3991   SDValue Index = Op.getOperand(2);
3992   SDLoc dl(Op);
3993 
3994   EVT PTy = getPointerTy(DAG.getDataLayout());
3995   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3996   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3997   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
3998   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
3999   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
4000   if (Subtarget->isThumb2()) {
4001     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
4002     // which does another jump to the destination. This also makes it easier
4003     // to translate it to TBB / TBH later.
4004     // FIXME: This might not work if the function is extremely large.
4005     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4006                        Addr, Op.getOperand(2), JTI);
4007   }
4008   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
4009     Addr =
4010         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4011                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
4012                     false, false, false, 0);
4013     Chain = Addr.getValue(1);
4014     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
4015     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4016   } else {
4017     Addr =
4018         DAG.getLoad(PTy, dl, Chain, Addr,
4019                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
4020                     false, false, false, 0);
4021     Chain = Addr.getValue(1);
4022     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4023   }
4024 }
4025 
4026 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4027   EVT VT = Op.getValueType();
4028   SDLoc dl(Op);
4029 
4030   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4031     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4032       return Op;
4033     return DAG.UnrollVectorOp(Op.getNode());
4034   }
4035 
4036   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4037          "Invalid type for custom lowering!");
4038   if (VT != MVT::v4i16)
4039     return DAG.UnrollVectorOp(Op.getNode());
4040 
4041   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4042   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4043 }
4044 
4045 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4046   EVT VT = Op.getValueType();
4047   if (VT.isVector())
4048     return LowerVectorFP_TO_INT(Op, DAG);
4049   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4050     RTLIB::Libcall LC;
4051     if (Op.getOpcode() == ISD::FP_TO_SINT)
4052       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4053                               Op.getValueType());
4054     else
4055       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4056                               Op.getValueType());
4057     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4058                        /*isSigned*/ false, SDLoc(Op)).first;
4059   }
4060 
4061   return Op;
4062 }
4063 
4064 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4065   EVT VT = Op.getValueType();
4066   SDLoc dl(Op);
4067 
4068   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4069     if (VT.getVectorElementType() == MVT::f32)
4070       return Op;
4071     return DAG.UnrollVectorOp(Op.getNode());
4072   }
4073 
4074   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4075          "Invalid type for custom lowering!");
4076   if (VT != MVT::v4f32)
4077     return DAG.UnrollVectorOp(Op.getNode());
4078 
4079   unsigned CastOpc;
4080   unsigned Opc;
4081   switch (Op.getOpcode()) {
4082   default: llvm_unreachable("Invalid opcode!");
4083   case ISD::SINT_TO_FP:
4084     CastOpc = ISD::SIGN_EXTEND;
4085     Opc = ISD::SINT_TO_FP;
4086     break;
4087   case ISD::UINT_TO_FP:
4088     CastOpc = ISD::ZERO_EXTEND;
4089     Opc = ISD::UINT_TO_FP;
4090     break;
4091   }
4092 
4093   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4094   return DAG.getNode(Opc, dl, VT, Op);
4095 }
4096 
4097 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4098   EVT VT = Op.getValueType();
4099   if (VT.isVector())
4100     return LowerVectorINT_TO_FP(Op, DAG);
4101   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4102     RTLIB::Libcall LC;
4103     if (Op.getOpcode() == ISD::SINT_TO_FP)
4104       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4105                               Op.getValueType());
4106     else
4107       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4108                               Op.getValueType());
4109     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4110                        /*isSigned*/ false, SDLoc(Op)).first;
4111   }
4112 
4113   return Op;
4114 }
4115 
4116 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4117   // Implement fcopysign with a fabs and a conditional fneg.
4118   SDValue Tmp0 = Op.getOperand(0);
4119   SDValue Tmp1 = Op.getOperand(1);
4120   SDLoc dl(Op);
4121   EVT VT = Op.getValueType();
4122   EVT SrcVT = Tmp1.getValueType();
4123   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4124     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4125   bool UseNEON = !InGPR && Subtarget->hasNEON();
4126 
4127   if (UseNEON) {
4128     // Use VBSL to copy the sign bit.
4129     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4130     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4131                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4132     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4133     if (VT == MVT::f64)
4134       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4135                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4136                          DAG.getConstant(32, dl, MVT::i32));
4137     else /*if (VT == MVT::f32)*/
4138       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4139     if (SrcVT == MVT::f32) {
4140       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4141       if (VT == MVT::f64)
4142         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4143                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4144                            DAG.getConstant(32, dl, MVT::i32));
4145     } else if (VT == MVT::f32)
4146       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4147                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4148                          DAG.getConstant(32, dl, MVT::i32));
4149     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4150     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4151 
4152     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4153                                             dl, MVT::i32);
4154     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4155     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4156                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4157 
4158     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4159                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4160                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4161     if (VT == MVT::f32) {
4162       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4163       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4164                         DAG.getConstant(0, dl, MVT::i32));
4165     } else {
4166       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4167     }
4168 
4169     return Res;
4170   }
4171 
4172   // Bitcast operand 1 to i32.
4173   if (SrcVT == MVT::f64)
4174     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4175                        Tmp1).getValue(1);
4176   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4177 
4178   // Or in the signbit with integer operations.
4179   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4180   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4181   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4182   if (VT == MVT::f32) {
4183     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4184                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4185     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4186                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4187   }
4188 
4189   // f64: Or the high part with signbit and then combine two parts.
4190   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4191                      Tmp0);
4192   SDValue Lo = Tmp0.getValue(0);
4193   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4194   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4195   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4196 }
4197 
4198 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4199   MachineFunction &MF = DAG.getMachineFunction();
4200   MachineFrameInfo *MFI = MF.getFrameInfo();
4201   MFI->setReturnAddressIsTaken(true);
4202 
4203   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4204     return SDValue();
4205 
4206   EVT VT = Op.getValueType();
4207   SDLoc dl(Op);
4208   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4209   if (Depth) {
4210     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4211     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
4212     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
4213                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
4214                        MachinePointerInfo(), false, false, false, 0);
4215   }
4216 
4217   // Return LR, which contains the return address. Mark it an implicit live-in.
4218   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4219   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
4220 }
4221 
4222 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
4223   const ARMBaseRegisterInfo &ARI =
4224     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
4225   MachineFunction &MF = DAG.getMachineFunction();
4226   MachineFrameInfo *MFI = MF.getFrameInfo();
4227   MFI->setFrameAddressIsTaken(true);
4228 
4229   EVT VT = Op.getValueType();
4230   SDLoc dl(Op);  // FIXME probably not meaningful
4231   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4232   unsigned FrameReg = ARI.getFrameRegister(MF);
4233   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
4234   while (Depth--)
4235     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
4236                             MachinePointerInfo(),
4237                             false, false, false, 0);
4238   return FrameAddr;
4239 }
4240 
4241 // FIXME? Maybe this could be a TableGen attribute on some registers and
4242 // this table could be generated automatically from RegInfo.
4243 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4244                                               SelectionDAG &DAG) const {
4245   unsigned Reg = StringSwitch<unsigned>(RegName)
4246                        .Case("sp", ARM::SP)
4247                        .Default(0);
4248   if (Reg)
4249     return Reg;
4250   report_fatal_error(Twine("Invalid register name \""
4251                               + StringRef(RegName)  + "\"."));
4252 }
4253 
4254 // Result is 64 bit value so split into two 32 bit values and return as a
4255 // pair of values.
4256 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
4257                                 SelectionDAG &DAG) {
4258   SDLoc DL(N);
4259 
4260   // This function is only supposed to be called for i64 type destination.
4261   assert(N->getValueType(0) == MVT::i64
4262           && "ExpandREAD_REGISTER called for non-i64 type result.");
4263 
4264   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
4265                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
4266                              N->getOperand(0),
4267                              N->getOperand(1));
4268 
4269   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
4270                     Read.getValue(1)));
4271   Results.push_back(Read.getOperand(0));
4272 }
4273 
4274 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
4275 /// When \p DstVT, the destination type of \p BC, is on the vector
4276 /// register bank and the source of bitcast, \p Op, operates on the same bank,
4277 /// it might be possible to combine them, such that everything stays on the
4278 /// vector register bank.
4279 /// \p return The node that would replace \p BT, if the combine
4280 /// is possible.
4281 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
4282                                                 SelectionDAG &DAG) {
4283   SDValue Op = BC->getOperand(0);
4284   EVT DstVT = BC->getValueType(0);
4285 
4286   // The only vector instruction that can produce a scalar (remember,
4287   // since the bitcast was about to be turned into VMOVDRR, the source
4288   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
4289   // Moreover, we can do this combine only if there is one use.
4290   // Finally, if the destination type is not a vector, there is not
4291   // much point on forcing everything on the vector bank.
4292   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4293       !Op.hasOneUse())
4294     return SDValue();
4295 
4296   // If the index is not constant, we will introduce an additional
4297   // multiply that will stick.
4298   // Give up in that case.
4299   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4300   if (!Index)
4301     return SDValue();
4302   unsigned DstNumElt = DstVT.getVectorNumElements();
4303 
4304   // Compute the new index.
4305   const APInt &APIntIndex = Index->getAPIntValue();
4306   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
4307   NewIndex *= APIntIndex;
4308   // Check if the new constant index fits into i32.
4309   if (NewIndex.getBitWidth() > 32)
4310     return SDValue();
4311 
4312   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
4313   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
4314   SDLoc dl(Op);
4315   SDValue ExtractSrc = Op.getOperand(0);
4316   EVT VecVT = EVT::getVectorVT(
4317       *DAG.getContext(), DstVT.getScalarType(),
4318       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
4319   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
4320   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
4321                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
4322 }
4323 
4324 /// ExpandBITCAST - If the target supports VFP, this function is called to
4325 /// expand a bit convert where either the source or destination type is i64 to
4326 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
4327 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
4328 /// vectors), since the legalizer won't know what to do with that.
4329 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
4330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4331   SDLoc dl(N);
4332   SDValue Op = N->getOperand(0);
4333 
4334   // This function is only supposed to be called for i64 types, either as the
4335   // source or destination of the bit convert.
4336   EVT SrcVT = Op.getValueType();
4337   EVT DstVT = N->getValueType(0);
4338   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
4339          "ExpandBITCAST called for non-i64 type");
4340 
4341   // Turn i64->f64 into VMOVDRR.
4342   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
4343     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
4344     // if we can combine the bitcast with its source.
4345     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
4346       return Val;
4347 
4348     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4349                              DAG.getConstant(0, dl, MVT::i32));
4350     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4351                              DAG.getConstant(1, dl, MVT::i32));
4352     return DAG.getNode(ISD::BITCAST, dl, DstVT,
4353                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
4354   }
4355 
4356   // Turn f64->i64 into VMOVRRD.
4357   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
4358     SDValue Cvt;
4359     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
4360         SrcVT.getVectorNumElements() > 1)
4361       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4362                         DAG.getVTList(MVT::i32, MVT::i32),
4363                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
4364     else
4365       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4366                         DAG.getVTList(MVT::i32, MVT::i32), Op);
4367     // Merge the pieces into a single i64 value.
4368     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
4369   }
4370 
4371   return SDValue();
4372 }
4373 
4374 /// getZeroVector - Returns a vector of specified type with all zero elements.
4375 /// Zero vectors are used to represent vector negation and in those cases
4376 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
4377 /// not support i64 elements, so sometimes the zero vectors will need to be
4378 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
4379 /// zero vector.
4380 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
4381   assert(VT.isVector() && "Expected a vector type");
4382   // The canonical modified immediate encoding of a zero vector is....0!
4383   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
4384   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
4385   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
4386   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4387 }
4388 
4389 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4390 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
4391 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
4392                                                 SelectionDAG &DAG) const {
4393   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4394   EVT VT = Op.getValueType();
4395   unsigned VTBits = VT.getSizeInBits();
4396   SDLoc dl(Op);
4397   SDValue ShOpLo = Op.getOperand(0);
4398   SDValue ShOpHi = Op.getOperand(1);
4399   SDValue ShAmt  = Op.getOperand(2);
4400   SDValue ARMcc;
4401   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4402 
4403   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4404 
4405   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4406                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4407   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4408   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4409                                    DAG.getConstant(VTBits, dl, MVT::i32));
4410   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4411   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4412   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4413 
4414   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4415   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4416                           ISD::SETGE, ARMcc, DAG, dl);
4417   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4418   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
4419                            CCR, Cmp);
4420 
4421   SDValue Ops[2] = { Lo, Hi };
4422   return DAG.getMergeValues(Ops, dl);
4423 }
4424 
4425 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4426 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
4427 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
4428                                                SelectionDAG &DAG) const {
4429   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4430   EVT VT = Op.getValueType();
4431   unsigned VTBits = VT.getSizeInBits();
4432   SDLoc dl(Op);
4433   SDValue ShOpLo = Op.getOperand(0);
4434   SDValue ShOpHi = Op.getOperand(1);
4435   SDValue ShAmt  = Op.getOperand(2);
4436   SDValue ARMcc;
4437 
4438   assert(Op.getOpcode() == ISD::SHL_PARTS);
4439   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4440                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4441   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4442   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4443                                    DAG.getConstant(VTBits, dl, MVT::i32));
4444   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4445   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4446 
4447   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4448   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4449   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4450                           ISD::SETGE, ARMcc, DAG, dl);
4451   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4452   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
4453                            CCR, Cmp);
4454 
4455   SDValue Ops[2] = { Lo, Hi };
4456   return DAG.getMergeValues(Ops, dl);
4457 }
4458 
4459 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4460                                             SelectionDAG &DAG) const {
4461   // The rounding mode is in bits 23:22 of the FPSCR.
4462   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
4463   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
4464   // so that the shift + and get folded into a bitfield extract.
4465   SDLoc dl(Op);
4466   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
4467                               DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
4468                                               MVT::i32));
4469   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
4470                                   DAG.getConstant(1U << 22, dl, MVT::i32));
4471   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
4472                               DAG.getConstant(22, dl, MVT::i32));
4473   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
4474                      DAG.getConstant(3, dl, MVT::i32));
4475 }
4476 
4477 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
4478                          const ARMSubtarget *ST) {
4479   SDLoc dl(N);
4480   EVT VT = N->getValueType(0);
4481   if (VT.isVector()) {
4482     assert(ST->hasNEON());
4483 
4484     // Compute the least significant set bit: LSB = X & -X
4485     SDValue X = N->getOperand(0);
4486     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
4487     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
4488 
4489     EVT ElemTy = VT.getVectorElementType();
4490 
4491     if (ElemTy == MVT::i8) {
4492       // Compute with: cttz(x) = ctpop(lsb - 1)
4493       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4494                                 DAG.getTargetConstant(1, dl, ElemTy));
4495       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4496       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
4497     }
4498 
4499     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
4500         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
4501       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
4502       unsigned NumBits = ElemTy.getSizeInBits();
4503       SDValue WidthMinus1 =
4504           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4505                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
4506       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
4507       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
4508     }
4509 
4510     // Compute with: cttz(x) = ctpop(lsb - 1)
4511 
4512     // Since we can only compute the number of bits in a byte with vcnt.8, we
4513     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
4514     // and i64.
4515 
4516     // Compute LSB - 1.
4517     SDValue Bits;
4518     if (ElemTy == MVT::i64) {
4519       // Load constant 0xffff'ffff'ffff'ffff to register.
4520       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4521                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
4522       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
4523     } else {
4524       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4525                                 DAG.getTargetConstant(1, dl, ElemTy));
4526       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4527     }
4528 
4529     // Count #bits with vcnt.8.
4530     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4531     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
4532     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
4533 
4534     // Gather the #bits with vpaddl (pairwise add.)
4535     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4536     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
4537         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4538         Cnt8);
4539     if (ElemTy == MVT::i16)
4540       return Cnt16;
4541 
4542     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
4543     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
4544         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4545         Cnt16);
4546     if (ElemTy == MVT::i32)
4547       return Cnt32;
4548 
4549     assert(ElemTy == MVT::i64);
4550     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4551         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4552         Cnt32);
4553     return Cnt64;
4554   }
4555 
4556   if (!ST->hasV6T2Ops())
4557     return SDValue();
4558 
4559   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
4560   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
4561 }
4562 
4563 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
4564 /// for each 16-bit element from operand, repeated.  The basic idea is to
4565 /// leverage vcnt to get the 8-bit counts, gather and add the results.
4566 ///
4567 /// Trace for v4i16:
4568 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
4569 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
4570 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
4571 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
4572 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
4573 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
4574 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4575 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
4576 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
4577   EVT VT = N->getValueType(0);
4578   SDLoc DL(N);
4579 
4580   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4581   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4582   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4583   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4584   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4585   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4586 }
4587 
4588 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4589 /// bit-count for each 16-bit element from the operand.  We need slightly
4590 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
4591 /// 64/128-bit registers.
4592 ///
4593 /// Trace for v4i16:
4594 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
4595 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4596 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
4597 /// v4i16:Extracted = [k0    k1    k2    k3    ]
4598 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
4599   EVT VT = N->getValueType(0);
4600   SDLoc DL(N);
4601 
4602   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4603   if (VT.is64BitVector()) {
4604     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4605     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4606                        DAG.getIntPtrConstant(0, DL));
4607   } else {
4608     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4609                                     BitCounts, DAG.getIntPtrConstant(0, DL));
4610     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4611   }
4612 }
4613 
4614 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
4615 /// bit-count for each 32-bit element from the operand.  The idea here is
4616 /// to split the vector into 16-bit elements, leverage the 16-bit count
4617 /// routine, and then combine the results.
4618 ///
4619 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
4620 /// input    = [v0    v1    ] (vi: 32-bit elements)
4621 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
4622 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
4623 /// vrev: N0 = [k1 k0 k3 k2 ]
4624 ///            [k0 k1 k2 k3 ]
4625 ///       N1 =+[k1 k0 k3 k2 ]
4626 ///            [k0 k2 k1 k3 ]
4627 ///       N2 =+[k1 k3 k0 k2 ]
4628 ///            [k0    k2    k1    k3    ]
4629 /// Extended =+[k1    k3    k0    k2    ]
4630 ///            [k0    k2    ]
4631 /// Extracted=+[k1    k3    ]
4632 ///
4633 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
4634   EVT VT = N->getValueType(0);
4635   SDLoc DL(N);
4636 
4637   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4638 
4639   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
4640   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
4641   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
4642   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
4643   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
4644 
4645   if (VT.is64BitVector()) {
4646     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
4647     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
4648                        DAG.getIntPtrConstant(0, DL));
4649   } else {
4650     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
4651                                     DAG.getIntPtrConstant(0, DL));
4652     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
4653   }
4654 }
4655 
4656 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
4657                           const ARMSubtarget *ST) {
4658   EVT VT = N->getValueType(0);
4659 
4660   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
4661   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
4662           VT == MVT::v4i16 || VT == MVT::v8i16) &&
4663          "Unexpected type for custom ctpop lowering");
4664 
4665   if (VT.getVectorElementType() == MVT::i32)
4666     return lowerCTPOP32BitElements(N, DAG);
4667   else
4668     return lowerCTPOP16BitElements(N, DAG);
4669 }
4670 
4671 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
4672                           const ARMSubtarget *ST) {
4673   EVT VT = N->getValueType(0);
4674   SDLoc dl(N);
4675 
4676   if (!VT.isVector())
4677     return SDValue();
4678 
4679   // Lower vector shifts on NEON to use VSHL.
4680   assert(ST->hasNEON() && "unexpected vector shift");
4681 
4682   // Left shifts translate directly to the vshiftu intrinsic.
4683   if (N->getOpcode() == ISD::SHL)
4684     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4685                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
4686                                        MVT::i32),
4687                        N->getOperand(0), N->getOperand(1));
4688 
4689   assert((N->getOpcode() == ISD::SRA ||
4690           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
4691 
4692   // NEON uses the same intrinsics for both left and right shifts.  For
4693   // right shifts, the shift amounts are negative, so negate the vector of
4694   // shift amounts.
4695   EVT ShiftVT = N->getOperand(1).getValueType();
4696   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
4697                                      getZeroVector(ShiftVT, DAG, dl),
4698                                      N->getOperand(1));
4699   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
4700                              Intrinsic::arm_neon_vshifts :
4701                              Intrinsic::arm_neon_vshiftu);
4702   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4703                      DAG.getConstant(vshiftInt, dl, MVT::i32),
4704                      N->getOperand(0), NegatedCount);
4705 }
4706 
4707 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
4708                                 const ARMSubtarget *ST) {
4709   EVT VT = N->getValueType(0);
4710   SDLoc dl(N);
4711 
4712   // We can get here for a node like i32 = ISD::SHL i32, i64
4713   if (VT != MVT::i64)
4714     return SDValue();
4715 
4716   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
4717          "Unknown shift to lower!");
4718 
4719   // We only lower SRA, SRL of 1 here, all others use generic lowering.
4720   if (!isOneConstant(N->getOperand(1)))
4721     return SDValue();
4722 
4723   // If we are in thumb mode, we don't have RRX.
4724   if (ST->isThumb1Only()) return SDValue();
4725 
4726   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
4727   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4728                            DAG.getConstant(0, dl, MVT::i32));
4729   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4730                            DAG.getConstant(1, dl, MVT::i32));
4731 
4732   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
4733   // captures the result into a carry flag.
4734   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
4735   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
4736 
4737   // The low part is an ARMISD::RRX operand, which shifts the carry in.
4738   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
4739 
4740   // Merge the pieces into a single i64 value.
4741  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4742 }
4743 
4744 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4745   SDValue TmpOp0, TmpOp1;
4746   bool Invert = false;
4747   bool Swap = false;
4748   unsigned Opc = 0;
4749 
4750   SDValue Op0 = Op.getOperand(0);
4751   SDValue Op1 = Op.getOperand(1);
4752   SDValue CC = Op.getOperand(2);
4753   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
4754   EVT VT = Op.getValueType();
4755   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4756   SDLoc dl(Op);
4757 
4758   if (CmpVT.getVectorElementType() == MVT::i64)
4759     // 64-bit comparisons are not legal. We've marked SETCC as non-Custom,
4760     // but it's possible that our operands are 64-bit but our result is 32-bit.
4761     // Bail in this case.
4762     return SDValue();
4763 
4764   if (Op1.getValueType().isFloatingPoint()) {
4765     switch (SetCCOpcode) {
4766     default: llvm_unreachable("Illegal FP comparison");
4767     case ISD::SETUNE:
4768     case ISD::SETNE:  Invert = true; // Fallthrough
4769     case ISD::SETOEQ:
4770     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4771     case ISD::SETOLT:
4772     case ISD::SETLT: Swap = true; // Fallthrough
4773     case ISD::SETOGT:
4774     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4775     case ISD::SETOLE:
4776     case ISD::SETLE:  Swap = true; // Fallthrough
4777     case ISD::SETOGE:
4778     case ISD::SETGE: Opc = ARMISD::VCGE; break;
4779     case ISD::SETUGE: Swap = true; // Fallthrough
4780     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
4781     case ISD::SETUGT: Swap = true; // Fallthrough
4782     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
4783     case ISD::SETUEQ: Invert = true; // Fallthrough
4784     case ISD::SETONE:
4785       // Expand this to (OLT | OGT).
4786       TmpOp0 = Op0;
4787       TmpOp1 = Op1;
4788       Opc = ISD::OR;
4789       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
4790       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
4791       break;
4792     case ISD::SETUO: Invert = true; // Fallthrough
4793     case ISD::SETO:
4794       // Expand this to (OLT | OGE).
4795       TmpOp0 = Op0;
4796       TmpOp1 = Op1;
4797       Opc = ISD::OR;
4798       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
4799       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
4800       break;
4801     }
4802   } else {
4803     // Integer comparisons.
4804     switch (SetCCOpcode) {
4805     default: llvm_unreachable("Illegal integer comparison");
4806     case ISD::SETNE:  Invert = true;
4807     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4808     case ISD::SETLT:  Swap = true;
4809     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4810     case ISD::SETLE:  Swap = true;
4811     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
4812     case ISD::SETULT: Swap = true;
4813     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4814     case ISD::SETULE: Swap = true;
4815     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4816     }
4817 
4818     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4819     if (Opc == ARMISD::VCEQ) {
4820 
4821       SDValue AndOp;
4822       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4823         AndOp = Op0;
4824       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4825         AndOp = Op1;
4826 
4827       // Ignore bitconvert.
4828       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4829         AndOp = AndOp.getOperand(0);
4830 
4831       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4832         Opc = ARMISD::VTST;
4833         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
4834         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
4835         Invert = !Invert;
4836       }
4837     }
4838   }
4839 
4840   if (Swap)
4841     std::swap(Op0, Op1);
4842 
4843   // If one of the operands is a constant vector zero, attempt to fold the
4844   // comparison to a specialized compare-against-zero form.
4845   SDValue SingleOp;
4846   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4847     SingleOp = Op0;
4848   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4849     if (Opc == ARMISD::VCGE)
4850       Opc = ARMISD::VCLEZ;
4851     else if (Opc == ARMISD::VCGT)
4852       Opc = ARMISD::VCLTZ;
4853     SingleOp = Op1;
4854   }
4855 
4856   SDValue Result;
4857   if (SingleOp.getNode()) {
4858     switch (Opc) {
4859     case ARMISD::VCEQ:
4860       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
4861     case ARMISD::VCGE:
4862       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
4863     case ARMISD::VCLEZ:
4864       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
4865     case ARMISD::VCGT:
4866       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
4867     case ARMISD::VCLTZ:
4868       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
4869     default:
4870       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
4871     }
4872   } else {
4873      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
4874   }
4875 
4876   Result = DAG.getSExtOrTrunc(Result, dl, VT);
4877 
4878   if (Invert)
4879     Result = DAG.getNOT(dl, Result, VT);
4880 
4881   return Result;
4882 }
4883 
4884 static SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) {
4885   SDValue LHS = Op.getOperand(0);
4886   SDValue RHS = Op.getOperand(1);
4887   SDValue Carry = Op.getOperand(2);
4888   SDValue Cond = Op.getOperand(3);
4889   SDLoc DL(Op);
4890 
4891   assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
4892 
4893   assert(Carry.getOpcode() != ISD::CARRY_FALSE);
4894   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
4895   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
4896 
4897   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
4898   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
4899   SDValue ARMcc = DAG.getConstant(
4900       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
4901   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4902   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
4903                                    Cmp.getValue(1), SDValue());
4904   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
4905                      CCR, Chain.getValue(1));
4906 }
4907 
4908 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
4909 /// valid vector constant for a NEON instruction with a "modified immediate"
4910 /// operand (e.g., VMOV).  If so, return the encoded value.
4911 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
4912                                  unsigned SplatBitSize, SelectionDAG &DAG,
4913                                  SDLoc dl, EVT &VT, bool is128Bits,
4914                                  NEONModImmType type) {
4915   unsigned OpCmode, Imm;
4916 
4917   // SplatBitSize is set to the smallest size that splats the vector, so a
4918   // zero vector will always have SplatBitSize == 8.  However, NEON modified
4919   // immediate instructions others than VMOV do not support the 8-bit encoding
4920   // of a zero vector, and the default encoding of zero is supposed to be the
4921   // 32-bit version.
4922   if (SplatBits == 0)
4923     SplatBitSize = 32;
4924 
4925   switch (SplatBitSize) {
4926   case 8:
4927     if (type != VMOVModImm)
4928       return SDValue();
4929     // Any 1-byte value is OK.  Op=0, Cmode=1110.
4930     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
4931     OpCmode = 0xe;
4932     Imm = SplatBits;
4933     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
4934     break;
4935 
4936   case 16:
4937     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
4938     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
4939     if ((SplatBits & ~0xff) == 0) {
4940       // Value = 0x00nn: Op=x, Cmode=100x.
4941       OpCmode = 0x8;
4942       Imm = SplatBits;
4943       break;
4944     }
4945     if ((SplatBits & ~0xff00) == 0) {
4946       // Value = 0xnn00: Op=x, Cmode=101x.
4947       OpCmode = 0xa;
4948       Imm = SplatBits >> 8;
4949       break;
4950     }
4951     return SDValue();
4952 
4953   case 32:
4954     // NEON's 32-bit VMOV supports splat values where:
4955     // * only one byte is nonzero, or
4956     // * the least significant byte is 0xff and the second byte is nonzero, or
4957     // * the least significant 2 bytes are 0xff and the third is nonzero.
4958     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
4959     if ((SplatBits & ~0xff) == 0) {
4960       // Value = 0x000000nn: Op=x, Cmode=000x.
4961       OpCmode = 0;
4962       Imm = SplatBits;
4963       break;
4964     }
4965     if ((SplatBits & ~0xff00) == 0) {
4966       // Value = 0x0000nn00: Op=x, Cmode=001x.
4967       OpCmode = 0x2;
4968       Imm = SplatBits >> 8;
4969       break;
4970     }
4971     if ((SplatBits & ~0xff0000) == 0) {
4972       // Value = 0x00nn0000: Op=x, Cmode=010x.
4973       OpCmode = 0x4;
4974       Imm = SplatBits >> 16;
4975       break;
4976     }
4977     if ((SplatBits & ~0xff000000) == 0) {
4978       // Value = 0xnn000000: Op=x, Cmode=011x.
4979       OpCmode = 0x6;
4980       Imm = SplatBits >> 24;
4981       break;
4982     }
4983 
4984     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
4985     if (type == OtherModImm) return SDValue();
4986 
4987     if ((SplatBits & ~0xffff) == 0 &&
4988         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
4989       // Value = 0x0000nnff: Op=x, Cmode=1100.
4990       OpCmode = 0xc;
4991       Imm = SplatBits >> 8;
4992       break;
4993     }
4994 
4995     if ((SplatBits & ~0xffffff) == 0 &&
4996         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
4997       // Value = 0x00nnffff: Op=x, Cmode=1101.
4998       OpCmode = 0xd;
4999       Imm = SplatBits >> 16;
5000       break;
5001     }
5002 
5003     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5004     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5005     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5006     // and fall through here to test for a valid 64-bit splat.  But, then the
5007     // caller would also need to check and handle the change in size.
5008     return SDValue();
5009 
5010   case 64: {
5011     if (type != VMOVModImm)
5012       return SDValue();
5013     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5014     uint64_t BitMask = 0xff;
5015     uint64_t Val = 0;
5016     unsigned ImmMask = 1;
5017     Imm = 0;
5018     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5019       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5020         Val |= BitMask;
5021         Imm |= ImmMask;
5022       } else if ((SplatBits & BitMask) != 0) {
5023         return SDValue();
5024       }
5025       BitMask <<= 8;
5026       ImmMask <<= 1;
5027     }
5028 
5029     if (DAG.getDataLayout().isBigEndian())
5030       // swap higher and lower 32 bit word
5031       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5032 
5033     // Op=1, Cmode=1110.
5034     OpCmode = 0x1e;
5035     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5036     break;
5037   }
5038 
5039   default:
5040     llvm_unreachable("unexpected size for isNEONModifiedImm");
5041   }
5042 
5043   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5044   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5045 }
5046 
5047 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5048                                            const ARMSubtarget *ST) const {
5049   if (!ST->hasVFP3())
5050     return SDValue();
5051 
5052   bool IsDouble = Op.getValueType() == MVT::f64;
5053   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5054 
5055   // Use the default (constant pool) lowering for double constants when we have
5056   // an SP-only FPU
5057   if (IsDouble && Subtarget->isFPOnlySP())
5058     return SDValue();
5059 
5060   // Try splatting with a VMOV.f32...
5061   APFloat FPVal = CFP->getValueAPF();
5062   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5063 
5064   if (ImmVal != -1) {
5065     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
5066       // We have code in place to select a valid ConstantFP already, no need to
5067       // do any mangling.
5068       return Op;
5069     }
5070 
5071     // It's a float and we are trying to use NEON operations where
5072     // possible. Lower it to a splat followed by an extract.
5073     SDLoc DL(Op);
5074     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
5075     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
5076                                       NewVal);
5077     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
5078                        DAG.getConstant(0, DL, MVT::i32));
5079   }
5080 
5081   // The rest of our options are NEON only, make sure that's allowed before
5082   // proceeding..
5083   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
5084     return SDValue();
5085 
5086   EVT VMovVT;
5087   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
5088 
5089   // It wouldn't really be worth bothering for doubles except for one very
5090   // important value, which does happen to match: 0.0. So make sure we don't do
5091   // anything stupid.
5092   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
5093     return SDValue();
5094 
5095   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
5096   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
5097                                      VMovVT, false, VMOVModImm);
5098   if (NewVal != SDValue()) {
5099     SDLoc DL(Op);
5100     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
5101                                       NewVal);
5102     if (IsDouble)
5103       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5104 
5105     // It's a float: cast and extract a vector element.
5106     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5107                                        VecConstant);
5108     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5109                        DAG.getConstant(0, DL, MVT::i32));
5110   }
5111 
5112   // Finally, try a VMVN.i32
5113   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
5114                              false, VMVNModImm);
5115   if (NewVal != SDValue()) {
5116     SDLoc DL(Op);
5117     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
5118 
5119     if (IsDouble)
5120       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5121 
5122     // It's a float: cast and extract a vector element.
5123     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5124                                        VecConstant);
5125     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5126                        DAG.getConstant(0, DL, MVT::i32));
5127   }
5128 
5129   return SDValue();
5130 }
5131 
5132 // check if an VEXT instruction can handle the shuffle mask when the
5133 // vector sources of the shuffle are the same.
5134 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5135   unsigned NumElts = VT.getVectorNumElements();
5136 
5137   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5138   if (M[0] < 0)
5139     return false;
5140 
5141   Imm = M[0];
5142 
5143   // If this is a VEXT shuffle, the immediate value is the index of the first
5144   // element.  The other shuffle indices must be the successive elements after
5145   // the first one.
5146   unsigned ExpectedElt = Imm;
5147   for (unsigned i = 1; i < NumElts; ++i) {
5148     // Increment the expected index.  If it wraps around, just follow it
5149     // back to index zero and keep going.
5150     ++ExpectedElt;
5151     if (ExpectedElt == NumElts)
5152       ExpectedElt = 0;
5153 
5154     if (M[i] < 0) continue; // ignore UNDEF indices
5155     if (ExpectedElt != static_cast<unsigned>(M[i]))
5156       return false;
5157   }
5158 
5159   return true;
5160 }
5161 
5162 
5163 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
5164                        bool &ReverseVEXT, unsigned &Imm) {
5165   unsigned NumElts = VT.getVectorNumElements();
5166   ReverseVEXT = false;
5167 
5168   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5169   if (M[0] < 0)
5170     return false;
5171 
5172   Imm = M[0];
5173 
5174   // If this is a VEXT shuffle, the immediate value is the index of the first
5175   // element.  The other shuffle indices must be the successive elements after
5176   // the first one.
5177   unsigned ExpectedElt = Imm;
5178   for (unsigned i = 1; i < NumElts; ++i) {
5179     // Increment the expected index.  If it wraps around, it may still be
5180     // a VEXT but the source vectors must be swapped.
5181     ExpectedElt += 1;
5182     if (ExpectedElt == NumElts * 2) {
5183       ExpectedElt = 0;
5184       ReverseVEXT = true;
5185     }
5186 
5187     if (M[i] < 0) continue; // ignore UNDEF indices
5188     if (ExpectedElt != static_cast<unsigned>(M[i]))
5189       return false;
5190   }
5191 
5192   // Adjust the index value if the source operands will be swapped.
5193   if (ReverseVEXT)
5194     Imm -= NumElts;
5195 
5196   return true;
5197 }
5198 
5199 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
5200 /// instruction with the specified blocksize.  (The order of the elements
5201 /// within each block of the vector is reversed.)
5202 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5203   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
5204          "Only possible block sizes for VREV are: 16, 32, 64");
5205 
5206   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5207   if (EltSz == 64)
5208     return false;
5209 
5210   unsigned NumElts = VT.getVectorNumElements();
5211   unsigned BlockElts = M[0] + 1;
5212   // If the first shuffle index is UNDEF, be optimistic.
5213   if (M[0] < 0)
5214     BlockElts = BlockSize / EltSz;
5215 
5216   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5217     return false;
5218 
5219   for (unsigned i = 0; i < NumElts; ++i) {
5220     if (M[i] < 0) continue; // ignore UNDEF indices
5221     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
5222       return false;
5223   }
5224 
5225   return true;
5226 }
5227 
5228 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
5229   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
5230   // range, then 0 is placed into the resulting vector. So pretty much any mask
5231   // of 8 elements can work here.
5232   return VT == MVT::v8i8 && M.size() == 8;
5233 }
5234 
5235 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
5236 // checking that pairs of elements in the shuffle mask represent the same index
5237 // in each vector, incrementing the expected index by 2 at each step.
5238 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
5239 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
5240 //  v2={e,f,g,h}
5241 // WhichResult gives the offset for each element in the mask based on which
5242 // of the two results it belongs to.
5243 //
5244 // The transpose can be represented either as:
5245 // result1 = shufflevector v1, v2, result1_shuffle_mask
5246 // result2 = shufflevector v1, v2, result2_shuffle_mask
5247 // where v1/v2 and the shuffle masks have the same number of elements
5248 // (here WhichResult (see below) indicates which result is being checked)
5249 //
5250 // or as:
5251 // results = shufflevector v1, v2, shuffle_mask
5252 // where both results are returned in one vector and the shuffle mask has twice
5253 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
5254 // want to check the low half and high half of the shuffle mask as if it were
5255 // the other case
5256 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5257   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5258   if (EltSz == 64)
5259     return false;
5260 
5261   unsigned NumElts = VT.getVectorNumElements();
5262   if (M.size() != NumElts && M.size() != NumElts*2)
5263     return false;
5264 
5265   // If the mask is twice as long as the input vector then we need to check the
5266   // upper and lower parts of the mask with a matching value for WhichResult
5267   // FIXME: A mask with only even values will be rejected in case the first
5268   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
5269   // M[0] is used to determine WhichResult
5270   for (unsigned i = 0; i < M.size(); i += NumElts) {
5271     if (M.size() == NumElts * 2)
5272       WhichResult = i / NumElts;
5273     else
5274       WhichResult = M[i] == 0 ? 0 : 1;
5275     for (unsigned j = 0; j < NumElts; j += 2) {
5276       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5277           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
5278         return false;
5279     }
5280   }
5281 
5282   if (M.size() == NumElts*2)
5283     WhichResult = 0;
5284 
5285   return true;
5286 }
5287 
5288 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
5289 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5290 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5291 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5292   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5293   if (EltSz == 64)
5294     return false;
5295 
5296   unsigned NumElts = VT.getVectorNumElements();
5297   if (M.size() != NumElts && M.size() != NumElts*2)
5298     return false;
5299 
5300   for (unsigned i = 0; i < M.size(); i += NumElts) {
5301     if (M.size() == NumElts * 2)
5302       WhichResult = i / NumElts;
5303     else
5304       WhichResult = M[i] == 0 ? 0 : 1;
5305     for (unsigned j = 0; j < NumElts; j += 2) {
5306       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5307           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
5308         return false;
5309     }
5310   }
5311 
5312   if (M.size() == NumElts*2)
5313     WhichResult = 0;
5314 
5315   return true;
5316 }
5317 
5318 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
5319 // that the mask elements are either all even and in steps of size 2 or all odd
5320 // and in steps of size 2.
5321 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
5322 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
5323 //  v2={e,f,g,h}
5324 // Requires similar checks to that of isVTRNMask with
5325 // respect the how results are returned.
5326 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5327   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5328   if (EltSz == 64)
5329     return false;
5330 
5331   unsigned NumElts = VT.getVectorNumElements();
5332   if (M.size() != NumElts && M.size() != NumElts*2)
5333     return false;
5334 
5335   for (unsigned i = 0; i < M.size(); i += NumElts) {
5336     WhichResult = M[i] == 0 ? 0 : 1;
5337     for (unsigned j = 0; j < NumElts; ++j) {
5338       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
5339         return false;
5340     }
5341   }
5342 
5343   if (M.size() == NumElts*2)
5344     WhichResult = 0;
5345 
5346   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5347   if (VT.is64BitVector() && EltSz == 32)
5348     return false;
5349 
5350   return true;
5351 }
5352 
5353 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
5354 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5355 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5356 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5357   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5358   if (EltSz == 64)
5359     return false;
5360 
5361   unsigned NumElts = VT.getVectorNumElements();
5362   if (M.size() != NumElts && M.size() != NumElts*2)
5363     return false;
5364 
5365   unsigned Half = NumElts / 2;
5366   for (unsigned i = 0; i < M.size(); i += NumElts) {
5367     WhichResult = M[i] == 0 ? 0 : 1;
5368     for (unsigned j = 0; j < NumElts; j += Half) {
5369       unsigned Idx = WhichResult;
5370       for (unsigned k = 0; k < Half; ++k) {
5371         int MIdx = M[i + j + k];
5372         if (MIdx >= 0 && (unsigned) MIdx != Idx)
5373           return false;
5374         Idx += 2;
5375       }
5376     }
5377   }
5378 
5379   if (M.size() == NumElts*2)
5380     WhichResult = 0;
5381 
5382   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5383   if (VT.is64BitVector() && EltSz == 32)
5384     return false;
5385 
5386   return true;
5387 }
5388 
5389 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
5390 // that pairs of elements of the shufflemask represent the same index in each
5391 // vector incrementing sequentially through the vectors.
5392 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
5393 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
5394 //  v2={e,f,g,h}
5395 // Requires similar checks to that of isVTRNMask with respect the how results
5396 // are returned.
5397 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5398   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5399   if (EltSz == 64)
5400     return false;
5401 
5402   unsigned NumElts = VT.getVectorNumElements();
5403   if (M.size() != NumElts && M.size() != NumElts*2)
5404     return false;
5405 
5406   for (unsigned i = 0; i < M.size(); i += NumElts) {
5407     WhichResult = M[i] == 0 ? 0 : 1;
5408     unsigned Idx = WhichResult * NumElts / 2;
5409     for (unsigned j = 0; j < NumElts; j += 2) {
5410       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5411           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
5412         return false;
5413       Idx += 1;
5414     }
5415   }
5416 
5417   if (M.size() == NumElts*2)
5418     WhichResult = 0;
5419 
5420   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5421   if (VT.is64BitVector() && EltSz == 32)
5422     return false;
5423 
5424   return true;
5425 }
5426 
5427 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
5428 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5429 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5430 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5431   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5432   if (EltSz == 64)
5433     return false;
5434 
5435   unsigned NumElts = VT.getVectorNumElements();
5436   if (M.size() != NumElts && M.size() != NumElts*2)
5437     return false;
5438 
5439   for (unsigned i = 0; i < M.size(); i += NumElts) {
5440     WhichResult = M[i] == 0 ? 0 : 1;
5441     unsigned Idx = WhichResult * NumElts / 2;
5442     for (unsigned j = 0; j < NumElts; j += 2) {
5443       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5444           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
5445         return false;
5446       Idx += 1;
5447     }
5448   }
5449 
5450   if (M.size() == NumElts*2)
5451     WhichResult = 0;
5452 
5453   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5454   if (VT.is64BitVector() && EltSz == 32)
5455     return false;
5456 
5457   return true;
5458 }
5459 
5460 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
5461 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
5462 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
5463                                            unsigned &WhichResult,
5464                                            bool &isV_UNDEF) {
5465   isV_UNDEF = false;
5466   if (isVTRNMask(ShuffleMask, VT, WhichResult))
5467     return ARMISD::VTRN;
5468   if (isVUZPMask(ShuffleMask, VT, WhichResult))
5469     return ARMISD::VUZP;
5470   if (isVZIPMask(ShuffleMask, VT, WhichResult))
5471     return ARMISD::VZIP;
5472 
5473   isV_UNDEF = true;
5474   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5475     return ARMISD::VTRN;
5476   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5477     return ARMISD::VUZP;
5478   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5479     return ARMISD::VZIP;
5480 
5481   return 0;
5482 }
5483 
5484 /// \return true if this is a reverse operation on an vector.
5485 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
5486   unsigned NumElts = VT.getVectorNumElements();
5487   // Make sure the mask has the right size.
5488   if (NumElts != M.size())
5489       return false;
5490 
5491   // Look for <15, ..., 3, -1, 1, 0>.
5492   for (unsigned i = 0; i != NumElts; ++i)
5493     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
5494       return false;
5495 
5496   return true;
5497 }
5498 
5499 // If N is an integer constant that can be moved into a register in one
5500 // instruction, return an SDValue of such a constant (will become a MOV
5501 // instruction).  Otherwise return null.
5502 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
5503                                      const ARMSubtarget *ST, SDLoc dl) {
5504   uint64_t Val;
5505   if (!isa<ConstantSDNode>(N))
5506     return SDValue();
5507   Val = cast<ConstantSDNode>(N)->getZExtValue();
5508 
5509   if (ST->isThumb1Only()) {
5510     if (Val <= 255 || ~Val <= 255)
5511       return DAG.getConstant(Val, dl, MVT::i32);
5512   } else {
5513     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
5514       return DAG.getConstant(Val, dl, MVT::i32);
5515   }
5516   return SDValue();
5517 }
5518 
5519 // If this is a case we can't handle, return null and let the default
5520 // expansion code take care of it.
5521 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
5522                                              const ARMSubtarget *ST) const {
5523   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5524   SDLoc dl(Op);
5525   EVT VT = Op.getValueType();
5526 
5527   APInt SplatBits, SplatUndef;
5528   unsigned SplatBitSize;
5529   bool HasAnyUndefs;
5530   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5531     if (SplatBitSize <= 64) {
5532       // Check if an immediate VMOV works.
5533       EVT VmovVT;
5534       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5535                                       SplatUndef.getZExtValue(), SplatBitSize,
5536                                       DAG, dl, VmovVT, VT.is128BitVector(),
5537                                       VMOVModImm);
5538       if (Val.getNode()) {
5539         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
5540         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5541       }
5542 
5543       // Try an immediate VMVN.
5544       uint64_t NegatedImm = (~SplatBits).getZExtValue();
5545       Val = isNEONModifiedImm(NegatedImm,
5546                                       SplatUndef.getZExtValue(), SplatBitSize,
5547                                       DAG, dl, VmovVT, VT.is128BitVector(),
5548                                       VMVNModImm);
5549       if (Val.getNode()) {
5550         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
5551         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5552       }
5553 
5554       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
5555       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
5556         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
5557         if (ImmVal != -1) {
5558           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
5559           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
5560         }
5561       }
5562     }
5563   }
5564 
5565   // Scan through the operands to see if only one value is used.
5566   //
5567   // As an optimisation, even if more than one value is used it may be more
5568   // profitable to splat with one value then change some lanes.
5569   //
5570   // Heuristically we decide to do this if the vector has a "dominant" value,
5571   // defined as splatted to more than half of the lanes.
5572   unsigned NumElts = VT.getVectorNumElements();
5573   bool isOnlyLowElement = true;
5574   bool usesOnlyOneValue = true;
5575   bool hasDominantValue = false;
5576   bool isConstant = true;
5577 
5578   // Map of the number of times a particular SDValue appears in the
5579   // element list.
5580   DenseMap<SDValue, unsigned> ValueCounts;
5581   SDValue Value;
5582   for (unsigned i = 0; i < NumElts; ++i) {
5583     SDValue V = Op.getOperand(i);
5584     if (V.isUndef())
5585       continue;
5586     if (i > 0)
5587       isOnlyLowElement = false;
5588     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5589       isConstant = false;
5590 
5591     ValueCounts.insert(std::make_pair(V, 0));
5592     unsigned &Count = ValueCounts[V];
5593 
5594     // Is this value dominant? (takes up more than half of the lanes)
5595     if (++Count > (NumElts / 2)) {
5596       hasDominantValue = true;
5597       Value = V;
5598     }
5599   }
5600   if (ValueCounts.size() != 1)
5601     usesOnlyOneValue = false;
5602   if (!Value.getNode() && ValueCounts.size() > 0)
5603     Value = ValueCounts.begin()->first;
5604 
5605   if (ValueCounts.size() == 0)
5606     return DAG.getUNDEF(VT);
5607 
5608   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
5609   // Keep going if we are hitting this case.
5610   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
5611     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5612 
5613   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5614 
5615   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
5616   // i32 and try again.
5617   if (hasDominantValue && EltSize <= 32) {
5618     if (!isConstant) {
5619       SDValue N;
5620 
5621       // If we are VDUPing a value that comes directly from a vector, that will
5622       // cause an unnecessary move to and from a GPR, where instead we could
5623       // just use VDUPLANE. We can only do this if the lane being extracted
5624       // is at a constant index, as the VDUP from lane instructions only have
5625       // constant-index forms.
5626       ConstantSDNode *constIndex;
5627       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5628           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
5629         // We need to create a new undef vector to use for the VDUPLANE if the
5630         // size of the vector from which we get the value is different than the
5631         // size of the vector that we need to create. We will insert the element
5632         // such that the register coalescer will remove unnecessary copies.
5633         if (VT != Value->getOperand(0).getValueType()) {
5634           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
5635                              VT.getVectorNumElements();
5636           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5637                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
5638                         Value, DAG.getConstant(index, dl, MVT::i32)),
5639                            DAG.getConstant(index, dl, MVT::i32));
5640         } else
5641           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5642                         Value->getOperand(0), Value->getOperand(1));
5643       } else
5644         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
5645 
5646       if (!usesOnlyOneValue) {
5647         // The dominant value was splatted as 'N', but we now have to insert
5648         // all differing elements.
5649         for (unsigned I = 0; I < NumElts; ++I) {
5650           if (Op.getOperand(I) == Value)
5651             continue;
5652           SmallVector<SDValue, 3> Ops;
5653           Ops.push_back(N);
5654           Ops.push_back(Op.getOperand(I));
5655           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
5656           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
5657         }
5658       }
5659       return N;
5660     }
5661     if (VT.getVectorElementType().isFloatingPoint()) {
5662       SmallVector<SDValue, 8> Ops;
5663       for (unsigned i = 0; i < NumElts; ++i)
5664         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
5665                                   Op.getOperand(i)));
5666       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
5667       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5668       Val = LowerBUILD_VECTOR(Val, DAG, ST);
5669       if (Val.getNode())
5670         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5671     }
5672     if (usesOnlyOneValue) {
5673       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
5674       if (isConstant && Val.getNode())
5675         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
5676     }
5677   }
5678 
5679   // If all elements are constants and the case above didn't get hit, fall back
5680   // to the default expansion, which will generate a load from the constant
5681   // pool.
5682   if (isConstant)
5683     return SDValue();
5684 
5685   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5686   if (NumElts >= 4) {
5687     SDValue shuffle = ReconstructShuffle(Op, DAG);
5688     if (shuffle != SDValue())
5689       return shuffle;
5690   }
5691 
5692   // Vectors with 32- or 64-bit elements can be built by directly assigning
5693   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
5694   // will be legalized.
5695   if (EltSize >= 32) {
5696     // Do the expansion with floating-point types, since that is what the VFP
5697     // registers are defined to use, and since i64 is not legal.
5698     EVT EltVT = EVT::getFloatingPointVT(EltSize);
5699     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5700     SmallVector<SDValue, 8> Ops;
5701     for (unsigned i = 0; i < NumElts; ++i)
5702       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
5703     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5704     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5705   }
5706 
5707   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5708   // know the default expansion would otherwise fall back on something even
5709   // worse. For a vector with one or two non-undef values, that's
5710   // scalar_to_vector for the elements followed by a shuffle (provided the
5711   // shuffle is valid for the target) and materialization element by element
5712   // on the stack followed by a load for everything else.
5713   if (!isConstant && !usesOnlyOneValue) {
5714     SDValue Vec = DAG.getUNDEF(VT);
5715     for (unsigned i = 0 ; i < NumElts; ++i) {
5716       SDValue V = Op.getOperand(i);
5717       if (V.isUndef())
5718         continue;
5719       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
5720       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5721     }
5722     return Vec;
5723   }
5724 
5725   return SDValue();
5726 }
5727 
5728 // Gather data to see if the operation can be modelled as a
5729 // shuffle in combination with VEXTs.
5730 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
5731                                               SelectionDAG &DAG) const {
5732   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5733   SDLoc dl(Op);
5734   EVT VT = Op.getValueType();
5735   unsigned NumElts = VT.getVectorNumElements();
5736 
5737   struct ShuffleSourceInfo {
5738     SDValue Vec;
5739     unsigned MinElt;
5740     unsigned MaxElt;
5741 
5742     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
5743     // be compatible with the shuffle we intend to construct. As a result
5744     // ShuffleVec will be some sliding window into the original Vec.
5745     SDValue ShuffleVec;
5746 
5747     // Code should guarantee that element i in Vec starts at element "WindowBase
5748     // + i * WindowScale in ShuffleVec".
5749     int WindowBase;
5750     int WindowScale;
5751 
5752     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
5753     ShuffleSourceInfo(SDValue Vec)
5754         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
5755           WindowScale(1) {}
5756   };
5757 
5758   // First gather all vectors used as an immediate source for this BUILD_VECTOR
5759   // node.
5760   SmallVector<ShuffleSourceInfo, 2> Sources;
5761   for (unsigned i = 0; i < NumElts; ++i) {
5762     SDValue V = Op.getOperand(i);
5763     if (V.isUndef())
5764       continue;
5765     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
5766       // A shuffle can only come from building a vector from various
5767       // elements of other vectors.
5768       return SDValue();
5769     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
5770       // Furthermore, shuffles require a constant mask, whereas extractelts
5771       // accept variable indices.
5772       return SDValue();
5773     }
5774 
5775     // Add this element source to the list if it's not already there.
5776     SDValue SourceVec = V.getOperand(0);
5777     auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
5778     if (Source == Sources.end())
5779       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
5780 
5781     // Update the minimum and maximum lane number seen.
5782     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5783     Source->MinElt = std::min(Source->MinElt, EltNo);
5784     Source->MaxElt = std::max(Source->MaxElt, EltNo);
5785   }
5786 
5787   // Currently only do something sane when at most two source vectors
5788   // are involved.
5789   if (Sources.size() > 2)
5790     return SDValue();
5791 
5792   // Find out the smallest element size among result and two sources, and use
5793   // it as element size to build the shuffle_vector.
5794   EVT SmallestEltTy = VT.getVectorElementType();
5795   for (auto &Source : Sources) {
5796     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
5797     if (SrcEltTy.bitsLT(SmallestEltTy))
5798       SmallestEltTy = SrcEltTy;
5799   }
5800   unsigned ResMultiplier =
5801       VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
5802   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
5803   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
5804 
5805   // If the source vector is too wide or too narrow, we may nevertheless be able
5806   // to construct a compatible shuffle either by concatenating it with UNDEF or
5807   // extracting a suitable range of elements.
5808   for (auto &Src : Sources) {
5809     EVT SrcVT = Src.ShuffleVec.getValueType();
5810 
5811     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
5812       continue;
5813 
5814     // This stage of the search produces a source with the same element type as
5815     // the original, but with a total width matching the BUILD_VECTOR output.
5816     EVT EltVT = SrcVT.getVectorElementType();
5817     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5818     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
5819 
5820     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5821       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
5822         return SDValue();
5823       // We can pad out the smaller vector for free, so if it's part of a
5824       // shuffle...
5825       Src.ShuffleVec =
5826           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5827                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
5828       continue;
5829     }
5830 
5831     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
5832       return SDValue();
5833 
5834     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
5835       // Span too large for a VEXT to cope
5836       return SDValue();
5837     }
5838 
5839     if (Src.MinElt >= NumSrcElts) {
5840       // The extraction can just take the second half
5841       Src.ShuffleVec =
5842           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5843                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
5844       Src.WindowBase = -NumSrcElts;
5845     } else if (Src.MaxElt < NumSrcElts) {
5846       // The extraction can just take the first half
5847       Src.ShuffleVec =
5848           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5849                       DAG.getConstant(0, dl, MVT::i32));
5850     } else {
5851       // An actual VEXT is needed
5852       SDValue VEXTSrc1 =
5853           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5854                       DAG.getConstant(0, dl, MVT::i32));
5855       SDValue VEXTSrc2 =
5856           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5857                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
5858 
5859       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
5860                                    VEXTSrc2,
5861                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
5862       Src.WindowBase = -Src.MinElt;
5863     }
5864   }
5865 
5866   // Another possible incompatibility occurs from the vector element types. We
5867   // can fix this by bitcasting the source vectors to the same type we intend
5868   // for the shuffle.
5869   for (auto &Src : Sources) {
5870     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5871     if (SrcEltTy == SmallestEltTy)
5872       continue;
5873     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5874     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5875     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5876     Src.WindowBase *= Src.WindowScale;
5877   }
5878 
5879   // Final sanity check before we try to actually produce a shuffle.
5880   DEBUG(
5881     for (auto Src : Sources)
5882       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
5883   );
5884 
5885   // The stars all align, our next step is to produce the mask for the shuffle.
5886   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
5887   int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
5888   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
5889     SDValue Entry = Op.getOperand(i);
5890     if (Entry.isUndef())
5891       continue;
5892 
5893     auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
5894     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5895 
5896     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5897     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5898     // segment.
5899     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
5900     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
5901                                VT.getVectorElementType().getSizeInBits());
5902     int LanesDefined = BitsDefined / BitsPerShuffleLane;
5903 
5904     // This source is expected to fill ResMultiplier lanes of the final shuffle,
5905     // starting at the appropriate offset.
5906     int *LaneMask = &Mask[i * ResMultiplier];
5907 
5908     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5909     ExtractBase += NumElts * (Src - Sources.begin());
5910     for (int j = 0; j < LanesDefined; ++j)
5911       LaneMask[j] = ExtractBase + j;
5912   }
5913 
5914   // Final check before we try to produce nonsense...
5915   if (!isShuffleMaskLegal(Mask, ShuffleVT))
5916     return SDValue();
5917 
5918   // We can't handle more than two sources. This should have already
5919   // been checked before this point.
5920   assert(Sources.size() <= 2 && "Too many sources!");
5921 
5922   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5923   for (unsigned i = 0; i < Sources.size(); ++i)
5924     ShuffleOps[i] = Sources[i].ShuffleVec;
5925 
5926   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5927                                          ShuffleOps[1], &Mask[0]);
5928   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
5929 }
5930 
5931 /// isShuffleMaskLegal - Targets can use this to indicate that they only
5932 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5933 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5934 /// are assumed to be legal.
5935 bool
5936 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5937                                       EVT VT) const {
5938   if (VT.getVectorNumElements() == 4 &&
5939       (VT.is128BitVector() || VT.is64BitVector())) {
5940     unsigned PFIndexes[4];
5941     for (unsigned i = 0; i != 4; ++i) {
5942       if (M[i] < 0)
5943         PFIndexes[i] = 8;
5944       else
5945         PFIndexes[i] = M[i];
5946     }
5947 
5948     // Compute the index in the perfect shuffle table.
5949     unsigned PFTableIndex =
5950       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5951     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5952     unsigned Cost = (PFEntry >> 30);
5953 
5954     if (Cost <= 4)
5955       return true;
5956   }
5957 
5958   bool ReverseVEXT, isV_UNDEF;
5959   unsigned Imm, WhichResult;
5960 
5961   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5962   return (EltSize >= 32 ||
5963           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
5964           isVREVMask(M, VT, 64) ||
5965           isVREVMask(M, VT, 32) ||
5966           isVREVMask(M, VT, 16) ||
5967           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
5968           isVTBLMask(M, VT) ||
5969           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
5970           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
5971 }
5972 
5973 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5974 /// the specified operations to build the shuffle.
5975 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5976                                       SDValue RHS, SelectionDAG &DAG,
5977                                       SDLoc dl) {
5978   unsigned OpNum = (PFEntry >> 26) & 0x0F;
5979   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5980   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5981 
5982   enum {
5983     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5984     OP_VREV,
5985     OP_VDUP0,
5986     OP_VDUP1,
5987     OP_VDUP2,
5988     OP_VDUP3,
5989     OP_VEXT1,
5990     OP_VEXT2,
5991     OP_VEXT3,
5992     OP_VUZPL, // VUZP, left result
5993     OP_VUZPR, // VUZP, right result
5994     OP_VZIPL, // VZIP, left result
5995     OP_VZIPR, // VZIP, right result
5996     OP_VTRNL, // VTRN, left result
5997     OP_VTRNR  // VTRN, right result
5998   };
5999 
6000   if (OpNum == OP_COPY) {
6001     if (LHSID == (1*9+2)*9+3) return LHS;
6002     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6003     return RHS;
6004   }
6005 
6006   SDValue OpLHS, OpRHS;
6007   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6008   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6009   EVT VT = OpLHS.getValueType();
6010 
6011   switch (OpNum) {
6012   default: llvm_unreachable("Unknown shuffle opcode!");
6013   case OP_VREV:
6014     // VREV divides the vector in half and swaps within the half.
6015     if (VT.getVectorElementType() == MVT::i32 ||
6016         VT.getVectorElementType() == MVT::f32)
6017       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6018     // vrev <4 x i16> -> VREV32
6019     if (VT.getVectorElementType() == MVT::i16)
6020       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6021     // vrev <4 x i8> -> VREV16
6022     assert(VT.getVectorElementType() == MVT::i8);
6023     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6024   case OP_VDUP0:
6025   case OP_VDUP1:
6026   case OP_VDUP2:
6027   case OP_VDUP3:
6028     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6029                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6030   case OP_VEXT1:
6031   case OP_VEXT2:
6032   case OP_VEXT3:
6033     return DAG.getNode(ARMISD::VEXT, dl, VT,
6034                        OpLHS, OpRHS,
6035                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6036   case OP_VUZPL:
6037   case OP_VUZPR:
6038     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6039                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6040   case OP_VZIPL:
6041   case OP_VZIPR:
6042     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6043                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6044   case OP_VTRNL:
6045   case OP_VTRNR:
6046     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6047                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6048   }
6049 }
6050 
6051 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
6052                                        ArrayRef<int> ShuffleMask,
6053                                        SelectionDAG &DAG) {
6054   // Check to see if we can use the VTBL instruction.
6055   SDValue V1 = Op.getOperand(0);
6056   SDValue V2 = Op.getOperand(1);
6057   SDLoc DL(Op);
6058 
6059   SmallVector<SDValue, 8> VTBLMask;
6060   for (ArrayRef<int>::iterator
6061          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
6062     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
6063 
6064   if (V2.getNode()->isUndef())
6065     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
6066                        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
6067 
6068   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
6069                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
6070 }
6071 
6072 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
6073                                                       SelectionDAG &DAG) {
6074   SDLoc DL(Op);
6075   SDValue OpLHS = Op.getOperand(0);
6076   EVT VT = OpLHS.getValueType();
6077 
6078   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
6079          "Expect an v8i16/v16i8 type");
6080   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
6081   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
6082   // extract the first 8 bytes into the top double word and the last 8 bytes
6083   // into the bottom double word. The v8i16 case is similar.
6084   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
6085   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
6086                      DAG.getConstant(ExtractNum, DL, MVT::i32));
6087 }
6088 
6089 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
6090   SDValue V1 = Op.getOperand(0);
6091   SDValue V2 = Op.getOperand(1);
6092   SDLoc dl(Op);
6093   EVT VT = Op.getValueType();
6094   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6095 
6096   // Convert shuffles that are directly supported on NEON to target-specific
6097   // DAG nodes, instead of keeping them as shuffles and matching them again
6098   // during code selection.  This is more efficient and avoids the possibility
6099   // of inconsistencies between legalization and selection.
6100   // FIXME: floating-point vectors should be canonicalized to integer vectors
6101   // of the same time so that they get CSEd properly.
6102   ArrayRef<int> ShuffleMask = SVN->getMask();
6103 
6104   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6105   if (EltSize <= 32) {
6106     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
6107       int Lane = SVN->getSplatIndex();
6108       // If this is undef splat, generate it via "just" vdup, if possible.
6109       if (Lane == -1) Lane = 0;
6110 
6111       // Test if V1 is a SCALAR_TO_VECTOR.
6112       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6113         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6114       }
6115       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
6116       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
6117       // reaches it).
6118       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
6119           !isa<ConstantSDNode>(V1.getOperand(0))) {
6120         bool IsScalarToVector = true;
6121         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
6122           if (!V1.getOperand(i).isUndef()) {
6123             IsScalarToVector = false;
6124             break;
6125           }
6126         if (IsScalarToVector)
6127           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6128       }
6129       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
6130                          DAG.getConstant(Lane, dl, MVT::i32));
6131     }
6132 
6133     bool ReverseVEXT;
6134     unsigned Imm;
6135     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
6136       if (ReverseVEXT)
6137         std::swap(V1, V2);
6138       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
6139                          DAG.getConstant(Imm, dl, MVT::i32));
6140     }
6141 
6142     if (isVREVMask(ShuffleMask, VT, 64))
6143       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
6144     if (isVREVMask(ShuffleMask, VT, 32))
6145       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
6146     if (isVREVMask(ShuffleMask, VT, 16))
6147       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
6148 
6149     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
6150       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
6151                          DAG.getConstant(Imm, dl, MVT::i32));
6152     }
6153 
6154     // Check for Neon shuffles that modify both input vectors in place.
6155     // If both results are used, i.e., if there are two shuffles with the same
6156     // source operands and with masks corresponding to both results of one of
6157     // these operations, DAG memoization will ensure that a single node is
6158     // used for both shuffles.
6159     unsigned WhichResult;
6160     bool isV_UNDEF;
6161     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6162             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
6163       if (isV_UNDEF)
6164         V2 = V1;
6165       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
6166           .getValue(WhichResult);
6167     }
6168 
6169     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
6170     // shuffles that produce a result larger than their operands with:
6171     //   shuffle(concat(v1, undef), concat(v2, undef))
6172     // ->
6173     //   shuffle(concat(v1, v2), undef)
6174     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
6175     //
6176     // This is useful in the general case, but there are special cases where
6177     // native shuffles produce larger results: the two-result ops.
6178     //
6179     // Look through the concat when lowering them:
6180     //   shuffle(concat(v1, v2), undef)
6181     // ->
6182     //   concat(VZIP(v1, v2):0, :1)
6183     //
6184     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
6185       SDValue SubV1 = V1->getOperand(0);
6186       SDValue SubV2 = V1->getOperand(1);
6187       EVT SubVT = SubV1.getValueType();
6188 
6189       // We expect these to have been canonicalized to -1.
6190       assert(std::all_of(ShuffleMask.begin(), ShuffleMask.end(), [&](int i) {
6191         return i < (int)VT.getVectorNumElements();
6192       }) && "Unexpected shuffle index into UNDEF operand!");
6193 
6194       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6195               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
6196         if (isV_UNDEF)
6197           SubV2 = SubV1;
6198         assert((WhichResult == 0) &&
6199                "In-place shuffle of concat can only have one result!");
6200         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
6201                                   SubV1, SubV2);
6202         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
6203                            Res.getValue(1));
6204       }
6205     }
6206   }
6207 
6208   // If the shuffle is not directly supported and it has 4 elements, use
6209   // the PerfectShuffle-generated table to synthesize it from other shuffles.
6210   unsigned NumElts = VT.getVectorNumElements();
6211   if (NumElts == 4) {
6212     unsigned PFIndexes[4];
6213     for (unsigned i = 0; i != 4; ++i) {
6214       if (ShuffleMask[i] < 0)
6215         PFIndexes[i] = 8;
6216       else
6217         PFIndexes[i] = ShuffleMask[i];
6218     }
6219 
6220     // Compute the index in the perfect shuffle table.
6221     unsigned PFTableIndex =
6222       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6223     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6224     unsigned Cost = (PFEntry >> 30);
6225 
6226     if (Cost <= 4)
6227       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6228   }
6229 
6230   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
6231   if (EltSize >= 32) {
6232     // Do the expansion with floating-point types, since that is what the VFP
6233     // registers are defined to use, and since i64 is not legal.
6234     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6235     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6236     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
6237     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
6238     SmallVector<SDValue, 8> Ops;
6239     for (unsigned i = 0; i < NumElts; ++i) {
6240       if (ShuffleMask[i] < 0)
6241         Ops.push_back(DAG.getUNDEF(EltVT));
6242       else
6243         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6244                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
6245                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
6246                                                   dl, MVT::i32)));
6247     }
6248     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6249     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6250   }
6251 
6252   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
6253     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
6254 
6255   if (VT == MVT::v8i8)
6256     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
6257       return NewOp;
6258 
6259   return SDValue();
6260 }
6261 
6262 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6263   // INSERT_VECTOR_ELT is legal only for immediate indexes.
6264   SDValue Lane = Op.getOperand(2);
6265   if (!isa<ConstantSDNode>(Lane))
6266     return SDValue();
6267 
6268   return Op;
6269 }
6270 
6271 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6272   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
6273   SDValue Lane = Op.getOperand(1);
6274   if (!isa<ConstantSDNode>(Lane))
6275     return SDValue();
6276 
6277   SDValue Vec = Op.getOperand(0);
6278   if (Op.getValueType() == MVT::i32 &&
6279       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
6280     SDLoc dl(Op);
6281     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
6282   }
6283 
6284   return Op;
6285 }
6286 
6287 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6288   // The only time a CONCAT_VECTORS operation can have legal types is when
6289   // two 64-bit vectors are concatenated to a 128-bit vector.
6290   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
6291          "unexpected CONCAT_VECTORS");
6292   SDLoc dl(Op);
6293   SDValue Val = DAG.getUNDEF(MVT::v2f64);
6294   SDValue Op0 = Op.getOperand(0);
6295   SDValue Op1 = Op.getOperand(1);
6296   if (!Op0.isUndef())
6297     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6298                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
6299                       DAG.getIntPtrConstant(0, dl));
6300   if (!Op1.isUndef())
6301     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6302                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
6303                       DAG.getIntPtrConstant(1, dl));
6304   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
6305 }
6306 
6307 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
6308 /// element has been zero/sign-extended, depending on the isSigned parameter,
6309 /// from an integer type half its size.
6310 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
6311                                    bool isSigned) {
6312   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
6313   EVT VT = N->getValueType(0);
6314   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
6315     SDNode *BVN = N->getOperand(0).getNode();
6316     if (BVN->getValueType(0) != MVT::v4i32 ||
6317         BVN->getOpcode() != ISD::BUILD_VECTOR)
6318       return false;
6319     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6320     unsigned HiElt = 1 - LoElt;
6321     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
6322     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
6323     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
6324     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
6325     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
6326       return false;
6327     if (isSigned) {
6328       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
6329           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
6330         return true;
6331     } else {
6332       if (Hi0->isNullValue() && Hi1->isNullValue())
6333         return true;
6334     }
6335     return false;
6336   }
6337 
6338   if (N->getOpcode() != ISD::BUILD_VECTOR)
6339     return false;
6340 
6341   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6342     SDNode *Elt = N->getOperand(i).getNode();
6343     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
6344       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6345       unsigned HalfSize = EltSize / 2;
6346       if (isSigned) {
6347         if (!isIntN(HalfSize, C->getSExtValue()))
6348           return false;
6349       } else {
6350         if (!isUIntN(HalfSize, C->getZExtValue()))
6351           return false;
6352       }
6353       continue;
6354     }
6355     return false;
6356   }
6357 
6358   return true;
6359 }
6360 
6361 /// isSignExtended - Check if a node is a vector value that is sign-extended
6362 /// or a constant BUILD_VECTOR with sign-extended elements.
6363 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
6364   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
6365     return true;
6366   if (isExtendedBUILD_VECTOR(N, DAG, true))
6367     return true;
6368   return false;
6369 }
6370 
6371 /// isZeroExtended - Check if a node is a vector value that is zero-extended
6372 /// or a constant BUILD_VECTOR with zero-extended elements.
6373 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
6374   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
6375     return true;
6376   if (isExtendedBUILD_VECTOR(N, DAG, false))
6377     return true;
6378   return false;
6379 }
6380 
6381 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
6382   if (OrigVT.getSizeInBits() >= 64)
6383     return OrigVT;
6384 
6385   assert(OrigVT.isSimple() && "Expecting a simple value type");
6386 
6387   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
6388   switch (OrigSimpleTy) {
6389   default: llvm_unreachable("Unexpected Vector Type");
6390   case MVT::v2i8:
6391   case MVT::v2i16:
6392      return MVT::v2i32;
6393   case MVT::v4i8:
6394     return  MVT::v4i16;
6395   }
6396 }
6397 
6398 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
6399 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
6400 /// We insert the required extension here to get the vector to fill a D register.
6401 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
6402                                             const EVT &OrigTy,
6403                                             const EVT &ExtTy,
6404                                             unsigned ExtOpcode) {
6405   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
6406   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
6407   // 64-bits we need to insert a new extension so that it will be 64-bits.
6408   assert(ExtTy.is128BitVector() && "Unexpected extension size");
6409   if (OrigTy.getSizeInBits() >= 64)
6410     return N;
6411 
6412   // Must extend size to at least 64 bits to be used as an operand for VMULL.
6413   EVT NewVT = getExtensionTo64Bits(OrigTy);
6414 
6415   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
6416 }
6417 
6418 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
6419 /// does not do any sign/zero extension. If the original vector is less
6420 /// than 64 bits, an appropriate extension will be added after the load to
6421 /// reach a total size of 64 bits. We have to add the extension separately
6422 /// because ARM does not have a sign/zero extending load for vectors.
6423 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
6424   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
6425 
6426   // The load already has the right type.
6427   if (ExtendedTy == LD->getMemoryVT())
6428     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
6429                 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
6430                 LD->isNonTemporal(), LD->isInvariant(),
6431                 LD->getAlignment());
6432 
6433   // We need to create a zextload/sextload. We cannot just create a load
6434   // followed by a zext/zext node because LowerMUL is also run during normal
6435   // operation legalization where we can't create illegal types.
6436   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
6437                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
6438                         LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
6439                         LD->isNonTemporal(), LD->getAlignment());
6440 }
6441 
6442 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
6443 /// extending load, or BUILD_VECTOR with extended elements, return the
6444 /// unextended value. The unextended vector should be 64 bits so that it can
6445 /// be used as an operand to a VMULL instruction. If the original vector size
6446 /// before extension is less than 64 bits we add a an extension to resize
6447 /// the vector to 64 bits.
6448 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
6449   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
6450     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
6451                                         N->getOperand(0)->getValueType(0),
6452                                         N->getValueType(0),
6453                                         N->getOpcode());
6454 
6455   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
6456     return SkipLoadExtensionForVMULL(LD, DAG);
6457 
6458   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
6459   // have been legalized as a BITCAST from v4i32.
6460   if (N->getOpcode() == ISD::BITCAST) {
6461     SDNode *BVN = N->getOperand(0).getNode();
6462     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
6463            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
6464     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6465     return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
6466                        BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
6467   }
6468   // Construct a new BUILD_VECTOR with elements truncated to half the size.
6469   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
6470   EVT VT = N->getValueType(0);
6471   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
6472   unsigned NumElts = VT.getVectorNumElements();
6473   MVT TruncVT = MVT::getIntegerVT(EltSize);
6474   SmallVector<SDValue, 8> Ops;
6475   SDLoc dl(N);
6476   for (unsigned i = 0; i != NumElts; ++i) {
6477     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
6478     const APInt &CInt = C->getAPIntValue();
6479     // Element types smaller than 32 bits are not legal, so use i32 elements.
6480     // The values are implicitly truncated so sext vs. zext doesn't matter.
6481     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
6482   }
6483   return DAG.getNode(ISD::BUILD_VECTOR, dl,
6484                      MVT::getVectorVT(TruncVT, NumElts), Ops);
6485 }
6486 
6487 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
6488   unsigned Opcode = N->getOpcode();
6489   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6490     SDNode *N0 = N->getOperand(0).getNode();
6491     SDNode *N1 = N->getOperand(1).getNode();
6492     return N0->hasOneUse() && N1->hasOneUse() &&
6493       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
6494   }
6495   return false;
6496 }
6497 
6498 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
6499   unsigned Opcode = N->getOpcode();
6500   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6501     SDNode *N0 = N->getOperand(0).getNode();
6502     SDNode *N1 = N->getOperand(1).getNode();
6503     return N0->hasOneUse() && N1->hasOneUse() &&
6504       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
6505   }
6506   return false;
6507 }
6508 
6509 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
6510   // Multiplications are only custom-lowered for 128-bit vectors so that
6511   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
6512   EVT VT = Op.getValueType();
6513   assert(VT.is128BitVector() && VT.isInteger() &&
6514          "unexpected type for custom-lowering ISD::MUL");
6515   SDNode *N0 = Op.getOperand(0).getNode();
6516   SDNode *N1 = Op.getOperand(1).getNode();
6517   unsigned NewOpc = 0;
6518   bool isMLA = false;
6519   bool isN0SExt = isSignExtended(N0, DAG);
6520   bool isN1SExt = isSignExtended(N1, DAG);
6521   if (isN0SExt && isN1SExt)
6522     NewOpc = ARMISD::VMULLs;
6523   else {
6524     bool isN0ZExt = isZeroExtended(N0, DAG);
6525     bool isN1ZExt = isZeroExtended(N1, DAG);
6526     if (isN0ZExt && isN1ZExt)
6527       NewOpc = ARMISD::VMULLu;
6528     else if (isN1SExt || isN1ZExt) {
6529       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
6530       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
6531       if (isN1SExt && isAddSubSExt(N0, DAG)) {
6532         NewOpc = ARMISD::VMULLs;
6533         isMLA = true;
6534       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
6535         NewOpc = ARMISD::VMULLu;
6536         isMLA = true;
6537       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
6538         std::swap(N0, N1);
6539         NewOpc = ARMISD::VMULLu;
6540         isMLA = true;
6541       }
6542     }
6543 
6544     if (!NewOpc) {
6545       if (VT == MVT::v2i64)
6546         // Fall through to expand this.  It is not legal.
6547         return SDValue();
6548       else
6549         // Other vector multiplications are legal.
6550         return Op;
6551     }
6552   }
6553 
6554   // Legalize to a VMULL instruction.
6555   SDLoc DL(Op);
6556   SDValue Op0;
6557   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
6558   if (!isMLA) {
6559     Op0 = SkipExtensionForVMULL(N0, DAG);
6560     assert(Op0.getValueType().is64BitVector() &&
6561            Op1.getValueType().is64BitVector() &&
6562            "unexpected types for extended operands to VMULL");
6563     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
6564   }
6565 
6566   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
6567   // isel lowering to take advantage of no-stall back to back vmul + vmla.
6568   //   vmull q0, d4, d6
6569   //   vmlal q0, d5, d6
6570   // is faster than
6571   //   vaddl q0, d4, d5
6572   //   vmovl q1, d6
6573   //   vmul  q0, q0, q1
6574   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
6575   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
6576   EVT Op1VT = Op1.getValueType();
6577   return DAG.getNode(N0->getOpcode(), DL, VT,
6578                      DAG.getNode(NewOpc, DL, VT,
6579                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
6580                      DAG.getNode(NewOpc, DL, VT,
6581                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
6582 }
6583 
6584 static SDValue
6585 LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
6586   // TODO: Should this propagate fast-math-flags?
6587 
6588   // Convert to float
6589   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
6590   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
6591   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
6592   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
6593   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
6594   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
6595   // Get reciprocal estimate.
6596   // float4 recip = vrecpeq_f32(yf);
6597   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6598                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6599                    Y);
6600   // Because char has a smaller range than uchar, we can actually get away
6601   // without any newton steps.  This requires that we use a weird bias
6602   // of 0xb000, however (again, this has been exhaustively tested).
6603   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
6604   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
6605   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
6606   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
6607   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
6608   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
6609   // Convert back to short.
6610   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
6611   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
6612   return X;
6613 }
6614 
6615 static SDValue
6616 LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
6617   // TODO: Should this propagate fast-math-flags?
6618 
6619   SDValue N2;
6620   // Convert to float.
6621   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
6622   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
6623   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
6624   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
6625   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6626   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6627 
6628   // Use reciprocal estimate and one refinement step.
6629   // float4 recip = vrecpeq_f32(yf);
6630   // recip *= vrecpsq_f32(yf, recip);
6631   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6632                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6633                    N1);
6634   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6635                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6636                    N1, N2);
6637   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6638   // Because short has a smaller range than ushort, we can actually get away
6639   // with only a single newton step.  This requires that we use a weird bias
6640   // of 89, however (again, this has been exhaustively tested).
6641   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
6642   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6643   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6644   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
6645   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6646   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6647   // Convert back to integer and return.
6648   // return vmovn_s32(vcvt_s32_f32(result));
6649   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6650   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6651   return N0;
6652 }
6653 
6654 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
6655   EVT VT = Op.getValueType();
6656   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6657          "unexpected type for custom-lowering ISD::SDIV");
6658 
6659   SDLoc dl(Op);
6660   SDValue N0 = Op.getOperand(0);
6661   SDValue N1 = Op.getOperand(1);
6662   SDValue N2, N3;
6663 
6664   if (VT == MVT::v8i8) {
6665     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
6666     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
6667 
6668     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6669                      DAG.getIntPtrConstant(4, dl));
6670     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6671                      DAG.getIntPtrConstant(4, dl));
6672     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6673                      DAG.getIntPtrConstant(0, dl));
6674     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6675                      DAG.getIntPtrConstant(0, dl));
6676 
6677     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
6678     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
6679 
6680     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6681     N0 = LowerCONCAT_VECTORS(N0, DAG);
6682 
6683     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
6684     return N0;
6685   }
6686   return LowerSDIV_v4i16(N0, N1, dl, DAG);
6687 }
6688 
6689 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
6690   // TODO: Should this propagate fast-math-flags?
6691   EVT VT = Op.getValueType();
6692   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6693          "unexpected type for custom-lowering ISD::UDIV");
6694 
6695   SDLoc dl(Op);
6696   SDValue N0 = Op.getOperand(0);
6697   SDValue N1 = Op.getOperand(1);
6698   SDValue N2, N3;
6699 
6700   if (VT == MVT::v8i8) {
6701     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
6702     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
6703 
6704     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6705                      DAG.getIntPtrConstant(4, dl));
6706     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6707                      DAG.getIntPtrConstant(4, dl));
6708     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6709                      DAG.getIntPtrConstant(0, dl));
6710     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6711                      DAG.getIntPtrConstant(0, dl));
6712 
6713     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
6714     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
6715 
6716     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6717     N0 = LowerCONCAT_VECTORS(N0, DAG);
6718 
6719     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
6720                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
6721                                      MVT::i32),
6722                      N0);
6723     return N0;
6724   }
6725 
6726   // v4i16 sdiv ... Convert to float.
6727   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
6728   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
6729   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
6730   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
6731   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6732   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6733 
6734   // Use reciprocal estimate and two refinement steps.
6735   // float4 recip = vrecpeq_f32(yf);
6736   // recip *= vrecpsq_f32(yf, recip);
6737   // recip *= vrecpsq_f32(yf, recip);
6738   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6739                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6740                    BN1);
6741   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6742                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6743                    BN1, N2);
6744   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6745   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6746                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6747                    BN1, N2);
6748   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6749   // Simply multiplying by the reciprocal estimate can leave us a few ulps
6750   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
6751   // and that it will never cause us to return an answer too large).
6752   // float4 result = as_float4(as_int4(xf*recip) + 2);
6753   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6754   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6755   N1 = DAG.getConstant(2, dl, MVT::v4i32);
6756   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6757   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6758   // Convert back to integer and return.
6759   // return vmovn_u32(vcvt_s32_f32(result));
6760   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6761   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6762   return N0;
6763 }
6764 
6765 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
6766   EVT VT = Op.getNode()->getValueType(0);
6767   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
6768 
6769   unsigned Opc;
6770   bool ExtraOp = false;
6771   switch (Op.getOpcode()) {
6772   default: llvm_unreachable("Invalid code");
6773   case ISD::ADDC: Opc = ARMISD::ADDC; break;
6774   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
6775   case ISD::SUBC: Opc = ARMISD::SUBC; break;
6776   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
6777   }
6778 
6779   if (!ExtraOp)
6780     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6781                        Op.getOperand(1));
6782   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6783                      Op.getOperand(1), Op.getOperand(2));
6784 }
6785 
6786 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
6787   assert(Subtarget->isTargetDarwin());
6788 
6789   // For iOS, we want to call an alternative entry point: __sincos_stret,
6790   // return values are passed via sret.
6791   SDLoc dl(Op);
6792   SDValue Arg = Op.getOperand(0);
6793   EVT ArgVT = Arg.getValueType();
6794   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
6795   auto PtrVT = getPointerTy(DAG.getDataLayout());
6796 
6797   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6798   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6799 
6800   // Pair of floats / doubles used to pass the result.
6801   Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
6802   auto &DL = DAG.getDataLayout();
6803 
6804   ArgListTy Args;
6805   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
6806   SDValue SRet;
6807   if (ShouldUseSRet) {
6808     // Create stack object for sret.
6809     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
6810     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
6811     int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
6812     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
6813 
6814     ArgListEntry Entry;
6815     Entry.Node = SRet;
6816     Entry.Ty = RetTy->getPointerTo();
6817     Entry.isSExt = false;
6818     Entry.isZExt = false;
6819     Entry.isSRet = true;
6820     Args.push_back(Entry);
6821     RetTy = Type::getVoidTy(*DAG.getContext());
6822   }
6823 
6824   ArgListEntry Entry;
6825   Entry.Node = Arg;
6826   Entry.Ty = ArgTy;
6827   Entry.isSExt = false;
6828   Entry.isZExt = false;
6829   Args.push_back(Entry);
6830 
6831   const char *LibcallName =
6832       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
6833   RTLIB::Libcall LC =
6834       (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
6835   CallingConv::ID CC = getLibcallCallingConv(LC);
6836   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
6837 
6838   TargetLowering::CallLoweringInfo CLI(DAG);
6839   CLI.setDebugLoc(dl)
6840       .setChain(DAG.getEntryNode())
6841       .setCallee(CC, RetTy, Callee, std::move(Args), 0)
6842       .setDiscardResult(ShouldUseSRet);
6843   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6844 
6845   if (!ShouldUseSRet)
6846     return CallResult.first;
6847 
6848   SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
6849                                 MachinePointerInfo(), false, false, false, 0);
6850 
6851   // Address of cos field.
6852   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
6853                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
6854   SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
6855                                 MachinePointerInfo(), false, false, false, 0);
6856 
6857   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
6858   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
6859                      LoadSin.getValue(0), LoadCos.getValue(0));
6860 }
6861 
6862 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
6863                                                   bool Signed,
6864                                                   SDValue &Chain) const {
6865   EVT VT = Op.getValueType();
6866   assert((VT == MVT::i32 || VT == MVT::i64) &&
6867          "unexpected type for custom lowering DIV");
6868   SDLoc dl(Op);
6869 
6870   const auto &DL = DAG.getDataLayout();
6871   const auto &TLI = DAG.getTargetLoweringInfo();
6872 
6873   const char *Name = nullptr;
6874   if (Signed)
6875     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
6876   else
6877     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
6878 
6879   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
6880 
6881   ARMTargetLowering::ArgListTy Args;
6882 
6883   for (auto AI : {1, 0}) {
6884     ArgListEntry Arg;
6885     Arg.Node = Op.getOperand(AI);
6886     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
6887     Args.push_back(Arg);
6888   }
6889 
6890   CallLoweringInfo CLI(DAG);
6891   CLI.setDebugLoc(dl)
6892     .setChain(Chain)
6893     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
6894                ES, std::move(Args), 0);
6895 
6896   return LowerCallTo(CLI).first;
6897 }
6898 
6899 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
6900                                             bool Signed) const {
6901   assert(Op.getValueType() == MVT::i32 &&
6902          "unexpected type for custom lowering DIV");
6903   SDLoc dl(Op);
6904 
6905   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
6906                                DAG.getEntryNode(), Op.getOperand(1));
6907 
6908   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
6909 }
6910 
6911 void ARMTargetLowering::ExpandDIV_Windows(
6912     SDValue Op, SelectionDAG &DAG, bool Signed,
6913     SmallVectorImpl<SDValue> &Results) const {
6914   const auto &DL = DAG.getDataLayout();
6915   const auto &TLI = DAG.getTargetLoweringInfo();
6916 
6917   assert(Op.getValueType() == MVT::i64 &&
6918          "unexpected type for custom lowering DIV");
6919   SDLoc dl(Op);
6920 
6921   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
6922                            DAG.getConstant(0, dl, MVT::i32));
6923   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
6924                            DAG.getConstant(1, dl, MVT::i32));
6925   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi);
6926 
6927   SDValue DBZCHK =
6928       DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or);
6929 
6930   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
6931 
6932   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
6933   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
6934                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
6935   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
6936 
6937   Results.push_back(Lower);
6938   Results.push_back(Upper);
6939 }
6940 
6941 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
6942   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
6943     // Acquire/Release load/store is not legal for targets without a dmb or
6944     // equivalent available.
6945     return SDValue();
6946 
6947   // Monotonic load/store is legal for all targets.
6948   return Op;
6949 }
6950 
6951 static void ReplaceREADCYCLECOUNTER(SDNode *N,
6952                                     SmallVectorImpl<SDValue> &Results,
6953                                     SelectionDAG &DAG,
6954                                     const ARMSubtarget *Subtarget) {
6955   SDLoc DL(N);
6956   // Under Power Management extensions, the cycle-count is:
6957   //    mrc p15, #0, <Rt>, c9, c13, #0
6958   SDValue Ops[] = { N->getOperand(0), // Chain
6959                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
6960                     DAG.getConstant(15, DL, MVT::i32),
6961                     DAG.getConstant(0, DL, MVT::i32),
6962                     DAG.getConstant(9, DL, MVT::i32),
6963                     DAG.getConstant(13, DL, MVT::i32),
6964                     DAG.getConstant(0, DL, MVT::i32)
6965   };
6966 
6967   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
6968                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
6969   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
6970                                 DAG.getConstant(0, DL, MVT::i32)));
6971   Results.push_back(Cycles32.getValue(1));
6972 }
6973 
6974 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V0, SDValue V1) {
6975   SDLoc dl(V0.getNode());
6976   SDValue RegClass =
6977       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
6978   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
6979   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
6980   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
6981   return SDValue(
6982       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
6983 }
6984 
6985 static void ReplaceCMP_SWAP_64Results(SDNode *N,
6986                                        SmallVectorImpl<SDValue> & Results,
6987                                        SelectionDAG &DAG) {
6988   assert(N->getValueType(0) == MVT::i64 &&
6989          "AtomicCmpSwap on types less than 64 should be legal");
6990   SDValue Ops[] = {N->getOperand(1),
6991                    createGPRPairNode(DAG, N->getOperand(2)->getOperand(0),
6992                                      N->getOperand(2)->getOperand(1)),
6993                    createGPRPairNode(DAG, N->getOperand(3)->getOperand(0),
6994                                      N->getOperand(3)->getOperand(1)),
6995                    N->getOperand(0)};
6996   SDNode *CmpSwap = DAG.getMachineNode(
6997       ARM::CMP_SWAP_64, SDLoc(N),
6998       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
6999 
7000   MachineFunction &MF = DAG.getMachineFunction();
7001   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
7002   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
7003   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
7004 
7005   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_0, SDLoc(N), MVT::i32,
7006                                                SDValue(CmpSwap, 0)));
7007   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_1, SDLoc(N), MVT::i32,
7008                                                SDValue(CmpSwap, 0)));
7009   Results.push_back(SDValue(CmpSwap, 2));
7010 }
7011 
7012 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7013   switch (Op.getOpcode()) {
7014   default: llvm_unreachable("Don't know how to custom lower this!");
7015   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
7016   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
7017   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
7018   case ISD::GlobalAddress:
7019     switch (Subtarget->getTargetTriple().getObjectFormat()) {
7020     default: llvm_unreachable("unknown object format");
7021     case Triple::COFF:
7022       return LowerGlobalAddressWindows(Op, DAG);
7023     case Triple::ELF:
7024       return LowerGlobalAddressELF(Op, DAG);
7025     case Triple::MachO:
7026       return LowerGlobalAddressDarwin(Op, DAG);
7027     }
7028   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
7029   case ISD::SELECT:        return LowerSELECT(Op, DAG);
7030   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
7031   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
7032   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
7033   case ISD::VASTART:       return LowerVASTART(Op, DAG);
7034   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
7035   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
7036   case ISD::SINT_TO_FP:
7037   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
7038   case ISD::FP_TO_SINT:
7039   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
7040   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
7041   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
7042   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
7043   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
7044   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
7045   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
7046   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
7047                                                                Subtarget);
7048   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
7049   case ISD::SHL:
7050   case ISD::SRL:
7051   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
7052   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
7053   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
7054   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
7055   case ISD::SRL_PARTS:
7056   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
7057   case ISD::CTTZ:
7058   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
7059   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
7060   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
7061   case ISD::SETCCE:        return LowerSETCCE(Op, DAG);
7062   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
7063   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
7064   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
7065   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
7066   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7067   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
7068   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
7069   case ISD::MUL:           return LowerMUL(Op, DAG);
7070   case ISD::SDIV:
7071     if (Subtarget->isTargetWindows())
7072       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
7073     return LowerSDIV(Op, DAG);
7074   case ISD::UDIV:
7075     if (Subtarget->isTargetWindows())
7076       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
7077     return LowerUDIV(Op, DAG);
7078   case ISD::ADDC:
7079   case ISD::ADDE:
7080   case ISD::SUBC:
7081   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
7082   case ISD::SADDO:
7083   case ISD::UADDO:
7084   case ISD::SSUBO:
7085   case ISD::USUBO:
7086     return LowerXALUO(Op, DAG);
7087   case ISD::ATOMIC_LOAD:
7088   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
7089   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
7090   case ISD::SDIVREM:
7091   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
7092   case ISD::DYNAMIC_STACKALLOC:
7093     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
7094       return LowerDYNAMIC_STACKALLOC(Op, DAG);
7095     llvm_unreachable("Don't know how to custom lower this!");
7096   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
7097   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
7098   case ARMISD::WIN__DBZCHK: return SDValue();
7099   }
7100 }
7101 
7102 /// ReplaceNodeResults - Replace the results of node with an illegal result
7103 /// type with new values built out of custom code.
7104 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
7105                                            SmallVectorImpl<SDValue> &Results,
7106                                            SelectionDAG &DAG) const {
7107   SDValue Res;
7108   switch (N->getOpcode()) {
7109   default:
7110     llvm_unreachable("Don't know how to custom expand this!");
7111   case ISD::READ_REGISTER:
7112     ExpandREAD_REGISTER(N, Results, DAG);
7113     break;
7114   case ISD::BITCAST:
7115     Res = ExpandBITCAST(N, DAG);
7116     break;
7117   case ISD::SRL:
7118   case ISD::SRA:
7119     Res = Expand64BitShift(N, DAG, Subtarget);
7120     break;
7121   case ISD::SREM:
7122   case ISD::UREM:
7123     Res = LowerREM(N, DAG);
7124     break;
7125   case ISD::SDIVREM:
7126   case ISD::UDIVREM:
7127     Res = LowerDivRem(SDValue(N, 0), DAG);
7128     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
7129     Results.push_back(Res.getValue(0));
7130     Results.push_back(Res.getValue(1));
7131     return;
7132   case ISD::READCYCLECOUNTER:
7133     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
7134     return;
7135   case ISD::UDIV:
7136   case ISD::SDIV:
7137     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
7138     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
7139                              Results);
7140   case ISD::ATOMIC_CMP_SWAP:
7141     ReplaceCMP_SWAP_64Results(N, Results, DAG);
7142     return;
7143   }
7144   if (Res.getNode())
7145     Results.push_back(Res);
7146 }
7147 
7148 //===----------------------------------------------------------------------===//
7149 //                           ARM Scheduler Hooks
7150 //===----------------------------------------------------------------------===//
7151 
7152 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
7153 /// registers the function context.
7154 void ARMTargetLowering::
7155 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
7156                        MachineBasicBlock *DispatchBB, int FI) const {
7157   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7158   DebugLoc dl = MI->getDebugLoc();
7159   MachineFunction *MF = MBB->getParent();
7160   MachineRegisterInfo *MRI = &MF->getRegInfo();
7161   MachineConstantPool *MCP = MF->getConstantPool();
7162   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
7163   const Function *F = MF->getFunction();
7164 
7165   bool isThumb = Subtarget->isThumb();
7166   bool isThumb2 = Subtarget->isThumb2();
7167 
7168   unsigned PCLabelId = AFI->createPICLabelUId();
7169   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
7170   ARMConstantPoolValue *CPV =
7171     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
7172   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
7173 
7174   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
7175                                            : &ARM::GPRRegClass;
7176 
7177   // Grab constant pool and fixed stack memory operands.
7178   MachineMemOperand *CPMMO =
7179       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
7180                                MachineMemOperand::MOLoad, 4, 4);
7181 
7182   MachineMemOperand *FIMMOSt =
7183       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
7184                                MachineMemOperand::MOStore, 4, 4);
7185 
7186   // Load the address of the dispatch MBB into the jump buffer.
7187   if (isThumb2) {
7188     // Incoming value: jbuf
7189     //   ldr.n  r5, LCPI1_1
7190     //   orr    r5, r5, #1
7191     //   add    r5, pc
7192     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
7193     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7194     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
7195                    .addConstantPoolIndex(CPI)
7196                    .addMemOperand(CPMMO));
7197     // Set the low bit because of thumb mode.
7198     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7199     AddDefaultCC(
7200       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
7201                      .addReg(NewVReg1, RegState::Kill)
7202                      .addImm(0x01)));
7203     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7204     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
7205       .addReg(NewVReg2, RegState::Kill)
7206       .addImm(PCLabelId);
7207     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
7208                    .addReg(NewVReg3, RegState::Kill)
7209                    .addFrameIndex(FI)
7210                    .addImm(36)  // &jbuf[1] :: pc
7211                    .addMemOperand(FIMMOSt));
7212   } else if (isThumb) {
7213     // Incoming value: jbuf
7214     //   ldr.n  r1, LCPI1_4
7215     //   add    r1, pc
7216     //   mov    r2, #1
7217     //   orrs   r1, r2
7218     //   add    r2, $jbuf, #+4 ; &jbuf[1]
7219     //   str    r1, [r2]
7220     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7221     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
7222                    .addConstantPoolIndex(CPI)
7223                    .addMemOperand(CPMMO));
7224     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7225     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
7226       .addReg(NewVReg1, RegState::Kill)
7227       .addImm(PCLabelId);
7228     // Set the low bit because of thumb mode.
7229     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7230     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
7231                    .addReg(ARM::CPSR, RegState::Define)
7232                    .addImm(1));
7233     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7234     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
7235                    .addReg(ARM::CPSR, RegState::Define)
7236                    .addReg(NewVReg2, RegState::Kill)
7237                    .addReg(NewVReg3, RegState::Kill));
7238     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7239     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
7240             .addFrameIndex(FI)
7241             .addImm(36); // &jbuf[1] :: pc
7242     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
7243                    .addReg(NewVReg4, RegState::Kill)
7244                    .addReg(NewVReg5, RegState::Kill)
7245                    .addImm(0)
7246                    .addMemOperand(FIMMOSt));
7247   } else {
7248     // Incoming value: jbuf
7249     //   ldr  r1, LCPI1_1
7250     //   add  r1, pc, r1
7251     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
7252     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7253     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
7254                    .addConstantPoolIndex(CPI)
7255                    .addImm(0)
7256                    .addMemOperand(CPMMO));
7257     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7258     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
7259                    .addReg(NewVReg1, RegState::Kill)
7260                    .addImm(PCLabelId));
7261     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
7262                    .addReg(NewVReg2, RegState::Kill)
7263                    .addFrameIndex(FI)
7264                    .addImm(36)  // &jbuf[1] :: pc
7265                    .addMemOperand(FIMMOSt));
7266   }
7267 }
7268 
7269 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr *MI,
7270                                               MachineBasicBlock *MBB) const {
7271   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7272   DebugLoc dl = MI->getDebugLoc();
7273   MachineFunction *MF = MBB->getParent();
7274   MachineRegisterInfo *MRI = &MF->getRegInfo();
7275   MachineFrameInfo *MFI = MF->getFrameInfo();
7276   int FI = MFI->getFunctionContextIndex();
7277 
7278   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
7279                                                         : &ARM::GPRnopcRegClass;
7280 
7281   // Get a mapping of the call site numbers to all of the landing pads they're
7282   // associated with.
7283   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
7284   unsigned MaxCSNum = 0;
7285   MachineModuleInfo &MMI = MF->getMMI();
7286   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
7287        ++BB) {
7288     if (!BB->isEHPad()) continue;
7289 
7290     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
7291     // pad.
7292     for (MachineBasicBlock::iterator
7293            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
7294       if (!II->isEHLabel()) continue;
7295 
7296       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
7297       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
7298 
7299       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
7300       for (SmallVectorImpl<unsigned>::iterator
7301              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
7302            CSI != CSE; ++CSI) {
7303         CallSiteNumToLPad[*CSI].push_back(&*BB);
7304         MaxCSNum = std::max(MaxCSNum, *CSI);
7305       }
7306       break;
7307     }
7308   }
7309 
7310   // Get an ordered list of the machine basic blocks for the jump table.
7311   std::vector<MachineBasicBlock*> LPadList;
7312   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
7313   LPadList.reserve(CallSiteNumToLPad.size());
7314   for (unsigned I = 1; I <= MaxCSNum; ++I) {
7315     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
7316     for (SmallVectorImpl<MachineBasicBlock*>::iterator
7317            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
7318       LPadList.push_back(*II);
7319       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
7320     }
7321   }
7322 
7323   assert(!LPadList.empty() &&
7324          "No landing pad destinations for the dispatch jump table!");
7325 
7326   // Create the jump table and associated information.
7327   MachineJumpTableInfo *JTI =
7328     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
7329   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
7330   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
7331 
7332   // Create the MBBs for the dispatch code.
7333 
7334   // Shove the dispatch's address into the return slot in the function context.
7335   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
7336   DispatchBB->setIsEHPad();
7337 
7338   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
7339   unsigned trap_opcode;
7340   if (Subtarget->isThumb())
7341     trap_opcode = ARM::tTRAP;
7342   else
7343     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
7344 
7345   BuildMI(TrapBB, dl, TII->get(trap_opcode));
7346   DispatchBB->addSuccessor(TrapBB);
7347 
7348   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
7349   DispatchBB->addSuccessor(DispContBB);
7350 
7351   // Insert and MBBs.
7352   MF->insert(MF->end(), DispatchBB);
7353   MF->insert(MF->end(), DispContBB);
7354   MF->insert(MF->end(), TrapBB);
7355 
7356   // Insert code into the entry block that creates and registers the function
7357   // context.
7358   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
7359 
7360   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
7361       MachinePointerInfo::getFixedStack(*MF, FI),
7362       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
7363 
7364   MachineInstrBuilder MIB;
7365   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
7366 
7367   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
7368   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
7369 
7370   // Add a register mask with no preserved registers.  This results in all
7371   // registers being marked as clobbered.
7372   MIB.addRegMask(RI.getNoPreservedMask());
7373 
7374   unsigned NumLPads = LPadList.size();
7375   if (Subtarget->isThumb2()) {
7376     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7377     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
7378                    .addFrameIndex(FI)
7379                    .addImm(4)
7380                    .addMemOperand(FIMMOLd));
7381 
7382     if (NumLPads < 256) {
7383       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
7384                      .addReg(NewVReg1)
7385                      .addImm(LPadList.size()));
7386     } else {
7387       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7388       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
7389                      .addImm(NumLPads & 0xFFFF));
7390 
7391       unsigned VReg2 = VReg1;
7392       if ((NumLPads & 0xFFFF0000) != 0) {
7393         VReg2 = MRI->createVirtualRegister(TRC);
7394         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
7395                        .addReg(VReg1)
7396                        .addImm(NumLPads >> 16));
7397       }
7398 
7399       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
7400                      .addReg(NewVReg1)
7401                      .addReg(VReg2));
7402     }
7403 
7404     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
7405       .addMBB(TrapBB)
7406       .addImm(ARMCC::HI)
7407       .addReg(ARM::CPSR);
7408 
7409     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7410     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
7411                    .addJumpTableIndex(MJTI));
7412 
7413     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7414     AddDefaultCC(
7415       AddDefaultPred(
7416         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
7417         .addReg(NewVReg3, RegState::Kill)
7418         .addReg(NewVReg1)
7419         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
7420 
7421     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
7422       .addReg(NewVReg4, RegState::Kill)
7423       .addReg(NewVReg1)
7424       .addJumpTableIndex(MJTI);
7425   } else if (Subtarget->isThumb()) {
7426     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7427     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
7428                    .addFrameIndex(FI)
7429                    .addImm(1)
7430                    .addMemOperand(FIMMOLd));
7431 
7432     if (NumLPads < 256) {
7433       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
7434                      .addReg(NewVReg1)
7435                      .addImm(NumLPads));
7436     } else {
7437       MachineConstantPool *ConstantPool = MF->getConstantPool();
7438       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7439       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7440 
7441       // MachineConstantPool wants an explicit alignment.
7442       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7443       if (Align == 0)
7444         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7445       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7446 
7447       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7448       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
7449                      .addReg(VReg1, RegState::Define)
7450                      .addConstantPoolIndex(Idx));
7451       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
7452                      .addReg(NewVReg1)
7453                      .addReg(VReg1));
7454     }
7455 
7456     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
7457       .addMBB(TrapBB)
7458       .addImm(ARMCC::HI)
7459       .addReg(ARM::CPSR);
7460 
7461     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7462     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
7463                    .addReg(ARM::CPSR, RegState::Define)
7464                    .addReg(NewVReg1)
7465                    .addImm(2));
7466 
7467     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7468     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
7469                    .addJumpTableIndex(MJTI));
7470 
7471     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7472     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
7473                    .addReg(ARM::CPSR, RegState::Define)
7474                    .addReg(NewVReg2, RegState::Kill)
7475                    .addReg(NewVReg3));
7476 
7477     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
7478         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
7479 
7480     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7481     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
7482                    .addReg(NewVReg4, RegState::Kill)
7483                    .addImm(0)
7484                    .addMemOperand(JTMMOLd));
7485 
7486     unsigned NewVReg6 = NewVReg5;
7487     if (RelocM == Reloc::PIC_) {
7488       NewVReg6 = MRI->createVirtualRegister(TRC);
7489       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
7490                      .addReg(ARM::CPSR, RegState::Define)
7491                      .addReg(NewVReg5, RegState::Kill)
7492                      .addReg(NewVReg3));
7493     }
7494 
7495     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
7496       .addReg(NewVReg6, RegState::Kill)
7497       .addJumpTableIndex(MJTI);
7498   } else {
7499     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7500     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
7501                    .addFrameIndex(FI)
7502                    .addImm(4)
7503                    .addMemOperand(FIMMOLd));
7504 
7505     if (NumLPads < 256) {
7506       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
7507                      .addReg(NewVReg1)
7508                      .addImm(NumLPads));
7509     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
7510       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7511       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
7512                      .addImm(NumLPads & 0xFFFF));
7513 
7514       unsigned VReg2 = VReg1;
7515       if ((NumLPads & 0xFFFF0000) != 0) {
7516         VReg2 = MRI->createVirtualRegister(TRC);
7517         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
7518                        .addReg(VReg1)
7519                        .addImm(NumLPads >> 16));
7520       }
7521 
7522       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7523                      .addReg(NewVReg1)
7524                      .addReg(VReg2));
7525     } else {
7526       MachineConstantPool *ConstantPool = MF->getConstantPool();
7527       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7528       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7529 
7530       // MachineConstantPool wants an explicit alignment.
7531       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7532       if (Align == 0)
7533         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7534       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7535 
7536       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7537       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
7538                      .addReg(VReg1, RegState::Define)
7539                      .addConstantPoolIndex(Idx)
7540                      .addImm(0));
7541       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7542                      .addReg(NewVReg1)
7543                      .addReg(VReg1, RegState::Kill));
7544     }
7545 
7546     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
7547       .addMBB(TrapBB)
7548       .addImm(ARMCC::HI)
7549       .addReg(ARM::CPSR);
7550 
7551     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7552     AddDefaultCC(
7553       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
7554                      .addReg(NewVReg1)
7555                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
7556     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7557     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
7558                    .addJumpTableIndex(MJTI));
7559 
7560     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
7561         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
7562     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7563     AddDefaultPred(
7564       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
7565       .addReg(NewVReg3, RegState::Kill)
7566       .addReg(NewVReg4)
7567       .addImm(0)
7568       .addMemOperand(JTMMOLd));
7569 
7570     if (RelocM == Reloc::PIC_) {
7571       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
7572         .addReg(NewVReg5, RegState::Kill)
7573         .addReg(NewVReg4)
7574         .addJumpTableIndex(MJTI);
7575     } else {
7576       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
7577         .addReg(NewVReg5, RegState::Kill)
7578         .addJumpTableIndex(MJTI);
7579     }
7580   }
7581 
7582   // Add the jump table entries as successors to the MBB.
7583   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
7584   for (std::vector<MachineBasicBlock*>::iterator
7585          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
7586     MachineBasicBlock *CurMBB = *I;
7587     if (SeenMBBs.insert(CurMBB).second)
7588       DispContBB->addSuccessor(CurMBB);
7589   }
7590 
7591   // N.B. the order the invoke BBs are processed in doesn't matter here.
7592   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
7593   SmallVector<MachineBasicBlock*, 64> MBBLPads;
7594   for (MachineBasicBlock *BB : InvokeBBs) {
7595 
7596     // Remove the landing pad successor from the invoke block and replace it
7597     // with the new dispatch block.
7598     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
7599                                                   BB->succ_end());
7600     while (!Successors.empty()) {
7601       MachineBasicBlock *SMBB = Successors.pop_back_val();
7602       if (SMBB->isEHPad()) {
7603         BB->removeSuccessor(SMBB);
7604         MBBLPads.push_back(SMBB);
7605       }
7606     }
7607 
7608     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
7609     BB->normalizeSuccProbs();
7610 
7611     // Find the invoke call and mark all of the callee-saved registers as
7612     // 'implicit defined' so that they're spilled. This prevents code from
7613     // moving instructions to before the EH block, where they will never be
7614     // executed.
7615     for (MachineBasicBlock::reverse_iterator
7616            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
7617       if (!II->isCall()) continue;
7618 
7619       DenseMap<unsigned, bool> DefRegs;
7620       for (MachineInstr::mop_iterator
7621              OI = II->operands_begin(), OE = II->operands_end();
7622            OI != OE; ++OI) {
7623         if (!OI->isReg()) continue;
7624         DefRegs[OI->getReg()] = true;
7625       }
7626 
7627       MachineInstrBuilder MIB(*MF, &*II);
7628 
7629       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
7630         unsigned Reg = SavedRegs[i];
7631         if (Subtarget->isThumb2() &&
7632             !ARM::tGPRRegClass.contains(Reg) &&
7633             !ARM::hGPRRegClass.contains(Reg))
7634           continue;
7635         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
7636           continue;
7637         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
7638           continue;
7639         if (!DefRegs[Reg])
7640           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
7641       }
7642 
7643       break;
7644     }
7645   }
7646 
7647   // Mark all former landing pads as non-landing pads. The dispatch is the only
7648   // landing pad now.
7649   for (SmallVectorImpl<MachineBasicBlock*>::iterator
7650          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
7651     (*I)->setIsEHPad(false);
7652 
7653   // The instruction is gone now.
7654   MI->eraseFromParent();
7655 }
7656 
7657 static
7658 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
7659   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
7660        E = MBB->succ_end(); I != E; ++I)
7661     if (*I != Succ)
7662       return *I;
7663   llvm_unreachable("Expecting a BB with two successors!");
7664 }
7665 
7666 /// Return the load opcode for a given load size. If load size >= 8,
7667 /// neon opcode will be returned.
7668 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
7669   if (LdSize >= 8)
7670     return LdSize == 16 ? ARM::VLD1q32wb_fixed
7671                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
7672   if (IsThumb1)
7673     return LdSize == 4 ? ARM::tLDRi
7674                        : LdSize == 2 ? ARM::tLDRHi
7675                                      : LdSize == 1 ? ARM::tLDRBi : 0;
7676   if (IsThumb2)
7677     return LdSize == 4 ? ARM::t2LDR_POST
7678                        : LdSize == 2 ? ARM::t2LDRH_POST
7679                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
7680   return LdSize == 4 ? ARM::LDR_POST_IMM
7681                      : LdSize == 2 ? ARM::LDRH_POST
7682                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
7683 }
7684 
7685 /// Return the store opcode for a given store size. If store size >= 8,
7686 /// neon opcode will be returned.
7687 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
7688   if (StSize >= 8)
7689     return StSize == 16 ? ARM::VST1q32wb_fixed
7690                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
7691   if (IsThumb1)
7692     return StSize == 4 ? ARM::tSTRi
7693                        : StSize == 2 ? ARM::tSTRHi
7694                                      : StSize == 1 ? ARM::tSTRBi : 0;
7695   if (IsThumb2)
7696     return StSize == 4 ? ARM::t2STR_POST
7697                        : StSize == 2 ? ARM::t2STRH_POST
7698                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
7699   return StSize == 4 ? ARM::STR_POST_IMM
7700                      : StSize == 2 ? ARM::STRH_POST
7701                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
7702 }
7703 
7704 /// Emit a post-increment load operation with given size. The instructions
7705 /// will be added to BB at Pos.
7706 static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
7707                        const TargetInstrInfo *TII, DebugLoc dl,
7708                        unsigned LdSize, unsigned Data, unsigned AddrIn,
7709                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7710   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
7711   assert(LdOpc != 0 && "Should have a load opcode");
7712   if (LdSize >= 8) {
7713     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7714                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7715                        .addImm(0));
7716   } else if (IsThumb1) {
7717     // load + update AddrIn
7718     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7719                        .addReg(AddrIn).addImm(0));
7720     MachineInstrBuilder MIB =
7721         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7722     MIB = AddDefaultT1CC(MIB);
7723     MIB.addReg(AddrIn).addImm(LdSize);
7724     AddDefaultPred(MIB);
7725   } else if (IsThumb2) {
7726     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7727                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7728                        .addImm(LdSize));
7729   } else { // arm
7730     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7731                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7732                        .addReg(0).addImm(LdSize));
7733   }
7734 }
7735 
7736 /// Emit a post-increment store operation with given size. The instructions
7737 /// will be added to BB at Pos.
7738 static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
7739                        const TargetInstrInfo *TII, DebugLoc dl,
7740                        unsigned StSize, unsigned Data, unsigned AddrIn,
7741                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7742   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
7743   assert(StOpc != 0 && "Should have a store opcode");
7744   if (StSize >= 8) {
7745     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7746                        .addReg(AddrIn).addImm(0).addReg(Data));
7747   } else if (IsThumb1) {
7748     // store + update AddrIn
7749     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
7750                        .addReg(AddrIn).addImm(0));
7751     MachineInstrBuilder MIB =
7752         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7753     MIB = AddDefaultT1CC(MIB);
7754     MIB.addReg(AddrIn).addImm(StSize);
7755     AddDefaultPred(MIB);
7756   } else if (IsThumb2) {
7757     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7758                        .addReg(Data).addReg(AddrIn).addImm(StSize));
7759   } else { // arm
7760     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7761                        .addReg(Data).addReg(AddrIn).addReg(0)
7762                        .addImm(StSize));
7763   }
7764 }
7765 
7766 MachineBasicBlock *
7767 ARMTargetLowering::EmitStructByval(MachineInstr *MI,
7768                                    MachineBasicBlock *BB) const {
7769   // This pseudo instruction has 3 operands: dst, src, size
7770   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
7771   // Otherwise, we will generate unrolled scalar copies.
7772   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7773   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7774   MachineFunction::iterator It = ++BB->getIterator();
7775 
7776   unsigned dest = MI->getOperand(0).getReg();
7777   unsigned src = MI->getOperand(1).getReg();
7778   unsigned SizeVal = MI->getOperand(2).getImm();
7779   unsigned Align = MI->getOperand(3).getImm();
7780   DebugLoc dl = MI->getDebugLoc();
7781 
7782   MachineFunction *MF = BB->getParent();
7783   MachineRegisterInfo &MRI = MF->getRegInfo();
7784   unsigned UnitSize = 0;
7785   const TargetRegisterClass *TRC = nullptr;
7786   const TargetRegisterClass *VecTRC = nullptr;
7787 
7788   bool IsThumb1 = Subtarget->isThumb1Only();
7789   bool IsThumb2 = Subtarget->isThumb2();
7790 
7791   if (Align & 1) {
7792     UnitSize = 1;
7793   } else if (Align & 2) {
7794     UnitSize = 2;
7795   } else {
7796     // Check whether we can use NEON instructions.
7797     if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
7798         Subtarget->hasNEON()) {
7799       if ((Align % 16 == 0) && SizeVal >= 16)
7800         UnitSize = 16;
7801       else if ((Align % 8 == 0) && SizeVal >= 8)
7802         UnitSize = 8;
7803     }
7804     // Can't use NEON instructions.
7805     if (UnitSize == 0)
7806       UnitSize = 4;
7807   }
7808 
7809   // Select the correct opcode and register class for unit size load/store
7810   bool IsNeon = UnitSize >= 8;
7811   TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
7812   if (IsNeon)
7813     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
7814                             : UnitSize == 8 ? &ARM::DPRRegClass
7815                                             : nullptr;
7816 
7817   unsigned BytesLeft = SizeVal % UnitSize;
7818   unsigned LoopSize = SizeVal - BytesLeft;
7819 
7820   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
7821     // Use LDR and STR to copy.
7822     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
7823     // [destOut] = STR_POST(scratch, destIn, UnitSize)
7824     unsigned srcIn = src;
7825     unsigned destIn = dest;
7826     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
7827       unsigned srcOut = MRI.createVirtualRegister(TRC);
7828       unsigned destOut = MRI.createVirtualRegister(TRC);
7829       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7830       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
7831                  IsThumb1, IsThumb2);
7832       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
7833                  IsThumb1, IsThumb2);
7834       srcIn = srcOut;
7835       destIn = destOut;
7836     }
7837 
7838     // Handle the leftover bytes with LDRB and STRB.
7839     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
7840     // [destOut] = STRB_POST(scratch, destIn, 1)
7841     for (unsigned i = 0; i < BytesLeft; i++) {
7842       unsigned srcOut = MRI.createVirtualRegister(TRC);
7843       unsigned destOut = MRI.createVirtualRegister(TRC);
7844       unsigned scratch = MRI.createVirtualRegister(TRC);
7845       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
7846                  IsThumb1, IsThumb2);
7847       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
7848                  IsThumb1, IsThumb2);
7849       srcIn = srcOut;
7850       destIn = destOut;
7851     }
7852     MI->eraseFromParent();   // The instruction is gone now.
7853     return BB;
7854   }
7855 
7856   // Expand the pseudo op to a loop.
7857   // thisMBB:
7858   //   ...
7859   //   movw varEnd, # --> with thumb2
7860   //   movt varEnd, #
7861   //   ldrcp varEnd, idx --> without thumb2
7862   //   fallthrough --> loopMBB
7863   // loopMBB:
7864   //   PHI varPhi, varEnd, varLoop
7865   //   PHI srcPhi, src, srcLoop
7866   //   PHI destPhi, dst, destLoop
7867   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7868   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
7869   //   subs varLoop, varPhi, #UnitSize
7870   //   bne loopMBB
7871   //   fallthrough --> exitMBB
7872   // exitMBB:
7873   //   epilogue to handle left-over bytes
7874   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7875   //   [destOut] = STRB_POST(scratch, destLoop, 1)
7876   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7877   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7878   MF->insert(It, loopMBB);
7879   MF->insert(It, exitMBB);
7880 
7881   // Transfer the remainder of BB and its successor edges to exitMBB.
7882   exitMBB->splice(exitMBB->begin(), BB,
7883                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7884   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7885 
7886   // Load an immediate to varEnd.
7887   unsigned varEnd = MRI.createVirtualRegister(TRC);
7888   if (Subtarget->useMovt(*MF)) {
7889     unsigned Vtmp = varEnd;
7890     if ((LoopSize & 0xFFFF0000) != 0)
7891       Vtmp = MRI.createVirtualRegister(TRC);
7892     AddDefaultPred(BuildMI(BB, dl,
7893                            TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16),
7894                            Vtmp).addImm(LoopSize & 0xFFFF));
7895 
7896     if ((LoopSize & 0xFFFF0000) != 0)
7897       AddDefaultPred(BuildMI(BB, dl,
7898                              TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16),
7899                              varEnd)
7900                          .addReg(Vtmp)
7901                          .addImm(LoopSize >> 16));
7902   } else {
7903     MachineConstantPool *ConstantPool = MF->getConstantPool();
7904     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7905     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
7906 
7907     // MachineConstantPool wants an explicit alignment.
7908     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7909     if (Align == 0)
7910       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7911     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7912 
7913     if (IsThumb1)
7914       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
7915           varEnd, RegState::Define).addConstantPoolIndex(Idx));
7916     else
7917       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
7918           varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
7919   }
7920   BB->addSuccessor(loopMBB);
7921 
7922   // Generate the loop body:
7923   //   varPhi = PHI(varLoop, varEnd)
7924   //   srcPhi = PHI(srcLoop, src)
7925   //   destPhi = PHI(destLoop, dst)
7926   MachineBasicBlock *entryBB = BB;
7927   BB = loopMBB;
7928   unsigned varLoop = MRI.createVirtualRegister(TRC);
7929   unsigned varPhi = MRI.createVirtualRegister(TRC);
7930   unsigned srcLoop = MRI.createVirtualRegister(TRC);
7931   unsigned srcPhi = MRI.createVirtualRegister(TRC);
7932   unsigned destLoop = MRI.createVirtualRegister(TRC);
7933   unsigned destPhi = MRI.createVirtualRegister(TRC);
7934 
7935   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
7936     .addReg(varLoop).addMBB(loopMBB)
7937     .addReg(varEnd).addMBB(entryBB);
7938   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
7939     .addReg(srcLoop).addMBB(loopMBB)
7940     .addReg(src).addMBB(entryBB);
7941   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
7942     .addReg(destLoop).addMBB(loopMBB)
7943     .addReg(dest).addMBB(entryBB);
7944 
7945   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7946   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
7947   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7948   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
7949              IsThumb1, IsThumb2);
7950   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
7951              IsThumb1, IsThumb2);
7952 
7953   // Decrement loop variable by UnitSize.
7954   if (IsThumb1) {
7955     MachineInstrBuilder MIB =
7956         BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
7957     MIB = AddDefaultT1CC(MIB);
7958     MIB.addReg(varPhi).addImm(UnitSize);
7959     AddDefaultPred(MIB);
7960   } else {
7961     MachineInstrBuilder MIB =
7962         BuildMI(*BB, BB->end(), dl,
7963                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
7964     AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
7965     MIB->getOperand(5).setReg(ARM::CPSR);
7966     MIB->getOperand(5).setIsDef(true);
7967   }
7968   BuildMI(*BB, BB->end(), dl,
7969           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
7970       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
7971 
7972   // loopMBB can loop back to loopMBB or fall through to exitMBB.
7973   BB->addSuccessor(loopMBB);
7974   BB->addSuccessor(exitMBB);
7975 
7976   // Add epilogue to handle BytesLeft.
7977   BB = exitMBB;
7978   MachineInstr *StartOfExit = exitMBB->begin();
7979 
7980   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7981   //   [destOut] = STRB_POST(scratch, destLoop, 1)
7982   unsigned srcIn = srcLoop;
7983   unsigned destIn = destLoop;
7984   for (unsigned i = 0; i < BytesLeft; i++) {
7985     unsigned srcOut = MRI.createVirtualRegister(TRC);
7986     unsigned destOut = MRI.createVirtualRegister(TRC);
7987     unsigned scratch = MRI.createVirtualRegister(TRC);
7988     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
7989                IsThumb1, IsThumb2);
7990     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
7991                IsThumb1, IsThumb2);
7992     srcIn = srcOut;
7993     destIn = destOut;
7994   }
7995 
7996   MI->eraseFromParent();   // The instruction is gone now.
7997   return BB;
7998 }
7999 
8000 MachineBasicBlock *
8001 ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
8002                                        MachineBasicBlock *MBB) const {
8003   const TargetMachine &TM = getTargetMachine();
8004   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
8005   DebugLoc DL = MI->getDebugLoc();
8006 
8007   assert(Subtarget->isTargetWindows() &&
8008          "__chkstk is only supported on Windows");
8009   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
8010 
8011   // __chkstk takes the number of words to allocate on the stack in R4, and
8012   // returns the stack adjustment in number of bytes in R4.  This will not
8013   // clober any other registers (other than the obvious lr).
8014   //
8015   // Although, technically, IP should be considered a register which may be
8016   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
8017   // thumb-2 environment, so there is no interworking required.  As a result, we
8018   // do not expect a veneer to be emitted by the linker, clobbering IP.
8019   //
8020   // Each module receives its own copy of __chkstk, so no import thunk is
8021   // required, again, ensuring that IP is not clobbered.
8022   //
8023   // Finally, although some linkers may theoretically provide a trampoline for
8024   // out of range calls (which is quite common due to a 32M range limitation of
8025   // branches for Thumb), we can generate the long-call version via
8026   // -mcmodel=large, alleviating the need for the trampoline which may clobber
8027   // IP.
8028 
8029   switch (TM.getCodeModel()) {
8030   case CodeModel::Small:
8031   case CodeModel::Medium:
8032   case CodeModel::Default:
8033   case CodeModel::Kernel:
8034     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
8035       .addImm((unsigned)ARMCC::AL).addReg(0)
8036       .addExternalSymbol("__chkstk")
8037       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8038       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8039       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
8040     break;
8041   case CodeModel::Large:
8042   case CodeModel::JITDefault: {
8043     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
8044     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
8045 
8046     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
8047       .addExternalSymbol("__chkstk");
8048     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
8049       .addImm((unsigned)ARMCC::AL).addReg(0)
8050       .addReg(Reg, RegState::Kill)
8051       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8052       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8053       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
8054     break;
8055   }
8056   }
8057 
8058   AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
8059                                       ARM::SP)
8060                               .addReg(ARM::SP).addReg(ARM::R4)));
8061 
8062   MI->eraseFromParent();
8063   return MBB;
8064 }
8065 
8066 MachineBasicBlock *
8067 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr *MI,
8068                                        MachineBasicBlock *MBB) const {
8069   DebugLoc DL = MI->getDebugLoc();
8070   MachineFunction *MF = MBB->getParent();
8071   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8072 
8073   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
8074   MF->insert(++MBB->getIterator(), ContBB);
8075   ContBB->splice(ContBB->begin(), MBB,
8076                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8077   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
8078 
8079   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8080   MF->push_back(TrapBB);
8081   BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249);
8082   MBB->addSuccessor(TrapBB);
8083 
8084   BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ))
8085       .addReg(MI->getOperand(0).getReg())
8086       .addMBB(TrapBB);
8087   AddDefaultPred(BuildMI(*MBB, MI, DL, TII->get(ARM::t2B)).addMBB(ContBB));
8088   MBB->addSuccessor(ContBB);
8089 
8090   MI->eraseFromParent();
8091   return ContBB;
8092 }
8093 
8094 MachineBasicBlock *
8095 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8096                                                MachineBasicBlock *BB) const {
8097   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8098   DebugLoc dl = MI->getDebugLoc();
8099   bool isThumb2 = Subtarget->isThumb2();
8100   switch (MI->getOpcode()) {
8101   default: {
8102     MI->dump();
8103     llvm_unreachable("Unexpected instr type to insert");
8104   }
8105   // The Thumb2 pre-indexed stores have the same MI operands, they just
8106   // define them differently in the .td files from the isel patterns, so
8107   // they need pseudos.
8108   case ARM::t2STR_preidx:
8109     MI->setDesc(TII->get(ARM::t2STR_PRE));
8110     return BB;
8111   case ARM::t2STRB_preidx:
8112     MI->setDesc(TII->get(ARM::t2STRB_PRE));
8113     return BB;
8114   case ARM::t2STRH_preidx:
8115     MI->setDesc(TII->get(ARM::t2STRH_PRE));
8116     return BB;
8117 
8118   case ARM::STRi_preidx:
8119   case ARM::STRBi_preidx: {
8120     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
8121       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
8122     // Decode the offset.
8123     unsigned Offset = MI->getOperand(4).getImm();
8124     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
8125     Offset = ARM_AM::getAM2Offset(Offset);
8126     if (isSub)
8127       Offset = -Offset;
8128 
8129     MachineMemOperand *MMO = *MI->memoperands_begin();
8130     BuildMI(*BB, MI, dl, TII->get(NewOpc))
8131       .addOperand(MI->getOperand(0))  // Rn_wb
8132       .addOperand(MI->getOperand(1))  // Rt
8133       .addOperand(MI->getOperand(2))  // Rn
8134       .addImm(Offset)                 // offset (skip GPR==zero_reg)
8135       .addOperand(MI->getOperand(5))  // pred
8136       .addOperand(MI->getOperand(6))
8137       .addMemOperand(MMO);
8138     MI->eraseFromParent();
8139     return BB;
8140   }
8141   case ARM::STRr_preidx:
8142   case ARM::STRBr_preidx:
8143   case ARM::STRH_preidx: {
8144     unsigned NewOpc;
8145     switch (MI->getOpcode()) {
8146     default: llvm_unreachable("unexpected opcode!");
8147     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
8148     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
8149     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
8150     }
8151     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
8152     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
8153       MIB.addOperand(MI->getOperand(i));
8154     MI->eraseFromParent();
8155     return BB;
8156   }
8157 
8158   case ARM::tMOVCCr_pseudo: {
8159     // To "insert" a SELECT_CC instruction, we actually have to insert the
8160     // diamond control-flow pattern.  The incoming instruction knows the
8161     // destination vreg to set, the condition code register to branch on, the
8162     // true/false values to select between, and a branch opcode to use.
8163     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8164     MachineFunction::iterator It = ++BB->getIterator();
8165 
8166     //  thisMBB:
8167     //  ...
8168     //   TrueVal = ...
8169     //   cmpTY ccX, r1, r2
8170     //   bCC copy1MBB
8171     //   fallthrough --> copy0MBB
8172     MachineBasicBlock *thisMBB  = BB;
8173     MachineFunction *F = BB->getParent();
8174     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8175     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
8176     F->insert(It, copy0MBB);
8177     F->insert(It, sinkMBB);
8178 
8179     // Transfer the remainder of BB and its successor edges to sinkMBB.
8180     sinkMBB->splice(sinkMBB->begin(), BB,
8181                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8182     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8183 
8184     BB->addSuccessor(copy0MBB);
8185     BB->addSuccessor(sinkMBB);
8186 
8187     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
8188       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
8189 
8190     //  copy0MBB:
8191     //   %FalseValue = ...
8192     //   # fallthrough to sinkMBB
8193     BB = copy0MBB;
8194 
8195     // Update machine-CFG edges
8196     BB->addSuccessor(sinkMBB);
8197 
8198     //  sinkMBB:
8199     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8200     //  ...
8201     BB = sinkMBB;
8202     BuildMI(*BB, BB->begin(), dl,
8203             TII->get(ARM::PHI), MI->getOperand(0).getReg())
8204       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8205       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8206 
8207     MI->eraseFromParent();   // The pseudo instruction is gone now.
8208     return BB;
8209   }
8210 
8211   case ARM::BCCi64:
8212   case ARM::BCCZi64: {
8213     // If there is an unconditional branch to the other successor, remove it.
8214     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
8215 
8216     // Compare both parts that make up the double comparison separately for
8217     // equality.
8218     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
8219 
8220     unsigned LHS1 = MI->getOperand(1).getReg();
8221     unsigned LHS2 = MI->getOperand(2).getReg();
8222     if (RHSisZero) {
8223       AddDefaultPred(BuildMI(BB, dl,
8224                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8225                      .addReg(LHS1).addImm(0));
8226       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8227         .addReg(LHS2).addImm(0)
8228         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8229     } else {
8230       unsigned RHS1 = MI->getOperand(3).getReg();
8231       unsigned RHS2 = MI->getOperand(4).getReg();
8232       AddDefaultPred(BuildMI(BB, dl,
8233                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8234                      .addReg(LHS1).addReg(RHS1));
8235       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8236         .addReg(LHS2).addReg(RHS2)
8237         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8238     }
8239 
8240     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
8241     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
8242     if (MI->getOperand(0).getImm() == ARMCC::NE)
8243       std::swap(destMBB, exitMBB);
8244 
8245     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
8246       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
8247     if (isThumb2)
8248       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
8249     else
8250       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
8251 
8252     MI->eraseFromParent();   // The pseudo instruction is gone now.
8253     return BB;
8254   }
8255 
8256   case ARM::Int_eh_sjlj_setjmp:
8257   case ARM::Int_eh_sjlj_setjmp_nofp:
8258   case ARM::tInt_eh_sjlj_setjmp:
8259   case ARM::t2Int_eh_sjlj_setjmp:
8260   case ARM::t2Int_eh_sjlj_setjmp_nofp:
8261     return BB;
8262 
8263   case ARM::Int_eh_sjlj_setup_dispatch:
8264     EmitSjLjDispatchBlock(MI, BB);
8265     return BB;
8266 
8267   case ARM::ABS:
8268   case ARM::t2ABS: {
8269     // To insert an ABS instruction, we have to insert the
8270     // diamond control-flow pattern.  The incoming instruction knows the
8271     // source vreg to test against 0, the destination vreg to set,
8272     // the condition code register to branch on, the
8273     // true/false values to select between, and a branch opcode to use.
8274     // It transforms
8275     //     V1 = ABS V0
8276     // into
8277     //     V2 = MOVS V0
8278     //     BCC                      (branch to SinkBB if V0 >= 0)
8279     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
8280     //     SinkBB: V1 = PHI(V2, V3)
8281     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8282     MachineFunction::iterator BBI = ++BB->getIterator();
8283     MachineFunction *Fn = BB->getParent();
8284     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
8285     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
8286     Fn->insert(BBI, RSBBB);
8287     Fn->insert(BBI, SinkBB);
8288 
8289     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
8290     unsigned int ABSDstReg = MI->getOperand(0).getReg();
8291     bool ABSSrcKIll = MI->getOperand(1).isKill();
8292     bool isThumb2 = Subtarget->isThumb2();
8293     MachineRegisterInfo &MRI = Fn->getRegInfo();
8294     // In Thumb mode S must not be specified if source register is the SP or
8295     // PC and if destination register is the SP, so restrict register class
8296     unsigned NewRsbDstReg =
8297       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
8298 
8299     // Transfer the remainder of BB and its successor edges to sinkMBB.
8300     SinkBB->splice(SinkBB->begin(), BB,
8301                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8302     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
8303 
8304     BB->addSuccessor(RSBBB);
8305     BB->addSuccessor(SinkBB);
8306 
8307     // fall through to SinkMBB
8308     RSBBB->addSuccessor(SinkBB);
8309 
8310     // insert a cmp at the end of BB
8311     AddDefaultPred(BuildMI(BB, dl,
8312                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8313                    .addReg(ABSSrcReg).addImm(0));
8314 
8315     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
8316     BuildMI(BB, dl,
8317       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
8318       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
8319 
8320     // insert rsbri in RSBBB
8321     // Note: BCC and rsbri will be converted into predicated rsbmi
8322     // by if-conversion pass
8323     BuildMI(*RSBBB, RSBBB->begin(), dl,
8324       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
8325       .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
8326       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
8327 
8328     // insert PHI in SinkBB,
8329     // reuse ABSDstReg to not change uses of ABS instruction
8330     BuildMI(*SinkBB, SinkBB->begin(), dl,
8331       TII->get(ARM::PHI), ABSDstReg)
8332       .addReg(NewRsbDstReg).addMBB(RSBBB)
8333       .addReg(ABSSrcReg).addMBB(BB);
8334 
8335     // remove ABS instruction
8336     MI->eraseFromParent();
8337 
8338     // return last added BB
8339     return SinkBB;
8340   }
8341   case ARM::COPY_STRUCT_BYVAL_I32:
8342     ++NumLoopByVals;
8343     return EmitStructByval(MI, BB);
8344   case ARM::WIN__CHKSTK:
8345     return EmitLowered__chkstk(MI, BB);
8346   case ARM::WIN__DBZCHK:
8347     return EmitLowered__dbzchk(MI, BB);
8348   }
8349 }
8350 
8351 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers
8352 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
8353 /// instead of as a custom inserter because we need the use list from the SDNode.
8354 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
8355                                    MachineInstr *MI, const SDNode *Node) {
8356   bool isThumb1 = Subtarget->isThumb1Only();
8357 
8358   DebugLoc DL = MI->getDebugLoc();
8359   MachineFunction *MF = MI->getParent()->getParent();
8360   MachineRegisterInfo &MRI = MF->getRegInfo();
8361   MachineInstrBuilder MIB(*MF, MI);
8362 
8363   // If the new dst/src is unused mark it as dead.
8364   if (!Node->hasAnyUseOfValue(0)) {
8365     MI->getOperand(0).setIsDead(true);
8366   }
8367   if (!Node->hasAnyUseOfValue(1)) {
8368     MI->getOperand(1).setIsDead(true);
8369   }
8370 
8371   // The MEMCPY both defines and kills the scratch registers.
8372   for (unsigned I = 0; I != MI->getOperand(4).getImm(); ++I) {
8373     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
8374                                                          : &ARM::GPRRegClass);
8375     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
8376   }
8377 }
8378 
8379 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
8380                                                       SDNode *Node) const {
8381   if (MI->getOpcode() == ARM::MEMCPY) {
8382     attachMEMCPYScratchRegs(Subtarget, MI, Node);
8383     return;
8384   }
8385 
8386   const MCInstrDesc *MCID = &MI->getDesc();
8387   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
8388   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
8389   // operand is still set to noreg. If needed, set the optional operand's
8390   // register to CPSR, and remove the redundant implicit def.
8391   //
8392   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
8393 
8394   // Rename pseudo opcodes.
8395   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
8396   if (NewOpc) {
8397     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
8398     MCID = &TII->get(NewOpc);
8399 
8400     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
8401            "converted opcode should be the same except for cc_out");
8402 
8403     MI->setDesc(*MCID);
8404 
8405     // Add the optional cc_out operand
8406     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
8407   }
8408   unsigned ccOutIdx = MCID->getNumOperands() - 1;
8409 
8410   // Any ARM instruction that sets the 's' bit should specify an optional
8411   // "cc_out" operand in the last operand position.
8412   if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
8413     assert(!NewOpc && "Optional cc_out operand required");
8414     return;
8415   }
8416   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
8417   // since we already have an optional CPSR def.
8418   bool definesCPSR = false;
8419   bool deadCPSR = false;
8420   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
8421        i != e; ++i) {
8422     const MachineOperand &MO = MI->getOperand(i);
8423     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
8424       definesCPSR = true;
8425       if (MO.isDead())
8426         deadCPSR = true;
8427       MI->RemoveOperand(i);
8428       break;
8429     }
8430   }
8431   if (!definesCPSR) {
8432     assert(!NewOpc && "Optional cc_out operand required");
8433     return;
8434   }
8435   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
8436   if (deadCPSR) {
8437     assert(!MI->getOperand(ccOutIdx).getReg() &&
8438            "expect uninitialized optional cc_out operand");
8439     return;
8440   }
8441 
8442   // If this instruction was defined with an optional CPSR def and its dag node
8443   // had a live implicit CPSR def, then activate the optional CPSR def.
8444   MachineOperand &MO = MI->getOperand(ccOutIdx);
8445   MO.setReg(ARM::CPSR);
8446   MO.setIsDef(true);
8447 }
8448 
8449 //===----------------------------------------------------------------------===//
8450 //                           ARM Optimization Hooks
8451 //===----------------------------------------------------------------------===//
8452 
8453 // Helper function that checks if N is a null or all ones constant.
8454 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
8455   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
8456 }
8457 
8458 // Return true if N is conditionally 0 or all ones.
8459 // Detects these expressions where cc is an i1 value:
8460 //
8461 //   (select cc 0, y)   [AllOnes=0]
8462 //   (select cc y, 0)   [AllOnes=0]
8463 //   (zext cc)          [AllOnes=0]
8464 //   (sext cc)          [AllOnes=0/1]
8465 //   (select cc -1, y)  [AllOnes=1]
8466 //   (select cc y, -1)  [AllOnes=1]
8467 //
8468 // Invert is set when N is the null/all ones constant when CC is false.
8469 // OtherOp is set to the alternative value of N.
8470 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
8471                                        SDValue &CC, bool &Invert,
8472                                        SDValue &OtherOp,
8473                                        SelectionDAG &DAG) {
8474   switch (N->getOpcode()) {
8475   default: return false;
8476   case ISD::SELECT: {
8477     CC = N->getOperand(0);
8478     SDValue N1 = N->getOperand(1);
8479     SDValue N2 = N->getOperand(2);
8480     if (isZeroOrAllOnes(N1, AllOnes)) {
8481       Invert = false;
8482       OtherOp = N2;
8483       return true;
8484     }
8485     if (isZeroOrAllOnes(N2, AllOnes)) {
8486       Invert = true;
8487       OtherOp = N1;
8488       return true;
8489     }
8490     return false;
8491   }
8492   case ISD::ZERO_EXTEND:
8493     // (zext cc) can never be the all ones value.
8494     if (AllOnes)
8495       return false;
8496     // Fall through.
8497   case ISD::SIGN_EXTEND: {
8498     SDLoc dl(N);
8499     EVT VT = N->getValueType(0);
8500     CC = N->getOperand(0);
8501     if (CC.getValueType() != MVT::i1)
8502       return false;
8503     Invert = !AllOnes;
8504     if (AllOnes)
8505       // When looking for an AllOnes constant, N is an sext, and the 'other'
8506       // value is 0.
8507       OtherOp = DAG.getConstant(0, dl, VT);
8508     else if (N->getOpcode() == ISD::ZERO_EXTEND)
8509       // When looking for a 0 constant, N can be zext or sext.
8510       OtherOp = DAG.getConstant(1, dl, VT);
8511     else
8512       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
8513                                 VT);
8514     return true;
8515   }
8516   }
8517 }
8518 
8519 // Combine a constant select operand into its use:
8520 //
8521 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
8522 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
8523 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
8524 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
8525 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
8526 //
8527 // The transform is rejected if the select doesn't have a constant operand that
8528 // is null, or all ones when AllOnes is set.
8529 //
8530 // Also recognize sext/zext from i1:
8531 //
8532 //   (add (zext cc), x) -> (select cc (add x, 1), x)
8533 //   (add (sext cc), x) -> (select cc (add x, -1), x)
8534 //
8535 // These transformations eventually create predicated instructions.
8536 //
8537 // @param N       The node to transform.
8538 // @param Slct    The N operand that is a select.
8539 // @param OtherOp The other N operand (x above).
8540 // @param DCI     Context.
8541 // @param AllOnes Require the select constant to be all ones instead of null.
8542 // @returns The new node, or SDValue() on failure.
8543 static
8544 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
8545                             TargetLowering::DAGCombinerInfo &DCI,
8546                             bool AllOnes = false) {
8547   SelectionDAG &DAG = DCI.DAG;
8548   EVT VT = N->getValueType(0);
8549   SDValue NonConstantVal;
8550   SDValue CCOp;
8551   bool SwapSelectOps;
8552   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
8553                                   NonConstantVal, DAG))
8554     return SDValue();
8555 
8556   // Slct is now know to be the desired identity constant when CC is true.
8557   SDValue TrueVal = OtherOp;
8558   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
8559                                  OtherOp, NonConstantVal);
8560   // Unless SwapSelectOps says CC should be false.
8561   if (SwapSelectOps)
8562     std::swap(TrueVal, FalseVal);
8563 
8564   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
8565                      CCOp, TrueVal, FalseVal);
8566 }
8567 
8568 // Attempt combineSelectAndUse on each operand of a commutative operator N.
8569 static
8570 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
8571                                        TargetLowering::DAGCombinerInfo &DCI) {
8572   SDValue N0 = N->getOperand(0);
8573   SDValue N1 = N->getOperand(1);
8574   if (N0.getNode()->hasOneUse())
8575     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
8576       return Result;
8577   if (N1.getNode()->hasOneUse())
8578     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
8579       return Result;
8580   return SDValue();
8581 }
8582 
8583 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
8584 // (only after legalization).
8585 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
8586                                  TargetLowering::DAGCombinerInfo &DCI,
8587                                  const ARMSubtarget *Subtarget) {
8588 
8589   // Only perform optimization if after legalize, and if NEON is available. We
8590   // also expected both operands to be BUILD_VECTORs.
8591   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
8592       || N0.getOpcode() != ISD::BUILD_VECTOR
8593       || N1.getOpcode() != ISD::BUILD_VECTOR)
8594     return SDValue();
8595 
8596   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
8597   EVT VT = N->getValueType(0);
8598   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
8599     return SDValue();
8600 
8601   // Check that the vector operands are of the right form.
8602   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
8603   // operands, where N is the size of the formed vector.
8604   // Each EXTRACT_VECTOR should have the same input vector and odd or even
8605   // index such that we have a pair wise add pattern.
8606 
8607   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
8608   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8609     return SDValue();
8610   SDValue Vec = N0->getOperand(0)->getOperand(0);
8611   SDNode *V = Vec.getNode();
8612   unsigned nextIndex = 0;
8613 
8614   // For each operands to the ADD which are BUILD_VECTORs,
8615   // check to see if each of their operands are an EXTRACT_VECTOR with
8616   // the same vector and appropriate index.
8617   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
8618     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
8619         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8620 
8621       SDValue ExtVec0 = N0->getOperand(i);
8622       SDValue ExtVec1 = N1->getOperand(i);
8623 
8624       // First operand is the vector, verify its the same.
8625       if (V != ExtVec0->getOperand(0).getNode() ||
8626           V != ExtVec1->getOperand(0).getNode())
8627         return SDValue();
8628 
8629       // Second is the constant, verify its correct.
8630       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
8631       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
8632 
8633       // For the constant, we want to see all the even or all the odd.
8634       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
8635           || C1->getZExtValue() != nextIndex+1)
8636         return SDValue();
8637 
8638       // Increment index.
8639       nextIndex+=2;
8640     } else
8641       return SDValue();
8642   }
8643 
8644   // Create VPADDL node.
8645   SelectionDAG &DAG = DCI.DAG;
8646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8647 
8648   SDLoc dl(N);
8649 
8650   // Build operand list.
8651   SmallVector<SDValue, 8> Ops;
8652   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
8653                                 TLI.getPointerTy(DAG.getDataLayout())));
8654 
8655   // Input is the vector.
8656   Ops.push_back(Vec);
8657 
8658   // Get widened type and narrowed type.
8659   MVT widenType;
8660   unsigned numElem = VT.getVectorNumElements();
8661 
8662   EVT inputLaneType = Vec.getValueType().getVectorElementType();
8663   switch (inputLaneType.getSimpleVT().SimpleTy) {
8664     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
8665     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
8666     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
8667     default:
8668       llvm_unreachable("Invalid vector element type for padd optimization.");
8669   }
8670 
8671   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
8672   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
8673   return DAG.getNode(ExtOp, dl, VT, tmp);
8674 }
8675 
8676 static SDValue findMUL_LOHI(SDValue V) {
8677   if (V->getOpcode() == ISD::UMUL_LOHI ||
8678       V->getOpcode() == ISD::SMUL_LOHI)
8679     return V;
8680   return SDValue();
8681 }
8682 
8683 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
8684                                      TargetLowering::DAGCombinerInfo &DCI,
8685                                      const ARMSubtarget *Subtarget) {
8686 
8687   if (Subtarget->isThumb1Only()) return SDValue();
8688 
8689   // Only perform the checks after legalize when the pattern is available.
8690   if (DCI.isBeforeLegalize()) return SDValue();
8691 
8692   // Look for multiply add opportunities.
8693   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
8694   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
8695   // a glue link from the first add to the second add.
8696   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
8697   // a S/UMLAL instruction.
8698   //                  UMUL_LOHI
8699   //                 / :lo    \ :hi
8700   //                /          \          [no multiline comment]
8701   //    loAdd ->  ADDE         |
8702   //                 \ :glue  /
8703   //                  \      /
8704   //                    ADDC   <- hiAdd
8705   //
8706   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
8707   SDValue AddcOp0 = AddcNode->getOperand(0);
8708   SDValue AddcOp1 = AddcNode->getOperand(1);
8709 
8710   // Check if the two operands are from the same mul_lohi node.
8711   if (AddcOp0.getNode() == AddcOp1.getNode())
8712     return SDValue();
8713 
8714   assert(AddcNode->getNumValues() == 2 &&
8715          AddcNode->getValueType(0) == MVT::i32 &&
8716          "Expect ADDC with two result values. First: i32");
8717 
8718   // Check that we have a glued ADDC node.
8719   if (AddcNode->getValueType(1) != MVT::Glue)
8720     return SDValue();
8721 
8722   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
8723   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
8724       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
8725       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
8726       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
8727     return SDValue();
8728 
8729   // Look for the glued ADDE.
8730   SDNode* AddeNode = AddcNode->getGluedUser();
8731   if (!AddeNode)
8732     return SDValue();
8733 
8734   // Make sure it is really an ADDE.
8735   if (AddeNode->getOpcode() != ISD::ADDE)
8736     return SDValue();
8737 
8738   assert(AddeNode->getNumOperands() == 3 &&
8739          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
8740          "ADDE node has the wrong inputs");
8741 
8742   // Check for the triangle shape.
8743   SDValue AddeOp0 = AddeNode->getOperand(0);
8744   SDValue AddeOp1 = AddeNode->getOperand(1);
8745 
8746   // Make sure that the ADDE operands are not coming from the same node.
8747   if (AddeOp0.getNode() == AddeOp1.getNode())
8748     return SDValue();
8749 
8750   // Find the MUL_LOHI node walking up ADDE's operands.
8751   bool IsLeftOperandMUL = false;
8752   SDValue MULOp = findMUL_LOHI(AddeOp0);
8753   if (MULOp == SDValue())
8754    MULOp = findMUL_LOHI(AddeOp1);
8755   else
8756     IsLeftOperandMUL = true;
8757   if (MULOp == SDValue())
8758     return SDValue();
8759 
8760   // Figure out the right opcode.
8761   unsigned Opc = MULOp->getOpcode();
8762   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
8763 
8764   // Figure out the high and low input values to the MLAL node.
8765   SDValue* HiAdd = nullptr;
8766   SDValue* LoMul = nullptr;
8767   SDValue* LowAdd = nullptr;
8768 
8769   // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
8770   if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
8771     return SDValue();
8772 
8773   if (IsLeftOperandMUL)
8774     HiAdd = &AddeOp1;
8775   else
8776     HiAdd = &AddeOp0;
8777 
8778 
8779   // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
8780   // whose low result is fed to the ADDC we are checking.
8781 
8782   if (AddcOp0 == MULOp.getValue(0)) {
8783     LoMul = &AddcOp0;
8784     LowAdd = &AddcOp1;
8785   }
8786   if (AddcOp1 == MULOp.getValue(0)) {
8787     LoMul = &AddcOp1;
8788     LowAdd = &AddcOp0;
8789   }
8790 
8791   if (!LoMul)
8792     return SDValue();
8793 
8794   // Create the merged node.
8795   SelectionDAG &DAG = DCI.DAG;
8796 
8797   // Build operand list.
8798   SmallVector<SDValue, 8> Ops;
8799   Ops.push_back(LoMul->getOperand(0));
8800   Ops.push_back(LoMul->getOperand(1));
8801   Ops.push_back(*LowAdd);
8802   Ops.push_back(*HiAdd);
8803 
8804   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
8805                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
8806 
8807   // Replace the ADDs' nodes uses by the MLA node's values.
8808   SDValue HiMLALResult(MLALNode.getNode(), 1);
8809   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
8810 
8811   SDValue LoMLALResult(MLALNode.getNode(), 0);
8812   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
8813 
8814   // Return original node to notify the driver to stop replacing.
8815   SDValue resNode(AddcNode, 0);
8816   return resNode;
8817 }
8818 
8819 /// PerformADDCCombine - Target-specific dag combine transform from
8820 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
8821 static SDValue PerformADDCCombine(SDNode *N,
8822                                  TargetLowering::DAGCombinerInfo &DCI,
8823                                  const ARMSubtarget *Subtarget) {
8824 
8825   return AddCombineTo64bitMLAL(N, DCI, Subtarget);
8826 
8827 }
8828 
8829 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
8830 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
8831 /// called with the default operands, and if that fails, with commuted
8832 /// operands.
8833 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
8834                                           TargetLowering::DAGCombinerInfo &DCI,
8835                                           const ARMSubtarget *Subtarget){
8836 
8837   // Attempt to create vpaddl for this add.
8838   if (SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget))
8839     return Result;
8840 
8841   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
8842   if (N0.getNode()->hasOneUse())
8843     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
8844       return Result;
8845   return SDValue();
8846 }
8847 
8848 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
8849 ///
8850 static SDValue PerformADDCombine(SDNode *N,
8851                                  TargetLowering::DAGCombinerInfo &DCI,
8852                                  const ARMSubtarget *Subtarget) {
8853   SDValue N0 = N->getOperand(0);
8854   SDValue N1 = N->getOperand(1);
8855 
8856   // First try with the default operand order.
8857   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
8858     return Result;
8859 
8860   // If that didn't work, try again with the operands commuted.
8861   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
8862 }
8863 
8864 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
8865 ///
8866 static SDValue PerformSUBCombine(SDNode *N,
8867                                  TargetLowering::DAGCombinerInfo &DCI) {
8868   SDValue N0 = N->getOperand(0);
8869   SDValue N1 = N->getOperand(1);
8870 
8871   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
8872   if (N1.getNode()->hasOneUse())
8873     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
8874       return Result;
8875 
8876   return SDValue();
8877 }
8878 
8879 /// PerformVMULCombine
8880 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
8881 /// special multiplier accumulator forwarding.
8882 ///   vmul d3, d0, d2
8883 ///   vmla d3, d1, d2
8884 /// is faster than
8885 ///   vadd d3, d0, d1
8886 ///   vmul d3, d3, d2
8887 //  However, for (A + B) * (A + B),
8888 //    vadd d2, d0, d1
8889 //    vmul d3, d0, d2
8890 //    vmla d3, d1, d2
8891 //  is slower than
8892 //    vadd d2, d0, d1
8893 //    vmul d3, d2, d2
8894 static SDValue PerformVMULCombine(SDNode *N,
8895                                   TargetLowering::DAGCombinerInfo &DCI,
8896                                   const ARMSubtarget *Subtarget) {
8897   if (!Subtarget->hasVMLxForwarding())
8898     return SDValue();
8899 
8900   SelectionDAG &DAG = DCI.DAG;
8901   SDValue N0 = N->getOperand(0);
8902   SDValue N1 = N->getOperand(1);
8903   unsigned Opcode = N0.getOpcode();
8904   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8905       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
8906     Opcode = N1.getOpcode();
8907     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8908         Opcode != ISD::FADD && Opcode != ISD::FSUB)
8909       return SDValue();
8910     std::swap(N0, N1);
8911   }
8912 
8913   if (N0 == N1)
8914     return SDValue();
8915 
8916   EVT VT = N->getValueType(0);
8917   SDLoc DL(N);
8918   SDValue N00 = N0->getOperand(0);
8919   SDValue N01 = N0->getOperand(1);
8920   return DAG.getNode(Opcode, DL, VT,
8921                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
8922                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
8923 }
8924 
8925 static SDValue PerformMULCombine(SDNode *N,
8926                                  TargetLowering::DAGCombinerInfo &DCI,
8927                                  const ARMSubtarget *Subtarget) {
8928   SelectionDAG &DAG = DCI.DAG;
8929 
8930   if (Subtarget->isThumb1Only())
8931     return SDValue();
8932 
8933   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8934     return SDValue();
8935 
8936   EVT VT = N->getValueType(0);
8937   if (VT.is64BitVector() || VT.is128BitVector())
8938     return PerformVMULCombine(N, DCI, Subtarget);
8939   if (VT != MVT::i32)
8940     return SDValue();
8941 
8942   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8943   if (!C)
8944     return SDValue();
8945 
8946   int64_t MulAmt = C->getSExtValue();
8947   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
8948 
8949   ShiftAmt = ShiftAmt & (32 - 1);
8950   SDValue V = N->getOperand(0);
8951   SDLoc DL(N);
8952 
8953   SDValue Res;
8954   MulAmt >>= ShiftAmt;
8955 
8956   if (MulAmt >= 0) {
8957     if (isPowerOf2_32(MulAmt - 1)) {
8958       // (mul x, 2^N + 1) => (add (shl x, N), x)
8959       Res = DAG.getNode(ISD::ADD, DL, VT,
8960                         V,
8961                         DAG.getNode(ISD::SHL, DL, VT,
8962                                     V,
8963                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
8964                                                     MVT::i32)));
8965     } else if (isPowerOf2_32(MulAmt + 1)) {
8966       // (mul x, 2^N - 1) => (sub (shl x, N), x)
8967       Res = DAG.getNode(ISD::SUB, DL, VT,
8968                         DAG.getNode(ISD::SHL, DL, VT,
8969                                     V,
8970                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
8971                                                     MVT::i32)),
8972                         V);
8973     } else
8974       return SDValue();
8975   } else {
8976     uint64_t MulAmtAbs = -MulAmt;
8977     if (isPowerOf2_32(MulAmtAbs + 1)) {
8978       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8979       Res = DAG.getNode(ISD::SUB, DL, VT,
8980                         V,
8981                         DAG.getNode(ISD::SHL, DL, VT,
8982                                     V,
8983                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
8984                                                     MVT::i32)));
8985     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
8986       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8987       Res = DAG.getNode(ISD::ADD, DL, VT,
8988                         V,
8989                         DAG.getNode(ISD::SHL, DL, VT,
8990                                     V,
8991                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
8992                                                     MVT::i32)));
8993       Res = DAG.getNode(ISD::SUB, DL, VT,
8994                         DAG.getConstant(0, DL, MVT::i32), Res);
8995 
8996     } else
8997       return SDValue();
8998   }
8999 
9000   if (ShiftAmt != 0)
9001     Res = DAG.getNode(ISD::SHL, DL, VT,
9002                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
9003 
9004   // Do not add new nodes to DAG combiner worklist.
9005   DCI.CombineTo(N, Res, false);
9006   return SDValue();
9007 }
9008 
9009 static SDValue PerformANDCombine(SDNode *N,
9010                                  TargetLowering::DAGCombinerInfo &DCI,
9011                                  const ARMSubtarget *Subtarget) {
9012 
9013   // Attempt to use immediate-form VBIC
9014   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9015   SDLoc dl(N);
9016   EVT VT = N->getValueType(0);
9017   SelectionDAG &DAG = DCI.DAG;
9018 
9019   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9020     return SDValue();
9021 
9022   APInt SplatBits, SplatUndef;
9023   unsigned SplatBitSize;
9024   bool HasAnyUndefs;
9025   if (BVN &&
9026       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9027     if (SplatBitSize <= 64) {
9028       EVT VbicVT;
9029       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
9030                                       SplatUndef.getZExtValue(), SplatBitSize,
9031                                       DAG, dl, VbicVT, VT.is128BitVector(),
9032                                       OtherModImm);
9033       if (Val.getNode()) {
9034         SDValue Input =
9035           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
9036         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
9037         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
9038       }
9039     }
9040   }
9041 
9042   if (!Subtarget->isThumb1Only()) {
9043     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
9044     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
9045       return Result;
9046   }
9047 
9048   return SDValue();
9049 }
9050 
9051 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
9052 static SDValue PerformORCombine(SDNode *N,
9053                                 TargetLowering::DAGCombinerInfo &DCI,
9054                                 const ARMSubtarget *Subtarget) {
9055   // Attempt to use immediate-form VORR
9056   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9057   SDLoc dl(N);
9058   EVT VT = N->getValueType(0);
9059   SelectionDAG &DAG = DCI.DAG;
9060 
9061   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9062     return SDValue();
9063 
9064   APInt SplatBits, SplatUndef;
9065   unsigned SplatBitSize;
9066   bool HasAnyUndefs;
9067   if (BVN && Subtarget->hasNEON() &&
9068       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9069     if (SplatBitSize <= 64) {
9070       EVT VorrVT;
9071       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
9072                                       SplatUndef.getZExtValue(), SplatBitSize,
9073                                       DAG, dl, VorrVT, VT.is128BitVector(),
9074                                       OtherModImm);
9075       if (Val.getNode()) {
9076         SDValue Input =
9077           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
9078         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
9079         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
9080       }
9081     }
9082   }
9083 
9084   if (!Subtarget->isThumb1Only()) {
9085     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
9086     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9087       return Result;
9088   }
9089 
9090   // The code below optimizes (or (and X, Y), Z).
9091   // The AND operand needs to have a single user to make these optimizations
9092   // profitable.
9093   SDValue N0 = N->getOperand(0);
9094   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
9095     return SDValue();
9096   SDValue N1 = N->getOperand(1);
9097 
9098   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
9099   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
9100       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
9101     APInt SplatUndef;
9102     unsigned SplatBitSize;
9103     bool HasAnyUndefs;
9104 
9105     APInt SplatBits0, SplatBits1;
9106     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
9107     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
9108     // Ensure that the second operand of both ands are constants
9109     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
9110                                       HasAnyUndefs) && !HasAnyUndefs) {
9111         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
9112                                           HasAnyUndefs) && !HasAnyUndefs) {
9113             // Ensure that the bit width of the constants are the same and that
9114             // the splat arguments are logical inverses as per the pattern we
9115             // are trying to simplify.
9116             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
9117                 SplatBits0 == ~SplatBits1) {
9118                 // Canonicalize the vector type to make instruction selection
9119                 // simpler.
9120                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
9121                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
9122                                              N0->getOperand(1),
9123                                              N0->getOperand(0),
9124                                              N1->getOperand(0));
9125                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9126             }
9127         }
9128     }
9129   }
9130 
9131   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
9132   // reasonable.
9133 
9134   // BFI is only available on V6T2+
9135   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
9136     return SDValue();
9137 
9138   SDLoc DL(N);
9139   // 1) or (and A, mask), val => ARMbfi A, val, mask
9140   //      iff (val & mask) == val
9141   //
9142   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9143   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
9144   //          && mask == ~mask2
9145   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
9146   //          && ~mask == mask2
9147   //  (i.e., copy a bitfield value into another bitfield of the same width)
9148 
9149   if (VT != MVT::i32)
9150     return SDValue();
9151 
9152   SDValue N00 = N0.getOperand(0);
9153 
9154   // The value and the mask need to be constants so we can verify this is
9155   // actually a bitfield set. If the mask is 0xffff, we can do better
9156   // via a movt instruction, so don't use BFI in that case.
9157   SDValue MaskOp = N0.getOperand(1);
9158   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
9159   if (!MaskC)
9160     return SDValue();
9161   unsigned Mask = MaskC->getZExtValue();
9162   if (Mask == 0xffff)
9163     return SDValue();
9164   SDValue Res;
9165   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
9166   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9167   if (N1C) {
9168     unsigned Val = N1C->getZExtValue();
9169     if ((Val & ~Mask) != Val)
9170       return SDValue();
9171 
9172     if (ARM::isBitFieldInvertedMask(Mask)) {
9173       Val >>= countTrailingZeros(~Mask);
9174 
9175       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
9176                         DAG.getConstant(Val, DL, MVT::i32),
9177                         DAG.getConstant(Mask, DL, MVT::i32));
9178 
9179       // Do not add new nodes to DAG combiner worklist.
9180       DCI.CombineTo(N, Res, false);
9181       return SDValue();
9182     }
9183   } else if (N1.getOpcode() == ISD::AND) {
9184     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9185     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9186     if (!N11C)
9187       return SDValue();
9188     unsigned Mask2 = N11C->getZExtValue();
9189 
9190     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
9191     // as is to match.
9192     if (ARM::isBitFieldInvertedMask(Mask) &&
9193         (Mask == ~Mask2)) {
9194       // The pack halfword instruction works better for masks that fit it,
9195       // so use that when it's available.
9196       if (Subtarget->hasT2ExtractPack() &&
9197           (Mask == 0xffff || Mask == 0xffff0000))
9198         return SDValue();
9199       // 2a
9200       unsigned amt = countTrailingZeros(Mask2);
9201       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
9202                         DAG.getConstant(amt, DL, MVT::i32));
9203       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
9204                         DAG.getConstant(Mask, DL, MVT::i32));
9205       // Do not add new nodes to DAG combiner worklist.
9206       DCI.CombineTo(N, Res, false);
9207       return SDValue();
9208     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
9209                (~Mask == Mask2)) {
9210       // The pack halfword instruction works better for masks that fit it,
9211       // so use that when it's available.
9212       if (Subtarget->hasT2ExtractPack() &&
9213           (Mask2 == 0xffff || Mask2 == 0xffff0000))
9214         return SDValue();
9215       // 2b
9216       unsigned lsb = countTrailingZeros(Mask);
9217       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
9218                         DAG.getConstant(lsb, DL, MVT::i32));
9219       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
9220                         DAG.getConstant(Mask2, DL, MVT::i32));
9221       // Do not add new nodes to DAG combiner worklist.
9222       DCI.CombineTo(N, Res, false);
9223       return SDValue();
9224     }
9225   }
9226 
9227   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
9228       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
9229       ARM::isBitFieldInvertedMask(~Mask)) {
9230     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
9231     // where lsb(mask) == #shamt and masked bits of B are known zero.
9232     SDValue ShAmt = N00.getOperand(1);
9233     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9234     unsigned LSB = countTrailingZeros(Mask);
9235     if (ShAmtC != LSB)
9236       return SDValue();
9237 
9238     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
9239                       DAG.getConstant(~Mask, DL, MVT::i32));
9240 
9241     // Do not add new nodes to DAG combiner worklist.
9242     DCI.CombineTo(N, Res, false);
9243   }
9244 
9245   return SDValue();
9246 }
9247 
9248 static SDValue PerformXORCombine(SDNode *N,
9249                                  TargetLowering::DAGCombinerInfo &DCI,
9250                                  const ARMSubtarget *Subtarget) {
9251   EVT VT = N->getValueType(0);
9252   SelectionDAG &DAG = DCI.DAG;
9253 
9254   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9255     return SDValue();
9256 
9257   if (!Subtarget->isThumb1Only()) {
9258     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
9259     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9260       return Result;
9261   }
9262 
9263   return SDValue();
9264 }
9265 
9266 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
9267 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
9268 // their position in "to" (Rd).
9269 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
9270   assert(N->getOpcode() == ARMISD::BFI);
9271 
9272   SDValue From = N->getOperand(1);
9273   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
9274   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
9275 
9276   // If the Base came from a SHR #C, we can deduce that it is really testing bit
9277   // #C in the base of the SHR.
9278   if (From->getOpcode() == ISD::SRL &&
9279       isa<ConstantSDNode>(From->getOperand(1))) {
9280     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
9281     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
9282     FromMask <<= Shift.getLimitedValue(31);
9283     From = From->getOperand(0);
9284   }
9285 
9286   return From;
9287 }
9288 
9289 // If A and B contain one contiguous set of bits, does A | B == A . B?
9290 //
9291 // Neither A nor B must be zero.
9292 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
9293   unsigned LastActiveBitInA =  A.countTrailingZeros();
9294   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
9295   return LastActiveBitInA - 1 == FirstActiveBitInB;
9296 }
9297 
9298 static SDValue FindBFIToCombineWith(SDNode *N) {
9299   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
9300   // if one exists.
9301   APInt ToMask, FromMask;
9302   SDValue From = ParseBFI(N, ToMask, FromMask);
9303   SDValue To = N->getOperand(0);
9304 
9305   // Now check for a compatible BFI to merge with. We can pass through BFIs that
9306   // aren't compatible, but not if they set the same bit in their destination as
9307   // we do (or that of any BFI we're going to combine with).
9308   SDValue V = To;
9309   APInt CombinedToMask = ToMask;
9310   while (V.getOpcode() == ARMISD::BFI) {
9311     APInt NewToMask, NewFromMask;
9312     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
9313     if (NewFrom != From) {
9314       // This BFI has a different base. Keep going.
9315       CombinedToMask |= NewToMask;
9316       V = V.getOperand(0);
9317       continue;
9318     }
9319 
9320     // Do the written bits conflict with any we've seen so far?
9321     if ((NewToMask & CombinedToMask).getBoolValue())
9322       // Conflicting bits - bail out because going further is unsafe.
9323       return SDValue();
9324 
9325     // Are the new bits contiguous when combined with the old bits?
9326     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
9327         BitsProperlyConcatenate(FromMask, NewFromMask))
9328       return V;
9329     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
9330         BitsProperlyConcatenate(NewFromMask, FromMask))
9331       return V;
9332 
9333     // We've seen a write to some bits, so track it.
9334     CombinedToMask |= NewToMask;
9335     // Keep going...
9336     V = V.getOperand(0);
9337   }
9338 
9339   return SDValue();
9340 }
9341 
9342 static SDValue PerformBFICombine(SDNode *N,
9343                                  TargetLowering::DAGCombinerInfo &DCI) {
9344   SDValue N1 = N->getOperand(1);
9345   if (N1.getOpcode() == ISD::AND) {
9346     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
9347     // the bits being cleared by the AND are not demanded by the BFI.
9348     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9349     if (!N11C)
9350       return SDValue();
9351     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
9352     unsigned LSB = countTrailingZeros(~InvMask);
9353     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
9354     assert(Width <
9355                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
9356            "undefined behavior");
9357     unsigned Mask = (1u << Width) - 1;
9358     unsigned Mask2 = N11C->getZExtValue();
9359     if ((Mask & (~Mask2)) == 0)
9360       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
9361                              N->getOperand(0), N1.getOperand(0),
9362                              N->getOperand(2));
9363   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
9364     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
9365     // Keep track of any consecutive bits set that all come from the same base
9366     // value. We can combine these together into a single BFI.
9367     SDValue CombineBFI = FindBFIToCombineWith(N);
9368     if (CombineBFI == SDValue())
9369       return SDValue();
9370 
9371     // We've found a BFI.
9372     APInt ToMask1, FromMask1;
9373     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
9374 
9375     APInt ToMask2, FromMask2;
9376     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
9377     assert(From1 == From2);
9378     (void)From2;
9379 
9380     // First, unlink CombineBFI.
9381     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
9382     // Then create a new BFI, combining the two together.
9383     APInt NewFromMask = FromMask1 | FromMask2;
9384     APInt NewToMask = ToMask1 | ToMask2;
9385 
9386     EVT VT = N->getValueType(0);
9387     SDLoc dl(N);
9388 
9389     if (NewFromMask[0] == 0)
9390       From1 = DCI.DAG.getNode(
9391         ISD::SRL, dl, VT, From1,
9392         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
9393     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
9394                            DCI.DAG.getConstant(~NewToMask, dl, VT));
9395   }
9396   return SDValue();
9397 }
9398 
9399 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
9400 /// ARMISD::VMOVRRD.
9401 static SDValue PerformVMOVRRDCombine(SDNode *N,
9402                                      TargetLowering::DAGCombinerInfo &DCI,
9403                                      const ARMSubtarget *Subtarget) {
9404   // vmovrrd(vmovdrr x, y) -> x,y
9405   SDValue InDouble = N->getOperand(0);
9406   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
9407     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
9408 
9409   // vmovrrd(load f64) -> (load i32), (load i32)
9410   SDNode *InNode = InDouble.getNode();
9411   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
9412       InNode->getValueType(0) == MVT::f64 &&
9413       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
9414       !cast<LoadSDNode>(InNode)->isVolatile()) {
9415     // TODO: Should this be done for non-FrameIndex operands?
9416     LoadSDNode *LD = cast<LoadSDNode>(InNode);
9417 
9418     SelectionDAG &DAG = DCI.DAG;
9419     SDLoc DL(LD);
9420     SDValue BasePtr = LD->getBasePtr();
9421     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
9422                                  LD->getPointerInfo(), LD->isVolatile(),
9423                                  LD->isNonTemporal(), LD->isInvariant(),
9424                                  LD->getAlignment());
9425 
9426     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
9427                                     DAG.getConstant(4, DL, MVT::i32));
9428     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
9429                                  LD->getPointerInfo(), LD->isVolatile(),
9430                                  LD->isNonTemporal(), LD->isInvariant(),
9431                                  std::min(4U, LD->getAlignment() / 2));
9432 
9433     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
9434     if (DCI.DAG.getDataLayout().isBigEndian())
9435       std::swap (NewLD1, NewLD2);
9436     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
9437     return Result;
9438   }
9439 
9440   return SDValue();
9441 }
9442 
9443 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
9444 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
9445 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
9446   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
9447   SDValue Op0 = N->getOperand(0);
9448   SDValue Op1 = N->getOperand(1);
9449   if (Op0.getOpcode() == ISD::BITCAST)
9450     Op0 = Op0.getOperand(0);
9451   if (Op1.getOpcode() == ISD::BITCAST)
9452     Op1 = Op1.getOperand(0);
9453   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
9454       Op0.getNode() == Op1.getNode() &&
9455       Op0.getResNo() == 0 && Op1.getResNo() == 1)
9456     return DAG.getNode(ISD::BITCAST, SDLoc(N),
9457                        N->getValueType(0), Op0.getOperand(0));
9458   return SDValue();
9459 }
9460 
9461 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
9462 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
9463 /// i64 vector to have f64 elements, since the value can then be loaded
9464 /// directly into a VFP register.
9465 static bool hasNormalLoadOperand(SDNode *N) {
9466   unsigned NumElts = N->getValueType(0).getVectorNumElements();
9467   for (unsigned i = 0; i < NumElts; ++i) {
9468     SDNode *Elt = N->getOperand(i).getNode();
9469     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
9470       return true;
9471   }
9472   return false;
9473 }
9474 
9475 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
9476 /// ISD::BUILD_VECTOR.
9477 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
9478                                           TargetLowering::DAGCombinerInfo &DCI,
9479                                           const ARMSubtarget *Subtarget) {
9480   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
9481   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
9482   // into a pair of GPRs, which is fine when the value is used as a scalar,
9483   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
9484   SelectionDAG &DAG = DCI.DAG;
9485   if (N->getNumOperands() == 2)
9486     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
9487       return RV;
9488 
9489   // Load i64 elements as f64 values so that type legalization does not split
9490   // them up into i32 values.
9491   EVT VT = N->getValueType(0);
9492   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
9493     return SDValue();
9494   SDLoc dl(N);
9495   SmallVector<SDValue, 8> Ops;
9496   unsigned NumElts = VT.getVectorNumElements();
9497   for (unsigned i = 0; i < NumElts; ++i) {
9498     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
9499     Ops.push_back(V);
9500     // Make the DAGCombiner fold the bitcast.
9501     DCI.AddToWorklist(V.getNode());
9502   }
9503   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
9504   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
9505   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9506 }
9507 
9508 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
9509 static SDValue
9510 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9511   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
9512   // At that time, we may have inserted bitcasts from integer to float.
9513   // If these bitcasts have survived DAGCombine, change the lowering of this
9514   // BUILD_VECTOR in something more vector friendly, i.e., that does not
9515   // force to use floating point types.
9516 
9517   // Make sure we can change the type of the vector.
9518   // This is possible iff:
9519   // 1. The vector is only used in a bitcast to a integer type. I.e.,
9520   //    1.1. Vector is used only once.
9521   //    1.2. Use is a bit convert to an integer type.
9522   // 2. The size of its operands are 32-bits (64-bits are not legal).
9523   EVT VT = N->getValueType(0);
9524   EVT EltVT = VT.getVectorElementType();
9525 
9526   // Check 1.1. and 2.
9527   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
9528     return SDValue();
9529 
9530   // By construction, the input type must be float.
9531   assert(EltVT == MVT::f32 && "Unexpected type!");
9532 
9533   // Check 1.2.
9534   SDNode *Use = *N->use_begin();
9535   if (Use->getOpcode() != ISD::BITCAST ||
9536       Use->getValueType(0).isFloatingPoint())
9537     return SDValue();
9538 
9539   // Check profitability.
9540   // Model is, if more than half of the relevant operands are bitcast from
9541   // i32, turn the build_vector into a sequence of insert_vector_elt.
9542   // Relevant operands are everything that is not statically
9543   // (i.e., at compile time) bitcasted.
9544   unsigned NumOfBitCastedElts = 0;
9545   unsigned NumElts = VT.getVectorNumElements();
9546   unsigned NumOfRelevantElts = NumElts;
9547   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
9548     SDValue Elt = N->getOperand(Idx);
9549     if (Elt->getOpcode() == ISD::BITCAST) {
9550       // Assume only bit cast to i32 will go away.
9551       if (Elt->getOperand(0).getValueType() == MVT::i32)
9552         ++NumOfBitCastedElts;
9553     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
9554       // Constants are statically casted, thus do not count them as
9555       // relevant operands.
9556       --NumOfRelevantElts;
9557   }
9558 
9559   // Check if more than half of the elements require a non-free bitcast.
9560   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
9561     return SDValue();
9562 
9563   SelectionDAG &DAG = DCI.DAG;
9564   // Create the new vector type.
9565   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
9566   // Check if the type is legal.
9567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9568   if (!TLI.isTypeLegal(VecVT))
9569     return SDValue();
9570 
9571   // Combine:
9572   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
9573   // => BITCAST INSERT_VECTOR_ELT
9574   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
9575   //                      (BITCAST EN), N.
9576   SDValue Vec = DAG.getUNDEF(VecVT);
9577   SDLoc dl(N);
9578   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
9579     SDValue V = N->getOperand(Idx);
9580     if (V.isUndef())
9581       continue;
9582     if (V.getOpcode() == ISD::BITCAST &&
9583         V->getOperand(0).getValueType() == MVT::i32)
9584       // Fold obvious case.
9585       V = V.getOperand(0);
9586     else {
9587       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
9588       // Make the DAGCombiner fold the bitcasts.
9589       DCI.AddToWorklist(V.getNode());
9590     }
9591     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
9592     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
9593   }
9594   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
9595   // Make the DAGCombiner fold the bitcasts.
9596   DCI.AddToWorklist(Vec.getNode());
9597   return Vec;
9598 }
9599 
9600 /// PerformInsertEltCombine - Target-specific dag combine xforms for
9601 /// ISD::INSERT_VECTOR_ELT.
9602 static SDValue PerformInsertEltCombine(SDNode *N,
9603                                        TargetLowering::DAGCombinerInfo &DCI) {
9604   // Bitcast an i64 load inserted into a vector to f64.
9605   // Otherwise, the i64 value will be legalized to a pair of i32 values.
9606   EVT VT = N->getValueType(0);
9607   SDNode *Elt = N->getOperand(1).getNode();
9608   if (VT.getVectorElementType() != MVT::i64 ||
9609       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
9610     return SDValue();
9611 
9612   SelectionDAG &DAG = DCI.DAG;
9613   SDLoc dl(N);
9614   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
9615                                  VT.getVectorNumElements());
9616   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
9617   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
9618   // Make the DAGCombiner fold the bitcasts.
9619   DCI.AddToWorklist(Vec.getNode());
9620   DCI.AddToWorklist(V.getNode());
9621   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
9622                                Vec, V, N->getOperand(2));
9623   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
9624 }
9625 
9626 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
9627 /// ISD::VECTOR_SHUFFLE.
9628 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
9629   // The LLVM shufflevector instruction does not require the shuffle mask
9630   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
9631   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
9632   // operands do not match the mask length, they are extended by concatenating
9633   // them with undef vectors.  That is probably the right thing for other
9634   // targets, but for NEON it is better to concatenate two double-register
9635   // size vector operands into a single quad-register size vector.  Do that
9636   // transformation here:
9637   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
9638   //   shuffle(concat(v1, v2), undef)
9639   SDValue Op0 = N->getOperand(0);
9640   SDValue Op1 = N->getOperand(1);
9641   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
9642       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
9643       Op0.getNumOperands() != 2 ||
9644       Op1.getNumOperands() != 2)
9645     return SDValue();
9646   SDValue Concat0Op1 = Op0.getOperand(1);
9647   SDValue Concat1Op1 = Op1.getOperand(1);
9648   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
9649     return SDValue();
9650   // Skip the transformation if any of the types are illegal.
9651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9652   EVT VT = N->getValueType(0);
9653   if (!TLI.isTypeLegal(VT) ||
9654       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
9655       !TLI.isTypeLegal(Concat1Op1.getValueType()))
9656     return SDValue();
9657 
9658   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
9659                                   Op0.getOperand(0), Op1.getOperand(0));
9660   // Translate the shuffle mask.
9661   SmallVector<int, 16> NewMask;
9662   unsigned NumElts = VT.getVectorNumElements();
9663   unsigned HalfElts = NumElts/2;
9664   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9665   for (unsigned n = 0; n < NumElts; ++n) {
9666     int MaskElt = SVN->getMaskElt(n);
9667     int NewElt = -1;
9668     if (MaskElt < (int)HalfElts)
9669       NewElt = MaskElt;
9670     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
9671       NewElt = HalfElts + MaskElt - NumElts;
9672     NewMask.push_back(NewElt);
9673   }
9674   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
9675                               DAG.getUNDEF(VT), NewMask.data());
9676 }
9677 
9678 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
9679 /// NEON load/store intrinsics, and generic vector load/stores, to merge
9680 /// base address updates.
9681 /// For generic load/stores, the memory type is assumed to be a vector.
9682 /// The caller is assumed to have checked legality.
9683 static SDValue CombineBaseUpdate(SDNode *N,
9684                                  TargetLowering::DAGCombinerInfo &DCI) {
9685   SelectionDAG &DAG = DCI.DAG;
9686   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
9687                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
9688   const bool isStore = N->getOpcode() == ISD::STORE;
9689   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
9690   SDValue Addr = N->getOperand(AddrOpIdx);
9691   MemSDNode *MemN = cast<MemSDNode>(N);
9692   SDLoc dl(N);
9693 
9694   // Search for a use of the address operand that is an increment.
9695   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9696          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9697     SDNode *User = *UI;
9698     if (User->getOpcode() != ISD::ADD ||
9699         UI.getUse().getResNo() != Addr.getResNo())
9700       continue;
9701 
9702     // Check that the add is independent of the load/store.  Otherwise, folding
9703     // it would create a cycle.
9704     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9705       continue;
9706 
9707     // Find the new opcode for the updating load/store.
9708     bool isLoadOp = true;
9709     bool isLaneOp = false;
9710     unsigned NewOpc = 0;
9711     unsigned NumVecs = 0;
9712     if (isIntrinsic) {
9713       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9714       switch (IntNo) {
9715       default: llvm_unreachable("unexpected intrinsic for Neon base update");
9716       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
9717         NumVecs = 1; break;
9718       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
9719         NumVecs = 2; break;
9720       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
9721         NumVecs = 3; break;
9722       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
9723         NumVecs = 4; break;
9724       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
9725         NumVecs = 2; isLaneOp = true; break;
9726       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
9727         NumVecs = 3; isLaneOp = true; break;
9728       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
9729         NumVecs = 4; isLaneOp = true; break;
9730       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
9731         NumVecs = 1; isLoadOp = false; break;
9732       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
9733         NumVecs = 2; isLoadOp = false; break;
9734       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
9735         NumVecs = 3; isLoadOp = false; break;
9736       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
9737         NumVecs = 4; isLoadOp = false; break;
9738       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
9739         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
9740       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
9741         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
9742       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
9743         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
9744       }
9745     } else {
9746       isLaneOp = true;
9747       switch (N->getOpcode()) {
9748       default: llvm_unreachable("unexpected opcode for Neon base update");
9749       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
9750       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
9751       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
9752       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
9753         NumVecs = 1; isLaneOp = false; break;
9754       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
9755         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
9756       }
9757     }
9758 
9759     // Find the size of memory referenced by the load/store.
9760     EVT VecTy;
9761     if (isLoadOp) {
9762       VecTy = N->getValueType(0);
9763     } else if (isIntrinsic) {
9764       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
9765     } else {
9766       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
9767       VecTy = N->getOperand(1).getValueType();
9768     }
9769 
9770     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9771     if (isLaneOp)
9772       NumBytes /= VecTy.getVectorNumElements();
9773 
9774     // If the increment is a constant, it must match the memory ref size.
9775     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9776     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9777       uint64_t IncVal = CInc->getZExtValue();
9778       if (IncVal != NumBytes)
9779         continue;
9780     } else if (NumBytes >= 3 * 16) {
9781       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
9782       // separate instructions that make it harder to use a non-constant update.
9783       continue;
9784     }
9785 
9786     // OK, we found an ADD we can fold into the base update.
9787     // Now, create a _UPD node, taking care of not breaking alignment.
9788 
9789     EVT AlignedVecTy = VecTy;
9790     unsigned Alignment = MemN->getAlignment();
9791 
9792     // If this is a less-than-standard-aligned load/store, change the type to
9793     // match the standard alignment.
9794     // The alignment is overlooked when selecting _UPD variants; and it's
9795     // easier to introduce bitcasts here than fix that.
9796     // There are 3 ways to get to this base-update combine:
9797     // - intrinsics: they are assumed to be properly aligned (to the standard
9798     //   alignment of the memory type), so we don't need to do anything.
9799     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
9800     //   intrinsics, so, likewise, there's nothing to do.
9801     // - generic load/store instructions: the alignment is specified as an
9802     //   explicit operand, rather than implicitly as the standard alignment
9803     //   of the memory type (like the intrisics).  We need to change the
9804     //   memory type to match the explicit alignment.  That way, we don't
9805     //   generate non-standard-aligned ARMISD::VLDx nodes.
9806     if (isa<LSBaseSDNode>(N)) {
9807       if (Alignment == 0)
9808         Alignment = 1;
9809       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
9810         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
9811         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
9812         assert(!isLaneOp && "Unexpected generic load/store lane.");
9813         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
9814         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
9815       }
9816       // Don't set an explicit alignment on regular load/stores that we want
9817       // to transform to VLD/VST 1_UPD nodes.
9818       // This matches the behavior of regular load/stores, which only get an
9819       // explicit alignment if the MMO alignment is larger than the standard
9820       // alignment of the memory type.
9821       // Intrinsics, however, always get an explicit alignment, set to the
9822       // alignment of the MMO.
9823       Alignment = 1;
9824     }
9825 
9826     // Create the new updating load/store node.
9827     // First, create an SDVTList for the new updating node's results.
9828     EVT Tys[6];
9829     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
9830     unsigned n;
9831     for (n = 0; n < NumResultVecs; ++n)
9832       Tys[n] = AlignedVecTy;
9833     Tys[n++] = MVT::i32;
9834     Tys[n] = MVT::Other;
9835     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
9836 
9837     // Then, gather the new node's operands.
9838     SmallVector<SDValue, 8> Ops;
9839     Ops.push_back(N->getOperand(0)); // incoming chain
9840     Ops.push_back(N->getOperand(AddrOpIdx));
9841     Ops.push_back(Inc);
9842 
9843     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
9844       // Try to match the intrinsic's signature
9845       Ops.push_back(StN->getValue());
9846     } else {
9847       // Loads (and of course intrinsics) match the intrinsics' signature,
9848       // so just add all but the alignment operand.
9849       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
9850         Ops.push_back(N->getOperand(i));
9851     }
9852 
9853     // For all node types, the alignment operand is always the last one.
9854     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
9855 
9856     // If this is a non-standard-aligned STORE, the penultimate operand is the
9857     // stored value.  Bitcast it to the aligned type.
9858     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
9859       SDValue &StVal = Ops[Ops.size()-2];
9860       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
9861     }
9862 
9863     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys,
9864                                            Ops, AlignedVecTy,
9865                                            MemN->getMemOperand());
9866 
9867     // Update the uses.
9868     SmallVector<SDValue, 5> NewResults;
9869     for (unsigned i = 0; i < NumResultVecs; ++i)
9870       NewResults.push_back(SDValue(UpdN.getNode(), i));
9871 
9872     // If this is an non-standard-aligned LOAD, the first result is the loaded
9873     // value.  Bitcast it to the expected result type.
9874     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
9875       SDValue &LdVal = NewResults[0];
9876       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
9877     }
9878 
9879     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
9880     DCI.CombineTo(N, NewResults);
9881     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9882 
9883     break;
9884   }
9885   return SDValue();
9886 }
9887 
9888 static SDValue PerformVLDCombine(SDNode *N,
9889                                  TargetLowering::DAGCombinerInfo &DCI) {
9890   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9891     return SDValue();
9892 
9893   return CombineBaseUpdate(N, DCI);
9894 }
9895 
9896 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
9897 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
9898 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
9899 /// return true.
9900 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9901   SelectionDAG &DAG = DCI.DAG;
9902   EVT VT = N->getValueType(0);
9903   // vldN-dup instructions only support 64-bit vectors for N > 1.
9904   if (!VT.is64BitVector())
9905     return false;
9906 
9907   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
9908   SDNode *VLD = N->getOperand(0).getNode();
9909   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
9910     return false;
9911   unsigned NumVecs = 0;
9912   unsigned NewOpc = 0;
9913   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
9914   if (IntNo == Intrinsic::arm_neon_vld2lane) {
9915     NumVecs = 2;
9916     NewOpc = ARMISD::VLD2DUP;
9917   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
9918     NumVecs = 3;
9919     NewOpc = ARMISD::VLD3DUP;
9920   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
9921     NumVecs = 4;
9922     NewOpc = ARMISD::VLD4DUP;
9923   } else {
9924     return false;
9925   }
9926 
9927   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
9928   // numbers match the load.
9929   unsigned VLDLaneNo =
9930     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
9931   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9932        UI != UE; ++UI) {
9933     // Ignore uses of the chain result.
9934     if (UI.getUse().getResNo() == NumVecs)
9935       continue;
9936     SDNode *User = *UI;
9937     if (User->getOpcode() != ARMISD::VDUPLANE ||
9938         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
9939       return false;
9940   }
9941 
9942   // Create the vldN-dup node.
9943   EVT Tys[5];
9944   unsigned n;
9945   for (n = 0; n < NumVecs; ++n)
9946     Tys[n] = VT;
9947   Tys[n] = MVT::Other;
9948   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
9949   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
9950   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
9951   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
9952                                            Ops, VLDMemInt->getMemoryVT(),
9953                                            VLDMemInt->getMemOperand());
9954 
9955   // Update the uses.
9956   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9957        UI != UE; ++UI) {
9958     unsigned ResNo = UI.getUse().getResNo();
9959     // Ignore uses of the chain result.
9960     if (ResNo == NumVecs)
9961       continue;
9962     SDNode *User = *UI;
9963     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
9964   }
9965 
9966   // Now the vldN-lane intrinsic is dead except for its chain result.
9967   // Update uses of the chain.
9968   std::vector<SDValue> VLDDupResults;
9969   for (unsigned n = 0; n < NumVecs; ++n)
9970     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
9971   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
9972   DCI.CombineTo(VLD, VLDDupResults);
9973 
9974   return true;
9975 }
9976 
9977 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
9978 /// ARMISD::VDUPLANE.
9979 static SDValue PerformVDUPLANECombine(SDNode *N,
9980                                       TargetLowering::DAGCombinerInfo &DCI) {
9981   SDValue Op = N->getOperand(0);
9982 
9983   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
9984   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
9985   if (CombineVLDDUP(N, DCI))
9986     return SDValue(N, 0);
9987 
9988   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
9989   // redundant.  Ignore bit_converts for now; element sizes are checked below.
9990   while (Op.getOpcode() == ISD::BITCAST)
9991     Op = Op.getOperand(0);
9992   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
9993     return SDValue();
9994 
9995   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
9996   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
9997   // The canonical VMOV for a zero vector uses a 32-bit element size.
9998   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9999   unsigned EltBits;
10000   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
10001     EltSize = 8;
10002   EVT VT = N->getValueType(0);
10003   if (EltSize > VT.getVectorElementType().getSizeInBits())
10004     return SDValue();
10005 
10006   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
10007 }
10008 
10009 static SDValue PerformLOADCombine(SDNode *N,
10010                                   TargetLowering::DAGCombinerInfo &DCI) {
10011   EVT VT = N->getValueType(0);
10012 
10013   // If this is a legal vector load, try to combine it into a VLD1_UPD.
10014   if (ISD::isNormalLoad(N) && VT.isVector() &&
10015       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10016     return CombineBaseUpdate(N, DCI);
10017 
10018   return SDValue();
10019 }
10020 
10021 /// PerformSTORECombine - Target-specific dag combine xforms for
10022 /// ISD::STORE.
10023 static SDValue PerformSTORECombine(SDNode *N,
10024                                    TargetLowering::DAGCombinerInfo &DCI) {
10025   StoreSDNode *St = cast<StoreSDNode>(N);
10026   if (St->isVolatile())
10027     return SDValue();
10028 
10029   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
10030   // pack all of the elements in one place.  Next, store to memory in fewer
10031   // chunks.
10032   SDValue StVal = St->getValue();
10033   EVT VT = StVal.getValueType();
10034   if (St->isTruncatingStore() && VT.isVector()) {
10035     SelectionDAG &DAG = DCI.DAG;
10036     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10037     EVT StVT = St->getMemoryVT();
10038     unsigned NumElems = VT.getVectorNumElements();
10039     assert(StVT != VT && "Cannot truncate to the same type");
10040     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
10041     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
10042 
10043     // From, To sizes and ElemCount must be pow of two
10044     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
10045 
10046     // We are going to use the original vector elt for storing.
10047     // Accumulated smaller vector elements must be a multiple of the store size.
10048     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
10049 
10050     unsigned SizeRatio  = FromEltSz / ToEltSz;
10051     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
10052 
10053     // Create a type on which we perform the shuffle.
10054     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
10055                                      NumElems*SizeRatio);
10056     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
10057 
10058     SDLoc DL(St);
10059     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
10060     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
10061     for (unsigned i = 0; i < NumElems; ++i)
10062       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
10063                           ? (i + 1) * SizeRatio - 1
10064                           : i * SizeRatio;
10065 
10066     // Can't shuffle using an illegal type.
10067     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
10068 
10069     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
10070                                 DAG.getUNDEF(WideVec.getValueType()),
10071                                 ShuffleVec.data());
10072     // At this point all of the data is stored at the bottom of the
10073     // register. We now need to save it to mem.
10074 
10075     // Find the largest store unit
10076     MVT StoreType = MVT::i8;
10077     for (MVT Tp : MVT::integer_valuetypes()) {
10078       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
10079         StoreType = Tp;
10080     }
10081     // Didn't find a legal store type.
10082     if (!TLI.isTypeLegal(StoreType))
10083       return SDValue();
10084 
10085     // Bitcast the original vector into a vector of store-size units
10086     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
10087             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
10088     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
10089     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
10090     SmallVector<SDValue, 8> Chains;
10091     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
10092                                         TLI.getPointerTy(DAG.getDataLayout()));
10093     SDValue BasePtr = St->getBasePtr();
10094 
10095     // Perform one or more big stores into memory.
10096     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
10097     for (unsigned I = 0; I < E; I++) {
10098       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
10099                                    StoreType, ShuffWide,
10100                                    DAG.getIntPtrConstant(I, DL));
10101       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
10102                                 St->getPointerInfo(), St->isVolatile(),
10103                                 St->isNonTemporal(), St->getAlignment());
10104       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
10105                             Increment);
10106       Chains.push_back(Ch);
10107     }
10108     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
10109   }
10110 
10111   if (!ISD::isNormalStore(St))
10112     return SDValue();
10113 
10114   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
10115   // ARM stores of arguments in the same cache line.
10116   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
10117       StVal.getNode()->hasOneUse()) {
10118     SelectionDAG  &DAG = DCI.DAG;
10119     bool isBigEndian = DAG.getDataLayout().isBigEndian();
10120     SDLoc DL(St);
10121     SDValue BasePtr = St->getBasePtr();
10122     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
10123                                   StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
10124                                   BasePtr, St->getPointerInfo(), St->isVolatile(),
10125                                   St->isNonTemporal(), St->getAlignment());
10126 
10127     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
10128                                     DAG.getConstant(4, DL, MVT::i32));
10129     return DAG.getStore(NewST1.getValue(0), DL,
10130                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
10131                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
10132                         St->isNonTemporal(),
10133                         std::min(4U, St->getAlignment() / 2));
10134   }
10135 
10136   if (StVal.getValueType() == MVT::i64 &&
10137       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10138 
10139     // Bitcast an i64 store extracted from a vector to f64.
10140     // Otherwise, the i64 value will be legalized to a pair of i32 values.
10141     SelectionDAG &DAG = DCI.DAG;
10142     SDLoc dl(StVal);
10143     SDValue IntVec = StVal.getOperand(0);
10144     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
10145                                    IntVec.getValueType().getVectorNumElements());
10146     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
10147     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
10148                                  Vec, StVal.getOperand(1));
10149     dl = SDLoc(N);
10150     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
10151     // Make the DAGCombiner fold the bitcasts.
10152     DCI.AddToWorklist(Vec.getNode());
10153     DCI.AddToWorklist(ExtElt.getNode());
10154     DCI.AddToWorklist(V.getNode());
10155     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
10156                         St->getPointerInfo(), St->isVolatile(),
10157                         St->isNonTemporal(), St->getAlignment(),
10158                         St->getAAInfo());
10159   }
10160 
10161   // If this is a legal vector store, try to combine it into a VST1_UPD.
10162   if (ISD::isNormalStore(N) && VT.isVector() &&
10163       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10164     return CombineBaseUpdate(N, DCI);
10165 
10166   return SDValue();
10167 }
10168 
10169 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
10170 /// can replace combinations of VMUL and VCVT (floating-point to integer)
10171 /// when the VMUL has a constant operand that is a power of 2.
10172 ///
10173 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10174 ///  vmul.f32        d16, d17, d16
10175 ///  vcvt.s32.f32    d16, d16
10176 /// becomes:
10177 ///  vcvt.s32.f32    d16, d16, #3
10178 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
10179                                   const ARMSubtarget *Subtarget) {
10180   if (!Subtarget->hasNEON())
10181     return SDValue();
10182 
10183   SDValue Op = N->getOperand(0);
10184   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
10185       Op.getOpcode() != ISD::FMUL)
10186     return SDValue();
10187 
10188   SDValue ConstVec = Op->getOperand(1);
10189   if (!isa<BuildVectorSDNode>(ConstVec))
10190     return SDValue();
10191 
10192   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
10193   uint32_t FloatBits = FloatTy.getSizeInBits();
10194   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
10195   uint32_t IntBits = IntTy.getSizeInBits();
10196   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10197   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
10198     // These instructions only exist converting from f32 to i32. We can handle
10199     // smaller integers by generating an extra truncate, but larger ones would
10200     // be lossy. We also can't handle more then 4 lanes, since these intructions
10201     // only support v2i32/v4i32 types.
10202     return SDValue();
10203   }
10204 
10205   BitVector UndefElements;
10206   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10207   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
10208   if (C == -1 || C == 0 || C > 32)
10209     return SDValue();
10210 
10211   SDLoc dl(N);
10212   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
10213   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
10214     Intrinsic::arm_neon_vcvtfp2fxu;
10215   SDValue FixConv = DAG.getNode(
10216       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
10217       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
10218       DAG.getConstant(C, dl, MVT::i32));
10219 
10220   if (IntBits < FloatBits)
10221     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
10222 
10223   return FixConv;
10224 }
10225 
10226 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
10227 /// can replace combinations of VCVT (integer to floating-point) and VDIV
10228 /// when the VDIV has a constant operand that is a power of 2.
10229 ///
10230 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10231 ///  vcvt.f32.s32    d16, d16
10232 ///  vdiv.f32        d16, d17, d16
10233 /// becomes:
10234 ///  vcvt.f32.s32    d16, d16, #3
10235 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
10236                                   const ARMSubtarget *Subtarget) {
10237   if (!Subtarget->hasNEON())
10238     return SDValue();
10239 
10240   SDValue Op = N->getOperand(0);
10241   unsigned OpOpcode = Op.getNode()->getOpcode();
10242   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
10243       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
10244     return SDValue();
10245 
10246   SDValue ConstVec = N->getOperand(1);
10247   if (!isa<BuildVectorSDNode>(ConstVec))
10248     return SDValue();
10249 
10250   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
10251   uint32_t FloatBits = FloatTy.getSizeInBits();
10252   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
10253   uint32_t IntBits = IntTy.getSizeInBits();
10254   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10255   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
10256     // These instructions only exist converting from i32 to f32. We can handle
10257     // smaller integers by generating an extra extend, but larger ones would
10258     // be lossy. We also can't handle more then 4 lanes, since these intructions
10259     // only support v2i32/v4i32 types.
10260     return SDValue();
10261   }
10262 
10263   BitVector UndefElements;
10264   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10265   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
10266   if (C == -1 || C == 0 || C > 32)
10267     return SDValue();
10268 
10269   SDLoc dl(N);
10270   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
10271   SDValue ConvInput = Op.getOperand(0);
10272   if (IntBits < FloatBits)
10273     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
10274                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
10275                             ConvInput);
10276 
10277   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
10278     Intrinsic::arm_neon_vcvtfxu2fp;
10279   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
10280                      Op.getValueType(),
10281                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
10282                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
10283 }
10284 
10285 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
10286 /// operand of a vector shift operation, where all the elements of the
10287 /// build_vector must have the same constant integer value.
10288 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
10289   // Ignore bit_converts.
10290   while (Op.getOpcode() == ISD::BITCAST)
10291     Op = Op.getOperand(0);
10292   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
10293   APInt SplatBits, SplatUndef;
10294   unsigned SplatBitSize;
10295   bool HasAnyUndefs;
10296   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
10297                                       HasAnyUndefs, ElementBits) ||
10298       SplatBitSize > ElementBits)
10299     return false;
10300   Cnt = SplatBits.getSExtValue();
10301   return true;
10302 }
10303 
10304 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
10305 /// operand of a vector shift left operation.  That value must be in the range:
10306 ///   0 <= Value < ElementBits for a left shift; or
10307 ///   0 <= Value <= ElementBits for a long left shift.
10308 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
10309   assert(VT.isVector() && "vector shift count is not a vector type");
10310   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
10311   if (! getVShiftImm(Op, ElementBits, Cnt))
10312     return false;
10313   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
10314 }
10315 
10316 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
10317 /// operand of a vector shift right operation.  For a shift opcode, the value
10318 /// is positive, but for an intrinsic the value count must be negative. The
10319 /// absolute value must be in the range:
10320 ///   1 <= |Value| <= ElementBits for a right shift; or
10321 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
10322 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
10323                          int64_t &Cnt) {
10324   assert(VT.isVector() && "vector shift count is not a vector type");
10325   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
10326   if (! getVShiftImm(Op, ElementBits, Cnt))
10327     return false;
10328   if (!isIntrinsic)
10329     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
10330   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
10331     Cnt = -Cnt;
10332     return true;
10333   }
10334   return false;
10335 }
10336 
10337 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
10338 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
10339   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10340   switch (IntNo) {
10341   default:
10342     // Don't do anything for most intrinsics.
10343     break;
10344 
10345   // Vector shifts: check for immediate versions and lower them.
10346   // Note: This is done during DAG combining instead of DAG legalizing because
10347   // the build_vectors for 64-bit vector element shift counts are generally
10348   // not legal, and it is hard to see their values after they get legalized to
10349   // loads from a constant pool.
10350   case Intrinsic::arm_neon_vshifts:
10351   case Intrinsic::arm_neon_vshiftu:
10352   case Intrinsic::arm_neon_vrshifts:
10353   case Intrinsic::arm_neon_vrshiftu:
10354   case Intrinsic::arm_neon_vrshiftn:
10355   case Intrinsic::arm_neon_vqshifts:
10356   case Intrinsic::arm_neon_vqshiftu:
10357   case Intrinsic::arm_neon_vqshiftsu:
10358   case Intrinsic::arm_neon_vqshiftns:
10359   case Intrinsic::arm_neon_vqshiftnu:
10360   case Intrinsic::arm_neon_vqshiftnsu:
10361   case Intrinsic::arm_neon_vqrshiftns:
10362   case Intrinsic::arm_neon_vqrshiftnu:
10363   case Intrinsic::arm_neon_vqrshiftnsu: {
10364     EVT VT = N->getOperand(1).getValueType();
10365     int64_t Cnt;
10366     unsigned VShiftOpc = 0;
10367 
10368     switch (IntNo) {
10369     case Intrinsic::arm_neon_vshifts:
10370     case Intrinsic::arm_neon_vshiftu:
10371       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
10372         VShiftOpc = ARMISD::VSHL;
10373         break;
10374       }
10375       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
10376         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
10377                      ARMISD::VSHRs : ARMISD::VSHRu);
10378         break;
10379       }
10380       return SDValue();
10381 
10382     case Intrinsic::arm_neon_vrshifts:
10383     case Intrinsic::arm_neon_vrshiftu:
10384       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
10385         break;
10386       return SDValue();
10387 
10388     case Intrinsic::arm_neon_vqshifts:
10389     case Intrinsic::arm_neon_vqshiftu:
10390       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
10391         break;
10392       return SDValue();
10393 
10394     case Intrinsic::arm_neon_vqshiftsu:
10395       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
10396         break;
10397       llvm_unreachable("invalid shift count for vqshlu intrinsic");
10398 
10399     case Intrinsic::arm_neon_vrshiftn:
10400     case Intrinsic::arm_neon_vqshiftns:
10401     case Intrinsic::arm_neon_vqshiftnu:
10402     case Intrinsic::arm_neon_vqshiftnsu:
10403     case Intrinsic::arm_neon_vqrshiftns:
10404     case Intrinsic::arm_neon_vqrshiftnu:
10405     case Intrinsic::arm_neon_vqrshiftnsu:
10406       // Narrowing shifts require an immediate right shift.
10407       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
10408         break;
10409       llvm_unreachable("invalid shift count for narrowing vector shift "
10410                        "intrinsic");
10411 
10412     default:
10413       llvm_unreachable("unhandled vector shift");
10414     }
10415 
10416     switch (IntNo) {
10417     case Intrinsic::arm_neon_vshifts:
10418     case Intrinsic::arm_neon_vshiftu:
10419       // Opcode already set above.
10420       break;
10421     case Intrinsic::arm_neon_vrshifts:
10422       VShiftOpc = ARMISD::VRSHRs; break;
10423     case Intrinsic::arm_neon_vrshiftu:
10424       VShiftOpc = ARMISD::VRSHRu; break;
10425     case Intrinsic::arm_neon_vrshiftn:
10426       VShiftOpc = ARMISD::VRSHRN; break;
10427     case Intrinsic::arm_neon_vqshifts:
10428       VShiftOpc = ARMISD::VQSHLs; break;
10429     case Intrinsic::arm_neon_vqshiftu:
10430       VShiftOpc = ARMISD::VQSHLu; break;
10431     case Intrinsic::arm_neon_vqshiftsu:
10432       VShiftOpc = ARMISD::VQSHLsu; break;
10433     case Intrinsic::arm_neon_vqshiftns:
10434       VShiftOpc = ARMISD::VQSHRNs; break;
10435     case Intrinsic::arm_neon_vqshiftnu:
10436       VShiftOpc = ARMISD::VQSHRNu; break;
10437     case Intrinsic::arm_neon_vqshiftnsu:
10438       VShiftOpc = ARMISD::VQSHRNsu; break;
10439     case Intrinsic::arm_neon_vqrshiftns:
10440       VShiftOpc = ARMISD::VQRSHRNs; break;
10441     case Intrinsic::arm_neon_vqrshiftnu:
10442       VShiftOpc = ARMISD::VQRSHRNu; break;
10443     case Intrinsic::arm_neon_vqrshiftnsu:
10444       VShiftOpc = ARMISD::VQRSHRNsu; break;
10445     }
10446 
10447     SDLoc dl(N);
10448     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
10449                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
10450   }
10451 
10452   case Intrinsic::arm_neon_vshiftins: {
10453     EVT VT = N->getOperand(1).getValueType();
10454     int64_t Cnt;
10455     unsigned VShiftOpc = 0;
10456 
10457     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
10458       VShiftOpc = ARMISD::VSLI;
10459     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
10460       VShiftOpc = ARMISD::VSRI;
10461     else {
10462       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
10463     }
10464 
10465     SDLoc dl(N);
10466     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
10467                        N->getOperand(1), N->getOperand(2),
10468                        DAG.getConstant(Cnt, dl, MVT::i32));
10469   }
10470 
10471   case Intrinsic::arm_neon_vqrshifts:
10472   case Intrinsic::arm_neon_vqrshiftu:
10473     // No immediate versions of these to check for.
10474     break;
10475   }
10476 
10477   return SDValue();
10478 }
10479 
10480 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
10481 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
10482 /// combining instead of DAG legalizing because the build_vectors for 64-bit
10483 /// vector element shift counts are generally not legal, and it is hard to see
10484 /// their values after they get legalized to loads from a constant pool.
10485 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
10486                                    const ARMSubtarget *ST) {
10487   EVT VT = N->getValueType(0);
10488   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
10489     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
10490     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
10491     SDValue N1 = N->getOperand(1);
10492     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
10493       SDValue N0 = N->getOperand(0);
10494       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
10495           DAG.MaskedValueIsZero(N0.getOperand(0),
10496                                 APInt::getHighBitsSet(32, 16)))
10497         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
10498     }
10499   }
10500 
10501   // Nothing to be done for scalar shifts.
10502   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10503   if (!VT.isVector() || !TLI.isTypeLegal(VT))
10504     return SDValue();
10505 
10506   assert(ST->hasNEON() && "unexpected vector shift");
10507   int64_t Cnt;
10508 
10509   switch (N->getOpcode()) {
10510   default: llvm_unreachable("unexpected shift opcode");
10511 
10512   case ISD::SHL:
10513     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
10514       SDLoc dl(N);
10515       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
10516                          DAG.getConstant(Cnt, dl, MVT::i32));
10517     }
10518     break;
10519 
10520   case ISD::SRA:
10521   case ISD::SRL:
10522     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
10523       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
10524                             ARMISD::VSHRs : ARMISD::VSHRu);
10525       SDLoc dl(N);
10526       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
10527                          DAG.getConstant(Cnt, dl, MVT::i32));
10528     }
10529   }
10530   return SDValue();
10531 }
10532 
10533 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
10534 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
10535 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
10536                                     const ARMSubtarget *ST) {
10537   SDValue N0 = N->getOperand(0);
10538 
10539   // Check for sign- and zero-extensions of vector extract operations of 8-
10540   // and 16-bit vector elements.  NEON supports these directly.  They are
10541   // handled during DAG combining because type legalization will promote them
10542   // to 32-bit types and it is messy to recognize the operations after that.
10543   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10544     SDValue Vec = N0.getOperand(0);
10545     SDValue Lane = N0.getOperand(1);
10546     EVT VT = N->getValueType(0);
10547     EVT EltVT = N0.getValueType();
10548     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10549 
10550     if (VT == MVT::i32 &&
10551         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
10552         TLI.isTypeLegal(Vec.getValueType()) &&
10553         isa<ConstantSDNode>(Lane)) {
10554 
10555       unsigned Opc = 0;
10556       switch (N->getOpcode()) {
10557       default: llvm_unreachable("unexpected opcode");
10558       case ISD::SIGN_EXTEND:
10559         Opc = ARMISD::VGETLANEs;
10560         break;
10561       case ISD::ZERO_EXTEND:
10562       case ISD::ANY_EXTEND:
10563         Opc = ARMISD::VGETLANEu;
10564         break;
10565       }
10566       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
10567     }
10568   }
10569 
10570   return SDValue();
10571 }
10572 
10573 static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
10574                              APInt &KnownOne) {
10575   if (Op.getOpcode() == ARMISD::BFI) {
10576     // Conservatively, we can recurse down the first operand
10577     // and just mask out all affected bits.
10578     computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
10579 
10580     // The operand to BFI is already a mask suitable for removing the bits it
10581     // sets.
10582     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
10583     APInt Mask = CI->getAPIntValue();
10584     KnownZero &= Mask;
10585     KnownOne &= Mask;
10586     return;
10587   }
10588   if (Op.getOpcode() == ARMISD::CMOV) {
10589     APInt KZ2(KnownZero.getBitWidth(), 0);
10590     APInt KO2(KnownOne.getBitWidth(), 0);
10591     computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
10592     computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
10593 
10594     KnownZero &= KZ2;
10595     KnownOne &= KO2;
10596     return;
10597   }
10598   return DAG.computeKnownBits(Op, KnownZero, KnownOne);
10599 }
10600 
10601 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
10602   // If we have a CMOV, OR and AND combination such as:
10603   //   if (x & CN)
10604   //     y |= CM;
10605   //
10606   // And:
10607   //   * CN is a single bit;
10608   //   * All bits covered by CM are known zero in y
10609   //
10610   // Then we can convert this into a sequence of BFI instructions. This will
10611   // always be a win if CM is a single bit, will always be no worse than the
10612   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
10613   // three bits (due to the extra IT instruction).
10614 
10615   SDValue Op0 = CMOV->getOperand(0);
10616   SDValue Op1 = CMOV->getOperand(1);
10617   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
10618   auto CC = CCNode->getAPIntValue().getLimitedValue();
10619   SDValue CmpZ = CMOV->getOperand(4);
10620 
10621   // The compare must be against zero.
10622   if (!isNullConstant(CmpZ->getOperand(1)))
10623     return SDValue();
10624 
10625   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
10626   SDValue And = CmpZ->getOperand(0);
10627   if (And->getOpcode() != ISD::AND)
10628     return SDValue();
10629   ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
10630   if (!AndC || !AndC->getAPIntValue().isPowerOf2())
10631     return SDValue();
10632   SDValue X = And->getOperand(0);
10633 
10634   if (CC == ARMCC::EQ) {
10635     // We're performing an "equal to zero" compare. Swap the operands so we
10636     // canonicalize on a "not equal to zero" compare.
10637     std::swap(Op0, Op1);
10638   } else {
10639     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
10640   }
10641 
10642   if (Op1->getOpcode() != ISD::OR)
10643     return SDValue();
10644 
10645   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
10646   if (!OrC)
10647     return SDValue();
10648   SDValue Y = Op1->getOperand(0);
10649 
10650   if (Op0 != Y)
10651     return SDValue();
10652 
10653   // Now, is it profitable to continue?
10654   APInt OrCI = OrC->getAPIntValue();
10655   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
10656   if (OrCI.countPopulation() > Heuristic)
10657     return SDValue();
10658 
10659   // Lastly, can we determine that the bits defined by OrCI
10660   // are zero in Y?
10661   APInt KnownZero, KnownOne;
10662   computeKnownBits(DAG, Y, KnownZero, KnownOne);
10663   if ((OrCI & KnownZero) != OrCI)
10664     return SDValue();
10665 
10666   // OK, we can do the combine.
10667   SDValue V = Y;
10668   SDLoc dl(X);
10669   EVT VT = X.getValueType();
10670   unsigned BitInX = AndC->getAPIntValue().logBase2();
10671 
10672   if (BitInX != 0) {
10673     // We must shift X first.
10674     X = DAG.getNode(ISD::SRL, dl, VT, X,
10675                     DAG.getConstant(BitInX, dl, VT));
10676   }
10677 
10678   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
10679        BitInY < NumActiveBits; ++BitInY) {
10680     if (OrCI[BitInY] == 0)
10681       continue;
10682     APInt Mask(VT.getSizeInBits(), 0);
10683     Mask.setBit(BitInY);
10684     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
10685                     // Confusingly, the operand is an *inverted* mask.
10686                     DAG.getConstant(~Mask, dl, VT));
10687   }
10688 
10689   return V;
10690 }
10691 
10692 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
10693 SDValue
10694 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
10695   SDValue Cmp = N->getOperand(4);
10696   if (Cmp.getOpcode() != ARMISD::CMPZ)
10697     // Only looking at NE cases.
10698     return SDValue();
10699 
10700   EVT VT = N->getValueType(0);
10701   SDLoc dl(N);
10702   SDValue LHS = Cmp.getOperand(0);
10703   SDValue RHS = Cmp.getOperand(1);
10704   SDValue Chain = N->getOperand(0);
10705   SDValue BB = N->getOperand(1);
10706   SDValue ARMcc = N->getOperand(2);
10707   ARMCC::CondCodes CC =
10708     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
10709 
10710   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
10711   // -> (brcond Chain BB CC CPSR Cmp)
10712   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
10713       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
10714       LHS->getOperand(0)->hasOneUse()) {
10715     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
10716     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
10717     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
10718     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
10719     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
10720         (LHS01C && LHS01C->getZExtValue() == 1) &&
10721         (LHS1C && LHS1C->getZExtValue() == 1) &&
10722         (RHSC && RHSC->getZExtValue() == 0)) {
10723       return DAG.getNode(
10724           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
10725           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
10726     }
10727   }
10728 
10729   return SDValue();
10730 }
10731 
10732 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
10733 SDValue
10734 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
10735   SDValue Cmp = N->getOperand(4);
10736   if (Cmp.getOpcode() != ARMISD::CMPZ)
10737     // Only looking at EQ and NE cases.
10738     return SDValue();
10739 
10740   EVT VT = N->getValueType(0);
10741   SDLoc dl(N);
10742   SDValue LHS = Cmp.getOperand(0);
10743   SDValue RHS = Cmp.getOperand(1);
10744   SDValue FalseVal = N->getOperand(0);
10745   SDValue TrueVal = N->getOperand(1);
10746   SDValue ARMcc = N->getOperand(2);
10747   ARMCC::CondCodes CC =
10748     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
10749 
10750   // BFI is only available on V6T2+.
10751   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
10752     SDValue R = PerformCMOVToBFICombine(N, DAG);
10753     if (R)
10754       return R;
10755   }
10756 
10757   // Simplify
10758   //   mov     r1, r0
10759   //   cmp     r1, x
10760   //   mov     r0, y
10761   //   moveq   r0, x
10762   // to
10763   //   cmp     r0, x
10764   //   movne   r0, y
10765   //
10766   //   mov     r1, r0
10767   //   cmp     r1, x
10768   //   mov     r0, x
10769   //   movne   r0, y
10770   // to
10771   //   cmp     r0, x
10772   //   movne   r0, y
10773   /// FIXME: Turn this into a target neutral optimization?
10774   SDValue Res;
10775   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
10776     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
10777                       N->getOperand(3), Cmp);
10778   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
10779     SDValue ARMcc;
10780     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
10781     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
10782                       N->getOperand(3), NewCmp);
10783   }
10784 
10785   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
10786   // -> (cmov F T CC CPSR Cmp)
10787   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
10788     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
10789     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
10790     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
10791     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
10792         (LHS1C && LHS1C->getZExtValue() == 1) &&
10793         (RHSC && RHSC->getZExtValue() == 0)) {
10794       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
10795                          LHS->getOperand(2), LHS->getOperand(3),
10796                          LHS->getOperand(4));
10797     }
10798   }
10799 
10800   if (Res.getNode()) {
10801     APInt KnownZero, KnownOne;
10802     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
10803     // Capture demanded bits information that would be otherwise lost.
10804     if (KnownZero == 0xfffffffe)
10805       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10806                         DAG.getValueType(MVT::i1));
10807     else if (KnownZero == 0xffffff00)
10808       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10809                         DAG.getValueType(MVT::i8));
10810     else if (KnownZero == 0xffff0000)
10811       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10812                         DAG.getValueType(MVT::i16));
10813   }
10814 
10815   return Res;
10816 }
10817 
10818 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
10819                                              DAGCombinerInfo &DCI) const {
10820   switch (N->getOpcode()) {
10821   default: break;
10822   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
10823   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
10824   case ISD::SUB:        return PerformSUBCombine(N, DCI);
10825   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
10826   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
10827   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
10828   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
10829   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
10830   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
10831   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
10832   case ISD::STORE:      return PerformSTORECombine(N, DCI);
10833   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
10834   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
10835   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
10836   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
10837   case ISD::FP_TO_SINT:
10838   case ISD::FP_TO_UINT:
10839     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
10840   case ISD::FDIV:
10841     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
10842   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
10843   case ISD::SHL:
10844   case ISD::SRA:
10845   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
10846   case ISD::SIGN_EXTEND:
10847   case ISD::ZERO_EXTEND:
10848   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
10849   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
10850   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
10851   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
10852   case ARMISD::VLD2DUP:
10853   case ARMISD::VLD3DUP:
10854   case ARMISD::VLD4DUP:
10855     return PerformVLDCombine(N, DCI);
10856   case ARMISD::BUILD_VECTOR:
10857     return PerformARMBUILD_VECTORCombine(N, DCI);
10858   case ISD::INTRINSIC_VOID:
10859   case ISD::INTRINSIC_W_CHAIN:
10860     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10861     case Intrinsic::arm_neon_vld1:
10862     case Intrinsic::arm_neon_vld2:
10863     case Intrinsic::arm_neon_vld3:
10864     case Intrinsic::arm_neon_vld4:
10865     case Intrinsic::arm_neon_vld2lane:
10866     case Intrinsic::arm_neon_vld3lane:
10867     case Intrinsic::arm_neon_vld4lane:
10868     case Intrinsic::arm_neon_vst1:
10869     case Intrinsic::arm_neon_vst2:
10870     case Intrinsic::arm_neon_vst3:
10871     case Intrinsic::arm_neon_vst4:
10872     case Intrinsic::arm_neon_vst2lane:
10873     case Intrinsic::arm_neon_vst3lane:
10874     case Intrinsic::arm_neon_vst4lane:
10875       return PerformVLDCombine(N, DCI);
10876     default: break;
10877     }
10878     break;
10879   }
10880   return SDValue();
10881 }
10882 
10883 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
10884                                                           EVT VT) const {
10885   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
10886 }
10887 
10888 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
10889                                                        unsigned,
10890                                                        unsigned,
10891                                                        bool *Fast) const {
10892   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
10893   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
10894 
10895   switch (VT.getSimpleVT().SimpleTy) {
10896   default:
10897     return false;
10898   case MVT::i8:
10899   case MVT::i16:
10900   case MVT::i32: {
10901     // Unaligned access can use (for example) LRDB, LRDH, LDR
10902     if (AllowsUnaligned) {
10903       if (Fast)
10904         *Fast = Subtarget->hasV7Ops();
10905       return true;
10906     }
10907     return false;
10908   }
10909   case MVT::f64:
10910   case MVT::v2f64: {
10911     // For any little-endian targets with neon, we can support unaligned ld/st
10912     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
10913     // A big-endian target may also explicitly support unaligned accesses
10914     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
10915       if (Fast)
10916         *Fast = true;
10917       return true;
10918     }
10919     return false;
10920   }
10921   }
10922 }
10923 
10924 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
10925                        unsigned AlignCheck) {
10926   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
10927           (DstAlign == 0 || DstAlign % AlignCheck == 0));
10928 }
10929 
10930 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
10931                                            unsigned DstAlign, unsigned SrcAlign,
10932                                            bool IsMemset, bool ZeroMemset,
10933                                            bool MemcpyStrSrc,
10934                                            MachineFunction &MF) const {
10935   const Function *F = MF.getFunction();
10936 
10937   // See if we can use NEON instructions for this...
10938   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
10939       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10940     bool Fast;
10941     if (Size >= 16 &&
10942         (memOpAlign(SrcAlign, DstAlign, 16) ||
10943          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
10944       return MVT::v2f64;
10945     } else if (Size >= 8 &&
10946                (memOpAlign(SrcAlign, DstAlign, 8) ||
10947                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
10948                  Fast))) {
10949       return MVT::f64;
10950     }
10951   }
10952 
10953   // Lowering to i32/i16 if the size permits.
10954   if (Size >= 4)
10955     return MVT::i32;
10956   else if (Size >= 2)
10957     return MVT::i16;
10958 
10959   // Let the target-independent logic figure it out.
10960   return MVT::Other;
10961 }
10962 
10963 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
10964   if (Val.getOpcode() != ISD::LOAD)
10965     return false;
10966 
10967   EVT VT1 = Val.getValueType();
10968   if (!VT1.isSimple() || !VT1.isInteger() ||
10969       !VT2.isSimple() || !VT2.isInteger())
10970     return false;
10971 
10972   switch (VT1.getSimpleVT().SimpleTy) {
10973   default: break;
10974   case MVT::i1:
10975   case MVT::i8:
10976   case MVT::i16:
10977     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
10978     return true;
10979   }
10980 
10981   return false;
10982 }
10983 
10984 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
10985   EVT VT = ExtVal.getValueType();
10986 
10987   if (!isTypeLegal(VT))
10988     return false;
10989 
10990   // Don't create a loadext if we can fold the extension into a wide/long
10991   // instruction.
10992   // If there's more than one user instruction, the loadext is desirable no
10993   // matter what.  There can be two uses by the same instruction.
10994   if (ExtVal->use_empty() ||
10995       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
10996     return true;
10997 
10998   SDNode *U = *ExtVal->use_begin();
10999   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
11000        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
11001     return false;
11002 
11003   return true;
11004 }
11005 
11006 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
11007   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11008     return false;
11009 
11010   if (!isTypeLegal(EVT::getEVT(Ty1)))
11011     return false;
11012 
11013   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
11014 
11015   // Assuming the caller doesn't have a zeroext or signext return parameter,
11016   // truncation all the way down to i1 is valid.
11017   return true;
11018 }
11019 
11020 
11021 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
11022   if (V < 0)
11023     return false;
11024 
11025   unsigned Scale = 1;
11026   switch (VT.getSimpleVT().SimpleTy) {
11027   default: return false;
11028   case MVT::i1:
11029   case MVT::i8:
11030     // Scale == 1;
11031     break;
11032   case MVT::i16:
11033     // Scale == 2;
11034     Scale = 2;
11035     break;
11036   case MVT::i32:
11037     // Scale == 4;
11038     Scale = 4;
11039     break;
11040   }
11041 
11042   if ((V & (Scale - 1)) != 0)
11043     return false;
11044   V /= Scale;
11045   return V == (V & ((1LL << 5) - 1));
11046 }
11047 
11048 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
11049                                       const ARMSubtarget *Subtarget) {
11050   bool isNeg = false;
11051   if (V < 0) {
11052     isNeg = true;
11053     V = - V;
11054   }
11055 
11056   switch (VT.getSimpleVT().SimpleTy) {
11057   default: return false;
11058   case MVT::i1:
11059   case MVT::i8:
11060   case MVT::i16:
11061   case MVT::i32:
11062     // + imm12 or - imm8
11063     if (isNeg)
11064       return V == (V & ((1LL << 8) - 1));
11065     return V == (V & ((1LL << 12) - 1));
11066   case MVT::f32:
11067   case MVT::f64:
11068     // Same as ARM mode. FIXME: NEON?
11069     if (!Subtarget->hasVFP2())
11070       return false;
11071     if ((V & 3) != 0)
11072       return false;
11073     V >>= 2;
11074     return V == (V & ((1LL << 8) - 1));
11075   }
11076 }
11077 
11078 /// isLegalAddressImmediate - Return true if the integer value can be used
11079 /// as the offset of the target addressing mode for load / store of the
11080 /// given type.
11081 static bool isLegalAddressImmediate(int64_t V, EVT VT,
11082                                     const ARMSubtarget *Subtarget) {
11083   if (V == 0)
11084     return true;
11085 
11086   if (!VT.isSimple())
11087     return false;
11088 
11089   if (Subtarget->isThumb1Only())
11090     return isLegalT1AddressImmediate(V, VT);
11091   else if (Subtarget->isThumb2())
11092     return isLegalT2AddressImmediate(V, VT, Subtarget);
11093 
11094   // ARM mode.
11095   if (V < 0)
11096     V = - V;
11097   switch (VT.getSimpleVT().SimpleTy) {
11098   default: return false;
11099   case MVT::i1:
11100   case MVT::i8:
11101   case MVT::i32:
11102     // +- imm12
11103     return V == (V & ((1LL << 12) - 1));
11104   case MVT::i16:
11105     // +- imm8
11106     return V == (V & ((1LL << 8) - 1));
11107   case MVT::f32:
11108   case MVT::f64:
11109     if (!Subtarget->hasVFP2()) // FIXME: NEON?
11110       return false;
11111     if ((V & 3) != 0)
11112       return false;
11113     V >>= 2;
11114     return V == (V & ((1LL << 8) - 1));
11115   }
11116 }
11117 
11118 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
11119                                                       EVT VT) const {
11120   int Scale = AM.Scale;
11121   if (Scale < 0)
11122     return false;
11123 
11124   switch (VT.getSimpleVT().SimpleTy) {
11125   default: return false;
11126   case MVT::i1:
11127   case MVT::i8:
11128   case MVT::i16:
11129   case MVT::i32:
11130     if (Scale == 1)
11131       return true;
11132     // r + r << imm
11133     Scale = Scale & ~1;
11134     return Scale == 2 || Scale == 4 || Scale == 8;
11135   case MVT::i64:
11136     // r + r
11137     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11138       return true;
11139     return false;
11140   case MVT::isVoid:
11141     // Note, we allow "void" uses (basically, uses that aren't loads or
11142     // stores), because arm allows folding a scale into many arithmetic
11143     // operations.  This should be made more precise and revisited later.
11144 
11145     // Allow r << imm, but the imm has to be a multiple of two.
11146     if (Scale & 1) return false;
11147     return isPowerOf2_32(Scale);
11148   }
11149 }
11150 
11151 /// isLegalAddressingMode - Return true if the addressing mode represented
11152 /// by AM is legal for this target, for a load/store of the specified type.
11153 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11154                                               const AddrMode &AM, Type *Ty,
11155                                               unsigned AS) const {
11156   EVT VT = getValueType(DL, Ty, true);
11157   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
11158     return false;
11159 
11160   // Can never fold addr of global into load/store.
11161   if (AM.BaseGV)
11162     return false;
11163 
11164   switch (AM.Scale) {
11165   case 0:  // no scale reg, must be "r+i" or "r", or "i".
11166     break;
11167   case 1:
11168     if (Subtarget->isThumb1Only())
11169       return false;
11170     // FALL THROUGH.
11171   default:
11172     // ARM doesn't support any R+R*scale+imm addr modes.
11173     if (AM.BaseOffs)
11174       return false;
11175 
11176     if (!VT.isSimple())
11177       return false;
11178 
11179     if (Subtarget->isThumb2())
11180       return isLegalT2ScaledAddressingMode(AM, VT);
11181 
11182     int Scale = AM.Scale;
11183     switch (VT.getSimpleVT().SimpleTy) {
11184     default: return false;
11185     case MVT::i1:
11186     case MVT::i8:
11187     case MVT::i32:
11188       if (Scale < 0) Scale = -Scale;
11189       if (Scale == 1)
11190         return true;
11191       // r + r << imm
11192       return isPowerOf2_32(Scale & ~1);
11193     case MVT::i16:
11194     case MVT::i64:
11195       // r + r
11196       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11197         return true;
11198       return false;
11199 
11200     case MVT::isVoid:
11201       // Note, we allow "void" uses (basically, uses that aren't loads or
11202       // stores), because arm allows folding a scale into many arithmetic
11203       // operations.  This should be made more precise and revisited later.
11204 
11205       // Allow r << imm, but the imm has to be a multiple of two.
11206       if (Scale & 1) return false;
11207       return isPowerOf2_32(Scale);
11208     }
11209   }
11210   return true;
11211 }
11212 
11213 /// isLegalICmpImmediate - Return true if the specified immediate is legal
11214 /// icmp immediate, that is the target has icmp instructions which can compare
11215 /// a register against the immediate without having to materialize the
11216 /// immediate into a register.
11217 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11218   // Thumb2 and ARM modes can use cmn for negative immediates.
11219   if (!Subtarget->isThumb())
11220     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
11221   if (Subtarget->isThumb2())
11222     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
11223   // Thumb1 doesn't have cmn, and only 8-bit immediates.
11224   return Imm >= 0 && Imm <= 255;
11225 }
11226 
11227 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
11228 /// *or sub* immediate, that is the target has add or sub instructions which can
11229 /// add a register with the immediate without having to materialize the
11230 /// immediate into a register.
11231 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11232   // Same encoding for add/sub, just flip the sign.
11233   int64_t AbsImm = std::abs(Imm);
11234   if (!Subtarget->isThumb())
11235     return ARM_AM::getSOImmVal(AbsImm) != -1;
11236   if (Subtarget->isThumb2())
11237     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
11238   // Thumb1 only has 8-bit unsigned immediate.
11239   return AbsImm >= 0 && AbsImm <= 255;
11240 }
11241 
11242 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
11243                                       bool isSEXTLoad, SDValue &Base,
11244                                       SDValue &Offset, bool &isInc,
11245                                       SelectionDAG &DAG) {
11246   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
11247     return false;
11248 
11249   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
11250     // AddressingMode 3
11251     Base = Ptr->getOperand(0);
11252     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11253       int RHSC = (int)RHS->getZExtValue();
11254       if (RHSC < 0 && RHSC > -256) {
11255         assert(Ptr->getOpcode() == ISD::ADD);
11256         isInc = false;
11257         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11258         return true;
11259       }
11260     }
11261     isInc = (Ptr->getOpcode() == ISD::ADD);
11262     Offset = Ptr->getOperand(1);
11263     return true;
11264   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
11265     // AddressingMode 2
11266     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11267       int RHSC = (int)RHS->getZExtValue();
11268       if (RHSC < 0 && RHSC > -0x1000) {
11269         assert(Ptr->getOpcode() == ISD::ADD);
11270         isInc = false;
11271         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11272         Base = Ptr->getOperand(0);
11273         return true;
11274       }
11275     }
11276 
11277     if (Ptr->getOpcode() == ISD::ADD) {
11278       isInc = true;
11279       ARM_AM::ShiftOpc ShOpcVal=
11280         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
11281       if (ShOpcVal != ARM_AM::no_shift) {
11282         Base = Ptr->getOperand(1);
11283         Offset = Ptr->getOperand(0);
11284       } else {
11285         Base = Ptr->getOperand(0);
11286         Offset = Ptr->getOperand(1);
11287       }
11288       return true;
11289     }
11290 
11291     isInc = (Ptr->getOpcode() == ISD::ADD);
11292     Base = Ptr->getOperand(0);
11293     Offset = Ptr->getOperand(1);
11294     return true;
11295   }
11296 
11297   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
11298   return false;
11299 }
11300 
11301 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
11302                                      bool isSEXTLoad, SDValue &Base,
11303                                      SDValue &Offset, bool &isInc,
11304                                      SelectionDAG &DAG) {
11305   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
11306     return false;
11307 
11308   Base = Ptr->getOperand(0);
11309   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11310     int RHSC = (int)RHS->getZExtValue();
11311     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
11312       assert(Ptr->getOpcode() == ISD::ADD);
11313       isInc = false;
11314       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11315       return true;
11316     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
11317       isInc = Ptr->getOpcode() == ISD::ADD;
11318       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
11319       return true;
11320     }
11321   }
11322 
11323   return false;
11324 }
11325 
11326 /// getPreIndexedAddressParts - returns true by value, base pointer and
11327 /// offset pointer and addressing mode by reference if the node's address
11328 /// can be legally represented as pre-indexed load / store address.
11329 bool
11330 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11331                                              SDValue &Offset,
11332                                              ISD::MemIndexedMode &AM,
11333                                              SelectionDAG &DAG) const {
11334   if (Subtarget->isThumb1Only())
11335     return false;
11336 
11337   EVT VT;
11338   SDValue Ptr;
11339   bool isSEXTLoad = false;
11340   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11341     Ptr = LD->getBasePtr();
11342     VT  = LD->getMemoryVT();
11343     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
11344   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11345     Ptr = ST->getBasePtr();
11346     VT  = ST->getMemoryVT();
11347   } else
11348     return false;
11349 
11350   bool isInc;
11351   bool isLegal = false;
11352   if (Subtarget->isThumb2())
11353     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
11354                                        Offset, isInc, DAG);
11355   else
11356     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
11357                                         Offset, isInc, DAG);
11358   if (!isLegal)
11359     return false;
11360 
11361   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
11362   return true;
11363 }
11364 
11365 /// getPostIndexedAddressParts - returns true by value, base pointer and
11366 /// offset pointer and addressing mode by reference if this node can be
11367 /// combined with a load / store to form a post-indexed load / store.
11368 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
11369                                                    SDValue &Base,
11370                                                    SDValue &Offset,
11371                                                    ISD::MemIndexedMode &AM,
11372                                                    SelectionDAG &DAG) const {
11373   if (Subtarget->isThumb1Only())
11374     return false;
11375 
11376   EVT VT;
11377   SDValue Ptr;
11378   bool isSEXTLoad = false;
11379   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11380     VT  = LD->getMemoryVT();
11381     Ptr = LD->getBasePtr();
11382     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
11383   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11384     VT  = ST->getMemoryVT();
11385     Ptr = ST->getBasePtr();
11386   } else
11387     return false;
11388 
11389   bool isInc;
11390   bool isLegal = false;
11391   if (Subtarget->isThumb2())
11392     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
11393                                        isInc, DAG);
11394   else
11395     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
11396                                         isInc, DAG);
11397   if (!isLegal)
11398     return false;
11399 
11400   if (Ptr != Base) {
11401     // Swap base ptr and offset to catch more post-index load / store when
11402     // it's legal. In Thumb2 mode, offset must be an immediate.
11403     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
11404         !Subtarget->isThumb2())
11405       std::swap(Base, Offset);
11406 
11407     // Post-indexed load / store update the base pointer.
11408     if (Ptr != Base)
11409       return false;
11410   }
11411 
11412   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
11413   return true;
11414 }
11415 
11416 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11417                                                       APInt &KnownZero,
11418                                                       APInt &KnownOne,
11419                                                       const SelectionDAG &DAG,
11420                                                       unsigned Depth) const {
11421   unsigned BitWidth = KnownOne.getBitWidth();
11422   KnownZero = KnownOne = APInt(BitWidth, 0);
11423   switch (Op.getOpcode()) {
11424   default: break;
11425   case ARMISD::ADDC:
11426   case ARMISD::ADDE:
11427   case ARMISD::SUBC:
11428   case ARMISD::SUBE:
11429     // These nodes' second result is a boolean
11430     if (Op.getResNo() == 0)
11431       break;
11432     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
11433     break;
11434   case ARMISD::CMOV: {
11435     // Bits are known zero/one if known on the LHS and RHS.
11436     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
11437     if (KnownZero == 0 && KnownOne == 0) return;
11438 
11439     APInt KnownZeroRHS, KnownOneRHS;
11440     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
11441     KnownZero &= KnownZeroRHS;
11442     KnownOne  &= KnownOneRHS;
11443     return;
11444   }
11445   case ISD::INTRINSIC_W_CHAIN: {
11446     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
11447     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
11448     switch (IntID) {
11449     default: return;
11450     case Intrinsic::arm_ldaex:
11451     case Intrinsic::arm_ldrex: {
11452       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
11453       unsigned MemBits = VT.getScalarType().getSizeInBits();
11454       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
11455       return;
11456     }
11457     }
11458   }
11459   }
11460 }
11461 
11462 //===----------------------------------------------------------------------===//
11463 //                           ARM Inline Assembly Support
11464 //===----------------------------------------------------------------------===//
11465 
11466 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
11467   // Looking for "rev" which is V6+.
11468   if (!Subtarget->hasV6Ops())
11469     return false;
11470 
11471   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11472   std::string AsmStr = IA->getAsmString();
11473   SmallVector<StringRef, 4> AsmPieces;
11474   SplitString(AsmStr, AsmPieces, ";\n");
11475 
11476   switch (AsmPieces.size()) {
11477   default: return false;
11478   case 1:
11479     AsmStr = AsmPieces[0];
11480     AsmPieces.clear();
11481     SplitString(AsmStr, AsmPieces, " \t,");
11482 
11483     // rev $0, $1
11484     if (AsmPieces.size() == 3 &&
11485         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
11486         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
11487       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11488       if (Ty && Ty->getBitWidth() == 32)
11489         return IntrinsicLowering::LowerToByteSwap(CI);
11490     }
11491     break;
11492   }
11493 
11494   return false;
11495 }
11496 
11497 /// getConstraintType - Given a constraint letter, return the type of
11498 /// constraint it is for this target.
11499 ARMTargetLowering::ConstraintType
11500 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
11501   if (Constraint.size() == 1) {
11502     switch (Constraint[0]) {
11503     default:  break;
11504     case 'l': return C_RegisterClass;
11505     case 'w': return C_RegisterClass;
11506     case 'h': return C_RegisterClass;
11507     case 'x': return C_RegisterClass;
11508     case 't': return C_RegisterClass;
11509     case 'j': return C_Other; // Constant for movw.
11510       // An address with a single base register. Due to the way we
11511       // currently handle addresses it is the same as an 'r' memory constraint.
11512     case 'Q': return C_Memory;
11513     }
11514   } else if (Constraint.size() == 2) {
11515     switch (Constraint[0]) {
11516     default: break;
11517     // All 'U+' constraints are addresses.
11518     case 'U': return C_Memory;
11519     }
11520   }
11521   return TargetLowering::getConstraintType(Constraint);
11522 }
11523 
11524 /// Examine constraint type and operand type and determine a weight value.
11525 /// This object must already have been set up with the operand type
11526 /// and the current alternative constraint selected.
11527 TargetLowering::ConstraintWeight
11528 ARMTargetLowering::getSingleConstraintMatchWeight(
11529     AsmOperandInfo &info, const char *constraint) const {
11530   ConstraintWeight weight = CW_Invalid;
11531   Value *CallOperandVal = info.CallOperandVal;
11532     // If we don't have a value, we can't do a match,
11533     // but allow it at the lowest weight.
11534   if (!CallOperandVal)
11535     return CW_Default;
11536   Type *type = CallOperandVal->getType();
11537   // Look at the constraint type.
11538   switch (*constraint) {
11539   default:
11540     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11541     break;
11542   case 'l':
11543     if (type->isIntegerTy()) {
11544       if (Subtarget->isThumb())
11545         weight = CW_SpecificReg;
11546       else
11547         weight = CW_Register;
11548     }
11549     break;
11550   case 'w':
11551     if (type->isFloatingPointTy())
11552       weight = CW_Register;
11553     break;
11554   }
11555   return weight;
11556 }
11557 
11558 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
11559 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
11560     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
11561   if (Constraint.size() == 1) {
11562     // GCC ARM Constraint Letters
11563     switch (Constraint[0]) {
11564     case 'l': // Low regs or general regs.
11565       if (Subtarget->isThumb())
11566         return RCPair(0U, &ARM::tGPRRegClass);
11567       return RCPair(0U, &ARM::GPRRegClass);
11568     case 'h': // High regs or no regs.
11569       if (Subtarget->isThumb())
11570         return RCPair(0U, &ARM::hGPRRegClass);
11571       break;
11572     case 'r':
11573       if (Subtarget->isThumb1Only())
11574         return RCPair(0U, &ARM::tGPRRegClass);
11575       return RCPair(0U, &ARM::GPRRegClass);
11576     case 'w':
11577       if (VT == MVT::Other)
11578         break;
11579       if (VT == MVT::f32)
11580         return RCPair(0U, &ARM::SPRRegClass);
11581       if (VT.getSizeInBits() == 64)
11582         return RCPair(0U, &ARM::DPRRegClass);
11583       if (VT.getSizeInBits() == 128)
11584         return RCPair(0U, &ARM::QPRRegClass);
11585       break;
11586     case 'x':
11587       if (VT == MVT::Other)
11588         break;
11589       if (VT == MVT::f32)
11590         return RCPair(0U, &ARM::SPR_8RegClass);
11591       if (VT.getSizeInBits() == 64)
11592         return RCPair(0U, &ARM::DPR_8RegClass);
11593       if (VT.getSizeInBits() == 128)
11594         return RCPair(0U, &ARM::QPR_8RegClass);
11595       break;
11596     case 't':
11597       if (VT == MVT::f32)
11598         return RCPair(0U, &ARM::SPRRegClass);
11599       break;
11600     }
11601   }
11602   if (StringRef("{cc}").equals_lower(Constraint))
11603     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
11604 
11605   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11606 }
11607 
11608 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11609 /// vector.  If it is invalid, don't add anything to Ops.
11610 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11611                                                      std::string &Constraint,
11612                                                      std::vector<SDValue>&Ops,
11613                                                      SelectionDAG &DAG) const {
11614   SDValue Result;
11615 
11616   // Currently only support length 1 constraints.
11617   if (Constraint.length() != 1) return;
11618 
11619   char ConstraintLetter = Constraint[0];
11620   switch (ConstraintLetter) {
11621   default: break;
11622   case 'j':
11623   case 'I': case 'J': case 'K': case 'L':
11624   case 'M': case 'N': case 'O':
11625     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
11626     if (!C)
11627       return;
11628 
11629     int64_t CVal64 = C->getSExtValue();
11630     int CVal = (int) CVal64;
11631     // None of these constraints allow values larger than 32 bits.  Check
11632     // that the value fits in an int.
11633     if (CVal != CVal64)
11634       return;
11635 
11636     switch (ConstraintLetter) {
11637       case 'j':
11638         // Constant suitable for movw, must be between 0 and
11639         // 65535.
11640         if (Subtarget->hasV6T2Ops())
11641           if (CVal >= 0 && CVal <= 65535)
11642             break;
11643         return;
11644       case 'I':
11645         if (Subtarget->isThumb1Only()) {
11646           // This must be a constant between 0 and 255, for ADD
11647           // immediates.
11648           if (CVal >= 0 && CVal <= 255)
11649             break;
11650         } else if (Subtarget->isThumb2()) {
11651           // A constant that can be used as an immediate value in a
11652           // data-processing instruction.
11653           if (ARM_AM::getT2SOImmVal(CVal) != -1)
11654             break;
11655         } else {
11656           // A constant that can be used as an immediate value in a
11657           // data-processing instruction.
11658           if (ARM_AM::getSOImmVal(CVal) != -1)
11659             break;
11660         }
11661         return;
11662 
11663       case 'J':
11664         if (Subtarget->isThumb1Only()) {
11665           // This must be a constant between -255 and -1, for negated ADD
11666           // immediates. This can be used in GCC with an "n" modifier that
11667           // prints the negated value, for use with SUB instructions. It is
11668           // not useful otherwise but is implemented for compatibility.
11669           if (CVal >= -255 && CVal <= -1)
11670             break;
11671         } else {
11672           // This must be a constant between -4095 and 4095. It is not clear
11673           // what this constraint is intended for. Implemented for
11674           // compatibility with GCC.
11675           if (CVal >= -4095 && CVal <= 4095)
11676             break;
11677         }
11678         return;
11679 
11680       case 'K':
11681         if (Subtarget->isThumb1Only()) {
11682           // A 32-bit value where only one byte has a nonzero value. Exclude
11683           // zero to match GCC. This constraint is used by GCC internally for
11684           // constants that can be loaded with a move/shift combination.
11685           // It is not useful otherwise but is implemented for compatibility.
11686           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
11687             break;
11688         } else if (Subtarget->isThumb2()) {
11689           // A constant whose bitwise inverse can be used as an immediate
11690           // value in a data-processing instruction. This can be used in GCC
11691           // with a "B" modifier that prints the inverted value, for use with
11692           // BIC and MVN instructions. It is not useful otherwise but is
11693           // implemented for compatibility.
11694           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
11695             break;
11696         } else {
11697           // A constant whose bitwise inverse can be used as an immediate
11698           // value in a data-processing instruction. This can be used in GCC
11699           // with a "B" modifier that prints the inverted value, for use with
11700           // BIC and MVN instructions. It is not useful otherwise but is
11701           // implemented for compatibility.
11702           if (ARM_AM::getSOImmVal(~CVal) != -1)
11703             break;
11704         }
11705         return;
11706 
11707       case 'L':
11708         if (Subtarget->isThumb1Only()) {
11709           // This must be a constant between -7 and 7,
11710           // for 3-operand ADD/SUB immediate instructions.
11711           if (CVal >= -7 && CVal < 7)
11712             break;
11713         } else if (Subtarget->isThumb2()) {
11714           // A constant whose negation can be used as an immediate value in a
11715           // data-processing instruction. This can be used in GCC with an "n"
11716           // modifier that prints the negated value, for use with SUB
11717           // instructions. It is not useful otherwise but is implemented for
11718           // compatibility.
11719           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
11720             break;
11721         } else {
11722           // A constant whose negation can be used as an immediate value in a
11723           // data-processing instruction. This can be used in GCC with an "n"
11724           // modifier that prints the negated value, for use with SUB
11725           // instructions. It is not useful otherwise but is implemented for
11726           // compatibility.
11727           if (ARM_AM::getSOImmVal(-CVal) != -1)
11728             break;
11729         }
11730         return;
11731 
11732       case 'M':
11733         if (Subtarget->isThumb1Only()) {
11734           // This must be a multiple of 4 between 0 and 1020, for
11735           // ADD sp + immediate.
11736           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
11737             break;
11738         } else {
11739           // A power of two or a constant between 0 and 32.  This is used in
11740           // GCC for the shift amount on shifted register operands, but it is
11741           // useful in general for any shift amounts.
11742           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
11743             break;
11744         }
11745         return;
11746 
11747       case 'N':
11748         if (Subtarget->isThumb()) {  // FIXME thumb2
11749           // This must be a constant between 0 and 31, for shift amounts.
11750           if (CVal >= 0 && CVal <= 31)
11751             break;
11752         }
11753         return;
11754 
11755       case 'O':
11756         if (Subtarget->isThumb()) {  // FIXME thumb2
11757           // This must be a multiple of 4 between -508 and 508, for
11758           // ADD/SUB sp = sp + immediate.
11759           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
11760             break;
11761         }
11762         return;
11763     }
11764     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
11765     break;
11766   }
11767 
11768   if (Result.getNode()) {
11769     Ops.push_back(Result);
11770     return;
11771   }
11772   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11773 }
11774 
11775 static RTLIB::Libcall getDivRemLibcall(
11776     const SDNode *N, MVT::SimpleValueType SVT) {
11777   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
11778           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
11779          "Unhandled Opcode in getDivRemLibcall");
11780   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
11781                   N->getOpcode() == ISD::SREM;
11782   RTLIB::Libcall LC;
11783   switch (SVT) {
11784   default: llvm_unreachable("Unexpected request for libcall!");
11785   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
11786   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
11787   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
11788   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
11789   }
11790   return LC;
11791 }
11792 
11793 static TargetLowering::ArgListTy getDivRemArgList(
11794     const SDNode *N, LLVMContext *Context) {
11795   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
11796           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
11797          "Unhandled Opcode in getDivRemArgList");
11798   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
11799                   N->getOpcode() == ISD::SREM;
11800   TargetLowering::ArgListTy Args;
11801   TargetLowering::ArgListEntry Entry;
11802   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
11803     EVT ArgVT = N->getOperand(i).getValueType();
11804     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
11805     Entry.Node = N->getOperand(i);
11806     Entry.Ty = ArgTy;
11807     Entry.isSExt = isSigned;
11808     Entry.isZExt = !isSigned;
11809     Args.push_back(Entry);
11810   }
11811   return Args;
11812 }
11813 
11814 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
11815   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
11816           Subtarget->isTargetGNUAEABI()) &&
11817          "Register-based DivRem lowering only");
11818   unsigned Opcode = Op->getOpcode();
11819   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
11820          "Invalid opcode for Div/Rem lowering");
11821   bool isSigned = (Opcode == ISD::SDIVREM);
11822   EVT VT = Op->getValueType(0);
11823   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
11824 
11825   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
11826                                        VT.getSimpleVT().SimpleTy);
11827   SDValue InChain = DAG.getEntryNode();
11828 
11829   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
11830                                                     DAG.getContext());
11831 
11832   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
11833                                          getPointerTy(DAG.getDataLayout()));
11834 
11835   Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
11836 
11837   SDLoc dl(Op);
11838   TargetLowering::CallLoweringInfo CLI(DAG);
11839   CLI.setDebugLoc(dl).setChain(InChain)
11840     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
11841     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
11842 
11843   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
11844   return CallInfo.first;
11845 }
11846 
11847 // Lowers REM using divmod helpers
11848 // see RTABI section 4.2/4.3
11849 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
11850   // Build return types (div and rem)
11851   std::vector<Type*> RetTyParams;
11852   Type *RetTyElement;
11853 
11854   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
11855   default: llvm_unreachable("Unexpected request for libcall!");
11856   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
11857   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
11858   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
11859   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
11860   }
11861 
11862   RetTyParams.push_back(RetTyElement);
11863   RetTyParams.push_back(RetTyElement);
11864   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
11865   Type *RetTy = StructType::get(*DAG.getContext(), ret);
11866 
11867   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
11868                                                              SimpleTy);
11869   SDValue InChain = DAG.getEntryNode();
11870   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext());
11871   bool isSigned = N->getOpcode() == ISD::SREM;
11872   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
11873                                          getPointerTy(DAG.getDataLayout()));
11874 
11875   // Lower call
11876   CallLoweringInfo CLI(DAG);
11877   CLI.setChain(InChain)
11878      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args), 0)
11879      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
11880   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
11881 
11882   // Return second (rem) result operand (first contains div)
11883   SDNode *ResNode = CallResult.first.getNode();
11884   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
11885   return ResNode->getOperand(1);
11886 }
11887 
11888 SDValue
11889 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
11890   assert(Subtarget->isTargetWindows() && "unsupported target platform");
11891   SDLoc DL(Op);
11892 
11893   // Get the inputs.
11894   SDValue Chain = Op.getOperand(0);
11895   SDValue Size  = Op.getOperand(1);
11896 
11897   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
11898                               DAG.getConstant(2, DL, MVT::i32));
11899 
11900   SDValue Flag;
11901   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
11902   Flag = Chain.getValue(1);
11903 
11904   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11905   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
11906 
11907   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
11908   Chain = NewSP.getValue(1);
11909 
11910   SDValue Ops[2] = { NewSP, Chain };
11911   return DAG.getMergeValues(Ops, DL);
11912 }
11913 
11914 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11915   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
11916          "Unexpected type for custom-lowering FP_EXTEND");
11917 
11918   RTLIB::Libcall LC;
11919   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
11920 
11921   SDValue SrcVal = Op.getOperand(0);
11922   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
11923                      SDLoc(Op)).first;
11924 }
11925 
11926 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
11927   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
11928          Subtarget->isFPOnlySP() &&
11929          "Unexpected type for custom-lowering FP_ROUND");
11930 
11931   RTLIB::Libcall LC;
11932   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
11933 
11934   SDValue SrcVal = Op.getOperand(0);
11935   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
11936                      SDLoc(Op)).first;
11937 }
11938 
11939 bool
11940 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11941   // The ARM target isn't yet aware of offsets.
11942   return false;
11943 }
11944 
11945 bool ARM::isBitFieldInvertedMask(unsigned v) {
11946   if (v == 0xffffffff)
11947     return false;
11948 
11949   // there can be 1's on either or both "outsides", all the "inside"
11950   // bits must be 0's
11951   return isShiftedMask_32(~v);
11952 }
11953 
11954 /// isFPImmLegal - Returns true if the target can instruction select the
11955 /// specified FP immediate natively. If false, the legalizer will
11956 /// materialize the FP immediate as a load from a constant pool.
11957 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
11958   if (!Subtarget->hasVFP3())
11959     return false;
11960   if (VT == MVT::f32)
11961     return ARM_AM::getFP32Imm(Imm) != -1;
11962   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
11963     return ARM_AM::getFP64Imm(Imm) != -1;
11964   return false;
11965 }
11966 
11967 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
11968 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
11969 /// specified in the intrinsic calls.
11970 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11971                                            const CallInst &I,
11972                                            unsigned Intrinsic) const {
11973   switch (Intrinsic) {
11974   case Intrinsic::arm_neon_vld1:
11975   case Intrinsic::arm_neon_vld2:
11976   case Intrinsic::arm_neon_vld3:
11977   case Intrinsic::arm_neon_vld4:
11978   case Intrinsic::arm_neon_vld2lane:
11979   case Intrinsic::arm_neon_vld3lane:
11980   case Intrinsic::arm_neon_vld4lane: {
11981     Info.opc = ISD::INTRINSIC_W_CHAIN;
11982     // Conservatively set memVT to the entire set of vectors loaded.
11983     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
11984     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
11985     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
11986     Info.ptrVal = I.getArgOperand(0);
11987     Info.offset = 0;
11988     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
11989     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
11990     Info.vol = false; // volatile loads with NEON intrinsics not supported
11991     Info.readMem = true;
11992     Info.writeMem = false;
11993     return true;
11994   }
11995   case Intrinsic::arm_neon_vst1:
11996   case Intrinsic::arm_neon_vst2:
11997   case Intrinsic::arm_neon_vst3:
11998   case Intrinsic::arm_neon_vst4:
11999   case Intrinsic::arm_neon_vst2lane:
12000   case Intrinsic::arm_neon_vst3lane:
12001   case Intrinsic::arm_neon_vst4lane: {
12002     Info.opc = ISD::INTRINSIC_VOID;
12003     // Conservatively set memVT to the entire set of vectors stored.
12004     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12005     unsigned NumElts = 0;
12006     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
12007       Type *ArgTy = I.getArgOperand(ArgI)->getType();
12008       if (!ArgTy->isVectorTy())
12009         break;
12010       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
12011     }
12012     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12013     Info.ptrVal = I.getArgOperand(0);
12014     Info.offset = 0;
12015     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12016     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12017     Info.vol = false; // volatile stores with NEON intrinsics not supported
12018     Info.readMem = false;
12019     Info.writeMem = true;
12020     return true;
12021   }
12022   case Intrinsic::arm_ldaex:
12023   case Intrinsic::arm_ldrex: {
12024     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12025     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
12026     Info.opc = ISD::INTRINSIC_W_CHAIN;
12027     Info.memVT = MVT::getVT(PtrTy->getElementType());
12028     Info.ptrVal = I.getArgOperand(0);
12029     Info.offset = 0;
12030     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12031     Info.vol = true;
12032     Info.readMem = true;
12033     Info.writeMem = false;
12034     return true;
12035   }
12036   case Intrinsic::arm_stlex:
12037   case Intrinsic::arm_strex: {
12038     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12039     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
12040     Info.opc = ISD::INTRINSIC_W_CHAIN;
12041     Info.memVT = MVT::getVT(PtrTy->getElementType());
12042     Info.ptrVal = I.getArgOperand(1);
12043     Info.offset = 0;
12044     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12045     Info.vol = true;
12046     Info.readMem = false;
12047     Info.writeMem = true;
12048     return true;
12049   }
12050   case Intrinsic::arm_stlexd:
12051   case Intrinsic::arm_strexd: {
12052     Info.opc = ISD::INTRINSIC_W_CHAIN;
12053     Info.memVT = MVT::i64;
12054     Info.ptrVal = I.getArgOperand(2);
12055     Info.offset = 0;
12056     Info.align = 8;
12057     Info.vol = true;
12058     Info.readMem = false;
12059     Info.writeMem = true;
12060     return true;
12061   }
12062   case Intrinsic::arm_ldaexd:
12063   case Intrinsic::arm_ldrexd: {
12064     Info.opc = ISD::INTRINSIC_W_CHAIN;
12065     Info.memVT = MVT::i64;
12066     Info.ptrVal = I.getArgOperand(0);
12067     Info.offset = 0;
12068     Info.align = 8;
12069     Info.vol = true;
12070     Info.readMem = true;
12071     Info.writeMem = false;
12072     return true;
12073   }
12074   default:
12075     break;
12076   }
12077 
12078   return false;
12079 }
12080 
12081 /// \brief Returns true if it is beneficial to convert a load of a constant
12082 /// to just the constant itself.
12083 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
12084                                                           Type *Ty) const {
12085   assert(Ty->isIntegerTy());
12086 
12087   unsigned Bits = Ty->getPrimitiveSizeInBits();
12088   if (Bits == 0 || Bits > 32)
12089     return false;
12090   return true;
12091 }
12092 
12093 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
12094                                         ARM_MB::MemBOpt Domain) const {
12095   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12096 
12097   // First, if the target has no DMB, see what fallback we can use.
12098   if (!Subtarget->hasDataBarrier()) {
12099     // Some ARMv6 cpus can support data barriers with an mcr instruction.
12100     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
12101     // here.
12102     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
12103       Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
12104       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
12105                         Builder.getInt32(0), Builder.getInt32(7),
12106                         Builder.getInt32(10), Builder.getInt32(5)};
12107       return Builder.CreateCall(MCR, args);
12108     } else {
12109       // Instead of using barriers, atomic accesses on these subtargets use
12110       // libcalls.
12111       llvm_unreachable("makeDMB on a target so old that it has no barriers");
12112     }
12113   } else {
12114     Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
12115     // Only a full system barrier exists in the M-class architectures.
12116     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
12117     Constant *CDomain = Builder.getInt32(Domain);
12118     return Builder.CreateCall(DMB, CDomain);
12119   }
12120 }
12121 
12122 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
12123 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
12124                                          AtomicOrdering Ord, bool IsStore,
12125                                          bool IsLoad) const {
12126   switch (Ord) {
12127   case AtomicOrdering::NotAtomic:
12128   case AtomicOrdering::Unordered:
12129     llvm_unreachable("Invalid fence: unordered/non-atomic");
12130   case AtomicOrdering::Monotonic:
12131   case AtomicOrdering::Acquire:
12132     return nullptr; // Nothing to do
12133   case AtomicOrdering::SequentiallyConsistent:
12134     if (!IsStore)
12135       return nullptr; // Nothing to do
12136     /*FALLTHROUGH*/
12137   case AtomicOrdering::Release:
12138   case AtomicOrdering::AcquireRelease:
12139     if (Subtarget->isSwift())
12140       return makeDMB(Builder, ARM_MB::ISHST);
12141     // FIXME: add a comment with a link to documentation justifying this.
12142     else
12143       return makeDMB(Builder, ARM_MB::ISH);
12144   }
12145   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
12146 }
12147 
12148 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
12149                                           AtomicOrdering Ord, bool IsStore,
12150                                           bool IsLoad) const {
12151   switch (Ord) {
12152   case AtomicOrdering::NotAtomic:
12153   case AtomicOrdering::Unordered:
12154     llvm_unreachable("Invalid fence: unordered/not-atomic");
12155   case AtomicOrdering::Monotonic:
12156   case AtomicOrdering::Release:
12157     return nullptr; // Nothing to do
12158   case AtomicOrdering::Acquire:
12159   case AtomicOrdering::AcquireRelease:
12160   case AtomicOrdering::SequentiallyConsistent:
12161     return makeDMB(Builder, ARM_MB::ISH);
12162   }
12163   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
12164 }
12165 
12166 // Loads and stores less than 64-bits are already atomic; ones above that
12167 // are doomed anyway, so defer to the default libcall and blame the OS when
12168 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
12169 // anything for those.
12170 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
12171   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
12172   return (Size == 64) && !Subtarget->isMClass();
12173 }
12174 
12175 // Loads and stores less than 64-bits are already atomic; ones above that
12176 // are doomed anyway, so defer to the default libcall and blame the OS when
12177 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
12178 // anything for those.
12179 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
12180 // guarantee, see DDI0406C ARM architecture reference manual,
12181 // sections A8.8.72-74 LDRD)
12182 TargetLowering::AtomicExpansionKind
12183 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
12184   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
12185   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
12186                                                   : AtomicExpansionKind::None;
12187 }
12188 
12189 // For the real atomic operations, we have ldrex/strex up to 32 bits,
12190 // and up to 64 bits on the non-M profiles
12191 TargetLowering::AtomicExpansionKind
12192 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12193   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12194   return (Size <= (Subtarget->isMClass() ? 32U : 64U))
12195              ? AtomicExpansionKind::LLSC
12196              : AtomicExpansionKind::None;
12197 }
12198 
12199 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
12200     AtomicCmpXchgInst *AI) const {
12201   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
12202   // implement cmpxchg without spilling. If the address being exchanged is also
12203   // on the stack and close enough to the spill slot, this can lead to a
12204   // situation where the monitor always gets cleared and the atomic operation
12205   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
12206   return getTargetMachine().getOptLevel() != 0;
12207 }
12208 
12209 bool ARMTargetLowering::shouldInsertFencesForAtomic(
12210     const Instruction *I) const {
12211   return InsertFencesForAtomic;
12212 }
12213 
12214 // This has so far only been implemented for MachO.
12215 bool ARMTargetLowering::useLoadStackGuardNode() const {
12216   return Subtarget->isTargetMachO();
12217 }
12218 
12219 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
12220                                                   unsigned &Cost) const {
12221   // If we do not have NEON, vector types are not natively supported.
12222   if (!Subtarget->hasNEON())
12223     return false;
12224 
12225   // Floating point values and vector values map to the same register file.
12226   // Therefore, although we could do a store extract of a vector type, this is
12227   // better to leave at float as we have more freedom in the addressing mode for
12228   // those.
12229   if (VectorTy->isFPOrFPVectorTy())
12230     return false;
12231 
12232   // If the index is unknown at compile time, this is very expensive to lower
12233   // and it is not possible to combine the store with the extract.
12234   if (!isa<ConstantInt>(Idx))
12235     return false;
12236 
12237   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
12238   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
12239   // We can do a store + vector extract on any vector that fits perfectly in a D
12240   // or Q register.
12241   if (BitWidth == 64 || BitWidth == 128) {
12242     Cost = 0;
12243     return true;
12244   }
12245   return false;
12246 }
12247 
12248 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
12249   return Subtarget->hasV6T2Ops();
12250 }
12251 
12252 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
12253   return Subtarget->hasV6T2Ops();
12254 }
12255 
12256 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
12257                                          AtomicOrdering Ord) const {
12258   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12259   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
12260   bool IsAcquire = isAcquireOrStronger(Ord);
12261 
12262   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
12263   // intrinsic must return {i32, i32} and we have to recombine them into a
12264   // single i64 here.
12265   if (ValTy->getPrimitiveSizeInBits() == 64) {
12266     Intrinsic::ID Int =
12267         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
12268     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
12269 
12270     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12271     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
12272 
12273     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
12274     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
12275     if (!Subtarget->isLittle())
12276       std::swap (Lo, Hi);
12277     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
12278     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
12279     return Builder.CreateOr(
12280         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
12281   }
12282 
12283   Type *Tys[] = { Addr->getType() };
12284   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
12285   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
12286 
12287   return Builder.CreateTruncOrBitCast(
12288       Builder.CreateCall(Ldrex, Addr),
12289       cast<PointerType>(Addr->getType())->getElementType());
12290 }
12291 
12292 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
12293     IRBuilder<> &Builder) const {
12294   if (!Subtarget->hasV7Ops())
12295     return;
12296   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12297   Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
12298 }
12299 
12300 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
12301                                                Value *Addr,
12302                                                AtomicOrdering Ord) const {
12303   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12304   bool IsRelease = isReleaseOrStronger(Ord);
12305 
12306   // Since the intrinsics must have legal type, the i64 intrinsics take two
12307   // parameters: "i32, i32". We must marshal Val into the appropriate form
12308   // before the call.
12309   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
12310     Intrinsic::ID Int =
12311         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
12312     Function *Strex = Intrinsic::getDeclaration(M, Int);
12313     Type *Int32Ty = Type::getInt32Ty(M->getContext());
12314 
12315     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
12316     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
12317     if (!Subtarget->isLittle())
12318       std::swap (Lo, Hi);
12319     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12320     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
12321   }
12322 
12323   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
12324   Type *Tys[] = { Addr->getType() };
12325   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
12326 
12327   return Builder.CreateCall(
12328       Strex, {Builder.CreateZExtOrBitCast(
12329                   Val, Strex->getFunctionType()->getParamType(0)),
12330               Addr});
12331 }
12332 
12333 /// \brief Lower an interleaved load into a vldN intrinsic.
12334 ///
12335 /// E.g. Lower an interleaved load (Factor = 2):
12336 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
12337 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
12338 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
12339 ///
12340 ///      Into:
12341 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
12342 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
12343 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
12344 bool ARMTargetLowering::lowerInterleavedLoad(
12345     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
12346     ArrayRef<unsigned> Indices, unsigned Factor) const {
12347   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
12348          "Invalid interleave factor");
12349   assert(!Shuffles.empty() && "Empty shufflevector input");
12350   assert(Shuffles.size() == Indices.size() &&
12351          "Unmatched number of shufflevectors and indices");
12352 
12353   VectorType *VecTy = Shuffles[0]->getType();
12354   Type *EltTy = VecTy->getVectorElementType();
12355 
12356   const DataLayout &DL = LI->getModule()->getDataLayout();
12357   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
12358   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
12359 
12360   // Skip if we do not have NEON and skip illegal vector types and vector types
12361   // with i64/f64 elements (vldN doesn't support i64/f64 elements).
12362   if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
12363     return false;
12364 
12365   // A pointer vector can not be the return type of the ldN intrinsics. Need to
12366   // load integer vectors first and then convert to pointer vectors.
12367   if (EltTy->isPointerTy())
12368     VecTy =
12369         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
12370 
12371   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
12372                                             Intrinsic::arm_neon_vld3,
12373                                             Intrinsic::arm_neon_vld4};
12374 
12375   IRBuilder<> Builder(LI);
12376   SmallVector<Value *, 2> Ops;
12377 
12378   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
12379   Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
12380   Ops.push_back(Builder.getInt32(LI->getAlignment()));
12381 
12382   Type *Tys[] = { VecTy, Int8Ptr };
12383   Function *VldnFunc =
12384       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
12385   CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
12386 
12387   // Replace uses of each shufflevector with the corresponding vector loaded
12388   // by ldN.
12389   for (unsigned i = 0; i < Shuffles.size(); i++) {
12390     ShuffleVectorInst *SV = Shuffles[i];
12391     unsigned Index = Indices[i];
12392 
12393     Value *SubVec = Builder.CreateExtractValue(VldN, Index);
12394 
12395     // Convert the integer vector to pointer vector if the element is pointer.
12396     if (EltTy->isPointerTy())
12397       SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
12398 
12399     SV->replaceAllUsesWith(SubVec);
12400   }
12401 
12402   return true;
12403 }
12404 
12405 /// \brief Get a mask consisting of sequential integers starting from \p Start.
12406 ///
12407 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
12408 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
12409                                    unsigned NumElts) {
12410   SmallVector<Constant *, 16> Mask;
12411   for (unsigned i = 0; i < NumElts; i++)
12412     Mask.push_back(Builder.getInt32(Start + i));
12413 
12414   return ConstantVector::get(Mask);
12415 }
12416 
12417 /// \brief Lower an interleaved store into a vstN intrinsic.
12418 ///
12419 /// E.g. Lower an interleaved store (Factor = 3):
12420 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
12421 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
12422 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
12423 ///
12424 ///      Into:
12425 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
12426 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
12427 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
12428 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
12429 ///
12430 /// Note that the new shufflevectors will be removed and we'll only generate one
12431 /// vst3 instruction in CodeGen.
12432 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
12433                                               ShuffleVectorInst *SVI,
12434                                               unsigned Factor) const {
12435   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
12436          "Invalid interleave factor");
12437 
12438   VectorType *VecTy = SVI->getType();
12439   assert(VecTy->getVectorNumElements() % Factor == 0 &&
12440          "Invalid interleaved store");
12441 
12442   unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
12443   Type *EltTy = VecTy->getVectorElementType();
12444   VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
12445 
12446   const DataLayout &DL = SI->getModule()->getDataLayout();
12447   unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
12448   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
12449 
12450   // Skip if we do not have NEON and skip illegal vector types and vector types
12451   // with i64/f64 elements (vstN doesn't support i64/f64 elements).
12452   if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
12453       EltIs64Bits)
12454     return false;
12455 
12456   Value *Op0 = SVI->getOperand(0);
12457   Value *Op1 = SVI->getOperand(1);
12458   IRBuilder<> Builder(SI);
12459 
12460   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
12461   // vectors to integer vectors.
12462   if (EltTy->isPointerTy()) {
12463     Type *IntTy = DL.getIntPtrType(EltTy);
12464 
12465     // Convert to the corresponding integer vector.
12466     Type *IntVecTy =
12467         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
12468     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
12469     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
12470 
12471     SubVecTy = VectorType::get(IntTy, NumSubElts);
12472   }
12473 
12474   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
12475                                              Intrinsic::arm_neon_vst3,
12476                                              Intrinsic::arm_neon_vst4};
12477   SmallVector<Value *, 6> Ops;
12478 
12479   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
12480   Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
12481 
12482   Type *Tys[] = { Int8Ptr, SubVecTy };
12483   Function *VstNFunc = Intrinsic::getDeclaration(
12484       SI->getModule(), StoreInts[Factor - 2], Tys);
12485 
12486   // Split the shufflevector operands into sub vectors for the new vstN call.
12487   for (unsigned i = 0; i < Factor; i++)
12488     Ops.push_back(Builder.CreateShuffleVector(
12489         Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
12490 
12491   Ops.push_back(Builder.getInt32(SI->getAlignment()));
12492   Builder.CreateCall(VstNFunc, Ops);
12493   return true;
12494 }
12495 
12496 enum HABaseType {
12497   HA_UNKNOWN = 0,
12498   HA_FLOAT,
12499   HA_DOUBLE,
12500   HA_VECT64,
12501   HA_VECT128
12502 };
12503 
12504 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
12505                                    uint64_t &Members) {
12506   if (auto *ST = dyn_cast<StructType>(Ty)) {
12507     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
12508       uint64_t SubMembers = 0;
12509       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
12510         return false;
12511       Members += SubMembers;
12512     }
12513   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
12514     uint64_t SubMembers = 0;
12515     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
12516       return false;
12517     Members += SubMembers * AT->getNumElements();
12518   } else if (Ty->isFloatTy()) {
12519     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
12520       return false;
12521     Members = 1;
12522     Base = HA_FLOAT;
12523   } else if (Ty->isDoubleTy()) {
12524     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
12525       return false;
12526     Members = 1;
12527     Base = HA_DOUBLE;
12528   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
12529     Members = 1;
12530     switch (Base) {
12531     case HA_FLOAT:
12532     case HA_DOUBLE:
12533       return false;
12534     case HA_VECT64:
12535       return VT->getBitWidth() == 64;
12536     case HA_VECT128:
12537       return VT->getBitWidth() == 128;
12538     case HA_UNKNOWN:
12539       switch (VT->getBitWidth()) {
12540       case 64:
12541         Base = HA_VECT64;
12542         return true;
12543       case 128:
12544         Base = HA_VECT128;
12545         return true;
12546       default:
12547         return false;
12548       }
12549     }
12550   }
12551 
12552   return (Members > 0 && Members <= 4);
12553 }
12554 
12555 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
12556 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
12557 /// passing according to AAPCS rules.
12558 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
12559     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
12560   if (getEffectiveCallingConv(CallConv, isVarArg) !=
12561       CallingConv::ARM_AAPCS_VFP)
12562     return false;
12563 
12564   HABaseType Base = HA_UNKNOWN;
12565   uint64_t Members = 0;
12566   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
12567   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
12568 
12569   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
12570   return IsHA || IsIntArray;
12571 }
12572 
12573 unsigned ARMTargetLowering::getExceptionPointerRegister(
12574     const Constant *PersonalityFn) const {
12575   // Platforms which do not use SjLj EH may return values in these registers
12576   // via the personality function.
12577   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
12578 }
12579 
12580 unsigned ARMTargetLowering::getExceptionSelectorRegister(
12581     const Constant *PersonalityFn) const {
12582   // Platforms which do not use SjLj EH may return values in these registers
12583   // via the personality function.
12584   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
12585 }
12586 
12587 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12588   // Update IsSplitCSR in ARMFunctionInfo.
12589   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
12590   AFI->setIsSplitCSR(true);
12591 }
12592 
12593 void ARMTargetLowering::insertCopiesSplitCSR(
12594     MachineBasicBlock *Entry,
12595     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12596   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
12597   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12598   if (!IStart)
12599     return;
12600 
12601   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
12602   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12603   MachineBasicBlock::iterator MBBI = Entry->begin();
12604   for (const MCPhysReg *I = IStart; *I; ++I) {
12605     const TargetRegisterClass *RC = nullptr;
12606     if (ARM::GPRRegClass.contains(*I))
12607       RC = &ARM::GPRRegClass;
12608     else if (ARM::DPRRegClass.contains(*I))
12609       RC = &ARM::DPRRegClass;
12610     else
12611       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12612 
12613     unsigned NewVR = MRI->createVirtualRegister(RC);
12614     // Create copy from CSR to a virtual register.
12615     // FIXME: this currently does not emit CFI pseudo-instructions, it works
12616     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12617     // nounwind. If we want to generalize this later, we may need to emit
12618     // CFI pseudo-instructions.
12619     assert(Entry->getParent()->getFunction()->hasFnAttribute(
12620                Attribute::NoUnwind) &&
12621            "Function should be nounwind in insertCopiesSplitCSR!");
12622     Entry->addLiveIn(*I);
12623     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12624         .addReg(*I);
12625 
12626     // Insert the copy-back instructions right before the terminator.
12627     for (auto *Exit : Exits)
12628       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12629               TII->get(TargetOpcode::COPY), *I)
12630           .addReg(NewVR);
12631   }
12632 }
12633