1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMISelLowering.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMRegisterInfo.h"
23 #include "ARMSelectionDAGInfo.h"
24 #include "ARMSubtarget.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/VectorUtils.h"
43 #include "llvm/CodeGen/CallingConvLower.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcalls.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGNodes.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InlineAsm.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
114 
115 using namespace llvm;
116 
117 #define DEBUG_TYPE "arm-isel"
118 
119 STATISTIC(NumTailCalls, "Number of tail calls");
120 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
121 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
122 STATISTIC(NumConstpoolPromoted,
123   "Number of constants with their storage promoted into constant pools");
124 
125 static cl::opt<bool>
126 ARMInterworking("arm-interworking", cl::Hidden,
127   cl::desc("Enable / disable ARM interworking (for debugging only)"),
128   cl::init(true));
129 
130 static cl::opt<bool> EnableConstpoolPromotion(
131     "arm-promote-constant", cl::Hidden,
132     cl::desc("Enable / disable promotion of unnamed_addr constants into "
133              "constant pools"),
134     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
135 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
136     "arm-promote-constant-max-size", cl::Hidden,
137     cl::desc("Maximum size of constant to promote into a constant pool"),
138     cl::init(64));
139 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
140     "arm-promote-constant-max-total", cl::Hidden,
141     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
142     cl::init(128));
143 
144 // The APCS parameter registers.
145 static const MCPhysReg GPRArgRegs[] = {
146   ARM::R0, ARM::R1, ARM::R2, ARM::R3
147 };
148 
149 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
150                                        MVT PromotedBitwiseVT) {
151   if (VT != PromotedLdStVT) {
152     setOperationAction(ISD::LOAD, VT, Promote);
153     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
154 
155     setOperationAction(ISD::STORE, VT, Promote);
156     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
157   }
158 
159   MVT ElemTy = VT.getVectorElementType();
160   if (ElemTy != MVT::f64)
161     setOperationAction(ISD::SETCC, VT, Custom);
162   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
163   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
164   if (ElemTy == MVT::i32) {
165     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
166     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
167     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
168     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
169   } else {
170     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
171     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
172     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
173     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
174   }
175   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
176   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
177   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
178   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
179   setOperationAction(ISD::SELECT,            VT, Expand);
180   setOperationAction(ISD::SELECT_CC,         VT, Expand);
181   setOperationAction(ISD::VSELECT,           VT, Expand);
182   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
183   if (VT.isInteger()) {
184     setOperationAction(ISD::SHL, VT, Custom);
185     setOperationAction(ISD::SRA, VT, Custom);
186     setOperationAction(ISD::SRL, VT, Custom);
187   }
188 
189   // Promote all bit-wise operations.
190   if (VT.isInteger() && VT != PromotedBitwiseVT) {
191     setOperationAction(ISD::AND, VT, Promote);
192     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
193     setOperationAction(ISD::OR,  VT, Promote);
194     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
195     setOperationAction(ISD::XOR, VT, Promote);
196     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
197   }
198 
199   // Neon does not support vector divide/remainder operations.
200   setOperationAction(ISD::SDIV, VT, Expand);
201   setOperationAction(ISD::UDIV, VT, Expand);
202   setOperationAction(ISD::FDIV, VT, Expand);
203   setOperationAction(ISD::SREM, VT, Expand);
204   setOperationAction(ISD::UREM, VT, Expand);
205   setOperationAction(ISD::FREM, VT, Expand);
206 
207   if (!VT.isFloatingPoint() &&
208       VT != MVT::v2i64 && VT != MVT::v1i64)
209     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
210       setOperationAction(Opcode, VT, Legal);
211 }
212 
213 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
214   addRegisterClass(VT, &ARM::DPRRegClass);
215   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
216 }
217 
218 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
219   addRegisterClass(VT, &ARM::DPairRegClass);
220   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
221 }
222 
223 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
224                                      const ARMSubtarget &STI)
225     : TargetLowering(TM), Subtarget(&STI) {
226   RegInfo = Subtarget->getRegisterInfo();
227   Itins = Subtarget->getInstrItineraryData();
228 
229   setBooleanContents(ZeroOrOneBooleanContent);
230   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
231 
232   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
233       !Subtarget->isTargetWatchOS()) {
234     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
235     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
236       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
237                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
238                                        : CallingConv::ARM_AAPCS);
239   }
240 
241   if (Subtarget->isTargetMachO()) {
242     // Uses VFP for Thumb libfuncs if available.
243     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
244         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
245       static const struct {
246         const RTLIB::Libcall Op;
247         const char * const Name;
248         const ISD::CondCode Cond;
249       } LibraryCalls[] = {
250         // Single-precision floating-point arithmetic.
251         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
252         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
253         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
254         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
255 
256         // Double-precision floating-point arithmetic.
257         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
258         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
259         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
260         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
261 
262         // Single-precision comparisons.
263         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
264         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
265         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
266         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
267         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
268         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
269         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
270         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
271 
272         // Double-precision comparisons.
273         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
274         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
275         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
276         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
277         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
278         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
279         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
280         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
281 
282         // Floating-point to integer conversions.
283         // i64 conversions are done via library routines even when generating VFP
284         // instructions, so use the same ones.
285         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
286         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
287         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
288         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
289 
290         // Conversions between floating types.
291         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
292         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
293 
294         // Integer to floating-point conversions.
295         // i64 conversions are done via library routines even when generating VFP
296         // instructions, so use the same ones.
297         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
298         // e.g., __floatunsidf vs. __floatunssidfvfp.
299         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
300         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
301         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
302         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
303       };
304 
305       for (const auto &LC : LibraryCalls) {
306         setLibcallName(LC.Op, LC.Name);
307         if (LC.Cond != ISD::SETCC_INVALID)
308           setCmpLibcallCC(LC.Op, LC.Cond);
309       }
310     }
311 
312     // Set the correct calling convention for ARMv7k WatchOS. It's just
313     // AAPCS_VFP for functions as simple as libcalls.
314     if (Subtarget->isTargetWatchABI()) {
315       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
316         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
317     }
318   }
319 
320   // These libcalls are not available in 32-bit.
321   setLibcallName(RTLIB::SHL_I128, nullptr);
322   setLibcallName(RTLIB::SRL_I128, nullptr);
323   setLibcallName(RTLIB::SRA_I128, nullptr);
324 
325   // RTLIB
326   if (Subtarget->isAAPCS_ABI() &&
327       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
328        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
329     static const struct {
330       const RTLIB::Libcall Op;
331       const char * const Name;
332       const CallingConv::ID CC;
333       const ISD::CondCode Cond;
334     } LibraryCalls[] = {
335       // Double-precision floating-point arithmetic helper functions
336       // RTABI chapter 4.1.2, Table 2
337       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
340       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
341 
342       // Double-precision floating-point comparison helper functions
343       // RTABI chapter 4.1.2, Table 3
344       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
345       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
346       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
347       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
348       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
349       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
350       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
351       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
352 
353       // Single-precision floating-point arithmetic helper functions
354       // RTABI chapter 4.1.2, Table 4
355       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
356       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
357       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
358       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
359 
360       // Single-precision floating-point comparison helper functions
361       // RTABI chapter 4.1.2, Table 5
362       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
363       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
364       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
365       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
366       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
367       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
368       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
369       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
370 
371       // Floating-point to integer conversions.
372       // RTABI chapter 4.1.2, Table 6
373       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
374       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
375       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
376       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
377       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
378       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
379       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
380       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
381 
382       // Conversions between floating types.
383       // RTABI chapter 4.1.2, Table 7
384       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
385       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
386       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
387 
388       // Integer to floating-point conversions.
389       // RTABI chapter 4.1.2, Table 8
390       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
391       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
392       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
393       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
394       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
395       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
396       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
397       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
398 
399       // Long long helper functions
400       // RTABI chapter 4.2, Table 9
401       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
402       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
403       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
404       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
405 
406       // Integer division functions
407       // RTABI chapter 4.3.1
408       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
409       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
410       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
411       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
412       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
413       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
414       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
415       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
416     };
417 
418     for (const auto &LC : LibraryCalls) {
419       setLibcallName(LC.Op, LC.Name);
420       setLibcallCallingConv(LC.Op, LC.CC);
421       if (LC.Cond != ISD::SETCC_INVALID)
422         setCmpLibcallCC(LC.Op, LC.Cond);
423     }
424 
425     // EABI dependent RTLIB
426     if (TM.Options.EABIVersion == EABI::EABI4 ||
427         TM.Options.EABIVersion == EABI::EABI5) {
428       static const struct {
429         const RTLIB::Libcall Op;
430         const char *const Name;
431         const CallingConv::ID CC;
432         const ISD::CondCode Cond;
433       } MemOpsLibraryCalls[] = {
434         // Memory operations
435         // RTABI chapter 4.3.4
436         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
437         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
438         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
439       };
440 
441       for (const auto &LC : MemOpsLibraryCalls) {
442         setLibcallName(LC.Op, LC.Name);
443         setLibcallCallingConv(LC.Op, LC.CC);
444         if (LC.Cond != ISD::SETCC_INVALID)
445           setCmpLibcallCC(LC.Op, LC.Cond);
446       }
447     }
448   }
449 
450   if (Subtarget->isTargetWindows()) {
451     static const struct {
452       const RTLIB::Libcall Op;
453       const char * const Name;
454       const CallingConv::ID CC;
455     } LibraryCalls[] = {
456       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
457       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
458       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
459       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
460       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
461       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
462       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
463       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
464     };
465 
466     for (const auto &LC : LibraryCalls) {
467       setLibcallName(LC.Op, LC.Name);
468       setLibcallCallingConv(LC.Op, LC.CC);
469     }
470   }
471 
472   // Use divmod compiler-rt calls for iOS 5.0 and later.
473   if (Subtarget->isTargetMachO() &&
474       !(Subtarget->isTargetIOS() &&
475         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
476     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
477     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
478   }
479 
480   // The half <-> float conversion functions are always soft-float on
481   // non-watchos platforms, but are needed for some targets which use a
482   // hard-float calling convention by default.
483   if (!Subtarget->isTargetWatchABI()) {
484     if (Subtarget->isAAPCS_ABI()) {
485       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
486       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
487       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
488     } else {
489       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
490       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
491       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
492     }
493   }
494 
495   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
496   // a __gnu_ prefix (which is the default).
497   if (Subtarget->isTargetAEABI()) {
498     static const struct {
499       const RTLIB::Libcall Op;
500       const char * const Name;
501       const CallingConv::ID CC;
502     } LibraryCalls[] = {
503       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
504       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
505       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
506     };
507 
508     for (const auto &LC : LibraryCalls) {
509       setLibcallName(LC.Op, LC.Name);
510       setLibcallCallingConv(LC.Op, LC.CC);
511     }
512   }
513 
514   if (Subtarget->isThumb1Only())
515     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
516   else
517     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
518 
519   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
520       !Subtarget->isThumb1Only()) {
521     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
522     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
523   }
524 
525   if (Subtarget->hasFullFP16()) {
526     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
527     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
528     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
529     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
530   }
531 
532   for (MVT VT : MVT::vector_valuetypes()) {
533     for (MVT InnerVT : MVT::vector_valuetypes()) {
534       setTruncStoreAction(VT, InnerVT, Expand);
535       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
536       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
537       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
538     }
539 
540     setOperationAction(ISD::MULHS, VT, Expand);
541     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
542     setOperationAction(ISD::MULHU, VT, Expand);
543     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
544 
545     setOperationAction(ISD::BSWAP, VT, Expand);
546   }
547 
548   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
549   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
550 
551   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
552   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
553 
554   if (Subtarget->hasNEON()) {
555     addDRTypeForNEON(MVT::v2f32);
556     addDRTypeForNEON(MVT::v8i8);
557     addDRTypeForNEON(MVT::v4i16);
558     addDRTypeForNEON(MVT::v2i32);
559     addDRTypeForNEON(MVT::v1i64);
560 
561     addQRTypeForNEON(MVT::v4f32);
562     addQRTypeForNEON(MVT::v2f64);
563     addQRTypeForNEON(MVT::v16i8);
564     addQRTypeForNEON(MVT::v8i16);
565     addQRTypeForNEON(MVT::v4i32);
566     addQRTypeForNEON(MVT::v2i64);
567 
568     if (Subtarget->hasFullFP16()) {
569       addQRTypeForNEON(MVT::v8f16);
570       addDRTypeForNEON(MVT::v4f16);
571     }
572 
573     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
574     // neither Neon nor VFP support any arithmetic operations on it.
575     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
576     // supported for v4f32.
577     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
578     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
579     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
580     // FIXME: Code duplication: FDIV and FREM are expanded always, see
581     // ARMTargetLowering::addTypeForNEON method for details.
582     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
583     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
584     // FIXME: Create unittest.
585     // In another words, find a way when "copysign" appears in DAG with vector
586     // operands.
587     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
588     // FIXME: Code duplication: SETCC has custom operation action, see
589     // ARMTargetLowering::addTypeForNEON method for details.
590     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
591     // FIXME: Create unittest for FNEG and for FABS.
592     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
593     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
594     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
595     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
596     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
597     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
598     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
599     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
600     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
601     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
602     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
603     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
604     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
605     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
606     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
607     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
608     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
609     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
610 
611     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
612     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
613     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
614     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
615     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
616     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
617     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
618     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
619     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
620     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
621     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
622     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
623     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
624     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
625 
626     // Mark v2f32 intrinsics.
627     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
628     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
629     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
630     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
631     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
632     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
633     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
634     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
635     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
636     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
637     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
638     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
639     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
640     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
641 
642     // Neon does not support some operations on v1i64 and v2i64 types.
643     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
644     // Custom handling for some quad-vector types to detect VMULL.
645     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
646     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
647     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
648     // Custom handling for some vector types to avoid expensive expansions
649     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
650     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
651     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
652     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
653     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
654     // a destination type that is wider than the source, and nor does
655     // it have a FP_TO_[SU]INT instruction with a narrower destination than
656     // source.
657     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
658     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
659     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
660     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
661 
662     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
663     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
664 
665     // NEON does not have single instruction CTPOP for vectors with element
666     // types wider than 8-bits.  However, custom lowering can leverage the
667     // v8i8/v16i8 vcnt instruction.
668     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
669     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
670     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
671     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
672     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
673     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
674 
675     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
676     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
677 
678     // NEON does not have single instruction CTTZ for vectors.
679     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
680     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
681     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
682     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
683 
684     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
685     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
686     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
687     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
688 
689     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
690     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
691     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
692     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
693 
694     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
695     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
696     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
697     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
698 
699     // NEON only has FMA instructions as of VFP4.
700     if (!Subtarget->hasVFP4()) {
701       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
702       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
703     }
704 
705     setTargetDAGCombine(ISD::INTRINSIC_VOID);
706     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
707     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
708     setTargetDAGCombine(ISD::SHL);
709     setTargetDAGCombine(ISD::SRL);
710     setTargetDAGCombine(ISD::SRA);
711     setTargetDAGCombine(ISD::SIGN_EXTEND);
712     setTargetDAGCombine(ISD::ZERO_EXTEND);
713     setTargetDAGCombine(ISD::ANY_EXTEND);
714     setTargetDAGCombine(ISD::BUILD_VECTOR);
715     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
716     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
717     setTargetDAGCombine(ISD::STORE);
718     setTargetDAGCombine(ISD::FP_TO_SINT);
719     setTargetDAGCombine(ISD::FP_TO_UINT);
720     setTargetDAGCombine(ISD::FDIV);
721     setTargetDAGCombine(ISD::LOAD);
722 
723     // It is legal to extload from v4i8 to v4i16 or v4i32.
724     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
725                    MVT::v2i32}) {
726       for (MVT VT : MVT::integer_vector_valuetypes()) {
727         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
728         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
729         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
730       }
731     }
732   }
733 
734   if (Subtarget->isFPOnlySP()) {
735     // When targeting a floating-point unit with only single-precision
736     // operations, f64 is legal for the few double-precision instructions which
737     // are present However, no double-precision operations other than moves,
738     // loads and stores are provided by the hardware.
739     setOperationAction(ISD::FADD,       MVT::f64, Expand);
740     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
741     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
742     setOperationAction(ISD::FMA,        MVT::f64, Expand);
743     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
744     setOperationAction(ISD::FREM,       MVT::f64, Expand);
745     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
746     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
747     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
748     setOperationAction(ISD::FABS,       MVT::f64, Expand);
749     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
750     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
751     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
752     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
753     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
754     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
755     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
756     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
757     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
758     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
759     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
760     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
761     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
762     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
763     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
764     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
765     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
766     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
767     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
768     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
769     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
770     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
771   }
772 
773   computeRegisterProperties(Subtarget->getRegisterInfo());
774 
775   // ARM does not have floating-point extending loads.
776   for (MVT VT : MVT::fp_valuetypes()) {
777     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
778     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
779   }
780 
781   // ... or truncating stores
782   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
783   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
784   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
785 
786   // ARM does not have i1 sign extending load.
787   for (MVT VT : MVT::integer_valuetypes())
788     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
789 
790   // ARM supports all 4 flavors of integer indexed load / store.
791   if (!Subtarget->isThumb1Only()) {
792     for (unsigned im = (unsigned)ISD::PRE_INC;
793          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
794       setIndexedLoadAction(im,  MVT::i1,  Legal);
795       setIndexedLoadAction(im,  MVT::i8,  Legal);
796       setIndexedLoadAction(im,  MVT::i16, Legal);
797       setIndexedLoadAction(im,  MVT::i32, Legal);
798       setIndexedStoreAction(im, MVT::i1,  Legal);
799       setIndexedStoreAction(im, MVT::i8,  Legal);
800       setIndexedStoreAction(im, MVT::i16, Legal);
801       setIndexedStoreAction(im, MVT::i32, Legal);
802     }
803   } else {
804     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
805     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
806     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
807   }
808 
809   setOperationAction(ISD::SADDO, MVT::i32, Custom);
810   setOperationAction(ISD::UADDO, MVT::i32, Custom);
811   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
812   setOperationAction(ISD::USUBO, MVT::i32, Custom);
813 
814   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
815   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
816 
817   // i64 operation support.
818   setOperationAction(ISD::MUL,     MVT::i64, Expand);
819   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
820   if (Subtarget->isThumb1Only()) {
821     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
822     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
823   }
824   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
825       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
826     setOperationAction(ISD::MULHS, MVT::i32, Expand);
827 
828   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
829   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
830   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
831   setOperationAction(ISD::SRL,       MVT::i64, Custom);
832   setOperationAction(ISD::SRA,       MVT::i64, Custom);
833   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
834 
835   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
836   if (Subtarget->isThumb1Only()) {
837     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
838     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
839     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
840   }
841 
842   setOperationAction(ISD::ADDC,      MVT::i32, Custom);
843   setOperationAction(ISD::ADDE,      MVT::i32, Custom);
844   setOperationAction(ISD::SUBC,      MVT::i32, Custom);
845   setOperationAction(ISD::SUBE,      MVT::i32, Custom);
846 
847   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
848     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
849 
850   // ARM does not have ROTL.
851   setOperationAction(ISD::ROTL, MVT::i32, Expand);
852   for (MVT VT : MVT::vector_valuetypes()) {
853     setOperationAction(ISD::ROTL, VT, Expand);
854     setOperationAction(ISD::ROTR, VT, Expand);
855   }
856   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
857   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
858   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
859     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
860 
861   // @llvm.readcyclecounter requires the Performance Monitors extension.
862   // Default to the 0 expansion on unsupported platforms.
863   // FIXME: Technically there are older ARM CPUs that have
864   // implementation-specific ways of obtaining this information.
865   if (Subtarget->hasPerfMon())
866     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
867 
868   // Only ARMv6 has BSWAP.
869   if (!Subtarget->hasV6Ops())
870     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
871 
872   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
873                                         : Subtarget->hasDivideInARMMode();
874   if (!hasDivide) {
875     // These are expanded into libcalls if the cpu doesn't have HW divider.
876     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
877     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
878   }
879 
880   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
881     setOperationAction(ISD::SDIV, MVT::i32, Custom);
882     setOperationAction(ISD::UDIV, MVT::i32, Custom);
883 
884     setOperationAction(ISD::SDIV, MVT::i64, Custom);
885     setOperationAction(ISD::UDIV, MVT::i64, Custom);
886   }
887 
888   setOperationAction(ISD::SREM,  MVT::i32, Expand);
889   setOperationAction(ISD::UREM,  MVT::i32, Expand);
890 
891   // Register based DivRem for AEABI (RTABI 4.2)
892   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
893       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
894       Subtarget->isTargetWindows()) {
895     setOperationAction(ISD::SREM, MVT::i64, Custom);
896     setOperationAction(ISD::UREM, MVT::i64, Custom);
897     HasStandaloneRem = false;
898 
899     if (Subtarget->isTargetWindows()) {
900       const struct {
901         const RTLIB::Libcall Op;
902         const char * const Name;
903         const CallingConv::ID CC;
904       } LibraryCalls[] = {
905         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
906         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
907         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
908         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
909 
910         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
911         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
912         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
913         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
914       };
915 
916       for (const auto &LC : LibraryCalls) {
917         setLibcallName(LC.Op, LC.Name);
918         setLibcallCallingConv(LC.Op, LC.CC);
919       }
920     } else {
921       const struct {
922         const RTLIB::Libcall Op;
923         const char * const Name;
924         const CallingConv::ID CC;
925       } LibraryCalls[] = {
926         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
927         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
928         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
929         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
930 
931         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
932         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
933         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
934         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
935       };
936 
937       for (const auto &LC : LibraryCalls) {
938         setLibcallName(LC.Op, LC.Name);
939         setLibcallCallingConv(LC.Op, LC.CC);
940       }
941     }
942 
943     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
944     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
945     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
946     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
947   } else {
948     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
949     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
950   }
951 
952   if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
953     for (auto &VT : {MVT::f32, MVT::f64})
954       setOperationAction(ISD::FPOWI, VT, Custom);
955 
956   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
957   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
958   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
959   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
960 
961   setOperationAction(ISD::TRAP, MVT::Other, Legal);
962 
963   // Use the default implementation.
964   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
965   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
966   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
967   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
968   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
969   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
970 
971   if (Subtarget->isTargetWindows())
972     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
973   else
974     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
975 
976   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
977   // the default expansion.
978   InsertFencesForAtomic = false;
979   if (Subtarget->hasAnyDataBarrier() &&
980       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
981     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
982     // to ldrex/strex loops already.
983     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
984     if (!Subtarget->isThumb() || !Subtarget->isMClass())
985       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
986 
987     // On v8, we have particularly efficient implementations of atomic fences
988     // if they can be combined with nearby atomic loads and stores.
989     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
990       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
991       InsertFencesForAtomic = true;
992     }
993   } else {
994     // If there's anything we can use as a barrier, go through custom lowering
995     // for ATOMIC_FENCE.
996     // If target has DMB in thumb, Fences can be inserted.
997     if (Subtarget->hasDataBarrier())
998       InsertFencesForAtomic = true;
999 
1000     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1001                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1002 
1003     // Set them all for expansion, which will force libcalls.
1004     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1005     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1006     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1007     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1008     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1009     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1010     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1011     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1012     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1013     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1014     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1015     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1016     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1017     // Unordered/Monotonic case.
1018     if (!InsertFencesForAtomic) {
1019       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1020       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1021     }
1022   }
1023 
1024   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1025 
1026   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1027   if (!Subtarget->hasV6Ops()) {
1028     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1029     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1030   }
1031   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1032 
1033   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1034       !Subtarget->isThumb1Only()) {
1035     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1036     // iff target supports vfp2.
1037     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1038     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1039   }
1040 
1041   // We want to custom lower some of our intrinsics.
1042   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1043   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1044   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1045   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1046   if (Subtarget->useSjLjEH())
1047     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1048 
1049   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1050   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1051   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1052   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1053   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1054   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1055   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1056   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1057   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1058   if (Subtarget->hasFullFP16()) {
1059     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1060     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1061     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1062   }
1063 
1064   // Thumb-1 cannot currently select ARMISD::SUBE.
1065   if (!Subtarget->isThumb1Only())
1066     setOperationAction(ISD::SETCCE, MVT::i32, Custom);
1067 
1068   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1069   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1070   if (Subtarget->hasFullFP16())
1071       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1072   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1073   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1074   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1075 
1076   // We don't support sin/cos/fmod/copysign/pow
1077   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1078   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1079   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1080   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1081   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1082   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1083   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1084   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1085   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1086       !Subtarget->isThumb1Only()) {
1087     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1088     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1089   }
1090   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1091   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1092 
1093   if (!Subtarget->hasVFP4()) {
1094     setOperationAction(ISD::FMA, MVT::f64, Expand);
1095     setOperationAction(ISD::FMA, MVT::f32, Expand);
1096   }
1097 
1098   // Various VFP goodness
1099   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1100     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1101     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
1102       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1103       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1104     }
1105 
1106     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1107     if (!Subtarget->hasFP16()) {
1108       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1109       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1110     }
1111   }
1112 
1113   // Use __sincos_stret if available.
1114   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1115       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1116     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1117     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1118   }
1119 
1120   // FP-ARMv8 implements a lot of rounding-like FP operations.
1121   if (Subtarget->hasFPARMv8()) {
1122     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1123     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1124     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1125     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1126     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1127     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1128     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1129     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1130     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1131     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1132     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1133     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1134 
1135     if (!Subtarget->isFPOnlySP()) {
1136       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1137       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1138       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1139       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1140       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1141       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1142       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1143       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1144     }
1145   }
1146 
1147   if (Subtarget->hasNEON()) {
1148     // vmin and vmax aren't available in a scalar form, so we use
1149     // a NEON instruction with an undef lane instead.
1150     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1151     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1152     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1153     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1154     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1155     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1156   }
1157 
1158   // We have target-specific dag combine patterns for the following nodes:
1159   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1160   setTargetDAGCombine(ISD::ADD);
1161   setTargetDAGCombine(ISD::SUB);
1162   setTargetDAGCombine(ISD::MUL);
1163   setTargetDAGCombine(ISD::AND);
1164   setTargetDAGCombine(ISD::OR);
1165   setTargetDAGCombine(ISD::XOR);
1166 
1167   if (Subtarget->hasV6Ops())
1168     setTargetDAGCombine(ISD::SRL);
1169 
1170   setStackPointerRegisterToSaveRestore(ARM::SP);
1171 
1172   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1173       !Subtarget->hasVFP2())
1174     setSchedulingPreference(Sched::RegPressure);
1175   else
1176     setSchedulingPreference(Sched::Hybrid);
1177 
1178   //// temporary - rewrite interface to use type
1179   MaxStoresPerMemset = 8;
1180   MaxStoresPerMemsetOptSize = 4;
1181   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1182   MaxStoresPerMemcpyOptSize = 2;
1183   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1184   MaxStoresPerMemmoveOptSize = 2;
1185 
1186   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1187   // are at least 4 bytes aligned.
1188   setMinStackArgumentAlignment(4);
1189 
1190   // Prefer likely predicted branches to selects on out-of-order cores.
1191   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1192 
1193   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1194 }
1195 
1196 bool ARMTargetLowering::useSoftFloat() const {
1197   return Subtarget->useSoftFloat();
1198 }
1199 
1200 // FIXME: It might make sense to define the representative register class as the
1201 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1202 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1203 // SPR's representative would be DPR_VFP2. This should work well if register
1204 // pressure tracking were modified such that a register use would increment the
1205 // pressure of the register class's representative and all of it's super
1206 // classes' representatives transitively. We have not implemented this because
1207 // of the difficulty prior to coalescing of modeling operand register classes
1208 // due to the common occurrence of cross class copies and subregister insertions
1209 // and extractions.
1210 std::pair<const TargetRegisterClass *, uint8_t>
1211 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1212                                            MVT VT) const {
1213   const TargetRegisterClass *RRC = nullptr;
1214   uint8_t Cost = 1;
1215   switch (VT.SimpleTy) {
1216   default:
1217     return TargetLowering::findRepresentativeClass(TRI, VT);
1218   // Use DPR as representative register class for all floating point
1219   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1220   // the cost is 1 for both f32 and f64.
1221   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1222   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1223     RRC = &ARM::DPRRegClass;
1224     // When NEON is used for SP, only half of the register file is available
1225     // because operations that define both SP and DP results will be constrained
1226     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1227     // coalescing by double-counting the SP regs. See the FIXME above.
1228     if (Subtarget->useNEONForSinglePrecisionFP())
1229       Cost = 2;
1230     break;
1231   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1232   case MVT::v4f32: case MVT::v2f64:
1233     RRC = &ARM::DPRRegClass;
1234     Cost = 2;
1235     break;
1236   case MVT::v4i64:
1237     RRC = &ARM::DPRRegClass;
1238     Cost = 4;
1239     break;
1240   case MVT::v8i64:
1241     RRC = &ARM::DPRRegClass;
1242     Cost = 8;
1243     break;
1244   }
1245   return std::make_pair(RRC, Cost);
1246 }
1247 
1248 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1249   switch ((ARMISD::NodeType)Opcode) {
1250   case ARMISD::FIRST_NUMBER:  break;
1251   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1252   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1253   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1254   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1255   case ARMISD::CALL:          return "ARMISD::CALL";
1256   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1257   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1258   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1259   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1260   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1261   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1262   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1263   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1264   case ARMISD::CMP:           return "ARMISD::CMP";
1265   case ARMISD::CMN:           return "ARMISD::CMN";
1266   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1267   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1268   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1269   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1270   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1271 
1272   case ARMISD::CMOV:          return "ARMISD::CMOV";
1273 
1274   case ARMISD::SSAT:          return "ARMISD::SSAT";
1275   case ARMISD::USAT:          return "ARMISD::USAT";
1276 
1277   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1278   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1279   case ARMISD::RRX:           return "ARMISD::RRX";
1280 
1281   case ARMISD::ADDC:          return "ARMISD::ADDC";
1282   case ARMISD::ADDE:          return "ARMISD::ADDE";
1283   case ARMISD::SUBC:          return "ARMISD::SUBC";
1284   case ARMISD::SUBE:          return "ARMISD::SUBE";
1285 
1286   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1287   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1288   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
1289   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
1290   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
1291 
1292   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1293   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1294   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1295 
1296   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1297 
1298   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1299 
1300   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1301 
1302   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1303 
1304   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1305 
1306   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1307   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1308 
1309   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1310   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1311   case ARMISD::VCGE:          return "ARMISD::VCGE";
1312   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1313   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1314   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1315   case ARMISD::VCGT:          return "ARMISD::VCGT";
1316   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1317   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1318   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1319   case ARMISD::VTST:          return "ARMISD::VTST";
1320 
1321   case ARMISD::VSHL:          return "ARMISD::VSHL";
1322   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1323   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1324   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1325   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1326   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1327   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1328   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1329   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1330   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1331   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1332   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1333   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1334   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1335   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1336   case ARMISD::VSLI:          return "ARMISD::VSLI";
1337   case ARMISD::VSRI:          return "ARMISD::VSRI";
1338   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1339   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1340   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1341   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1342   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1343   case ARMISD::VDUP:          return "ARMISD::VDUP";
1344   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1345   case ARMISD::VEXT:          return "ARMISD::VEXT";
1346   case ARMISD::VREV64:        return "ARMISD::VREV64";
1347   case ARMISD::VREV32:        return "ARMISD::VREV32";
1348   case ARMISD::VREV16:        return "ARMISD::VREV16";
1349   case ARMISD::VZIP:          return "ARMISD::VZIP";
1350   case ARMISD::VUZP:          return "ARMISD::VUZP";
1351   case ARMISD::VTRN:          return "ARMISD::VTRN";
1352   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1353   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1354   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1355   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1356   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1357   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1358   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1359   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
1360   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
1361   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
1362   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
1363   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
1364   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
1365   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
1366   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
1367   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
1368   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
1369   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
1370   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
1371   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1372   case ARMISD::BFI:           return "ARMISD::BFI";
1373   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1374   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1375   case ARMISD::VBSL:          return "ARMISD::VBSL";
1376   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1377   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1378   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1379   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1380   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1381   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1382   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1383   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1384   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1385   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1386   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1387   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1388   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1389   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1390   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1391   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1392   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1393   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1394   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1395   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1396   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1397   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1398   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1399   }
1400   return nullptr;
1401 }
1402 
1403 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1404                                           EVT VT) const {
1405   if (!VT.isVector())
1406     return getPointerTy(DL);
1407   return VT.changeVectorElementTypeToInteger();
1408 }
1409 
1410 /// getRegClassFor - Return the register class that should be used for the
1411 /// specified value type.
1412 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1413   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1414   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1415   // load / store 4 to 8 consecutive D registers.
1416   if (Subtarget->hasNEON()) {
1417     if (VT == MVT::v4i64)
1418       return &ARM::QQPRRegClass;
1419     if (VT == MVT::v8i64)
1420       return &ARM::QQQQPRRegClass;
1421   }
1422   return TargetLowering::getRegClassFor(VT);
1423 }
1424 
1425 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1426 // source/dest is aligned and the copy size is large enough. We therefore want
1427 // to align such objects passed to memory intrinsics.
1428 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1429                                                unsigned &PrefAlign) const {
1430   if (!isa<MemIntrinsic>(CI))
1431     return false;
1432   MinSize = 8;
1433   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1434   // cycle faster than 4-byte aligned LDM.
1435   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1436   return true;
1437 }
1438 
1439 // Create a fast isel object.
1440 FastISel *
1441 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1442                                   const TargetLibraryInfo *libInfo) const {
1443   return ARM::createFastISel(funcInfo, libInfo);
1444 }
1445 
1446 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1447   unsigned NumVals = N->getNumValues();
1448   if (!NumVals)
1449     return Sched::RegPressure;
1450 
1451   for (unsigned i = 0; i != NumVals; ++i) {
1452     EVT VT = N->getValueType(i);
1453     if (VT == MVT::Glue || VT == MVT::Other)
1454       continue;
1455     if (VT.isFloatingPoint() || VT.isVector())
1456       return Sched::ILP;
1457   }
1458 
1459   if (!N->isMachineOpcode())
1460     return Sched::RegPressure;
1461 
1462   // Load are scheduled for latency even if there instruction itinerary
1463   // is not available.
1464   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1465   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1466 
1467   if (MCID.getNumDefs() == 0)
1468     return Sched::RegPressure;
1469   if (!Itins->isEmpty() &&
1470       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1471     return Sched::ILP;
1472 
1473   return Sched::RegPressure;
1474 }
1475 
1476 //===----------------------------------------------------------------------===//
1477 // Lowering Code
1478 //===----------------------------------------------------------------------===//
1479 
1480 static bool isSRL16(const SDValue &Op) {
1481   if (Op.getOpcode() != ISD::SRL)
1482     return false;
1483   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1484     return Const->getZExtValue() == 16;
1485   return false;
1486 }
1487 
1488 static bool isSRA16(const SDValue &Op) {
1489   if (Op.getOpcode() != ISD::SRA)
1490     return false;
1491   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1492     return Const->getZExtValue() == 16;
1493   return false;
1494 }
1495 
1496 static bool isSHL16(const SDValue &Op) {
1497   if (Op.getOpcode() != ISD::SHL)
1498     return false;
1499   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1500     return Const->getZExtValue() == 16;
1501   return false;
1502 }
1503 
1504 // Check for a signed 16-bit value. We special case SRA because it makes it
1505 // more simple when also looking for SRAs that aren't sign extending a
1506 // smaller value. Without the check, we'd need to take extra care with
1507 // checking order for some operations.
1508 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1509   if (isSRA16(Op))
1510     return isSHL16(Op.getOperand(0));
1511   return DAG.ComputeNumSignBits(Op) == 17;
1512 }
1513 
1514 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1515 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1516   switch (CC) {
1517   default: llvm_unreachable("Unknown condition code!");
1518   case ISD::SETNE:  return ARMCC::NE;
1519   case ISD::SETEQ:  return ARMCC::EQ;
1520   case ISD::SETGT:  return ARMCC::GT;
1521   case ISD::SETGE:  return ARMCC::GE;
1522   case ISD::SETLT:  return ARMCC::LT;
1523   case ISD::SETLE:  return ARMCC::LE;
1524   case ISD::SETUGT: return ARMCC::HI;
1525   case ISD::SETUGE: return ARMCC::HS;
1526   case ISD::SETULT: return ARMCC::LO;
1527   case ISD::SETULE: return ARMCC::LS;
1528   }
1529 }
1530 
1531 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1532 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1533                         ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1534   CondCode2 = ARMCC::AL;
1535   InvalidOnQNaN = true;
1536   switch (CC) {
1537   default: llvm_unreachable("Unknown FP condition!");
1538   case ISD::SETEQ:
1539   case ISD::SETOEQ:
1540     CondCode = ARMCC::EQ;
1541     InvalidOnQNaN = false;
1542     break;
1543   case ISD::SETGT:
1544   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1545   case ISD::SETGE:
1546   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1547   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1548   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1549   case ISD::SETONE:
1550     CondCode = ARMCC::MI;
1551     CondCode2 = ARMCC::GT;
1552     InvalidOnQNaN = false;
1553     break;
1554   case ISD::SETO:   CondCode = ARMCC::VC; break;
1555   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1556   case ISD::SETUEQ:
1557     CondCode = ARMCC::EQ;
1558     CondCode2 = ARMCC::VS;
1559     InvalidOnQNaN = false;
1560     break;
1561   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1562   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1563   case ISD::SETLT:
1564   case ISD::SETULT: CondCode = ARMCC::LT; break;
1565   case ISD::SETLE:
1566   case ISD::SETULE: CondCode = ARMCC::LE; break;
1567   case ISD::SETNE:
1568   case ISD::SETUNE:
1569     CondCode = ARMCC::NE;
1570     InvalidOnQNaN = false;
1571     break;
1572   }
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //                      Calling Convention Implementation
1577 //===----------------------------------------------------------------------===//
1578 
1579 #include "ARMGenCallingConv.inc"
1580 
1581 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1582 /// account presence of floating point hardware and calling convention
1583 /// limitations, such as support for variadic functions.
1584 CallingConv::ID
1585 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1586                                            bool isVarArg) const {
1587   switch (CC) {
1588   default:
1589     report_fatal_error("Unsupported calling convention");
1590   case CallingConv::ARM_AAPCS:
1591   case CallingConv::ARM_APCS:
1592   case CallingConv::GHC:
1593     return CC;
1594   case CallingConv::PreserveMost:
1595     return CallingConv::PreserveMost;
1596   case CallingConv::ARM_AAPCS_VFP:
1597   case CallingConv::Swift:
1598     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1599   case CallingConv::C:
1600     if (!Subtarget->isAAPCS_ABI())
1601       return CallingConv::ARM_APCS;
1602     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1603              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1604              !isVarArg)
1605       return CallingConv::ARM_AAPCS_VFP;
1606     else
1607       return CallingConv::ARM_AAPCS;
1608   case CallingConv::Fast:
1609   case CallingConv::CXX_FAST_TLS:
1610     if (!Subtarget->isAAPCS_ABI()) {
1611       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1612         return CallingConv::Fast;
1613       return CallingConv::ARM_APCS;
1614     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1615       return CallingConv::ARM_AAPCS_VFP;
1616     else
1617       return CallingConv::ARM_AAPCS;
1618   }
1619 }
1620 
1621 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1622                                                  bool isVarArg) const {
1623   return CCAssignFnForNode(CC, false, isVarArg);
1624 }
1625 
1626 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1627                                                    bool isVarArg) const {
1628   return CCAssignFnForNode(CC, true, isVarArg);
1629 }
1630 
1631 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1632 /// CallingConvention.
1633 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1634                                                  bool Return,
1635                                                  bool isVarArg) const {
1636   switch (getEffectiveCallingConv(CC, isVarArg)) {
1637   default:
1638     report_fatal_error("Unsupported calling convention");
1639   case CallingConv::ARM_APCS:
1640     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1641   case CallingConv::ARM_AAPCS:
1642     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1643   case CallingConv::ARM_AAPCS_VFP:
1644     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1645   case CallingConv::Fast:
1646     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1647   case CallingConv::GHC:
1648     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1649   case CallingConv::PreserveMost:
1650     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1651   }
1652 }
1653 
1654 /// LowerCallResult - Lower the result values of a call into the
1655 /// appropriate copies out of appropriate physical registers.
1656 SDValue ARMTargetLowering::LowerCallResult(
1657     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1658     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1659     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1660     SDValue ThisVal) const {
1661   // Assign locations to each value returned by this call.
1662   SmallVector<CCValAssign, 16> RVLocs;
1663   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1664                  *DAG.getContext());
1665   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1666 
1667   // Copy all of the result registers out of their specified physreg.
1668   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1669     CCValAssign VA = RVLocs[i];
1670 
1671     // Pass 'this' value directly from the argument to return value, to avoid
1672     // reg unit interference
1673     if (i == 0 && isThisReturn) {
1674       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1675              "unexpected return calling convention register assignment");
1676       InVals.push_back(ThisVal);
1677       continue;
1678     }
1679 
1680     SDValue Val;
1681     if (VA.needsCustom()) {
1682       // Handle f64 or half of a v2f64.
1683       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1684                                       InFlag);
1685       Chain = Lo.getValue(1);
1686       InFlag = Lo.getValue(2);
1687       VA = RVLocs[++i]; // skip ahead to next loc
1688       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1689                                       InFlag);
1690       Chain = Hi.getValue(1);
1691       InFlag = Hi.getValue(2);
1692       if (!Subtarget->isLittle())
1693         std::swap (Lo, Hi);
1694       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1695 
1696       if (VA.getLocVT() == MVT::v2f64) {
1697         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1698         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1699                           DAG.getConstant(0, dl, MVT::i32));
1700 
1701         VA = RVLocs[++i]; // skip ahead to next loc
1702         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1703         Chain = Lo.getValue(1);
1704         InFlag = Lo.getValue(2);
1705         VA = RVLocs[++i]; // skip ahead to next loc
1706         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1707         Chain = Hi.getValue(1);
1708         InFlag = Hi.getValue(2);
1709         if (!Subtarget->isLittle())
1710           std::swap (Lo, Hi);
1711         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1712         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1713                           DAG.getConstant(1, dl, MVT::i32));
1714       }
1715     } else {
1716       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1717                                InFlag);
1718       Chain = Val.getValue(1);
1719       InFlag = Val.getValue(2);
1720     }
1721 
1722     switch (VA.getLocInfo()) {
1723     default: llvm_unreachable("Unknown loc info!");
1724     case CCValAssign::Full: break;
1725     case CCValAssign::BCvt:
1726       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1727       break;
1728     }
1729 
1730     InVals.push_back(Val);
1731   }
1732 
1733   return Chain;
1734 }
1735 
1736 /// LowerMemOpCallTo - Store the argument to the stack.
1737 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1738                                             SDValue Arg, const SDLoc &dl,
1739                                             SelectionDAG &DAG,
1740                                             const CCValAssign &VA,
1741                                             ISD::ArgFlagsTy Flags) const {
1742   unsigned LocMemOffset = VA.getLocMemOffset();
1743   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1744   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1745                        StackPtr, PtrOff);
1746   return DAG.getStore(
1747       Chain, dl, Arg, PtrOff,
1748       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1749 }
1750 
1751 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1752                                          SDValue Chain, SDValue &Arg,
1753                                          RegsToPassVector &RegsToPass,
1754                                          CCValAssign &VA, CCValAssign &NextVA,
1755                                          SDValue &StackPtr,
1756                                          SmallVectorImpl<SDValue> &MemOpChains,
1757                                          ISD::ArgFlagsTy Flags) const {
1758   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1759                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1760   unsigned id = Subtarget->isLittle() ? 0 : 1;
1761   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1762 
1763   if (NextVA.isRegLoc())
1764     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1765   else {
1766     assert(NextVA.isMemLoc());
1767     if (!StackPtr.getNode())
1768       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1769                                     getPointerTy(DAG.getDataLayout()));
1770 
1771     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1772                                            dl, DAG, NextVA,
1773                                            Flags));
1774   }
1775 }
1776 
1777 /// LowerCall - Lowering a call into a callseq_start <-
1778 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1779 /// nodes.
1780 SDValue
1781 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1782                              SmallVectorImpl<SDValue> &InVals) const {
1783   SelectionDAG &DAG                     = CLI.DAG;
1784   SDLoc &dl                             = CLI.DL;
1785   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1786   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1787   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1788   SDValue Chain                         = CLI.Chain;
1789   SDValue Callee                        = CLI.Callee;
1790   bool &isTailCall                      = CLI.IsTailCall;
1791   CallingConv::ID CallConv              = CLI.CallConv;
1792   bool doesNotRet                       = CLI.DoesNotReturn;
1793   bool isVarArg                         = CLI.IsVarArg;
1794 
1795   MachineFunction &MF = DAG.getMachineFunction();
1796   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1797   bool isThisReturn   = false;
1798   bool isSibCall      = false;
1799   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
1800 
1801   // Disable tail calls if they're not supported.
1802   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1803     isTailCall = false;
1804 
1805   if (isTailCall) {
1806     // Check if it's really possible to do a tail call.
1807     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1808                     isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(),
1809                                                    Outs, OutVals, Ins, DAG);
1810     if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
1811       report_fatal_error("failed to perform tail call elimination on a call "
1812                          "site marked musttail");
1813     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1814     // detected sibcalls.
1815     if (isTailCall) {
1816       ++NumTailCalls;
1817       isSibCall = true;
1818     }
1819   }
1820 
1821   // Analyze operands of the call, assigning locations to each operand.
1822   SmallVector<CCValAssign, 16> ArgLocs;
1823   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1824                  *DAG.getContext());
1825   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
1826 
1827   // Get a count of how many bytes are to be pushed on the stack.
1828   unsigned NumBytes = CCInfo.getNextStackOffset();
1829 
1830   // For tail calls, memory operands are available in our caller's stack.
1831   if (isSibCall)
1832     NumBytes = 0;
1833 
1834   // Adjust the stack pointer for the new arguments...
1835   // These operations are automatically eliminated by the prolog/epilog pass
1836   if (!isSibCall)
1837     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1838 
1839   SDValue StackPtr =
1840       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1841 
1842   RegsToPassVector RegsToPass;
1843   SmallVector<SDValue, 8> MemOpChains;
1844 
1845   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1846   // of tail call optimization, arguments are handled later.
1847   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1848        i != e;
1849        ++i, ++realArgIdx) {
1850     CCValAssign &VA = ArgLocs[i];
1851     SDValue Arg = OutVals[realArgIdx];
1852     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1853     bool isByVal = Flags.isByVal();
1854 
1855     // Promote the value if needed.
1856     switch (VA.getLocInfo()) {
1857     default: llvm_unreachable("Unknown loc info!");
1858     case CCValAssign::Full: break;
1859     case CCValAssign::SExt:
1860       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1861       break;
1862     case CCValAssign::ZExt:
1863       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1864       break;
1865     case CCValAssign::AExt:
1866       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1867       break;
1868     case CCValAssign::BCvt:
1869       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1870       break;
1871     }
1872 
1873     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1874     if (VA.needsCustom()) {
1875       if (VA.getLocVT() == MVT::v2f64) {
1876         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1877                                   DAG.getConstant(0, dl, MVT::i32));
1878         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1879                                   DAG.getConstant(1, dl, MVT::i32));
1880 
1881         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1882                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1883 
1884         VA = ArgLocs[++i]; // skip ahead to next loc
1885         if (VA.isRegLoc()) {
1886           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1887                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1888         } else {
1889           assert(VA.isMemLoc());
1890 
1891           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1892                                                  dl, DAG, VA, Flags));
1893         }
1894       } else {
1895         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1896                          StackPtr, MemOpChains, Flags);
1897       }
1898     } else if (VA.isRegLoc()) {
1899       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
1900           Outs[0].VT == MVT::i32) {
1901         assert(VA.getLocVT() == MVT::i32 &&
1902                "unexpected calling convention register assignment");
1903         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1904                "unexpected use of 'returned'");
1905         isThisReturn = true;
1906       }
1907       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1908     } else if (isByVal) {
1909       assert(VA.isMemLoc());
1910       unsigned offset = 0;
1911 
1912       // True if this byval aggregate will be split between registers
1913       // and memory.
1914       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1915       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1916 
1917       if (CurByValIdx < ByValArgsCount) {
1918 
1919         unsigned RegBegin, RegEnd;
1920         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1921 
1922         EVT PtrVT =
1923             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1924         unsigned int i, j;
1925         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1926           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1927           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1928           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1929                                      MachinePointerInfo(),
1930                                      DAG.InferPtrAlignment(AddArg));
1931           MemOpChains.push_back(Load.getValue(1));
1932           RegsToPass.push_back(std::make_pair(j, Load));
1933         }
1934 
1935         // If parameter size outsides register area, "offset" value
1936         // helps us to calculate stack slot for remained part properly.
1937         offset = RegEnd - RegBegin;
1938 
1939         CCInfo.nextInRegsParam();
1940       }
1941 
1942       if (Flags.getByValSize() > 4*offset) {
1943         auto PtrVT = getPointerTy(DAG.getDataLayout());
1944         unsigned LocMemOffset = VA.getLocMemOffset();
1945         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1946         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1947         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1948         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1949         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1950                                            MVT::i32);
1951         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1952                                             MVT::i32);
1953 
1954         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1955         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1956         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1957                                           Ops));
1958       }
1959     } else if (!isSibCall) {
1960       assert(VA.isMemLoc());
1961 
1962       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1963                                              dl, DAG, VA, Flags));
1964     }
1965   }
1966 
1967   if (!MemOpChains.empty())
1968     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1969 
1970   // Build a sequence of copy-to-reg nodes chained together with token chain
1971   // and flag operands which copy the outgoing args into the appropriate regs.
1972   SDValue InFlag;
1973   // Tail call byval lowering might overwrite argument registers so in case of
1974   // tail call optimization the copies to registers are lowered later.
1975   if (!isTailCall)
1976     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1977       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1978                                RegsToPass[i].second, InFlag);
1979       InFlag = Chain.getValue(1);
1980     }
1981 
1982   // For tail calls lower the arguments to the 'real' stack slot.
1983   if (isTailCall) {
1984     // Force all the incoming stack arguments to be loaded from the stack
1985     // before any new outgoing arguments are stored to the stack, because the
1986     // outgoing stack slots may alias the incoming argument stack slots, and
1987     // the alias isn't otherwise explicit. This is slightly more conservative
1988     // than necessary, because it means that each store effectively depends
1989     // on every argument instead of just those arguments it would clobber.
1990 
1991     // Do not flag preceding copytoreg stuff together with the following stuff.
1992     InFlag = SDValue();
1993     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1994       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1995                                RegsToPass[i].second, InFlag);
1996       InFlag = Chain.getValue(1);
1997     }
1998     InFlag = SDValue();
1999   }
2000 
2001   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2002   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2003   // node so that legalize doesn't hack it.
2004   bool isDirect = false;
2005 
2006   const TargetMachine &TM = getTargetMachine();
2007   const Module *Mod = MF.getFunction().getParent();
2008   const GlobalValue *GV = nullptr;
2009   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2010     GV = G->getGlobal();
2011   bool isStub =
2012       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2013 
2014   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2015   bool isLocalARMFunc = false;
2016   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2017   auto PtrVt = getPointerTy(DAG.getDataLayout());
2018 
2019   if (Subtarget->genLongCalls()) {
2020     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2021            "long-calls codegen is not position independent!");
2022     // Handle a global address or an external symbol. If it's not one of
2023     // those, the target's already in a register, so we don't need to do
2024     // anything extra.
2025     if (isa<GlobalAddressSDNode>(Callee)) {
2026       // Create a constant pool entry for the callee address
2027       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2028       ARMConstantPoolValue *CPV =
2029         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2030 
2031       // Get the address of the callee into a register
2032       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2033       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2034       Callee = DAG.getLoad(
2035           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2036           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2037     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2038       const char *Sym = S->getSymbol();
2039 
2040       // Create a constant pool entry for the callee address
2041       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2042       ARMConstantPoolValue *CPV =
2043         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2044                                       ARMPCLabelIndex, 0);
2045       // Get the address of the callee into a register
2046       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2047       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2048       Callee = DAG.getLoad(
2049           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2050           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2051     }
2052   } else if (isa<GlobalAddressSDNode>(Callee)) {
2053     // If we're optimizing for minimum size and the function is called three or
2054     // more times in this block, we can improve codesize by calling indirectly
2055     // as BLXr has a 16-bit encoding.
2056     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2057     auto *BB = CLI.CS.getParent();
2058     bool PreferIndirect =
2059         Subtarget->isThumb() && MF.getFunction().optForMinSize() &&
2060         count_if(GV->users(), [&BB](const User *U) {
2061           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
2062         }) > 2;
2063 
2064     if (!PreferIndirect) {
2065       isDirect = true;
2066       bool isDef = GV->isStrongDefinitionForLinker();
2067 
2068       // ARM call to a local ARM function is predicable.
2069       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2070       // tBX takes a register source operand.
2071       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2072         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2073         Callee = DAG.getNode(
2074             ARMISD::WrapperPIC, dl, PtrVt,
2075             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2076         Callee = DAG.getLoad(
2077             PtrVt, dl, DAG.getEntryNode(), Callee,
2078             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2079             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2080                                      MachineMemOperand::MOInvariant);
2081       } else if (Subtarget->isTargetCOFF()) {
2082         assert(Subtarget->isTargetWindows() &&
2083                "Windows is the only supported COFF target");
2084         unsigned TargetFlags = GV->hasDLLImportStorageClass()
2085                                    ? ARMII::MO_DLLIMPORT
2086                                    : ARMII::MO_NO_FLAG;
2087         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
2088                                             TargetFlags);
2089         if (GV->hasDLLImportStorageClass())
2090           Callee =
2091               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2092                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2093                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2094       } else {
2095         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2096       }
2097     }
2098   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2099     isDirect = true;
2100     // tBX takes a register source operand.
2101     const char *Sym = S->getSymbol();
2102     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2103       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2104       ARMConstantPoolValue *CPV =
2105         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2106                                       ARMPCLabelIndex, 4);
2107       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2108       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2109       Callee = DAG.getLoad(
2110           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2111           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2112       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2113       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2114     } else {
2115       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2116     }
2117   }
2118 
2119   // FIXME: handle tail calls differently.
2120   unsigned CallOpc;
2121   if (Subtarget->isThumb()) {
2122     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2123       CallOpc = ARMISD::CALL_NOLINK;
2124     else
2125       CallOpc = ARMISD::CALL;
2126   } else {
2127     if (!isDirect && !Subtarget->hasV5TOps())
2128       CallOpc = ARMISD::CALL_NOLINK;
2129     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2130              // Emit regular call when code size is the priority
2131              !MF.getFunction().optForMinSize())
2132       // "mov lr, pc; b _foo" to avoid confusing the RSP
2133       CallOpc = ARMISD::CALL_NOLINK;
2134     else
2135       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2136   }
2137 
2138   std::vector<SDValue> Ops;
2139   Ops.push_back(Chain);
2140   Ops.push_back(Callee);
2141 
2142   // Add argument registers to the end of the list so that they are known live
2143   // into the call.
2144   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2145     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2146                                   RegsToPass[i].second.getValueType()));
2147 
2148   // Add a register mask operand representing the call-preserved registers.
2149   if (!isTailCall) {
2150     const uint32_t *Mask;
2151     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2152     if (isThisReturn) {
2153       // For 'this' returns, use the R0-preserving mask if applicable
2154       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2155       if (!Mask) {
2156         // Set isThisReturn to false if the calling convention is not one that
2157         // allows 'returned' to be modeled in this way, so LowerCallResult does
2158         // not try to pass 'this' straight through
2159         isThisReturn = false;
2160         Mask = ARI->getCallPreservedMask(MF, CallConv);
2161       }
2162     } else
2163       Mask = ARI->getCallPreservedMask(MF, CallConv);
2164 
2165     assert(Mask && "Missing call preserved mask for calling convention");
2166     Ops.push_back(DAG.getRegisterMask(Mask));
2167   }
2168 
2169   if (InFlag.getNode())
2170     Ops.push_back(InFlag);
2171 
2172   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2173   if (isTailCall) {
2174     MF.getFrameInfo().setHasTailCall();
2175     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2176   }
2177 
2178   // Returns a chain and a flag for retval copy to use.
2179   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2180   InFlag = Chain.getValue(1);
2181 
2182   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2183                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2184   if (!Ins.empty())
2185     InFlag = Chain.getValue(1);
2186 
2187   // Handle result values, copying them out of physregs into vregs that we
2188   // return.
2189   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2190                          InVals, isThisReturn,
2191                          isThisReturn ? OutVals[0] : SDValue());
2192 }
2193 
2194 /// HandleByVal - Every parameter *after* a byval parameter is passed
2195 /// on the stack.  Remember the next parameter register to allocate,
2196 /// and then confiscate the rest of the parameter registers to insure
2197 /// this.
2198 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2199                                     unsigned Align) const {
2200   // Byval (as with any stack) slots are always at least 4 byte aligned.
2201   Align = std::max(Align, 4U);
2202 
2203   unsigned Reg = State->AllocateReg(GPRArgRegs);
2204   if (!Reg)
2205     return;
2206 
2207   unsigned AlignInRegs = Align / 4;
2208   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2209   for (unsigned i = 0; i < Waste; ++i)
2210     Reg = State->AllocateReg(GPRArgRegs);
2211 
2212   if (!Reg)
2213     return;
2214 
2215   unsigned Excess = 4 * (ARM::R4 - Reg);
2216 
2217   // Special case when NSAA != SP and parameter size greater than size of
2218   // all remained GPR regs. In that case we can't split parameter, we must
2219   // send it to stack. We also must set NCRN to R4, so waste all
2220   // remained registers.
2221   const unsigned NSAAOffset = State->getNextStackOffset();
2222   if (NSAAOffset != 0 && Size > Excess) {
2223     while (State->AllocateReg(GPRArgRegs))
2224       ;
2225     return;
2226   }
2227 
2228   // First register for byval parameter is the first register that wasn't
2229   // allocated before this method call, so it would be "reg".
2230   // If parameter is small enough to be saved in range [reg, r4), then
2231   // the end (first after last) register would be reg + param-size-in-regs,
2232   // else parameter would be splitted between registers and stack,
2233   // end register would be r4 in this case.
2234   unsigned ByValRegBegin = Reg;
2235   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2236   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2237   // Note, first register is allocated in the beginning of function already,
2238   // allocate remained amount of registers we need.
2239   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2240     State->AllocateReg(GPRArgRegs);
2241   // A byval parameter that is split between registers and memory needs its
2242   // size truncated here.
2243   // In the case where the entire structure fits in registers, we set the
2244   // size in memory to zero.
2245   Size = std::max<int>(Size - Excess, 0);
2246 }
2247 
2248 /// MatchingStackOffset - Return true if the given stack call argument is
2249 /// already available in the same position (relatively) of the caller's
2250 /// incoming argument stack.
2251 static
2252 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2253                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2254                          const TargetInstrInfo *TII) {
2255   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2256   int FI = std::numeric_limits<int>::max();
2257   if (Arg.getOpcode() == ISD::CopyFromReg) {
2258     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2259     if (!TargetRegisterInfo::isVirtualRegister(VR))
2260       return false;
2261     MachineInstr *Def = MRI->getVRegDef(VR);
2262     if (!Def)
2263       return false;
2264     if (!Flags.isByVal()) {
2265       if (!TII->isLoadFromStackSlot(*Def, FI))
2266         return false;
2267     } else {
2268       return false;
2269     }
2270   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2271     if (Flags.isByVal())
2272       // ByVal argument is passed in as a pointer but it's now being
2273       // dereferenced. e.g.
2274       // define @foo(%struct.X* %A) {
2275       //   tail call @bar(%struct.X* byval %A)
2276       // }
2277       return false;
2278     SDValue Ptr = Ld->getBasePtr();
2279     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2280     if (!FINode)
2281       return false;
2282     FI = FINode->getIndex();
2283   } else
2284     return false;
2285 
2286   assert(FI != std::numeric_limits<int>::max());
2287   if (!MFI.isFixedObjectIndex(FI))
2288     return false;
2289   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2290 }
2291 
2292 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2293 /// for tail call optimization. Targets which want to do tail call
2294 /// optimization should implement this function.
2295 bool
2296 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2297                                                      CallingConv::ID CalleeCC,
2298                                                      bool isVarArg,
2299                                                      bool isCalleeStructRet,
2300                                                      bool isCallerStructRet,
2301                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2302                                     const SmallVectorImpl<SDValue> &OutVals,
2303                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2304                                                      SelectionDAG& DAG) const {
2305   MachineFunction &MF = DAG.getMachineFunction();
2306   const Function &CallerF = MF.getFunction();
2307   CallingConv::ID CallerCC = CallerF.getCallingConv();
2308 
2309   assert(Subtarget->supportsTailCall());
2310 
2311   // Tail calls to function pointers cannot be optimized for Thumb1 if the args
2312   // to the call take up r0-r3. The reason is that there are no legal registers
2313   // left to hold the pointer to the function to be called.
2314   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2315       !isa<GlobalAddressSDNode>(Callee.getNode()))
2316       return false;
2317 
2318   // Look for obvious safe cases to perform tail call optimization that do not
2319   // require ABI changes. This is what gcc calls sibcall.
2320 
2321   // Exception-handling functions need a special set of instructions to indicate
2322   // a return to the hardware. Tail-calling another function would probably
2323   // break this.
2324   if (CallerF.hasFnAttribute("interrupt"))
2325     return false;
2326 
2327   // Also avoid sibcall optimization if either caller or callee uses struct
2328   // return semantics.
2329   if (isCalleeStructRet || isCallerStructRet)
2330     return false;
2331 
2332   // Externally-defined functions with weak linkage should not be
2333   // tail-called on ARM when the OS does not support dynamic
2334   // pre-emption of symbols, as the AAELF spec requires normal calls
2335   // to undefined weak functions to be replaced with a NOP or jump to the
2336   // next instruction. The behaviour of branch instructions in this
2337   // situation (as used for tail calls) is implementation-defined, so we
2338   // cannot rely on the linker replacing the tail call with a return.
2339   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2340     const GlobalValue *GV = G->getGlobal();
2341     const Triple &TT = getTargetMachine().getTargetTriple();
2342     if (GV->hasExternalWeakLinkage() &&
2343         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2344       return false;
2345   }
2346 
2347   // Check that the call results are passed in the same way.
2348   LLVMContext &C = *DAG.getContext();
2349   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2350                                   CCAssignFnForReturn(CalleeCC, isVarArg),
2351                                   CCAssignFnForReturn(CallerCC, isVarArg)))
2352     return false;
2353   // The callee has to preserve all registers the caller needs to preserve.
2354   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2355   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2356   if (CalleeCC != CallerCC) {
2357     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2358     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2359       return false;
2360   }
2361 
2362   // If Caller's vararg or byval argument has been split between registers and
2363   // stack, do not perform tail call, since part of the argument is in caller's
2364   // local frame.
2365   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2366   if (AFI_Caller->getArgRegsSaveSize())
2367     return false;
2368 
2369   // If the callee takes no arguments then go on to check the results of the
2370   // call.
2371   if (!Outs.empty()) {
2372     // Check if stack adjustment is needed. For now, do not do this if any
2373     // argument is passed on the stack.
2374     SmallVector<CCValAssign, 16> ArgLocs;
2375     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2376     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2377     if (CCInfo.getNextStackOffset()) {
2378       // Check if the arguments are already laid out in the right way as
2379       // the caller's fixed stack objects.
2380       MachineFrameInfo &MFI = MF.getFrameInfo();
2381       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2382       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2383       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2384            i != e;
2385            ++i, ++realArgIdx) {
2386         CCValAssign &VA = ArgLocs[i];
2387         EVT RegVT = VA.getLocVT();
2388         SDValue Arg = OutVals[realArgIdx];
2389         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2390         if (VA.getLocInfo() == CCValAssign::Indirect)
2391           return false;
2392         if (VA.needsCustom()) {
2393           // f64 and vector types are split into multiple registers or
2394           // register/stack-slot combinations.  The types will not match
2395           // the registers; give up on memory f64 refs until we figure
2396           // out what to do about this.
2397           if (!VA.isRegLoc())
2398             return false;
2399           if (!ArgLocs[++i].isRegLoc())
2400             return false;
2401           if (RegVT == MVT::v2f64) {
2402             if (!ArgLocs[++i].isRegLoc())
2403               return false;
2404             if (!ArgLocs[++i].isRegLoc())
2405               return false;
2406           }
2407         } else if (!VA.isRegLoc()) {
2408           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2409                                    MFI, MRI, TII))
2410             return false;
2411         }
2412       }
2413     }
2414 
2415     const MachineRegisterInfo &MRI = MF.getRegInfo();
2416     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2417       return false;
2418   }
2419 
2420   return true;
2421 }
2422 
2423 bool
2424 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2425                                   MachineFunction &MF, bool isVarArg,
2426                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2427                                   LLVMContext &Context) const {
2428   SmallVector<CCValAssign, 16> RVLocs;
2429   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2430   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2431 }
2432 
2433 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2434                                     const SDLoc &DL, SelectionDAG &DAG) {
2435   const MachineFunction &MF = DAG.getMachineFunction();
2436   const Function &F = MF.getFunction();
2437 
2438   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2439 
2440   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2441   // version of the "preferred return address". These offsets affect the return
2442   // instruction if this is a return from PL1 without hypervisor extensions.
2443   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2444   //    SWI:     0      "subs pc, lr, #0"
2445   //    ABORT:   +4     "subs pc, lr, #4"
2446   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2447   // UNDEF varies depending on where the exception came from ARM or Thumb
2448   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2449 
2450   int64_t LROffset;
2451   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2452       IntKind == "ABORT")
2453     LROffset = 4;
2454   else if (IntKind == "SWI" || IntKind == "UNDEF")
2455     LROffset = 0;
2456   else
2457     report_fatal_error("Unsupported interrupt attribute. If present, value "
2458                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2459 
2460   RetOps.insert(RetOps.begin() + 1,
2461                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2462 
2463   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2464 }
2465 
2466 SDValue
2467 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2468                                bool isVarArg,
2469                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2470                                const SmallVectorImpl<SDValue> &OutVals,
2471                                const SDLoc &dl, SelectionDAG &DAG) const {
2472   // CCValAssign - represent the assignment of the return value to a location.
2473   SmallVector<CCValAssign, 16> RVLocs;
2474 
2475   // CCState - Info about the registers and stack slots.
2476   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2477                  *DAG.getContext());
2478 
2479   // Analyze outgoing return values.
2480   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2481 
2482   SDValue Flag;
2483   SmallVector<SDValue, 4> RetOps;
2484   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2485   bool isLittleEndian = Subtarget->isLittle();
2486 
2487   MachineFunction &MF = DAG.getMachineFunction();
2488   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2489   AFI->setReturnRegsCount(RVLocs.size());
2490 
2491   // Copy the result values into the output registers.
2492   for (unsigned i = 0, realRVLocIdx = 0;
2493        i != RVLocs.size();
2494        ++i, ++realRVLocIdx) {
2495     CCValAssign &VA = RVLocs[i];
2496     assert(VA.isRegLoc() && "Can only return in registers!");
2497 
2498     SDValue Arg = OutVals[realRVLocIdx];
2499     bool ReturnF16 = false;
2500 
2501     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2502       // Half-precision return values can be returned like this:
2503       //
2504       // t11 f16 = fadd ...
2505       // t12: i16 = bitcast t11
2506       //   t13: i32 = zero_extend t12
2507       // t14: f32 = bitcast t13  <~~~~~~~ Arg
2508       //
2509       // to avoid code generation for bitcasts, we simply set Arg to the node
2510       // that produces the f16 value, t11 in this case.
2511       //
2512       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2513         SDValue ZE = Arg.getOperand(0);
2514         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2515           SDValue BC = ZE.getOperand(0);
2516           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2517             Arg = BC.getOperand(0);
2518             ReturnF16 = true;
2519           }
2520         }
2521       }
2522     }
2523 
2524     switch (VA.getLocInfo()) {
2525     default: llvm_unreachable("Unknown loc info!");
2526     case CCValAssign::Full: break;
2527     case CCValAssign::BCvt:
2528       if (!ReturnF16)
2529         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2530       break;
2531     }
2532 
2533     if (VA.needsCustom()) {
2534       if (VA.getLocVT() == MVT::v2f64) {
2535         // Extract the first half and return it in two registers.
2536         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2537                                    DAG.getConstant(0, dl, MVT::i32));
2538         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2539                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2540 
2541         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2542                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2543                                  Flag);
2544         Flag = Chain.getValue(1);
2545         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2546         VA = RVLocs[++i]; // skip ahead to next loc
2547         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2548                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2549                                  Flag);
2550         Flag = Chain.getValue(1);
2551         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2552         VA = RVLocs[++i]; // skip ahead to next loc
2553 
2554         // Extract the 2nd half and fall through to handle it as an f64 value.
2555         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2556                           DAG.getConstant(1, dl, MVT::i32));
2557       }
2558       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2559       // available.
2560       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2561                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2562       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2563                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2564                                Flag);
2565       Flag = Chain.getValue(1);
2566       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2567       VA = RVLocs[++i]; // skip ahead to next loc
2568       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2569                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2570                                Flag);
2571     } else
2572       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2573 
2574     // Guarantee that all emitted copies are
2575     // stuck together, avoiding something bad.
2576     Flag = Chain.getValue(1);
2577     RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2578                                      ReturnF16 ? MVT::f16 : VA.getLocVT()));
2579   }
2580   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2581   const MCPhysReg *I =
2582       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2583   if (I) {
2584     for (; *I; ++I) {
2585       if (ARM::GPRRegClass.contains(*I))
2586         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2587       else if (ARM::DPRRegClass.contains(*I))
2588         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2589       else
2590         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2591     }
2592   }
2593 
2594   // Update chain and glue.
2595   RetOps[0] = Chain;
2596   if (Flag.getNode())
2597     RetOps.push_back(Flag);
2598 
2599   // CPUs which aren't M-class use a special sequence to return from
2600   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2601   // though we use "subs pc, lr, #N").
2602   //
2603   // M-class CPUs actually use a normal return sequence with a special
2604   // (hardware-provided) value in LR, so the normal code path works.
2605   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2606       !Subtarget->isMClass()) {
2607     if (Subtarget->isThumb1Only())
2608       report_fatal_error("interrupt attribute is not supported in Thumb1");
2609     return LowerInterruptReturn(RetOps, dl, DAG);
2610   }
2611 
2612   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2613 }
2614 
2615 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2616   if (N->getNumValues() != 1)
2617     return false;
2618   if (!N->hasNUsesOfValue(1, 0))
2619     return false;
2620 
2621   SDValue TCChain = Chain;
2622   SDNode *Copy = *N->use_begin();
2623   if (Copy->getOpcode() == ISD::CopyToReg) {
2624     // If the copy has a glue operand, we conservatively assume it isn't safe to
2625     // perform a tail call.
2626     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2627       return false;
2628     TCChain = Copy->getOperand(0);
2629   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2630     SDNode *VMov = Copy;
2631     // f64 returned in a pair of GPRs.
2632     SmallPtrSet<SDNode*, 2> Copies;
2633     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2634          UI != UE; ++UI) {
2635       if (UI->getOpcode() != ISD::CopyToReg)
2636         return false;
2637       Copies.insert(*UI);
2638     }
2639     if (Copies.size() > 2)
2640       return false;
2641 
2642     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2643          UI != UE; ++UI) {
2644       SDValue UseChain = UI->getOperand(0);
2645       if (Copies.count(UseChain.getNode()))
2646         // Second CopyToReg
2647         Copy = *UI;
2648       else {
2649         // We are at the top of this chain.
2650         // If the copy has a glue operand, we conservatively assume it
2651         // isn't safe to perform a tail call.
2652         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2653           return false;
2654         // First CopyToReg
2655         TCChain = UseChain;
2656       }
2657     }
2658   } else if (Copy->getOpcode() == ISD::BITCAST) {
2659     // f32 returned in a single GPR.
2660     if (!Copy->hasOneUse())
2661       return false;
2662     Copy = *Copy->use_begin();
2663     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2664       return false;
2665     // If the copy has a glue operand, we conservatively assume it isn't safe to
2666     // perform a tail call.
2667     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2668       return false;
2669     TCChain = Copy->getOperand(0);
2670   } else {
2671     return false;
2672   }
2673 
2674   bool HasRet = false;
2675   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2676        UI != UE; ++UI) {
2677     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2678         UI->getOpcode() != ARMISD::INTRET_FLAG)
2679       return false;
2680     HasRet = true;
2681   }
2682 
2683   if (!HasRet)
2684     return false;
2685 
2686   Chain = TCChain;
2687   return true;
2688 }
2689 
2690 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2691   if (!Subtarget->supportsTailCall())
2692     return false;
2693 
2694   auto Attr =
2695       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2696   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2697     return false;
2698 
2699   return true;
2700 }
2701 
2702 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2703 // and pass the lower and high parts through.
2704 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2705   SDLoc DL(Op);
2706   SDValue WriteValue = Op->getOperand(2);
2707 
2708   // This function is only supposed to be called for i64 type argument.
2709   assert(WriteValue.getValueType() == MVT::i64
2710           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2711 
2712   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2713                            DAG.getConstant(0, DL, MVT::i32));
2714   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2715                            DAG.getConstant(1, DL, MVT::i32));
2716   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2717   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2718 }
2719 
2720 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2721 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2722 // one of the above mentioned nodes. It has to be wrapped because otherwise
2723 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2724 // be used to form addressing mode. These wrapped nodes will be selected
2725 // into MOVi.
2726 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2727                                              SelectionDAG &DAG) const {
2728   EVT PtrVT = Op.getValueType();
2729   // FIXME there is no actual debug info here
2730   SDLoc dl(Op);
2731   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2732   SDValue Res;
2733 
2734   // When generating execute-only code Constant Pools must be promoted to the
2735   // global data section. It's a bit ugly that we can't share them across basic
2736   // blocks, but this way we guarantee that execute-only behaves correct with
2737   // position-independent addressing modes.
2738   if (Subtarget->genExecuteOnly()) {
2739     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2740     auto T = const_cast<Type*>(CP->getType());
2741     auto C = const_cast<Constant*>(CP->getConstVal());
2742     auto M = const_cast<Module*>(DAG.getMachineFunction().
2743                                  getFunction().getParent());
2744     auto GV = new GlobalVariable(
2745                     *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
2746                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2747                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2748                     Twine(AFI->createPICLabelUId())
2749                   );
2750     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2751                                             dl, PtrVT);
2752     return LowerGlobalAddress(GA, DAG);
2753   }
2754 
2755   if (CP->isMachineConstantPoolEntry())
2756     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2757                                     CP->getAlignment());
2758   else
2759     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2760                                     CP->getAlignment());
2761   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2762 }
2763 
2764 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2765   return MachineJumpTableInfo::EK_Inline;
2766 }
2767 
2768 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2769                                              SelectionDAG &DAG) const {
2770   MachineFunction &MF = DAG.getMachineFunction();
2771   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2772   unsigned ARMPCLabelIndex = 0;
2773   SDLoc DL(Op);
2774   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2775   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2776   SDValue CPAddr;
2777   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2778   if (!IsPositionIndependent) {
2779     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2780   } else {
2781     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2782     ARMPCLabelIndex = AFI->createPICLabelUId();
2783     ARMConstantPoolValue *CPV =
2784       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2785                                       ARMCP::CPBlockAddress, PCAdj);
2786     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2787   }
2788   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2789   SDValue Result = DAG.getLoad(
2790       PtrVT, DL, DAG.getEntryNode(), CPAddr,
2791       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2792   if (!IsPositionIndependent)
2793     return Result;
2794   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2795   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2796 }
2797 
2798 /// \brief Convert a TLS address reference into the correct sequence of loads
2799 /// and calls to compute the variable's address for Darwin, and return an
2800 /// SDValue containing the final node.
2801 
2802 /// Darwin only has one TLS scheme which must be capable of dealing with the
2803 /// fully general situation, in the worst case. This means:
2804 ///     + "extern __thread" declaration.
2805 ///     + Defined in a possibly unknown dynamic library.
2806 ///
2807 /// The general system is that each __thread variable has a [3 x i32] descriptor
2808 /// which contains information used by the runtime to calculate the address. The
2809 /// only part of this the compiler needs to know about is the first word, which
2810 /// contains a function pointer that must be called with the address of the
2811 /// entire descriptor in "r0".
2812 ///
2813 /// Since this descriptor may be in a different unit, in general access must
2814 /// proceed along the usual ARM rules. A common sequence to produce is:
2815 ///
2816 ///     movw rT1, :lower16:_var$non_lazy_ptr
2817 ///     movt rT1, :upper16:_var$non_lazy_ptr
2818 ///     ldr r0, [rT1]
2819 ///     ldr rT2, [r0]
2820 ///     blx rT2
2821 ///     [...address now in r0...]
2822 SDValue
2823 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2824                                                SelectionDAG &DAG) const {
2825   assert(Subtarget->isTargetDarwin() &&
2826          "This function expects a Darwin target");
2827   SDLoc DL(Op);
2828 
2829   // First step is to get the address of the actua global symbol. This is where
2830   // the TLS descriptor lives.
2831   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2832 
2833   // The first entry in the descriptor is a function pointer that we must call
2834   // to obtain the address of the variable.
2835   SDValue Chain = DAG.getEntryNode();
2836   SDValue FuncTLVGet = DAG.getLoad(
2837       MVT::i32, DL, Chain, DescAddr,
2838       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2839       /* Alignment = */ 4,
2840       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2841           MachineMemOperand::MOInvariant);
2842   Chain = FuncTLVGet.getValue(1);
2843 
2844   MachineFunction &F = DAG.getMachineFunction();
2845   MachineFrameInfo &MFI = F.getFrameInfo();
2846   MFI.setAdjustsStack(true);
2847 
2848   // TLS calls preserve all registers except those that absolutely must be
2849   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2850   // silly).
2851   auto TRI =
2852       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
2853   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2854   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2855 
2856   // Finally, we can make the call. This is just a degenerate version of a
2857   // normal AArch64 call node: r0 takes the address of the descriptor, and
2858   // returns the address of the variable in this thread.
2859   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2860   Chain =
2861       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2862                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2863                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2864   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2865 }
2866 
2867 SDValue
2868 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2869                                                 SelectionDAG &DAG) const {
2870   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2871 
2872   SDValue Chain = DAG.getEntryNode();
2873   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2874   SDLoc DL(Op);
2875 
2876   // Load the current TEB (thread environment block)
2877   SDValue Ops[] = {Chain,
2878                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2879                    DAG.getConstant(15, DL, MVT::i32),
2880                    DAG.getConstant(0, DL, MVT::i32),
2881                    DAG.getConstant(13, DL, MVT::i32),
2882                    DAG.getConstant(0, DL, MVT::i32),
2883                    DAG.getConstant(2, DL, MVT::i32)};
2884   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2885                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2886 
2887   SDValue TEB = CurrentTEB.getValue(0);
2888   Chain = CurrentTEB.getValue(1);
2889 
2890   // Load the ThreadLocalStoragePointer from the TEB
2891   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2892   SDValue TLSArray =
2893       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2894   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
2895 
2896   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2897   // offset into the TLSArray.
2898 
2899   // Load the TLS index from the C runtime
2900   SDValue TLSIndex =
2901       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2902   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2903   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
2904 
2905   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2906                               DAG.getConstant(2, DL, MVT::i32));
2907   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2908                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2909                             MachinePointerInfo());
2910 
2911   // Get the offset of the start of the .tls section (section base)
2912   const auto *GA = cast<GlobalAddressSDNode>(Op);
2913   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2914   SDValue Offset = DAG.getLoad(
2915       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2916                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2917       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2918 
2919   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2920 }
2921 
2922 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2923 SDValue
2924 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2925                                                  SelectionDAG &DAG) const {
2926   SDLoc dl(GA);
2927   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2928   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2929   MachineFunction &MF = DAG.getMachineFunction();
2930   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2931   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2932   ARMConstantPoolValue *CPV =
2933     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2934                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2935   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2936   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2937   Argument = DAG.getLoad(
2938       PtrVT, dl, DAG.getEntryNode(), Argument,
2939       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2940   SDValue Chain = Argument.getValue(1);
2941 
2942   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2943   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2944 
2945   // call __tls_get_addr.
2946   ArgListTy Args;
2947   ArgListEntry Entry;
2948   Entry.Node = Argument;
2949   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2950   Args.push_back(Entry);
2951 
2952   // FIXME: is there useful debug info available here?
2953   TargetLowering::CallLoweringInfo CLI(DAG);
2954   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2955       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2956       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2957 
2958   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2959   return CallResult.first;
2960 }
2961 
2962 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2963 // "local exec" model.
2964 SDValue
2965 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2966                                         SelectionDAG &DAG,
2967                                         TLSModel::Model model) const {
2968   const GlobalValue *GV = GA->getGlobal();
2969   SDLoc dl(GA);
2970   SDValue Offset;
2971   SDValue Chain = DAG.getEntryNode();
2972   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2973   // Get the Thread Pointer
2974   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2975 
2976   if (model == TLSModel::InitialExec) {
2977     MachineFunction &MF = DAG.getMachineFunction();
2978     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2979     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2980     // Initial exec model.
2981     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2982     ARMConstantPoolValue *CPV =
2983       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2984                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2985                                       true);
2986     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2987     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2988     Offset = DAG.getLoad(
2989         PtrVT, dl, Chain, Offset,
2990         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2991     Chain = Offset.getValue(1);
2992 
2993     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2994     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2995 
2996     Offset = DAG.getLoad(
2997         PtrVT, dl, Chain, Offset,
2998         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2999   } else {
3000     // local exec model
3001     assert(model == TLSModel::LocalExec);
3002     ARMConstantPoolValue *CPV =
3003       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3004     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3005     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3006     Offset = DAG.getLoad(
3007         PtrVT, dl, Chain, Offset,
3008         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3009   }
3010 
3011   // The address of the thread local variable is the add of the thread
3012   // pointer with the offset of the variable.
3013   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3014 }
3015 
3016 SDValue
3017 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3018   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3019   if (DAG.getTarget().useEmulatedTLS())
3020     return LowerToTLSEmulatedModel(GA, DAG);
3021 
3022   if (Subtarget->isTargetDarwin())
3023     return LowerGlobalTLSAddressDarwin(Op, DAG);
3024 
3025   if (Subtarget->isTargetWindows())
3026     return LowerGlobalTLSAddressWindows(Op, DAG);
3027 
3028   // TODO: implement the "local dynamic" model
3029   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3030   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3031 
3032   switch (model) {
3033     case TLSModel::GeneralDynamic:
3034     case TLSModel::LocalDynamic:
3035       return LowerToTLSGeneralDynamicModel(GA, DAG);
3036     case TLSModel::InitialExec:
3037     case TLSModel::LocalExec:
3038       return LowerToTLSExecModels(GA, DAG, model);
3039   }
3040   llvm_unreachable("bogus TLS model");
3041 }
3042 
3043 /// Return true if all users of V are within function F, looking through
3044 /// ConstantExprs.
3045 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3046   SmallVector<const User*,4> Worklist;
3047   for (auto *U : V->users())
3048     Worklist.push_back(U);
3049   while (!Worklist.empty()) {
3050     auto *U = Worklist.pop_back_val();
3051     if (isa<ConstantExpr>(U)) {
3052       for (auto *UU : U->users())
3053         Worklist.push_back(UU);
3054       continue;
3055     }
3056 
3057     auto *I = dyn_cast<Instruction>(U);
3058     if (!I || I->getParent()->getParent() != F)
3059       return false;
3060   }
3061   return true;
3062 }
3063 
3064 /// Return true if all users of V are within some (any) function, looking through
3065 /// ConstantExprs. In other words, are there any global constant users?
3066 static bool allUsersAreInFunctions(const Value *V) {
3067   SmallVector<const User*,4> Worklist;
3068   for (auto *U : V->users())
3069     Worklist.push_back(U);
3070   while (!Worklist.empty()) {
3071     auto *U = Worklist.pop_back_val();
3072     if (isa<ConstantExpr>(U)) {
3073       for (auto *UU : U->users())
3074         Worklist.push_back(UU);
3075       continue;
3076     }
3077 
3078     if (!isa<Instruction>(U))
3079       return false;
3080   }
3081   return true;
3082 }
3083 
3084 // Return true if T is an integer, float or an array/vector of either.
3085 static bool isSimpleType(Type *T) {
3086   if (T->isIntegerTy() || T->isFloatingPointTy())
3087     return true;
3088   Type *SubT = nullptr;
3089   if (T->isArrayTy())
3090     SubT = T->getArrayElementType();
3091   else if (T->isVectorTy())
3092     SubT = T->getVectorElementType();
3093   else
3094     return false;
3095   return SubT->isIntegerTy() || SubT->isFloatingPointTy();
3096 }
3097 
3098 static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG,
3099                                      EVT PtrVT, const SDLoc &dl) {
3100   // If we're creating a pool entry for a constant global with unnamed address,
3101   // and the global is small enough, we can emit it inline into the constant pool
3102   // to save ourselves an indirection.
3103   //
3104   // This is a win if the constant is only used in one function (so it doesn't
3105   // need to be duplicated) or duplicating the constant wouldn't increase code
3106   // size (implying the constant is no larger than 4 bytes).
3107   const Function &F = DAG.getMachineFunction().getFunction();
3108 
3109   // We rely on this decision to inline being idemopotent and unrelated to the
3110   // use-site. We know that if we inline a variable at one use site, we'll
3111   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3112   // doesn't know about this optimization, so bail out if it's enabled else
3113   // we could decide to inline here (and thus never emit the GV) but require
3114   // the GV from fast-isel generated code.
3115   if (!EnableConstpoolPromotion ||
3116       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3117       return SDValue();
3118 
3119   auto *GVar = dyn_cast<GlobalVariable>(GV);
3120   if (!GVar || !GVar->hasInitializer() ||
3121       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3122       !GVar->hasLocalLinkage())
3123     return SDValue();
3124 
3125   // Ensure that we don't try and inline any type that contains pointers. If
3126   // we inline a value that contains relocations, we move the relocations from
3127   // .data to .text which is not ideal.
3128   auto *Init = GVar->getInitializer();
3129   if (!isSimpleType(Init->getType()))
3130     return SDValue();
3131 
3132   // The constant islands pass can only really deal with alignment requests
3133   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3134   // any type wanting greater alignment requirements than 4 bytes. We also
3135   // can only promote constants that are multiples of 4 bytes in size or
3136   // are paddable to a multiple of 4. Currently we only try and pad constants
3137   // that are strings for simplicity.
3138   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3139   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3140   unsigned Align = GVar->getAlignment();
3141   unsigned RequiredPadding = 4 - (Size % 4);
3142   bool PaddingPossible =
3143     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3144   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3145       Size == 0)
3146     return SDValue();
3147 
3148   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3149   MachineFunction &MF = DAG.getMachineFunction();
3150   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3151 
3152   // We can't bloat the constant pool too much, else the ConstantIslands pass
3153   // may fail to converge. If we haven't promoted this global yet (it may have
3154   // multiple uses), and promoting it would increase the constant pool size (Sz
3155   // > 4), ensure we have space to do so up to MaxTotal.
3156   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3157     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3158         ConstpoolPromotionMaxTotal)
3159       return SDValue();
3160 
3161   // This is only valid if all users are in a single function OR it has users
3162   // in multiple functions but it no larger than a pointer. We also check if
3163   // GVar has constant (non-ConstantExpr) users. If so, it essentially has its
3164   // address taken.
3165   if (!allUsersAreInFunction(GVar, &F) &&
3166       !(Size <= 4 && allUsersAreInFunctions(GVar)))
3167     return SDValue();
3168 
3169   // We're going to inline this global. Pad it out if needed.
3170   if (RequiredPadding != 4) {
3171     StringRef S = CDAInit->getAsString();
3172 
3173     SmallVector<uint8_t,16> V(S.size());
3174     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3175     while (RequiredPadding--)
3176       V.push_back(0);
3177     Init = ConstantDataArray::get(*DAG.getContext(), V);
3178   }
3179 
3180   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3181   SDValue CPAddr =
3182     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3183   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3184     AFI->markGlobalAsPromotedToConstantPool(GVar);
3185     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3186                                       PaddedSize - 4);
3187   }
3188   ++NumConstpoolPromoted;
3189   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3190 }
3191 
3192 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3193   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3194     GV = GA->getBaseObject();
3195   return (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
3196          isa<Function>(GV);
3197 }
3198 
3199 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3200                                               SelectionDAG &DAG) const {
3201   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3202   default: llvm_unreachable("unknown object format");
3203   case Triple::COFF:
3204     return LowerGlobalAddressWindows(Op, DAG);
3205   case Triple::ELF:
3206     return LowerGlobalAddressELF(Op, DAG);
3207   case Triple::MachO:
3208     return LowerGlobalAddressDarwin(Op, DAG);
3209   }
3210 }
3211 
3212 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3213                                                  SelectionDAG &DAG) const {
3214   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3215   SDLoc dl(Op);
3216   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3217   const TargetMachine &TM = getTargetMachine();
3218   bool IsRO = isReadOnly(GV);
3219 
3220   // promoteToConstantPool only if not generating XO text section
3221   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3222     if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl))
3223       return V;
3224 
3225   if (isPositionIndependent()) {
3226     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3227     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3228                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3229     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3230     if (UseGOT_PREL)
3231       Result =
3232           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3233                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3234     return Result;
3235   } else if (Subtarget->isROPI() && IsRO) {
3236     // PC-relative.
3237     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3238     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3239     return Result;
3240   } else if (Subtarget->isRWPI() && !IsRO) {
3241     // SB-relative.
3242     SDValue RelAddr;
3243     if (Subtarget->useMovt(DAG.getMachineFunction())) {
3244       ++NumMovwMovt;
3245       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3246       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3247     } else { // use literal pool for address constant
3248       ARMConstantPoolValue *CPV =
3249         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3250       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3251       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3252       RelAddr = DAG.getLoad(
3253           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3254           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3255     }
3256     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3257     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3258     return Result;
3259   }
3260 
3261   // If we have T2 ops, we can materialize the address directly via movt/movw
3262   // pair. This is always cheaper.
3263   if (Subtarget->useMovt(DAG.getMachineFunction())) {
3264     ++NumMovwMovt;
3265     // FIXME: Once remat is capable of dealing with instructions with register
3266     // operands, expand this into two nodes.
3267     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3268                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3269   } else {
3270     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3271     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3272     return DAG.getLoad(
3273         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3274         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3275   }
3276 }
3277 
3278 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3279                                                     SelectionDAG &DAG) const {
3280   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3281          "ROPI/RWPI not currently supported for Darwin");
3282   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3283   SDLoc dl(Op);
3284   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3285 
3286   if (Subtarget->useMovt(DAG.getMachineFunction()))
3287     ++NumMovwMovt;
3288 
3289   // FIXME: Once remat is capable of dealing with instructions with register
3290   // operands, expand this into multiple nodes
3291   unsigned Wrapper =
3292       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3293 
3294   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3295   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3296 
3297   if (Subtarget->isGVIndirectSymbol(GV))
3298     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3299                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3300   return Result;
3301 }
3302 
3303 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3304                                                      SelectionDAG &DAG) const {
3305   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3306   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
3307          "Windows on ARM expects to use movw/movt");
3308   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3309          "ROPI/RWPI not currently supported for Windows");
3310 
3311   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3312   const ARMII::TOF TargetFlags =
3313     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
3314   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3315   SDValue Result;
3316   SDLoc DL(Op);
3317 
3318   ++NumMovwMovt;
3319 
3320   // FIXME: Once remat is capable of dealing with instructions with register
3321   // operands, expand this into two nodes.
3322   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3323                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3324                                                   TargetFlags));
3325   if (GV->hasDLLImportStorageClass())
3326     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3327                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3328   return Result;
3329 }
3330 
3331 SDValue
3332 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3333   SDLoc dl(Op);
3334   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3335   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3336                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3337                      Op.getOperand(1), Val);
3338 }
3339 
3340 SDValue
3341 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3342   SDLoc dl(Op);
3343   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3344                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3345 }
3346 
3347 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3348                                                       SelectionDAG &DAG) const {
3349   SDLoc dl(Op);
3350   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3351                      Op.getOperand(0));
3352 }
3353 
3354 SDValue
3355 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3356                                           const ARMSubtarget *Subtarget) const {
3357   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3358   SDLoc dl(Op);
3359   switch (IntNo) {
3360   default: return SDValue();    // Don't custom lower most intrinsics.
3361   case Intrinsic::thread_pointer: {
3362     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3363     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3364   }
3365   case Intrinsic::eh_sjlj_lsda: {
3366     MachineFunction &MF = DAG.getMachineFunction();
3367     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3368     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3369     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3370     SDValue CPAddr;
3371     bool IsPositionIndependent = isPositionIndependent();
3372     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3373     ARMConstantPoolValue *CPV =
3374       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3375                                       ARMCP::CPLSDA, PCAdj);
3376     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3377     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3378     SDValue Result = DAG.getLoad(
3379         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3380         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3381 
3382     if (IsPositionIndependent) {
3383       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3384       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3385     }
3386     return Result;
3387   }
3388   case Intrinsic::arm_neon_vabs:
3389     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3390                         Op.getOperand(1));
3391   case Intrinsic::arm_neon_vmulls:
3392   case Intrinsic::arm_neon_vmullu: {
3393     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3394       ? ARMISD::VMULLs : ARMISD::VMULLu;
3395     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3396                        Op.getOperand(1), Op.getOperand(2));
3397   }
3398   case Intrinsic::arm_neon_vminnm:
3399   case Intrinsic::arm_neon_vmaxnm: {
3400     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3401       ? ISD::FMINNUM : ISD::FMAXNUM;
3402     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3403                        Op.getOperand(1), Op.getOperand(2));
3404   }
3405   case Intrinsic::arm_neon_vminu:
3406   case Intrinsic::arm_neon_vmaxu: {
3407     if (Op.getValueType().isFloatingPoint())
3408       return SDValue();
3409     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3410       ? ISD::UMIN : ISD::UMAX;
3411     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3412                          Op.getOperand(1), Op.getOperand(2));
3413   }
3414   case Intrinsic::arm_neon_vmins:
3415   case Intrinsic::arm_neon_vmaxs: {
3416     // v{min,max}s is overloaded between signed integers and floats.
3417     if (!Op.getValueType().isFloatingPoint()) {
3418       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3419         ? ISD::SMIN : ISD::SMAX;
3420       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3421                          Op.getOperand(1), Op.getOperand(2));
3422     }
3423     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3424       ? ISD::FMINNAN : ISD::FMAXNAN;
3425     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3426                        Op.getOperand(1), Op.getOperand(2));
3427   }
3428   case Intrinsic::arm_neon_vtbl1:
3429     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3430                        Op.getOperand(1), Op.getOperand(2));
3431   case Intrinsic::arm_neon_vtbl2:
3432     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3433                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3434   }
3435 }
3436 
3437 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3438                                  const ARMSubtarget *Subtarget) {
3439   SDLoc dl(Op);
3440   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3441   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3442   if (SSID == SyncScope::SingleThread)
3443     return Op;
3444 
3445   if (!Subtarget->hasDataBarrier()) {
3446     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3447     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3448     // here.
3449     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3450            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3451     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3452                        DAG.getConstant(0, dl, MVT::i32));
3453   }
3454 
3455   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3456   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3457   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3458   if (Subtarget->isMClass()) {
3459     // Only a full system barrier exists in the M-class architectures.
3460     Domain = ARM_MB::SY;
3461   } else if (Subtarget->preferISHSTBarriers() &&
3462              Ord == AtomicOrdering::Release) {
3463     // Swift happens to implement ISHST barriers in a way that's compatible with
3464     // Release semantics but weaker than ISH so we'd be fools not to use
3465     // it. Beware: other processors probably don't!
3466     Domain = ARM_MB::ISHST;
3467   }
3468 
3469   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3470                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3471                      DAG.getConstant(Domain, dl, MVT::i32));
3472 }
3473 
3474 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3475                              const ARMSubtarget *Subtarget) {
3476   // ARM pre v5TE and Thumb1 does not have preload instructions.
3477   if (!(Subtarget->isThumb2() ||
3478         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3479     // Just preserve the chain.
3480     return Op.getOperand(0);
3481 
3482   SDLoc dl(Op);
3483   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3484   if (!isRead &&
3485       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3486     // ARMv7 with MP extension has PLDW.
3487     return Op.getOperand(0);
3488 
3489   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3490   if (Subtarget->isThumb()) {
3491     // Invert the bits.
3492     isRead = ~isRead & 1;
3493     isData = ~isData & 1;
3494   }
3495 
3496   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3497                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3498                      DAG.getConstant(isData, dl, MVT::i32));
3499 }
3500 
3501 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3502   MachineFunction &MF = DAG.getMachineFunction();
3503   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3504 
3505   // vastart just stores the address of the VarArgsFrameIndex slot into the
3506   // memory location argument.
3507   SDLoc dl(Op);
3508   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3509   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3510   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3511   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3512                       MachinePointerInfo(SV));
3513 }
3514 
3515 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3516                                                 CCValAssign &NextVA,
3517                                                 SDValue &Root,
3518                                                 SelectionDAG &DAG,
3519                                                 const SDLoc &dl) const {
3520   MachineFunction &MF = DAG.getMachineFunction();
3521   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3522 
3523   const TargetRegisterClass *RC;
3524   if (AFI->isThumb1OnlyFunction())
3525     RC = &ARM::tGPRRegClass;
3526   else
3527     RC = &ARM::GPRRegClass;
3528 
3529   // Transform the arguments stored in physical registers into virtual ones.
3530   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3531   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3532 
3533   SDValue ArgValue2;
3534   if (NextVA.isMemLoc()) {
3535     MachineFrameInfo &MFI = MF.getFrameInfo();
3536     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3537 
3538     // Create load node to retrieve arguments from the stack.
3539     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3540     ArgValue2 = DAG.getLoad(
3541         MVT::i32, dl, Root, FIN,
3542         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3543   } else {
3544     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3545     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3546   }
3547   if (!Subtarget->isLittle())
3548     std::swap (ArgValue, ArgValue2);
3549   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3550 }
3551 
3552 // The remaining GPRs hold either the beginning of variable-argument
3553 // data, or the beginning of an aggregate passed by value (usually
3554 // byval).  Either way, we allocate stack slots adjacent to the data
3555 // provided by our caller, and store the unallocated registers there.
3556 // If this is a variadic function, the va_list pointer will begin with
3557 // these values; otherwise, this reassembles a (byval) structure that
3558 // was split between registers and memory.
3559 // Return: The frame index registers were stored into.
3560 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3561                                       const SDLoc &dl, SDValue &Chain,
3562                                       const Value *OrigArg,
3563                                       unsigned InRegsParamRecordIdx,
3564                                       int ArgOffset, unsigned ArgSize) const {
3565   // Currently, two use-cases possible:
3566   // Case #1. Non-var-args function, and we meet first byval parameter.
3567   //          Setup first unallocated register as first byval register;
3568   //          eat all remained registers
3569   //          (these two actions are performed by HandleByVal method).
3570   //          Then, here, we initialize stack frame with
3571   //          "store-reg" instructions.
3572   // Case #2. Var-args function, that doesn't contain byval parameters.
3573   //          The same: eat all remained unallocated registers,
3574   //          initialize stack frame.
3575 
3576   MachineFunction &MF = DAG.getMachineFunction();
3577   MachineFrameInfo &MFI = MF.getFrameInfo();
3578   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3579   unsigned RBegin, REnd;
3580   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3581     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3582   } else {
3583     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3584     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3585     REnd = ARM::R4;
3586   }
3587 
3588   if (REnd != RBegin)
3589     ArgOffset = -4 * (ARM::R4 - RBegin);
3590 
3591   auto PtrVT = getPointerTy(DAG.getDataLayout());
3592   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3593   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3594 
3595   SmallVector<SDValue, 4> MemOps;
3596   const TargetRegisterClass *RC =
3597       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3598 
3599   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3600     unsigned VReg = MF.addLiveIn(Reg, RC);
3601     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3602     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3603                                  MachinePointerInfo(OrigArg, 4 * i));
3604     MemOps.push_back(Store);
3605     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3606   }
3607 
3608   if (!MemOps.empty())
3609     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3610   return FrameIndex;
3611 }
3612 
3613 // Setup stack frame, the va_list pointer will start from.
3614 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3615                                              const SDLoc &dl, SDValue &Chain,
3616                                              unsigned ArgOffset,
3617                                              unsigned TotalArgRegsSaveSize,
3618                                              bool ForceMutable) const {
3619   MachineFunction &MF = DAG.getMachineFunction();
3620   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3621 
3622   // Try to store any remaining integer argument regs
3623   // to their spots on the stack so that they may be loaded by dereferencing
3624   // the result of va_next.
3625   // If there is no regs to be stored, just point address after last
3626   // argument passed via stack.
3627   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3628                                   CCInfo.getInRegsParamsCount(),
3629                                   CCInfo.getNextStackOffset(), 4);
3630   AFI->setVarArgsFrameIndex(FrameIndex);
3631 }
3632 
3633 SDValue ARMTargetLowering::LowerFormalArguments(
3634     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3635     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3636     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3637   MachineFunction &MF = DAG.getMachineFunction();
3638   MachineFrameInfo &MFI = MF.getFrameInfo();
3639 
3640   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3641 
3642   // Assign locations to all of the incoming arguments.
3643   SmallVector<CCValAssign, 16> ArgLocs;
3644   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3645                  *DAG.getContext());
3646   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3647 
3648   SmallVector<SDValue, 16> ArgValues;
3649   SDValue ArgValue;
3650   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3651   unsigned CurArgIdx = 0;
3652 
3653   // Initially ArgRegsSaveSize is zero.
3654   // Then we increase this value each time we meet byval parameter.
3655   // We also increase this value in case of varargs function.
3656   AFI->setArgRegsSaveSize(0);
3657 
3658   // Calculate the amount of stack space that we need to allocate to store
3659   // byval and variadic arguments that are passed in registers.
3660   // We need to know this before we allocate the first byval or variadic
3661   // argument, as they will be allocated a stack slot below the CFA (Canonical
3662   // Frame Address, the stack pointer at entry to the function).
3663   unsigned ArgRegBegin = ARM::R4;
3664   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3665     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3666       break;
3667 
3668     CCValAssign &VA = ArgLocs[i];
3669     unsigned Index = VA.getValNo();
3670     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3671     if (!Flags.isByVal())
3672       continue;
3673 
3674     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3675     unsigned RBegin, REnd;
3676     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3677     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3678 
3679     CCInfo.nextInRegsParam();
3680   }
3681   CCInfo.rewindByValRegsInfo();
3682 
3683   int lastInsIndex = -1;
3684   if (isVarArg && MFI.hasVAStart()) {
3685     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3686     if (RegIdx != array_lengthof(GPRArgRegs))
3687       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3688   }
3689 
3690   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3691   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3692   auto PtrVT = getPointerTy(DAG.getDataLayout());
3693 
3694   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3695     CCValAssign &VA = ArgLocs[i];
3696     if (Ins[VA.getValNo()].isOrigArg()) {
3697       std::advance(CurOrigArg,
3698                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3699       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3700     }
3701     // Arguments stored in registers.
3702     if (VA.isRegLoc()) {
3703       EVT RegVT = VA.getLocVT();
3704 
3705       if (VA.needsCustom()) {
3706         // f64 and vector types are split up into multiple registers or
3707         // combinations of registers and stack slots.
3708         if (VA.getLocVT() == MVT::v2f64) {
3709           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3710                                                    Chain, DAG, dl);
3711           VA = ArgLocs[++i]; // skip ahead to next loc
3712           SDValue ArgValue2;
3713           if (VA.isMemLoc()) {
3714             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3715             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3716             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3717                                     MachinePointerInfo::getFixedStack(
3718                                         DAG.getMachineFunction(), FI));
3719           } else {
3720             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3721                                              Chain, DAG, dl);
3722           }
3723           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3724           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3725                                  ArgValue, ArgValue1,
3726                                  DAG.getIntPtrConstant(0, dl));
3727           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3728                                  ArgValue, ArgValue2,
3729                                  DAG.getIntPtrConstant(1, dl));
3730         } else
3731           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3732       } else {
3733         const TargetRegisterClass *RC;
3734 
3735 
3736         if (RegVT == MVT::f16)
3737           RC = &ARM::HPRRegClass;
3738         else if (RegVT == MVT::f32)
3739           RC = &ARM::SPRRegClass;
3740         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3741           RC = &ARM::DPRRegClass;
3742         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3743           RC = &ARM::QPRRegClass;
3744         else if (RegVT == MVT::i32)
3745           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3746                                            : &ARM::GPRRegClass;
3747         else
3748           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3749 
3750         // Transform the arguments in physical registers into virtual ones.
3751         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3752         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3753       }
3754 
3755       // If this is an 8 or 16-bit value, it is really passed promoted
3756       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3757       // truncate to the right size.
3758       switch (VA.getLocInfo()) {
3759       default: llvm_unreachable("Unknown loc info!");
3760       case CCValAssign::Full: break;
3761       case CCValAssign::BCvt:
3762         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3763         break;
3764       case CCValAssign::SExt:
3765         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3766                                DAG.getValueType(VA.getValVT()));
3767         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3768         break;
3769       case CCValAssign::ZExt:
3770         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3771                                DAG.getValueType(VA.getValVT()));
3772         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3773         break;
3774       }
3775 
3776       InVals.push_back(ArgValue);
3777     } else { // VA.isRegLoc()
3778       // sanity check
3779       assert(VA.isMemLoc());
3780       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3781 
3782       int index = VA.getValNo();
3783 
3784       // Some Ins[] entries become multiple ArgLoc[] entries.
3785       // Process them only once.
3786       if (index != lastInsIndex)
3787         {
3788           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3789           // FIXME: For now, all byval parameter objects are marked mutable.
3790           // This can be changed with more analysis.
3791           // In case of tail call optimization mark all arguments mutable.
3792           // Since they could be overwritten by lowering of arguments in case of
3793           // a tail call.
3794           if (Flags.isByVal()) {
3795             assert(Ins[index].isOrigArg() &&
3796                    "Byval arguments cannot be implicit");
3797             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3798 
3799             int FrameIndex = StoreByValRegs(
3800                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3801                 VA.getLocMemOffset(), Flags.getByValSize());
3802             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3803             CCInfo.nextInRegsParam();
3804           } else {
3805             unsigned FIOffset = VA.getLocMemOffset();
3806             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3807                                            FIOffset, true);
3808 
3809             // Create load nodes to retrieve arguments from the stack.
3810             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3811             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3812                                          MachinePointerInfo::getFixedStack(
3813                                              DAG.getMachineFunction(), FI)));
3814           }
3815           lastInsIndex = index;
3816         }
3817     }
3818   }
3819 
3820   // varargs
3821   if (isVarArg && MFI.hasVAStart())
3822     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3823                          CCInfo.getNextStackOffset(),
3824                          TotalArgRegsSaveSize);
3825 
3826   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3827 
3828   return Chain;
3829 }
3830 
3831 /// isFloatingPointZero - Return true if this is +0.0.
3832 static bool isFloatingPointZero(SDValue Op) {
3833   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3834     return CFP->getValueAPF().isPosZero();
3835   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3836     // Maybe this has already been legalized into the constant pool?
3837     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3838       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3839       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3840         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3841           return CFP->getValueAPF().isPosZero();
3842     }
3843   } else if (Op->getOpcode() == ISD::BITCAST &&
3844              Op->getValueType(0) == MVT::f64) {
3845     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3846     // created by LowerConstantFP().
3847     SDValue BitcastOp = Op->getOperand(0);
3848     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3849         isNullConstant(BitcastOp->getOperand(0)))
3850       return true;
3851   }
3852   return false;
3853 }
3854 
3855 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3856 /// the given operands.
3857 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3858                                      SDValue &ARMcc, SelectionDAG &DAG,
3859                                      const SDLoc &dl) const {
3860   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3861     unsigned C = RHSC->getZExtValue();
3862     if (!isLegalICmpImmediate(C)) {
3863       // Constant does not fit, try adjusting it by one?
3864       switch (CC) {
3865       default: break;
3866       case ISD::SETLT:
3867       case ISD::SETGE:
3868         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3869           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3870           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3871         }
3872         break;
3873       case ISD::SETULT:
3874       case ISD::SETUGE:
3875         if (C != 0 && isLegalICmpImmediate(C-1)) {
3876           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3877           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3878         }
3879         break;
3880       case ISD::SETLE:
3881       case ISD::SETGT:
3882         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3883           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3884           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3885         }
3886         break;
3887       case ISD::SETULE:
3888       case ISD::SETUGT:
3889         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3890           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3891           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3892         }
3893         break;
3894       }
3895     }
3896   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
3897              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
3898     // In ARM and Thumb-2, the compare instructions can shift their second
3899     // operand.
3900     CC = ISD::getSetCCSwappedOperands(CC);
3901     std::swap(LHS, RHS);
3902   }
3903 
3904   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3905   ARMISD::NodeType CompareType;
3906   switch (CondCode) {
3907   default:
3908     CompareType = ARMISD::CMP;
3909     break;
3910   case ARMCC::EQ:
3911   case ARMCC::NE:
3912     // Uses only Z Flag
3913     CompareType = ARMISD::CMPZ;
3914     break;
3915   }
3916   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3917   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3918 }
3919 
3920 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3921 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3922                                      SelectionDAG &DAG, const SDLoc &dl,
3923                                      bool InvalidOnQNaN) const {
3924   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3925   SDValue Cmp;
3926   SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
3927   if (!isFloatingPointZero(RHS))
3928     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
3929   else
3930     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
3931   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3932 }
3933 
3934 /// duplicateCmp - Glue values can have only one use, so this function
3935 /// duplicates a comparison node.
3936 SDValue
3937 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3938   unsigned Opc = Cmp.getOpcode();
3939   SDLoc DL(Cmp);
3940   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3941     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3942 
3943   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3944   Cmp = Cmp.getOperand(0);
3945   Opc = Cmp.getOpcode();
3946   if (Opc == ARMISD::CMPFP)
3947     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3948                       Cmp.getOperand(1), Cmp.getOperand(2));
3949   else {
3950     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3951     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3952                       Cmp.getOperand(1));
3953   }
3954   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3955 }
3956 
3957 // This function returns three things: the arithmetic computation itself
3958 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
3959 // comparison and the condition code define the case in which the arithmetic
3960 // computation *does not* overflow.
3961 std::pair<SDValue, SDValue>
3962 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3963                                  SDValue &ARMcc) const {
3964   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3965 
3966   SDValue Value, OverflowCmp;
3967   SDValue LHS = Op.getOperand(0);
3968   SDValue RHS = Op.getOperand(1);
3969   SDLoc dl(Op);
3970 
3971   // FIXME: We are currently always generating CMPs because we don't support
3972   // generating CMN through the backend. This is not as good as the natural
3973   // CMP case because it causes a register dependency and cannot be folded
3974   // later.
3975 
3976   switch (Op.getOpcode()) {
3977   default:
3978     llvm_unreachable("Unknown overflow instruction!");
3979   case ISD::SADDO:
3980     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3981     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3982     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3983     break;
3984   case ISD::UADDO:
3985     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3986     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
3987     // We do not use it in the USUBO case as Value may not be used.
3988     Value = DAG.getNode(ARMISD::ADDC, dl,
3989                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
3990                 .getValue(0);
3991     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3992     break;
3993   case ISD::SSUBO:
3994     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3995     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3996     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3997     break;
3998   case ISD::USUBO:
3999     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4000     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4001     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4002     break;
4003   case ISD::UMULO:
4004     // We generate a UMUL_LOHI and then check if the high word is 0.
4005     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4006     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4007                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4008                         LHS, RHS);
4009     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4010                               DAG.getConstant(0, dl, MVT::i32));
4011     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4012     break;
4013   case ISD::SMULO:
4014     // We generate a SMUL_LOHI and then check if all the bits of the high word
4015     // are the same as the sign bit of the low word.
4016     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4017     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4018                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4019                         LHS, RHS);
4020     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4021                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4022                                           Value.getValue(0),
4023                                           DAG.getConstant(31, dl, MVT::i32)));
4024     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4025     break;
4026   } // switch (...)
4027 
4028   return std::make_pair(Value, OverflowCmp);
4029 }
4030 
4031 SDValue
4032 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4033   // Let legalize expand this if it isn't a legal type yet.
4034   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4035     return SDValue();
4036 
4037   SDValue Value, OverflowCmp;
4038   SDValue ARMcc;
4039   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4040   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4041   SDLoc dl(Op);
4042   // We use 0 and 1 as false and true values.
4043   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4044   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4045   EVT VT = Op.getValueType();
4046 
4047   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4048                                  ARMcc, CCR, OverflowCmp);
4049 
4050   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4051   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4052 }
4053 
4054 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4055                                               SelectionDAG &DAG) {
4056   SDLoc DL(BoolCarry);
4057   EVT CarryVT = BoolCarry.getValueType();
4058 
4059   // This converts the boolean value carry into the carry flag by doing
4060   // ARMISD::SUBC Carry, 1
4061   return DAG.getNode(ARMISD::SUBC, DL, DAG.getVTList(CarryVT, MVT::i32),
4062                      BoolCarry, DAG.getConstant(1, DL, CarryVT));
4063 }
4064 
4065 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4066                                               SelectionDAG &DAG) {
4067   SDLoc DL(Flags);
4068 
4069   // Now convert the carry flag into a boolean carry. We do this
4070   // using ARMISD:ADDE 0, 0, Carry
4071   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4072                      DAG.getConstant(0, DL, MVT::i32),
4073                      DAG.getConstant(0, DL, MVT::i32), Flags);
4074 }
4075 
4076 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4077                                              SelectionDAG &DAG) const {
4078   // Let legalize expand this if it isn't a legal type yet.
4079   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4080     return SDValue();
4081 
4082   SDValue LHS = Op.getOperand(0);
4083   SDValue RHS = Op.getOperand(1);
4084   SDLoc dl(Op);
4085 
4086   EVT VT = Op.getValueType();
4087   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4088   SDValue Value;
4089   SDValue Overflow;
4090   switch (Op.getOpcode()) {
4091   default:
4092     llvm_unreachable("Unknown overflow instruction!");
4093   case ISD::UADDO:
4094     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4095     // Convert the carry flag into a boolean value.
4096     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4097     break;
4098   case ISD::USUBO: {
4099     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4100     // Convert the carry flag into a boolean value.
4101     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4102     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4103     // value. So compute 1 - C.
4104     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4105                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4106     break;
4107   }
4108   }
4109 
4110   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4111 }
4112 
4113 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4114   SDValue Cond = Op.getOperand(0);
4115   SDValue SelectTrue = Op.getOperand(1);
4116   SDValue SelectFalse = Op.getOperand(2);
4117   SDLoc dl(Op);
4118   unsigned Opc = Cond.getOpcode();
4119 
4120   if (Cond.getResNo() == 1 &&
4121       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4122        Opc == ISD::USUBO)) {
4123     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4124       return SDValue();
4125 
4126     SDValue Value, OverflowCmp;
4127     SDValue ARMcc;
4128     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4129     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4130     EVT VT = Op.getValueType();
4131 
4132     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4133                    OverflowCmp, DAG);
4134   }
4135 
4136   // Convert:
4137   //
4138   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4139   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4140   //
4141   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4142     const ConstantSDNode *CMOVTrue =
4143       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4144     const ConstantSDNode *CMOVFalse =
4145       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4146 
4147     if (CMOVTrue && CMOVFalse) {
4148       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4149       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4150 
4151       SDValue True;
4152       SDValue False;
4153       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4154         True = SelectTrue;
4155         False = SelectFalse;
4156       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4157         True = SelectFalse;
4158         False = SelectTrue;
4159       }
4160 
4161       if (True.getNode() && False.getNode()) {
4162         EVT VT = Op.getValueType();
4163         SDValue ARMcc = Cond.getOperand(2);
4164         SDValue CCR = Cond.getOperand(3);
4165         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4166         assert(True.getValueType() == VT);
4167         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4168       }
4169     }
4170   }
4171 
4172   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4173   // undefined bits before doing a full-word comparison with zero.
4174   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4175                      DAG.getConstant(1, dl, Cond.getValueType()));
4176 
4177   return DAG.getSelectCC(dl, Cond,
4178                          DAG.getConstant(0, dl, Cond.getValueType()),
4179                          SelectTrue, SelectFalse, ISD::SETNE);
4180 }
4181 
4182 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4183                                  bool &swpCmpOps, bool &swpVselOps) {
4184   // Start by selecting the GE condition code for opcodes that return true for
4185   // 'equality'
4186   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4187       CC == ISD::SETULE)
4188     CondCode = ARMCC::GE;
4189 
4190   // and GT for opcodes that return false for 'equality'.
4191   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4192            CC == ISD::SETULT)
4193     CondCode = ARMCC::GT;
4194 
4195   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4196   // to swap the compare operands.
4197   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4198       CC == ISD::SETULT)
4199     swpCmpOps = true;
4200 
4201   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4202   // If we have an unordered opcode, we need to swap the operands to the VSEL
4203   // instruction (effectively negating the condition).
4204   //
4205   // This also has the effect of swapping which one of 'less' or 'greater'
4206   // returns true, so we also swap the compare operands. It also switches
4207   // whether we return true for 'equality', so we compensate by picking the
4208   // opposite condition code to our original choice.
4209   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4210       CC == ISD::SETUGT) {
4211     swpCmpOps = !swpCmpOps;
4212     swpVselOps = !swpVselOps;
4213     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4214   }
4215 
4216   // 'ordered' is 'anything but unordered', so use the VS condition code and
4217   // swap the VSEL operands.
4218   if (CC == ISD::SETO) {
4219     CondCode = ARMCC::VS;
4220     swpVselOps = true;
4221   }
4222 
4223   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4224   // code and swap the VSEL operands.
4225   if (CC == ISD::SETUNE) {
4226     CondCode = ARMCC::EQ;
4227     swpVselOps = true;
4228   }
4229 }
4230 
4231 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4232                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4233                                    SDValue Cmp, SelectionDAG &DAG) const {
4234   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
4235     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4236                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4237     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4238                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4239 
4240     SDValue TrueLow = TrueVal.getValue(0);
4241     SDValue TrueHigh = TrueVal.getValue(1);
4242     SDValue FalseLow = FalseVal.getValue(0);
4243     SDValue FalseHigh = FalseVal.getValue(1);
4244 
4245     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4246                               ARMcc, CCR, Cmp);
4247     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4248                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4249 
4250     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4251   } else {
4252     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4253                        Cmp);
4254   }
4255 }
4256 
4257 static bool isGTorGE(ISD::CondCode CC) {
4258   return CC == ISD::SETGT || CC == ISD::SETGE;
4259 }
4260 
4261 static bool isLTorLE(ISD::CondCode CC) {
4262   return CC == ISD::SETLT || CC == ISD::SETLE;
4263 }
4264 
4265 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4266 // All of these conditions (and their <= and >= counterparts) will do:
4267 //          x < k ? k : x
4268 //          x > k ? x : k
4269 //          k < x ? x : k
4270 //          k > x ? k : x
4271 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4272                             const SDValue TrueVal, const SDValue FalseVal,
4273                             const ISD::CondCode CC, const SDValue K) {
4274   return (isGTorGE(CC) &&
4275           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4276          (isLTorLE(CC) &&
4277           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4278 }
4279 
4280 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4281 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4282                             const SDValue TrueVal, const SDValue FalseVal,
4283                             const ISD::CondCode CC, const SDValue K) {
4284   return (isGTorGE(CC) &&
4285           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4286          (isLTorLE(CC) &&
4287           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4288 }
4289 
4290 // Check if two chained conditionals could be converted into SSAT or USAT.
4291 //
4292 // SSAT can replace a set of two conditional selectors that bound a number to an
4293 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4294 //
4295 //     x < -k ? -k : (x > k ? k : x)
4296 //     x < -k ? -k : (x < k ? x : k)
4297 //     x > -k ? (x > k ? k : x) : -k
4298 //     x < k ? (x < -k ? -k : x) : k
4299 //     etc.
4300 //
4301 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4302 // a power of 2.
4303 //
4304 // It returns true if the conversion can be done, false otherwise.
4305 // Additionally, the variable is returned in parameter V, the constant in K and
4306 // usat is set to true if the conditional represents an unsigned saturation
4307 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4308                                     uint64_t &K, bool &usat) {
4309   SDValue LHS1 = Op.getOperand(0);
4310   SDValue RHS1 = Op.getOperand(1);
4311   SDValue TrueVal1 = Op.getOperand(2);
4312   SDValue FalseVal1 = Op.getOperand(3);
4313   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4314 
4315   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4316   if (Op2.getOpcode() != ISD::SELECT_CC)
4317     return false;
4318 
4319   SDValue LHS2 = Op2.getOperand(0);
4320   SDValue RHS2 = Op2.getOperand(1);
4321   SDValue TrueVal2 = Op2.getOperand(2);
4322   SDValue FalseVal2 = Op2.getOperand(3);
4323   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4324 
4325   // Find out which are the constants and which are the variables
4326   // in each conditional
4327   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4328                                                         ? &RHS1
4329                                                         : nullptr;
4330   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4331                                                         ? &RHS2
4332                                                         : nullptr;
4333   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4334   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4335   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4336   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4337 
4338   // We must detect cases where the original operations worked with 16- or
4339   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4340   // must work with sign-extended values but the select operations return
4341   // the original non-extended value.
4342   SDValue V2TmpReg = V2Tmp;
4343   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4344     V2TmpReg = V2Tmp->getOperand(0);
4345 
4346   // Check that the registers and the constants have the correct values
4347   // in both conditionals
4348   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4349       V2TmpReg != V2)
4350     return false;
4351 
4352   // Figure out which conditional is saturating the lower/upper bound.
4353   const SDValue *LowerCheckOp =
4354       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4355           ? &Op
4356           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4357                 ? &Op2
4358                 : nullptr;
4359   const SDValue *UpperCheckOp =
4360       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4361           ? &Op
4362           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4363                 ? &Op2
4364                 : nullptr;
4365 
4366   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4367     return false;
4368 
4369   // Check that the constant in the lower-bound check is
4370   // the opposite of the constant in the upper-bound check
4371   // in 1's complement.
4372   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4373   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4374   int64_t PosVal = std::max(Val1, Val2);
4375   int64_t NegVal = std::min(Val1, Val2);
4376 
4377   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4378        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4379       isPowerOf2_64(PosVal + 1)) {
4380 
4381     // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4382     if (Val1 == ~Val2)
4383       usat = false;
4384     else if (NegVal == 0)
4385       usat = true;
4386     else
4387       return false;
4388 
4389     V = V2;
4390     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4391 
4392     return true;
4393   }
4394 
4395   return false;
4396 }
4397 
4398 // Check if a condition of the type x < k ? k : x can be converted into a
4399 // bit operation instead of conditional moves.
4400 // Currently this is allowed given:
4401 // - The conditions and values match up
4402 // - k is 0 or -1 (all ones)
4403 // This function will not check the last condition, thats up to the caller
4404 // It returns true if the transformation can be made, and in such case
4405 // returns x in V, and k in SatK.
4406 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4407                                          SDValue &SatK)
4408 {
4409   SDValue LHS = Op.getOperand(0);
4410   SDValue RHS = Op.getOperand(1);
4411   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4412   SDValue TrueVal = Op.getOperand(2);
4413   SDValue FalseVal = Op.getOperand(3);
4414 
4415   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4416                                                ? &RHS
4417                                                : nullptr;
4418 
4419   // No constant operation in comparison, early out
4420   if (!K)
4421     return false;
4422 
4423   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4424   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4425   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4426 
4427   // If the constant on left and right side, or variable on left and right,
4428   // does not match, early out
4429   if (*K != KTmp || V != VTmp)
4430     return false;
4431 
4432   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4433     SatK = *K;
4434     return true;
4435   }
4436 
4437   return false;
4438 }
4439 
4440 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4441   EVT VT = Op.getValueType();
4442   SDLoc dl(Op);
4443 
4444   // Try to convert two saturating conditional selects into a single SSAT
4445   SDValue SatValue;
4446   uint64_t SatConstant;
4447   bool SatUSat;
4448   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4449       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4450     if (SatUSat)
4451       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4452                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4453     else
4454       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4455                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4456   }
4457 
4458   // Try to convert expressions of the form x < k ? k : x (and similar forms)
4459   // into more efficient bit operations, which is possible when k is 0 or -1
4460   // On ARM and Thumb-2 which have flexible operand 2 this will result in
4461   // single instructions. On Thumb the shift and the bit operation will be two
4462   // instructions.
4463   // Only allow this transformation on full-width (32-bit) operations
4464   SDValue LowerSatConstant;
4465   if (VT == MVT::i32 &&
4466       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4467     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4468                                  DAG.getConstant(31, dl, VT));
4469     if (isNullConstant(LowerSatConstant)) {
4470       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4471                                       DAG.getAllOnesConstant(dl, VT));
4472       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4473     } else if (isAllOnesConstant(LowerSatConstant))
4474       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4475   }
4476 
4477   SDValue LHS = Op.getOperand(0);
4478   SDValue RHS = Op.getOperand(1);
4479   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4480   SDValue TrueVal = Op.getOperand(2);
4481   SDValue FalseVal = Op.getOperand(3);
4482 
4483   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4484     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4485                                                     dl);
4486 
4487     // If softenSetCCOperands only returned one value, we should compare it to
4488     // zero.
4489     if (!RHS.getNode()) {
4490       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4491       CC = ISD::SETNE;
4492     }
4493   }
4494 
4495   if (LHS.getValueType() == MVT::i32) {
4496     // Try to generate VSEL on ARMv8.
4497     // The VSEL instruction can't use all the usual ARM condition
4498     // codes: it only has two bits to select the condition code, so it's
4499     // constrained to use only GE, GT, VS and EQ.
4500     //
4501     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4502     // swap the operands of the previous compare instruction (effectively
4503     // inverting the compare condition, swapping 'less' and 'greater') and
4504     // sometimes need to swap the operands to the VSEL (which inverts the
4505     // condition in the sense of firing whenever the previous condition didn't)
4506     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4507                                     TrueVal.getValueType() == MVT::f64)) {
4508       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4509       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4510           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4511         CC = ISD::getSetCCInverse(CC, true);
4512         std::swap(TrueVal, FalseVal);
4513       }
4514     }
4515 
4516     SDValue ARMcc;
4517     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4518     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4519     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4520   }
4521 
4522   ARMCC::CondCodes CondCode, CondCode2;
4523   bool InvalidOnQNaN;
4524   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4525 
4526   // Normalize the fp compare. If RHS is zero we keep it there so we match
4527   // CMPFPw0 instead of CMPFP.
4528   if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) &&
4529      (TrueVal.getValueType() == MVT::f16 ||
4530       TrueVal.getValueType() == MVT::f32 ||
4531       TrueVal.getValueType() == MVT::f64)) {
4532     bool swpCmpOps = false;
4533     bool swpVselOps = false;
4534     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4535 
4536     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4537         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4538       if (swpCmpOps)
4539         std::swap(LHS, RHS);
4540       if (swpVselOps)
4541         std::swap(TrueVal, FalseVal);
4542     }
4543   }
4544 
4545   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4546   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4547   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4548   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4549   if (CondCode2 != ARMCC::AL) {
4550     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4551     // FIXME: Needs another CMP because flag can have but one use.
4552     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4553     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4554   }
4555   return Result;
4556 }
4557 
4558 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4559 /// to morph to an integer compare sequence.
4560 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4561                            const ARMSubtarget *Subtarget) {
4562   SDNode *N = Op.getNode();
4563   if (!N->hasOneUse())
4564     // Otherwise it requires moving the value from fp to integer registers.
4565     return false;
4566   if (!N->getNumValues())
4567     return false;
4568   EVT VT = Op.getValueType();
4569   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4570     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4571     // vmrs are very slow, e.g. cortex-a8.
4572     return false;
4573 
4574   if (isFloatingPointZero(Op)) {
4575     SeenZero = true;
4576     return true;
4577   }
4578   return ISD::isNormalLoad(N);
4579 }
4580 
4581 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4582   if (isFloatingPointZero(Op))
4583     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4584 
4585   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4586     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4587                        Ld->getPointerInfo(), Ld->getAlignment(),
4588                        Ld->getMemOperand()->getFlags());
4589 
4590   llvm_unreachable("Unknown VFP cmp argument!");
4591 }
4592 
4593 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4594                            SDValue &RetVal1, SDValue &RetVal2) {
4595   SDLoc dl(Op);
4596 
4597   if (isFloatingPointZero(Op)) {
4598     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4599     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4600     return;
4601   }
4602 
4603   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4604     SDValue Ptr = Ld->getBasePtr();
4605     RetVal1 =
4606         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4607                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4608 
4609     EVT PtrType = Ptr.getValueType();
4610     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4611     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4612                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4613     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4614                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
4615                           Ld->getMemOperand()->getFlags());
4616     return;
4617   }
4618 
4619   llvm_unreachable("Unknown VFP cmp argument!");
4620 }
4621 
4622 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4623 /// f32 and even f64 comparisons to integer ones.
4624 SDValue
4625 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4626   SDValue Chain = Op.getOperand(0);
4627   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4628   SDValue LHS = Op.getOperand(2);
4629   SDValue RHS = Op.getOperand(3);
4630   SDValue Dest = Op.getOperand(4);
4631   SDLoc dl(Op);
4632 
4633   bool LHSSeenZero = false;
4634   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4635   bool RHSSeenZero = false;
4636   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4637   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4638     // If unsafe fp math optimization is enabled and there are no other uses of
4639     // the CMP operands, and the condition code is EQ or NE, we can optimize it
4640     // to an integer comparison.
4641     if (CC == ISD::SETOEQ)
4642       CC = ISD::SETEQ;
4643     else if (CC == ISD::SETUNE)
4644       CC = ISD::SETNE;
4645 
4646     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4647     SDValue ARMcc;
4648     if (LHS.getValueType() == MVT::f32) {
4649       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4650                         bitcastf32Toi32(LHS, DAG), Mask);
4651       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4652                         bitcastf32Toi32(RHS, DAG), Mask);
4653       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4654       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4655       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4656                          Chain, Dest, ARMcc, CCR, Cmp);
4657     }
4658 
4659     SDValue LHS1, LHS2;
4660     SDValue RHS1, RHS2;
4661     expandf64Toi32(LHS, DAG, LHS1, LHS2);
4662     expandf64Toi32(RHS, DAG, RHS1, RHS2);
4663     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4664     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4665     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4666     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4667     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4668     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4669     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4670   }
4671 
4672   return SDValue();
4673 }
4674 
4675 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4676   SDValue Chain = Op.getOperand(0);
4677   SDValue Cond = Op.getOperand(1);
4678   SDValue Dest = Op.getOperand(2);
4679   SDLoc dl(Op);
4680 
4681   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4682   // instruction.
4683   unsigned Opc = Cond.getOpcode();
4684   if (Cond.getResNo() == 1 &&
4685       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4686        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4687     // Only lower legal XALUO ops.
4688     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4689       return SDValue();
4690 
4691     // The actual operation with overflow check.
4692     SDValue Value, OverflowCmp;
4693     SDValue ARMcc;
4694     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4695 
4696     // Reverse the condition code.
4697     ARMCC::CondCodes CondCode =
4698         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4699     CondCode = ARMCC::getOppositeCondition(CondCode);
4700     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4701     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4702 
4703     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4704                        OverflowCmp);
4705   }
4706 
4707   return SDValue();
4708 }
4709 
4710 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4711   SDValue Chain = Op.getOperand(0);
4712   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4713   SDValue LHS = Op.getOperand(2);
4714   SDValue RHS = Op.getOperand(3);
4715   SDValue Dest = Op.getOperand(4);
4716   SDLoc dl(Op);
4717 
4718   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4719     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4720                                                     dl);
4721 
4722     // If softenSetCCOperands only returned one value, we should compare it to
4723     // zero.
4724     if (!RHS.getNode()) {
4725       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4726       CC = ISD::SETNE;
4727     }
4728   }
4729 
4730   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4731   // instruction.
4732   unsigned Opc = LHS.getOpcode();
4733   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
4734       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4735        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4736       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4737     // Only lower legal XALUO ops.
4738     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4739       return SDValue();
4740 
4741     // The actual operation with overflow check.
4742     SDValue Value, OverflowCmp;
4743     SDValue ARMcc;
4744     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
4745 
4746     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
4747       // Reverse the condition code.
4748       ARMCC::CondCodes CondCode =
4749           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4750       CondCode = ARMCC::getOppositeCondition(CondCode);
4751       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4752     }
4753     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4754 
4755     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4756                        OverflowCmp);
4757   }
4758 
4759   if (LHS.getValueType() == MVT::i32) {
4760     SDValue ARMcc;
4761     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4762     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4763     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4764                        Chain, Dest, ARMcc, CCR, Cmp);
4765   }
4766 
4767   if (getTargetMachine().Options.UnsafeFPMath &&
4768       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4769        CC == ISD::SETNE || CC == ISD::SETUNE)) {
4770     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4771       return Result;
4772   }
4773 
4774   ARMCC::CondCodes CondCode, CondCode2;
4775   bool InvalidOnQNaN;
4776   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4777 
4778   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4779   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4780   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4781   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4782   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4783   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4784   if (CondCode2 != ARMCC::AL) {
4785     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4786     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4787     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4788   }
4789   return Res;
4790 }
4791 
4792 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4793   SDValue Chain = Op.getOperand(0);
4794   SDValue Table = Op.getOperand(1);
4795   SDValue Index = Op.getOperand(2);
4796   SDLoc dl(Op);
4797 
4798   EVT PTy = getPointerTy(DAG.getDataLayout());
4799   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4800   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4801   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4802   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4803   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
4804   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
4805     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4806     // which does another jump to the destination. This also makes it easier
4807     // to translate it to TBB / TBH later (Thumb2 only).
4808     // FIXME: This might not work if the function is extremely large.
4809     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4810                        Addr, Op.getOperand(2), JTI);
4811   }
4812   if (isPositionIndependent() || Subtarget->isROPI()) {
4813     Addr =
4814         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4815                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4816     Chain = Addr.getValue(1);
4817     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
4818     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4819   } else {
4820     Addr =
4821         DAG.getLoad(PTy, dl, Chain, Addr,
4822                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4823     Chain = Addr.getValue(1);
4824     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4825   }
4826 }
4827 
4828 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4829   EVT VT = Op.getValueType();
4830   SDLoc dl(Op);
4831 
4832   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4833     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4834       return Op;
4835     return DAG.UnrollVectorOp(Op.getNode());
4836   }
4837 
4838   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4839          "Invalid type for custom lowering!");
4840   if (VT != MVT::v4i16)
4841     return DAG.UnrollVectorOp(Op.getNode());
4842 
4843   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4844   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4845 }
4846 
4847 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4848   EVT VT = Op.getValueType();
4849   if (VT.isVector())
4850     return LowerVectorFP_TO_INT(Op, DAG);
4851   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4852     RTLIB::Libcall LC;
4853     if (Op.getOpcode() == ISD::FP_TO_SINT)
4854       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4855                               Op.getValueType());
4856     else
4857       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4858                               Op.getValueType());
4859     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4860                        /*isSigned*/ false, SDLoc(Op)).first;
4861   }
4862 
4863   return Op;
4864 }
4865 
4866 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4867   EVT VT = Op.getValueType();
4868   SDLoc dl(Op);
4869 
4870   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4871     if (VT.getVectorElementType() == MVT::f32)
4872       return Op;
4873     return DAG.UnrollVectorOp(Op.getNode());
4874   }
4875 
4876   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4877          "Invalid type for custom lowering!");
4878   if (VT != MVT::v4f32)
4879     return DAG.UnrollVectorOp(Op.getNode());
4880 
4881   unsigned CastOpc;
4882   unsigned Opc;
4883   switch (Op.getOpcode()) {
4884   default: llvm_unreachable("Invalid opcode!");
4885   case ISD::SINT_TO_FP:
4886     CastOpc = ISD::SIGN_EXTEND;
4887     Opc = ISD::SINT_TO_FP;
4888     break;
4889   case ISD::UINT_TO_FP:
4890     CastOpc = ISD::ZERO_EXTEND;
4891     Opc = ISD::UINT_TO_FP;
4892     break;
4893   }
4894 
4895   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4896   return DAG.getNode(Opc, dl, VT, Op);
4897 }
4898 
4899 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4900   EVT VT = Op.getValueType();
4901   if (VT.isVector())
4902     return LowerVectorINT_TO_FP(Op, DAG);
4903   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4904     RTLIB::Libcall LC;
4905     if (Op.getOpcode() == ISD::SINT_TO_FP)
4906       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4907                               Op.getValueType());
4908     else
4909       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4910                               Op.getValueType());
4911     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4912                        /*isSigned*/ false, SDLoc(Op)).first;
4913   }
4914 
4915   return Op;
4916 }
4917 
4918 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4919   // Implement fcopysign with a fabs and a conditional fneg.
4920   SDValue Tmp0 = Op.getOperand(0);
4921   SDValue Tmp1 = Op.getOperand(1);
4922   SDLoc dl(Op);
4923   EVT VT = Op.getValueType();
4924   EVT SrcVT = Tmp1.getValueType();
4925   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4926     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4927   bool UseNEON = !InGPR && Subtarget->hasNEON();
4928 
4929   if (UseNEON) {
4930     // Use VBSL to copy the sign bit.
4931     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4932     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4933                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4934     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4935     if (VT == MVT::f64)
4936       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4937                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4938                          DAG.getConstant(32, dl, MVT::i32));
4939     else /*if (VT == MVT::f32)*/
4940       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4941     if (SrcVT == MVT::f32) {
4942       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4943       if (VT == MVT::f64)
4944         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4945                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4946                            DAG.getConstant(32, dl, MVT::i32));
4947     } else if (VT == MVT::f32)
4948       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4949                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4950                          DAG.getConstant(32, dl, MVT::i32));
4951     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4952     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4953 
4954     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4955                                             dl, MVT::i32);
4956     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4957     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4958                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4959 
4960     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4961                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4962                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4963     if (VT == MVT::f32) {
4964       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4965       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4966                         DAG.getConstant(0, dl, MVT::i32));
4967     } else {
4968       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4969     }
4970 
4971     return Res;
4972   }
4973 
4974   // Bitcast operand 1 to i32.
4975   if (SrcVT == MVT::f64)
4976     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4977                        Tmp1).getValue(1);
4978   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4979 
4980   // Or in the signbit with integer operations.
4981   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4982   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4983   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4984   if (VT == MVT::f32) {
4985     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4986                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4987     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4988                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4989   }
4990 
4991   // f64: Or the high part with signbit and then combine two parts.
4992   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4993                      Tmp0);
4994   SDValue Lo = Tmp0.getValue(0);
4995   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4996   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4997   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4998 }
4999 
5000 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5001   MachineFunction &MF = DAG.getMachineFunction();
5002   MachineFrameInfo &MFI = MF.getFrameInfo();
5003   MFI.setReturnAddressIsTaken(true);
5004 
5005   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5006     return SDValue();
5007 
5008   EVT VT = Op.getValueType();
5009   SDLoc dl(Op);
5010   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5011   if (Depth) {
5012     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5013     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5014     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5015                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5016                        MachinePointerInfo());
5017   }
5018 
5019   // Return LR, which contains the return address. Mark it an implicit live-in.
5020   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5021   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5022 }
5023 
5024 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5025   const ARMBaseRegisterInfo &ARI =
5026     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5027   MachineFunction &MF = DAG.getMachineFunction();
5028   MachineFrameInfo &MFI = MF.getFrameInfo();
5029   MFI.setFrameAddressIsTaken(true);
5030 
5031   EVT VT = Op.getValueType();
5032   SDLoc dl(Op);  // FIXME probably not meaningful
5033   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5034   unsigned FrameReg = ARI.getFrameRegister(MF);
5035   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5036   while (Depth--)
5037     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5038                             MachinePointerInfo());
5039   return FrameAddr;
5040 }
5041 
5042 // FIXME? Maybe this could be a TableGen attribute on some registers and
5043 // this table could be generated automatically from RegInfo.
5044 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5045                                               SelectionDAG &DAG) const {
5046   unsigned Reg = StringSwitch<unsigned>(RegName)
5047                        .Case("sp", ARM::SP)
5048                        .Default(0);
5049   if (Reg)
5050     return Reg;
5051   report_fatal_error(Twine("Invalid register name \""
5052                               + StringRef(RegName)  + "\"."));
5053 }
5054 
5055 // Result is 64 bit value so split into two 32 bit values and return as a
5056 // pair of values.
5057 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5058                                 SelectionDAG &DAG) {
5059   SDLoc DL(N);
5060 
5061   // This function is only supposed to be called for i64 type destination.
5062   assert(N->getValueType(0) == MVT::i64
5063           && "ExpandREAD_REGISTER called for non-i64 type result.");
5064 
5065   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5066                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5067                              N->getOperand(0),
5068                              N->getOperand(1));
5069 
5070   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5071                     Read.getValue(1)));
5072   Results.push_back(Read.getOperand(0));
5073 }
5074 
5075 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5076 /// When \p DstVT, the destination type of \p BC, is on the vector
5077 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5078 /// it might be possible to combine them, such that everything stays on the
5079 /// vector register bank.
5080 /// \p return The node that would replace \p BT, if the combine
5081 /// is possible.
5082 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5083                                                 SelectionDAG &DAG) {
5084   SDValue Op = BC->getOperand(0);
5085   EVT DstVT = BC->getValueType(0);
5086 
5087   // The only vector instruction that can produce a scalar (remember,
5088   // since the bitcast was about to be turned into VMOVDRR, the source
5089   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5090   // Moreover, we can do this combine only if there is one use.
5091   // Finally, if the destination type is not a vector, there is not
5092   // much point on forcing everything on the vector bank.
5093   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5094       !Op.hasOneUse())
5095     return SDValue();
5096 
5097   // If the index is not constant, we will introduce an additional
5098   // multiply that will stick.
5099   // Give up in that case.
5100   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5101   if (!Index)
5102     return SDValue();
5103   unsigned DstNumElt = DstVT.getVectorNumElements();
5104 
5105   // Compute the new index.
5106   const APInt &APIntIndex = Index->getAPIntValue();
5107   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5108   NewIndex *= APIntIndex;
5109   // Check if the new constant index fits into i32.
5110   if (NewIndex.getBitWidth() > 32)
5111     return SDValue();
5112 
5113   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5114   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5115   SDLoc dl(Op);
5116   SDValue ExtractSrc = Op.getOperand(0);
5117   EVT VecVT = EVT::getVectorVT(
5118       *DAG.getContext(), DstVT.getScalarType(),
5119       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5120   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5121   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5122                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5123 }
5124 
5125 /// ExpandBITCAST - If the target supports VFP, this function is called to
5126 /// expand a bit convert where either the source or destination type is i64 to
5127 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5128 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5129 /// vectors), since the legalizer won't know what to do with that.
5130 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5131                              const ARMSubtarget *Subtarget) {
5132   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5133   SDLoc dl(N);
5134   SDValue Op = N->getOperand(0);
5135 
5136   // This function is only supposed to be called for i64 types, either as the
5137   // source or destination of the bit convert.
5138   EVT SrcVT = Op.getValueType();
5139   EVT DstVT = N->getValueType(0);
5140   const bool HasFullFP16 = Subtarget->hasFullFP16();
5141 
5142   if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5143      // FullFP16: half values are passed in S-registers, and we don't
5144      // need any of the bitcast and moves:
5145      //
5146      // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5147      //   t5: i32 = bitcast t2
5148      // t18: f16 = ARMISD::VMOVhr t5
5149      if (Op.getOpcode() != ISD::CopyFromReg ||
5150          Op.getValueType() != MVT::f32)
5151        return SDValue();
5152 
5153      auto Move = N->use_begin();
5154      if (Move->getOpcode() != ARMISD::VMOVhr)
5155        return SDValue();
5156 
5157      SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5158      SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5159      DAG.ReplaceAllUsesWith(*Move, &Copy);
5160      return Copy;
5161   }
5162 
5163   if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5164     if (!HasFullFP16)
5165       return SDValue();
5166     // SoftFP: read half-precision arguments:
5167     //
5168     // t2: i32,ch = ...
5169     //        t7: i16 = truncate t2 <~~~~ Op
5170     //      t8: f16 = bitcast t7    <~~~~ N
5171     //
5172     if (Op.getOperand(0).getValueType() == MVT::i32)
5173       return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5174                          MVT::f16, Op.getOperand(0));
5175 
5176     return SDValue();
5177   }
5178 
5179   // Half-precision return values
5180   if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5181     if (!HasFullFP16)
5182       return SDValue();
5183     //
5184     //          t11: f16 = fadd t8, t10
5185     //        t12: i16 = bitcast t11       <~~~ SDNode N
5186     //      t13: i32 = zero_extend t12
5187     //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5188     //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5189     //
5190     // transform this into:
5191     //
5192     //    t20: i32 = ARMISD::VMOVrh t11
5193     //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5194     //
5195     auto ZeroExtend = N->use_begin();
5196     if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5197         ZeroExtend->getValueType(0) != MVT::i32)
5198       return SDValue();
5199 
5200     auto Copy = ZeroExtend->use_begin();
5201     if (Copy->getOpcode() == ISD::CopyToReg &&
5202         Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5203       SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5204       DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5205       return Cvt;
5206     }
5207     return SDValue();
5208   }
5209 
5210   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5211     return SDValue();
5212 
5213   // Turn i64->f64 into VMOVDRR.
5214   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5215     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5216     // if we can combine the bitcast with its source.
5217     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5218       return Val;
5219 
5220     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5221                              DAG.getConstant(0, dl, MVT::i32));
5222     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5223                              DAG.getConstant(1, dl, MVT::i32));
5224     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5225                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5226   }
5227 
5228   // Turn f64->i64 into VMOVRRD.
5229   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5230     SDValue Cvt;
5231     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5232         SrcVT.getVectorNumElements() > 1)
5233       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5234                         DAG.getVTList(MVT::i32, MVT::i32),
5235                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5236     else
5237       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5238                         DAG.getVTList(MVT::i32, MVT::i32), Op);
5239     // Merge the pieces into a single i64 value.
5240     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5241   }
5242 
5243   return SDValue();
5244 }
5245 
5246 /// getZeroVector - Returns a vector of specified type with all zero elements.
5247 /// Zero vectors are used to represent vector negation and in those cases
5248 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
5249 /// not support i64 elements, so sometimes the zero vectors will need to be
5250 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
5251 /// zero vector.
5252 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5253   assert(VT.isVector() && "Expected a vector type");
5254   // The canonical modified immediate encoding of a zero vector is....0!
5255   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5256   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5257   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5258   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5259 }
5260 
5261 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5262 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5263 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5264                                                 SelectionDAG &DAG) const {
5265   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5266   EVT VT = Op.getValueType();
5267   unsigned VTBits = VT.getSizeInBits();
5268   SDLoc dl(Op);
5269   SDValue ShOpLo = Op.getOperand(0);
5270   SDValue ShOpHi = Op.getOperand(1);
5271   SDValue ShAmt  = Op.getOperand(2);
5272   SDValue ARMcc;
5273   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5274   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5275 
5276   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5277 
5278   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5279                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5280   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5281   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5282                                    DAG.getConstant(VTBits, dl, MVT::i32));
5283   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5284   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5285   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5286   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5287                             ISD::SETGE, ARMcc, DAG, dl);
5288   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5289                            ARMcc, CCR, CmpLo);
5290 
5291   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5292   SDValue HiBigShift = Opc == ISD::SRA
5293                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
5294                                          DAG.getConstant(VTBits - 1, dl, VT))
5295                            : DAG.getConstant(0, dl, VT);
5296   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5297                             ISD::SETGE, ARMcc, DAG, dl);
5298   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5299                            ARMcc, CCR, CmpHi);
5300 
5301   SDValue Ops[2] = { Lo, Hi };
5302   return DAG.getMergeValues(Ops, dl);
5303 }
5304 
5305 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5306 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5307 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5308                                                SelectionDAG &DAG) const {
5309   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5310   EVT VT = Op.getValueType();
5311   unsigned VTBits = VT.getSizeInBits();
5312   SDLoc dl(Op);
5313   SDValue ShOpLo = Op.getOperand(0);
5314   SDValue ShOpHi = Op.getOperand(1);
5315   SDValue ShAmt  = Op.getOperand(2);
5316   SDValue ARMcc;
5317   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5318 
5319   assert(Op.getOpcode() == ISD::SHL_PARTS);
5320   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5321                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5322   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5323   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5324   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5325 
5326   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5327                                    DAG.getConstant(VTBits, dl, MVT::i32));
5328   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5329   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5330                             ISD::SETGE, ARMcc, DAG, dl);
5331   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5332                            ARMcc, CCR, CmpHi);
5333 
5334   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5335                           ISD::SETGE, ARMcc, DAG, dl);
5336   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5337   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5338                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5339 
5340   SDValue Ops[2] = { Lo, Hi };
5341   return DAG.getMergeValues(Ops, dl);
5342 }
5343 
5344 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5345                                             SelectionDAG &DAG) const {
5346   // The rounding mode is in bits 23:22 of the FPSCR.
5347   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5348   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5349   // so that the shift + and get folded into a bitfield extract.
5350   SDLoc dl(Op);
5351   SDValue Ops[] = { DAG.getEntryNode(),
5352                     DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5353 
5354   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5355   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5356                                   DAG.getConstant(1U << 22, dl, MVT::i32));
5357   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5358                               DAG.getConstant(22, dl, MVT::i32));
5359   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5360                      DAG.getConstant(3, dl, MVT::i32));
5361 }
5362 
5363 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5364                          const ARMSubtarget *ST) {
5365   SDLoc dl(N);
5366   EVT VT = N->getValueType(0);
5367   if (VT.isVector()) {
5368     assert(ST->hasNEON());
5369 
5370     // Compute the least significant set bit: LSB = X & -X
5371     SDValue X = N->getOperand(0);
5372     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5373     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5374 
5375     EVT ElemTy = VT.getVectorElementType();
5376 
5377     if (ElemTy == MVT::i8) {
5378       // Compute with: cttz(x) = ctpop(lsb - 1)
5379       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5380                                 DAG.getTargetConstant(1, dl, ElemTy));
5381       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5382       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5383     }
5384 
5385     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5386         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5387       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5388       unsigned NumBits = ElemTy.getSizeInBits();
5389       SDValue WidthMinus1 =
5390           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5391                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5392       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5393       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5394     }
5395 
5396     // Compute with: cttz(x) = ctpop(lsb - 1)
5397 
5398     // Since we can only compute the number of bits in a byte with vcnt.8, we
5399     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
5400     // and i64.
5401 
5402     // Compute LSB - 1.
5403     SDValue Bits;
5404     if (ElemTy == MVT::i64) {
5405       // Load constant 0xffff'ffff'ffff'ffff to register.
5406       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5407                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5408       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5409     } else {
5410       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5411                                 DAG.getTargetConstant(1, dl, ElemTy));
5412       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5413     }
5414 
5415     // Count #bits with vcnt.8.
5416     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5417     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
5418     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
5419 
5420     // Gather the #bits with vpaddl (pairwise add.)
5421     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5422     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
5423         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5424         Cnt8);
5425     if (ElemTy == MVT::i16)
5426       return Cnt16;
5427 
5428     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
5429     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
5430         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5431         Cnt16);
5432     if (ElemTy == MVT::i32)
5433       return Cnt32;
5434 
5435     assert(ElemTy == MVT::i64);
5436     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5437         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5438         Cnt32);
5439     return Cnt64;
5440   }
5441 
5442   if (!ST->hasV6T2Ops())
5443     return SDValue();
5444 
5445   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5446   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5447 }
5448 
5449 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
5450 /// for each 16-bit element from operand, repeated.  The basic idea is to
5451 /// leverage vcnt to get the 8-bit counts, gather and add the results.
5452 ///
5453 /// Trace for v4i16:
5454 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
5455 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
5456 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
5457 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
5458 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
5459 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
5460 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
5461 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
5462 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
5463   EVT VT = N->getValueType(0);
5464   SDLoc DL(N);
5465 
5466   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5467   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
5468   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
5469   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
5470   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
5471   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
5472 }
5473 
5474 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
5475 /// bit-count for each 16-bit element from the operand.  We need slightly
5476 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
5477 /// 64/128-bit registers.
5478 ///
5479 /// Trace for v4i16:
5480 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
5481 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
5482 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
5483 /// v4i16:Extracted = [k0    k1    k2    k3    ]
5484 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
5485   EVT VT = N->getValueType(0);
5486   SDLoc DL(N);
5487 
5488   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
5489   if (VT.is64BitVector()) {
5490     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
5491     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
5492                        DAG.getIntPtrConstant(0, DL));
5493   } else {
5494     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
5495                                     BitCounts, DAG.getIntPtrConstant(0, DL));
5496     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
5497   }
5498 }
5499 
5500 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
5501 /// bit-count for each 32-bit element from the operand.  The idea here is
5502 /// to split the vector into 16-bit elements, leverage the 16-bit count
5503 /// routine, and then combine the results.
5504 ///
5505 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
5506 /// input    = [v0    v1    ] (vi: 32-bit elements)
5507 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
5508 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
5509 /// vrev: N0 = [k1 k0 k3 k2 ]
5510 ///            [k0 k1 k2 k3 ]
5511 ///       N1 =+[k1 k0 k3 k2 ]
5512 ///            [k0 k2 k1 k3 ]
5513 ///       N2 =+[k1 k3 k0 k2 ]
5514 ///            [k0    k2    k1    k3    ]
5515 /// Extended =+[k1    k3    k0    k2    ]
5516 ///            [k0    k2    ]
5517 /// Extracted=+[k1    k3    ]
5518 ///
5519 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
5520   EVT VT = N->getValueType(0);
5521   SDLoc DL(N);
5522 
5523   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5524 
5525   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
5526   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
5527   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
5528   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
5529   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
5530 
5531   if (VT.is64BitVector()) {
5532     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
5533     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
5534                        DAG.getIntPtrConstant(0, DL));
5535   } else {
5536     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
5537                                     DAG.getIntPtrConstant(0, DL));
5538     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
5539   }
5540 }
5541 
5542 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5543                           const ARMSubtarget *ST) {
5544   EVT VT = N->getValueType(0);
5545 
5546   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5547   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
5548           VT == MVT::v4i16 || VT == MVT::v8i16) &&
5549          "Unexpected type for custom ctpop lowering");
5550 
5551   if (VT.getVectorElementType() == MVT::i32)
5552     return lowerCTPOP32BitElements(N, DAG);
5553   else
5554     return lowerCTPOP16BitElements(N, DAG);
5555 }
5556 
5557 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5558                           const ARMSubtarget *ST) {
5559   EVT VT = N->getValueType(0);
5560   SDLoc dl(N);
5561 
5562   if (!VT.isVector())
5563     return SDValue();
5564 
5565   // Lower vector shifts on NEON to use VSHL.
5566   assert(ST->hasNEON() && "unexpected vector shift");
5567 
5568   // Left shifts translate directly to the vshiftu intrinsic.
5569   if (N->getOpcode() == ISD::SHL)
5570     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5571                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
5572                                        MVT::i32),
5573                        N->getOperand(0), N->getOperand(1));
5574 
5575   assert((N->getOpcode() == ISD::SRA ||
5576           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5577 
5578   // NEON uses the same intrinsics for both left and right shifts.  For
5579   // right shifts, the shift amounts are negative, so negate the vector of
5580   // shift amounts.
5581   EVT ShiftVT = N->getOperand(1).getValueType();
5582   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5583                                      getZeroVector(ShiftVT, DAG, dl),
5584                                      N->getOperand(1));
5585   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5586                              Intrinsic::arm_neon_vshifts :
5587                              Intrinsic::arm_neon_vshiftu);
5588   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5589                      DAG.getConstant(vshiftInt, dl, MVT::i32),
5590                      N->getOperand(0), NegatedCount);
5591 }
5592 
5593 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5594                                 const ARMSubtarget *ST) {
5595   EVT VT = N->getValueType(0);
5596   SDLoc dl(N);
5597 
5598   // We can get here for a node like i32 = ISD::SHL i32, i64
5599   if (VT != MVT::i64)
5600     return SDValue();
5601 
5602   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
5603          "Unknown shift to lower!");
5604 
5605   // We only lower SRA, SRL of 1 here, all others use generic lowering.
5606   if (!isOneConstant(N->getOperand(1)))
5607     return SDValue();
5608 
5609   // If we are in thumb mode, we don't have RRX.
5610   if (ST->isThumb1Only()) return SDValue();
5611 
5612   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
5613   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5614                            DAG.getConstant(0, dl, MVT::i32));
5615   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5616                            DAG.getConstant(1, dl, MVT::i32));
5617 
5618   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5619   // captures the result into a carry flag.
5620   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5621   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5622 
5623   // The low part is an ARMISD::RRX operand, which shifts the carry in.
5624   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5625 
5626   // Merge the pieces into a single i64 value.
5627  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5628 }
5629 
5630 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5631   SDValue TmpOp0, TmpOp1;
5632   bool Invert = false;
5633   bool Swap = false;
5634   unsigned Opc = 0;
5635 
5636   SDValue Op0 = Op.getOperand(0);
5637   SDValue Op1 = Op.getOperand(1);
5638   SDValue CC = Op.getOperand(2);
5639   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5640   EVT VT = Op.getValueType();
5641   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5642   SDLoc dl(Op);
5643 
5644   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5645       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5646     // Special-case integer 64-bit equality comparisons. They aren't legal,
5647     // but they can be lowered with a few vector instructions.
5648     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5649     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5650     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5651     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5652     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5653                               DAG.getCondCode(ISD::SETEQ));
5654     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5655     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5656     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5657     if (SetCCOpcode == ISD::SETNE)
5658       Merged = DAG.getNOT(dl, Merged, CmpVT);
5659     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5660     return Merged;
5661   }
5662 
5663   if (CmpVT.getVectorElementType() == MVT::i64)
5664     // 64-bit comparisons are not legal in general.
5665     return SDValue();
5666 
5667   if (Op1.getValueType().isFloatingPoint()) {
5668     switch (SetCCOpcode) {
5669     default: llvm_unreachable("Illegal FP comparison");
5670     case ISD::SETUNE:
5671     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5672     case ISD::SETOEQ:
5673     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5674     case ISD::SETOLT:
5675     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5676     case ISD::SETOGT:
5677     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5678     case ISD::SETOLE:
5679     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5680     case ISD::SETOGE:
5681     case ISD::SETGE: Opc = ARMISD::VCGE; break;
5682     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5683     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5684     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5685     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5686     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5687     case ISD::SETONE:
5688       // Expand this to (OLT | OGT).
5689       TmpOp0 = Op0;
5690       TmpOp1 = Op1;
5691       Opc = ISD::OR;
5692       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5693       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5694       break;
5695     case ISD::SETUO:
5696       Invert = true;
5697       LLVM_FALLTHROUGH;
5698     case ISD::SETO:
5699       // Expand this to (OLT | OGE).
5700       TmpOp0 = Op0;
5701       TmpOp1 = Op1;
5702       Opc = ISD::OR;
5703       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5704       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5705       break;
5706     }
5707   } else {
5708     // Integer comparisons.
5709     switch (SetCCOpcode) {
5710     default: llvm_unreachable("Illegal integer comparison");
5711     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5712     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5713     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
5714     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5715     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5716     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
5717     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
5718     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5719     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
5720     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5721     }
5722 
5723     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5724     if (Opc == ARMISD::VCEQ) {
5725       SDValue AndOp;
5726       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5727         AndOp = Op0;
5728       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5729         AndOp = Op1;
5730 
5731       // Ignore bitconvert.
5732       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5733         AndOp = AndOp.getOperand(0);
5734 
5735       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5736         Opc = ARMISD::VTST;
5737         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5738         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5739         Invert = !Invert;
5740       }
5741     }
5742   }
5743 
5744   if (Swap)
5745     std::swap(Op0, Op1);
5746 
5747   // If one of the operands is a constant vector zero, attempt to fold the
5748   // comparison to a specialized compare-against-zero form.
5749   SDValue SingleOp;
5750   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5751     SingleOp = Op0;
5752   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5753     if (Opc == ARMISD::VCGE)
5754       Opc = ARMISD::VCLEZ;
5755     else if (Opc == ARMISD::VCGT)
5756       Opc = ARMISD::VCLTZ;
5757     SingleOp = Op1;
5758   }
5759 
5760   SDValue Result;
5761   if (SingleOp.getNode()) {
5762     switch (Opc) {
5763     case ARMISD::VCEQ:
5764       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5765     case ARMISD::VCGE:
5766       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5767     case ARMISD::VCLEZ:
5768       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5769     case ARMISD::VCGT:
5770       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5771     case ARMISD::VCLTZ:
5772       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5773     default:
5774       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5775     }
5776   } else {
5777      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5778   }
5779 
5780   Result = DAG.getSExtOrTrunc(Result, dl, VT);
5781 
5782   if (Invert)
5783     Result = DAG.getNOT(dl, Result, VT);
5784 
5785   return Result;
5786 }
5787 
5788 static SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) {
5789   SDValue LHS = Op.getOperand(0);
5790   SDValue RHS = Op.getOperand(1);
5791   SDValue Carry = Op.getOperand(2);
5792   SDValue Cond = Op.getOperand(3);
5793   SDLoc DL(Op);
5794 
5795   assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
5796 
5797   assert(Carry.getOpcode() != ISD::CARRY_FALSE);
5798   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5799   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5800 
5801   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5802   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5803   SDValue ARMcc = DAG.getConstant(
5804       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5805   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5806   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5807                                    Cmp.getValue(1), SDValue());
5808   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5809                      CCR, Chain.getValue(1));
5810 }
5811 
5812 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5813 /// valid vector constant for a NEON instruction with a "modified immediate"
5814 /// operand (e.g., VMOV).  If so, return the encoded value.
5815 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5816                                  unsigned SplatBitSize, SelectionDAG &DAG,
5817                                  const SDLoc &dl, EVT &VT, bool is128Bits,
5818                                  NEONModImmType type) {
5819   unsigned OpCmode, Imm;
5820 
5821   // SplatBitSize is set to the smallest size that splats the vector, so a
5822   // zero vector will always have SplatBitSize == 8.  However, NEON modified
5823   // immediate instructions others than VMOV do not support the 8-bit encoding
5824   // of a zero vector, and the default encoding of zero is supposed to be the
5825   // 32-bit version.
5826   if (SplatBits == 0)
5827     SplatBitSize = 32;
5828 
5829   switch (SplatBitSize) {
5830   case 8:
5831     if (type != VMOVModImm)
5832       return SDValue();
5833     // Any 1-byte value is OK.  Op=0, Cmode=1110.
5834     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5835     OpCmode = 0xe;
5836     Imm = SplatBits;
5837     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5838     break;
5839 
5840   case 16:
5841     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5842     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5843     if ((SplatBits & ~0xff) == 0) {
5844       // Value = 0x00nn: Op=x, Cmode=100x.
5845       OpCmode = 0x8;
5846       Imm = SplatBits;
5847       break;
5848     }
5849     if ((SplatBits & ~0xff00) == 0) {
5850       // Value = 0xnn00: Op=x, Cmode=101x.
5851       OpCmode = 0xa;
5852       Imm = SplatBits >> 8;
5853       break;
5854     }
5855     return SDValue();
5856 
5857   case 32:
5858     // NEON's 32-bit VMOV supports splat values where:
5859     // * only one byte is nonzero, or
5860     // * the least significant byte is 0xff and the second byte is nonzero, or
5861     // * the least significant 2 bytes are 0xff and the third is nonzero.
5862     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5863     if ((SplatBits & ~0xff) == 0) {
5864       // Value = 0x000000nn: Op=x, Cmode=000x.
5865       OpCmode = 0;
5866       Imm = SplatBits;
5867       break;
5868     }
5869     if ((SplatBits & ~0xff00) == 0) {
5870       // Value = 0x0000nn00: Op=x, Cmode=001x.
5871       OpCmode = 0x2;
5872       Imm = SplatBits >> 8;
5873       break;
5874     }
5875     if ((SplatBits & ~0xff0000) == 0) {
5876       // Value = 0x00nn0000: Op=x, Cmode=010x.
5877       OpCmode = 0x4;
5878       Imm = SplatBits >> 16;
5879       break;
5880     }
5881     if ((SplatBits & ~0xff000000) == 0) {
5882       // Value = 0xnn000000: Op=x, Cmode=011x.
5883       OpCmode = 0x6;
5884       Imm = SplatBits >> 24;
5885       break;
5886     }
5887 
5888     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5889     if (type == OtherModImm) return SDValue();
5890 
5891     if ((SplatBits & ~0xffff) == 0 &&
5892         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5893       // Value = 0x0000nnff: Op=x, Cmode=1100.
5894       OpCmode = 0xc;
5895       Imm = SplatBits >> 8;
5896       break;
5897     }
5898 
5899     if ((SplatBits & ~0xffffff) == 0 &&
5900         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5901       // Value = 0x00nnffff: Op=x, Cmode=1101.
5902       OpCmode = 0xd;
5903       Imm = SplatBits >> 16;
5904       break;
5905     }
5906 
5907     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5908     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5909     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5910     // and fall through here to test for a valid 64-bit splat.  But, then the
5911     // caller would also need to check and handle the change in size.
5912     return SDValue();
5913 
5914   case 64: {
5915     if (type != VMOVModImm)
5916       return SDValue();
5917     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5918     uint64_t BitMask = 0xff;
5919     uint64_t Val = 0;
5920     unsigned ImmMask = 1;
5921     Imm = 0;
5922     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5923       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5924         Val |= BitMask;
5925         Imm |= ImmMask;
5926       } else if ((SplatBits & BitMask) != 0) {
5927         return SDValue();
5928       }
5929       BitMask <<= 8;
5930       ImmMask <<= 1;
5931     }
5932 
5933     if (DAG.getDataLayout().isBigEndian())
5934       // swap higher and lower 32 bit word
5935       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5936 
5937     // Op=1, Cmode=1110.
5938     OpCmode = 0x1e;
5939     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5940     break;
5941   }
5942 
5943   default:
5944     llvm_unreachable("unexpected size for isNEONModifiedImm");
5945   }
5946 
5947   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5948   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5949 }
5950 
5951 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5952                                            const ARMSubtarget *ST) const {
5953   EVT VT = Op.getValueType();
5954   bool IsDouble = (VT == MVT::f64);
5955   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5956   const APFloat &FPVal = CFP->getValueAPF();
5957 
5958   // Prevent floating-point constants from using literal loads
5959   // when execute-only is enabled.
5960   if (ST->genExecuteOnly()) {
5961     // If we can represent the constant as an immediate, don't lower it
5962     if (isFPImmLegal(FPVal, VT))
5963       return Op;
5964     // Otherwise, construct as integer, and move to float register
5965     APInt INTVal = FPVal.bitcastToAPInt();
5966     SDLoc DL(CFP);
5967     switch (VT.getSimpleVT().SimpleTy) {
5968       default:
5969         llvm_unreachable("Unknown floating point type!");
5970         break;
5971       case MVT::f64: {
5972         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
5973         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
5974         if (!ST->isLittle())
5975           std::swap(Lo, Hi);
5976         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
5977       }
5978       case MVT::f32:
5979           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
5980               DAG.getConstant(INTVal, DL, MVT::i32));
5981     }
5982   }
5983 
5984   if (!ST->hasVFP3())
5985     return SDValue();
5986 
5987   // Use the default (constant pool) lowering for double constants when we have
5988   // an SP-only FPU
5989   if (IsDouble && Subtarget->isFPOnlySP())
5990     return SDValue();
5991 
5992   // Try splatting with a VMOV.f32...
5993   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5994 
5995   if (ImmVal != -1) {
5996     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
5997       // We have code in place to select a valid ConstantFP already, no need to
5998       // do any mangling.
5999       return Op;
6000     }
6001 
6002     // It's a float and we are trying to use NEON operations where
6003     // possible. Lower it to a splat followed by an extract.
6004     SDLoc DL(Op);
6005     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6006     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6007                                       NewVal);
6008     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6009                        DAG.getConstant(0, DL, MVT::i32));
6010   }
6011 
6012   // The rest of our options are NEON only, make sure that's allowed before
6013   // proceeding..
6014   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6015     return SDValue();
6016 
6017   EVT VMovVT;
6018   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6019 
6020   // It wouldn't really be worth bothering for doubles except for one very
6021   // important value, which does happen to match: 0.0. So make sure we don't do
6022   // anything stupid.
6023   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6024     return SDValue();
6025 
6026   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6027   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6028                                      VMovVT, false, VMOVModImm);
6029   if (NewVal != SDValue()) {
6030     SDLoc DL(Op);
6031     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6032                                       NewVal);
6033     if (IsDouble)
6034       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6035 
6036     // It's a float: cast and extract a vector element.
6037     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6038                                        VecConstant);
6039     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6040                        DAG.getConstant(0, DL, MVT::i32));
6041   }
6042 
6043   // Finally, try a VMVN.i32
6044   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6045                              false, VMVNModImm);
6046   if (NewVal != SDValue()) {
6047     SDLoc DL(Op);
6048     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6049 
6050     if (IsDouble)
6051       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6052 
6053     // It's a float: cast and extract a vector element.
6054     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6055                                        VecConstant);
6056     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6057                        DAG.getConstant(0, DL, MVT::i32));
6058   }
6059 
6060   return SDValue();
6061 }
6062 
6063 // check if an VEXT instruction can handle the shuffle mask when the
6064 // vector sources of the shuffle are the same.
6065 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6066   unsigned NumElts = VT.getVectorNumElements();
6067 
6068   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6069   if (M[0] < 0)
6070     return false;
6071 
6072   Imm = M[0];
6073 
6074   // If this is a VEXT shuffle, the immediate value is the index of the first
6075   // element.  The other shuffle indices must be the successive elements after
6076   // the first one.
6077   unsigned ExpectedElt = Imm;
6078   for (unsigned i = 1; i < NumElts; ++i) {
6079     // Increment the expected index.  If it wraps around, just follow it
6080     // back to index zero and keep going.
6081     ++ExpectedElt;
6082     if (ExpectedElt == NumElts)
6083       ExpectedElt = 0;
6084 
6085     if (M[i] < 0) continue; // ignore UNDEF indices
6086     if (ExpectedElt != static_cast<unsigned>(M[i]))
6087       return false;
6088   }
6089 
6090   return true;
6091 }
6092 
6093 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6094                        bool &ReverseVEXT, unsigned &Imm) {
6095   unsigned NumElts = VT.getVectorNumElements();
6096   ReverseVEXT = false;
6097 
6098   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6099   if (M[0] < 0)
6100     return false;
6101 
6102   Imm = M[0];
6103 
6104   // If this is a VEXT shuffle, the immediate value is the index of the first
6105   // element.  The other shuffle indices must be the successive elements after
6106   // the first one.
6107   unsigned ExpectedElt = Imm;
6108   for (unsigned i = 1; i < NumElts; ++i) {
6109     // Increment the expected index.  If it wraps around, it may still be
6110     // a VEXT but the source vectors must be swapped.
6111     ExpectedElt += 1;
6112     if (ExpectedElt == NumElts * 2) {
6113       ExpectedElt = 0;
6114       ReverseVEXT = true;
6115     }
6116 
6117     if (M[i] < 0) continue; // ignore UNDEF indices
6118     if (ExpectedElt != static_cast<unsigned>(M[i]))
6119       return false;
6120   }
6121 
6122   // Adjust the index value if the source operands will be swapped.
6123   if (ReverseVEXT)
6124     Imm -= NumElts;
6125 
6126   return true;
6127 }
6128 
6129 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6130 /// instruction with the specified blocksize.  (The order of the elements
6131 /// within each block of the vector is reversed.)
6132 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6133   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6134          "Only possible block sizes for VREV are: 16, 32, 64");
6135 
6136   unsigned EltSz = VT.getScalarSizeInBits();
6137   if (EltSz == 64)
6138     return false;
6139 
6140   unsigned NumElts = VT.getVectorNumElements();
6141   unsigned BlockElts = M[0] + 1;
6142   // If the first shuffle index is UNDEF, be optimistic.
6143   if (M[0] < 0)
6144     BlockElts = BlockSize / EltSz;
6145 
6146   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6147     return false;
6148 
6149   for (unsigned i = 0; i < NumElts; ++i) {
6150     if (M[i] < 0) continue; // ignore UNDEF indices
6151     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6152       return false;
6153   }
6154 
6155   return true;
6156 }
6157 
6158 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6159   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6160   // range, then 0 is placed into the resulting vector. So pretty much any mask
6161   // of 8 elements can work here.
6162   return VT == MVT::v8i8 && M.size() == 8;
6163 }
6164 
6165 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6166                                unsigned Index) {
6167   if (Mask.size() == Elements * 2)
6168     return Index / Elements;
6169   return Mask[Index] == 0 ? 0 : 1;
6170 }
6171 
6172 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6173 // checking that pairs of elements in the shuffle mask represent the same index
6174 // in each vector, incrementing the expected index by 2 at each step.
6175 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6176 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6177 //  v2={e,f,g,h}
6178 // WhichResult gives the offset for each element in the mask based on which
6179 // of the two results it belongs to.
6180 //
6181 // The transpose can be represented either as:
6182 // result1 = shufflevector v1, v2, result1_shuffle_mask
6183 // result2 = shufflevector v1, v2, result2_shuffle_mask
6184 // where v1/v2 and the shuffle masks have the same number of elements
6185 // (here WhichResult (see below) indicates which result is being checked)
6186 //
6187 // or as:
6188 // results = shufflevector v1, v2, shuffle_mask
6189 // where both results are returned in one vector and the shuffle mask has twice
6190 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6191 // want to check the low half and high half of the shuffle mask as if it were
6192 // the other case
6193 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6194   unsigned EltSz = VT.getScalarSizeInBits();
6195   if (EltSz == 64)
6196     return false;
6197 
6198   unsigned NumElts = VT.getVectorNumElements();
6199   if (M.size() != NumElts && M.size() != NumElts*2)
6200     return false;
6201 
6202   // If the mask is twice as long as the input vector then we need to check the
6203   // upper and lower parts of the mask with a matching value for WhichResult
6204   // FIXME: A mask with only even values will be rejected in case the first
6205   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6206   // M[0] is used to determine WhichResult
6207   for (unsigned i = 0; i < M.size(); i += NumElts) {
6208     WhichResult = SelectPairHalf(NumElts, M, i);
6209     for (unsigned j = 0; j < NumElts; j += 2) {
6210       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6211           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6212         return false;
6213     }
6214   }
6215 
6216   if (M.size() == NumElts*2)
6217     WhichResult = 0;
6218 
6219   return true;
6220 }
6221 
6222 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6223 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6224 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6225 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6226   unsigned EltSz = VT.getScalarSizeInBits();
6227   if (EltSz == 64)
6228     return false;
6229 
6230   unsigned NumElts = VT.getVectorNumElements();
6231   if (M.size() != NumElts && M.size() != NumElts*2)
6232     return false;
6233 
6234   for (unsigned i = 0; i < M.size(); i += NumElts) {
6235     WhichResult = SelectPairHalf(NumElts, M, i);
6236     for (unsigned j = 0; j < NumElts; j += 2) {
6237       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6238           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6239         return false;
6240     }
6241   }
6242 
6243   if (M.size() == NumElts*2)
6244     WhichResult = 0;
6245 
6246   return true;
6247 }
6248 
6249 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6250 // that the mask elements are either all even and in steps of size 2 or all odd
6251 // and in steps of size 2.
6252 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6253 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6254 //  v2={e,f,g,h}
6255 // Requires similar checks to that of isVTRNMask with
6256 // respect the how results are returned.
6257 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6258   unsigned EltSz = VT.getScalarSizeInBits();
6259   if (EltSz == 64)
6260     return false;
6261 
6262   unsigned NumElts = VT.getVectorNumElements();
6263   if (M.size() != NumElts && M.size() != NumElts*2)
6264     return false;
6265 
6266   for (unsigned i = 0; i < M.size(); i += NumElts) {
6267     WhichResult = SelectPairHalf(NumElts, M, i);
6268     for (unsigned j = 0; j < NumElts; ++j) {
6269       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6270         return false;
6271     }
6272   }
6273 
6274   if (M.size() == NumElts*2)
6275     WhichResult = 0;
6276 
6277   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6278   if (VT.is64BitVector() && EltSz == 32)
6279     return false;
6280 
6281   return true;
6282 }
6283 
6284 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6285 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6286 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6287 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6288   unsigned EltSz = VT.getScalarSizeInBits();
6289   if (EltSz == 64)
6290     return false;
6291 
6292   unsigned NumElts = VT.getVectorNumElements();
6293   if (M.size() != NumElts && M.size() != NumElts*2)
6294     return false;
6295 
6296   unsigned Half = NumElts / 2;
6297   for (unsigned i = 0; i < M.size(); i += NumElts) {
6298     WhichResult = SelectPairHalf(NumElts, M, i);
6299     for (unsigned j = 0; j < NumElts; j += Half) {
6300       unsigned Idx = WhichResult;
6301       for (unsigned k = 0; k < Half; ++k) {
6302         int MIdx = M[i + j + k];
6303         if (MIdx >= 0 && (unsigned) MIdx != Idx)
6304           return false;
6305         Idx += 2;
6306       }
6307     }
6308   }
6309 
6310   if (M.size() == NumElts*2)
6311     WhichResult = 0;
6312 
6313   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6314   if (VT.is64BitVector() && EltSz == 32)
6315     return false;
6316 
6317   return true;
6318 }
6319 
6320 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6321 // that pairs of elements of the shufflemask represent the same index in each
6322 // vector incrementing sequentially through the vectors.
6323 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6324 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6325 //  v2={e,f,g,h}
6326 // Requires similar checks to that of isVTRNMask with respect the how results
6327 // are returned.
6328 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6329   unsigned EltSz = VT.getScalarSizeInBits();
6330   if (EltSz == 64)
6331     return false;
6332 
6333   unsigned NumElts = VT.getVectorNumElements();
6334   if (M.size() != NumElts && M.size() != NumElts*2)
6335     return false;
6336 
6337   for (unsigned i = 0; i < M.size(); i += NumElts) {
6338     WhichResult = SelectPairHalf(NumElts, M, i);
6339     unsigned Idx = WhichResult * NumElts / 2;
6340     for (unsigned j = 0; j < NumElts; j += 2) {
6341       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6342           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6343         return false;
6344       Idx += 1;
6345     }
6346   }
6347 
6348   if (M.size() == NumElts*2)
6349     WhichResult = 0;
6350 
6351   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6352   if (VT.is64BitVector() && EltSz == 32)
6353     return false;
6354 
6355   return true;
6356 }
6357 
6358 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6359 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6360 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6361 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6362   unsigned EltSz = VT.getScalarSizeInBits();
6363   if (EltSz == 64)
6364     return false;
6365 
6366   unsigned NumElts = VT.getVectorNumElements();
6367   if (M.size() != NumElts && M.size() != NumElts*2)
6368     return false;
6369 
6370   for (unsigned i = 0; i < M.size(); i += NumElts) {
6371     WhichResult = SelectPairHalf(NumElts, M, i);
6372     unsigned Idx = WhichResult * NumElts / 2;
6373     for (unsigned j = 0; j < NumElts; j += 2) {
6374       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6375           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6376         return false;
6377       Idx += 1;
6378     }
6379   }
6380 
6381   if (M.size() == NumElts*2)
6382     WhichResult = 0;
6383 
6384   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6385   if (VT.is64BitVector() && EltSz == 32)
6386     return false;
6387 
6388   return true;
6389 }
6390 
6391 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6392 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6393 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6394                                            unsigned &WhichResult,
6395                                            bool &isV_UNDEF) {
6396   isV_UNDEF = false;
6397   if (isVTRNMask(ShuffleMask, VT, WhichResult))
6398     return ARMISD::VTRN;
6399   if (isVUZPMask(ShuffleMask, VT, WhichResult))
6400     return ARMISD::VUZP;
6401   if (isVZIPMask(ShuffleMask, VT, WhichResult))
6402     return ARMISD::VZIP;
6403 
6404   isV_UNDEF = true;
6405   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6406     return ARMISD::VTRN;
6407   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6408     return ARMISD::VUZP;
6409   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6410     return ARMISD::VZIP;
6411 
6412   return 0;
6413 }
6414 
6415 /// \return true if this is a reverse operation on an vector.
6416 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6417   unsigned NumElts = VT.getVectorNumElements();
6418   // Make sure the mask has the right size.
6419   if (NumElts != M.size())
6420       return false;
6421 
6422   // Look for <15, ..., 3, -1, 1, 0>.
6423   for (unsigned i = 0; i != NumElts; ++i)
6424     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6425       return false;
6426 
6427   return true;
6428 }
6429 
6430 // If N is an integer constant that can be moved into a register in one
6431 // instruction, return an SDValue of such a constant (will become a MOV
6432 // instruction).  Otherwise return null.
6433 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6434                                      const ARMSubtarget *ST, const SDLoc &dl) {
6435   uint64_t Val;
6436   if (!isa<ConstantSDNode>(N))
6437     return SDValue();
6438   Val = cast<ConstantSDNode>(N)->getZExtValue();
6439 
6440   if (ST->isThumb1Only()) {
6441     if (Val <= 255 || ~Val <= 255)
6442       return DAG.getConstant(Val, dl, MVT::i32);
6443   } else {
6444     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6445       return DAG.getConstant(Val, dl, MVT::i32);
6446   }
6447   return SDValue();
6448 }
6449 
6450 // If this is a case we can't handle, return null and let the default
6451 // expansion code take care of it.
6452 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6453                                              const ARMSubtarget *ST) const {
6454   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6455   SDLoc dl(Op);
6456   EVT VT = Op.getValueType();
6457 
6458   APInt SplatBits, SplatUndef;
6459   unsigned SplatBitSize;
6460   bool HasAnyUndefs;
6461   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6462     if (SplatUndef.isAllOnesValue())
6463       return DAG.getUNDEF(VT);
6464 
6465     if (SplatBitSize <= 64) {
6466       // Check if an immediate VMOV works.
6467       EVT VmovVT;
6468       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6469                                       SplatUndef.getZExtValue(), SplatBitSize,
6470                                       DAG, dl, VmovVT, VT.is128BitVector(),
6471                                       VMOVModImm);
6472       if (Val.getNode()) {
6473         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6474         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6475       }
6476 
6477       // Try an immediate VMVN.
6478       uint64_t NegatedImm = (~SplatBits).getZExtValue();
6479       Val = isNEONModifiedImm(NegatedImm,
6480                                       SplatUndef.getZExtValue(), SplatBitSize,
6481                                       DAG, dl, VmovVT, VT.is128BitVector(),
6482                                       VMVNModImm);
6483       if (Val.getNode()) {
6484         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6485         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6486       }
6487 
6488       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6489       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6490         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6491         if (ImmVal != -1) {
6492           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6493           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6494         }
6495       }
6496     }
6497   }
6498 
6499   // Scan through the operands to see if only one value is used.
6500   //
6501   // As an optimisation, even if more than one value is used it may be more
6502   // profitable to splat with one value then change some lanes.
6503   //
6504   // Heuristically we decide to do this if the vector has a "dominant" value,
6505   // defined as splatted to more than half of the lanes.
6506   unsigned NumElts = VT.getVectorNumElements();
6507   bool isOnlyLowElement = true;
6508   bool usesOnlyOneValue = true;
6509   bool hasDominantValue = false;
6510   bool isConstant = true;
6511 
6512   // Map of the number of times a particular SDValue appears in the
6513   // element list.
6514   DenseMap<SDValue, unsigned> ValueCounts;
6515   SDValue Value;
6516   for (unsigned i = 0; i < NumElts; ++i) {
6517     SDValue V = Op.getOperand(i);
6518     if (V.isUndef())
6519       continue;
6520     if (i > 0)
6521       isOnlyLowElement = false;
6522     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6523       isConstant = false;
6524 
6525     ValueCounts.insert(std::make_pair(V, 0));
6526     unsigned &Count = ValueCounts[V];
6527 
6528     // Is this value dominant? (takes up more than half of the lanes)
6529     if (++Count > (NumElts / 2)) {
6530       hasDominantValue = true;
6531       Value = V;
6532     }
6533   }
6534   if (ValueCounts.size() != 1)
6535     usesOnlyOneValue = false;
6536   if (!Value.getNode() && !ValueCounts.empty())
6537     Value = ValueCounts.begin()->first;
6538 
6539   if (ValueCounts.empty())
6540     return DAG.getUNDEF(VT);
6541 
6542   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6543   // Keep going if we are hitting this case.
6544   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6545     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6546 
6547   unsigned EltSize = VT.getScalarSizeInBits();
6548 
6549   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
6550   // i32 and try again.
6551   if (hasDominantValue && EltSize <= 32) {
6552     if (!isConstant) {
6553       SDValue N;
6554 
6555       // If we are VDUPing a value that comes directly from a vector, that will
6556       // cause an unnecessary move to and from a GPR, where instead we could
6557       // just use VDUPLANE. We can only do this if the lane being extracted
6558       // is at a constant index, as the VDUP from lane instructions only have
6559       // constant-index forms.
6560       ConstantSDNode *constIndex;
6561       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6562           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6563         // We need to create a new undef vector to use for the VDUPLANE if the
6564         // size of the vector from which we get the value is different than the
6565         // size of the vector that we need to create. We will insert the element
6566         // such that the register coalescer will remove unnecessary copies.
6567         if (VT != Value->getOperand(0).getValueType()) {
6568           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6569                              VT.getVectorNumElements();
6570           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6571                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6572                         Value, DAG.getConstant(index, dl, MVT::i32)),
6573                            DAG.getConstant(index, dl, MVT::i32));
6574         } else
6575           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6576                         Value->getOperand(0), Value->getOperand(1));
6577       } else
6578         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6579 
6580       if (!usesOnlyOneValue) {
6581         // The dominant value was splatted as 'N', but we now have to insert
6582         // all differing elements.
6583         for (unsigned I = 0; I < NumElts; ++I) {
6584           if (Op.getOperand(I) == Value)
6585             continue;
6586           SmallVector<SDValue, 3> Ops;
6587           Ops.push_back(N);
6588           Ops.push_back(Op.getOperand(I));
6589           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6590           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6591         }
6592       }
6593       return N;
6594     }
6595     if (VT.getVectorElementType().isFloatingPoint()) {
6596       SmallVector<SDValue, 8> Ops;
6597       for (unsigned i = 0; i < NumElts; ++i)
6598         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
6599                                   Op.getOperand(i)));
6600       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
6601       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6602       Val = LowerBUILD_VECTOR(Val, DAG, ST);
6603       if (Val.getNode())
6604         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6605     }
6606     if (usesOnlyOneValue) {
6607       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6608       if (isConstant && Val.getNode())
6609         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6610     }
6611   }
6612 
6613   // If all elements are constants and the case above didn't get hit, fall back
6614   // to the default expansion, which will generate a load from the constant
6615   // pool.
6616   if (isConstant)
6617     return SDValue();
6618 
6619   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6620   if (NumElts >= 4) {
6621     SDValue shuffle = ReconstructShuffle(Op, DAG);
6622     if (shuffle != SDValue())
6623       return shuffle;
6624   }
6625 
6626   if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
6627     // If we haven't found an efficient lowering, try splitting a 128-bit vector
6628     // into two 64-bit vectors; we might discover a better way to lower it.
6629     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
6630     EVT ExtVT = VT.getVectorElementType();
6631     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
6632     SDValue Lower =
6633         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
6634     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
6635       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
6636     SDValue Upper = DAG.getBuildVector(
6637         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
6638     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
6639       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
6640     if (Lower && Upper)
6641       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
6642   }
6643 
6644   // Vectors with 32- or 64-bit elements can be built by directly assigning
6645   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
6646   // will be legalized.
6647   if (EltSize >= 32) {
6648     // Do the expansion with floating-point types, since that is what the VFP
6649     // registers are defined to use, and since i64 is not legal.
6650     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6651     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6652     SmallVector<SDValue, 8> Ops;
6653     for (unsigned i = 0; i < NumElts; ++i)
6654       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6655     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6656     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6657   }
6658 
6659   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6660   // know the default expansion would otherwise fall back on something even
6661   // worse. For a vector with one or two non-undef values, that's
6662   // scalar_to_vector for the elements followed by a shuffle (provided the
6663   // shuffle is valid for the target) and materialization element by element
6664   // on the stack followed by a load for everything else.
6665   if (!isConstant && !usesOnlyOneValue) {
6666     SDValue Vec = DAG.getUNDEF(VT);
6667     for (unsigned i = 0 ; i < NumElts; ++i) {
6668       SDValue V = Op.getOperand(i);
6669       if (V.isUndef())
6670         continue;
6671       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6672       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6673     }
6674     return Vec;
6675   }
6676 
6677   return SDValue();
6678 }
6679 
6680 // Gather data to see if the operation can be modelled as a
6681 // shuffle in combination with VEXTs.
6682 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6683                                               SelectionDAG &DAG) const {
6684   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6685   SDLoc dl(Op);
6686   EVT VT = Op.getValueType();
6687   unsigned NumElts = VT.getVectorNumElements();
6688 
6689   struct ShuffleSourceInfo {
6690     SDValue Vec;
6691     unsigned MinElt = std::numeric_limits<unsigned>::max();
6692     unsigned MaxElt = 0;
6693 
6694     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6695     // be compatible with the shuffle we intend to construct. As a result
6696     // ShuffleVec will be some sliding window into the original Vec.
6697     SDValue ShuffleVec;
6698 
6699     // Code should guarantee that element i in Vec starts at element "WindowBase
6700     // + i * WindowScale in ShuffleVec".
6701     int WindowBase = 0;
6702     int WindowScale = 1;
6703 
6704     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
6705 
6706     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6707   };
6708 
6709   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6710   // node.
6711   SmallVector<ShuffleSourceInfo, 2> Sources;
6712   for (unsigned i = 0; i < NumElts; ++i) {
6713     SDValue V = Op.getOperand(i);
6714     if (V.isUndef())
6715       continue;
6716     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6717       // A shuffle can only come from building a vector from various
6718       // elements of other vectors.
6719       return SDValue();
6720     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6721       // Furthermore, shuffles require a constant mask, whereas extractelts
6722       // accept variable indices.
6723       return SDValue();
6724     }
6725 
6726     // Add this element source to the list if it's not already there.
6727     SDValue SourceVec = V.getOperand(0);
6728     auto Source = llvm::find(Sources, SourceVec);
6729     if (Source == Sources.end())
6730       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6731 
6732     // Update the minimum and maximum lane number seen.
6733     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6734     Source->MinElt = std::min(Source->MinElt, EltNo);
6735     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6736   }
6737 
6738   // Currently only do something sane when at most two source vectors
6739   // are involved.
6740   if (Sources.size() > 2)
6741     return SDValue();
6742 
6743   // Find out the smallest element size among result and two sources, and use
6744   // it as element size to build the shuffle_vector.
6745   EVT SmallestEltTy = VT.getVectorElementType();
6746   for (auto &Source : Sources) {
6747     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6748     if (SrcEltTy.bitsLT(SmallestEltTy))
6749       SmallestEltTy = SrcEltTy;
6750   }
6751   unsigned ResMultiplier =
6752       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6753   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6754   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6755 
6756   // If the source vector is too wide or too narrow, we may nevertheless be able
6757   // to construct a compatible shuffle either by concatenating it with UNDEF or
6758   // extracting a suitable range of elements.
6759   for (auto &Src : Sources) {
6760     EVT SrcVT = Src.ShuffleVec.getValueType();
6761 
6762     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6763       continue;
6764 
6765     // This stage of the search produces a source with the same element type as
6766     // the original, but with a total width matching the BUILD_VECTOR output.
6767     EVT EltVT = SrcVT.getVectorElementType();
6768     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6769     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6770 
6771     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6772       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6773         return SDValue();
6774       // We can pad out the smaller vector for free, so if it's part of a
6775       // shuffle...
6776       Src.ShuffleVec =
6777           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6778                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6779       continue;
6780     }
6781 
6782     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6783       return SDValue();
6784 
6785     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6786       // Span too large for a VEXT to cope
6787       return SDValue();
6788     }
6789 
6790     if (Src.MinElt >= NumSrcElts) {
6791       // The extraction can just take the second half
6792       Src.ShuffleVec =
6793           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6794                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6795       Src.WindowBase = -NumSrcElts;
6796     } else if (Src.MaxElt < NumSrcElts) {
6797       // The extraction can just take the first half
6798       Src.ShuffleVec =
6799           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6800                       DAG.getConstant(0, dl, MVT::i32));
6801     } else {
6802       // An actual VEXT is needed
6803       SDValue VEXTSrc1 =
6804           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6805                       DAG.getConstant(0, dl, MVT::i32));
6806       SDValue VEXTSrc2 =
6807           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6808                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6809 
6810       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6811                                    VEXTSrc2,
6812                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
6813       Src.WindowBase = -Src.MinElt;
6814     }
6815   }
6816 
6817   // Another possible incompatibility occurs from the vector element types. We
6818   // can fix this by bitcasting the source vectors to the same type we intend
6819   // for the shuffle.
6820   for (auto &Src : Sources) {
6821     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6822     if (SrcEltTy == SmallestEltTy)
6823       continue;
6824     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6825     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6826     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6827     Src.WindowBase *= Src.WindowScale;
6828   }
6829 
6830   // Final sanity check before we try to actually produce a shuffle.
6831   DEBUG(
6832     for (auto Src : Sources)
6833       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
6834   );
6835 
6836   // The stars all align, our next step is to produce the mask for the shuffle.
6837   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6838   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6839   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6840     SDValue Entry = Op.getOperand(i);
6841     if (Entry.isUndef())
6842       continue;
6843 
6844     auto Src = llvm::find(Sources, Entry.getOperand(0));
6845     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6846 
6847     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6848     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6849     // segment.
6850     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6851     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6852                                VT.getScalarSizeInBits());
6853     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6854 
6855     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6856     // starting at the appropriate offset.
6857     int *LaneMask = &Mask[i * ResMultiplier];
6858 
6859     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6860     ExtractBase += NumElts * (Src - Sources.begin());
6861     for (int j = 0; j < LanesDefined; ++j)
6862       LaneMask[j] = ExtractBase + j;
6863   }
6864 
6865   // Final check before we try to produce nonsense...
6866   if (!isShuffleMaskLegal(Mask, ShuffleVT))
6867     return SDValue();
6868 
6869   // We can't handle more than two sources. This should have already
6870   // been checked before this point.
6871   assert(Sources.size() <= 2 && "Too many sources!");
6872 
6873   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6874   for (unsigned i = 0; i < Sources.size(); ++i)
6875     ShuffleOps[i] = Sources[i].ShuffleVec;
6876 
6877   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6878                                          ShuffleOps[1], Mask);
6879   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6880 }
6881 
6882 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6883 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6884 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6885 /// are assumed to be legal.
6886 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
6887   if (VT.getVectorNumElements() == 4 &&
6888       (VT.is128BitVector() || VT.is64BitVector())) {
6889     unsigned PFIndexes[4];
6890     for (unsigned i = 0; i != 4; ++i) {
6891       if (M[i] < 0)
6892         PFIndexes[i] = 8;
6893       else
6894         PFIndexes[i] = M[i];
6895     }
6896 
6897     // Compute the index in the perfect shuffle table.
6898     unsigned PFTableIndex =
6899       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6900     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6901     unsigned Cost = (PFEntry >> 30);
6902 
6903     if (Cost <= 4)
6904       return true;
6905   }
6906 
6907   bool ReverseVEXT, isV_UNDEF;
6908   unsigned Imm, WhichResult;
6909 
6910   unsigned EltSize = VT.getScalarSizeInBits();
6911   return (EltSize >= 32 ||
6912           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6913           isVREVMask(M, VT, 64) ||
6914           isVREVMask(M, VT, 32) ||
6915           isVREVMask(M, VT, 16) ||
6916           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6917           isVTBLMask(M, VT) ||
6918           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6919           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6920 }
6921 
6922 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6923 /// the specified operations to build the shuffle.
6924 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6925                                       SDValue RHS, SelectionDAG &DAG,
6926                                       const SDLoc &dl) {
6927   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6928   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6929   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
6930 
6931   enum {
6932     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6933     OP_VREV,
6934     OP_VDUP0,
6935     OP_VDUP1,
6936     OP_VDUP2,
6937     OP_VDUP3,
6938     OP_VEXT1,
6939     OP_VEXT2,
6940     OP_VEXT3,
6941     OP_VUZPL, // VUZP, left result
6942     OP_VUZPR, // VUZP, right result
6943     OP_VZIPL, // VZIP, left result
6944     OP_VZIPR, // VZIP, right result
6945     OP_VTRNL, // VTRN, left result
6946     OP_VTRNR  // VTRN, right result
6947   };
6948 
6949   if (OpNum == OP_COPY) {
6950     if (LHSID == (1*9+2)*9+3) return LHS;
6951     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6952     return RHS;
6953   }
6954 
6955   SDValue OpLHS, OpRHS;
6956   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6957   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6958   EVT VT = OpLHS.getValueType();
6959 
6960   switch (OpNum) {
6961   default: llvm_unreachable("Unknown shuffle opcode!");
6962   case OP_VREV:
6963     // VREV divides the vector in half and swaps within the half.
6964     if (VT.getVectorElementType() == MVT::i32 ||
6965         VT.getVectorElementType() == MVT::f32)
6966       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6967     // vrev <4 x i16> -> VREV32
6968     if (VT.getVectorElementType() == MVT::i16)
6969       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6970     // vrev <4 x i8> -> VREV16
6971     assert(VT.getVectorElementType() == MVT::i8);
6972     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6973   case OP_VDUP0:
6974   case OP_VDUP1:
6975   case OP_VDUP2:
6976   case OP_VDUP3:
6977     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6978                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6979   case OP_VEXT1:
6980   case OP_VEXT2:
6981   case OP_VEXT3:
6982     return DAG.getNode(ARMISD::VEXT, dl, VT,
6983                        OpLHS, OpRHS,
6984                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6985   case OP_VUZPL:
6986   case OP_VUZPR:
6987     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6988                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6989   case OP_VZIPL:
6990   case OP_VZIPR:
6991     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6992                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6993   case OP_VTRNL:
6994   case OP_VTRNR:
6995     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6996                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6997   }
6998 }
6999 
7000 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7001                                        ArrayRef<int> ShuffleMask,
7002                                        SelectionDAG &DAG) {
7003   // Check to see if we can use the VTBL instruction.
7004   SDValue V1 = Op.getOperand(0);
7005   SDValue V2 = Op.getOperand(1);
7006   SDLoc DL(Op);
7007 
7008   SmallVector<SDValue, 8> VTBLMask;
7009   for (ArrayRef<int>::iterator
7010          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7011     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7012 
7013   if (V2.getNode()->isUndef())
7014     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7015                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7016 
7017   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7018                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7019 }
7020 
7021 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7022                                                       SelectionDAG &DAG) {
7023   SDLoc DL(Op);
7024   SDValue OpLHS = Op.getOperand(0);
7025   EVT VT = OpLHS.getValueType();
7026 
7027   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7028          "Expect an v8i16/v16i8 type");
7029   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7030   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7031   // extract the first 8 bytes into the top double word and the last 8 bytes
7032   // into the bottom double word. The v8i16 case is similar.
7033   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7034   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7035                      DAG.getConstant(ExtractNum, DL, MVT::i32));
7036 }
7037 
7038 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
7039   SDValue V1 = Op.getOperand(0);
7040   SDValue V2 = Op.getOperand(1);
7041   SDLoc dl(Op);
7042   EVT VT = Op.getValueType();
7043   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7044 
7045   // Convert shuffles that are directly supported on NEON to target-specific
7046   // DAG nodes, instead of keeping them as shuffles and matching them again
7047   // during code selection.  This is more efficient and avoids the possibility
7048   // of inconsistencies between legalization and selection.
7049   // FIXME: floating-point vectors should be canonicalized to integer vectors
7050   // of the same time so that they get CSEd properly.
7051   ArrayRef<int> ShuffleMask = SVN->getMask();
7052 
7053   unsigned EltSize = VT.getScalarSizeInBits();
7054   if (EltSize <= 32) {
7055     if (SVN->isSplat()) {
7056       int Lane = SVN->getSplatIndex();
7057       // If this is undef splat, generate it via "just" vdup, if possible.
7058       if (Lane == -1) Lane = 0;
7059 
7060       // Test if V1 is a SCALAR_TO_VECTOR.
7061       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7062         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7063       }
7064       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7065       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7066       // reaches it).
7067       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7068           !isa<ConstantSDNode>(V1.getOperand(0))) {
7069         bool IsScalarToVector = true;
7070         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7071           if (!V1.getOperand(i).isUndef()) {
7072             IsScalarToVector = false;
7073             break;
7074           }
7075         if (IsScalarToVector)
7076           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7077       }
7078       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7079                          DAG.getConstant(Lane, dl, MVT::i32));
7080     }
7081 
7082     bool ReverseVEXT;
7083     unsigned Imm;
7084     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7085       if (ReverseVEXT)
7086         std::swap(V1, V2);
7087       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7088                          DAG.getConstant(Imm, dl, MVT::i32));
7089     }
7090 
7091     if (isVREVMask(ShuffleMask, VT, 64))
7092       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7093     if (isVREVMask(ShuffleMask, VT, 32))
7094       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7095     if (isVREVMask(ShuffleMask, VT, 16))
7096       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7097 
7098     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7099       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7100                          DAG.getConstant(Imm, dl, MVT::i32));
7101     }
7102 
7103     // Check for Neon shuffles that modify both input vectors in place.
7104     // If both results are used, i.e., if there are two shuffles with the same
7105     // source operands and with masks corresponding to both results of one of
7106     // these operations, DAG memoization will ensure that a single node is
7107     // used for both shuffles.
7108     unsigned WhichResult;
7109     bool isV_UNDEF;
7110     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7111             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7112       if (isV_UNDEF)
7113         V2 = V1;
7114       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7115           .getValue(WhichResult);
7116     }
7117 
7118     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7119     // shuffles that produce a result larger than their operands with:
7120     //   shuffle(concat(v1, undef), concat(v2, undef))
7121     // ->
7122     //   shuffle(concat(v1, v2), undef)
7123     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7124     //
7125     // This is useful in the general case, but there are special cases where
7126     // native shuffles produce larger results: the two-result ops.
7127     //
7128     // Look through the concat when lowering them:
7129     //   shuffle(concat(v1, v2), undef)
7130     // ->
7131     //   concat(VZIP(v1, v2):0, :1)
7132     //
7133     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7134       SDValue SubV1 = V1->getOperand(0);
7135       SDValue SubV2 = V1->getOperand(1);
7136       EVT SubVT = SubV1.getValueType();
7137 
7138       // We expect these to have been canonicalized to -1.
7139       assert(llvm::all_of(ShuffleMask, [&](int i) {
7140         return i < (int)VT.getVectorNumElements();
7141       }) && "Unexpected shuffle index into UNDEF operand!");
7142 
7143       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7144               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7145         if (isV_UNDEF)
7146           SubV2 = SubV1;
7147         assert((WhichResult == 0) &&
7148                "In-place shuffle of concat can only have one result!");
7149         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7150                                   SubV1, SubV2);
7151         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7152                            Res.getValue(1));
7153       }
7154     }
7155   }
7156 
7157   // If the shuffle is not directly supported and it has 4 elements, use
7158   // the PerfectShuffle-generated table to synthesize it from other shuffles.
7159   unsigned NumElts = VT.getVectorNumElements();
7160   if (NumElts == 4) {
7161     unsigned PFIndexes[4];
7162     for (unsigned i = 0; i != 4; ++i) {
7163       if (ShuffleMask[i] < 0)
7164         PFIndexes[i] = 8;
7165       else
7166         PFIndexes[i] = ShuffleMask[i];
7167     }
7168 
7169     // Compute the index in the perfect shuffle table.
7170     unsigned PFTableIndex =
7171       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7172     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7173     unsigned Cost = (PFEntry >> 30);
7174 
7175     if (Cost <= 4)
7176       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7177   }
7178 
7179   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7180   if (EltSize >= 32) {
7181     // Do the expansion with floating-point types, since that is what the VFP
7182     // registers are defined to use, and since i64 is not legal.
7183     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7184     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7185     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7186     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7187     SmallVector<SDValue, 8> Ops;
7188     for (unsigned i = 0; i < NumElts; ++i) {
7189       if (ShuffleMask[i] < 0)
7190         Ops.push_back(DAG.getUNDEF(EltVT));
7191       else
7192         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7193                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
7194                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7195                                                   dl, MVT::i32)));
7196     }
7197     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7198     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7199   }
7200 
7201   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7202     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7203 
7204   if (VT == MVT::v8i8)
7205     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7206       return NewOp;
7207 
7208   return SDValue();
7209 }
7210 
7211 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7212   // INSERT_VECTOR_ELT is legal only for immediate indexes.
7213   SDValue Lane = Op.getOperand(2);
7214   if (!isa<ConstantSDNode>(Lane))
7215     return SDValue();
7216 
7217   return Op;
7218 }
7219 
7220 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7221   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7222   SDValue Lane = Op.getOperand(1);
7223   if (!isa<ConstantSDNode>(Lane))
7224     return SDValue();
7225 
7226   SDValue Vec = Op.getOperand(0);
7227   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7228     SDLoc dl(Op);
7229     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7230   }
7231 
7232   return Op;
7233 }
7234 
7235 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7236   // The only time a CONCAT_VECTORS operation can have legal types is when
7237   // two 64-bit vectors are concatenated to a 128-bit vector.
7238   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7239          "unexpected CONCAT_VECTORS");
7240   SDLoc dl(Op);
7241   SDValue Val = DAG.getUNDEF(MVT::v2f64);
7242   SDValue Op0 = Op.getOperand(0);
7243   SDValue Op1 = Op.getOperand(1);
7244   if (!Op0.isUndef())
7245     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7246                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7247                       DAG.getIntPtrConstant(0, dl));
7248   if (!Op1.isUndef())
7249     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7250                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7251                       DAG.getIntPtrConstant(1, dl));
7252   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7253 }
7254 
7255 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7256 /// element has been zero/sign-extended, depending on the isSigned parameter,
7257 /// from an integer type half its size.
7258 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7259                                    bool isSigned) {
7260   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7261   EVT VT = N->getValueType(0);
7262   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7263     SDNode *BVN = N->getOperand(0).getNode();
7264     if (BVN->getValueType(0) != MVT::v4i32 ||
7265         BVN->getOpcode() != ISD::BUILD_VECTOR)
7266       return false;
7267     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7268     unsigned HiElt = 1 - LoElt;
7269     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7270     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7271     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7272     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7273     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7274       return false;
7275     if (isSigned) {
7276       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7277           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7278         return true;
7279     } else {
7280       if (Hi0->isNullValue() && Hi1->isNullValue())
7281         return true;
7282     }
7283     return false;
7284   }
7285 
7286   if (N->getOpcode() != ISD::BUILD_VECTOR)
7287     return false;
7288 
7289   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7290     SDNode *Elt = N->getOperand(i).getNode();
7291     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
7292       unsigned EltSize = VT.getScalarSizeInBits();
7293       unsigned HalfSize = EltSize / 2;
7294       if (isSigned) {
7295         if (!isIntN(HalfSize, C->getSExtValue()))
7296           return false;
7297       } else {
7298         if (!isUIntN(HalfSize, C->getZExtValue()))
7299           return false;
7300       }
7301       continue;
7302     }
7303     return false;
7304   }
7305 
7306   return true;
7307 }
7308 
7309 /// isSignExtended - Check if a node is a vector value that is sign-extended
7310 /// or a constant BUILD_VECTOR with sign-extended elements.
7311 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
7312   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
7313     return true;
7314   if (isExtendedBUILD_VECTOR(N, DAG, true))
7315     return true;
7316   return false;
7317 }
7318 
7319 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7320 /// or a constant BUILD_VECTOR with zero-extended elements.
7321 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
7322   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
7323     return true;
7324   if (isExtendedBUILD_VECTOR(N, DAG, false))
7325     return true;
7326   return false;
7327 }
7328 
7329 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
7330   if (OrigVT.getSizeInBits() >= 64)
7331     return OrigVT;
7332 
7333   assert(OrigVT.isSimple() && "Expecting a simple value type");
7334 
7335   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
7336   switch (OrigSimpleTy) {
7337   default: llvm_unreachable("Unexpected Vector Type");
7338   case MVT::v2i8:
7339   case MVT::v2i16:
7340      return MVT::v2i32;
7341   case MVT::v4i8:
7342     return  MVT::v4i16;
7343   }
7344 }
7345 
7346 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7347 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7348 /// We insert the required extension here to get the vector to fill a D register.
7349 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
7350                                             const EVT &OrigTy,
7351                                             const EVT &ExtTy,
7352                                             unsigned ExtOpcode) {
7353   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7354   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7355   // 64-bits we need to insert a new extension so that it will be 64-bits.
7356   assert(ExtTy.is128BitVector() && "Unexpected extension size");
7357   if (OrigTy.getSizeInBits() >= 64)
7358     return N;
7359 
7360   // Must extend size to at least 64 bits to be used as an operand for VMULL.
7361   EVT NewVT = getExtensionTo64Bits(OrigTy);
7362 
7363   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
7364 }
7365 
7366 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7367 /// does not do any sign/zero extension. If the original vector is less
7368 /// than 64 bits, an appropriate extension will be added after the load to
7369 /// reach a total size of 64 bits. We have to add the extension separately
7370 /// because ARM does not have a sign/zero extending load for vectors.
7371 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
7372   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
7373 
7374   // The load already has the right type.
7375   if (ExtendedTy == LD->getMemoryVT())
7376     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
7377                        LD->getBasePtr(), LD->getPointerInfo(),
7378                        LD->getAlignment(), LD->getMemOperand()->getFlags());
7379 
7380   // We need to create a zextload/sextload. We cannot just create a load
7381   // followed by a zext/zext node because LowerMUL is also run during normal
7382   // operation legalization where we can't create illegal types.
7383   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
7384                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
7385                         LD->getMemoryVT(), LD->getAlignment(),
7386                         LD->getMemOperand()->getFlags());
7387 }
7388 
7389 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
7390 /// extending load, or BUILD_VECTOR with extended elements, return the
7391 /// unextended value. The unextended vector should be 64 bits so that it can
7392 /// be used as an operand to a VMULL instruction. If the original vector size
7393 /// before extension is less than 64 bits we add a an extension to resize
7394 /// the vector to 64 bits.
7395 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
7396   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
7397     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
7398                                         N->getOperand(0)->getValueType(0),
7399                                         N->getValueType(0),
7400                                         N->getOpcode());
7401 
7402   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7403     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
7404            "Expected extending load");
7405 
7406     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
7407     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
7408     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
7409     SDValue extLoad =
7410         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
7411     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
7412 
7413     return newLoad;
7414   }
7415 
7416   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
7417   // have been legalized as a BITCAST from v4i32.
7418   if (N->getOpcode() == ISD::BITCAST) {
7419     SDNode *BVN = N->getOperand(0).getNode();
7420     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
7421            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
7422     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7423     return DAG.getBuildVector(
7424         MVT::v2i32, SDLoc(N),
7425         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
7426   }
7427   // Construct a new BUILD_VECTOR with elements truncated to half the size.
7428   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
7429   EVT VT = N->getValueType(0);
7430   unsigned EltSize = VT.getScalarSizeInBits() / 2;
7431   unsigned NumElts = VT.getVectorNumElements();
7432   MVT TruncVT = MVT::getIntegerVT(EltSize);
7433   SmallVector<SDValue, 8> Ops;
7434   SDLoc dl(N);
7435   for (unsigned i = 0; i != NumElts; ++i) {
7436     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
7437     const APInt &CInt = C->getAPIntValue();
7438     // Element types smaller than 32 bits are not legal, so use i32 elements.
7439     // The values are implicitly truncated so sext vs. zext doesn't matter.
7440     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
7441   }
7442   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
7443 }
7444 
7445 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
7446   unsigned Opcode = N->getOpcode();
7447   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7448     SDNode *N0 = N->getOperand(0).getNode();
7449     SDNode *N1 = N->getOperand(1).getNode();
7450     return N0->hasOneUse() && N1->hasOneUse() &&
7451       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
7452   }
7453   return false;
7454 }
7455 
7456 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
7457   unsigned Opcode = N->getOpcode();
7458   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7459     SDNode *N0 = N->getOperand(0).getNode();
7460     SDNode *N1 = N->getOperand(1).getNode();
7461     return N0->hasOneUse() && N1->hasOneUse() &&
7462       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
7463   }
7464   return false;
7465 }
7466 
7467 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
7468   // Multiplications are only custom-lowered for 128-bit vectors so that
7469   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
7470   EVT VT = Op.getValueType();
7471   assert(VT.is128BitVector() && VT.isInteger() &&
7472          "unexpected type for custom-lowering ISD::MUL");
7473   SDNode *N0 = Op.getOperand(0).getNode();
7474   SDNode *N1 = Op.getOperand(1).getNode();
7475   unsigned NewOpc = 0;
7476   bool isMLA = false;
7477   bool isN0SExt = isSignExtended(N0, DAG);
7478   bool isN1SExt = isSignExtended(N1, DAG);
7479   if (isN0SExt && isN1SExt)
7480     NewOpc = ARMISD::VMULLs;
7481   else {
7482     bool isN0ZExt = isZeroExtended(N0, DAG);
7483     bool isN1ZExt = isZeroExtended(N1, DAG);
7484     if (isN0ZExt && isN1ZExt)
7485       NewOpc = ARMISD::VMULLu;
7486     else if (isN1SExt || isN1ZExt) {
7487       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
7488       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
7489       if (isN1SExt && isAddSubSExt(N0, DAG)) {
7490         NewOpc = ARMISD::VMULLs;
7491         isMLA = true;
7492       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
7493         NewOpc = ARMISD::VMULLu;
7494         isMLA = true;
7495       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
7496         std::swap(N0, N1);
7497         NewOpc = ARMISD::VMULLu;
7498         isMLA = true;
7499       }
7500     }
7501 
7502     if (!NewOpc) {
7503       if (VT == MVT::v2i64)
7504         // Fall through to expand this.  It is not legal.
7505         return SDValue();
7506       else
7507         // Other vector multiplications are legal.
7508         return Op;
7509     }
7510   }
7511 
7512   // Legalize to a VMULL instruction.
7513   SDLoc DL(Op);
7514   SDValue Op0;
7515   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
7516   if (!isMLA) {
7517     Op0 = SkipExtensionForVMULL(N0, DAG);
7518     assert(Op0.getValueType().is64BitVector() &&
7519            Op1.getValueType().is64BitVector() &&
7520            "unexpected types for extended operands to VMULL");
7521     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
7522   }
7523 
7524   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7525   // isel lowering to take advantage of no-stall back to back vmul + vmla.
7526   //   vmull q0, d4, d6
7527   //   vmlal q0, d5, d6
7528   // is faster than
7529   //   vaddl q0, d4, d5
7530   //   vmovl q1, d6
7531   //   vmul  q0, q0, q1
7532   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
7533   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
7534   EVT Op1VT = Op1.getValueType();
7535   return DAG.getNode(N0->getOpcode(), DL, VT,
7536                      DAG.getNode(NewOpc, DL, VT,
7537                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
7538                      DAG.getNode(NewOpc, DL, VT,
7539                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
7540 }
7541 
7542 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
7543                               SelectionDAG &DAG) {
7544   // TODO: Should this propagate fast-math-flags?
7545 
7546   // Convert to float
7547   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7548   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7549   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
7550   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
7551   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
7552   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
7553   // Get reciprocal estimate.
7554   // float4 recip = vrecpeq_f32(yf);
7555   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7556                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7557                    Y);
7558   // Because char has a smaller range than uchar, we can actually get away
7559   // without any newton steps.  This requires that we use a weird bias
7560   // of 0xb000, however (again, this has been exhaustively tested).
7561   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7562   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
7563   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
7564   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
7565   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
7566   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
7567   // Convert back to short.
7568   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
7569   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
7570   return X;
7571 }
7572 
7573 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
7574                                SelectionDAG &DAG) {
7575   // TODO: Should this propagate fast-math-flags?
7576 
7577   SDValue N2;
7578   // Convert to float.
7579   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7580   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7581   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
7582   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
7583   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7584   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7585 
7586   // Use reciprocal estimate and one refinement step.
7587   // float4 recip = vrecpeq_f32(yf);
7588   // recip *= vrecpsq_f32(yf, recip);
7589   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7590                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7591                    N1);
7592   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7593                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7594                    N1, N2);
7595   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7596   // Because short has a smaller range than ushort, we can actually get away
7597   // with only a single newton step.  This requires that we use a weird bias
7598   // of 89, however (again, this has been exhaustively tested).
7599   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7600   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7601   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7602   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
7603   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7604   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7605   // Convert back to integer and return.
7606   // return vmovn_s32(vcvt_s32_f32(result));
7607   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7608   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7609   return N0;
7610 }
7611 
7612 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
7613   EVT VT = Op.getValueType();
7614   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7615          "unexpected type for custom-lowering ISD::SDIV");
7616 
7617   SDLoc dl(Op);
7618   SDValue N0 = Op.getOperand(0);
7619   SDValue N1 = Op.getOperand(1);
7620   SDValue N2, N3;
7621 
7622   if (VT == MVT::v8i8) {
7623     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
7624     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
7625 
7626     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7627                      DAG.getIntPtrConstant(4, dl));
7628     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7629                      DAG.getIntPtrConstant(4, dl));
7630     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7631                      DAG.getIntPtrConstant(0, dl));
7632     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7633                      DAG.getIntPtrConstant(0, dl));
7634 
7635     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
7636     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
7637 
7638     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7639     N0 = LowerCONCAT_VECTORS(N0, DAG);
7640 
7641     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
7642     return N0;
7643   }
7644   return LowerSDIV_v4i16(N0, N1, dl, DAG);
7645 }
7646 
7647 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7648   // TODO: Should this propagate fast-math-flags?
7649   EVT VT = Op.getValueType();
7650   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7651          "unexpected type for custom-lowering ISD::UDIV");
7652 
7653   SDLoc dl(Op);
7654   SDValue N0 = Op.getOperand(0);
7655   SDValue N1 = Op.getOperand(1);
7656   SDValue N2, N3;
7657 
7658   if (VT == MVT::v8i8) {
7659     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7660     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7661 
7662     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7663                      DAG.getIntPtrConstant(4, dl));
7664     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7665                      DAG.getIntPtrConstant(4, dl));
7666     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7667                      DAG.getIntPtrConstant(0, dl));
7668     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7669                      DAG.getIntPtrConstant(0, dl));
7670 
7671     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7672     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7673 
7674     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7675     N0 = LowerCONCAT_VECTORS(N0, DAG);
7676 
7677     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7678                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7679                                      MVT::i32),
7680                      N0);
7681     return N0;
7682   }
7683 
7684   // v4i16 sdiv ... Convert to float.
7685   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7686   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7687   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7688   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7689   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7690   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7691 
7692   // Use reciprocal estimate and two refinement steps.
7693   // float4 recip = vrecpeq_f32(yf);
7694   // recip *= vrecpsq_f32(yf, recip);
7695   // recip *= vrecpsq_f32(yf, recip);
7696   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7697                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7698                    BN1);
7699   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7700                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7701                    BN1, N2);
7702   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7703   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7704                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7705                    BN1, N2);
7706   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7707   // Simply multiplying by the reciprocal estimate can leave us a few ulps
7708   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7709   // and that it will never cause us to return an answer too large).
7710   // float4 result = as_float4(as_int4(xf*recip) + 2);
7711   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7712   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7713   N1 = DAG.getConstant(2, dl, MVT::v4i32);
7714   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7715   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7716   // Convert back to integer and return.
7717   // return vmovn_u32(vcvt_s32_f32(result));
7718   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7719   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7720   return N0;
7721 }
7722 
7723 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
7724   EVT VT = Op.getNode()->getValueType(0);
7725   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7726 
7727   unsigned Opc;
7728   bool ExtraOp = false;
7729   switch (Op.getOpcode()) {
7730   default: llvm_unreachable("Invalid code");
7731   case ISD::ADDC: Opc = ARMISD::ADDC; break;
7732   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
7733   case ISD::SUBC: Opc = ARMISD::SUBC; break;
7734   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
7735   }
7736 
7737   if (!ExtraOp)
7738     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
7739                        Op.getOperand(1));
7740   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
7741                      Op.getOperand(1), Op.getOperand(2));
7742 }
7743 
7744 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
7745   SDNode *N = Op.getNode();
7746   EVT VT = N->getValueType(0);
7747   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7748 
7749   SDValue Carry = Op.getOperand(2);
7750 
7751   SDLoc DL(Op);
7752 
7753   SDValue Result;
7754   if (Op.getOpcode() == ISD::ADDCARRY) {
7755     // This converts the boolean value carry into the carry flag.
7756     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7757 
7758     // Do the addition proper using the carry flag we wanted.
7759     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
7760                          Op.getOperand(1), Carry.getValue(1));
7761 
7762     // Now convert the carry flag into a boolean value.
7763     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7764   } else {
7765     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
7766     // have to invert the carry first.
7767     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7768                         DAG.getConstant(1, DL, MVT::i32), Carry);
7769     // This converts the boolean value carry into the carry flag.
7770     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7771 
7772     // Do the subtraction proper using the carry flag we wanted.
7773     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
7774                          Op.getOperand(1), Carry.getValue(1));
7775 
7776     // Now convert the carry flag into a boolean value.
7777     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7778     // But the carry returned by ARMISD::SUBE is not a borrow as expected
7779     // by ISD::SUBCARRY, so compute 1 - C.
7780     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7781                         DAG.getConstant(1, DL, MVT::i32), Carry);
7782   }
7783 
7784   // Return both values.
7785   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
7786 }
7787 
7788 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7789   assert(Subtarget->isTargetDarwin());
7790 
7791   // For iOS, we want to call an alternative entry point: __sincos_stret,
7792   // return values are passed via sret.
7793   SDLoc dl(Op);
7794   SDValue Arg = Op.getOperand(0);
7795   EVT ArgVT = Arg.getValueType();
7796   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7797   auto PtrVT = getPointerTy(DAG.getDataLayout());
7798 
7799   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7801 
7802   // Pair of floats / doubles used to pass the result.
7803   Type *RetTy = StructType::get(ArgTy, ArgTy);
7804   auto &DL = DAG.getDataLayout();
7805 
7806   ArgListTy Args;
7807   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7808   SDValue SRet;
7809   if (ShouldUseSRet) {
7810     // Create stack object for sret.
7811     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7812     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7813     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7814     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7815 
7816     ArgListEntry Entry;
7817     Entry.Node = SRet;
7818     Entry.Ty = RetTy->getPointerTo();
7819     Entry.IsSExt = false;
7820     Entry.IsZExt = false;
7821     Entry.IsSRet = true;
7822     Args.push_back(Entry);
7823     RetTy = Type::getVoidTy(*DAG.getContext());
7824   }
7825 
7826   ArgListEntry Entry;
7827   Entry.Node = Arg;
7828   Entry.Ty = ArgTy;
7829   Entry.IsSExt = false;
7830   Entry.IsZExt = false;
7831   Args.push_back(Entry);
7832 
7833   RTLIB::Libcall LC =
7834       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
7835   const char *LibcallName = getLibcallName(LC);
7836   CallingConv::ID CC = getLibcallCallingConv(LC);
7837   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7838 
7839   TargetLowering::CallLoweringInfo CLI(DAG);
7840   CLI.setDebugLoc(dl)
7841       .setChain(DAG.getEntryNode())
7842       .setCallee(CC, RetTy, Callee, std::move(Args))
7843       .setDiscardResult(ShouldUseSRet);
7844   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7845 
7846   if (!ShouldUseSRet)
7847     return CallResult.first;
7848 
7849   SDValue LoadSin =
7850       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
7851 
7852   // Address of cos field.
7853   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
7854                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
7855   SDValue LoadCos =
7856       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
7857 
7858   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
7859   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
7860                      LoadSin.getValue(0), LoadCos.getValue(0));
7861 }
7862 
7863 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
7864                                                   bool Signed,
7865                                                   SDValue &Chain) const {
7866   EVT VT = Op.getValueType();
7867   assert((VT == MVT::i32 || VT == MVT::i64) &&
7868          "unexpected type for custom lowering DIV");
7869   SDLoc dl(Op);
7870 
7871   const auto &DL = DAG.getDataLayout();
7872   const auto &TLI = DAG.getTargetLoweringInfo();
7873 
7874   const char *Name = nullptr;
7875   if (Signed)
7876     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7877   else
7878     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7879 
7880   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7881 
7882   ARMTargetLowering::ArgListTy Args;
7883 
7884   for (auto AI : {1, 0}) {
7885     ArgListEntry Arg;
7886     Arg.Node = Op.getOperand(AI);
7887     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7888     Args.push_back(Arg);
7889   }
7890 
7891   CallLoweringInfo CLI(DAG);
7892   CLI.setDebugLoc(dl)
7893     .setChain(Chain)
7894     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7895                ES, std::move(Args));
7896 
7897   return LowerCallTo(CLI).first;
7898 }
7899 
7900 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7901                                             bool Signed) const {
7902   assert(Op.getValueType() == MVT::i32 &&
7903          "unexpected type for custom lowering DIV");
7904   SDLoc dl(Op);
7905 
7906   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7907                                DAG.getEntryNode(), Op.getOperand(1));
7908 
7909   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7910 }
7911 
7912 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
7913   SDLoc DL(N);
7914   SDValue Op = N->getOperand(1);
7915   if (N->getValueType(0) == MVT::i32)
7916     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
7917   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7918                            DAG.getConstant(0, DL, MVT::i32));
7919   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7920                            DAG.getConstant(1, DL, MVT::i32));
7921   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
7922                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
7923 }
7924 
7925 void ARMTargetLowering::ExpandDIV_Windows(
7926     SDValue Op, SelectionDAG &DAG, bool Signed,
7927     SmallVectorImpl<SDValue> &Results) const {
7928   const auto &DL = DAG.getDataLayout();
7929   const auto &TLI = DAG.getTargetLoweringInfo();
7930 
7931   assert(Op.getValueType() == MVT::i64 &&
7932          "unexpected type for custom lowering DIV");
7933   SDLoc dl(Op);
7934 
7935   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
7936 
7937   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7938 
7939   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7940   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7941                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7942   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7943 
7944   Results.push_back(Lower);
7945   Results.push_back(Upper);
7946 }
7947 
7948 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7949   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7950     // Acquire/Release load/store is not legal for targets without a dmb or
7951     // equivalent available.
7952     return SDValue();
7953 
7954   // Monotonic load/store is legal for all targets.
7955   return Op;
7956 }
7957 
7958 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7959                                     SmallVectorImpl<SDValue> &Results,
7960                                     SelectionDAG &DAG,
7961                                     const ARMSubtarget *Subtarget) {
7962   SDLoc DL(N);
7963   // Under Power Management extensions, the cycle-count is:
7964   //    mrc p15, #0, <Rt>, c9, c13, #0
7965   SDValue Ops[] = { N->getOperand(0), // Chain
7966                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7967                     DAG.getConstant(15, DL, MVT::i32),
7968                     DAG.getConstant(0, DL, MVT::i32),
7969                     DAG.getConstant(9, DL, MVT::i32),
7970                     DAG.getConstant(13, DL, MVT::i32),
7971                     DAG.getConstant(0, DL, MVT::i32)
7972   };
7973 
7974   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7975                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
7976   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7977                                 DAG.getConstant(0, DL, MVT::i32)));
7978   Results.push_back(Cycles32.getValue(1));
7979 }
7980 
7981 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7982   SDLoc dl(V.getNode());
7983   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7984   SDValue VHi = DAG.getAnyExtOrTrunc(
7985       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7986       dl, MVT::i32);
7987   bool isBigEndian = DAG.getDataLayout().isBigEndian();
7988   if (isBigEndian)
7989     std::swap (VLo, VHi);
7990   SDValue RegClass =
7991       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
7992   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
7993   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
7994   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
7995   return SDValue(
7996       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
7997 }
7998 
7999 static void ReplaceCMP_SWAP_64Results(SDNode *N,
8000                                        SmallVectorImpl<SDValue> & Results,
8001                                        SelectionDAG &DAG) {
8002   assert(N->getValueType(0) == MVT::i64 &&
8003          "AtomicCmpSwap on types less than 64 should be legal");
8004   SDValue Ops[] = {N->getOperand(1),
8005                    createGPRPairNode(DAG, N->getOperand(2)),
8006                    createGPRPairNode(DAG, N->getOperand(3)),
8007                    N->getOperand(0)};
8008   SDNode *CmpSwap = DAG.getMachineNode(
8009       ARM::CMP_SWAP_64, SDLoc(N),
8010       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
8011 
8012   MachineFunction &MF = DAG.getMachineFunction();
8013   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
8014   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
8015   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
8016 
8017   bool isBigEndian = DAG.getDataLayout().isBigEndian();
8018 
8019   Results.push_back(
8020       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
8021                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8022   Results.push_back(
8023       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
8024                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8025   Results.push_back(SDValue(CmpSwap, 2));
8026 }
8027 
8028 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
8029                           SelectionDAG &DAG) {
8030   const auto &TLI = DAG.getTargetLoweringInfo();
8031 
8032   assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
8033          "Custom lowering is MSVCRT specific!");
8034 
8035   SDLoc dl(Op);
8036   SDValue Val = Op.getOperand(0);
8037   MVT Ty = Val->getSimpleValueType(0);
8038   SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
8039   SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
8040                                          TLI.getPointerTy(DAG.getDataLayout()));
8041 
8042   TargetLowering::ArgListTy Args;
8043   TargetLowering::ArgListEntry Entry;
8044 
8045   Entry.Node = Val;
8046   Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
8047   Entry.IsZExt = true;
8048   Args.push_back(Entry);
8049 
8050   Entry.Node = Exponent;
8051   Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
8052   Entry.IsZExt = true;
8053   Args.push_back(Entry);
8054 
8055   Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
8056 
8057   // In the in-chain to the call is the entry node  If we are emitting a
8058   // tailcall, the chain will be mutated if the node has a non-entry input
8059   // chain.
8060   SDValue InChain = DAG.getEntryNode();
8061   SDValue TCChain = InChain;
8062 
8063   const Function &F = DAG.getMachineFunction().getFunction();
8064   bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
8065               F.getReturnType() == LCRTy;
8066   if (IsTC)
8067     InChain = TCChain;
8068 
8069   TargetLowering::CallLoweringInfo CLI(DAG);
8070   CLI.setDebugLoc(dl)
8071       .setChain(InChain)
8072       .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
8073       .setTailCall(IsTC);
8074   std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
8075 
8076   // Return the chain (the DAG root) if it is a tail call
8077   return !CI.second.getNode() ? DAG.getRoot() : CI.first;
8078 }
8079 
8080 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8081   DEBUG(dbgs() << "Lowering node: "; Op.dump());
8082   switch (Op.getOpcode()) {
8083   default: llvm_unreachable("Don't know how to custom lower this!");
8084   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8085   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8086   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
8087   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8088   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8089   case ISD::SELECT:        return LowerSELECT(Op, DAG);
8090   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
8091   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
8092   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
8093   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
8094   case ISD::VASTART:       return LowerVASTART(Op, DAG);
8095   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8096   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
8097   case ISD::SINT_TO_FP:
8098   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
8099   case ISD::FP_TO_SINT:
8100   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
8101   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
8102   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
8103   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
8104   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8105   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8106   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8107   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8108                                                                Subtarget);
8109   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8110   case ISD::SHL:
8111   case ISD::SRL:
8112   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
8113   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
8114   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
8115   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
8116   case ISD::SRL_PARTS:
8117   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
8118   case ISD::CTTZ:
8119   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8120   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8121   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
8122   case ISD::SETCCE:        return LowerSETCCE(Op, DAG);
8123   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
8124   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8125   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8126   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8127   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8128   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8129   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
8130   case ISD::MUL:           return LowerMUL(Op, DAG);
8131   case ISD::SDIV:
8132     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8133       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8134     return LowerSDIV(Op, DAG);
8135   case ISD::UDIV:
8136     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8137       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8138     return LowerUDIV(Op, DAG);
8139   case ISD::ADDC:
8140   case ISD::ADDE:
8141   case ISD::SUBC:
8142   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
8143   case ISD::ADDCARRY:
8144   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
8145   case ISD::SADDO:
8146   case ISD::SSUBO:
8147     return LowerSignedALUO(Op, DAG);
8148   case ISD::UADDO:
8149   case ISD::USUBO:
8150     return LowerUnsignedALUO(Op, DAG);
8151   case ISD::ATOMIC_LOAD:
8152   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
8153   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
8154   case ISD::SDIVREM:
8155   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
8156   case ISD::DYNAMIC_STACKALLOC:
8157     if (Subtarget->isTargetWindows())
8158       return LowerDYNAMIC_STACKALLOC(Op, DAG);
8159     llvm_unreachable("Don't know how to custom lower this!");
8160   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8161   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8162   case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8163   case ARMISD::WIN__DBZCHK: return SDValue();
8164   }
8165 }
8166 
8167 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8168                                  SelectionDAG &DAG) {
8169   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8170   unsigned Opc = 0;
8171   if (IntNo == Intrinsic::arm_smlald)
8172     Opc = ARMISD::SMLALD;
8173   else if (IntNo == Intrinsic::arm_smlaldx)
8174     Opc = ARMISD::SMLALDX;
8175   else if (IntNo == Intrinsic::arm_smlsld)
8176     Opc = ARMISD::SMLSLD;
8177   else if (IntNo == Intrinsic::arm_smlsldx)
8178     Opc = ARMISD::SMLSLDX;
8179   else
8180     return;
8181 
8182   SDLoc dl(N);
8183   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8184                            N->getOperand(3),
8185                            DAG.getConstant(0, dl, MVT::i32));
8186   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8187                            N->getOperand(3),
8188                            DAG.getConstant(1, dl, MVT::i32));
8189 
8190   SDValue LongMul = DAG.getNode(Opc, dl,
8191                                 DAG.getVTList(MVT::i32, MVT::i32),
8192                                 N->getOperand(1), N->getOperand(2),
8193                                 Lo, Hi);
8194   Results.push_back(LongMul.getValue(0));
8195   Results.push_back(LongMul.getValue(1));
8196 }
8197 
8198 /// ReplaceNodeResults - Replace the results of node with an illegal result
8199 /// type with new values built out of custom code.
8200 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8201                                            SmallVectorImpl<SDValue> &Results,
8202                                            SelectionDAG &DAG) const {
8203   SDValue Res;
8204   switch (N->getOpcode()) {
8205   default:
8206     llvm_unreachable("Don't know how to custom expand this!");
8207   case ISD::READ_REGISTER:
8208     ExpandREAD_REGISTER(N, Results, DAG);
8209     break;
8210   case ISD::BITCAST:
8211     Res = ExpandBITCAST(N, DAG, Subtarget);
8212     break;
8213   case ISD::SRL:
8214   case ISD::SRA:
8215     Res = Expand64BitShift(N, DAG, Subtarget);
8216     break;
8217   case ISD::SREM:
8218   case ISD::UREM:
8219     Res = LowerREM(N, DAG);
8220     break;
8221   case ISD::SDIVREM:
8222   case ISD::UDIVREM:
8223     Res = LowerDivRem(SDValue(N, 0), DAG);
8224     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8225     Results.push_back(Res.getValue(0));
8226     Results.push_back(Res.getValue(1));
8227     return;
8228   case ISD::READCYCLECOUNTER:
8229     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8230     return;
8231   case ISD::UDIV:
8232   case ISD::SDIV:
8233     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8234     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8235                              Results);
8236   case ISD::ATOMIC_CMP_SWAP:
8237     ReplaceCMP_SWAP_64Results(N, Results, DAG);
8238     return;
8239   case ISD::INTRINSIC_WO_CHAIN:
8240     return ReplaceLongIntrinsic(N, Results, DAG);
8241   }
8242   if (Res.getNode())
8243     Results.push_back(Res);
8244 }
8245 
8246 //===----------------------------------------------------------------------===//
8247 //                           ARM Scheduler Hooks
8248 //===----------------------------------------------------------------------===//
8249 
8250 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8251 /// registers the function context.
8252 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8253                                                MachineBasicBlock *MBB,
8254                                                MachineBasicBlock *DispatchBB,
8255                                                int FI) const {
8256   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8257          "ROPI/RWPI not currently supported with SjLj");
8258   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8259   DebugLoc dl = MI.getDebugLoc();
8260   MachineFunction *MF = MBB->getParent();
8261   MachineRegisterInfo *MRI = &MF->getRegInfo();
8262   MachineConstantPool *MCP = MF->getConstantPool();
8263   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8264   const Function &F = MF->getFunction();
8265 
8266   bool isThumb = Subtarget->isThumb();
8267   bool isThumb2 = Subtarget->isThumb2();
8268 
8269   unsigned PCLabelId = AFI->createPICLabelUId();
8270   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
8271   ARMConstantPoolValue *CPV =
8272     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
8273   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
8274 
8275   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
8276                                            : &ARM::GPRRegClass;
8277 
8278   // Grab constant pool and fixed stack memory operands.
8279   MachineMemOperand *CPMMO =
8280       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
8281                                MachineMemOperand::MOLoad, 4, 4);
8282 
8283   MachineMemOperand *FIMMOSt =
8284       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
8285                                MachineMemOperand::MOStore, 4, 4);
8286 
8287   // Load the address of the dispatch MBB into the jump buffer.
8288   if (isThumb2) {
8289     // Incoming value: jbuf
8290     //   ldr.n  r5, LCPI1_1
8291     //   orr    r5, r5, #1
8292     //   add    r5, pc
8293     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
8294     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8295     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
8296         .addConstantPoolIndex(CPI)
8297         .addMemOperand(CPMMO)
8298         .add(predOps(ARMCC::AL));
8299     // Set the low bit because of thumb mode.
8300     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8301     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
8302         .addReg(NewVReg1, RegState::Kill)
8303         .addImm(0x01)
8304         .add(predOps(ARMCC::AL))
8305         .add(condCodeOp());
8306     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8307     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
8308       .addReg(NewVReg2, RegState::Kill)
8309       .addImm(PCLabelId);
8310     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
8311         .addReg(NewVReg3, RegState::Kill)
8312         .addFrameIndex(FI)
8313         .addImm(36) // &jbuf[1] :: pc
8314         .addMemOperand(FIMMOSt)
8315         .add(predOps(ARMCC::AL));
8316   } else if (isThumb) {
8317     // Incoming value: jbuf
8318     //   ldr.n  r1, LCPI1_4
8319     //   add    r1, pc
8320     //   mov    r2, #1
8321     //   orrs   r1, r2
8322     //   add    r2, $jbuf, #+4 ; &jbuf[1]
8323     //   str    r1, [r2]
8324     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8325     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
8326         .addConstantPoolIndex(CPI)
8327         .addMemOperand(CPMMO)
8328         .add(predOps(ARMCC::AL));
8329     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8330     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
8331       .addReg(NewVReg1, RegState::Kill)
8332       .addImm(PCLabelId);
8333     // Set the low bit because of thumb mode.
8334     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8335     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
8336         .addReg(ARM::CPSR, RegState::Define)
8337         .addImm(1)
8338         .add(predOps(ARMCC::AL));
8339     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8340     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
8341         .addReg(ARM::CPSR, RegState::Define)
8342         .addReg(NewVReg2, RegState::Kill)
8343         .addReg(NewVReg3, RegState::Kill)
8344         .add(predOps(ARMCC::AL));
8345     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8346     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
8347             .addFrameIndex(FI)
8348             .addImm(36); // &jbuf[1] :: pc
8349     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
8350         .addReg(NewVReg4, RegState::Kill)
8351         .addReg(NewVReg5, RegState::Kill)
8352         .addImm(0)
8353         .addMemOperand(FIMMOSt)
8354         .add(predOps(ARMCC::AL));
8355   } else {
8356     // Incoming value: jbuf
8357     //   ldr  r1, LCPI1_1
8358     //   add  r1, pc, r1
8359     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
8360     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8361     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
8362         .addConstantPoolIndex(CPI)
8363         .addImm(0)
8364         .addMemOperand(CPMMO)
8365         .add(predOps(ARMCC::AL));
8366     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8367     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
8368         .addReg(NewVReg1, RegState::Kill)
8369         .addImm(PCLabelId)
8370         .add(predOps(ARMCC::AL));
8371     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
8372         .addReg(NewVReg2, RegState::Kill)
8373         .addFrameIndex(FI)
8374         .addImm(36) // &jbuf[1] :: pc
8375         .addMemOperand(FIMMOSt)
8376         .add(predOps(ARMCC::AL));
8377   }
8378 }
8379 
8380 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
8381                                               MachineBasicBlock *MBB) const {
8382   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8383   DebugLoc dl = MI.getDebugLoc();
8384   MachineFunction *MF = MBB->getParent();
8385   MachineRegisterInfo *MRI = &MF->getRegInfo();
8386   MachineFrameInfo &MFI = MF->getFrameInfo();
8387   int FI = MFI.getFunctionContextIndex();
8388 
8389   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
8390                                                         : &ARM::GPRnopcRegClass;
8391 
8392   // Get a mapping of the call site numbers to all of the landing pads they're
8393   // associated with.
8394   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
8395   unsigned MaxCSNum = 0;
8396   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
8397        ++BB) {
8398     if (!BB->isEHPad()) continue;
8399 
8400     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
8401     // pad.
8402     for (MachineBasicBlock::iterator
8403            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
8404       if (!II->isEHLabel()) continue;
8405 
8406       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
8407       if (!MF->hasCallSiteLandingPad(Sym)) continue;
8408 
8409       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
8410       for (SmallVectorImpl<unsigned>::iterator
8411              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
8412            CSI != CSE; ++CSI) {
8413         CallSiteNumToLPad[*CSI].push_back(&*BB);
8414         MaxCSNum = std::max(MaxCSNum, *CSI);
8415       }
8416       break;
8417     }
8418   }
8419 
8420   // Get an ordered list of the machine basic blocks for the jump table.
8421   std::vector<MachineBasicBlock*> LPadList;
8422   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
8423   LPadList.reserve(CallSiteNumToLPad.size());
8424   for (unsigned I = 1; I <= MaxCSNum; ++I) {
8425     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
8426     for (SmallVectorImpl<MachineBasicBlock*>::iterator
8427            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
8428       LPadList.push_back(*II);
8429       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
8430     }
8431   }
8432 
8433   assert(!LPadList.empty() &&
8434          "No landing pad destinations for the dispatch jump table!");
8435 
8436   // Create the jump table and associated information.
8437   MachineJumpTableInfo *JTI =
8438     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
8439   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
8440 
8441   // Create the MBBs for the dispatch code.
8442 
8443   // Shove the dispatch's address into the return slot in the function context.
8444   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
8445   DispatchBB->setIsEHPad();
8446 
8447   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8448   unsigned trap_opcode;
8449   if (Subtarget->isThumb())
8450     trap_opcode = ARM::tTRAP;
8451   else
8452     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
8453 
8454   BuildMI(TrapBB, dl, TII->get(trap_opcode));
8455   DispatchBB->addSuccessor(TrapBB);
8456 
8457   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
8458   DispatchBB->addSuccessor(DispContBB);
8459 
8460   // Insert and MBBs.
8461   MF->insert(MF->end(), DispatchBB);
8462   MF->insert(MF->end(), DispContBB);
8463   MF->insert(MF->end(), TrapBB);
8464 
8465   // Insert code into the entry block that creates and registers the function
8466   // context.
8467   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
8468 
8469   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
8470       MachinePointerInfo::getFixedStack(*MF, FI),
8471       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
8472 
8473   MachineInstrBuilder MIB;
8474   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
8475 
8476   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
8477   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
8478 
8479   // Add a register mask with no preserved registers.  This results in all
8480   // registers being marked as clobbered. This can't work if the dispatch block
8481   // is in a Thumb1 function and is linked with ARM code which uses the FP
8482   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
8483   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
8484 
8485   bool IsPositionIndependent = isPositionIndependent();
8486   unsigned NumLPads = LPadList.size();
8487   if (Subtarget->isThumb2()) {
8488     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8489     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
8490         .addFrameIndex(FI)
8491         .addImm(4)
8492         .addMemOperand(FIMMOLd)
8493         .add(predOps(ARMCC::AL));
8494 
8495     if (NumLPads < 256) {
8496       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
8497           .addReg(NewVReg1)
8498           .addImm(LPadList.size())
8499           .add(predOps(ARMCC::AL));
8500     } else {
8501       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8502       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
8503           .addImm(NumLPads & 0xFFFF)
8504           .add(predOps(ARMCC::AL));
8505 
8506       unsigned VReg2 = VReg1;
8507       if ((NumLPads & 0xFFFF0000) != 0) {
8508         VReg2 = MRI->createVirtualRegister(TRC);
8509         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
8510             .addReg(VReg1)
8511             .addImm(NumLPads >> 16)
8512             .add(predOps(ARMCC::AL));
8513       }
8514 
8515       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
8516           .addReg(NewVReg1)
8517           .addReg(VReg2)
8518           .add(predOps(ARMCC::AL));
8519     }
8520 
8521     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
8522       .addMBB(TrapBB)
8523       .addImm(ARMCC::HI)
8524       .addReg(ARM::CPSR);
8525 
8526     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8527     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
8528         .addJumpTableIndex(MJTI)
8529         .add(predOps(ARMCC::AL));
8530 
8531     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8532     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
8533         .addReg(NewVReg3, RegState::Kill)
8534         .addReg(NewVReg1)
8535         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8536         .add(predOps(ARMCC::AL))
8537         .add(condCodeOp());
8538 
8539     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
8540       .addReg(NewVReg4, RegState::Kill)
8541       .addReg(NewVReg1)
8542       .addJumpTableIndex(MJTI);
8543   } else if (Subtarget->isThumb()) {
8544     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8545     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
8546         .addFrameIndex(FI)
8547         .addImm(1)
8548         .addMemOperand(FIMMOLd)
8549         .add(predOps(ARMCC::AL));
8550 
8551     if (NumLPads < 256) {
8552       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
8553           .addReg(NewVReg1)
8554           .addImm(NumLPads)
8555           .add(predOps(ARMCC::AL));
8556     } else {
8557       MachineConstantPool *ConstantPool = MF->getConstantPool();
8558       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8559       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8560 
8561       // MachineConstantPool wants an explicit alignment.
8562       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8563       if (Align == 0)
8564         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8565       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8566 
8567       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8568       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
8569           .addReg(VReg1, RegState::Define)
8570           .addConstantPoolIndex(Idx)
8571           .add(predOps(ARMCC::AL));
8572       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
8573           .addReg(NewVReg1)
8574           .addReg(VReg1)
8575           .add(predOps(ARMCC::AL));
8576     }
8577 
8578     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
8579       .addMBB(TrapBB)
8580       .addImm(ARMCC::HI)
8581       .addReg(ARM::CPSR);
8582 
8583     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8584     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
8585         .addReg(ARM::CPSR, RegState::Define)
8586         .addReg(NewVReg1)
8587         .addImm(2)
8588         .add(predOps(ARMCC::AL));
8589 
8590     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8591     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
8592         .addJumpTableIndex(MJTI)
8593         .add(predOps(ARMCC::AL));
8594 
8595     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8596     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
8597         .addReg(ARM::CPSR, RegState::Define)
8598         .addReg(NewVReg2, RegState::Kill)
8599         .addReg(NewVReg3)
8600         .add(predOps(ARMCC::AL));
8601 
8602     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8603         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8604 
8605     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8606     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
8607         .addReg(NewVReg4, RegState::Kill)
8608         .addImm(0)
8609         .addMemOperand(JTMMOLd)
8610         .add(predOps(ARMCC::AL));
8611 
8612     unsigned NewVReg6 = NewVReg5;
8613     if (IsPositionIndependent) {
8614       NewVReg6 = MRI->createVirtualRegister(TRC);
8615       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
8616           .addReg(ARM::CPSR, RegState::Define)
8617           .addReg(NewVReg5, RegState::Kill)
8618           .addReg(NewVReg3)
8619           .add(predOps(ARMCC::AL));
8620     }
8621 
8622     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
8623       .addReg(NewVReg6, RegState::Kill)
8624       .addJumpTableIndex(MJTI);
8625   } else {
8626     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8627     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
8628         .addFrameIndex(FI)
8629         .addImm(4)
8630         .addMemOperand(FIMMOLd)
8631         .add(predOps(ARMCC::AL));
8632 
8633     if (NumLPads < 256) {
8634       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
8635           .addReg(NewVReg1)
8636           .addImm(NumLPads)
8637           .add(predOps(ARMCC::AL));
8638     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
8639       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8640       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
8641           .addImm(NumLPads & 0xFFFF)
8642           .add(predOps(ARMCC::AL));
8643 
8644       unsigned VReg2 = VReg1;
8645       if ((NumLPads & 0xFFFF0000) != 0) {
8646         VReg2 = MRI->createVirtualRegister(TRC);
8647         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
8648             .addReg(VReg1)
8649             .addImm(NumLPads >> 16)
8650             .add(predOps(ARMCC::AL));
8651       }
8652 
8653       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8654           .addReg(NewVReg1)
8655           .addReg(VReg2)
8656           .add(predOps(ARMCC::AL));
8657     } else {
8658       MachineConstantPool *ConstantPool = MF->getConstantPool();
8659       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8660       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8661 
8662       // MachineConstantPool wants an explicit alignment.
8663       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8664       if (Align == 0)
8665         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8666       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8667 
8668       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8669       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
8670           .addReg(VReg1, RegState::Define)
8671           .addConstantPoolIndex(Idx)
8672           .addImm(0)
8673           .add(predOps(ARMCC::AL));
8674       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8675           .addReg(NewVReg1)
8676           .addReg(VReg1, RegState::Kill)
8677           .add(predOps(ARMCC::AL));
8678     }
8679 
8680     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
8681       .addMBB(TrapBB)
8682       .addImm(ARMCC::HI)
8683       .addReg(ARM::CPSR);
8684 
8685     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8686     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
8687         .addReg(NewVReg1)
8688         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8689         .add(predOps(ARMCC::AL))
8690         .add(condCodeOp());
8691     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8692     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
8693         .addJumpTableIndex(MJTI)
8694         .add(predOps(ARMCC::AL));
8695 
8696     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8697         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8698     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8699     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
8700         .addReg(NewVReg3, RegState::Kill)
8701         .addReg(NewVReg4)
8702         .addImm(0)
8703         .addMemOperand(JTMMOLd)
8704         .add(predOps(ARMCC::AL));
8705 
8706     if (IsPositionIndependent) {
8707       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
8708         .addReg(NewVReg5, RegState::Kill)
8709         .addReg(NewVReg4)
8710         .addJumpTableIndex(MJTI);
8711     } else {
8712       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
8713         .addReg(NewVReg5, RegState::Kill)
8714         .addJumpTableIndex(MJTI);
8715     }
8716   }
8717 
8718   // Add the jump table entries as successors to the MBB.
8719   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
8720   for (std::vector<MachineBasicBlock*>::iterator
8721          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
8722     MachineBasicBlock *CurMBB = *I;
8723     if (SeenMBBs.insert(CurMBB).second)
8724       DispContBB->addSuccessor(CurMBB);
8725   }
8726 
8727   // N.B. the order the invoke BBs are processed in doesn't matter here.
8728   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
8729   SmallVector<MachineBasicBlock*, 64> MBBLPads;
8730   for (MachineBasicBlock *BB : InvokeBBs) {
8731 
8732     // Remove the landing pad successor from the invoke block and replace it
8733     // with the new dispatch block.
8734     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
8735                                                   BB->succ_end());
8736     while (!Successors.empty()) {
8737       MachineBasicBlock *SMBB = Successors.pop_back_val();
8738       if (SMBB->isEHPad()) {
8739         BB->removeSuccessor(SMBB);
8740         MBBLPads.push_back(SMBB);
8741       }
8742     }
8743 
8744     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
8745     BB->normalizeSuccProbs();
8746 
8747     // Find the invoke call and mark all of the callee-saved registers as
8748     // 'implicit defined' so that they're spilled. This prevents code from
8749     // moving instructions to before the EH block, where they will never be
8750     // executed.
8751     for (MachineBasicBlock::reverse_iterator
8752            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
8753       if (!II->isCall()) continue;
8754 
8755       DenseMap<unsigned, bool> DefRegs;
8756       for (MachineInstr::mop_iterator
8757              OI = II->operands_begin(), OE = II->operands_end();
8758            OI != OE; ++OI) {
8759         if (!OI->isReg()) continue;
8760         DefRegs[OI->getReg()] = true;
8761       }
8762 
8763       MachineInstrBuilder MIB(*MF, &*II);
8764 
8765       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
8766         unsigned Reg = SavedRegs[i];
8767         if (Subtarget->isThumb2() &&
8768             !ARM::tGPRRegClass.contains(Reg) &&
8769             !ARM::hGPRRegClass.contains(Reg))
8770           continue;
8771         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
8772           continue;
8773         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
8774           continue;
8775         if (!DefRegs[Reg])
8776           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
8777       }
8778 
8779       break;
8780     }
8781   }
8782 
8783   // Mark all former landing pads as non-landing pads. The dispatch is the only
8784   // landing pad now.
8785   for (SmallVectorImpl<MachineBasicBlock*>::iterator
8786          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
8787     (*I)->setIsEHPad(false);
8788 
8789   // The instruction is gone now.
8790   MI.eraseFromParent();
8791 }
8792 
8793 static
8794 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
8795   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
8796        E = MBB->succ_end(); I != E; ++I)
8797     if (*I != Succ)
8798       return *I;
8799   llvm_unreachable("Expecting a BB with two successors!");
8800 }
8801 
8802 /// Return the load opcode for a given load size. If load size >= 8,
8803 /// neon opcode will be returned.
8804 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
8805   if (LdSize >= 8)
8806     return LdSize == 16 ? ARM::VLD1q32wb_fixed
8807                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
8808   if (IsThumb1)
8809     return LdSize == 4 ? ARM::tLDRi
8810                        : LdSize == 2 ? ARM::tLDRHi
8811                                      : LdSize == 1 ? ARM::tLDRBi : 0;
8812   if (IsThumb2)
8813     return LdSize == 4 ? ARM::t2LDR_POST
8814                        : LdSize == 2 ? ARM::t2LDRH_POST
8815                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
8816   return LdSize == 4 ? ARM::LDR_POST_IMM
8817                      : LdSize == 2 ? ARM::LDRH_POST
8818                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
8819 }
8820 
8821 /// Return the store opcode for a given store size. If store size >= 8,
8822 /// neon opcode will be returned.
8823 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
8824   if (StSize >= 8)
8825     return StSize == 16 ? ARM::VST1q32wb_fixed
8826                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
8827   if (IsThumb1)
8828     return StSize == 4 ? ARM::tSTRi
8829                        : StSize == 2 ? ARM::tSTRHi
8830                                      : StSize == 1 ? ARM::tSTRBi : 0;
8831   if (IsThumb2)
8832     return StSize == 4 ? ARM::t2STR_POST
8833                        : StSize == 2 ? ARM::t2STRH_POST
8834                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
8835   return StSize == 4 ? ARM::STR_POST_IMM
8836                      : StSize == 2 ? ARM::STRH_POST
8837                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
8838 }
8839 
8840 /// Emit a post-increment load operation with given size. The instructions
8841 /// will be added to BB at Pos.
8842 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8843                        const TargetInstrInfo *TII, const DebugLoc &dl,
8844                        unsigned LdSize, unsigned Data, unsigned AddrIn,
8845                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8846   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
8847   assert(LdOpc != 0 && "Should have a load opcode");
8848   if (LdSize >= 8) {
8849     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8850         .addReg(AddrOut, RegState::Define)
8851         .addReg(AddrIn)
8852         .addImm(0)
8853         .add(predOps(ARMCC::AL));
8854   } else if (IsThumb1) {
8855     // load + update AddrIn
8856     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8857         .addReg(AddrIn)
8858         .addImm(0)
8859         .add(predOps(ARMCC::AL));
8860     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8861         .add(t1CondCodeOp())
8862         .addReg(AddrIn)
8863         .addImm(LdSize)
8864         .add(predOps(ARMCC::AL));
8865   } else if (IsThumb2) {
8866     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8867         .addReg(AddrOut, RegState::Define)
8868         .addReg(AddrIn)
8869         .addImm(LdSize)
8870         .add(predOps(ARMCC::AL));
8871   } else { // arm
8872     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8873         .addReg(AddrOut, RegState::Define)
8874         .addReg(AddrIn)
8875         .addReg(0)
8876         .addImm(LdSize)
8877         .add(predOps(ARMCC::AL));
8878   }
8879 }
8880 
8881 /// Emit a post-increment store operation with given size. The instructions
8882 /// will be added to BB at Pos.
8883 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8884                        const TargetInstrInfo *TII, const DebugLoc &dl,
8885                        unsigned StSize, unsigned Data, unsigned AddrIn,
8886                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8887   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
8888   assert(StOpc != 0 && "Should have a store opcode");
8889   if (StSize >= 8) {
8890     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8891         .addReg(AddrIn)
8892         .addImm(0)
8893         .addReg(Data)
8894         .add(predOps(ARMCC::AL));
8895   } else if (IsThumb1) {
8896     // store + update AddrIn
8897     BuildMI(*BB, Pos, dl, TII->get(StOpc))
8898         .addReg(Data)
8899         .addReg(AddrIn)
8900         .addImm(0)
8901         .add(predOps(ARMCC::AL));
8902     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8903         .add(t1CondCodeOp())
8904         .addReg(AddrIn)
8905         .addImm(StSize)
8906         .add(predOps(ARMCC::AL));
8907   } else if (IsThumb2) {
8908     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8909         .addReg(Data)
8910         .addReg(AddrIn)
8911         .addImm(StSize)
8912         .add(predOps(ARMCC::AL));
8913   } else { // arm
8914     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8915         .addReg(Data)
8916         .addReg(AddrIn)
8917         .addReg(0)
8918         .addImm(StSize)
8919         .add(predOps(ARMCC::AL));
8920   }
8921 }
8922 
8923 MachineBasicBlock *
8924 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
8925                                    MachineBasicBlock *BB) const {
8926   // This pseudo instruction has 3 operands: dst, src, size
8927   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
8928   // Otherwise, we will generate unrolled scalar copies.
8929   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8930   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8931   MachineFunction::iterator It = ++BB->getIterator();
8932 
8933   unsigned dest = MI.getOperand(0).getReg();
8934   unsigned src = MI.getOperand(1).getReg();
8935   unsigned SizeVal = MI.getOperand(2).getImm();
8936   unsigned Align = MI.getOperand(3).getImm();
8937   DebugLoc dl = MI.getDebugLoc();
8938 
8939   MachineFunction *MF = BB->getParent();
8940   MachineRegisterInfo &MRI = MF->getRegInfo();
8941   unsigned UnitSize = 0;
8942   const TargetRegisterClass *TRC = nullptr;
8943   const TargetRegisterClass *VecTRC = nullptr;
8944 
8945   bool IsThumb1 = Subtarget->isThumb1Only();
8946   bool IsThumb2 = Subtarget->isThumb2();
8947   bool IsThumb = Subtarget->isThumb();
8948 
8949   if (Align & 1) {
8950     UnitSize = 1;
8951   } else if (Align & 2) {
8952     UnitSize = 2;
8953   } else {
8954     // Check whether we can use NEON instructions.
8955     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
8956         Subtarget->hasNEON()) {
8957       if ((Align % 16 == 0) && SizeVal >= 16)
8958         UnitSize = 16;
8959       else if ((Align % 8 == 0) && SizeVal >= 8)
8960         UnitSize = 8;
8961     }
8962     // Can't use NEON instructions.
8963     if (UnitSize == 0)
8964       UnitSize = 4;
8965   }
8966 
8967   // Select the correct opcode and register class for unit size load/store
8968   bool IsNeon = UnitSize >= 8;
8969   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
8970   if (IsNeon)
8971     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
8972                             : UnitSize == 8 ? &ARM::DPRRegClass
8973                                             : nullptr;
8974 
8975   unsigned BytesLeft = SizeVal % UnitSize;
8976   unsigned LoopSize = SizeVal - BytesLeft;
8977 
8978   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
8979     // Use LDR and STR to copy.
8980     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
8981     // [destOut] = STR_POST(scratch, destIn, UnitSize)
8982     unsigned srcIn = src;
8983     unsigned destIn = dest;
8984     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
8985       unsigned srcOut = MRI.createVirtualRegister(TRC);
8986       unsigned destOut = MRI.createVirtualRegister(TRC);
8987       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8988       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
8989                  IsThumb1, IsThumb2);
8990       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
8991                  IsThumb1, IsThumb2);
8992       srcIn = srcOut;
8993       destIn = destOut;
8994     }
8995 
8996     // Handle the leftover bytes with LDRB and STRB.
8997     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
8998     // [destOut] = STRB_POST(scratch, destIn, 1)
8999     for (unsigned i = 0; i < BytesLeft; i++) {
9000       unsigned srcOut = MRI.createVirtualRegister(TRC);
9001       unsigned destOut = MRI.createVirtualRegister(TRC);
9002       unsigned scratch = MRI.createVirtualRegister(TRC);
9003       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
9004                  IsThumb1, IsThumb2);
9005       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
9006                  IsThumb1, IsThumb2);
9007       srcIn = srcOut;
9008       destIn = destOut;
9009     }
9010     MI.eraseFromParent(); // The instruction is gone now.
9011     return BB;
9012   }
9013 
9014   // Expand the pseudo op to a loop.
9015   // thisMBB:
9016   //   ...
9017   //   movw varEnd, # --> with thumb2
9018   //   movt varEnd, #
9019   //   ldrcp varEnd, idx --> without thumb2
9020   //   fallthrough --> loopMBB
9021   // loopMBB:
9022   //   PHI varPhi, varEnd, varLoop
9023   //   PHI srcPhi, src, srcLoop
9024   //   PHI destPhi, dst, destLoop
9025   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9026   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9027   //   subs varLoop, varPhi, #UnitSize
9028   //   bne loopMBB
9029   //   fallthrough --> exitMBB
9030   // exitMBB:
9031   //   epilogue to handle left-over bytes
9032   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9033   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9034   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9035   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9036   MF->insert(It, loopMBB);
9037   MF->insert(It, exitMBB);
9038 
9039   // Transfer the remainder of BB and its successor edges to exitMBB.
9040   exitMBB->splice(exitMBB->begin(), BB,
9041                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9042   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9043 
9044   // Load an immediate to varEnd.
9045   unsigned varEnd = MRI.createVirtualRegister(TRC);
9046   if (Subtarget->useMovt(*MF)) {
9047     unsigned Vtmp = varEnd;
9048     if ((LoopSize & 0xFFFF0000) != 0)
9049       Vtmp = MRI.createVirtualRegister(TRC);
9050     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
9051         .addImm(LoopSize & 0xFFFF)
9052         .add(predOps(ARMCC::AL));
9053 
9054     if ((LoopSize & 0xFFFF0000) != 0)
9055       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
9056           .addReg(Vtmp)
9057           .addImm(LoopSize >> 16)
9058           .add(predOps(ARMCC::AL));
9059   } else {
9060     MachineConstantPool *ConstantPool = MF->getConstantPool();
9061     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9062     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
9063 
9064     // MachineConstantPool wants an explicit alignment.
9065     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9066     if (Align == 0)
9067       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9068     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9069 
9070     if (IsThumb)
9071       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
9072           .addReg(varEnd, RegState::Define)
9073           .addConstantPoolIndex(Idx)
9074           .add(predOps(ARMCC::AL));
9075     else
9076       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
9077           .addReg(varEnd, RegState::Define)
9078           .addConstantPoolIndex(Idx)
9079           .addImm(0)
9080           .add(predOps(ARMCC::AL));
9081   }
9082   BB->addSuccessor(loopMBB);
9083 
9084   // Generate the loop body:
9085   //   varPhi = PHI(varLoop, varEnd)
9086   //   srcPhi = PHI(srcLoop, src)
9087   //   destPhi = PHI(destLoop, dst)
9088   MachineBasicBlock *entryBB = BB;
9089   BB = loopMBB;
9090   unsigned varLoop = MRI.createVirtualRegister(TRC);
9091   unsigned varPhi = MRI.createVirtualRegister(TRC);
9092   unsigned srcLoop = MRI.createVirtualRegister(TRC);
9093   unsigned srcPhi = MRI.createVirtualRegister(TRC);
9094   unsigned destLoop = MRI.createVirtualRegister(TRC);
9095   unsigned destPhi = MRI.createVirtualRegister(TRC);
9096 
9097   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9098     .addReg(varLoop).addMBB(loopMBB)
9099     .addReg(varEnd).addMBB(entryBB);
9100   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9101     .addReg(srcLoop).addMBB(loopMBB)
9102     .addReg(src).addMBB(entryBB);
9103   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9104     .addReg(destLoop).addMBB(loopMBB)
9105     .addReg(dest).addMBB(entryBB);
9106 
9107   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9108   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9109   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9110   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9111              IsThumb1, IsThumb2);
9112   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9113              IsThumb1, IsThumb2);
9114 
9115   // Decrement loop variable by UnitSize.
9116   if (IsThumb1) {
9117     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9118         .add(t1CondCodeOp())
9119         .addReg(varPhi)
9120         .addImm(UnitSize)
9121         .add(predOps(ARMCC::AL));
9122   } else {
9123     MachineInstrBuilder MIB =
9124         BuildMI(*BB, BB->end(), dl,
9125                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9126     MIB.addReg(varPhi)
9127         .addImm(UnitSize)
9128         .add(predOps(ARMCC::AL))
9129         .add(condCodeOp());
9130     MIB->getOperand(5).setReg(ARM::CPSR);
9131     MIB->getOperand(5).setIsDef(true);
9132   }
9133   BuildMI(*BB, BB->end(), dl,
9134           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9135       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9136 
9137   // loopMBB can loop back to loopMBB or fall through to exitMBB.
9138   BB->addSuccessor(loopMBB);
9139   BB->addSuccessor(exitMBB);
9140 
9141   // Add epilogue to handle BytesLeft.
9142   BB = exitMBB;
9143   auto StartOfExit = exitMBB->begin();
9144 
9145   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9146   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9147   unsigned srcIn = srcLoop;
9148   unsigned destIn = destLoop;
9149   for (unsigned i = 0; i < BytesLeft; i++) {
9150     unsigned srcOut = MRI.createVirtualRegister(TRC);
9151     unsigned destOut = MRI.createVirtualRegister(TRC);
9152     unsigned scratch = MRI.createVirtualRegister(TRC);
9153     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9154                IsThumb1, IsThumb2);
9155     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9156                IsThumb1, IsThumb2);
9157     srcIn = srcOut;
9158     destIn = destOut;
9159   }
9160 
9161   MI.eraseFromParent(); // The instruction is gone now.
9162   return BB;
9163 }
9164 
9165 MachineBasicBlock *
9166 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9167                                        MachineBasicBlock *MBB) const {
9168   const TargetMachine &TM = getTargetMachine();
9169   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9170   DebugLoc DL = MI.getDebugLoc();
9171 
9172   assert(Subtarget->isTargetWindows() &&
9173          "__chkstk is only supported on Windows");
9174   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9175 
9176   // __chkstk takes the number of words to allocate on the stack in R4, and
9177   // returns the stack adjustment in number of bytes in R4.  This will not
9178   // clober any other registers (other than the obvious lr).
9179   //
9180   // Although, technically, IP should be considered a register which may be
9181   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
9182   // thumb-2 environment, so there is no interworking required.  As a result, we
9183   // do not expect a veneer to be emitted by the linker, clobbering IP.
9184   //
9185   // Each module receives its own copy of __chkstk, so no import thunk is
9186   // required, again, ensuring that IP is not clobbered.
9187   //
9188   // Finally, although some linkers may theoretically provide a trampoline for
9189   // out of range calls (which is quite common due to a 32M range limitation of
9190   // branches for Thumb), we can generate the long-call version via
9191   // -mcmodel=large, alleviating the need for the trampoline which may clobber
9192   // IP.
9193 
9194   switch (TM.getCodeModel()) {
9195   case CodeModel::Small:
9196   case CodeModel::Medium:
9197   case CodeModel::Kernel:
9198     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9199         .add(predOps(ARMCC::AL))
9200         .addExternalSymbol("__chkstk")
9201         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9202         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9203         .addReg(ARM::R12,
9204                 RegState::Implicit | RegState::Define | RegState::Dead)
9205         .addReg(ARM::CPSR,
9206                 RegState::Implicit | RegState::Define | RegState::Dead);
9207     break;
9208   case CodeModel::Large: {
9209     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9210     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9211 
9212     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9213       .addExternalSymbol("__chkstk");
9214     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9215         .add(predOps(ARMCC::AL))
9216         .addReg(Reg, RegState::Kill)
9217         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9218         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9219         .addReg(ARM::R12,
9220                 RegState::Implicit | RegState::Define | RegState::Dead)
9221         .addReg(ARM::CPSR,
9222                 RegState::Implicit | RegState::Define | RegState::Dead);
9223     break;
9224   }
9225   }
9226 
9227   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9228       .addReg(ARM::SP, RegState::Kill)
9229       .addReg(ARM::R4, RegState::Kill)
9230       .setMIFlags(MachineInstr::FrameSetup)
9231       .add(predOps(ARMCC::AL))
9232       .add(condCodeOp());
9233 
9234   MI.eraseFromParent();
9235   return MBB;
9236 }
9237 
9238 MachineBasicBlock *
9239 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9240                                        MachineBasicBlock *MBB) const {
9241   DebugLoc DL = MI.getDebugLoc();
9242   MachineFunction *MF = MBB->getParent();
9243   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9244 
9245   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9246   MF->insert(++MBB->getIterator(), ContBB);
9247   ContBB->splice(ContBB->begin(), MBB,
9248                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9249   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9250   MBB->addSuccessor(ContBB);
9251 
9252   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9253   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9254   MF->push_back(TrapBB);
9255   MBB->addSuccessor(TrapBB);
9256 
9257   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9258       .addReg(MI.getOperand(0).getReg())
9259       .addImm(0)
9260       .add(predOps(ARMCC::AL));
9261   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
9262       .addMBB(TrapBB)
9263       .addImm(ARMCC::EQ)
9264       .addReg(ARM::CPSR);
9265 
9266   MI.eraseFromParent();
9267   return ContBB;
9268 }
9269 
9270 MachineBasicBlock *
9271 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9272                                                MachineBasicBlock *BB) const {
9273   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9274   DebugLoc dl = MI.getDebugLoc();
9275   bool isThumb2 = Subtarget->isThumb2();
9276   switch (MI.getOpcode()) {
9277   default: {
9278     MI.print(errs());
9279     llvm_unreachable("Unexpected instr type to insert");
9280   }
9281 
9282   // Thumb1 post-indexed loads are really just single-register LDMs.
9283   case ARM::tLDR_postidx: {
9284     MachineOperand Def(MI.getOperand(1));
9285     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
9286         .add(Def)  // Rn_wb
9287         .add(MI.getOperand(2))  // Rn
9288         .add(MI.getOperand(3))  // PredImm
9289         .add(MI.getOperand(4))  // PredReg
9290         .add(MI.getOperand(0)); // Rt
9291     MI.eraseFromParent();
9292     return BB;
9293   }
9294 
9295   // The Thumb2 pre-indexed stores have the same MI operands, they just
9296   // define them differently in the .td files from the isel patterns, so
9297   // they need pseudos.
9298   case ARM::t2STR_preidx:
9299     MI.setDesc(TII->get(ARM::t2STR_PRE));
9300     return BB;
9301   case ARM::t2STRB_preidx:
9302     MI.setDesc(TII->get(ARM::t2STRB_PRE));
9303     return BB;
9304   case ARM::t2STRH_preidx:
9305     MI.setDesc(TII->get(ARM::t2STRH_PRE));
9306     return BB;
9307 
9308   case ARM::STRi_preidx:
9309   case ARM::STRBi_preidx: {
9310     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
9311                                                          : ARM::STRB_PRE_IMM;
9312     // Decode the offset.
9313     unsigned Offset = MI.getOperand(4).getImm();
9314     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
9315     Offset = ARM_AM::getAM2Offset(Offset);
9316     if (isSub)
9317       Offset = -Offset;
9318 
9319     MachineMemOperand *MMO = *MI.memoperands_begin();
9320     BuildMI(*BB, MI, dl, TII->get(NewOpc))
9321         .add(MI.getOperand(0)) // Rn_wb
9322         .add(MI.getOperand(1)) // Rt
9323         .add(MI.getOperand(2)) // Rn
9324         .addImm(Offset)        // offset (skip GPR==zero_reg)
9325         .add(MI.getOperand(5)) // pred
9326         .add(MI.getOperand(6))
9327         .addMemOperand(MMO);
9328     MI.eraseFromParent();
9329     return BB;
9330   }
9331   case ARM::STRr_preidx:
9332   case ARM::STRBr_preidx:
9333   case ARM::STRH_preidx: {
9334     unsigned NewOpc;
9335     switch (MI.getOpcode()) {
9336     default: llvm_unreachable("unexpected opcode!");
9337     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
9338     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
9339     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
9340     }
9341     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
9342     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
9343       MIB.add(MI.getOperand(i));
9344     MI.eraseFromParent();
9345     return BB;
9346   }
9347 
9348   case ARM::tMOVCCr_pseudo: {
9349     // To "insert" a SELECT_CC instruction, we actually have to insert the
9350     // diamond control-flow pattern.  The incoming instruction knows the
9351     // destination vreg to set, the condition code register to branch on, the
9352     // true/false values to select between, and a branch opcode to use.
9353     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9354     MachineFunction::iterator It = ++BB->getIterator();
9355 
9356     //  thisMBB:
9357     //  ...
9358     //   TrueVal = ...
9359     //   cmpTY ccX, r1, r2
9360     //   bCC copy1MBB
9361     //   fallthrough --> copy0MBB
9362     MachineBasicBlock *thisMBB  = BB;
9363     MachineFunction *F = BB->getParent();
9364     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9365     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
9366     F->insert(It, copy0MBB);
9367     F->insert(It, sinkMBB);
9368 
9369     // Transfer the remainder of BB and its successor edges to sinkMBB.
9370     sinkMBB->splice(sinkMBB->begin(), BB,
9371                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9372     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9373 
9374     BB->addSuccessor(copy0MBB);
9375     BB->addSuccessor(sinkMBB);
9376 
9377     BuildMI(BB, dl, TII->get(ARM::tBcc))
9378         .addMBB(sinkMBB)
9379         .addImm(MI.getOperand(3).getImm())
9380         .addReg(MI.getOperand(4).getReg());
9381 
9382     //  copy0MBB:
9383     //   %FalseValue = ...
9384     //   # fallthrough to sinkMBB
9385     BB = copy0MBB;
9386 
9387     // Update machine-CFG edges
9388     BB->addSuccessor(sinkMBB);
9389 
9390     //  sinkMBB:
9391     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9392     //  ...
9393     BB = sinkMBB;
9394     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
9395         .addReg(MI.getOperand(1).getReg())
9396         .addMBB(copy0MBB)
9397         .addReg(MI.getOperand(2).getReg())
9398         .addMBB(thisMBB);
9399 
9400     MI.eraseFromParent(); // The pseudo instruction is gone now.
9401     return BB;
9402   }
9403 
9404   case ARM::BCCi64:
9405   case ARM::BCCZi64: {
9406     // If there is an unconditional branch to the other successor, remove it.
9407     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
9408 
9409     // Compare both parts that make up the double comparison separately for
9410     // equality.
9411     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
9412 
9413     unsigned LHS1 = MI.getOperand(1).getReg();
9414     unsigned LHS2 = MI.getOperand(2).getReg();
9415     if (RHSisZero) {
9416       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9417           .addReg(LHS1)
9418           .addImm(0)
9419           .add(predOps(ARMCC::AL));
9420       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9421         .addReg(LHS2).addImm(0)
9422         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9423     } else {
9424       unsigned RHS1 = MI.getOperand(3).getReg();
9425       unsigned RHS2 = MI.getOperand(4).getReg();
9426       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9427           .addReg(LHS1)
9428           .addReg(RHS1)
9429           .add(predOps(ARMCC::AL));
9430       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9431         .addReg(LHS2).addReg(RHS2)
9432         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9433     }
9434 
9435     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
9436     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
9437     if (MI.getOperand(0).getImm() == ARMCC::NE)
9438       std::swap(destMBB, exitMBB);
9439 
9440     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
9441       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
9442     if (isThumb2)
9443       BuildMI(BB, dl, TII->get(ARM::t2B))
9444           .addMBB(exitMBB)
9445           .add(predOps(ARMCC::AL));
9446     else
9447       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
9448 
9449     MI.eraseFromParent(); // The pseudo instruction is gone now.
9450     return BB;
9451   }
9452 
9453   case ARM::Int_eh_sjlj_setjmp:
9454   case ARM::Int_eh_sjlj_setjmp_nofp:
9455   case ARM::tInt_eh_sjlj_setjmp:
9456   case ARM::t2Int_eh_sjlj_setjmp:
9457   case ARM::t2Int_eh_sjlj_setjmp_nofp:
9458     return BB;
9459 
9460   case ARM::Int_eh_sjlj_setup_dispatch:
9461     EmitSjLjDispatchBlock(MI, BB);
9462     return BB;
9463 
9464   case ARM::ABS:
9465   case ARM::t2ABS: {
9466     // To insert an ABS instruction, we have to insert the
9467     // diamond control-flow pattern.  The incoming instruction knows the
9468     // source vreg to test against 0, the destination vreg to set,
9469     // the condition code register to branch on, the
9470     // true/false values to select between, and a branch opcode to use.
9471     // It transforms
9472     //     V1 = ABS V0
9473     // into
9474     //     V2 = MOVS V0
9475     //     BCC                      (branch to SinkBB if V0 >= 0)
9476     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
9477     //     SinkBB: V1 = PHI(V2, V3)
9478     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9479     MachineFunction::iterator BBI = ++BB->getIterator();
9480     MachineFunction *Fn = BB->getParent();
9481     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9482     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
9483     Fn->insert(BBI, RSBBB);
9484     Fn->insert(BBI, SinkBB);
9485 
9486     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
9487     unsigned int ABSDstReg = MI.getOperand(0).getReg();
9488     bool ABSSrcKIll = MI.getOperand(1).isKill();
9489     bool isThumb2 = Subtarget->isThumb2();
9490     MachineRegisterInfo &MRI = Fn->getRegInfo();
9491     // In Thumb mode S must not be specified if source register is the SP or
9492     // PC and if destination register is the SP, so restrict register class
9493     unsigned NewRsbDstReg =
9494       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
9495 
9496     // Transfer the remainder of BB and its successor edges to sinkMBB.
9497     SinkBB->splice(SinkBB->begin(), BB,
9498                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
9499     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
9500 
9501     BB->addSuccessor(RSBBB);
9502     BB->addSuccessor(SinkBB);
9503 
9504     // fall through to SinkMBB
9505     RSBBB->addSuccessor(SinkBB);
9506 
9507     // insert a cmp at the end of BB
9508     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9509         .addReg(ABSSrcReg)
9510         .addImm(0)
9511         .add(predOps(ARMCC::AL));
9512 
9513     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
9514     BuildMI(BB, dl,
9515       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
9516       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
9517 
9518     // insert rsbri in RSBBB
9519     // Note: BCC and rsbri will be converted into predicated rsbmi
9520     // by if-conversion pass
9521     BuildMI(*RSBBB, RSBBB->begin(), dl,
9522             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
9523         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
9524         .addImm(0)
9525         .add(predOps(ARMCC::AL))
9526         .add(condCodeOp());
9527 
9528     // insert PHI in SinkBB,
9529     // reuse ABSDstReg to not change uses of ABS instruction
9530     BuildMI(*SinkBB, SinkBB->begin(), dl,
9531       TII->get(ARM::PHI), ABSDstReg)
9532       .addReg(NewRsbDstReg).addMBB(RSBBB)
9533       .addReg(ABSSrcReg).addMBB(BB);
9534 
9535     // remove ABS instruction
9536     MI.eraseFromParent();
9537 
9538     // return last added BB
9539     return SinkBB;
9540   }
9541   case ARM::COPY_STRUCT_BYVAL_I32:
9542     ++NumLoopByVals;
9543     return EmitStructByval(MI, BB);
9544   case ARM::WIN__CHKSTK:
9545     return EmitLowered__chkstk(MI, BB);
9546   case ARM::WIN__DBZCHK:
9547     return EmitLowered__dbzchk(MI, BB);
9548   }
9549 }
9550 
9551 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers
9552 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
9553 /// instead of as a custom inserter because we need the use list from the SDNode.
9554 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
9555                                     MachineInstr &MI, const SDNode *Node) {
9556   bool isThumb1 = Subtarget->isThumb1Only();
9557 
9558   DebugLoc DL = MI.getDebugLoc();
9559   MachineFunction *MF = MI.getParent()->getParent();
9560   MachineRegisterInfo &MRI = MF->getRegInfo();
9561   MachineInstrBuilder MIB(*MF, MI);
9562 
9563   // If the new dst/src is unused mark it as dead.
9564   if (!Node->hasAnyUseOfValue(0)) {
9565     MI.getOperand(0).setIsDead(true);
9566   }
9567   if (!Node->hasAnyUseOfValue(1)) {
9568     MI.getOperand(1).setIsDead(true);
9569   }
9570 
9571   // The MEMCPY both defines and kills the scratch registers.
9572   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
9573     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
9574                                                          : &ARM::GPRRegClass);
9575     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
9576   }
9577 }
9578 
9579 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9580                                                       SDNode *Node) const {
9581   if (MI.getOpcode() == ARM::MEMCPY) {
9582     attachMEMCPYScratchRegs(Subtarget, MI, Node);
9583     return;
9584   }
9585 
9586   const MCInstrDesc *MCID = &MI.getDesc();
9587   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
9588   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
9589   // operand is still set to noreg. If needed, set the optional operand's
9590   // register to CPSR, and remove the redundant implicit def.
9591   //
9592   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
9593 
9594   // Rename pseudo opcodes.
9595   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
9596   unsigned ccOutIdx;
9597   if (NewOpc) {
9598     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
9599     MCID = &TII->get(NewOpc);
9600 
9601     assert(MCID->getNumOperands() ==
9602            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
9603         && "converted opcode should be the same except for cc_out"
9604            " (and, on Thumb1, pred)");
9605 
9606     MI.setDesc(*MCID);
9607 
9608     // Add the optional cc_out operand
9609     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9610 
9611     // On Thumb1, move all input operands to the end, then add the predicate
9612     if (Subtarget->isThumb1Only()) {
9613       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
9614         MI.addOperand(MI.getOperand(1));
9615         MI.RemoveOperand(1);
9616       }
9617 
9618       // Restore the ties
9619       for (unsigned i = MI.getNumOperands(); i--;) {
9620         const MachineOperand& op = MI.getOperand(i);
9621         if (op.isReg() && op.isUse()) {
9622           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
9623           if (DefIdx != -1)
9624             MI.tieOperands(DefIdx, i);
9625         }
9626       }
9627 
9628       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
9629       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
9630       ccOutIdx = 1;
9631     } else
9632       ccOutIdx = MCID->getNumOperands() - 1;
9633   } else
9634     ccOutIdx = MCID->getNumOperands() - 1;
9635 
9636   // Any ARM instruction that sets the 's' bit should specify an optional
9637   // "cc_out" operand in the last operand position.
9638   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
9639     assert(!NewOpc && "Optional cc_out operand required");
9640     return;
9641   }
9642   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9643   // since we already have an optional CPSR def.
9644   bool definesCPSR = false;
9645   bool deadCPSR = false;
9646   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
9647        ++i) {
9648     const MachineOperand &MO = MI.getOperand(i);
9649     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
9650       definesCPSR = true;
9651       if (MO.isDead())
9652         deadCPSR = true;
9653       MI.RemoveOperand(i);
9654       break;
9655     }
9656   }
9657   if (!definesCPSR) {
9658     assert(!NewOpc && "Optional cc_out operand required");
9659     return;
9660   }
9661   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
9662   if (deadCPSR) {
9663     assert(!MI.getOperand(ccOutIdx).getReg() &&
9664            "expect uninitialized optional cc_out operand");
9665     // Thumb1 instructions must have the S bit even if the CPSR is dead.
9666     if (!Subtarget->isThumb1Only())
9667       return;
9668   }
9669 
9670   // If this instruction was defined with an optional CPSR def and its dag node
9671   // had a live implicit CPSR def, then activate the optional CPSR def.
9672   MachineOperand &MO = MI.getOperand(ccOutIdx);
9673   MO.setReg(ARM::CPSR);
9674   MO.setIsDef(true);
9675 }
9676 
9677 //===----------------------------------------------------------------------===//
9678 //                           ARM Optimization Hooks
9679 //===----------------------------------------------------------------------===//
9680 
9681 // Helper function that checks if N is a null or all ones constant.
9682 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
9683   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
9684 }
9685 
9686 // Return true if N is conditionally 0 or all ones.
9687 // Detects these expressions where cc is an i1 value:
9688 //
9689 //   (select cc 0, y)   [AllOnes=0]
9690 //   (select cc y, 0)   [AllOnes=0]
9691 //   (zext cc)          [AllOnes=0]
9692 //   (sext cc)          [AllOnes=0/1]
9693 //   (select cc -1, y)  [AllOnes=1]
9694 //   (select cc y, -1)  [AllOnes=1]
9695 //
9696 // Invert is set when N is the null/all ones constant when CC is false.
9697 // OtherOp is set to the alternative value of N.
9698 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
9699                                        SDValue &CC, bool &Invert,
9700                                        SDValue &OtherOp,
9701                                        SelectionDAG &DAG) {
9702   switch (N->getOpcode()) {
9703   default: return false;
9704   case ISD::SELECT: {
9705     CC = N->getOperand(0);
9706     SDValue N1 = N->getOperand(1);
9707     SDValue N2 = N->getOperand(2);
9708     if (isZeroOrAllOnes(N1, AllOnes)) {
9709       Invert = false;
9710       OtherOp = N2;
9711       return true;
9712     }
9713     if (isZeroOrAllOnes(N2, AllOnes)) {
9714       Invert = true;
9715       OtherOp = N1;
9716       return true;
9717     }
9718     return false;
9719   }
9720   case ISD::ZERO_EXTEND:
9721     // (zext cc) can never be the all ones value.
9722     if (AllOnes)
9723       return false;
9724     LLVM_FALLTHROUGH;
9725   case ISD::SIGN_EXTEND: {
9726     SDLoc dl(N);
9727     EVT VT = N->getValueType(0);
9728     CC = N->getOperand(0);
9729     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
9730       return false;
9731     Invert = !AllOnes;
9732     if (AllOnes)
9733       // When looking for an AllOnes constant, N is an sext, and the 'other'
9734       // value is 0.
9735       OtherOp = DAG.getConstant(0, dl, VT);
9736     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9737       // When looking for a 0 constant, N can be zext or sext.
9738       OtherOp = DAG.getConstant(1, dl, VT);
9739     else
9740       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
9741                                 VT);
9742     return true;
9743   }
9744   }
9745 }
9746 
9747 // Combine a constant select operand into its use:
9748 //
9749 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
9750 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
9751 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
9752 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
9753 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
9754 //
9755 // The transform is rejected if the select doesn't have a constant operand that
9756 // is null, or all ones when AllOnes is set.
9757 //
9758 // Also recognize sext/zext from i1:
9759 //
9760 //   (add (zext cc), x) -> (select cc (add x, 1), x)
9761 //   (add (sext cc), x) -> (select cc (add x, -1), x)
9762 //
9763 // These transformations eventually create predicated instructions.
9764 //
9765 // @param N       The node to transform.
9766 // @param Slct    The N operand that is a select.
9767 // @param OtherOp The other N operand (x above).
9768 // @param DCI     Context.
9769 // @param AllOnes Require the select constant to be all ones instead of null.
9770 // @returns The new node, or SDValue() on failure.
9771 static
9772 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
9773                             TargetLowering::DAGCombinerInfo &DCI,
9774                             bool AllOnes = false) {
9775   SelectionDAG &DAG = DCI.DAG;
9776   EVT VT = N->getValueType(0);
9777   SDValue NonConstantVal;
9778   SDValue CCOp;
9779   bool SwapSelectOps;
9780   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
9781                                   NonConstantVal, DAG))
9782     return SDValue();
9783 
9784   // Slct is now know to be the desired identity constant when CC is true.
9785   SDValue TrueVal = OtherOp;
9786   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
9787                                  OtherOp, NonConstantVal);
9788   // Unless SwapSelectOps says CC should be false.
9789   if (SwapSelectOps)
9790     std::swap(TrueVal, FalseVal);
9791 
9792   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
9793                      CCOp, TrueVal, FalseVal);
9794 }
9795 
9796 // Attempt combineSelectAndUse on each operand of a commutative operator N.
9797 static
9798 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
9799                                        TargetLowering::DAGCombinerInfo &DCI) {
9800   SDValue N0 = N->getOperand(0);
9801   SDValue N1 = N->getOperand(1);
9802   if (N0.getNode()->hasOneUse())
9803     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
9804       return Result;
9805   if (N1.getNode()->hasOneUse())
9806     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
9807       return Result;
9808   return SDValue();
9809 }
9810 
9811 static bool IsVUZPShuffleNode(SDNode *N) {
9812   // VUZP shuffle node.
9813   if (N->getOpcode() == ARMISD::VUZP)
9814     return true;
9815 
9816   // "VUZP" on i32 is an alias for VTRN.
9817   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
9818     return true;
9819 
9820   return false;
9821 }
9822 
9823 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
9824                                  TargetLowering::DAGCombinerInfo &DCI,
9825                                  const ARMSubtarget *Subtarget) {
9826   // Look for ADD(VUZP.0, VUZP.1).
9827   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
9828       N0 == N1)
9829    return SDValue();
9830 
9831   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
9832   if (!N->getValueType(0).is64BitVector())
9833     return SDValue();
9834 
9835   // Generate vpadd.
9836   SelectionDAG &DAG = DCI.DAG;
9837   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9838   SDLoc dl(N);
9839   SDNode *Unzip = N0.getNode();
9840   EVT VT = N->getValueType(0);
9841 
9842   SmallVector<SDValue, 8> Ops;
9843   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
9844                                 TLI.getPointerTy(DAG.getDataLayout())));
9845   Ops.push_back(Unzip->getOperand(0));
9846   Ops.push_back(Unzip->getOperand(1));
9847 
9848   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9849 }
9850 
9851 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9852                                       TargetLowering::DAGCombinerInfo &DCI,
9853                                       const ARMSubtarget *Subtarget) {
9854   // Check for two extended operands.
9855   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
9856         N1.getOpcode() == ISD::SIGN_EXTEND) &&
9857       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
9858         N1.getOpcode() == ISD::ZERO_EXTEND))
9859     return SDValue();
9860 
9861   SDValue N00 = N0.getOperand(0);
9862   SDValue N10 = N1.getOperand(0);
9863 
9864   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
9865   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
9866       N00 == N10)
9867     return SDValue();
9868 
9869   // We only recognize Q register paddl here; this can't be reached until
9870   // after type legalization.
9871   if (!N00.getValueType().is64BitVector() ||
9872       !N0.getValueType().is128BitVector())
9873     return SDValue();
9874 
9875   // Generate vpaddl.
9876   SelectionDAG &DAG = DCI.DAG;
9877   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9878   SDLoc dl(N);
9879   EVT VT = N->getValueType(0);
9880 
9881   SmallVector<SDValue, 8> Ops;
9882   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
9883   unsigned Opcode;
9884   if (N0.getOpcode() == ISD::SIGN_EXTEND)
9885     Opcode = Intrinsic::arm_neon_vpaddls;
9886   else
9887     Opcode = Intrinsic::arm_neon_vpaddlu;
9888   Ops.push_back(DAG.getConstant(Opcode, dl,
9889                                 TLI.getPointerTy(DAG.getDataLayout())));
9890   EVT ElemTy = N00.getValueType().getVectorElementType();
9891   unsigned NumElts = VT.getVectorNumElements();
9892   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
9893   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
9894                                N00.getOperand(0), N00.getOperand(1));
9895   Ops.push_back(Concat);
9896 
9897   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9898 }
9899 
9900 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
9901 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
9902 // much easier to match.
9903 static SDValue
9904 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9905                                TargetLowering::DAGCombinerInfo &DCI,
9906                                const ARMSubtarget *Subtarget) {
9907   // Only perform optimization if after legalize, and if NEON is available. We
9908   // also expected both operands to be BUILD_VECTORs.
9909   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
9910       || N0.getOpcode() != ISD::BUILD_VECTOR
9911       || N1.getOpcode() != ISD::BUILD_VECTOR)
9912     return SDValue();
9913 
9914   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
9915   EVT VT = N->getValueType(0);
9916   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
9917     return SDValue();
9918 
9919   // Check that the vector operands are of the right form.
9920   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
9921   // operands, where N is the size of the formed vector.
9922   // Each EXTRACT_VECTOR should have the same input vector and odd or even
9923   // index such that we have a pair wise add pattern.
9924 
9925   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
9926   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9927     return SDValue();
9928   SDValue Vec = N0->getOperand(0)->getOperand(0);
9929   SDNode *V = Vec.getNode();
9930   unsigned nextIndex = 0;
9931 
9932   // For each operands to the ADD which are BUILD_VECTORs,
9933   // check to see if each of their operands are an EXTRACT_VECTOR with
9934   // the same vector and appropriate index.
9935   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
9936     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
9937         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9938 
9939       SDValue ExtVec0 = N0->getOperand(i);
9940       SDValue ExtVec1 = N1->getOperand(i);
9941 
9942       // First operand is the vector, verify its the same.
9943       if (V != ExtVec0->getOperand(0).getNode() ||
9944           V != ExtVec1->getOperand(0).getNode())
9945         return SDValue();
9946 
9947       // Second is the constant, verify its correct.
9948       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
9949       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
9950 
9951       // For the constant, we want to see all the even or all the odd.
9952       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
9953           || C1->getZExtValue() != nextIndex+1)
9954         return SDValue();
9955 
9956       // Increment index.
9957       nextIndex+=2;
9958     } else
9959       return SDValue();
9960   }
9961 
9962   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
9963   // we're using the entire input vector, otherwise there's a size/legality
9964   // mismatch somewhere.
9965   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
9966       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
9967     return SDValue();
9968 
9969   // Create VPADDL node.
9970   SelectionDAG &DAG = DCI.DAG;
9971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9972 
9973   SDLoc dl(N);
9974 
9975   // Build operand list.
9976   SmallVector<SDValue, 8> Ops;
9977   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
9978                                 TLI.getPointerTy(DAG.getDataLayout())));
9979 
9980   // Input is the vector.
9981   Ops.push_back(Vec);
9982 
9983   // Get widened type and narrowed type.
9984   MVT widenType;
9985   unsigned numElem = VT.getVectorNumElements();
9986 
9987   EVT inputLaneType = Vec.getValueType().getVectorElementType();
9988   switch (inputLaneType.getSimpleVT().SimpleTy) {
9989     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
9990     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
9991     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
9992     default:
9993       llvm_unreachable("Invalid vector element type for padd optimization.");
9994   }
9995 
9996   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
9997   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
9998   return DAG.getNode(ExtOp, dl, VT, tmp);
9999 }
10000 
10001 static SDValue findMUL_LOHI(SDValue V) {
10002   if (V->getOpcode() == ISD::UMUL_LOHI ||
10003       V->getOpcode() == ISD::SMUL_LOHI)
10004     return V;
10005   return SDValue();
10006 }
10007 
10008 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
10009                                         TargetLowering::DAGCombinerInfo &DCI,
10010                                         const ARMSubtarget *Subtarget) {
10011   if (Subtarget->isThumb()) {
10012     if (!Subtarget->hasDSP())
10013       return SDValue();
10014   } else if (!Subtarget->hasV5TEOps())
10015     return SDValue();
10016 
10017   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10018   // accumulates the product into a 64-bit value. The 16-bit values will
10019   // be sign extended somehow or SRA'd into 32-bit values
10020   // (addc (adde (mul 16bit, 16bit), lo), hi)
10021   SDValue Mul = AddcNode->getOperand(0);
10022   SDValue Lo = AddcNode->getOperand(1);
10023   if (Mul.getOpcode() != ISD::MUL) {
10024     Lo = AddcNode->getOperand(0);
10025     Mul = AddcNode->getOperand(1);
10026     if (Mul.getOpcode() != ISD::MUL)
10027       return SDValue();
10028   }
10029 
10030   SDValue SRA = AddeNode->getOperand(0);
10031   SDValue Hi = AddeNode->getOperand(1);
10032   if (SRA.getOpcode() != ISD::SRA) {
10033     SRA = AddeNode->getOperand(1);
10034     Hi = AddeNode->getOperand(0);
10035     if (SRA.getOpcode() != ISD::SRA)
10036       return SDValue();
10037   }
10038   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10039     if (Const->getZExtValue() != 31)
10040       return SDValue();
10041   } else
10042     return SDValue();
10043 
10044   if (SRA.getOperand(0) != Mul)
10045     return SDValue();
10046 
10047   SelectionDAG &DAG = DCI.DAG;
10048   SDLoc dl(AddcNode);
10049   unsigned Opcode = 0;
10050   SDValue Op0;
10051   SDValue Op1;
10052 
10053   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10054     Opcode = ARMISD::SMLALBB;
10055     Op0 = Mul.getOperand(0);
10056     Op1 = Mul.getOperand(1);
10057   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10058     Opcode = ARMISD::SMLALBT;
10059     Op0 = Mul.getOperand(0);
10060     Op1 = Mul.getOperand(1).getOperand(0);
10061   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10062     Opcode = ARMISD::SMLALTB;
10063     Op0 = Mul.getOperand(0).getOperand(0);
10064     Op1 = Mul.getOperand(1);
10065   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10066     Opcode = ARMISD::SMLALTT;
10067     Op0 = Mul->getOperand(0).getOperand(0);
10068     Op1 = Mul->getOperand(1).getOperand(0);
10069   }
10070 
10071   if (!Op0 || !Op1)
10072     return SDValue();
10073 
10074   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10075                               Op0, Op1, Lo, Hi);
10076   // Replace the ADDs' nodes uses by the MLA node's values.
10077   SDValue HiMLALResult(SMLAL.getNode(), 1);
10078   SDValue LoMLALResult(SMLAL.getNode(), 0);
10079 
10080   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10081   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10082 
10083   // Return original node to notify the driver to stop replacing.
10084   SDValue resNode(AddcNode, 0);
10085   return resNode;
10086 }
10087 
10088 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10089                                      TargetLowering::DAGCombinerInfo &DCI,
10090                                      const ARMSubtarget *Subtarget) {
10091   // Look for multiply add opportunities.
10092   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10093   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10094   // a glue link from the first add to the second add.
10095   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10096   // a S/UMLAL instruction.
10097   //                  UMUL_LOHI
10098   //                 / :lo    \ :hi
10099   //                V          \          [no multiline comment]
10100   //    loAdd ->  ADDC         |
10101   //                 \ :carry /
10102   //                  V      V
10103   //                    ADDE   <- hiAdd
10104   //
10105   // In the special case where only the higher part of a signed result is used
10106   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10107   // a constant with the exact value of 0x80000000, we recognize we are dealing
10108   // with a "rounded multiply and add" (or subtract) and transform it into
10109   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10110 
10111   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10112           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10113          "Expect an ADDE or SUBE");
10114 
10115   assert(AddeSubeNode->getNumOperands() == 3 &&
10116          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10117          "ADDE node has the wrong inputs");
10118 
10119   // Check that we are chained to the right ADDC or SUBC node.
10120   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10121   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10122        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10123       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10124        AddcSubcNode->getOpcode() != ARMISD::SUBC))
10125     return SDValue();
10126 
10127   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10128   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10129 
10130   // Check if the two operands are from the same mul_lohi node.
10131   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10132     return SDValue();
10133 
10134   assert(AddcSubcNode->getNumValues() == 2 &&
10135          AddcSubcNode->getValueType(0) == MVT::i32 &&
10136          "Expect ADDC with two result values. First: i32");
10137 
10138   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10139   // maybe a SMLAL which multiplies two 16-bit values.
10140   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10141       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10142       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10143       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10144       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10145     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10146 
10147   // Check for the triangle shape.
10148   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10149   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10150 
10151   // Make sure that the ADDE/SUBE operands are not coming from the same node.
10152   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10153     return SDValue();
10154 
10155   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10156   bool IsLeftOperandMUL = false;
10157   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10158   if (MULOp == SDValue())
10159     MULOp = findMUL_LOHI(AddeSubeOp1);
10160   else
10161     IsLeftOperandMUL = true;
10162   if (MULOp == SDValue())
10163     return SDValue();
10164 
10165   // Figure out the right opcode.
10166   unsigned Opc = MULOp->getOpcode();
10167   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10168 
10169   // Figure out the high and low input values to the MLAL node.
10170   SDValue *HiAddSub = nullptr;
10171   SDValue *LoMul = nullptr;
10172   SDValue *LowAddSub = nullptr;
10173 
10174   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10175   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10176     return SDValue();
10177 
10178   if (IsLeftOperandMUL)
10179     HiAddSub = &AddeSubeOp1;
10180   else
10181     HiAddSub = &AddeSubeOp0;
10182 
10183   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10184   // whose low result is fed to the ADDC/SUBC we are checking.
10185 
10186   if (AddcSubcOp0 == MULOp.getValue(0)) {
10187     LoMul = &AddcSubcOp0;
10188     LowAddSub = &AddcSubcOp1;
10189   }
10190   if (AddcSubcOp1 == MULOp.getValue(0)) {
10191     LoMul = &AddcSubcOp1;
10192     LowAddSub = &AddcSubcOp0;
10193   }
10194 
10195   if (!LoMul)
10196     return SDValue();
10197 
10198   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10199   // the replacement below will create a cycle.
10200   if (AddcSubcNode == HiAddSub->getNode() ||
10201       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10202     return SDValue();
10203 
10204   // Create the merged node.
10205   SelectionDAG &DAG = DCI.DAG;
10206 
10207   // Start building operand list.
10208   SmallVector<SDValue, 8> Ops;
10209   Ops.push_back(LoMul->getOperand(0));
10210   Ops.push_back(LoMul->getOperand(1));
10211 
10212   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
10213   // the case, we must be doing signed multiplication and only use the higher
10214   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10215   // addition or subtraction with the value of 0x800000.
10216   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
10217       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
10218       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
10219       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
10220           0x80000000) {
10221     Ops.push_back(*HiAddSub);
10222     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
10223       FinalOpc = ARMISD::SMMLSR;
10224     } else {
10225       FinalOpc = ARMISD::SMMLAR;
10226     }
10227     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
10228     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
10229 
10230     return SDValue(AddeSubeNode, 0);
10231   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
10232     // SMMLS is generated during instruction selection and the rest of this
10233     // function can not handle the case where AddcSubcNode is a SUBC.
10234     return SDValue();
10235 
10236   // Finish building the operand list for {U/S}MLAL
10237   Ops.push_back(*LowAddSub);
10238   Ops.push_back(*HiAddSub);
10239 
10240   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
10241                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10242 
10243   // Replace the ADDs' nodes uses by the MLA node's values.
10244   SDValue HiMLALResult(MLALNode.getNode(), 1);
10245   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
10246 
10247   SDValue LoMLALResult(MLALNode.getNode(), 0);
10248   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
10249 
10250   // Return original node to notify the driver to stop replacing.
10251   return SDValue(AddeSubeNode, 0);
10252 }
10253 
10254 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
10255                                       TargetLowering::DAGCombinerInfo &DCI,
10256                                       const ARMSubtarget *Subtarget) {
10257   // UMAAL is similar to UMLAL except that it adds two unsigned values.
10258   // While trying to combine for the other MLAL nodes, first search for the
10259   // chance to use UMAAL. Check if Addc uses a node which has already
10260   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10261   // as the addend, and it's handled in PerformUMLALCombine.
10262 
10263   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10264     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10265 
10266   // Check that we have a glued ADDC node.
10267   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
10268   if (AddcNode->getOpcode() != ARMISD::ADDC)
10269     return SDValue();
10270 
10271   // Find the converted UMAAL or quit if it doesn't exist.
10272   SDNode *UmlalNode = nullptr;
10273   SDValue AddHi;
10274   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
10275     UmlalNode = AddcNode->getOperand(0).getNode();
10276     AddHi = AddcNode->getOperand(1);
10277   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
10278     UmlalNode = AddcNode->getOperand(1).getNode();
10279     AddHi = AddcNode->getOperand(0);
10280   } else {
10281     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10282   }
10283 
10284   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10285   // the ADDC as well as Zero.
10286   if (!isNullConstant(UmlalNode->getOperand(3)))
10287     return SDValue();
10288 
10289   if ((isNullConstant(AddeNode->getOperand(0)) &&
10290        AddeNode->getOperand(1).getNode() == UmlalNode) ||
10291       (AddeNode->getOperand(0).getNode() == UmlalNode &&
10292        isNullConstant(AddeNode->getOperand(1)))) {
10293     SelectionDAG &DAG = DCI.DAG;
10294     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
10295                       UmlalNode->getOperand(2), AddHi };
10296     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
10297                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10298 
10299     // Replace the ADDs' nodes uses by the UMAAL node's values.
10300     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
10301     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
10302 
10303     // Return original node to notify the driver to stop replacing.
10304     return SDValue(AddeNode, 0);
10305   }
10306   return SDValue();
10307 }
10308 
10309 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
10310                                    const ARMSubtarget *Subtarget) {
10311   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10312     return SDValue();
10313 
10314   // Check that we have a pair of ADDC and ADDE as operands.
10315   // Both addends of the ADDE must be zero.
10316   SDNode* AddcNode = N->getOperand(2).getNode();
10317   SDNode* AddeNode = N->getOperand(3).getNode();
10318   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
10319       (AddeNode->getOpcode() == ARMISD::ADDE) &&
10320       isNullConstant(AddeNode->getOperand(0)) &&
10321       isNullConstant(AddeNode->getOperand(1)) &&
10322       (AddeNode->getOperand(2).getNode() == AddcNode))
10323     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
10324                        DAG.getVTList(MVT::i32, MVT::i32),
10325                        {N->getOperand(0), N->getOperand(1),
10326                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
10327   else
10328     return SDValue();
10329 }
10330 
10331 static SDValue PerformAddcSubcCombine(SDNode *N,
10332                                       TargetLowering::DAGCombinerInfo &DCI,
10333                                       const ARMSubtarget *Subtarget) {
10334   SelectionDAG &DAG(DCI.DAG);
10335 
10336   if (N->getOpcode() == ARMISD::SUBC) {
10337     // (SUBC (ADDE 0, 0, C), 1) -> C
10338     SDValue LHS = N->getOperand(0);
10339     SDValue RHS = N->getOperand(1);
10340     if (LHS->getOpcode() == ARMISD::ADDE &&
10341         isNullConstant(LHS->getOperand(0)) &&
10342         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
10343       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
10344     }
10345   }
10346 
10347   if (Subtarget->isThumb1Only()) {
10348     SDValue RHS = N->getOperand(1);
10349     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10350       int32_t imm = C->getSExtValue();
10351       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
10352         SDLoc DL(N);
10353         RHS = DAG.getConstant(-imm, DL, MVT::i32);
10354         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
10355                                                            : ARMISD::ADDC;
10356         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
10357       }
10358     }
10359   }
10360   return SDValue();
10361 }
10362 
10363 static SDValue PerformAddeSubeCombine(SDNode *N,
10364                                       TargetLowering::DAGCombinerInfo &DCI,
10365                                       const ARMSubtarget *Subtarget) {
10366   if (Subtarget->isThumb1Only()) {
10367     SelectionDAG &DAG = DCI.DAG;
10368     SDValue RHS = N->getOperand(1);
10369     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10370       int64_t imm = C->getSExtValue();
10371       if (imm < 0) {
10372         SDLoc DL(N);
10373 
10374         // The with-carry-in form matches bitwise not instead of the negation.
10375         // Effectively, the inverse interpretation of the carry flag already
10376         // accounts for part of the negation.
10377         RHS = DAG.getConstant(~imm, DL, MVT::i32);
10378 
10379         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
10380                                                            : ARMISD::ADDE;
10381         return DAG.getNode(Opcode, DL, N->getVTList(),
10382                            N->getOperand(0), RHS, N->getOperand(2));
10383       }
10384     }
10385   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
10386     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
10387   }
10388   return SDValue();
10389 }
10390 
10391 /// PerformADDECombine - Target-specific dag combine transform from
10392 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
10393 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
10394 static SDValue PerformADDECombine(SDNode *N,
10395                                   TargetLowering::DAGCombinerInfo &DCI,
10396                                   const ARMSubtarget *Subtarget) {
10397   // Only ARM and Thumb2 support UMLAL/SMLAL.
10398   if (Subtarget->isThumb1Only())
10399     return PerformAddeSubeCombine(N, DCI, Subtarget);
10400 
10401   // Only perform the checks after legalize when the pattern is available.
10402   if (DCI.isBeforeLegalize()) return SDValue();
10403 
10404   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
10405 }
10406 
10407 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
10408 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
10409 /// called with the default operands, and if that fails, with commuted
10410 /// operands.
10411 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
10412                                           TargetLowering::DAGCombinerInfo &DCI,
10413                                           const ARMSubtarget *Subtarget){
10414   // Attempt to create vpadd for this add.
10415   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
10416     return Result;
10417 
10418   // Attempt to create vpaddl for this add.
10419   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
10420     return Result;
10421   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
10422                                                       Subtarget))
10423     return Result;
10424 
10425   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10426   if (N0.getNode()->hasOneUse())
10427     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
10428       return Result;
10429   return SDValue();
10430 }
10431 
10432 static SDValue PerformSHLSimplify(SDNode *N,
10433                                 TargetLowering::DAGCombinerInfo &DCI,
10434                                 const ARMSubtarget *ST) {
10435   // Allow the generic combiner to identify potential bswaps.
10436   if (DCI.isBeforeLegalize())
10437     return SDValue();
10438 
10439   // DAG combiner will fold:
10440   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10441   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
10442   // Other code patterns that can be also be modified have the following form:
10443   // b + ((a << 1) | 510)
10444   // b + ((a << 1) & 510)
10445   // b + ((a << 1) ^ 510)
10446   // b + ((a << 1) + 510)
10447 
10448   // Many instructions can  perform the shift for free, but it requires both
10449   // the operands to be registers. If c1 << c2 is too large, a mov immediate
10450   // instruction will needed. So, unfold back to the original pattern if:
10451   // - if c1 and c2 are small enough that they don't require mov imms.
10452   // - the user(s) of the node can perform an shl
10453 
10454   // No shifted operands for 16-bit instructions.
10455   if (ST->isThumb() && ST->isThumb1Only())
10456     return SDValue();
10457 
10458   // Check that all the users could perform the shl themselves.
10459   for (auto U : N->uses()) {
10460     switch(U->getOpcode()) {
10461     default:
10462       return SDValue();
10463     case ISD::SUB:
10464     case ISD::ADD:
10465     case ISD::AND:
10466     case ISD::OR:
10467     case ISD::XOR:
10468     case ISD::SETCC:
10469     case ARMISD::CMP:
10470       // Check that the user isn't already using a constant because there
10471       // aren't any instructions that support an immediate operand and a
10472       // shifted operand.
10473       if (isa<ConstantSDNode>(U->getOperand(0)) ||
10474           isa<ConstantSDNode>(U->getOperand(1)))
10475         return SDValue();
10476 
10477       // Check that it's not already using a shift.
10478       if (U->getOperand(0).getOpcode() == ISD::SHL ||
10479           U->getOperand(1).getOpcode() == ISD::SHL)
10480         return SDValue();
10481       break;
10482     }
10483   }
10484 
10485   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
10486       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
10487     return SDValue();
10488 
10489   if (N->getOperand(0).getOpcode() != ISD::SHL)
10490     return SDValue();
10491 
10492   SDValue SHL = N->getOperand(0);
10493 
10494   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
10495   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
10496   if (!C1ShlC2 || !C2)
10497     return SDValue();
10498 
10499   APInt C2Int = C2->getAPIntValue();
10500   APInt C1Int = C1ShlC2->getAPIntValue();
10501 
10502   // Check that performing a lshr will not lose any information.
10503   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
10504                                      C2Int.getBitWidth() - C2->getZExtValue());
10505   if ((C1Int & Mask) != C1Int)
10506     return SDValue();
10507 
10508   // Shift the first constant.
10509   C1Int.lshrInPlace(C2Int);
10510 
10511   // The immediates are encoded as an 8-bit value that can be rotated.
10512   auto LargeImm = [](const APInt &Imm) {
10513     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
10514     return Imm.getBitWidth() - Zeros > 8;
10515   };
10516 
10517   if (LargeImm(C1Int) || LargeImm(C2Int))
10518     return SDValue();
10519 
10520   SelectionDAG &DAG = DCI.DAG;
10521   SDLoc dl(N);
10522   SDValue X = SHL.getOperand(0);
10523   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
10524                               DAG.getConstant(C1Int, dl, MVT::i32));
10525   // Shift left to compensate for the lshr of C1Int.
10526   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
10527 
10528   DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump(); SHL.dump();
10529         N->dump());
10530   DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
10531 
10532   DAG.ReplaceAllUsesWith(SDValue(N, 0), Res);
10533   return SDValue(N, 0);
10534 }
10535 
10536 
10537 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
10538 ///
10539 static SDValue PerformADDCombine(SDNode *N,
10540                                  TargetLowering::DAGCombinerInfo &DCI,
10541                                  const ARMSubtarget *Subtarget) {
10542   SDValue N0 = N->getOperand(0);
10543   SDValue N1 = N->getOperand(1);
10544 
10545   // Only works one way, because it needs an immediate operand.
10546   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10547     return Result;
10548 
10549   // First try with the default operand order.
10550   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
10551     return Result;
10552 
10553   // If that didn't work, try again with the operands commuted.
10554   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
10555 }
10556 
10557 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
10558 ///
10559 static SDValue PerformSUBCombine(SDNode *N,
10560                                  TargetLowering::DAGCombinerInfo &DCI) {
10561   SDValue N0 = N->getOperand(0);
10562   SDValue N1 = N->getOperand(1);
10563 
10564   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10565   if (N1.getNode()->hasOneUse())
10566     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
10567       return Result;
10568 
10569   return SDValue();
10570 }
10571 
10572 /// PerformVMULCombine
10573 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
10574 /// special multiplier accumulator forwarding.
10575 ///   vmul d3, d0, d2
10576 ///   vmla d3, d1, d2
10577 /// is faster than
10578 ///   vadd d3, d0, d1
10579 ///   vmul d3, d3, d2
10580 //  However, for (A + B) * (A + B),
10581 //    vadd d2, d0, d1
10582 //    vmul d3, d0, d2
10583 //    vmla d3, d1, d2
10584 //  is slower than
10585 //    vadd d2, d0, d1
10586 //    vmul d3, d2, d2
10587 static SDValue PerformVMULCombine(SDNode *N,
10588                                   TargetLowering::DAGCombinerInfo &DCI,
10589                                   const ARMSubtarget *Subtarget) {
10590   if (!Subtarget->hasVMLxForwarding())
10591     return SDValue();
10592 
10593   SelectionDAG &DAG = DCI.DAG;
10594   SDValue N0 = N->getOperand(0);
10595   SDValue N1 = N->getOperand(1);
10596   unsigned Opcode = N0.getOpcode();
10597   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10598       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
10599     Opcode = N1.getOpcode();
10600     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10601         Opcode != ISD::FADD && Opcode != ISD::FSUB)
10602       return SDValue();
10603     std::swap(N0, N1);
10604   }
10605 
10606   if (N0 == N1)
10607     return SDValue();
10608 
10609   EVT VT = N->getValueType(0);
10610   SDLoc DL(N);
10611   SDValue N00 = N0->getOperand(0);
10612   SDValue N01 = N0->getOperand(1);
10613   return DAG.getNode(Opcode, DL, VT,
10614                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
10615                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
10616 }
10617 
10618 static SDValue PerformMULCombine(SDNode *N,
10619                                  TargetLowering::DAGCombinerInfo &DCI,
10620                                  const ARMSubtarget *Subtarget) {
10621   SelectionDAG &DAG = DCI.DAG;
10622 
10623   if (Subtarget->isThumb1Only())
10624     return SDValue();
10625 
10626   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10627     return SDValue();
10628 
10629   EVT VT = N->getValueType(0);
10630   if (VT.is64BitVector() || VT.is128BitVector())
10631     return PerformVMULCombine(N, DCI, Subtarget);
10632   if (VT != MVT::i32)
10633     return SDValue();
10634 
10635   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10636   if (!C)
10637     return SDValue();
10638 
10639   int64_t MulAmt = C->getSExtValue();
10640   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
10641 
10642   ShiftAmt = ShiftAmt & (32 - 1);
10643   SDValue V = N->getOperand(0);
10644   SDLoc DL(N);
10645 
10646   SDValue Res;
10647   MulAmt >>= ShiftAmt;
10648 
10649   if (MulAmt >= 0) {
10650     if (isPowerOf2_32(MulAmt - 1)) {
10651       // (mul x, 2^N + 1) => (add (shl x, N), x)
10652       Res = DAG.getNode(ISD::ADD, DL, VT,
10653                         V,
10654                         DAG.getNode(ISD::SHL, DL, VT,
10655                                     V,
10656                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
10657                                                     MVT::i32)));
10658     } else if (isPowerOf2_32(MulAmt + 1)) {
10659       // (mul x, 2^N - 1) => (sub (shl x, N), x)
10660       Res = DAG.getNode(ISD::SUB, DL, VT,
10661                         DAG.getNode(ISD::SHL, DL, VT,
10662                                     V,
10663                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
10664                                                     MVT::i32)),
10665                         V);
10666     } else
10667       return SDValue();
10668   } else {
10669     uint64_t MulAmtAbs = -MulAmt;
10670     if (isPowerOf2_32(MulAmtAbs + 1)) {
10671       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
10672       Res = DAG.getNode(ISD::SUB, DL, VT,
10673                         V,
10674                         DAG.getNode(ISD::SHL, DL, VT,
10675                                     V,
10676                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
10677                                                     MVT::i32)));
10678     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
10679       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
10680       Res = DAG.getNode(ISD::ADD, DL, VT,
10681                         V,
10682                         DAG.getNode(ISD::SHL, DL, VT,
10683                                     V,
10684                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
10685                                                     MVT::i32)));
10686       Res = DAG.getNode(ISD::SUB, DL, VT,
10687                         DAG.getConstant(0, DL, MVT::i32), Res);
10688     } else
10689       return SDValue();
10690   }
10691 
10692   if (ShiftAmt != 0)
10693     Res = DAG.getNode(ISD::SHL, DL, VT,
10694                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
10695 
10696   // Do not add new nodes to DAG combiner worklist.
10697   DCI.CombineTo(N, Res, false);
10698   return SDValue();
10699 }
10700 
10701 static SDValue PerformANDCombine(SDNode *N,
10702                                  TargetLowering::DAGCombinerInfo &DCI,
10703                                  const ARMSubtarget *Subtarget) {
10704   // Attempt to use immediate-form VBIC
10705   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10706   SDLoc dl(N);
10707   EVT VT = N->getValueType(0);
10708   SelectionDAG &DAG = DCI.DAG;
10709 
10710   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10711     return SDValue();
10712 
10713   APInt SplatBits, SplatUndef;
10714   unsigned SplatBitSize;
10715   bool HasAnyUndefs;
10716   if (BVN &&
10717       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
10718     if (SplatBitSize <= 64) {
10719       EVT VbicVT;
10720       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
10721                                       SplatUndef.getZExtValue(), SplatBitSize,
10722                                       DAG, dl, VbicVT, VT.is128BitVector(),
10723                                       OtherModImm);
10724       if (Val.getNode()) {
10725         SDValue Input =
10726           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
10727         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
10728         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
10729       }
10730     }
10731   }
10732 
10733   if (!Subtarget->isThumb1Only()) {
10734     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
10735     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
10736       return Result;
10737 
10738     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10739       return Result;
10740   }
10741 
10742   return SDValue();
10743 }
10744 
10745 // Try combining OR nodes to SMULWB, SMULWT.
10746 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
10747                                          TargetLowering::DAGCombinerInfo &DCI,
10748                                          const ARMSubtarget *Subtarget) {
10749   if (!Subtarget->hasV6Ops() ||
10750       (Subtarget->isThumb() &&
10751        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
10752     return SDValue();
10753 
10754   SDValue SRL = OR->getOperand(0);
10755   SDValue SHL = OR->getOperand(1);
10756 
10757   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
10758     SRL = OR->getOperand(1);
10759     SHL = OR->getOperand(0);
10760   }
10761   if (!isSRL16(SRL) || !isSHL16(SHL))
10762     return SDValue();
10763 
10764   // The first operands to the shifts need to be the two results from the
10765   // same smul_lohi node.
10766   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
10767        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
10768     return SDValue();
10769 
10770   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
10771   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
10772       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
10773     return SDValue();
10774 
10775   // Now we have:
10776   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
10777   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
10778   // For SMUWB the 16-bit value will signed extended somehow.
10779   // For SMULWT only the SRA is required.
10780   // Check both sides of SMUL_LOHI
10781   SDValue OpS16 = SMULLOHI->getOperand(0);
10782   SDValue OpS32 = SMULLOHI->getOperand(1);
10783 
10784   SelectionDAG &DAG = DCI.DAG;
10785   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
10786     OpS16 = OpS32;
10787     OpS32 = SMULLOHI->getOperand(0);
10788   }
10789 
10790   SDLoc dl(OR);
10791   unsigned Opcode = 0;
10792   if (isS16(OpS16, DAG))
10793     Opcode = ARMISD::SMULWB;
10794   else if (isSRA16(OpS16)) {
10795     Opcode = ARMISD::SMULWT;
10796     OpS16 = OpS16->getOperand(0);
10797   }
10798   else
10799     return SDValue();
10800 
10801   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
10802   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
10803   return SDValue(OR, 0);
10804 }
10805 
10806 static SDValue PerformORCombineToBFI(SDNode *N,
10807                                      TargetLowering::DAGCombinerInfo &DCI,
10808                                      const ARMSubtarget *Subtarget) {
10809   // BFI is only available on V6T2+
10810   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
10811     return SDValue();
10812 
10813   EVT VT = N->getValueType(0);
10814   SDValue N0 = N->getOperand(0);
10815   SDValue N1 = N->getOperand(1);
10816   SelectionDAG &DAG = DCI.DAG;
10817   SDLoc DL(N);
10818   // 1) or (and A, mask), val => ARMbfi A, val, mask
10819   //      iff (val & mask) == val
10820   //
10821   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10822   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
10823   //          && mask == ~mask2
10824   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
10825   //          && ~mask == mask2
10826   //  (i.e., copy a bitfield value into another bitfield of the same width)
10827 
10828   if (VT != MVT::i32)
10829     return SDValue();
10830 
10831   SDValue N00 = N0.getOperand(0);
10832 
10833   // The value and the mask need to be constants so we can verify this is
10834   // actually a bitfield set. If the mask is 0xffff, we can do better
10835   // via a movt instruction, so don't use BFI in that case.
10836   SDValue MaskOp = N0.getOperand(1);
10837   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
10838   if (!MaskC)
10839     return SDValue();
10840   unsigned Mask = MaskC->getZExtValue();
10841   if (Mask == 0xffff)
10842     return SDValue();
10843   SDValue Res;
10844   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
10845   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10846   if (N1C) {
10847     unsigned Val = N1C->getZExtValue();
10848     if ((Val & ~Mask) != Val)
10849       return SDValue();
10850 
10851     if (ARM::isBitFieldInvertedMask(Mask)) {
10852       Val >>= countTrailingZeros(~Mask);
10853 
10854       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
10855                         DAG.getConstant(Val, DL, MVT::i32),
10856                         DAG.getConstant(Mask, DL, MVT::i32));
10857 
10858       DCI.CombineTo(N, Res, false);
10859       // Return value from the original node to inform the combiner than N is
10860       // now dead.
10861       return SDValue(N, 0);
10862     }
10863   } else if (N1.getOpcode() == ISD::AND) {
10864     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10865     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
10866     if (!N11C)
10867       return SDValue();
10868     unsigned Mask2 = N11C->getZExtValue();
10869 
10870     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
10871     // as is to match.
10872     if (ARM::isBitFieldInvertedMask(Mask) &&
10873         (Mask == ~Mask2)) {
10874       // The pack halfword instruction works better for masks that fit it,
10875       // so use that when it's available.
10876       if (Subtarget->hasDSP() &&
10877           (Mask == 0xffff || Mask == 0xffff0000))
10878         return SDValue();
10879       // 2a
10880       unsigned amt = countTrailingZeros(Mask2);
10881       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
10882                         DAG.getConstant(amt, DL, MVT::i32));
10883       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
10884                         DAG.getConstant(Mask, DL, MVT::i32));
10885       DCI.CombineTo(N, Res, false);
10886       // Return value from the original node to inform the combiner than N is
10887       // now dead.
10888       return SDValue(N, 0);
10889     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
10890                (~Mask == Mask2)) {
10891       // The pack halfword instruction works better for masks that fit it,
10892       // so use that when it's available.
10893       if (Subtarget->hasDSP() &&
10894           (Mask2 == 0xffff || Mask2 == 0xffff0000))
10895         return SDValue();
10896       // 2b
10897       unsigned lsb = countTrailingZeros(Mask);
10898       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
10899                         DAG.getConstant(lsb, DL, MVT::i32));
10900       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
10901                         DAG.getConstant(Mask2, DL, MVT::i32));
10902       DCI.CombineTo(N, Res, false);
10903       // Return value from the original node to inform the combiner than N is
10904       // now dead.
10905       return SDValue(N, 0);
10906     }
10907   }
10908 
10909   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
10910       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
10911       ARM::isBitFieldInvertedMask(~Mask)) {
10912     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
10913     // where lsb(mask) == #shamt and masked bits of B are known zero.
10914     SDValue ShAmt = N00.getOperand(1);
10915     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10916     unsigned LSB = countTrailingZeros(Mask);
10917     if (ShAmtC != LSB)
10918       return SDValue();
10919 
10920     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
10921                       DAG.getConstant(~Mask, DL, MVT::i32));
10922 
10923     DCI.CombineTo(N, Res, false);
10924     // Return value from the original node to inform the combiner than N is
10925     // now dead.
10926     return SDValue(N, 0);
10927   }
10928 
10929   return SDValue();
10930 }
10931 
10932 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
10933 static SDValue PerformORCombine(SDNode *N,
10934                                 TargetLowering::DAGCombinerInfo &DCI,
10935                                 const ARMSubtarget *Subtarget) {
10936   // Attempt to use immediate-form VORR
10937   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10938   SDLoc dl(N);
10939   EVT VT = N->getValueType(0);
10940   SelectionDAG &DAG = DCI.DAG;
10941 
10942   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10943     return SDValue();
10944 
10945   APInt SplatBits, SplatUndef;
10946   unsigned SplatBitSize;
10947   bool HasAnyUndefs;
10948   if (BVN && Subtarget->hasNEON() &&
10949       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
10950     if (SplatBitSize <= 64) {
10951       EVT VorrVT;
10952       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
10953                                       SplatUndef.getZExtValue(), SplatBitSize,
10954                                       DAG, dl, VorrVT, VT.is128BitVector(),
10955                                       OtherModImm);
10956       if (Val.getNode()) {
10957         SDValue Input =
10958           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
10959         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
10960         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
10961       }
10962     }
10963   }
10964 
10965   if (!Subtarget->isThumb1Only()) {
10966     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10967     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
10968       return Result;
10969     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
10970       return Result;
10971   }
10972 
10973   SDValue N0 = N->getOperand(0);
10974   SDValue N1 = N->getOperand(1);
10975 
10976   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
10977   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
10978       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10979 
10980     // The code below optimizes (or (and X, Y), Z).
10981     // The AND operand needs to have a single user to make these optimizations
10982     // profitable.
10983     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
10984       return SDValue();
10985 
10986     APInt SplatUndef;
10987     unsigned SplatBitSize;
10988     bool HasAnyUndefs;
10989 
10990     APInt SplatBits0, SplatBits1;
10991     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
10992     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
10993     // Ensure that the second operand of both ands are constants
10994     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
10995                                       HasAnyUndefs) && !HasAnyUndefs) {
10996         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
10997                                           HasAnyUndefs) && !HasAnyUndefs) {
10998             // Ensure that the bit width of the constants are the same and that
10999             // the splat arguments are logical inverses as per the pattern we
11000             // are trying to simplify.
11001             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
11002                 SplatBits0 == ~SplatBits1) {
11003                 // Canonicalize the vector type to make instruction selection
11004                 // simpler.
11005                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
11006                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
11007                                              N0->getOperand(1),
11008                                              N0->getOperand(0),
11009                                              N1->getOperand(0));
11010                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
11011             }
11012         }
11013     }
11014   }
11015 
11016   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11017   // reasonable.
11018   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
11019     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
11020       return Res;
11021   }
11022 
11023   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11024     return Result;
11025 
11026   return SDValue();
11027 }
11028 
11029 static SDValue PerformXORCombine(SDNode *N,
11030                                  TargetLowering::DAGCombinerInfo &DCI,
11031                                  const ARMSubtarget *Subtarget) {
11032   EVT VT = N->getValueType(0);
11033   SelectionDAG &DAG = DCI.DAG;
11034 
11035   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11036     return SDValue();
11037 
11038   if (!Subtarget->isThumb1Only()) {
11039     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11040     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11041       return Result;
11042 
11043     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11044       return Result;
11045   }
11046 
11047   return SDValue();
11048 }
11049 
11050 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11051 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
11052 // their position in "to" (Rd).
11053 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
11054   assert(N->getOpcode() == ARMISD::BFI);
11055 
11056   SDValue From = N->getOperand(1);
11057   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
11058   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
11059 
11060   // If the Base came from a SHR #C, we can deduce that it is really testing bit
11061   // #C in the base of the SHR.
11062   if (From->getOpcode() == ISD::SRL &&
11063       isa<ConstantSDNode>(From->getOperand(1))) {
11064     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
11065     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
11066     FromMask <<= Shift.getLimitedValue(31);
11067     From = From->getOperand(0);
11068   }
11069 
11070   return From;
11071 }
11072 
11073 // If A and B contain one contiguous set of bits, does A | B == A . B?
11074 //
11075 // Neither A nor B must be zero.
11076 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
11077   unsigned LastActiveBitInA =  A.countTrailingZeros();
11078   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
11079   return LastActiveBitInA - 1 == FirstActiveBitInB;
11080 }
11081 
11082 static SDValue FindBFIToCombineWith(SDNode *N) {
11083   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
11084   // if one exists.
11085   APInt ToMask, FromMask;
11086   SDValue From = ParseBFI(N, ToMask, FromMask);
11087   SDValue To = N->getOperand(0);
11088 
11089   // Now check for a compatible BFI to merge with. We can pass through BFIs that
11090   // aren't compatible, but not if they set the same bit in their destination as
11091   // we do (or that of any BFI we're going to combine with).
11092   SDValue V = To;
11093   APInt CombinedToMask = ToMask;
11094   while (V.getOpcode() == ARMISD::BFI) {
11095     APInt NewToMask, NewFromMask;
11096     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
11097     if (NewFrom != From) {
11098       // This BFI has a different base. Keep going.
11099       CombinedToMask |= NewToMask;
11100       V = V.getOperand(0);
11101       continue;
11102     }
11103 
11104     // Do the written bits conflict with any we've seen so far?
11105     if ((NewToMask & CombinedToMask).getBoolValue())
11106       // Conflicting bits - bail out because going further is unsafe.
11107       return SDValue();
11108 
11109     // Are the new bits contiguous when combined with the old bits?
11110     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
11111         BitsProperlyConcatenate(FromMask, NewFromMask))
11112       return V;
11113     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
11114         BitsProperlyConcatenate(NewFromMask, FromMask))
11115       return V;
11116 
11117     // We've seen a write to some bits, so track it.
11118     CombinedToMask |= NewToMask;
11119     // Keep going...
11120     V = V.getOperand(0);
11121   }
11122 
11123   return SDValue();
11124 }
11125 
11126 static SDValue PerformBFICombine(SDNode *N,
11127                                  TargetLowering::DAGCombinerInfo &DCI) {
11128   SDValue N1 = N->getOperand(1);
11129   if (N1.getOpcode() == ISD::AND) {
11130     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
11131     // the bits being cleared by the AND are not demanded by the BFI.
11132     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11133     if (!N11C)
11134       return SDValue();
11135     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11136     unsigned LSB = countTrailingZeros(~InvMask);
11137     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
11138     assert(Width <
11139                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
11140            "undefined behavior");
11141     unsigned Mask = (1u << Width) - 1;
11142     unsigned Mask2 = N11C->getZExtValue();
11143     if ((Mask & (~Mask2)) == 0)
11144       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
11145                              N->getOperand(0), N1.getOperand(0),
11146                              N->getOperand(2));
11147   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
11148     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
11149     // Keep track of any consecutive bits set that all come from the same base
11150     // value. We can combine these together into a single BFI.
11151     SDValue CombineBFI = FindBFIToCombineWith(N);
11152     if (CombineBFI == SDValue())
11153       return SDValue();
11154 
11155     // We've found a BFI.
11156     APInt ToMask1, FromMask1;
11157     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
11158 
11159     APInt ToMask2, FromMask2;
11160     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
11161     assert(From1 == From2);
11162     (void)From2;
11163 
11164     // First, unlink CombineBFI.
11165     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
11166     // Then create a new BFI, combining the two together.
11167     APInt NewFromMask = FromMask1 | FromMask2;
11168     APInt NewToMask = ToMask1 | ToMask2;
11169 
11170     EVT VT = N->getValueType(0);
11171     SDLoc dl(N);
11172 
11173     if (NewFromMask[0] == 0)
11174       From1 = DCI.DAG.getNode(
11175         ISD::SRL, dl, VT, From1,
11176         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
11177     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
11178                            DCI.DAG.getConstant(~NewToMask, dl, VT));
11179   }
11180   return SDValue();
11181 }
11182 
11183 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
11184 /// ARMISD::VMOVRRD.
11185 static SDValue PerformVMOVRRDCombine(SDNode *N,
11186                                      TargetLowering::DAGCombinerInfo &DCI,
11187                                      const ARMSubtarget *Subtarget) {
11188   // vmovrrd(vmovdrr x, y) -> x,y
11189   SDValue InDouble = N->getOperand(0);
11190   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
11191     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
11192 
11193   // vmovrrd(load f64) -> (load i32), (load i32)
11194   SDNode *InNode = InDouble.getNode();
11195   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
11196       InNode->getValueType(0) == MVT::f64 &&
11197       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
11198       !cast<LoadSDNode>(InNode)->isVolatile()) {
11199     // TODO: Should this be done for non-FrameIndex operands?
11200     LoadSDNode *LD = cast<LoadSDNode>(InNode);
11201 
11202     SelectionDAG &DAG = DCI.DAG;
11203     SDLoc DL(LD);
11204     SDValue BasePtr = LD->getBasePtr();
11205     SDValue NewLD1 =
11206         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
11207                     LD->getAlignment(), LD->getMemOperand()->getFlags());
11208 
11209     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11210                                     DAG.getConstant(4, DL, MVT::i32));
11211     SDValue NewLD2 = DAG.getLoad(
11212         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
11213         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
11214 
11215     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
11216     if (DCI.DAG.getDataLayout().isBigEndian())
11217       std::swap (NewLD1, NewLD2);
11218     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
11219     return Result;
11220   }
11221 
11222   return SDValue();
11223 }
11224 
11225 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
11226 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
11227 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
11228   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
11229   SDValue Op0 = N->getOperand(0);
11230   SDValue Op1 = N->getOperand(1);
11231   if (Op0.getOpcode() == ISD::BITCAST)
11232     Op0 = Op0.getOperand(0);
11233   if (Op1.getOpcode() == ISD::BITCAST)
11234     Op1 = Op1.getOperand(0);
11235   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
11236       Op0.getNode() == Op1.getNode() &&
11237       Op0.getResNo() == 0 && Op1.getResNo() == 1)
11238     return DAG.getNode(ISD::BITCAST, SDLoc(N),
11239                        N->getValueType(0), Op0.getOperand(0));
11240   return SDValue();
11241 }
11242 
11243 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
11244 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
11245 /// i64 vector to have f64 elements, since the value can then be loaded
11246 /// directly into a VFP register.
11247 static bool hasNormalLoadOperand(SDNode *N) {
11248   unsigned NumElts = N->getValueType(0).getVectorNumElements();
11249   for (unsigned i = 0; i < NumElts; ++i) {
11250     SDNode *Elt = N->getOperand(i).getNode();
11251     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
11252       return true;
11253   }
11254   return false;
11255 }
11256 
11257 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
11258 /// ISD::BUILD_VECTOR.
11259 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
11260                                           TargetLowering::DAGCombinerInfo &DCI,
11261                                           const ARMSubtarget *Subtarget) {
11262   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
11263   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
11264   // into a pair of GPRs, which is fine when the value is used as a scalar,
11265   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
11266   SelectionDAG &DAG = DCI.DAG;
11267   if (N->getNumOperands() == 2)
11268     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
11269       return RV;
11270 
11271   // Load i64 elements as f64 values so that type legalization does not split
11272   // them up into i32 values.
11273   EVT VT = N->getValueType(0);
11274   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
11275     return SDValue();
11276   SDLoc dl(N);
11277   SmallVector<SDValue, 8> Ops;
11278   unsigned NumElts = VT.getVectorNumElements();
11279   for (unsigned i = 0; i < NumElts; ++i) {
11280     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
11281     Ops.push_back(V);
11282     // Make the DAGCombiner fold the bitcast.
11283     DCI.AddToWorklist(V.getNode());
11284   }
11285   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
11286   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
11287   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
11288 }
11289 
11290 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
11291 static SDValue
11292 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11293   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
11294   // At that time, we may have inserted bitcasts from integer to float.
11295   // If these bitcasts have survived DAGCombine, change the lowering of this
11296   // BUILD_VECTOR in something more vector friendly, i.e., that does not
11297   // force to use floating point types.
11298 
11299   // Make sure we can change the type of the vector.
11300   // This is possible iff:
11301   // 1. The vector is only used in a bitcast to a integer type. I.e.,
11302   //    1.1. Vector is used only once.
11303   //    1.2. Use is a bit convert to an integer type.
11304   // 2. The size of its operands are 32-bits (64-bits are not legal).
11305   EVT VT = N->getValueType(0);
11306   EVT EltVT = VT.getVectorElementType();
11307 
11308   // Check 1.1. and 2.
11309   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
11310     return SDValue();
11311 
11312   // By construction, the input type must be float.
11313   assert(EltVT == MVT::f32 && "Unexpected type!");
11314 
11315   // Check 1.2.
11316   SDNode *Use = *N->use_begin();
11317   if (Use->getOpcode() != ISD::BITCAST ||
11318       Use->getValueType(0).isFloatingPoint())
11319     return SDValue();
11320 
11321   // Check profitability.
11322   // Model is, if more than half of the relevant operands are bitcast from
11323   // i32, turn the build_vector into a sequence of insert_vector_elt.
11324   // Relevant operands are everything that is not statically
11325   // (i.e., at compile time) bitcasted.
11326   unsigned NumOfBitCastedElts = 0;
11327   unsigned NumElts = VT.getVectorNumElements();
11328   unsigned NumOfRelevantElts = NumElts;
11329   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
11330     SDValue Elt = N->getOperand(Idx);
11331     if (Elt->getOpcode() == ISD::BITCAST) {
11332       // Assume only bit cast to i32 will go away.
11333       if (Elt->getOperand(0).getValueType() == MVT::i32)
11334         ++NumOfBitCastedElts;
11335     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
11336       // Constants are statically casted, thus do not count them as
11337       // relevant operands.
11338       --NumOfRelevantElts;
11339   }
11340 
11341   // Check if more than half of the elements require a non-free bitcast.
11342   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
11343     return SDValue();
11344 
11345   SelectionDAG &DAG = DCI.DAG;
11346   // Create the new vector type.
11347   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
11348   // Check if the type is legal.
11349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11350   if (!TLI.isTypeLegal(VecVT))
11351     return SDValue();
11352 
11353   // Combine:
11354   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
11355   // => BITCAST INSERT_VECTOR_ELT
11356   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
11357   //                      (BITCAST EN), N.
11358   SDValue Vec = DAG.getUNDEF(VecVT);
11359   SDLoc dl(N);
11360   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
11361     SDValue V = N->getOperand(Idx);
11362     if (V.isUndef())
11363       continue;
11364     if (V.getOpcode() == ISD::BITCAST &&
11365         V->getOperand(0).getValueType() == MVT::i32)
11366       // Fold obvious case.
11367       V = V.getOperand(0);
11368     else {
11369       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
11370       // Make the DAGCombiner fold the bitcasts.
11371       DCI.AddToWorklist(V.getNode());
11372     }
11373     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
11374     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
11375   }
11376   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
11377   // Make the DAGCombiner fold the bitcasts.
11378   DCI.AddToWorklist(Vec.getNode());
11379   return Vec;
11380 }
11381 
11382 /// PerformInsertEltCombine - Target-specific dag combine xforms for
11383 /// ISD::INSERT_VECTOR_ELT.
11384 static SDValue PerformInsertEltCombine(SDNode *N,
11385                                        TargetLowering::DAGCombinerInfo &DCI) {
11386   // Bitcast an i64 load inserted into a vector to f64.
11387   // Otherwise, the i64 value will be legalized to a pair of i32 values.
11388   EVT VT = N->getValueType(0);
11389   SDNode *Elt = N->getOperand(1).getNode();
11390   if (VT.getVectorElementType() != MVT::i64 ||
11391       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
11392     return SDValue();
11393 
11394   SelectionDAG &DAG = DCI.DAG;
11395   SDLoc dl(N);
11396   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11397                                  VT.getVectorNumElements());
11398   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
11399   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
11400   // Make the DAGCombiner fold the bitcasts.
11401   DCI.AddToWorklist(Vec.getNode());
11402   DCI.AddToWorklist(V.getNode());
11403   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
11404                                Vec, V, N->getOperand(2));
11405   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
11406 }
11407 
11408 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
11409 /// ISD::VECTOR_SHUFFLE.
11410 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
11411   // The LLVM shufflevector instruction does not require the shuffle mask
11412   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
11413   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
11414   // operands do not match the mask length, they are extended by concatenating
11415   // them with undef vectors.  That is probably the right thing for other
11416   // targets, but for NEON it is better to concatenate two double-register
11417   // size vector operands into a single quad-register size vector.  Do that
11418   // transformation here:
11419   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
11420   //   shuffle(concat(v1, v2), undef)
11421   SDValue Op0 = N->getOperand(0);
11422   SDValue Op1 = N->getOperand(1);
11423   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
11424       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
11425       Op0.getNumOperands() != 2 ||
11426       Op1.getNumOperands() != 2)
11427     return SDValue();
11428   SDValue Concat0Op1 = Op0.getOperand(1);
11429   SDValue Concat1Op1 = Op1.getOperand(1);
11430   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
11431     return SDValue();
11432   // Skip the transformation if any of the types are illegal.
11433   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11434   EVT VT = N->getValueType(0);
11435   if (!TLI.isTypeLegal(VT) ||
11436       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
11437       !TLI.isTypeLegal(Concat1Op1.getValueType()))
11438     return SDValue();
11439 
11440   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
11441                                   Op0.getOperand(0), Op1.getOperand(0));
11442   // Translate the shuffle mask.
11443   SmallVector<int, 16> NewMask;
11444   unsigned NumElts = VT.getVectorNumElements();
11445   unsigned HalfElts = NumElts/2;
11446   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
11447   for (unsigned n = 0; n < NumElts; ++n) {
11448     int MaskElt = SVN->getMaskElt(n);
11449     int NewElt = -1;
11450     if (MaskElt < (int)HalfElts)
11451       NewElt = MaskElt;
11452     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
11453       NewElt = HalfElts + MaskElt - NumElts;
11454     NewMask.push_back(NewElt);
11455   }
11456   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
11457                               DAG.getUNDEF(VT), NewMask);
11458 }
11459 
11460 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
11461 /// NEON load/store intrinsics, and generic vector load/stores, to merge
11462 /// base address updates.
11463 /// For generic load/stores, the memory type is assumed to be a vector.
11464 /// The caller is assumed to have checked legality.
11465 static SDValue CombineBaseUpdate(SDNode *N,
11466                                  TargetLowering::DAGCombinerInfo &DCI) {
11467   SelectionDAG &DAG = DCI.DAG;
11468   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
11469                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
11470   const bool isStore = N->getOpcode() == ISD::STORE;
11471   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
11472   SDValue Addr = N->getOperand(AddrOpIdx);
11473   MemSDNode *MemN = cast<MemSDNode>(N);
11474   SDLoc dl(N);
11475 
11476   // Search for a use of the address operand that is an increment.
11477   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11478          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11479     SDNode *User = *UI;
11480     if (User->getOpcode() != ISD::ADD ||
11481         UI.getUse().getResNo() != Addr.getResNo())
11482       continue;
11483 
11484     // Check that the add is independent of the load/store.  Otherwise, folding
11485     // it would create a cycle.
11486     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
11487       continue;
11488 
11489     // Find the new opcode for the updating load/store.
11490     bool isLoadOp = true;
11491     bool isLaneOp = false;
11492     unsigned NewOpc = 0;
11493     unsigned NumVecs = 0;
11494     if (isIntrinsic) {
11495       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11496       switch (IntNo) {
11497       default: llvm_unreachable("unexpected intrinsic for Neon base update");
11498       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
11499         NumVecs = 1; break;
11500       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
11501         NumVecs = 2; break;
11502       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
11503         NumVecs = 3; break;
11504       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
11505         NumVecs = 4; break;
11506       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
11507         NumVecs = 2; isLaneOp = true; break;
11508       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
11509         NumVecs = 3; isLaneOp = true; break;
11510       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
11511         NumVecs = 4; isLaneOp = true; break;
11512       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
11513         NumVecs = 1; isLoadOp = false; break;
11514       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
11515         NumVecs = 2; isLoadOp = false; break;
11516       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
11517         NumVecs = 3; isLoadOp = false; break;
11518       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
11519         NumVecs = 4; isLoadOp = false; break;
11520       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
11521         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
11522       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
11523         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
11524       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
11525         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
11526       }
11527     } else {
11528       isLaneOp = true;
11529       switch (N->getOpcode()) {
11530       default: llvm_unreachable("unexpected opcode for Neon base update");
11531       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
11532       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
11533       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
11534       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
11535       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
11536         NumVecs = 1; isLaneOp = false; break;
11537       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
11538         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
11539       }
11540     }
11541 
11542     // Find the size of memory referenced by the load/store.
11543     EVT VecTy;
11544     if (isLoadOp) {
11545       VecTy = N->getValueType(0);
11546     } else if (isIntrinsic) {
11547       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
11548     } else {
11549       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
11550       VecTy = N->getOperand(1).getValueType();
11551     }
11552 
11553     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11554     if (isLaneOp)
11555       NumBytes /= VecTy.getVectorNumElements();
11556 
11557     // If the increment is a constant, it must match the memory ref size.
11558     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11559     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
11560     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
11561       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
11562       // separate instructions that make it harder to use a non-constant update.
11563       continue;
11564     }
11565 
11566     // OK, we found an ADD we can fold into the base update.
11567     // Now, create a _UPD node, taking care of not breaking alignment.
11568 
11569     EVT AlignedVecTy = VecTy;
11570     unsigned Alignment = MemN->getAlignment();
11571 
11572     // If this is a less-than-standard-aligned load/store, change the type to
11573     // match the standard alignment.
11574     // The alignment is overlooked when selecting _UPD variants; and it's
11575     // easier to introduce bitcasts here than fix that.
11576     // There are 3 ways to get to this base-update combine:
11577     // - intrinsics: they are assumed to be properly aligned (to the standard
11578     //   alignment of the memory type), so we don't need to do anything.
11579     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
11580     //   intrinsics, so, likewise, there's nothing to do.
11581     // - generic load/store instructions: the alignment is specified as an
11582     //   explicit operand, rather than implicitly as the standard alignment
11583     //   of the memory type (like the intrisics).  We need to change the
11584     //   memory type to match the explicit alignment.  That way, we don't
11585     //   generate non-standard-aligned ARMISD::VLDx nodes.
11586     if (isa<LSBaseSDNode>(N)) {
11587       if (Alignment == 0)
11588         Alignment = 1;
11589       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
11590         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
11591         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
11592         assert(!isLaneOp && "Unexpected generic load/store lane.");
11593         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
11594         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
11595       }
11596       // Don't set an explicit alignment on regular load/stores that we want
11597       // to transform to VLD/VST 1_UPD nodes.
11598       // This matches the behavior of regular load/stores, which only get an
11599       // explicit alignment if the MMO alignment is larger than the standard
11600       // alignment of the memory type.
11601       // Intrinsics, however, always get an explicit alignment, set to the
11602       // alignment of the MMO.
11603       Alignment = 1;
11604     }
11605 
11606     // Create the new updating load/store node.
11607     // First, create an SDVTList for the new updating node's results.
11608     EVT Tys[6];
11609     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
11610     unsigned n;
11611     for (n = 0; n < NumResultVecs; ++n)
11612       Tys[n] = AlignedVecTy;
11613     Tys[n++] = MVT::i32;
11614     Tys[n] = MVT::Other;
11615     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
11616 
11617     // Then, gather the new node's operands.
11618     SmallVector<SDValue, 8> Ops;
11619     Ops.push_back(N->getOperand(0)); // incoming chain
11620     Ops.push_back(N->getOperand(AddrOpIdx));
11621     Ops.push_back(Inc);
11622 
11623     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
11624       // Try to match the intrinsic's signature
11625       Ops.push_back(StN->getValue());
11626     } else {
11627       // Loads (and of course intrinsics) match the intrinsics' signature,
11628       // so just add all but the alignment operand.
11629       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
11630         Ops.push_back(N->getOperand(i));
11631     }
11632 
11633     // For all node types, the alignment operand is always the last one.
11634     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
11635 
11636     // If this is a non-standard-aligned STORE, the penultimate operand is the
11637     // stored value.  Bitcast it to the aligned type.
11638     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
11639       SDValue &StVal = Ops[Ops.size()-2];
11640       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
11641     }
11642 
11643     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
11644     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
11645                                            MemN->getMemOperand());
11646 
11647     // Update the uses.
11648     SmallVector<SDValue, 5> NewResults;
11649     for (unsigned i = 0; i < NumResultVecs; ++i)
11650       NewResults.push_back(SDValue(UpdN.getNode(), i));
11651 
11652     // If this is an non-standard-aligned LOAD, the first result is the loaded
11653     // value.  Bitcast it to the expected result type.
11654     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
11655       SDValue &LdVal = NewResults[0];
11656       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
11657     }
11658 
11659     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
11660     DCI.CombineTo(N, NewResults);
11661     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
11662 
11663     break;
11664   }
11665   return SDValue();
11666 }
11667 
11668 static SDValue PerformVLDCombine(SDNode *N,
11669                                  TargetLowering::DAGCombinerInfo &DCI) {
11670   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11671     return SDValue();
11672 
11673   return CombineBaseUpdate(N, DCI);
11674 }
11675 
11676 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
11677 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
11678 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
11679 /// return true.
11680 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11681   SelectionDAG &DAG = DCI.DAG;
11682   EVT VT = N->getValueType(0);
11683   // vldN-dup instructions only support 64-bit vectors for N > 1.
11684   if (!VT.is64BitVector())
11685     return false;
11686 
11687   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
11688   SDNode *VLD = N->getOperand(0).getNode();
11689   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
11690     return false;
11691   unsigned NumVecs = 0;
11692   unsigned NewOpc = 0;
11693   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
11694   if (IntNo == Intrinsic::arm_neon_vld2lane) {
11695     NumVecs = 2;
11696     NewOpc = ARMISD::VLD2DUP;
11697   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
11698     NumVecs = 3;
11699     NewOpc = ARMISD::VLD3DUP;
11700   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
11701     NumVecs = 4;
11702     NewOpc = ARMISD::VLD4DUP;
11703   } else {
11704     return false;
11705   }
11706 
11707   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
11708   // numbers match the load.
11709   unsigned VLDLaneNo =
11710     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
11711   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11712        UI != UE; ++UI) {
11713     // Ignore uses of the chain result.
11714     if (UI.getUse().getResNo() == NumVecs)
11715       continue;
11716     SDNode *User = *UI;
11717     if (User->getOpcode() != ARMISD::VDUPLANE ||
11718         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
11719       return false;
11720   }
11721 
11722   // Create the vldN-dup node.
11723   EVT Tys[5];
11724   unsigned n;
11725   for (n = 0; n < NumVecs; ++n)
11726     Tys[n] = VT;
11727   Tys[n] = MVT::Other;
11728   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
11729   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
11730   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
11731   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
11732                                            Ops, VLDMemInt->getMemoryVT(),
11733                                            VLDMemInt->getMemOperand());
11734 
11735   // Update the uses.
11736   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11737        UI != UE; ++UI) {
11738     unsigned ResNo = UI.getUse().getResNo();
11739     // Ignore uses of the chain result.
11740     if (ResNo == NumVecs)
11741       continue;
11742     SDNode *User = *UI;
11743     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
11744   }
11745 
11746   // Now the vldN-lane intrinsic is dead except for its chain result.
11747   // Update uses of the chain.
11748   std::vector<SDValue> VLDDupResults;
11749   for (unsigned n = 0; n < NumVecs; ++n)
11750     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
11751   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
11752   DCI.CombineTo(VLD, VLDDupResults);
11753 
11754   return true;
11755 }
11756 
11757 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
11758 /// ARMISD::VDUPLANE.
11759 static SDValue PerformVDUPLANECombine(SDNode *N,
11760                                       TargetLowering::DAGCombinerInfo &DCI) {
11761   SDValue Op = N->getOperand(0);
11762 
11763   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
11764   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
11765   if (CombineVLDDUP(N, DCI))
11766     return SDValue(N, 0);
11767 
11768   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
11769   // redundant.  Ignore bit_converts for now; element sizes are checked below.
11770   while (Op.getOpcode() == ISD::BITCAST)
11771     Op = Op.getOperand(0);
11772   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
11773     return SDValue();
11774 
11775   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
11776   unsigned EltSize = Op.getScalarValueSizeInBits();
11777   // The canonical VMOV for a zero vector uses a 32-bit element size.
11778   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11779   unsigned EltBits;
11780   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
11781     EltSize = 8;
11782   EVT VT = N->getValueType(0);
11783   if (EltSize > VT.getScalarSizeInBits())
11784     return SDValue();
11785 
11786   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
11787 }
11788 
11789 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
11790 static SDValue PerformVDUPCombine(SDNode *N,
11791                                   TargetLowering::DAGCombinerInfo &DCI) {
11792   SelectionDAG &DAG = DCI.DAG;
11793   SDValue Op = N->getOperand(0);
11794 
11795   // Match VDUP(LOAD) -> VLD1DUP.
11796   // We match this pattern here rather than waiting for isel because the
11797   // transform is only legal for unindexed loads.
11798   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
11799   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
11800       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
11801     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
11802                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
11803     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
11804     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
11805                                              Ops, LD->getMemoryVT(),
11806                                              LD->getMemOperand());
11807     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
11808     return VLDDup;
11809   }
11810 
11811   return SDValue();
11812 }
11813 
11814 static SDValue PerformLOADCombine(SDNode *N,
11815                                   TargetLowering::DAGCombinerInfo &DCI) {
11816   EVT VT = N->getValueType(0);
11817 
11818   // If this is a legal vector load, try to combine it into a VLD1_UPD.
11819   if (ISD::isNormalLoad(N) && VT.isVector() &&
11820       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
11821     return CombineBaseUpdate(N, DCI);
11822 
11823   return SDValue();
11824 }
11825 
11826 /// PerformSTORECombine - Target-specific dag combine xforms for
11827 /// ISD::STORE.
11828 static SDValue PerformSTORECombine(SDNode *N,
11829                                    TargetLowering::DAGCombinerInfo &DCI) {
11830   StoreSDNode *St = cast<StoreSDNode>(N);
11831   if (St->isVolatile())
11832     return SDValue();
11833 
11834   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
11835   // pack all of the elements in one place.  Next, store to memory in fewer
11836   // chunks.
11837   SDValue StVal = St->getValue();
11838   EVT VT = StVal.getValueType();
11839   if (St->isTruncatingStore() && VT.isVector()) {
11840     SelectionDAG &DAG = DCI.DAG;
11841     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11842     EVT StVT = St->getMemoryVT();
11843     unsigned NumElems = VT.getVectorNumElements();
11844     assert(StVT != VT && "Cannot truncate to the same type");
11845     unsigned FromEltSz = VT.getScalarSizeInBits();
11846     unsigned ToEltSz = StVT.getScalarSizeInBits();
11847 
11848     // From, To sizes and ElemCount must be pow of two
11849     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
11850 
11851     // We are going to use the original vector elt for storing.
11852     // Accumulated smaller vector elements must be a multiple of the store size.
11853     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
11854 
11855     unsigned SizeRatio  = FromEltSz / ToEltSz;
11856     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
11857 
11858     // Create a type on which we perform the shuffle.
11859     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
11860                                      NumElems*SizeRatio);
11861     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
11862 
11863     SDLoc DL(St);
11864     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
11865     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
11866     for (unsigned i = 0; i < NumElems; ++i)
11867       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
11868                           ? (i + 1) * SizeRatio - 1
11869                           : i * SizeRatio;
11870 
11871     // Can't shuffle using an illegal type.
11872     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
11873 
11874     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
11875                                 DAG.getUNDEF(WideVec.getValueType()),
11876                                 ShuffleVec);
11877     // At this point all of the data is stored at the bottom of the
11878     // register. We now need to save it to mem.
11879 
11880     // Find the largest store unit
11881     MVT StoreType = MVT::i8;
11882     for (MVT Tp : MVT::integer_valuetypes()) {
11883       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
11884         StoreType = Tp;
11885     }
11886     // Didn't find a legal store type.
11887     if (!TLI.isTypeLegal(StoreType))
11888       return SDValue();
11889 
11890     // Bitcast the original vector into a vector of store-size units
11891     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
11892             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
11893     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
11894     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
11895     SmallVector<SDValue, 8> Chains;
11896     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
11897                                         TLI.getPointerTy(DAG.getDataLayout()));
11898     SDValue BasePtr = St->getBasePtr();
11899 
11900     // Perform one or more big stores into memory.
11901     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
11902     for (unsigned I = 0; I < E; I++) {
11903       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
11904                                    StoreType, ShuffWide,
11905                                    DAG.getIntPtrConstant(I, DL));
11906       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
11907                                 St->getPointerInfo(), St->getAlignment(),
11908                                 St->getMemOperand()->getFlags());
11909       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
11910                             Increment);
11911       Chains.push_back(Ch);
11912     }
11913     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
11914   }
11915 
11916   if (!ISD::isNormalStore(St))
11917     return SDValue();
11918 
11919   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
11920   // ARM stores of arguments in the same cache line.
11921   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
11922       StVal.getNode()->hasOneUse()) {
11923     SelectionDAG  &DAG = DCI.DAG;
11924     bool isBigEndian = DAG.getDataLayout().isBigEndian();
11925     SDLoc DL(St);
11926     SDValue BasePtr = St->getBasePtr();
11927     SDValue NewST1 = DAG.getStore(
11928         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
11929         BasePtr, St->getPointerInfo(), St->getAlignment(),
11930         St->getMemOperand()->getFlags());
11931 
11932     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11933                                     DAG.getConstant(4, DL, MVT::i32));
11934     return DAG.getStore(NewST1.getValue(0), DL,
11935                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
11936                         OffsetPtr, St->getPointerInfo(),
11937                         std::min(4U, St->getAlignment() / 2),
11938                         St->getMemOperand()->getFlags());
11939   }
11940 
11941   if (StVal.getValueType() == MVT::i64 &&
11942       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
11943 
11944     // Bitcast an i64 store extracted from a vector to f64.
11945     // Otherwise, the i64 value will be legalized to a pair of i32 values.
11946     SelectionDAG &DAG = DCI.DAG;
11947     SDLoc dl(StVal);
11948     SDValue IntVec = StVal.getOperand(0);
11949     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11950                                    IntVec.getValueType().getVectorNumElements());
11951     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
11952     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
11953                                  Vec, StVal.getOperand(1));
11954     dl = SDLoc(N);
11955     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
11956     // Make the DAGCombiner fold the bitcasts.
11957     DCI.AddToWorklist(Vec.getNode());
11958     DCI.AddToWorklist(ExtElt.getNode());
11959     DCI.AddToWorklist(V.getNode());
11960     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
11961                         St->getPointerInfo(), St->getAlignment(),
11962                         St->getMemOperand()->getFlags(), St->getAAInfo());
11963   }
11964 
11965   // If this is a legal vector store, try to combine it into a VST1_UPD.
11966   if (ISD::isNormalStore(N) && VT.isVector() &&
11967       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
11968     return CombineBaseUpdate(N, DCI);
11969 
11970   return SDValue();
11971 }
11972 
11973 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
11974 /// can replace combinations of VMUL and VCVT (floating-point to integer)
11975 /// when the VMUL has a constant operand that is a power of 2.
11976 ///
11977 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
11978 ///  vmul.f32        d16, d17, d16
11979 ///  vcvt.s32.f32    d16, d16
11980 /// becomes:
11981 ///  vcvt.s32.f32    d16, d16, #3
11982 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
11983                                   const ARMSubtarget *Subtarget) {
11984   if (!Subtarget->hasNEON())
11985     return SDValue();
11986 
11987   SDValue Op = N->getOperand(0);
11988   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
11989       Op.getOpcode() != ISD::FMUL)
11990     return SDValue();
11991 
11992   SDValue ConstVec = Op->getOperand(1);
11993   if (!isa<BuildVectorSDNode>(ConstVec))
11994     return SDValue();
11995 
11996   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
11997   uint32_t FloatBits = FloatTy.getSizeInBits();
11998   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
11999   uint32_t IntBits = IntTy.getSizeInBits();
12000   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12001   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12002     // These instructions only exist converting from f32 to i32. We can handle
12003     // smaller integers by generating an extra truncate, but larger ones would
12004     // be lossy. We also can't handle more then 4 lanes, since these intructions
12005     // only support v2i32/v4i32 types.
12006     return SDValue();
12007   }
12008 
12009   BitVector UndefElements;
12010   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12011   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12012   if (C == -1 || C == 0 || C > 32)
12013     return SDValue();
12014 
12015   SDLoc dl(N);
12016   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
12017   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
12018     Intrinsic::arm_neon_vcvtfp2fxu;
12019   SDValue FixConv = DAG.getNode(
12020       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12021       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
12022       DAG.getConstant(C, dl, MVT::i32));
12023 
12024   if (IntBits < FloatBits)
12025     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
12026 
12027   return FixConv;
12028 }
12029 
12030 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12031 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12032 /// when the VDIV has a constant operand that is a power of 2.
12033 ///
12034 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12035 ///  vcvt.f32.s32    d16, d16
12036 ///  vdiv.f32        d16, d17, d16
12037 /// becomes:
12038 ///  vcvt.f32.s32    d16, d16, #3
12039 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
12040                                   const ARMSubtarget *Subtarget) {
12041   if (!Subtarget->hasNEON())
12042     return SDValue();
12043 
12044   SDValue Op = N->getOperand(0);
12045   unsigned OpOpcode = Op.getNode()->getOpcode();
12046   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
12047       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
12048     return SDValue();
12049 
12050   SDValue ConstVec = N->getOperand(1);
12051   if (!isa<BuildVectorSDNode>(ConstVec))
12052     return SDValue();
12053 
12054   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
12055   uint32_t FloatBits = FloatTy.getSizeInBits();
12056   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
12057   uint32_t IntBits = IntTy.getSizeInBits();
12058   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12059   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12060     // These instructions only exist converting from i32 to f32. We can handle
12061     // smaller integers by generating an extra extend, but larger ones would
12062     // be lossy. We also can't handle more then 4 lanes, since these intructions
12063     // only support v2i32/v4i32 types.
12064     return SDValue();
12065   }
12066 
12067   BitVector UndefElements;
12068   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12069   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12070   if (C == -1 || C == 0 || C > 32)
12071     return SDValue();
12072 
12073   SDLoc dl(N);
12074   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
12075   SDValue ConvInput = Op.getOperand(0);
12076   if (IntBits < FloatBits)
12077     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
12078                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12079                             ConvInput);
12080 
12081   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
12082     Intrinsic::arm_neon_vcvtfxu2fp;
12083   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
12084                      Op.getValueType(),
12085                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
12086                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
12087 }
12088 
12089 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
12090 /// operand of a vector shift operation, where all the elements of the
12091 /// build_vector must have the same constant integer value.
12092 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
12093   // Ignore bit_converts.
12094   while (Op.getOpcode() == ISD::BITCAST)
12095     Op = Op.getOperand(0);
12096   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
12097   APInt SplatBits, SplatUndef;
12098   unsigned SplatBitSize;
12099   bool HasAnyUndefs;
12100   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
12101                                       HasAnyUndefs, ElementBits) ||
12102       SplatBitSize > ElementBits)
12103     return false;
12104   Cnt = SplatBits.getSExtValue();
12105   return true;
12106 }
12107 
12108 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
12109 /// operand of a vector shift left operation.  That value must be in the range:
12110 ///   0 <= Value < ElementBits for a left shift; or
12111 ///   0 <= Value <= ElementBits for a long left shift.
12112 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
12113   assert(VT.isVector() && "vector shift count is not a vector type");
12114   int64_t ElementBits = VT.getScalarSizeInBits();
12115   if (! getVShiftImm(Op, ElementBits, Cnt))
12116     return false;
12117   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
12118 }
12119 
12120 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
12121 /// operand of a vector shift right operation.  For a shift opcode, the value
12122 /// is positive, but for an intrinsic the value count must be negative. The
12123 /// absolute value must be in the range:
12124 ///   1 <= |Value| <= ElementBits for a right shift; or
12125 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
12126 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
12127                          int64_t &Cnt) {
12128   assert(VT.isVector() && "vector shift count is not a vector type");
12129   int64_t ElementBits = VT.getScalarSizeInBits();
12130   if (! getVShiftImm(Op, ElementBits, Cnt))
12131     return false;
12132   if (!isIntrinsic)
12133     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
12134   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
12135     Cnt = -Cnt;
12136     return true;
12137   }
12138   return false;
12139 }
12140 
12141 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
12142 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
12143   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12144   switch (IntNo) {
12145   default:
12146     // Don't do anything for most intrinsics.
12147     break;
12148 
12149   // Vector shifts: check for immediate versions and lower them.
12150   // Note: This is done during DAG combining instead of DAG legalizing because
12151   // the build_vectors for 64-bit vector element shift counts are generally
12152   // not legal, and it is hard to see their values after they get legalized to
12153   // loads from a constant pool.
12154   case Intrinsic::arm_neon_vshifts:
12155   case Intrinsic::arm_neon_vshiftu:
12156   case Intrinsic::arm_neon_vrshifts:
12157   case Intrinsic::arm_neon_vrshiftu:
12158   case Intrinsic::arm_neon_vrshiftn:
12159   case Intrinsic::arm_neon_vqshifts:
12160   case Intrinsic::arm_neon_vqshiftu:
12161   case Intrinsic::arm_neon_vqshiftsu:
12162   case Intrinsic::arm_neon_vqshiftns:
12163   case Intrinsic::arm_neon_vqshiftnu:
12164   case Intrinsic::arm_neon_vqshiftnsu:
12165   case Intrinsic::arm_neon_vqrshiftns:
12166   case Intrinsic::arm_neon_vqrshiftnu:
12167   case Intrinsic::arm_neon_vqrshiftnsu: {
12168     EVT VT = N->getOperand(1).getValueType();
12169     int64_t Cnt;
12170     unsigned VShiftOpc = 0;
12171 
12172     switch (IntNo) {
12173     case Intrinsic::arm_neon_vshifts:
12174     case Intrinsic::arm_neon_vshiftu:
12175       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
12176         VShiftOpc = ARMISD::VSHL;
12177         break;
12178       }
12179       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
12180         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
12181                      ARMISD::VSHRs : ARMISD::VSHRu);
12182         break;
12183       }
12184       return SDValue();
12185 
12186     case Intrinsic::arm_neon_vrshifts:
12187     case Intrinsic::arm_neon_vrshiftu:
12188       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
12189         break;
12190       return SDValue();
12191 
12192     case Intrinsic::arm_neon_vqshifts:
12193     case Intrinsic::arm_neon_vqshiftu:
12194       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12195         break;
12196       return SDValue();
12197 
12198     case Intrinsic::arm_neon_vqshiftsu:
12199       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12200         break;
12201       llvm_unreachable("invalid shift count for vqshlu intrinsic");
12202 
12203     case Intrinsic::arm_neon_vrshiftn:
12204     case Intrinsic::arm_neon_vqshiftns:
12205     case Intrinsic::arm_neon_vqshiftnu:
12206     case Intrinsic::arm_neon_vqshiftnsu:
12207     case Intrinsic::arm_neon_vqrshiftns:
12208     case Intrinsic::arm_neon_vqrshiftnu:
12209     case Intrinsic::arm_neon_vqrshiftnsu:
12210       // Narrowing shifts require an immediate right shift.
12211       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
12212         break;
12213       llvm_unreachable("invalid shift count for narrowing vector shift "
12214                        "intrinsic");
12215 
12216     default:
12217       llvm_unreachable("unhandled vector shift");
12218     }
12219 
12220     switch (IntNo) {
12221     case Intrinsic::arm_neon_vshifts:
12222     case Intrinsic::arm_neon_vshiftu:
12223       // Opcode already set above.
12224       break;
12225     case Intrinsic::arm_neon_vrshifts:
12226       VShiftOpc = ARMISD::VRSHRs; break;
12227     case Intrinsic::arm_neon_vrshiftu:
12228       VShiftOpc = ARMISD::VRSHRu; break;
12229     case Intrinsic::arm_neon_vrshiftn:
12230       VShiftOpc = ARMISD::VRSHRN; break;
12231     case Intrinsic::arm_neon_vqshifts:
12232       VShiftOpc = ARMISD::VQSHLs; break;
12233     case Intrinsic::arm_neon_vqshiftu:
12234       VShiftOpc = ARMISD::VQSHLu; break;
12235     case Intrinsic::arm_neon_vqshiftsu:
12236       VShiftOpc = ARMISD::VQSHLsu; break;
12237     case Intrinsic::arm_neon_vqshiftns:
12238       VShiftOpc = ARMISD::VQSHRNs; break;
12239     case Intrinsic::arm_neon_vqshiftnu:
12240       VShiftOpc = ARMISD::VQSHRNu; break;
12241     case Intrinsic::arm_neon_vqshiftnsu:
12242       VShiftOpc = ARMISD::VQSHRNsu; break;
12243     case Intrinsic::arm_neon_vqrshiftns:
12244       VShiftOpc = ARMISD::VQRSHRNs; break;
12245     case Intrinsic::arm_neon_vqrshiftnu:
12246       VShiftOpc = ARMISD::VQRSHRNu; break;
12247     case Intrinsic::arm_neon_vqrshiftnsu:
12248       VShiftOpc = ARMISD::VQRSHRNsu; break;
12249     }
12250 
12251     SDLoc dl(N);
12252     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12253                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
12254   }
12255 
12256   case Intrinsic::arm_neon_vshiftins: {
12257     EVT VT = N->getOperand(1).getValueType();
12258     int64_t Cnt;
12259     unsigned VShiftOpc = 0;
12260 
12261     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
12262       VShiftOpc = ARMISD::VSLI;
12263     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
12264       VShiftOpc = ARMISD::VSRI;
12265     else {
12266       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
12267     }
12268 
12269     SDLoc dl(N);
12270     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12271                        N->getOperand(1), N->getOperand(2),
12272                        DAG.getConstant(Cnt, dl, MVT::i32));
12273   }
12274 
12275   case Intrinsic::arm_neon_vqrshifts:
12276   case Intrinsic::arm_neon_vqrshiftu:
12277     // No immediate versions of these to check for.
12278     break;
12279   }
12280 
12281   return SDValue();
12282 }
12283 
12284 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
12285 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
12286 /// combining instead of DAG legalizing because the build_vectors for 64-bit
12287 /// vector element shift counts are generally not legal, and it is hard to see
12288 /// their values after they get legalized to loads from a constant pool.
12289 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
12290                                    const ARMSubtarget *ST) {
12291   EVT VT = N->getValueType(0);
12292   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
12293     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
12294     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
12295     SDValue N1 = N->getOperand(1);
12296     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
12297       SDValue N0 = N->getOperand(0);
12298       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
12299           DAG.MaskedValueIsZero(N0.getOperand(0),
12300                                 APInt::getHighBitsSet(32, 16)))
12301         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
12302     }
12303   }
12304 
12305   // Nothing to be done for scalar shifts.
12306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12307   if (!VT.isVector() || !TLI.isTypeLegal(VT))
12308     return SDValue();
12309 
12310   assert(ST->hasNEON() && "unexpected vector shift");
12311   int64_t Cnt;
12312 
12313   switch (N->getOpcode()) {
12314   default: llvm_unreachable("unexpected shift opcode");
12315 
12316   case ISD::SHL:
12317     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
12318       SDLoc dl(N);
12319       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
12320                          DAG.getConstant(Cnt, dl, MVT::i32));
12321     }
12322     break;
12323 
12324   case ISD::SRA:
12325   case ISD::SRL:
12326     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
12327       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
12328                             ARMISD::VSHRs : ARMISD::VSHRu);
12329       SDLoc dl(N);
12330       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
12331                          DAG.getConstant(Cnt, dl, MVT::i32));
12332     }
12333   }
12334   return SDValue();
12335 }
12336 
12337 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
12338 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
12339 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
12340                                     const ARMSubtarget *ST) {
12341   SDValue N0 = N->getOperand(0);
12342 
12343   // Check for sign- and zero-extensions of vector extract operations of 8-
12344   // and 16-bit vector elements.  NEON supports these directly.  They are
12345   // handled during DAG combining because type legalization will promote them
12346   // to 32-bit types and it is messy to recognize the operations after that.
12347   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12348     SDValue Vec = N0.getOperand(0);
12349     SDValue Lane = N0.getOperand(1);
12350     EVT VT = N->getValueType(0);
12351     EVT EltVT = N0.getValueType();
12352     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12353 
12354     if (VT == MVT::i32 &&
12355         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
12356         TLI.isTypeLegal(Vec.getValueType()) &&
12357         isa<ConstantSDNode>(Lane)) {
12358 
12359       unsigned Opc = 0;
12360       switch (N->getOpcode()) {
12361       default: llvm_unreachable("unexpected opcode");
12362       case ISD::SIGN_EXTEND:
12363         Opc = ARMISD::VGETLANEs;
12364         break;
12365       case ISD::ZERO_EXTEND:
12366       case ISD::ANY_EXTEND:
12367         Opc = ARMISD::VGETLANEu;
12368         break;
12369       }
12370       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
12371     }
12372   }
12373 
12374   return SDValue();
12375 }
12376 
12377 static const APInt *isPowerOf2Constant(SDValue V) {
12378   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12379   if (!C)
12380     return nullptr;
12381   const APInt *CV = &C->getAPIntValue();
12382   return CV->isPowerOf2() ? CV : nullptr;
12383 }
12384 
12385 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
12386   // If we have a CMOV, OR and AND combination such as:
12387   //   if (x & CN)
12388   //     y |= CM;
12389   //
12390   // And:
12391   //   * CN is a single bit;
12392   //   * All bits covered by CM are known zero in y
12393   //
12394   // Then we can convert this into a sequence of BFI instructions. This will
12395   // always be a win if CM is a single bit, will always be no worse than the
12396   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
12397   // three bits (due to the extra IT instruction).
12398 
12399   SDValue Op0 = CMOV->getOperand(0);
12400   SDValue Op1 = CMOV->getOperand(1);
12401   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
12402   auto CC = CCNode->getAPIntValue().getLimitedValue();
12403   SDValue CmpZ = CMOV->getOperand(4);
12404 
12405   // The compare must be against zero.
12406   if (!isNullConstant(CmpZ->getOperand(1)))
12407     return SDValue();
12408 
12409   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
12410   SDValue And = CmpZ->getOperand(0);
12411   if (And->getOpcode() != ISD::AND)
12412     return SDValue();
12413   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
12414   if (!AndC)
12415     return SDValue();
12416   SDValue X = And->getOperand(0);
12417 
12418   if (CC == ARMCC::EQ) {
12419     // We're performing an "equal to zero" compare. Swap the operands so we
12420     // canonicalize on a "not equal to zero" compare.
12421     std::swap(Op0, Op1);
12422   } else {
12423     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
12424   }
12425 
12426   if (Op1->getOpcode() != ISD::OR)
12427     return SDValue();
12428 
12429   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
12430   if (!OrC)
12431     return SDValue();
12432   SDValue Y = Op1->getOperand(0);
12433 
12434   if (Op0 != Y)
12435     return SDValue();
12436 
12437   // Now, is it profitable to continue?
12438   APInt OrCI = OrC->getAPIntValue();
12439   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
12440   if (OrCI.countPopulation() > Heuristic)
12441     return SDValue();
12442 
12443   // Lastly, can we determine that the bits defined by OrCI
12444   // are zero in Y?
12445   KnownBits Known;
12446   DAG.computeKnownBits(Y, Known);
12447   if ((OrCI & Known.Zero) != OrCI)
12448     return SDValue();
12449 
12450   // OK, we can do the combine.
12451   SDValue V = Y;
12452   SDLoc dl(X);
12453   EVT VT = X.getValueType();
12454   unsigned BitInX = AndC->logBase2();
12455 
12456   if (BitInX != 0) {
12457     // We must shift X first.
12458     X = DAG.getNode(ISD::SRL, dl, VT, X,
12459                     DAG.getConstant(BitInX, dl, VT));
12460   }
12461 
12462   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
12463        BitInY < NumActiveBits; ++BitInY) {
12464     if (OrCI[BitInY] == 0)
12465       continue;
12466     APInt Mask(VT.getSizeInBits(), 0);
12467     Mask.setBit(BitInY);
12468     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
12469                     // Confusingly, the operand is an *inverted* mask.
12470                     DAG.getConstant(~Mask, dl, VT));
12471   }
12472 
12473   return V;
12474 }
12475 
12476 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
12477 SDValue
12478 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
12479   SDValue Cmp = N->getOperand(4);
12480   if (Cmp.getOpcode() != ARMISD::CMPZ)
12481     // Only looking at NE cases.
12482     return SDValue();
12483 
12484   EVT VT = N->getValueType(0);
12485   SDLoc dl(N);
12486   SDValue LHS = Cmp.getOperand(0);
12487   SDValue RHS = Cmp.getOperand(1);
12488   SDValue Chain = N->getOperand(0);
12489   SDValue BB = N->getOperand(1);
12490   SDValue ARMcc = N->getOperand(2);
12491   ARMCC::CondCodes CC =
12492     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12493 
12494   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
12495   // -> (brcond Chain BB CC CPSR Cmp)
12496   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
12497       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
12498       LHS->getOperand(0)->hasOneUse()) {
12499     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
12500     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
12501     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12502     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12503     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
12504         (LHS01C && LHS01C->getZExtValue() == 1) &&
12505         (LHS1C && LHS1C->getZExtValue() == 1) &&
12506         (RHSC && RHSC->getZExtValue() == 0)) {
12507       return DAG.getNode(
12508           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
12509           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
12510     }
12511   }
12512 
12513   return SDValue();
12514 }
12515 
12516 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
12517 SDValue
12518 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
12519   SDValue Cmp = N->getOperand(4);
12520   if (Cmp.getOpcode() != ARMISD::CMPZ)
12521     // Only looking at EQ and NE cases.
12522     return SDValue();
12523 
12524   EVT VT = N->getValueType(0);
12525   SDLoc dl(N);
12526   SDValue LHS = Cmp.getOperand(0);
12527   SDValue RHS = Cmp.getOperand(1);
12528   SDValue FalseVal = N->getOperand(0);
12529   SDValue TrueVal = N->getOperand(1);
12530   SDValue ARMcc = N->getOperand(2);
12531   ARMCC::CondCodes CC =
12532     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12533 
12534   // BFI is only available on V6T2+.
12535   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
12536     SDValue R = PerformCMOVToBFICombine(N, DAG);
12537     if (R)
12538       return R;
12539   }
12540 
12541   // Simplify
12542   //   mov     r1, r0
12543   //   cmp     r1, x
12544   //   mov     r0, y
12545   //   moveq   r0, x
12546   // to
12547   //   cmp     r0, x
12548   //   movne   r0, y
12549   //
12550   //   mov     r1, r0
12551   //   cmp     r1, x
12552   //   mov     r0, x
12553   //   movne   r0, y
12554   // to
12555   //   cmp     r0, x
12556   //   movne   r0, y
12557   /// FIXME: Turn this into a target neutral optimization?
12558   SDValue Res;
12559   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
12560     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
12561                       N->getOperand(3), Cmp);
12562   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
12563     SDValue ARMcc;
12564     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
12565     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
12566                       N->getOperand(3), NewCmp);
12567   }
12568 
12569   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
12570   // -> (cmov F T CC CPSR Cmp)
12571   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
12572     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
12573     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12574     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12575     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
12576         (LHS1C && LHS1C->getZExtValue() == 1) &&
12577         (RHSC && RHSC->getZExtValue() == 0)) {
12578       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
12579                          LHS->getOperand(2), LHS->getOperand(3),
12580                          LHS->getOperand(4));
12581     }
12582   }
12583 
12584   if (!VT.isInteger())
12585       return SDValue();
12586 
12587   // Materialize a boolean comparison for integers so we can avoid branching.
12588   if (isNullConstant(FalseVal)) {
12589     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
12590       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
12591         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
12592         // right 5 bits will make that 32 be 1, otherwise it will be 0.
12593         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
12594         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12595         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
12596                           DAG.getConstant(5, dl, MVT::i32));
12597       } else {
12598         // CMOV 0, 1, ==, (CMPZ x, y) ->
12599         //     (ADDCARRY (SUB x, y), t:0, t:1)
12600         // where t = (SUBCARRY 0, (SUB x, y), 0)
12601         //
12602         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
12603         // x != y. In other words, a carry C == 1 when x == y, C == 0
12604         // otherwise.
12605         // The final ADDCARRY computes
12606         //     x - y + (0 - (x - y)) + C == C
12607         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12608         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12609         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
12610         // ISD::SUBCARRY returns a borrow but we want the carry here
12611         // actually.
12612         SDValue Carry =
12613             DAG.getNode(ISD::SUB, dl, MVT::i32,
12614                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
12615         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
12616       }
12617     } else if (CC == ARMCC::NE && LHS != RHS &&
12618                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
12619       // This seems pointless but will allow us to combine it further below.
12620       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
12621       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12622       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
12623                         N->getOperand(3), Cmp);
12624     }
12625   } else if (isNullConstant(TrueVal)) {
12626     if (CC == ARMCC::EQ && LHS != RHS &&
12627         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
12628       // This seems pointless but will allow us to combine it further below
12629       // Note that we change == for != as this is the dual for the case above.
12630       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
12631       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12632       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
12633                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
12634                         N->getOperand(3), Cmp);
12635     }
12636   }
12637 
12638   // On Thumb1, the DAG above may be further combined if z is a power of 2
12639   // (z == 2 ^ K).
12640   // CMOV (SUB x, y), z, !=, (CMPZ x, y) ->
12641   //       merge t3, t4
12642   // where t1 = (SUBCARRY (SUB x, y), z, 0)
12643   //       t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
12644   //       t3 = if K != 0 then (SHL t2:0, K) else t2:0
12645   //       t4 = (SUB 1, t2:1)   [ we want a carry, not a borrow ]
12646   const APInt *TrueConst;
12647   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
12648       (FalseVal.getOpcode() == ISD::SUB) && (FalseVal.getOperand(0) == LHS) &&
12649       (FalseVal.getOperand(1) == RHS) &&
12650       (TrueConst = isPowerOf2Constant(TrueVal))) {
12651     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12652     unsigned ShiftAmount = TrueConst->logBase2();
12653     if (ShiftAmount)
12654       TrueVal = DAG.getConstant(1, dl, VT);
12655     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
12656     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
12657     // Make it a carry, not a borrow.
12658     SDValue Carry = DAG.getNode(
12659         ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1));
12660     Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry);
12661 
12662     if (ShiftAmount)
12663       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
12664                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
12665   }
12666 
12667   if (Res.getNode()) {
12668     KnownBits Known;
12669     DAG.computeKnownBits(SDValue(N,0), Known);
12670     // Capture demanded bits information that would be otherwise lost.
12671     if (Known.Zero == 0xfffffffe)
12672       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12673                         DAG.getValueType(MVT::i1));
12674     else if (Known.Zero == 0xffffff00)
12675       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12676                         DAG.getValueType(MVT::i8));
12677     else if (Known.Zero == 0xffff0000)
12678       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12679                         DAG.getValueType(MVT::i16));
12680   }
12681 
12682   return Res;
12683 }
12684 
12685 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
12686                                              DAGCombinerInfo &DCI) const {
12687   switch (N->getOpcode()) {
12688   default: break;
12689   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
12690   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
12691   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
12692   case ISD::SUB:        return PerformSUBCombine(N, DCI);
12693   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
12694   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
12695   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
12696   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
12697   case ARMISD::ADDC:
12698   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
12699   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
12700   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
12701   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
12702   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
12703   case ISD::STORE:      return PerformSTORECombine(N, DCI);
12704   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
12705   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
12706   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
12707   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
12708   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
12709   case ISD::FP_TO_SINT:
12710   case ISD::FP_TO_UINT:
12711     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
12712   case ISD::FDIV:
12713     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
12714   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
12715   case ISD::SHL:
12716   case ISD::SRA:
12717   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
12718   case ISD::SIGN_EXTEND:
12719   case ISD::ZERO_EXTEND:
12720   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
12721   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
12722   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
12723   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
12724   case ARMISD::VLD1DUP:
12725   case ARMISD::VLD2DUP:
12726   case ARMISD::VLD3DUP:
12727   case ARMISD::VLD4DUP:
12728     return PerformVLDCombine(N, DCI);
12729   case ARMISD::BUILD_VECTOR:
12730     return PerformARMBUILD_VECTORCombine(N, DCI);
12731   case ARMISD::SMULWB: {
12732     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12733     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12734     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12735       return SDValue();
12736     break;
12737   }
12738   case ARMISD::SMULWT: {
12739     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12740     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12741     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12742       return SDValue();
12743     break;
12744   }
12745   case ARMISD::SMLALBB: {
12746     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12747     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12748     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12749         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12750       return SDValue();
12751     break;
12752   }
12753   case ARMISD::SMLALBT: {
12754     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
12755     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12756     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
12757     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12758     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
12759         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
12760       return SDValue();
12761     break;
12762   }
12763   case ARMISD::SMLALTB: {
12764     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
12765     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12766     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
12767     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12768     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
12769         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
12770       return SDValue();
12771     break;
12772   }
12773   case ARMISD::SMLALTT: {
12774     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12775     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12776     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12777         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12778       return SDValue();
12779     break;
12780   }
12781   case ISD::INTRINSIC_VOID:
12782   case ISD::INTRINSIC_W_CHAIN:
12783     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12784     case Intrinsic::arm_neon_vld1:
12785     case Intrinsic::arm_neon_vld2:
12786     case Intrinsic::arm_neon_vld3:
12787     case Intrinsic::arm_neon_vld4:
12788     case Intrinsic::arm_neon_vld2lane:
12789     case Intrinsic::arm_neon_vld3lane:
12790     case Intrinsic::arm_neon_vld4lane:
12791     case Intrinsic::arm_neon_vst1:
12792     case Intrinsic::arm_neon_vst2:
12793     case Intrinsic::arm_neon_vst3:
12794     case Intrinsic::arm_neon_vst4:
12795     case Intrinsic::arm_neon_vst2lane:
12796     case Intrinsic::arm_neon_vst3lane:
12797     case Intrinsic::arm_neon_vst4lane:
12798       return PerformVLDCombine(N, DCI);
12799     default: break;
12800     }
12801     break;
12802   }
12803   return SDValue();
12804 }
12805 
12806 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
12807                                                           EVT VT) const {
12808   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
12809 }
12810 
12811 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
12812                                                        unsigned,
12813                                                        unsigned,
12814                                                        bool *Fast) const {
12815   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
12816   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
12817 
12818   switch (VT.getSimpleVT().SimpleTy) {
12819   default:
12820     return false;
12821   case MVT::i8:
12822   case MVT::i16:
12823   case MVT::i32: {
12824     // Unaligned access can use (for example) LRDB, LRDH, LDR
12825     if (AllowsUnaligned) {
12826       if (Fast)
12827         *Fast = Subtarget->hasV7Ops();
12828       return true;
12829     }
12830     return false;
12831   }
12832   case MVT::f64:
12833   case MVT::v2f64: {
12834     // For any little-endian targets with neon, we can support unaligned ld/st
12835     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
12836     // A big-endian target may also explicitly support unaligned accesses
12837     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
12838       if (Fast)
12839         *Fast = true;
12840       return true;
12841     }
12842     return false;
12843   }
12844   }
12845 }
12846 
12847 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
12848                        unsigned AlignCheck) {
12849   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
12850           (DstAlign == 0 || DstAlign % AlignCheck == 0));
12851 }
12852 
12853 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
12854                                            unsigned DstAlign, unsigned SrcAlign,
12855                                            bool IsMemset, bool ZeroMemset,
12856                                            bool MemcpyStrSrc,
12857                                            MachineFunction &MF) const {
12858   const Function &F = MF.getFunction();
12859 
12860   // See if we can use NEON instructions for this...
12861   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
12862       !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
12863     bool Fast;
12864     if (Size >= 16 &&
12865         (memOpAlign(SrcAlign, DstAlign, 16) ||
12866          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
12867       return MVT::v2f64;
12868     } else if (Size >= 8 &&
12869                (memOpAlign(SrcAlign, DstAlign, 8) ||
12870                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
12871                  Fast))) {
12872       return MVT::f64;
12873     }
12874   }
12875 
12876   // Let the target-independent logic figure it out.
12877   return MVT::Other;
12878 }
12879 
12880 // 64-bit integers are split into their high and low parts and held in two
12881 // different registers, so the trunc is free since the low register can just
12882 // be used.
12883 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
12884   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
12885     return false;
12886   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
12887   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
12888   return (SrcBits == 64 && DestBits == 32);
12889 }
12890 
12891 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
12892   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
12893       !DstVT.isInteger())
12894     return false;
12895   unsigned SrcBits = SrcVT.getSizeInBits();
12896   unsigned DestBits = DstVT.getSizeInBits();
12897   return (SrcBits == 64 && DestBits == 32);
12898 }
12899 
12900 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12901   if (Val.getOpcode() != ISD::LOAD)
12902     return false;
12903 
12904   EVT VT1 = Val.getValueType();
12905   if (!VT1.isSimple() || !VT1.isInteger() ||
12906       !VT2.isSimple() || !VT2.isInteger())
12907     return false;
12908 
12909   switch (VT1.getSimpleVT().SimpleTy) {
12910   default: break;
12911   case MVT::i1:
12912   case MVT::i8:
12913   case MVT::i16:
12914     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
12915     return true;
12916   }
12917 
12918   return false;
12919 }
12920 
12921 bool ARMTargetLowering::isFNegFree(EVT VT) const {
12922   if (!VT.isSimple())
12923     return false;
12924 
12925   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
12926   // negate values directly (fneg is free). So, we don't want to let the DAG
12927   // combiner rewrite fneg into xors and some other instructions.  For f16 and
12928   // FullFP16 argument passing, some bitcast nodes may be introduced,
12929   // triggering this DAG combine rewrite, so we are avoiding that with this.
12930   switch (VT.getSimpleVT().SimpleTy) {
12931   default: break;
12932   case MVT::f16:
12933     return Subtarget->hasFullFP16();
12934   }
12935 
12936   return false;
12937 }
12938 
12939 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
12940   EVT VT = ExtVal.getValueType();
12941 
12942   if (!isTypeLegal(VT))
12943     return false;
12944 
12945   // Don't create a loadext if we can fold the extension into a wide/long
12946   // instruction.
12947   // If there's more than one user instruction, the loadext is desirable no
12948   // matter what.  There can be two uses by the same instruction.
12949   if (ExtVal->use_empty() ||
12950       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
12951     return true;
12952 
12953   SDNode *U = *ExtVal->use_begin();
12954   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
12955        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
12956     return false;
12957 
12958   return true;
12959 }
12960 
12961 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
12962   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12963     return false;
12964 
12965   if (!isTypeLegal(EVT::getEVT(Ty1)))
12966     return false;
12967 
12968   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
12969 
12970   // Assuming the caller doesn't have a zeroext or signext return parameter,
12971   // truncation all the way down to i1 is valid.
12972   return true;
12973 }
12974 
12975 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
12976                                                 const AddrMode &AM, Type *Ty,
12977                                                 unsigned AS) const {
12978   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
12979     if (Subtarget->hasFPAO())
12980       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
12981     return 0;
12982   }
12983   return -1;
12984 }
12985 
12986 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
12987   if (V < 0)
12988     return false;
12989 
12990   unsigned Scale = 1;
12991   switch (VT.getSimpleVT().SimpleTy) {
12992   default: return false;
12993   case MVT::i1:
12994   case MVT::i8:
12995     // Scale == 1;
12996     break;
12997   case MVT::i16:
12998     // Scale == 2;
12999     Scale = 2;
13000     break;
13001   case MVT::i32:
13002     // Scale == 4;
13003     Scale = 4;
13004     break;
13005   }
13006 
13007   if ((V & (Scale - 1)) != 0)
13008     return false;
13009   V /= Scale;
13010   return V == (V & ((1LL << 5) - 1));
13011 }
13012 
13013 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
13014                                       const ARMSubtarget *Subtarget) {
13015   bool isNeg = false;
13016   if (V < 0) {
13017     isNeg = true;
13018     V = - V;
13019   }
13020 
13021   switch (VT.getSimpleVT().SimpleTy) {
13022   default: return false;
13023   case MVT::i1:
13024   case MVT::i8:
13025   case MVT::i16:
13026   case MVT::i32:
13027     // + imm12 or - imm8
13028     if (isNeg)
13029       return V == (V & ((1LL << 8) - 1));
13030     return V == (V & ((1LL << 12) - 1));
13031   case MVT::f32:
13032   case MVT::f64:
13033     // Same as ARM mode. FIXME: NEON?
13034     if (!Subtarget->hasVFP2())
13035       return false;
13036     if ((V & 3) != 0)
13037       return false;
13038     V >>= 2;
13039     return V == (V & ((1LL << 8) - 1));
13040   }
13041 }
13042 
13043 /// isLegalAddressImmediate - Return true if the integer value can be used
13044 /// as the offset of the target addressing mode for load / store of the
13045 /// given type.
13046 static bool isLegalAddressImmediate(int64_t V, EVT VT,
13047                                     const ARMSubtarget *Subtarget) {
13048   if (V == 0)
13049     return true;
13050 
13051   if (!VT.isSimple())
13052     return false;
13053 
13054   if (Subtarget->isThumb1Only())
13055     return isLegalT1AddressImmediate(V, VT);
13056   else if (Subtarget->isThumb2())
13057     return isLegalT2AddressImmediate(V, VT, Subtarget);
13058 
13059   // ARM mode.
13060   if (V < 0)
13061     V = - V;
13062   switch (VT.getSimpleVT().SimpleTy) {
13063   default: return false;
13064   case MVT::i1:
13065   case MVT::i8:
13066   case MVT::i32:
13067     // +- imm12
13068     return V == (V & ((1LL << 12) - 1));
13069   case MVT::i16:
13070     // +- imm8
13071     return V == (V & ((1LL << 8) - 1));
13072   case MVT::f32:
13073   case MVT::f64:
13074     if (!Subtarget->hasVFP2()) // FIXME: NEON?
13075       return false;
13076     if ((V & 3) != 0)
13077       return false;
13078     V >>= 2;
13079     return V == (V & ((1LL << 8) - 1));
13080   }
13081 }
13082 
13083 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
13084                                                       EVT VT) const {
13085   int Scale = AM.Scale;
13086   if (Scale < 0)
13087     return false;
13088 
13089   switch (VT.getSimpleVT().SimpleTy) {
13090   default: return false;
13091   case MVT::i1:
13092   case MVT::i8:
13093   case MVT::i16:
13094   case MVT::i32:
13095     if (Scale == 1)
13096       return true;
13097     // r + r << imm
13098     Scale = Scale & ~1;
13099     return Scale == 2 || Scale == 4 || Scale == 8;
13100   case MVT::i64:
13101     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
13102     // version in Thumb mode.
13103     // r + r
13104     if (Scale == 1)
13105       return true;
13106     // r * 2 (this can be lowered to r + r).
13107     if (!AM.HasBaseReg && Scale == 2)
13108       return true;
13109     return false;
13110   case MVT::isVoid:
13111     // Note, we allow "void" uses (basically, uses that aren't loads or
13112     // stores), because arm allows folding a scale into many arithmetic
13113     // operations.  This should be made more precise and revisited later.
13114 
13115     // Allow r << imm, but the imm has to be a multiple of two.
13116     if (Scale & 1) return false;
13117     return isPowerOf2_32(Scale);
13118   }
13119 }
13120 
13121 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
13122                                                       EVT VT) const {
13123   const int Scale = AM.Scale;
13124 
13125   // Negative scales are not supported in Thumb1.
13126   if (Scale < 0)
13127     return false;
13128 
13129   // Thumb1 addressing modes do not support register scaling excepting the
13130   // following cases:
13131   // 1. Scale == 1 means no scaling.
13132   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
13133   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
13134 }
13135 
13136 /// isLegalAddressingMode - Return true if the addressing mode represented
13137 /// by AM is legal for this target, for a load/store of the specified type.
13138 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13139                                               const AddrMode &AM, Type *Ty,
13140                                               unsigned AS, Instruction *I) const {
13141   EVT VT = getValueType(DL, Ty, true);
13142   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
13143     return false;
13144 
13145   // Can never fold addr of global into load/store.
13146   if (AM.BaseGV)
13147     return false;
13148 
13149   switch (AM.Scale) {
13150   case 0:  // no scale reg, must be "r+i" or "r", or "i".
13151     break;
13152   default:
13153     // ARM doesn't support any R+R*scale+imm addr modes.
13154     if (AM.BaseOffs)
13155       return false;
13156 
13157     if (!VT.isSimple())
13158       return false;
13159 
13160     if (Subtarget->isThumb1Only())
13161       return isLegalT1ScaledAddressingMode(AM, VT);
13162 
13163     if (Subtarget->isThumb2())
13164       return isLegalT2ScaledAddressingMode(AM, VT);
13165 
13166     int Scale = AM.Scale;
13167     switch (VT.getSimpleVT().SimpleTy) {
13168     default: return false;
13169     case MVT::i1:
13170     case MVT::i8:
13171     case MVT::i32:
13172       if (Scale < 0) Scale = -Scale;
13173       if (Scale == 1)
13174         return true;
13175       // r + r << imm
13176       return isPowerOf2_32(Scale & ~1);
13177     case MVT::i16:
13178     case MVT::i64:
13179       // r +/- r
13180       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
13181         return true;
13182       // r * 2 (this can be lowered to r + r).
13183       if (!AM.HasBaseReg && Scale == 2)
13184         return true;
13185       return false;
13186 
13187     case MVT::isVoid:
13188       // Note, we allow "void" uses (basically, uses that aren't loads or
13189       // stores), because arm allows folding a scale into many arithmetic
13190       // operations.  This should be made more precise and revisited later.
13191 
13192       // Allow r << imm, but the imm has to be a multiple of two.
13193       if (Scale & 1) return false;
13194       return isPowerOf2_32(Scale);
13195     }
13196   }
13197   return true;
13198 }
13199 
13200 /// isLegalICmpImmediate - Return true if the specified immediate is legal
13201 /// icmp immediate, that is the target has icmp instructions which can compare
13202 /// a register against the immediate without having to materialize the
13203 /// immediate into a register.
13204 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13205   // Thumb2 and ARM modes can use cmn for negative immediates.
13206   if (!Subtarget->isThumb())
13207     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
13208   if (Subtarget->isThumb2())
13209     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
13210   // Thumb1 doesn't have cmn, and only 8-bit immediates.
13211   return Imm >= 0 && Imm <= 255;
13212 }
13213 
13214 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
13215 /// *or sub* immediate, that is the target has add or sub instructions which can
13216 /// add a register with the immediate without having to materialize the
13217 /// immediate into a register.
13218 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13219   // Same encoding for add/sub, just flip the sign.
13220   int64_t AbsImm = std::abs(Imm);
13221   if (!Subtarget->isThumb())
13222     return ARM_AM::getSOImmVal(AbsImm) != -1;
13223   if (Subtarget->isThumb2())
13224     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
13225   // Thumb1 only has 8-bit unsigned immediate.
13226   return AbsImm >= 0 && AbsImm <= 255;
13227 }
13228 
13229 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
13230                                       bool isSEXTLoad, SDValue &Base,
13231                                       SDValue &Offset, bool &isInc,
13232                                       SelectionDAG &DAG) {
13233   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13234     return false;
13235 
13236   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
13237     // AddressingMode 3
13238     Base = Ptr->getOperand(0);
13239     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13240       int RHSC = (int)RHS->getZExtValue();
13241       if (RHSC < 0 && RHSC > -256) {
13242         assert(Ptr->getOpcode() == ISD::ADD);
13243         isInc = false;
13244         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13245         return true;
13246       }
13247     }
13248     isInc = (Ptr->getOpcode() == ISD::ADD);
13249     Offset = Ptr->getOperand(1);
13250     return true;
13251   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
13252     // AddressingMode 2
13253     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13254       int RHSC = (int)RHS->getZExtValue();
13255       if (RHSC < 0 && RHSC > -0x1000) {
13256         assert(Ptr->getOpcode() == ISD::ADD);
13257         isInc = false;
13258         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13259         Base = Ptr->getOperand(0);
13260         return true;
13261       }
13262     }
13263 
13264     if (Ptr->getOpcode() == ISD::ADD) {
13265       isInc = true;
13266       ARM_AM::ShiftOpc ShOpcVal=
13267         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
13268       if (ShOpcVal != ARM_AM::no_shift) {
13269         Base = Ptr->getOperand(1);
13270         Offset = Ptr->getOperand(0);
13271       } else {
13272         Base = Ptr->getOperand(0);
13273         Offset = Ptr->getOperand(1);
13274       }
13275       return true;
13276     }
13277 
13278     isInc = (Ptr->getOpcode() == ISD::ADD);
13279     Base = Ptr->getOperand(0);
13280     Offset = Ptr->getOperand(1);
13281     return true;
13282   }
13283 
13284   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
13285   return false;
13286 }
13287 
13288 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
13289                                      bool isSEXTLoad, SDValue &Base,
13290                                      SDValue &Offset, bool &isInc,
13291                                      SelectionDAG &DAG) {
13292   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13293     return false;
13294 
13295   Base = Ptr->getOperand(0);
13296   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13297     int RHSC = (int)RHS->getZExtValue();
13298     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
13299       assert(Ptr->getOpcode() == ISD::ADD);
13300       isInc = false;
13301       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13302       return true;
13303     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
13304       isInc = Ptr->getOpcode() == ISD::ADD;
13305       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
13306       return true;
13307     }
13308   }
13309 
13310   return false;
13311 }
13312 
13313 /// getPreIndexedAddressParts - returns true by value, base pointer and
13314 /// offset pointer and addressing mode by reference if the node's address
13315 /// can be legally represented as pre-indexed load / store address.
13316 bool
13317 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
13318                                              SDValue &Offset,
13319                                              ISD::MemIndexedMode &AM,
13320                                              SelectionDAG &DAG) const {
13321   if (Subtarget->isThumb1Only())
13322     return false;
13323 
13324   EVT VT;
13325   SDValue Ptr;
13326   bool isSEXTLoad = false;
13327   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13328     Ptr = LD->getBasePtr();
13329     VT  = LD->getMemoryVT();
13330     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13331   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13332     Ptr = ST->getBasePtr();
13333     VT  = ST->getMemoryVT();
13334   } else
13335     return false;
13336 
13337   bool isInc;
13338   bool isLegal = false;
13339   if (Subtarget->isThumb2())
13340     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13341                                        Offset, isInc, DAG);
13342   else
13343     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13344                                         Offset, isInc, DAG);
13345   if (!isLegal)
13346     return false;
13347 
13348   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
13349   return true;
13350 }
13351 
13352 /// getPostIndexedAddressParts - returns true by value, base pointer and
13353 /// offset pointer and addressing mode by reference if this node can be
13354 /// combined with a load / store to form a post-indexed load / store.
13355 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
13356                                                    SDValue &Base,
13357                                                    SDValue &Offset,
13358                                                    ISD::MemIndexedMode &AM,
13359                                                    SelectionDAG &DAG) const {
13360   EVT VT;
13361   SDValue Ptr;
13362   bool isSEXTLoad = false, isNonExt;
13363   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13364     VT  = LD->getMemoryVT();
13365     Ptr = LD->getBasePtr();
13366     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13367     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
13368   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13369     VT  = ST->getMemoryVT();
13370     Ptr = ST->getBasePtr();
13371     isNonExt = !ST->isTruncatingStore();
13372   } else
13373     return false;
13374 
13375   if (Subtarget->isThumb1Only()) {
13376     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
13377     // must be non-extending/truncating, i32, with an offset of 4.
13378     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
13379     if (Op->getOpcode() != ISD::ADD || !isNonExt)
13380       return false;
13381     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13382     if (!RHS || RHS->getZExtValue() != 4)
13383       return false;
13384 
13385     Offset = Op->getOperand(1);
13386     Base = Op->getOperand(0);
13387     AM = ISD::POST_INC;
13388     return true;
13389   }
13390 
13391   bool isInc;
13392   bool isLegal = false;
13393   if (Subtarget->isThumb2())
13394     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13395                                        isInc, DAG);
13396   else
13397     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13398                                         isInc, DAG);
13399   if (!isLegal)
13400     return false;
13401 
13402   if (Ptr != Base) {
13403     // Swap base ptr and offset to catch more post-index load / store when
13404     // it's legal. In Thumb2 mode, offset must be an immediate.
13405     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
13406         !Subtarget->isThumb2())
13407       std::swap(Base, Offset);
13408 
13409     // Post-indexed load / store update the base pointer.
13410     if (Ptr != Base)
13411       return false;
13412   }
13413 
13414   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
13415   return true;
13416 }
13417 
13418 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13419                                                       KnownBits &Known,
13420                                                       const APInt &DemandedElts,
13421                                                       const SelectionDAG &DAG,
13422                                                       unsigned Depth) const {
13423   unsigned BitWidth = Known.getBitWidth();
13424   Known.resetAll();
13425   switch (Op.getOpcode()) {
13426   default: break;
13427   case ARMISD::ADDC:
13428   case ARMISD::ADDE:
13429   case ARMISD::SUBC:
13430   case ARMISD::SUBE:
13431     // Special cases when we convert a carry to a boolean.
13432     if (Op.getResNo() == 0) {
13433       SDValue LHS = Op.getOperand(0);
13434       SDValue RHS = Op.getOperand(1);
13435       // (ADDE 0, 0, C) will give us a single bit.
13436       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
13437           isNullConstant(RHS)) {
13438         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13439         return;
13440       }
13441     }
13442     break;
13443   case ARMISD::CMOV: {
13444     // Bits are known zero/one if known on the LHS and RHS.
13445     DAG.computeKnownBits(Op.getOperand(0), Known, Depth+1);
13446     if (Known.isUnknown())
13447       return;
13448 
13449     KnownBits KnownRHS;
13450     DAG.computeKnownBits(Op.getOperand(1), KnownRHS, Depth+1);
13451     Known.Zero &= KnownRHS.Zero;
13452     Known.One  &= KnownRHS.One;
13453     return;
13454   }
13455   case ISD::INTRINSIC_W_CHAIN: {
13456     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
13457     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
13458     switch (IntID) {
13459     default: return;
13460     case Intrinsic::arm_ldaex:
13461     case Intrinsic::arm_ldrex: {
13462       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
13463       unsigned MemBits = VT.getScalarSizeInBits();
13464       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
13465       return;
13466     }
13467     }
13468   }
13469   case ARMISD::BFI: {
13470     // Conservatively, we can recurse down the first operand
13471     // and just mask out all affected bits.
13472     DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1);
13473 
13474     // The operand to BFI is already a mask suitable for removing the bits it
13475     // sets.
13476     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
13477     const APInt &Mask = CI->getAPIntValue();
13478     Known.Zero &= Mask;
13479     Known.One &= Mask;
13480     return;
13481   }
13482   }
13483 }
13484 
13485 //===----------------------------------------------------------------------===//
13486 //                           ARM Inline Assembly Support
13487 //===----------------------------------------------------------------------===//
13488 
13489 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
13490   // Looking for "rev" which is V6+.
13491   if (!Subtarget->hasV6Ops())
13492     return false;
13493 
13494   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13495   std::string AsmStr = IA->getAsmString();
13496   SmallVector<StringRef, 4> AsmPieces;
13497   SplitString(AsmStr, AsmPieces, ";\n");
13498 
13499   switch (AsmPieces.size()) {
13500   default: return false;
13501   case 1:
13502     AsmStr = AsmPieces[0];
13503     AsmPieces.clear();
13504     SplitString(AsmStr, AsmPieces, " \t,");
13505 
13506     // rev $0, $1
13507     if (AsmPieces.size() == 3 &&
13508         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
13509         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
13510       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13511       if (Ty && Ty->getBitWidth() == 32)
13512         return IntrinsicLowering::LowerToByteSwap(CI);
13513     }
13514     break;
13515   }
13516 
13517   return false;
13518 }
13519 
13520 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
13521   // At this point, we have to lower this constraint to something else, so we
13522   // lower it to an "r" or "w". However, by doing this we will force the result
13523   // to be in register, while the X constraint is much more permissive.
13524   //
13525   // Although we are correct (we are free to emit anything, without
13526   // constraints), we might break use cases that would expect us to be more
13527   // efficient and emit something else.
13528   if (!Subtarget->hasVFP2())
13529     return "r";
13530   if (ConstraintVT.isFloatingPoint())
13531     return "w";
13532   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
13533      (ConstraintVT.getSizeInBits() == 64 ||
13534       ConstraintVT.getSizeInBits() == 128))
13535     return "w";
13536 
13537   return "r";
13538 }
13539 
13540 /// getConstraintType - Given a constraint letter, return the type of
13541 /// constraint it is for this target.
13542 ARMTargetLowering::ConstraintType
13543 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
13544   if (Constraint.size() == 1) {
13545     switch (Constraint[0]) {
13546     default:  break;
13547     case 'l': return C_RegisterClass;
13548     case 'w': return C_RegisterClass;
13549     case 'h': return C_RegisterClass;
13550     case 'x': return C_RegisterClass;
13551     case 't': return C_RegisterClass;
13552     case 'j': return C_Other; // Constant for movw.
13553       // An address with a single base register. Due to the way we
13554       // currently handle addresses it is the same as an 'r' memory constraint.
13555     case 'Q': return C_Memory;
13556     }
13557   } else if (Constraint.size() == 2) {
13558     switch (Constraint[0]) {
13559     default: break;
13560     // All 'U+' constraints are addresses.
13561     case 'U': return C_Memory;
13562     }
13563   }
13564   return TargetLowering::getConstraintType(Constraint);
13565 }
13566 
13567 /// Examine constraint type and operand type and determine a weight value.
13568 /// This object must already have been set up with the operand type
13569 /// and the current alternative constraint selected.
13570 TargetLowering::ConstraintWeight
13571 ARMTargetLowering::getSingleConstraintMatchWeight(
13572     AsmOperandInfo &info, const char *constraint) const {
13573   ConstraintWeight weight = CW_Invalid;
13574   Value *CallOperandVal = info.CallOperandVal;
13575     // If we don't have a value, we can't do a match,
13576     // but allow it at the lowest weight.
13577   if (!CallOperandVal)
13578     return CW_Default;
13579   Type *type = CallOperandVal->getType();
13580   // Look at the constraint type.
13581   switch (*constraint) {
13582   default:
13583     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13584     break;
13585   case 'l':
13586     if (type->isIntegerTy()) {
13587       if (Subtarget->isThumb())
13588         weight = CW_SpecificReg;
13589       else
13590         weight = CW_Register;
13591     }
13592     break;
13593   case 'w':
13594     if (type->isFloatingPointTy())
13595       weight = CW_Register;
13596     break;
13597   }
13598   return weight;
13599 }
13600 
13601 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
13602 
13603 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
13604     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
13605   if (Constraint.size() == 1) {
13606     // GCC ARM Constraint Letters
13607     switch (Constraint[0]) {
13608     case 'l': // Low regs or general regs.
13609       if (Subtarget->isThumb())
13610         return RCPair(0U, &ARM::tGPRRegClass);
13611       return RCPair(0U, &ARM::GPRRegClass);
13612     case 'h': // High regs or no regs.
13613       if (Subtarget->isThumb())
13614         return RCPair(0U, &ARM::hGPRRegClass);
13615       break;
13616     case 'r':
13617       if (Subtarget->isThumb1Only())
13618         return RCPair(0U, &ARM::tGPRRegClass);
13619       return RCPair(0U, &ARM::GPRRegClass);
13620     case 'w':
13621       if (VT == MVT::Other)
13622         break;
13623       if (VT == MVT::f32)
13624         return RCPair(0U, &ARM::SPRRegClass);
13625       if (VT.getSizeInBits() == 64)
13626         return RCPair(0U, &ARM::DPRRegClass);
13627       if (VT.getSizeInBits() == 128)
13628         return RCPair(0U, &ARM::QPRRegClass);
13629       break;
13630     case 'x':
13631       if (VT == MVT::Other)
13632         break;
13633       if (VT == MVT::f32)
13634         return RCPair(0U, &ARM::SPR_8RegClass);
13635       if (VT.getSizeInBits() == 64)
13636         return RCPair(0U, &ARM::DPR_8RegClass);
13637       if (VT.getSizeInBits() == 128)
13638         return RCPair(0U, &ARM::QPR_8RegClass);
13639       break;
13640     case 't':
13641       if (VT == MVT::Other)
13642         break;
13643       if (VT == MVT::f32 || VT == MVT::i32)
13644         return RCPair(0U, &ARM::SPRRegClass);
13645       if (VT.getSizeInBits() == 64)
13646         return RCPair(0U, &ARM::DPR_VFP2RegClass);
13647       if (VT.getSizeInBits() == 128)
13648         return RCPair(0U, &ARM::QPR_VFP2RegClass);
13649       break;
13650     }
13651   }
13652   if (StringRef("{cc}").equals_lower(Constraint))
13653     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
13654 
13655   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13656 }
13657 
13658 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13659 /// vector.  If it is invalid, don't add anything to Ops.
13660 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13661                                                      std::string &Constraint,
13662                                                      std::vector<SDValue>&Ops,
13663                                                      SelectionDAG &DAG) const {
13664   SDValue Result;
13665 
13666   // Currently only support length 1 constraints.
13667   if (Constraint.length() != 1) return;
13668 
13669   char ConstraintLetter = Constraint[0];
13670   switch (ConstraintLetter) {
13671   default: break;
13672   case 'j':
13673   case 'I': case 'J': case 'K': case 'L':
13674   case 'M': case 'N': case 'O':
13675     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
13676     if (!C)
13677       return;
13678 
13679     int64_t CVal64 = C->getSExtValue();
13680     int CVal = (int) CVal64;
13681     // None of these constraints allow values larger than 32 bits.  Check
13682     // that the value fits in an int.
13683     if (CVal != CVal64)
13684       return;
13685 
13686     switch (ConstraintLetter) {
13687       case 'j':
13688         // Constant suitable for movw, must be between 0 and
13689         // 65535.
13690         if (Subtarget->hasV6T2Ops())
13691           if (CVal >= 0 && CVal <= 65535)
13692             break;
13693         return;
13694       case 'I':
13695         if (Subtarget->isThumb1Only()) {
13696           // This must be a constant between 0 and 255, for ADD
13697           // immediates.
13698           if (CVal >= 0 && CVal <= 255)
13699             break;
13700         } else if (Subtarget->isThumb2()) {
13701           // A constant that can be used as an immediate value in a
13702           // data-processing instruction.
13703           if (ARM_AM::getT2SOImmVal(CVal) != -1)
13704             break;
13705         } else {
13706           // A constant that can be used as an immediate value in a
13707           // data-processing instruction.
13708           if (ARM_AM::getSOImmVal(CVal) != -1)
13709             break;
13710         }
13711         return;
13712 
13713       case 'J':
13714         if (Subtarget->isThumb1Only()) {
13715           // This must be a constant between -255 and -1, for negated ADD
13716           // immediates. This can be used in GCC with an "n" modifier that
13717           // prints the negated value, for use with SUB instructions. It is
13718           // not useful otherwise but is implemented for compatibility.
13719           if (CVal >= -255 && CVal <= -1)
13720             break;
13721         } else {
13722           // This must be a constant between -4095 and 4095. It is not clear
13723           // what this constraint is intended for. Implemented for
13724           // compatibility with GCC.
13725           if (CVal >= -4095 && CVal <= 4095)
13726             break;
13727         }
13728         return;
13729 
13730       case 'K':
13731         if (Subtarget->isThumb1Only()) {
13732           // A 32-bit value where only one byte has a nonzero value. Exclude
13733           // zero to match GCC. This constraint is used by GCC internally for
13734           // constants that can be loaded with a move/shift combination.
13735           // It is not useful otherwise but is implemented for compatibility.
13736           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
13737             break;
13738         } else if (Subtarget->isThumb2()) {
13739           // A constant whose bitwise inverse can be used as an immediate
13740           // value in a data-processing instruction. This can be used in GCC
13741           // with a "B" modifier that prints the inverted value, for use with
13742           // BIC and MVN instructions. It is not useful otherwise but is
13743           // implemented for compatibility.
13744           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
13745             break;
13746         } else {
13747           // A constant whose bitwise inverse can be used as an immediate
13748           // value in a data-processing instruction. This can be used in GCC
13749           // with a "B" modifier that prints the inverted value, for use with
13750           // BIC and MVN instructions. It is not useful otherwise but is
13751           // implemented for compatibility.
13752           if (ARM_AM::getSOImmVal(~CVal) != -1)
13753             break;
13754         }
13755         return;
13756 
13757       case 'L':
13758         if (Subtarget->isThumb1Only()) {
13759           // This must be a constant between -7 and 7,
13760           // for 3-operand ADD/SUB immediate instructions.
13761           if (CVal >= -7 && CVal < 7)
13762             break;
13763         } else if (Subtarget->isThumb2()) {
13764           // A constant whose negation can be used as an immediate value in a
13765           // data-processing instruction. This can be used in GCC with an "n"
13766           // modifier that prints the negated value, for use with SUB
13767           // instructions. It is not useful otherwise but is implemented for
13768           // compatibility.
13769           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
13770             break;
13771         } else {
13772           // A constant whose negation can be used as an immediate value in a
13773           // data-processing instruction. This can be used in GCC with an "n"
13774           // modifier that prints the negated value, for use with SUB
13775           // instructions. It is not useful otherwise but is implemented for
13776           // compatibility.
13777           if (ARM_AM::getSOImmVal(-CVal) != -1)
13778             break;
13779         }
13780         return;
13781 
13782       case 'M':
13783         if (Subtarget->isThumb1Only()) {
13784           // This must be a multiple of 4 between 0 and 1020, for
13785           // ADD sp + immediate.
13786           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
13787             break;
13788         } else {
13789           // A power of two or a constant between 0 and 32.  This is used in
13790           // GCC for the shift amount on shifted register operands, but it is
13791           // useful in general for any shift amounts.
13792           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
13793             break;
13794         }
13795         return;
13796 
13797       case 'N':
13798         if (Subtarget->isThumb()) {  // FIXME thumb2
13799           // This must be a constant between 0 and 31, for shift amounts.
13800           if (CVal >= 0 && CVal <= 31)
13801             break;
13802         }
13803         return;
13804 
13805       case 'O':
13806         if (Subtarget->isThumb()) {  // FIXME thumb2
13807           // This must be a multiple of 4 between -508 and 508, for
13808           // ADD/SUB sp = sp + immediate.
13809           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
13810             break;
13811         }
13812         return;
13813     }
13814     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
13815     break;
13816   }
13817 
13818   if (Result.getNode()) {
13819     Ops.push_back(Result);
13820     return;
13821   }
13822   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13823 }
13824 
13825 static RTLIB::Libcall getDivRemLibcall(
13826     const SDNode *N, MVT::SimpleValueType SVT) {
13827   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
13828           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
13829          "Unhandled Opcode in getDivRemLibcall");
13830   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
13831                   N->getOpcode() == ISD::SREM;
13832   RTLIB::Libcall LC;
13833   switch (SVT) {
13834   default: llvm_unreachable("Unexpected request for libcall!");
13835   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
13836   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
13837   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
13838   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
13839   }
13840   return LC;
13841 }
13842 
13843 static TargetLowering::ArgListTy getDivRemArgList(
13844     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
13845   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
13846           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
13847          "Unhandled Opcode in getDivRemArgList");
13848   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
13849                   N->getOpcode() == ISD::SREM;
13850   TargetLowering::ArgListTy Args;
13851   TargetLowering::ArgListEntry Entry;
13852   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
13853     EVT ArgVT = N->getOperand(i).getValueType();
13854     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
13855     Entry.Node = N->getOperand(i);
13856     Entry.Ty = ArgTy;
13857     Entry.IsSExt = isSigned;
13858     Entry.IsZExt = !isSigned;
13859     Args.push_back(Entry);
13860   }
13861   if (Subtarget->isTargetWindows() && Args.size() >= 2)
13862     std::swap(Args[0], Args[1]);
13863   return Args;
13864 }
13865 
13866 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
13867   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
13868           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
13869           Subtarget->isTargetWindows()) &&
13870          "Register-based DivRem lowering only");
13871   unsigned Opcode = Op->getOpcode();
13872   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
13873          "Invalid opcode for Div/Rem lowering");
13874   bool isSigned = (Opcode == ISD::SDIVREM);
13875   EVT VT = Op->getValueType(0);
13876   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
13877   SDLoc dl(Op);
13878 
13879   // If the target has hardware divide, use divide + multiply + subtract:
13880   //     div = a / b
13881   //     rem = a - b * div
13882   //     return {div, rem}
13883   // This should be lowered into UDIV/SDIV + MLS later on.
13884   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
13885                                         : Subtarget->hasDivideInARMMode();
13886   if (hasDivide && Op->getValueType(0).isSimple() &&
13887       Op->getSimpleValueType(0) == MVT::i32) {
13888     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
13889     const SDValue Dividend = Op->getOperand(0);
13890     const SDValue Divisor = Op->getOperand(1);
13891     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
13892     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
13893     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
13894 
13895     SDValue Values[2] = {Div, Rem};
13896     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
13897   }
13898 
13899   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
13900                                        VT.getSimpleVT().SimpleTy);
13901   SDValue InChain = DAG.getEntryNode();
13902 
13903   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
13904                                                     DAG.getContext(),
13905                                                     Subtarget);
13906 
13907   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
13908                                          getPointerTy(DAG.getDataLayout()));
13909 
13910   Type *RetTy = StructType::get(Ty, Ty);
13911 
13912   if (Subtarget->isTargetWindows())
13913     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
13914 
13915   TargetLowering::CallLoweringInfo CLI(DAG);
13916   CLI.setDebugLoc(dl).setChain(InChain)
13917     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
13918     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
13919 
13920   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
13921   return CallInfo.first;
13922 }
13923 
13924 // Lowers REM using divmod helpers
13925 // see RTABI section 4.2/4.3
13926 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
13927   // Build return types (div and rem)
13928   std::vector<Type*> RetTyParams;
13929   Type *RetTyElement;
13930 
13931   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
13932   default: llvm_unreachable("Unexpected request for libcall!");
13933   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
13934   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
13935   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
13936   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
13937   }
13938 
13939   RetTyParams.push_back(RetTyElement);
13940   RetTyParams.push_back(RetTyElement);
13941   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
13942   Type *RetTy = StructType::get(*DAG.getContext(), ret);
13943 
13944   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
13945                                                              SimpleTy);
13946   SDValue InChain = DAG.getEntryNode();
13947   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
13948                                                     Subtarget);
13949   bool isSigned = N->getOpcode() == ISD::SREM;
13950   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
13951                                          getPointerTy(DAG.getDataLayout()));
13952 
13953   if (Subtarget->isTargetWindows())
13954     InChain = WinDBZCheckDenominator(DAG, N, InChain);
13955 
13956   // Lower call
13957   CallLoweringInfo CLI(DAG);
13958   CLI.setChain(InChain)
13959      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
13960      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
13961   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
13962 
13963   // Return second (rem) result operand (first contains div)
13964   SDNode *ResNode = CallResult.first.getNode();
13965   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
13966   return ResNode->getOperand(1);
13967 }
13968 
13969 SDValue
13970 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
13971   assert(Subtarget->isTargetWindows() && "unsupported target platform");
13972   SDLoc DL(Op);
13973 
13974   // Get the inputs.
13975   SDValue Chain = Op.getOperand(0);
13976   SDValue Size  = Op.getOperand(1);
13977 
13978   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
13979           "no-stack-arg-probe")) {
13980     unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
13981     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
13982     Chain = SP.getValue(1);
13983     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
13984     if (Align)
13985       SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
13986                        DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
13987     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
13988     SDValue Ops[2] = { SP, Chain };
13989     return DAG.getMergeValues(Ops, DL);
13990   }
13991 
13992   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
13993                               DAG.getConstant(2, DL, MVT::i32));
13994 
13995   SDValue Flag;
13996   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
13997   Flag = Chain.getValue(1);
13998 
13999   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14000   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
14001 
14002   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14003   Chain = NewSP.getValue(1);
14004 
14005   SDValue Ops[2] = { NewSP, Chain };
14006   return DAG.getMergeValues(Ops, DL);
14007 }
14008 
14009 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
14010   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
14011          "Unexpected type for custom-lowering FP_EXTEND");
14012 
14013   RTLIB::Libcall LC;
14014   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
14015 
14016   SDValue SrcVal = Op.getOperand(0);
14017   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14018                      SDLoc(Op)).first;
14019 }
14020 
14021 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
14022   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
14023          Subtarget->isFPOnlySP() &&
14024          "Unexpected type for custom-lowering FP_ROUND");
14025 
14026   RTLIB::Libcall LC;
14027   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
14028 
14029   SDValue SrcVal = Op.getOperand(0);
14030   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14031                      SDLoc(Op)).first;
14032 }
14033 
14034 bool
14035 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14036   // The ARM target isn't yet aware of offsets.
14037   return false;
14038 }
14039 
14040 bool ARM::isBitFieldInvertedMask(unsigned v) {
14041   if (v == 0xffffffff)
14042     return false;
14043 
14044   // there can be 1's on either or both "outsides", all the "inside"
14045   // bits must be 0's
14046   return isShiftedMask_32(~v);
14047 }
14048 
14049 /// isFPImmLegal - Returns true if the target can instruction select the
14050 /// specified FP immediate natively. If false, the legalizer will
14051 /// materialize the FP immediate as a load from a constant pool.
14052 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14053   if (!Subtarget->hasVFP3())
14054     return false;
14055   if (VT == MVT::f16 && Subtarget->hasFullFP16())
14056     return ARM_AM::getFP16Imm(Imm) != -1;
14057   if (VT == MVT::f32)
14058     return ARM_AM::getFP32Imm(Imm) != -1;
14059   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
14060     return ARM_AM::getFP64Imm(Imm) != -1;
14061   return false;
14062 }
14063 
14064 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
14065 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
14066 /// specified in the intrinsic calls.
14067 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14068                                            const CallInst &I,
14069                                            MachineFunction &MF,
14070                                            unsigned Intrinsic) const {
14071   switch (Intrinsic) {
14072   case Intrinsic::arm_neon_vld1:
14073   case Intrinsic::arm_neon_vld2:
14074   case Intrinsic::arm_neon_vld3:
14075   case Intrinsic::arm_neon_vld4:
14076   case Intrinsic::arm_neon_vld2lane:
14077   case Intrinsic::arm_neon_vld3lane:
14078   case Intrinsic::arm_neon_vld4lane: {
14079     Info.opc = ISD::INTRINSIC_W_CHAIN;
14080     // Conservatively set memVT to the entire set of vectors loaded.
14081     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14082     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14083     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14084     Info.ptrVal = I.getArgOperand(0);
14085     Info.offset = 0;
14086     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14087     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14088     // volatile loads with NEON intrinsics not supported
14089     Info.flags = MachineMemOperand::MOLoad;
14090     return true;
14091   }
14092   case Intrinsic::arm_neon_vst1:
14093   case Intrinsic::arm_neon_vst2:
14094   case Intrinsic::arm_neon_vst3:
14095   case Intrinsic::arm_neon_vst4:
14096   case Intrinsic::arm_neon_vst2lane:
14097   case Intrinsic::arm_neon_vst3lane:
14098   case Intrinsic::arm_neon_vst4lane: {
14099     Info.opc = ISD::INTRINSIC_VOID;
14100     // Conservatively set memVT to the entire set of vectors stored.
14101     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14102     unsigned NumElts = 0;
14103     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14104       Type *ArgTy = I.getArgOperand(ArgI)->getType();
14105       if (!ArgTy->isVectorTy())
14106         break;
14107       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14108     }
14109     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14110     Info.ptrVal = I.getArgOperand(0);
14111     Info.offset = 0;
14112     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14113     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14114     // volatile stores with NEON intrinsics not supported
14115     Info.flags = MachineMemOperand::MOStore;
14116     return true;
14117   }
14118   case Intrinsic::arm_ldaex:
14119   case Intrinsic::arm_ldrex: {
14120     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14121     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
14122     Info.opc = ISD::INTRINSIC_W_CHAIN;
14123     Info.memVT = MVT::getVT(PtrTy->getElementType());
14124     Info.ptrVal = I.getArgOperand(0);
14125     Info.offset = 0;
14126     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14127     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14128     return true;
14129   }
14130   case Intrinsic::arm_stlex:
14131   case Intrinsic::arm_strex: {
14132     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14133     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
14134     Info.opc = ISD::INTRINSIC_W_CHAIN;
14135     Info.memVT = MVT::getVT(PtrTy->getElementType());
14136     Info.ptrVal = I.getArgOperand(1);
14137     Info.offset = 0;
14138     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14139     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14140     return true;
14141   }
14142   case Intrinsic::arm_stlexd:
14143   case Intrinsic::arm_strexd:
14144     Info.opc = ISD::INTRINSIC_W_CHAIN;
14145     Info.memVT = MVT::i64;
14146     Info.ptrVal = I.getArgOperand(2);
14147     Info.offset = 0;
14148     Info.align = 8;
14149     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14150     return true;
14151 
14152   case Intrinsic::arm_ldaexd:
14153   case Intrinsic::arm_ldrexd:
14154     Info.opc = ISD::INTRINSIC_W_CHAIN;
14155     Info.memVT = MVT::i64;
14156     Info.ptrVal = I.getArgOperand(0);
14157     Info.offset = 0;
14158     Info.align = 8;
14159     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14160     return true;
14161 
14162   default:
14163     break;
14164   }
14165 
14166   return false;
14167 }
14168 
14169 /// \brief Returns true if it is beneficial to convert a load of a constant
14170 /// to just the constant itself.
14171 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14172                                                           Type *Ty) const {
14173   assert(Ty->isIntegerTy());
14174 
14175   unsigned Bits = Ty->getPrimitiveSizeInBits();
14176   if (Bits == 0 || Bits > 32)
14177     return false;
14178   return true;
14179 }
14180 
14181 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
14182                                                 unsigned Index) const {
14183   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
14184     return false;
14185 
14186   return (Index == 0 || Index == ResVT.getVectorNumElements());
14187 }
14188 
14189 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
14190                                         ARM_MB::MemBOpt Domain) const {
14191   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14192 
14193   // First, if the target has no DMB, see what fallback we can use.
14194   if (!Subtarget->hasDataBarrier()) {
14195     // Some ARMv6 cpus can support data barriers with an mcr instruction.
14196     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
14197     // here.
14198     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
14199       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
14200       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
14201                         Builder.getInt32(0), Builder.getInt32(7),
14202                         Builder.getInt32(10), Builder.getInt32(5)};
14203       return Builder.CreateCall(MCR, args);
14204     } else {
14205       // Instead of using barriers, atomic accesses on these subtargets use
14206       // libcalls.
14207       llvm_unreachable("makeDMB on a target so old that it has no barriers");
14208     }
14209   } else {
14210     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
14211     // Only a full system barrier exists in the M-class architectures.
14212     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
14213     Constant *CDomain = Builder.getInt32(Domain);
14214     return Builder.CreateCall(DMB, CDomain);
14215   }
14216 }
14217 
14218 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
14219 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
14220                                                  Instruction *Inst,
14221                                                  AtomicOrdering Ord) const {
14222   switch (Ord) {
14223   case AtomicOrdering::NotAtomic:
14224   case AtomicOrdering::Unordered:
14225     llvm_unreachable("Invalid fence: unordered/non-atomic");
14226   case AtomicOrdering::Monotonic:
14227   case AtomicOrdering::Acquire:
14228     return nullptr; // Nothing to do
14229   case AtomicOrdering::SequentiallyConsistent:
14230     if (!Inst->hasAtomicStore())
14231       return nullptr; // Nothing to do
14232     LLVM_FALLTHROUGH;
14233   case AtomicOrdering::Release:
14234   case AtomicOrdering::AcquireRelease:
14235     if (Subtarget->preferISHSTBarriers())
14236       return makeDMB(Builder, ARM_MB::ISHST);
14237     // FIXME: add a comment with a link to documentation justifying this.
14238     else
14239       return makeDMB(Builder, ARM_MB::ISH);
14240   }
14241   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
14242 }
14243 
14244 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
14245                                                   Instruction *Inst,
14246                                                   AtomicOrdering Ord) const {
14247   switch (Ord) {
14248   case AtomicOrdering::NotAtomic:
14249   case AtomicOrdering::Unordered:
14250     llvm_unreachable("Invalid fence: unordered/not-atomic");
14251   case AtomicOrdering::Monotonic:
14252   case AtomicOrdering::Release:
14253     return nullptr; // Nothing to do
14254   case AtomicOrdering::Acquire:
14255   case AtomicOrdering::AcquireRelease:
14256   case AtomicOrdering::SequentiallyConsistent:
14257     return makeDMB(Builder, ARM_MB::ISH);
14258   }
14259   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
14260 }
14261 
14262 // Loads and stores less than 64-bits are already atomic; ones above that
14263 // are doomed anyway, so defer to the default libcall and blame the OS when
14264 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14265 // anything for those.
14266 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
14267   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
14268   return (Size == 64) && !Subtarget->isMClass();
14269 }
14270 
14271 // Loads and stores less than 64-bits are already atomic; ones above that
14272 // are doomed anyway, so defer to the default libcall and blame the OS when
14273 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14274 // anything for those.
14275 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
14276 // guarantee, see DDI0406C ARM architecture reference manual,
14277 // sections A8.8.72-74 LDRD)
14278 TargetLowering::AtomicExpansionKind
14279 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
14280   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
14281   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
14282                                                   : AtomicExpansionKind::None;
14283 }
14284 
14285 // For the real atomic operations, we have ldrex/strex up to 32 bits,
14286 // and up to 64 bits on the non-M profiles
14287 TargetLowering::AtomicExpansionKind
14288 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
14289   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
14290   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14291   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
14292              ? AtomicExpansionKind::LLSC
14293              : AtomicExpansionKind::None;
14294 }
14295 
14296 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
14297     AtomicCmpXchgInst *AI) const {
14298   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
14299   // implement cmpxchg without spilling. If the address being exchanged is also
14300   // on the stack and close enough to the spill slot, this can lead to a
14301   // situation where the monitor always gets cleared and the atomic operation
14302   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
14303   bool hasAtomicCmpXchg =
14304       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14305   return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg;
14306 }
14307 
14308 bool ARMTargetLowering::shouldInsertFencesForAtomic(
14309     const Instruction *I) const {
14310   return InsertFencesForAtomic;
14311 }
14312 
14313 // This has so far only been implemented for MachO.
14314 bool ARMTargetLowering::useLoadStackGuardNode() const {
14315   return Subtarget->isTargetMachO();
14316 }
14317 
14318 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
14319                                                   unsigned &Cost) const {
14320   // If we do not have NEON, vector types are not natively supported.
14321   if (!Subtarget->hasNEON())
14322     return false;
14323 
14324   // Floating point values and vector values map to the same register file.
14325   // Therefore, although we could do a store extract of a vector type, this is
14326   // better to leave at float as we have more freedom in the addressing mode for
14327   // those.
14328   if (VectorTy->isFPOrFPVectorTy())
14329     return false;
14330 
14331   // If the index is unknown at compile time, this is very expensive to lower
14332   // and it is not possible to combine the store with the extract.
14333   if (!isa<ConstantInt>(Idx))
14334     return false;
14335 
14336   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
14337   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
14338   // We can do a store + vector extract on any vector that fits perfectly in a D
14339   // or Q register.
14340   if (BitWidth == 64 || BitWidth == 128) {
14341     Cost = 0;
14342     return true;
14343   }
14344   return false;
14345 }
14346 
14347 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
14348   return Subtarget->hasV6T2Ops();
14349 }
14350 
14351 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
14352   return Subtarget->hasV6T2Ops();
14353 }
14354 
14355 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
14356                                          AtomicOrdering Ord) const {
14357   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14358   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
14359   bool IsAcquire = isAcquireOrStronger(Ord);
14360 
14361   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
14362   // intrinsic must return {i32, i32} and we have to recombine them into a
14363   // single i64 here.
14364   if (ValTy->getPrimitiveSizeInBits() == 64) {
14365     Intrinsic::ID Int =
14366         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
14367     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
14368 
14369     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14370     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
14371 
14372     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
14373     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
14374     if (!Subtarget->isLittle())
14375       std::swap (Lo, Hi);
14376     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
14377     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
14378     return Builder.CreateOr(
14379         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
14380   }
14381 
14382   Type *Tys[] = { Addr->getType() };
14383   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
14384   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
14385 
14386   return Builder.CreateTruncOrBitCast(
14387       Builder.CreateCall(Ldrex, Addr),
14388       cast<PointerType>(Addr->getType())->getElementType());
14389 }
14390 
14391 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
14392     IRBuilder<> &Builder) const {
14393   if (!Subtarget->hasV7Ops())
14394     return;
14395   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14396   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
14397 }
14398 
14399 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
14400                                                Value *Addr,
14401                                                AtomicOrdering Ord) const {
14402   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14403   bool IsRelease = isReleaseOrStronger(Ord);
14404 
14405   // Since the intrinsics must have legal type, the i64 intrinsics take two
14406   // parameters: "i32, i32". We must marshal Val into the appropriate form
14407   // before the call.
14408   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
14409     Intrinsic::ID Int =
14410         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
14411     Function *Strex = Intrinsic::getDeclaration(M, Int);
14412     Type *Int32Ty = Type::getInt32Ty(M->getContext());
14413 
14414     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
14415     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
14416     if (!Subtarget->isLittle())
14417       std::swap(Lo, Hi);
14418     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14419     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
14420   }
14421 
14422   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
14423   Type *Tys[] = { Addr->getType() };
14424   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
14425 
14426   return Builder.CreateCall(
14427       Strex, {Builder.CreateZExtOrBitCast(
14428                   Val, Strex->getFunctionType()->getParamType(0)),
14429               Addr});
14430 }
14431 
14432 /// A helper function for determining the number of interleaved accesses we
14433 /// will generate when lowering accesses of the given type.
14434 unsigned
14435 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
14436                                              const DataLayout &DL) const {
14437   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
14438 }
14439 
14440 bool ARMTargetLowering::isLegalInterleavedAccessType(
14441     VectorType *VecTy, const DataLayout &DL) const {
14442 
14443   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
14444   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
14445 
14446   // Ensure the vector doesn't have f16 elements. Even though we could do an
14447   // i16 vldN, we can't hold the f16 vectors and will end up converting via
14448   // f32.
14449   if (VecTy->getElementType()->isHalfTy())
14450     return false;
14451 
14452   // Ensure the number of vector elements is greater than 1.
14453   if (VecTy->getNumElements() < 2)
14454     return false;
14455 
14456   // Ensure the element type is legal.
14457   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
14458     return false;
14459 
14460   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
14461   // 128 will be split into multiple interleaved accesses.
14462   return VecSize == 64 || VecSize % 128 == 0;
14463 }
14464 
14465 /// \brief Lower an interleaved load into a vldN intrinsic.
14466 ///
14467 /// E.g. Lower an interleaved load (Factor = 2):
14468 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
14469 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
14470 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
14471 ///
14472 ///      Into:
14473 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
14474 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
14475 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
14476 bool ARMTargetLowering::lowerInterleavedLoad(
14477     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
14478     ArrayRef<unsigned> Indices, unsigned Factor) const {
14479   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14480          "Invalid interleave factor");
14481   assert(!Shuffles.empty() && "Empty shufflevector input");
14482   assert(Shuffles.size() == Indices.size() &&
14483          "Unmatched number of shufflevectors and indices");
14484 
14485   VectorType *VecTy = Shuffles[0]->getType();
14486   Type *EltTy = VecTy->getVectorElementType();
14487 
14488   const DataLayout &DL = LI->getModule()->getDataLayout();
14489 
14490   // Skip if we do not have NEON and skip illegal vector types. We can
14491   // "legalize" wide vector types into multiple interleaved accesses as long as
14492   // the vector types are divisible by 128.
14493   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
14494     return false;
14495 
14496   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
14497 
14498   // A pointer vector can not be the return type of the ldN intrinsics. Need to
14499   // load integer vectors first and then convert to pointer vectors.
14500   if (EltTy->isPointerTy())
14501     VecTy =
14502         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
14503 
14504   IRBuilder<> Builder(LI);
14505 
14506   // The base address of the load.
14507   Value *BaseAddr = LI->getPointerOperand();
14508 
14509   if (NumLoads > 1) {
14510     // If we're going to generate more than one load, reset the sub-vector type
14511     // to something legal.
14512     VecTy = VectorType::get(VecTy->getVectorElementType(),
14513                             VecTy->getVectorNumElements() / NumLoads);
14514 
14515     // We will compute the pointer operand of each load from the original base
14516     // address using GEPs. Cast the base address to a pointer to the scalar
14517     // element type.
14518     BaseAddr = Builder.CreateBitCast(
14519         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
14520                       LI->getPointerAddressSpace()));
14521   }
14522 
14523   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
14524 
14525   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
14526   Type *Tys[] = {VecTy, Int8Ptr};
14527   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
14528                                             Intrinsic::arm_neon_vld3,
14529                                             Intrinsic::arm_neon_vld4};
14530   Function *VldnFunc =
14531       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
14532 
14533   // Holds sub-vectors extracted from the load intrinsic return values. The
14534   // sub-vectors are associated with the shufflevector instructions they will
14535   // replace.
14536   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
14537 
14538   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
14539     // If we're generating more than one load, compute the base address of
14540     // subsequent loads as an offset from the previous.
14541     if (LoadCount > 0)
14542       BaseAddr = Builder.CreateConstGEP1_32(
14543           BaseAddr, VecTy->getVectorNumElements() * Factor);
14544 
14545     SmallVector<Value *, 2> Ops;
14546     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14547     Ops.push_back(Builder.getInt32(LI->getAlignment()));
14548 
14549     CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
14550 
14551     // Replace uses of each shufflevector with the corresponding vector loaded
14552     // by ldN.
14553     for (unsigned i = 0; i < Shuffles.size(); i++) {
14554       ShuffleVectorInst *SV = Shuffles[i];
14555       unsigned Index = Indices[i];
14556 
14557       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
14558 
14559       // Convert the integer vector to pointer vector if the element is pointer.
14560       if (EltTy->isPointerTy())
14561         SubVec = Builder.CreateIntToPtr(
14562             SubVec, VectorType::get(SV->getType()->getVectorElementType(),
14563                                     VecTy->getVectorNumElements()));
14564 
14565       SubVecs[SV].push_back(SubVec);
14566     }
14567   }
14568 
14569   // Replace uses of the shufflevector instructions with the sub-vectors
14570   // returned by the load intrinsic. If a shufflevector instruction is
14571   // associated with more than one sub-vector, those sub-vectors will be
14572   // concatenated into a single wide vector.
14573   for (ShuffleVectorInst *SVI : Shuffles) {
14574     auto &SubVec = SubVecs[SVI];
14575     auto *WideVec =
14576         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
14577     SVI->replaceAllUsesWith(WideVec);
14578   }
14579 
14580   return true;
14581 }
14582 
14583 /// \brief Lower an interleaved store into a vstN intrinsic.
14584 ///
14585 /// E.g. Lower an interleaved store (Factor = 3):
14586 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
14587 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
14588 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
14589 ///
14590 ///      Into:
14591 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
14592 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
14593 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
14594 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
14595 ///
14596 /// Note that the new shufflevectors will be removed and we'll only generate one
14597 /// vst3 instruction in CodeGen.
14598 ///
14599 /// Example for a more general valid mask (Factor 3). Lower:
14600 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
14601 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
14602 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
14603 ///
14604 ///      Into:
14605 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
14606 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
14607 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
14608 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
14609 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
14610                                               ShuffleVectorInst *SVI,
14611                                               unsigned Factor) const {
14612   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14613          "Invalid interleave factor");
14614 
14615   VectorType *VecTy = SVI->getType();
14616   assert(VecTy->getVectorNumElements() % Factor == 0 &&
14617          "Invalid interleaved store");
14618 
14619   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
14620   Type *EltTy = VecTy->getVectorElementType();
14621   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
14622 
14623   const DataLayout &DL = SI->getModule()->getDataLayout();
14624 
14625   // Skip if we do not have NEON and skip illegal vector types. We can
14626   // "legalize" wide vector types into multiple interleaved accesses as long as
14627   // the vector types are divisible by 128.
14628   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
14629     return false;
14630 
14631   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
14632 
14633   Value *Op0 = SVI->getOperand(0);
14634   Value *Op1 = SVI->getOperand(1);
14635   IRBuilder<> Builder(SI);
14636 
14637   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
14638   // vectors to integer vectors.
14639   if (EltTy->isPointerTy()) {
14640     Type *IntTy = DL.getIntPtrType(EltTy);
14641 
14642     // Convert to the corresponding integer vector.
14643     Type *IntVecTy =
14644         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
14645     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
14646     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
14647 
14648     SubVecTy = VectorType::get(IntTy, LaneLen);
14649   }
14650 
14651   // The base address of the store.
14652   Value *BaseAddr = SI->getPointerOperand();
14653 
14654   if (NumStores > 1) {
14655     // If we're going to generate more than one store, reset the lane length
14656     // and sub-vector type to something legal.
14657     LaneLen /= NumStores;
14658     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
14659 
14660     // We will compute the pointer operand of each store from the original base
14661     // address using GEPs. Cast the base address to a pointer to the scalar
14662     // element type.
14663     BaseAddr = Builder.CreateBitCast(
14664         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
14665                       SI->getPointerAddressSpace()));
14666   }
14667 
14668   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
14669 
14670   auto Mask = SVI->getShuffleMask();
14671 
14672   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
14673   Type *Tys[] = {Int8Ptr, SubVecTy};
14674   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
14675                                              Intrinsic::arm_neon_vst3,
14676                                              Intrinsic::arm_neon_vst4};
14677 
14678   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
14679     // If we generating more than one store, we compute the base address of
14680     // subsequent stores as an offset from the previous.
14681     if (StoreCount > 0)
14682       BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
14683 
14684     SmallVector<Value *, 6> Ops;
14685     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14686 
14687     Function *VstNFunc =
14688         Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
14689 
14690     // Split the shufflevector operands into sub vectors for the new vstN call.
14691     for (unsigned i = 0; i < Factor; i++) {
14692       unsigned IdxI = StoreCount * LaneLen * Factor + i;
14693       if (Mask[IdxI] >= 0) {
14694         Ops.push_back(Builder.CreateShuffleVector(
14695             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
14696       } else {
14697         unsigned StartMask = 0;
14698         for (unsigned j = 1; j < LaneLen; j++) {
14699           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
14700           if (Mask[IdxJ * Factor + IdxI] >= 0) {
14701             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
14702             break;
14703           }
14704         }
14705         // Note: If all elements in a chunk are undefs, StartMask=0!
14706         // Note: Filling undef gaps with random elements is ok, since
14707         // those elements were being written anyway (with undefs).
14708         // In the case of all undefs we're defaulting to using elems from 0
14709         // Note: StartMask cannot be negative, it's checked in
14710         // isReInterleaveMask
14711         Ops.push_back(Builder.CreateShuffleVector(
14712             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
14713       }
14714     }
14715 
14716     Ops.push_back(Builder.getInt32(SI->getAlignment()));
14717     Builder.CreateCall(VstNFunc, Ops);
14718   }
14719   return true;
14720 }
14721 
14722 enum HABaseType {
14723   HA_UNKNOWN = 0,
14724   HA_FLOAT,
14725   HA_DOUBLE,
14726   HA_VECT64,
14727   HA_VECT128
14728 };
14729 
14730 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
14731                                    uint64_t &Members) {
14732   if (auto *ST = dyn_cast<StructType>(Ty)) {
14733     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
14734       uint64_t SubMembers = 0;
14735       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
14736         return false;
14737       Members += SubMembers;
14738     }
14739   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
14740     uint64_t SubMembers = 0;
14741     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
14742       return false;
14743     Members += SubMembers * AT->getNumElements();
14744   } else if (Ty->isFloatTy()) {
14745     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
14746       return false;
14747     Members = 1;
14748     Base = HA_FLOAT;
14749   } else if (Ty->isDoubleTy()) {
14750     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
14751       return false;
14752     Members = 1;
14753     Base = HA_DOUBLE;
14754   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
14755     Members = 1;
14756     switch (Base) {
14757     case HA_FLOAT:
14758     case HA_DOUBLE:
14759       return false;
14760     case HA_VECT64:
14761       return VT->getBitWidth() == 64;
14762     case HA_VECT128:
14763       return VT->getBitWidth() == 128;
14764     case HA_UNKNOWN:
14765       switch (VT->getBitWidth()) {
14766       case 64:
14767         Base = HA_VECT64;
14768         return true;
14769       case 128:
14770         Base = HA_VECT128;
14771         return true;
14772       default:
14773         return false;
14774       }
14775     }
14776   }
14777 
14778   return (Members > 0 && Members <= 4);
14779 }
14780 
14781 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
14782 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
14783 /// passing according to AAPCS rules.
14784 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
14785     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
14786   if (getEffectiveCallingConv(CallConv, isVarArg) !=
14787       CallingConv::ARM_AAPCS_VFP)
14788     return false;
14789 
14790   HABaseType Base = HA_UNKNOWN;
14791   uint64_t Members = 0;
14792   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
14793   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
14794 
14795   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
14796   return IsHA || IsIntArray;
14797 }
14798 
14799 unsigned ARMTargetLowering::getExceptionPointerRegister(
14800     const Constant *PersonalityFn) const {
14801   // Platforms which do not use SjLj EH may return values in these registers
14802   // via the personality function.
14803   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
14804 }
14805 
14806 unsigned ARMTargetLowering::getExceptionSelectorRegister(
14807     const Constant *PersonalityFn) const {
14808   // Platforms which do not use SjLj EH may return values in these registers
14809   // via the personality function.
14810   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
14811 }
14812 
14813 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14814   // Update IsSplitCSR in ARMFunctionInfo.
14815   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
14816   AFI->setIsSplitCSR(true);
14817 }
14818 
14819 void ARMTargetLowering::insertCopiesSplitCSR(
14820     MachineBasicBlock *Entry,
14821     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14822   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
14823   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14824   if (!IStart)
14825     return;
14826 
14827   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
14828   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14829   MachineBasicBlock::iterator MBBI = Entry->begin();
14830   for (const MCPhysReg *I = IStart; *I; ++I) {
14831     const TargetRegisterClass *RC = nullptr;
14832     if (ARM::GPRRegClass.contains(*I))
14833       RC = &ARM::GPRRegClass;
14834     else if (ARM::DPRRegClass.contains(*I))
14835       RC = &ARM::DPRRegClass;
14836     else
14837       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14838 
14839     unsigned NewVR = MRI->createVirtualRegister(RC);
14840     // Create copy from CSR to a virtual register.
14841     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14842     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14843     // nounwind. If we want to generalize this later, we may need to emit
14844     // CFI pseudo-instructions.
14845     assert(Entry->getParent()->getFunction().hasFnAttribute(
14846                Attribute::NoUnwind) &&
14847            "Function should be nounwind in insertCopiesSplitCSR!");
14848     Entry->addLiveIn(*I);
14849     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14850         .addReg(*I);
14851 
14852     // Insert the copy-back instructions right before the terminator.
14853     for (auto *Exit : Exits)
14854       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14855               TII->get(TargetOpcode::COPY), *I)
14856           .addReg(NewVR);
14857   }
14858 }
14859 
14860 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
14861   MF.getFrameInfo().computeMaxCallFrameSize(MF);
14862   TargetLoweringBase::finalizeLowering(MF);
14863 }
14864