1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMISelLowering.h"
16 #include "ARMCallingConv.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMPerfectShuffle.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMTargetObjectFile.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/IntrinsicLowering.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/MC/MCSectionMachO.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include <utility>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "arm-isel"
58 
59 STATISTIC(NumTailCalls, "Number of tail calls");
60 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
61 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
62 
63 static cl::opt<bool>
64 ARMInterworking("arm-interworking", cl::Hidden,
65   cl::desc("Enable / disable ARM interworking (for debugging only)"),
66   cl::init(true));
67 
68 namespace {
69   class ARMCCState : public CCState {
70   public:
71     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
72                SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
73                ParmContext PC)
74         : CCState(CC, isVarArg, MF, locs, C) {
75       assert(((PC == Call) || (PC == Prologue)) &&
76              "ARMCCState users must specify whether their context is call"
77              "or prologue generation.");
78       CallOrPrologue = PC;
79     }
80   };
81 }
82 
83 // The APCS parameter registers.
84 static const MCPhysReg GPRArgRegs[] = {
85   ARM::R0, ARM::R1, ARM::R2, ARM::R3
86 };
87 
88 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
89                                        MVT PromotedBitwiseVT) {
90   if (VT != PromotedLdStVT) {
91     setOperationAction(ISD::LOAD, VT, Promote);
92     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
93 
94     setOperationAction(ISD::STORE, VT, Promote);
95     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
96   }
97 
98   MVT ElemTy = VT.getVectorElementType();
99   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
100     setOperationAction(ISD::SETCC, VT, Custom);
101   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
102   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
103   if (ElemTy == MVT::i32) {
104     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
105     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
106     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
107     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
108   } else {
109     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
110     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
111     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
112     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
113   }
114   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
115   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
116   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
117   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
118   setOperationAction(ISD::SELECT,            VT, Expand);
119   setOperationAction(ISD::SELECT_CC,         VT, Expand);
120   setOperationAction(ISD::VSELECT,           VT, Expand);
121   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
122   if (VT.isInteger()) {
123     setOperationAction(ISD::SHL, VT, Custom);
124     setOperationAction(ISD::SRA, VT, Custom);
125     setOperationAction(ISD::SRL, VT, Custom);
126   }
127 
128   // Promote all bit-wise operations.
129   if (VT.isInteger() && VT != PromotedBitwiseVT) {
130     setOperationAction(ISD::AND, VT, Promote);
131     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
132     setOperationAction(ISD::OR,  VT, Promote);
133     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
134     setOperationAction(ISD::XOR, VT, Promote);
135     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
136   }
137 
138   // Neon does not support vector divide/remainder operations.
139   setOperationAction(ISD::SDIV, VT, Expand);
140   setOperationAction(ISD::UDIV, VT, Expand);
141   setOperationAction(ISD::FDIV, VT, Expand);
142   setOperationAction(ISD::SREM, VT, Expand);
143   setOperationAction(ISD::UREM, VT, Expand);
144   setOperationAction(ISD::FREM, VT, Expand);
145 
146   if (!VT.isFloatingPoint() &&
147       VT != MVT::v2i64 && VT != MVT::v1i64)
148     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
149       setOperationAction(Opcode, VT, Legal);
150 }
151 
152 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153   addRegisterClass(VT, &ARM::DPRRegClass);
154   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155 }
156 
157 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158   addRegisterClass(VT, &ARM::DPairRegClass);
159   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160 }
161 
162 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
163                                      const ARMSubtarget &STI)
164     : TargetLowering(TM), Subtarget(&STI) {
165   RegInfo = Subtarget->getRegisterInfo();
166   Itins = Subtarget->getInstrItineraryData();
167 
168   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
169 
170   if (Subtarget->isTargetMachO()) {
171     // Uses VFP for Thumb libfuncs if available.
172     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
173         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
174       static const struct {
175         const RTLIB::Libcall Op;
176         const char * const Name;
177         const ISD::CondCode Cond;
178       } LibraryCalls[] = {
179         // Single-precision floating-point arithmetic.
180         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
181         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
182         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
183         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
184 
185         // Double-precision floating-point arithmetic.
186         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
187         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
188         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
189         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
190 
191         // Single-precision comparisons.
192         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
193         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
194         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
195         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
196         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
197         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
198         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
199         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
200 
201         // Double-precision comparisons.
202         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
203         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
204         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
205         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
206         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
207         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
208         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
209         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
210 
211         // Floating-point to integer conversions.
212         // i64 conversions are done via library routines even when generating VFP
213         // instructions, so use the same ones.
214         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
215         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
216         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
217         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
218 
219         // Conversions between floating types.
220         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
221         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
222 
223         // Integer to floating-point conversions.
224         // i64 conversions are done via library routines even when generating VFP
225         // instructions, so use the same ones.
226         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
227         // e.g., __floatunsidf vs. __floatunssidfvfp.
228         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
229         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
230         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
231         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
232       };
233 
234       for (const auto &LC : LibraryCalls) {
235         setLibcallName(LC.Op, LC.Name);
236         if (LC.Cond != ISD::SETCC_INVALID)
237           setCmpLibcallCC(LC.Op, LC.Cond);
238       }
239     }
240 
241     // Set the correct calling convention for ARMv7k WatchOS. It's just
242     // AAPCS_VFP for functions as simple as libcalls.
243     if (Subtarget->isTargetWatchABI()) {
244       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
245         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
246     }
247   }
248 
249   // These libcalls are not available in 32-bit.
250   setLibcallName(RTLIB::SHL_I128, nullptr);
251   setLibcallName(RTLIB::SRL_I128, nullptr);
252   setLibcallName(RTLIB::SRA_I128, nullptr);
253 
254   // RTLIB
255   if (Subtarget->isAAPCS_ABI() &&
256       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
257        Subtarget->isTargetAndroid())) {
258     static const struct {
259       const RTLIB::Libcall Op;
260       const char * const Name;
261       const CallingConv::ID CC;
262       const ISD::CondCode Cond;
263     } LibraryCalls[] = {
264       // Double-precision floating-point arithmetic helper functions
265       // RTABI chapter 4.1.2, Table 2
266       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
267       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
268       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
269       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
270 
271       // Double-precision floating-point comparison helper functions
272       // RTABI chapter 4.1.2, Table 3
273       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
274       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
275       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
276       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
277       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
278       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
279       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
280       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
281 
282       // Single-precision floating-point arithmetic helper functions
283       // RTABI chapter 4.1.2, Table 4
284       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
285       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
286       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
287       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
288 
289       // Single-precision floating-point comparison helper functions
290       // RTABI chapter 4.1.2, Table 5
291       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
292       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
293       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
294       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
295       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
296       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
297       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
298       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
299 
300       // Floating-point to integer conversions.
301       // RTABI chapter 4.1.2, Table 6
302       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
303       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
304       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
305       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
306       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
307       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
308       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
309       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
310 
311       // Conversions between floating types.
312       // RTABI chapter 4.1.2, Table 7
313       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
314       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
315       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
316 
317       // Integer to floating-point conversions.
318       // RTABI chapter 4.1.2, Table 8
319       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
320       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
321       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
322       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
323       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
324       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
325       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
326       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
327 
328       // Long long helper functions
329       // RTABI chapter 4.2, Table 9
330       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
331       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334 
335       // Integer division functions
336       // RTABI chapter 4.3.1
337       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
340       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
341       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
342       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
343       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
344       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
345     };
346 
347     for (const auto &LC : LibraryCalls) {
348       setLibcallName(LC.Op, LC.Name);
349       setLibcallCallingConv(LC.Op, LC.CC);
350       if (LC.Cond != ISD::SETCC_INVALID)
351         setCmpLibcallCC(LC.Op, LC.Cond);
352     }
353 
354     // EABI dependent RTLIB
355     if (TM.Options.EABIVersion == EABI::EABI4 ||
356         TM.Options.EABIVersion == EABI::EABI5) {
357       static const struct {
358         const RTLIB::Libcall Op;
359         const char *const Name;
360         const CallingConv::ID CC;
361         const ISD::CondCode Cond;
362       } MemOpsLibraryCalls[] = {
363         // Memory operations
364         // RTABI chapter 4.3.4
365         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
366         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
367         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
368       };
369 
370       for (const auto &LC : MemOpsLibraryCalls) {
371         setLibcallName(LC.Op, LC.Name);
372         setLibcallCallingConv(LC.Op, LC.CC);
373         if (LC.Cond != ISD::SETCC_INVALID)
374           setCmpLibcallCC(LC.Op, LC.Cond);
375       }
376     }
377   }
378 
379   if (Subtarget->isTargetWindows()) {
380     static const struct {
381       const RTLIB::Libcall Op;
382       const char * const Name;
383       const CallingConv::ID CC;
384     } LibraryCalls[] = {
385       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
386       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
387       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
388       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
389       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
390       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
391       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
392       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
393     };
394 
395     for (const auto &LC : LibraryCalls) {
396       setLibcallName(LC.Op, LC.Name);
397       setLibcallCallingConv(LC.Op, LC.CC);
398     }
399   }
400 
401   // Use divmod compiler-rt calls for iOS 5.0 and later.
402   if (Subtarget->isTargetWatchOS() ||
403       (Subtarget->isTargetIOS() &&
404        !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
405     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
406     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
407   }
408 
409   // The half <-> float conversion functions are always soft-float, but are
410   // needed for some targets which use a hard-float calling convention by
411   // default.
412   if (Subtarget->isAAPCS_ABI()) {
413     setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
414     setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
415     setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
416   } else {
417     setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
418     setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
419     setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
420   }
421 
422   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
423   // a __gnu_ prefix (which is the default).
424   if (Subtarget->isTargetAEABI()) {
425     setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h");
426     setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h");
427     setLibcallName(RTLIB::FPEXT_F16_F32,   "__aeabi_h2f");
428   }
429 
430   if (Subtarget->isThumb1Only())
431     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
432   else
433     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
434   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
435       !Subtarget->isThumb1Only()) {
436     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
437     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
438   }
439 
440   for (MVT VT : MVT::vector_valuetypes()) {
441     for (MVT InnerVT : MVT::vector_valuetypes()) {
442       setTruncStoreAction(VT, InnerVT, Expand);
443       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
444       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
445       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
446     }
447 
448     setOperationAction(ISD::MULHS, VT, Expand);
449     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
450     setOperationAction(ISD::MULHU, VT, Expand);
451     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
452 
453     setOperationAction(ISD::BSWAP, VT, Expand);
454   }
455 
456   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
457   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
458 
459   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
460   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
461 
462   if (Subtarget->hasNEON()) {
463     addDRTypeForNEON(MVT::v2f32);
464     addDRTypeForNEON(MVT::v8i8);
465     addDRTypeForNEON(MVT::v4i16);
466     addDRTypeForNEON(MVT::v2i32);
467     addDRTypeForNEON(MVT::v1i64);
468 
469     addQRTypeForNEON(MVT::v4f32);
470     addQRTypeForNEON(MVT::v2f64);
471     addQRTypeForNEON(MVT::v16i8);
472     addQRTypeForNEON(MVT::v8i16);
473     addQRTypeForNEON(MVT::v4i32);
474     addQRTypeForNEON(MVT::v2i64);
475 
476     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
477     // neither Neon nor VFP support any arithmetic operations on it.
478     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
479     // supported for v4f32.
480     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
481     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
482     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
483     // FIXME: Code duplication: FDIV and FREM are expanded always, see
484     // ARMTargetLowering::addTypeForNEON method for details.
485     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
486     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
487     // FIXME: Create unittest.
488     // In another words, find a way when "copysign" appears in DAG with vector
489     // operands.
490     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
491     // FIXME: Code duplication: SETCC has custom operation action, see
492     // ARMTargetLowering::addTypeForNEON method for details.
493     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
494     // FIXME: Create unittest for FNEG and for FABS.
495     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
496     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
497     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
498     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
499     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
500     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
501     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
502     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
503     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
504     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
505     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
506     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
507     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
508     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
509     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
510     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
511     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
512     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
513     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
514 
515     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
516     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
517     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
518     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
519     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
520     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
521     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
522     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
523     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
524     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
525     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
526     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
527     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
528     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
529     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
530 
531     // Mark v2f32 intrinsics.
532     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
533     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
534     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
535     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
536     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
537     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
538     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
539     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
540     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
541     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
542     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
543     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
544     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
545     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
546     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
547 
548     // Neon does not support some operations on v1i64 and v2i64 types.
549     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
550     // Custom handling for some quad-vector types to detect VMULL.
551     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
552     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
553     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
554     // Custom handling for some vector types to avoid expensive expansions
555     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
556     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
557     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
558     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
559     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
560     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
561     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
562     // a destination type that is wider than the source, and nor does
563     // it have a FP_TO_[SU]INT instruction with a narrower destination than
564     // source.
565     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
566     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
567     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
568     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
569 
570     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
571     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
572 
573     // NEON does not have single instruction CTPOP for vectors with element
574     // types wider than 8-bits.  However, custom lowering can leverage the
575     // v8i8/v16i8 vcnt instruction.
576     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
577     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
578     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
579     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
580     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
581     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
582 
583     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
584     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
585 
586     // NEON does not have single instruction CTTZ for vectors.
587     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
588     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
589     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
590     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
591 
592     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
593     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
594     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
595     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
596 
597     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
598     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
599     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
600     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
601 
602     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
603     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
604     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
605     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
606 
607     // NEON only has FMA instructions as of VFP4.
608     if (!Subtarget->hasVFP4()) {
609       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
610       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
611     }
612 
613     setTargetDAGCombine(ISD::INTRINSIC_VOID);
614     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
615     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
616     setTargetDAGCombine(ISD::SHL);
617     setTargetDAGCombine(ISD::SRL);
618     setTargetDAGCombine(ISD::SRA);
619     setTargetDAGCombine(ISD::SIGN_EXTEND);
620     setTargetDAGCombine(ISD::ZERO_EXTEND);
621     setTargetDAGCombine(ISD::ANY_EXTEND);
622     setTargetDAGCombine(ISD::BUILD_VECTOR);
623     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
624     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
625     setTargetDAGCombine(ISD::STORE);
626     setTargetDAGCombine(ISD::FP_TO_SINT);
627     setTargetDAGCombine(ISD::FP_TO_UINT);
628     setTargetDAGCombine(ISD::FDIV);
629     setTargetDAGCombine(ISD::LOAD);
630 
631     // It is legal to extload from v4i8 to v4i16 or v4i32.
632     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
633                    MVT::v2i32}) {
634       for (MVT VT : MVT::integer_vector_valuetypes()) {
635         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
636         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
637         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
638       }
639     }
640   }
641 
642   // ARM and Thumb2 support UMLAL/SMLAL.
643   if (!Subtarget->isThumb1Only())
644     setTargetDAGCombine(ISD::ADDC);
645 
646   if (Subtarget->isFPOnlySP()) {
647     // When targeting a floating-point unit with only single-precision
648     // operations, f64 is legal for the few double-precision instructions which
649     // are present However, no double-precision operations other than moves,
650     // loads and stores are provided by the hardware.
651     setOperationAction(ISD::FADD,       MVT::f64, Expand);
652     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
653     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
654     setOperationAction(ISD::FMA,        MVT::f64, Expand);
655     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
656     setOperationAction(ISD::FREM,       MVT::f64, Expand);
657     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
658     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
659     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
660     setOperationAction(ISD::FABS,       MVT::f64, Expand);
661     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
662     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
663     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
664     setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
665     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
666     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
667     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
668     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
669     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
670     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
671     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
672     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
673     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
674     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
675     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
676     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
677     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
678     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
679     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
680     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
681     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
682     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
683     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
684   }
685 
686   computeRegisterProperties(Subtarget->getRegisterInfo());
687 
688   // ARM does not have floating-point extending loads.
689   for (MVT VT : MVT::fp_valuetypes()) {
690     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
691     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
692   }
693 
694   // ... or truncating stores
695   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
696   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
697   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
698 
699   // ARM does not have i1 sign extending load.
700   for (MVT VT : MVT::integer_valuetypes())
701     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
702 
703   // ARM supports all 4 flavors of integer indexed load / store.
704   if (!Subtarget->isThumb1Only()) {
705     for (unsigned im = (unsigned)ISD::PRE_INC;
706          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
707       setIndexedLoadAction(im,  MVT::i1,  Legal);
708       setIndexedLoadAction(im,  MVT::i8,  Legal);
709       setIndexedLoadAction(im,  MVT::i16, Legal);
710       setIndexedLoadAction(im,  MVT::i32, Legal);
711       setIndexedStoreAction(im, MVT::i1,  Legal);
712       setIndexedStoreAction(im, MVT::i8,  Legal);
713       setIndexedStoreAction(im, MVT::i16, Legal);
714       setIndexedStoreAction(im, MVT::i32, Legal);
715     }
716   }
717 
718   setOperationAction(ISD::SADDO, MVT::i32, Custom);
719   setOperationAction(ISD::UADDO, MVT::i32, Custom);
720   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
721   setOperationAction(ISD::USUBO, MVT::i32, Custom);
722 
723   // i64 operation support.
724   setOperationAction(ISD::MUL,     MVT::i64, Expand);
725   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
726   if (Subtarget->isThumb1Only()) {
727     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
728     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
729   }
730   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
731       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
732     setOperationAction(ISD::MULHS, MVT::i32, Expand);
733 
734   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
735   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
736   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
737   setOperationAction(ISD::SRL,       MVT::i64, Custom);
738   setOperationAction(ISD::SRA,       MVT::i64, Custom);
739 
740   if (!Subtarget->isThumb1Only()) {
741     // FIXME: We should do this for Thumb1 as well.
742     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
743     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
744     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
745     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
746   }
747 
748   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
749     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
750 
751   // ARM does not have ROTL.
752   setOperationAction(ISD::ROTL, MVT::i32, Expand);
753   for (MVT VT : MVT::vector_valuetypes()) {
754     setOperationAction(ISD::ROTL, VT, Expand);
755     setOperationAction(ISD::ROTR, VT, Expand);
756   }
757   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
758   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
759   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
760     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
761 
762   // @llvm.readcyclecounter requires the Performance Monitors extension.
763   // Default to the 0 expansion on unsupported platforms.
764   // FIXME: Technically there are older ARM CPUs that have
765   // implementation-specific ways of obtaining this information.
766   if (Subtarget->hasPerfMon())
767     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
768 
769   // Only ARMv6 has BSWAP.
770   if (!Subtarget->hasV6Ops())
771     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
772 
773   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
774                                         : Subtarget->hasDivideInARMMode();
775   if (!hasDivide) {
776     // These are expanded into libcalls if the cpu doesn't have HW divider.
777     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
778     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
779   }
780 
781   if (Subtarget->isTargetWindows() && !Subtarget->hasDivide()) {
782     setOperationAction(ISD::SDIV, MVT::i32, Custom);
783     setOperationAction(ISD::UDIV, MVT::i32, Custom);
784 
785     setOperationAction(ISD::SDIV, MVT::i64, Custom);
786     setOperationAction(ISD::UDIV, MVT::i64, Custom);
787   }
788 
789   setOperationAction(ISD::SREM,  MVT::i32, Expand);
790   setOperationAction(ISD::UREM,  MVT::i32, Expand);
791   // Register based DivRem for AEABI (RTABI 4.2)
792   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
793       Subtarget->isTargetGNUAEABI()) {
794     setOperationAction(ISD::SREM, MVT::i64, Custom);
795     setOperationAction(ISD::UREM, MVT::i64, Custom);
796 
797     setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
798     setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
799     setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
800     setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
801     setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
802     setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
803     setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
804     setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
805 
806     setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
807     setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
808     setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
809     setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
810     setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
811     setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
812     setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
813     setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
814 
815     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
816     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
817     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
818     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
819   } else {
820     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
821     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
822   }
823 
824   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
825   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
826   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
827   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
828 
829   setOperationAction(ISD::TRAP, MVT::Other, Legal);
830 
831   // Use the default implementation.
832   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
833   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
834   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
835   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
836   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
837   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
838 
839   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
840     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
841   else
842     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
843 
844   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
845   // the default expansion.
846   InsertFencesForAtomic = false;
847   if (Subtarget->hasAnyDataBarrier() &&
848       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
849     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
850     // to ldrex/strex loops already.
851     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
852     if (!Subtarget->isThumb() || !Subtarget->isMClass())
853       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
854 
855     // On v8, we have particularly efficient implementations of atomic fences
856     // if they can be combined with nearby atomic loads and stores.
857     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
858       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
859       InsertFencesForAtomic = true;
860     }
861   } else {
862     // If there's anything we can use as a barrier, go through custom lowering
863     // for ATOMIC_FENCE.
864     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
865                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
866 
867     // Set them all for expansion, which will force libcalls.
868     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
869     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
870     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
871     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
872     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
873     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
874     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
875     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
876     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
877     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
878     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
879     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
880     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
881     // Unordered/Monotonic case.
882     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
883     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
884   }
885 
886   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
887 
888   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
889   if (!Subtarget->hasV6Ops()) {
890     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
891     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
892   }
893   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
894 
895   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
896       !Subtarget->isThumb1Only()) {
897     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
898     // iff target supports vfp2.
899     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
900     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
901   }
902 
903   // We want to custom lower some of our intrinsics.
904   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
905   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
906   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
907   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
908   if (Subtarget->useSjLjEH())
909     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
910 
911   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
912   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
913   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
914   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
915   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
916   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
917   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
918   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
919   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
920 
921   // Thumb-1 cannot currently select ARMISD::SUBE.
922   if (!Subtarget->isThumb1Only())
923     setOperationAction(ISD::SETCCE, MVT::i32, Custom);
924 
925   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
926   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
927   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
928   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
929   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
930 
931   // We don't support sin/cos/fmod/copysign/pow
932   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
933   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
934   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
935   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
936   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
937   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
938   setOperationAction(ISD::FREM,      MVT::f64, Expand);
939   setOperationAction(ISD::FREM,      MVT::f32, Expand);
940   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
941       !Subtarget->isThumb1Only()) {
942     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
943     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
944   }
945   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
946   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
947 
948   if (!Subtarget->hasVFP4()) {
949     setOperationAction(ISD::FMA, MVT::f64, Expand);
950     setOperationAction(ISD::FMA, MVT::f32, Expand);
951   }
952 
953   // Various VFP goodness
954   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
955     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
956     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
957       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
958       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
959     }
960 
961     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
962     if (!Subtarget->hasFP16()) {
963       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
964       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
965     }
966   }
967 
968   // Combine sin / cos into one node or libcall if possible.
969   if (Subtarget->hasSinCos()) {
970     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
971     setLibcallName(RTLIB::SINCOS_F64, "sincos");
972     if (Subtarget->isTargetWatchABI()) {
973       setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
974       setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
975     }
976     if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
977       // For iOS, we don't want to the normal expansion of a libcall to
978       // sincos. We want to issue a libcall to __sincos_stret.
979       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
980       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
981     }
982   }
983 
984   // FP-ARMv8 implements a lot of rounding-like FP operations.
985   if (Subtarget->hasFPARMv8()) {
986     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
987     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
988     setOperationAction(ISD::FROUND, MVT::f32, Legal);
989     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
990     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
991     setOperationAction(ISD::FRINT, MVT::f32, Legal);
992     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
993     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
994     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
995     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
996     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
997     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
998 
999     if (!Subtarget->isFPOnlySP()) {
1000       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1001       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1002       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1003       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1004       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1005       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1006       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1007       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1008     }
1009   }
1010 
1011   if (Subtarget->hasNEON()) {
1012     // vmin and vmax aren't available in a scalar form, so we use
1013     // a NEON instruction with an undef lane instead.
1014     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1015     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1016     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1017     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1018     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1019     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1020   }
1021 
1022   // We have target-specific dag combine patterns for the following nodes:
1023   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1024   setTargetDAGCombine(ISD::ADD);
1025   setTargetDAGCombine(ISD::SUB);
1026   setTargetDAGCombine(ISD::MUL);
1027   setTargetDAGCombine(ISD::AND);
1028   setTargetDAGCombine(ISD::OR);
1029   setTargetDAGCombine(ISD::XOR);
1030 
1031   if (Subtarget->hasV6Ops())
1032     setTargetDAGCombine(ISD::SRL);
1033 
1034   setStackPointerRegisterToSaveRestore(ARM::SP);
1035 
1036   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1037       !Subtarget->hasVFP2())
1038     setSchedulingPreference(Sched::RegPressure);
1039   else
1040     setSchedulingPreference(Sched::Hybrid);
1041 
1042   //// temporary - rewrite interface to use type
1043   MaxStoresPerMemset = 8;
1044   MaxStoresPerMemsetOptSize = 4;
1045   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1046   MaxStoresPerMemcpyOptSize = 2;
1047   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1048   MaxStoresPerMemmoveOptSize = 2;
1049 
1050   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1051   // are at least 4 bytes aligned.
1052   setMinStackArgumentAlignment(4);
1053 
1054   // Prefer likely predicted branches to selects on out-of-order cores.
1055   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1056 
1057   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1058 }
1059 
1060 bool ARMTargetLowering::useSoftFloat() const {
1061   return Subtarget->useSoftFloat();
1062 }
1063 
1064 // FIXME: It might make sense to define the representative register class as the
1065 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1066 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1067 // SPR's representative would be DPR_VFP2. This should work well if register
1068 // pressure tracking were modified such that a register use would increment the
1069 // pressure of the register class's representative and all of it's super
1070 // classes' representatives transitively. We have not implemented this because
1071 // of the difficulty prior to coalescing of modeling operand register classes
1072 // due to the common occurrence of cross class copies and subregister insertions
1073 // and extractions.
1074 std::pair<const TargetRegisterClass *, uint8_t>
1075 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1076                                            MVT VT) const {
1077   const TargetRegisterClass *RRC = nullptr;
1078   uint8_t Cost = 1;
1079   switch (VT.SimpleTy) {
1080   default:
1081     return TargetLowering::findRepresentativeClass(TRI, VT);
1082   // Use DPR as representative register class for all floating point
1083   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1084   // the cost is 1 for both f32 and f64.
1085   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1086   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1087     RRC = &ARM::DPRRegClass;
1088     // When NEON is used for SP, only half of the register file is available
1089     // because operations that define both SP and DP results will be constrained
1090     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1091     // coalescing by double-counting the SP regs. See the FIXME above.
1092     if (Subtarget->useNEONForSinglePrecisionFP())
1093       Cost = 2;
1094     break;
1095   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1096   case MVT::v4f32: case MVT::v2f64:
1097     RRC = &ARM::DPRRegClass;
1098     Cost = 2;
1099     break;
1100   case MVT::v4i64:
1101     RRC = &ARM::DPRRegClass;
1102     Cost = 4;
1103     break;
1104   case MVT::v8i64:
1105     RRC = &ARM::DPRRegClass;
1106     Cost = 8;
1107     break;
1108   }
1109   return std::make_pair(RRC, Cost);
1110 }
1111 
1112 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1113   switch ((ARMISD::NodeType)Opcode) {
1114   case ARMISD::FIRST_NUMBER:  break;
1115   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1116   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1117   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1118   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1119   case ARMISD::CALL:          return "ARMISD::CALL";
1120   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1121   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1122   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1123   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1124   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1125   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1126   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1127   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1128   case ARMISD::CMP:           return "ARMISD::CMP";
1129   case ARMISD::CMN:           return "ARMISD::CMN";
1130   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1131   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1132   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1133   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1134   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1135 
1136   case ARMISD::CMOV:          return "ARMISD::CMOV";
1137 
1138   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1139   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1140   case ARMISD::RRX:           return "ARMISD::RRX";
1141 
1142   case ARMISD::ADDC:          return "ARMISD::ADDC";
1143   case ARMISD::ADDE:          return "ARMISD::ADDE";
1144   case ARMISD::SUBC:          return "ARMISD::SUBC";
1145   case ARMISD::SUBE:          return "ARMISD::SUBE";
1146 
1147   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1148   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1149 
1150   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1151   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1152   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1153 
1154   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1155 
1156   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1157 
1158   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1159 
1160   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1161 
1162   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1163 
1164   case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
1165   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1166 
1167   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1168   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1169   case ARMISD::VCGE:          return "ARMISD::VCGE";
1170   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1171   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1172   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1173   case ARMISD::VCGT:          return "ARMISD::VCGT";
1174   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1175   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1176   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1177   case ARMISD::VTST:          return "ARMISD::VTST";
1178 
1179   case ARMISD::VSHL:          return "ARMISD::VSHL";
1180   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1181   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1182   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1183   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1184   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1185   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1186   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1187   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1188   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1189   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1190   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1191   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1192   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1193   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1194   case ARMISD::VSLI:          return "ARMISD::VSLI";
1195   case ARMISD::VSRI:          return "ARMISD::VSRI";
1196   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1197   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1198   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1199   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1200   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1201   case ARMISD::VDUP:          return "ARMISD::VDUP";
1202   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1203   case ARMISD::VEXT:          return "ARMISD::VEXT";
1204   case ARMISD::VREV64:        return "ARMISD::VREV64";
1205   case ARMISD::VREV32:        return "ARMISD::VREV32";
1206   case ARMISD::VREV16:        return "ARMISD::VREV16";
1207   case ARMISD::VZIP:          return "ARMISD::VZIP";
1208   case ARMISD::VUZP:          return "ARMISD::VUZP";
1209   case ARMISD::VTRN:          return "ARMISD::VTRN";
1210   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1211   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1212   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1213   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1214   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1215   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1216   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1217   case ARMISD::BFI:           return "ARMISD::BFI";
1218   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1219   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1220   case ARMISD::VBSL:          return "ARMISD::VBSL";
1221   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1222   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1223   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1224   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1225   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1226   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1227   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1228   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1229   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1230   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1231   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1232   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1233   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1234   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1235   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1236   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1237   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1238   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1239   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1240   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1241   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1242   }
1243   return nullptr;
1244 }
1245 
1246 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1247                                           EVT VT) const {
1248   if (!VT.isVector())
1249     return getPointerTy(DL);
1250   return VT.changeVectorElementTypeToInteger();
1251 }
1252 
1253 /// getRegClassFor - Return the register class that should be used for the
1254 /// specified value type.
1255 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1256   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1257   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1258   // load / store 4 to 8 consecutive D registers.
1259   if (Subtarget->hasNEON()) {
1260     if (VT == MVT::v4i64)
1261       return &ARM::QQPRRegClass;
1262     if (VT == MVT::v8i64)
1263       return &ARM::QQQQPRRegClass;
1264   }
1265   return TargetLowering::getRegClassFor(VT);
1266 }
1267 
1268 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1269 // source/dest is aligned and the copy size is large enough. We therefore want
1270 // to align such objects passed to memory intrinsics.
1271 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1272                                                unsigned &PrefAlign) const {
1273   if (!isa<MemIntrinsic>(CI))
1274     return false;
1275   MinSize = 8;
1276   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1277   // cycle faster than 4-byte aligned LDM.
1278   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1279   return true;
1280 }
1281 
1282 // Create a fast isel object.
1283 FastISel *
1284 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1285                                   const TargetLibraryInfo *libInfo) const {
1286   return ARM::createFastISel(funcInfo, libInfo);
1287 }
1288 
1289 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1290   unsigned NumVals = N->getNumValues();
1291   if (!NumVals)
1292     return Sched::RegPressure;
1293 
1294   for (unsigned i = 0; i != NumVals; ++i) {
1295     EVT VT = N->getValueType(i);
1296     if (VT == MVT::Glue || VT == MVT::Other)
1297       continue;
1298     if (VT.isFloatingPoint() || VT.isVector())
1299       return Sched::ILP;
1300   }
1301 
1302   if (!N->isMachineOpcode())
1303     return Sched::RegPressure;
1304 
1305   // Load are scheduled for latency even if there instruction itinerary
1306   // is not available.
1307   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1308   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1309 
1310   if (MCID.getNumDefs() == 0)
1311     return Sched::RegPressure;
1312   if (!Itins->isEmpty() &&
1313       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1314     return Sched::ILP;
1315 
1316   return Sched::RegPressure;
1317 }
1318 
1319 //===----------------------------------------------------------------------===//
1320 // Lowering Code
1321 //===----------------------------------------------------------------------===//
1322 
1323 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1324 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1325   switch (CC) {
1326   default: llvm_unreachable("Unknown condition code!");
1327   case ISD::SETNE:  return ARMCC::NE;
1328   case ISD::SETEQ:  return ARMCC::EQ;
1329   case ISD::SETGT:  return ARMCC::GT;
1330   case ISD::SETGE:  return ARMCC::GE;
1331   case ISD::SETLT:  return ARMCC::LT;
1332   case ISD::SETLE:  return ARMCC::LE;
1333   case ISD::SETUGT: return ARMCC::HI;
1334   case ISD::SETUGE: return ARMCC::HS;
1335   case ISD::SETULT: return ARMCC::LO;
1336   case ISD::SETULE: return ARMCC::LS;
1337   }
1338 }
1339 
1340 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1341 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1342                         ARMCC::CondCodes &CondCode2) {
1343   CondCode2 = ARMCC::AL;
1344   switch (CC) {
1345   default: llvm_unreachable("Unknown FP condition!");
1346   case ISD::SETEQ:
1347   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1348   case ISD::SETGT:
1349   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1350   case ISD::SETGE:
1351   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1352   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1353   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1354   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1355   case ISD::SETO:   CondCode = ARMCC::VC; break;
1356   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1357   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1358   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1359   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1360   case ISD::SETLT:
1361   case ISD::SETULT: CondCode = ARMCC::LT; break;
1362   case ISD::SETLE:
1363   case ISD::SETULE: CondCode = ARMCC::LE; break;
1364   case ISD::SETNE:
1365   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1366   }
1367 }
1368 
1369 //===----------------------------------------------------------------------===//
1370 //                      Calling Convention Implementation
1371 //===----------------------------------------------------------------------===//
1372 
1373 #include "ARMGenCallingConv.inc"
1374 
1375 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1376 /// account presence of floating point hardware and calling convention
1377 /// limitations, such as support for variadic functions.
1378 CallingConv::ID
1379 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1380                                            bool isVarArg) const {
1381   switch (CC) {
1382   default:
1383     llvm_unreachable("Unsupported calling convention");
1384   case CallingConv::ARM_AAPCS:
1385   case CallingConv::ARM_APCS:
1386   case CallingConv::GHC:
1387     return CC;
1388   case CallingConv::PreserveMost:
1389     return CallingConv::PreserveMost;
1390   case CallingConv::ARM_AAPCS_VFP:
1391   case CallingConv::Swift:
1392     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1393   case CallingConv::C:
1394     if (!Subtarget->isAAPCS_ABI())
1395       return CallingConv::ARM_APCS;
1396     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1397              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1398              !isVarArg)
1399       return CallingConv::ARM_AAPCS_VFP;
1400     else
1401       return CallingConv::ARM_AAPCS;
1402   case CallingConv::Fast:
1403   case CallingConv::CXX_FAST_TLS:
1404     if (!Subtarget->isAAPCS_ABI()) {
1405       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1406         return CallingConv::Fast;
1407       return CallingConv::ARM_APCS;
1408     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1409       return CallingConv::ARM_AAPCS_VFP;
1410     else
1411       return CallingConv::ARM_AAPCS;
1412   }
1413 }
1414 
1415 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1416 /// CallingConvention.
1417 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1418                                                  bool Return,
1419                                                  bool isVarArg) const {
1420   switch (getEffectiveCallingConv(CC, isVarArg)) {
1421   default:
1422     llvm_unreachable("Unsupported calling convention");
1423   case CallingConv::ARM_APCS:
1424     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1425   case CallingConv::ARM_AAPCS:
1426     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1427   case CallingConv::ARM_AAPCS_VFP:
1428     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1429   case CallingConv::Fast:
1430     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1431   case CallingConv::GHC:
1432     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1433   case CallingConv::PreserveMost:
1434     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1435   }
1436 }
1437 
1438 /// LowerCallResult - Lower the result values of a call into the
1439 /// appropriate copies out of appropriate physical registers.
1440 SDValue
1441 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1442                                    CallingConv::ID CallConv, bool isVarArg,
1443                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1444                                    SDLoc dl, SelectionDAG &DAG,
1445                                    SmallVectorImpl<SDValue> &InVals,
1446                                    bool isThisReturn, SDValue ThisVal) const {
1447 
1448   // Assign locations to each value returned by this call.
1449   SmallVector<CCValAssign, 16> RVLocs;
1450   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1451                     *DAG.getContext(), Call);
1452   CCInfo.AnalyzeCallResult(Ins,
1453                            CCAssignFnForNode(CallConv, /* Return*/ true,
1454                                              isVarArg));
1455 
1456   // Copy all of the result registers out of their specified physreg.
1457   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1458     CCValAssign VA = RVLocs[i];
1459 
1460     // Pass 'this' value directly from the argument to return value, to avoid
1461     // reg unit interference
1462     if (i == 0 && isThisReturn) {
1463       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1464              "unexpected return calling convention register assignment");
1465       InVals.push_back(ThisVal);
1466       continue;
1467     }
1468 
1469     SDValue Val;
1470     if (VA.needsCustom()) {
1471       // Handle f64 or half of a v2f64.
1472       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1473                                       InFlag);
1474       Chain = Lo.getValue(1);
1475       InFlag = Lo.getValue(2);
1476       VA = RVLocs[++i]; // skip ahead to next loc
1477       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1478                                       InFlag);
1479       Chain = Hi.getValue(1);
1480       InFlag = Hi.getValue(2);
1481       if (!Subtarget->isLittle())
1482         std::swap (Lo, Hi);
1483       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1484 
1485       if (VA.getLocVT() == MVT::v2f64) {
1486         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1487         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1488                           DAG.getConstant(0, dl, MVT::i32));
1489 
1490         VA = RVLocs[++i]; // skip ahead to next loc
1491         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1492         Chain = Lo.getValue(1);
1493         InFlag = Lo.getValue(2);
1494         VA = RVLocs[++i]; // skip ahead to next loc
1495         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1496         Chain = Hi.getValue(1);
1497         InFlag = Hi.getValue(2);
1498         if (!Subtarget->isLittle())
1499           std::swap (Lo, Hi);
1500         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1501         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1502                           DAG.getConstant(1, dl, MVT::i32));
1503       }
1504     } else {
1505       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1506                                InFlag);
1507       Chain = Val.getValue(1);
1508       InFlag = Val.getValue(2);
1509     }
1510 
1511     switch (VA.getLocInfo()) {
1512     default: llvm_unreachable("Unknown loc info!");
1513     case CCValAssign::Full: break;
1514     case CCValAssign::BCvt:
1515       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1516       break;
1517     }
1518 
1519     InVals.push_back(Val);
1520   }
1521 
1522   return Chain;
1523 }
1524 
1525 /// LowerMemOpCallTo - Store the argument to the stack.
1526 SDValue
1527 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1528                                     SDValue StackPtr, SDValue Arg,
1529                                     SDLoc dl, SelectionDAG &DAG,
1530                                     const CCValAssign &VA,
1531                                     ISD::ArgFlagsTy Flags) const {
1532   unsigned LocMemOffset = VA.getLocMemOffset();
1533   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1534   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1535                        StackPtr, PtrOff);
1536   return DAG.getStore(
1537       Chain, dl, Arg, PtrOff,
1538       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
1539       false, false, 0);
1540 }
1541 
1542 void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
1543                                          SDValue Chain, SDValue &Arg,
1544                                          RegsToPassVector &RegsToPass,
1545                                          CCValAssign &VA, CCValAssign &NextVA,
1546                                          SDValue &StackPtr,
1547                                          SmallVectorImpl<SDValue> &MemOpChains,
1548                                          ISD::ArgFlagsTy Flags) const {
1549 
1550   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1551                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1552   unsigned id = Subtarget->isLittle() ? 0 : 1;
1553   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1554 
1555   if (NextVA.isRegLoc())
1556     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1557   else {
1558     assert(NextVA.isMemLoc());
1559     if (!StackPtr.getNode())
1560       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1561                                     getPointerTy(DAG.getDataLayout()));
1562 
1563     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1564                                            dl, DAG, NextVA,
1565                                            Flags));
1566   }
1567 }
1568 
1569 /// LowerCall - Lowering a call into a callseq_start <-
1570 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1571 /// nodes.
1572 SDValue
1573 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1574                              SmallVectorImpl<SDValue> &InVals) const {
1575   SelectionDAG &DAG                     = CLI.DAG;
1576   SDLoc &dl                             = CLI.DL;
1577   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1578   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1579   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1580   SDValue Chain                         = CLI.Chain;
1581   SDValue Callee                        = CLI.Callee;
1582   bool &isTailCall                      = CLI.IsTailCall;
1583   CallingConv::ID CallConv              = CLI.CallConv;
1584   bool doesNotRet                       = CLI.DoesNotReturn;
1585   bool isVarArg                         = CLI.IsVarArg;
1586 
1587   MachineFunction &MF = DAG.getMachineFunction();
1588   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1589   bool isThisReturn   = false;
1590   bool isSibCall      = false;
1591   auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
1592 
1593   // Disable tail calls if they're not supported.
1594   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1595     isTailCall = false;
1596 
1597   if (isTailCall) {
1598     // Check if it's really possible to do a tail call.
1599     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1600                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1601                                                    Outs, OutVals, Ins, DAG);
1602     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
1603       report_fatal_error("failed to perform tail call elimination on a call "
1604                          "site marked musttail");
1605     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1606     // detected sibcalls.
1607     if (isTailCall) {
1608       ++NumTailCalls;
1609       isSibCall = true;
1610     }
1611   }
1612 
1613   // Analyze operands of the call, assigning locations to each operand.
1614   SmallVector<CCValAssign, 16> ArgLocs;
1615   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1616                     *DAG.getContext(), Call);
1617   CCInfo.AnalyzeCallOperands(Outs,
1618                              CCAssignFnForNode(CallConv, /* Return*/ false,
1619                                                isVarArg));
1620 
1621   // Get a count of how many bytes are to be pushed on the stack.
1622   unsigned NumBytes = CCInfo.getNextStackOffset();
1623 
1624   // For tail calls, memory operands are available in our caller's stack.
1625   if (isSibCall)
1626     NumBytes = 0;
1627 
1628   // Adjust the stack pointer for the new arguments...
1629   // These operations are automatically eliminated by the prolog/epilog pass
1630   if (!isSibCall)
1631     Chain = DAG.getCALLSEQ_START(Chain,
1632                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
1633 
1634   SDValue StackPtr =
1635       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1636 
1637   RegsToPassVector RegsToPass;
1638   SmallVector<SDValue, 8> MemOpChains;
1639 
1640   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1641   // of tail call optimization, arguments are handled later.
1642   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1643        i != e;
1644        ++i, ++realArgIdx) {
1645     CCValAssign &VA = ArgLocs[i];
1646     SDValue Arg = OutVals[realArgIdx];
1647     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1648     bool isByVal = Flags.isByVal();
1649 
1650     // Promote the value if needed.
1651     switch (VA.getLocInfo()) {
1652     default: llvm_unreachable("Unknown loc info!");
1653     case CCValAssign::Full: break;
1654     case CCValAssign::SExt:
1655       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1656       break;
1657     case CCValAssign::ZExt:
1658       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1659       break;
1660     case CCValAssign::AExt:
1661       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1662       break;
1663     case CCValAssign::BCvt:
1664       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1665       break;
1666     }
1667 
1668     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1669     if (VA.needsCustom()) {
1670       if (VA.getLocVT() == MVT::v2f64) {
1671         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1672                                   DAG.getConstant(0, dl, MVT::i32));
1673         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1674                                   DAG.getConstant(1, dl, MVT::i32));
1675 
1676         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1677                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1678 
1679         VA = ArgLocs[++i]; // skip ahead to next loc
1680         if (VA.isRegLoc()) {
1681           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1682                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1683         } else {
1684           assert(VA.isMemLoc());
1685 
1686           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1687                                                  dl, DAG, VA, Flags));
1688         }
1689       } else {
1690         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1691                          StackPtr, MemOpChains, Flags);
1692       }
1693     } else if (VA.isRegLoc()) {
1694       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1695         assert(VA.getLocVT() == MVT::i32 &&
1696                "unexpected calling convention register assignment");
1697         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1698                "unexpected use of 'returned'");
1699         isThisReturn = true;
1700       }
1701       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1702     } else if (isByVal) {
1703       assert(VA.isMemLoc());
1704       unsigned offset = 0;
1705 
1706       // True if this byval aggregate will be split between registers
1707       // and memory.
1708       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1709       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1710 
1711       if (CurByValIdx < ByValArgsCount) {
1712 
1713         unsigned RegBegin, RegEnd;
1714         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1715 
1716         EVT PtrVT =
1717             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1718         unsigned int i, j;
1719         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1720           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1721           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1722           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1723                                      MachinePointerInfo(),
1724                                      false, false, false,
1725                                      DAG.InferPtrAlignment(AddArg));
1726           MemOpChains.push_back(Load.getValue(1));
1727           RegsToPass.push_back(std::make_pair(j, Load));
1728         }
1729 
1730         // If parameter size outsides register area, "offset" value
1731         // helps us to calculate stack slot for remained part properly.
1732         offset = RegEnd - RegBegin;
1733 
1734         CCInfo.nextInRegsParam();
1735       }
1736 
1737       if (Flags.getByValSize() > 4*offset) {
1738         auto PtrVT = getPointerTy(DAG.getDataLayout());
1739         unsigned LocMemOffset = VA.getLocMemOffset();
1740         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1741         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1742         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1743         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1744         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1745                                            MVT::i32);
1746         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1747                                             MVT::i32);
1748 
1749         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1750         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1751         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1752                                           Ops));
1753       }
1754     } else if (!isSibCall) {
1755       assert(VA.isMemLoc());
1756 
1757       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1758                                              dl, DAG, VA, Flags));
1759     }
1760   }
1761 
1762   if (!MemOpChains.empty())
1763     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1764 
1765   // Build a sequence of copy-to-reg nodes chained together with token chain
1766   // and flag operands which copy the outgoing args into the appropriate regs.
1767   SDValue InFlag;
1768   // Tail call byval lowering might overwrite argument registers so in case of
1769   // tail call optimization the copies to registers are lowered later.
1770   if (!isTailCall)
1771     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1772       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1773                                RegsToPass[i].second, InFlag);
1774       InFlag = Chain.getValue(1);
1775     }
1776 
1777   // For tail calls lower the arguments to the 'real' stack slot.
1778   if (isTailCall) {
1779     // Force all the incoming stack arguments to be loaded from the stack
1780     // before any new outgoing arguments are stored to the stack, because the
1781     // outgoing stack slots may alias the incoming argument stack slots, and
1782     // the alias isn't otherwise explicit. This is slightly more conservative
1783     // than necessary, because it means that each store effectively depends
1784     // on every argument instead of just those arguments it would clobber.
1785 
1786     // Do not flag preceding copytoreg stuff together with the following stuff.
1787     InFlag = SDValue();
1788     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1789       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1790                                RegsToPass[i].second, InFlag);
1791       InFlag = Chain.getValue(1);
1792     }
1793     InFlag = SDValue();
1794   }
1795 
1796   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1797   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1798   // node so that legalize doesn't hack it.
1799   bool isDirect = false;
1800   bool isARMFunc = false;
1801   bool isLocalARMFunc = false;
1802   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1803   auto PtrVt = getPointerTy(DAG.getDataLayout());
1804 
1805   if (Subtarget->genLongCalls()) {
1806     assert((Subtarget->isTargetWindows() ||
1807             getTargetMachine().getRelocationModel() == Reloc::Static) &&
1808            "long-calls with non-static relocation model!");
1809     // Handle a global address or an external symbol. If it's not one of
1810     // those, the target's already in a register, so we don't need to do
1811     // anything extra.
1812     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1813       const GlobalValue *GV = G->getGlobal();
1814       // Create a constant pool entry for the callee address
1815       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1816       ARMConstantPoolValue *CPV =
1817         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1818 
1819       // Get the address of the callee into a register
1820       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1821       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1822       Callee = DAG.getLoad(
1823           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1824           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1825           false, false, 0);
1826     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1827       const char *Sym = S->getSymbol();
1828 
1829       // Create a constant pool entry for the callee address
1830       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1831       ARMConstantPoolValue *CPV =
1832         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1833                                       ARMPCLabelIndex, 0);
1834       // Get the address of the callee into a register
1835       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1836       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1837       Callee = DAG.getLoad(
1838           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1839           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1840           false, false, 0);
1841     }
1842   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1843     const GlobalValue *GV = G->getGlobal();
1844     isDirect = true;
1845     bool isDef = GV->isStrongDefinitionForLinker();
1846     bool isStub = (!isDef && Subtarget->isTargetMachO()) &&
1847                    getTargetMachine().getRelocationModel() != Reloc::Static;
1848     isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1849     // ARM call to a local ARM function is predicable.
1850     isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
1851     // tBX takes a register source operand.
1852     if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1853       assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
1854       Callee = DAG.getNode(
1855           ARMISD::WrapperPIC, dl, PtrVt,
1856           DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
1857       Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), Callee,
1858                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
1859                            false, false, true, 0);
1860     } else if (Subtarget->isTargetCOFF()) {
1861       assert(Subtarget->isTargetWindows() &&
1862              "Windows is the only supported COFF target");
1863       unsigned TargetFlags = GV->hasDLLImportStorageClass()
1864                                  ? ARMII::MO_DLLIMPORT
1865                                  : ARMII::MO_NO_FLAG;
1866       Callee =
1867           DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, TargetFlags);
1868       if (GV->hasDLLImportStorageClass())
1869         Callee =
1870             DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
1871                         DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
1872                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
1873                         false, false, false, 0);
1874     } else {
1875       // On ELF targets for PIC code, direct calls should go through the PLT
1876       unsigned OpFlags = 0;
1877       if (Subtarget->isTargetELF() &&
1878           getTargetMachine().getRelocationModel() == Reloc::PIC_)
1879         OpFlags = ARMII::MO_PLT;
1880       Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, OpFlags);
1881     }
1882   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1883     isDirect = true;
1884     bool isStub = Subtarget->isTargetMachO() &&
1885                   getTargetMachine().getRelocationModel() != Reloc::Static;
1886     isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1887     // tBX takes a register source operand.
1888     const char *Sym = S->getSymbol();
1889     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1890       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1891       ARMConstantPoolValue *CPV =
1892         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1893                                       ARMPCLabelIndex, 4);
1894       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1895       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1896       Callee = DAG.getLoad(
1897           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1898           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1899           false, false, 0);
1900       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
1901       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
1902     } else {
1903       unsigned OpFlags = 0;
1904       // On ELF targets for PIC code, direct calls should go through the PLT
1905       if (Subtarget->isTargetELF() &&
1906                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
1907         OpFlags = ARMII::MO_PLT;
1908       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, OpFlags);
1909     }
1910   }
1911 
1912   // FIXME: handle tail calls differently.
1913   unsigned CallOpc;
1914   if (Subtarget->isThumb()) {
1915     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1916       CallOpc = ARMISD::CALL_NOLINK;
1917     else
1918       CallOpc = ARMISD::CALL;
1919   } else {
1920     if (!isDirect && !Subtarget->hasV5TOps())
1921       CallOpc = ARMISD::CALL_NOLINK;
1922     else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1923              // Emit regular call when code size is the priority
1924              !MF.getFunction()->optForMinSize())
1925       // "mov lr, pc; b _foo" to avoid confusing the RSP
1926       CallOpc = ARMISD::CALL_NOLINK;
1927     else
1928       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1929   }
1930 
1931   std::vector<SDValue> Ops;
1932   Ops.push_back(Chain);
1933   Ops.push_back(Callee);
1934 
1935   // Add argument registers to the end of the list so that they are known live
1936   // into the call.
1937   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1938     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1939                                   RegsToPass[i].second.getValueType()));
1940 
1941   // Add a register mask operand representing the call-preserved registers.
1942   if (!isTailCall) {
1943     const uint32_t *Mask;
1944     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
1945     if (isThisReturn) {
1946       // For 'this' returns, use the R0-preserving mask if applicable
1947       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
1948       if (!Mask) {
1949         // Set isThisReturn to false if the calling convention is not one that
1950         // allows 'returned' to be modeled in this way, so LowerCallResult does
1951         // not try to pass 'this' straight through
1952         isThisReturn = false;
1953         Mask = ARI->getCallPreservedMask(MF, CallConv);
1954       }
1955     } else
1956       Mask = ARI->getCallPreservedMask(MF, CallConv);
1957 
1958     assert(Mask && "Missing call preserved mask for calling convention");
1959     Ops.push_back(DAG.getRegisterMask(Mask));
1960   }
1961 
1962   if (InFlag.getNode())
1963     Ops.push_back(InFlag);
1964 
1965   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1966   if (isTailCall) {
1967     MF.getFrameInfo()->setHasTailCall();
1968     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
1969   }
1970 
1971   // Returns a chain and a flag for retval copy to use.
1972   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
1973   InFlag = Chain.getValue(1);
1974 
1975   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
1976                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
1977   if (!Ins.empty())
1978     InFlag = Chain.getValue(1);
1979 
1980   // Handle result values, copying them out of physregs into vregs that we
1981   // return.
1982   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1983                          InVals, isThisReturn,
1984                          isThisReturn ? OutVals[0] : SDValue());
1985 }
1986 
1987 /// HandleByVal - Every parameter *after* a byval parameter is passed
1988 /// on the stack.  Remember the next parameter register to allocate,
1989 /// and then confiscate the rest of the parameter registers to insure
1990 /// this.
1991 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
1992                                     unsigned Align) const {
1993   assert((State->getCallOrPrologue() == Prologue ||
1994           State->getCallOrPrologue() == Call) &&
1995          "unhandled ParmContext");
1996 
1997   // Byval (as with any stack) slots are always at least 4 byte aligned.
1998   Align = std::max(Align, 4U);
1999 
2000   unsigned Reg = State->AllocateReg(GPRArgRegs);
2001   if (!Reg)
2002     return;
2003 
2004   unsigned AlignInRegs = Align / 4;
2005   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2006   for (unsigned i = 0; i < Waste; ++i)
2007     Reg = State->AllocateReg(GPRArgRegs);
2008 
2009   if (!Reg)
2010     return;
2011 
2012   unsigned Excess = 4 * (ARM::R4 - Reg);
2013 
2014   // Special case when NSAA != SP and parameter size greater than size of
2015   // all remained GPR regs. In that case we can't split parameter, we must
2016   // send it to stack. We also must set NCRN to R4, so waste all
2017   // remained registers.
2018   const unsigned NSAAOffset = State->getNextStackOffset();
2019   if (NSAAOffset != 0 && Size > Excess) {
2020     while (State->AllocateReg(GPRArgRegs))
2021       ;
2022     return;
2023   }
2024 
2025   // First register for byval parameter is the first register that wasn't
2026   // allocated before this method call, so it would be "reg".
2027   // If parameter is small enough to be saved in range [reg, r4), then
2028   // the end (first after last) register would be reg + param-size-in-regs,
2029   // else parameter would be splitted between registers and stack,
2030   // end register would be r4 in this case.
2031   unsigned ByValRegBegin = Reg;
2032   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2033   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2034   // Note, first register is allocated in the beginning of function already,
2035   // allocate remained amount of registers we need.
2036   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2037     State->AllocateReg(GPRArgRegs);
2038   // A byval parameter that is split between registers and memory needs its
2039   // size truncated here.
2040   // In the case where the entire structure fits in registers, we set the
2041   // size in memory to zero.
2042   Size = std::max<int>(Size - Excess, 0);
2043 }
2044 
2045 /// MatchingStackOffset - Return true if the given stack call argument is
2046 /// already available in the same position (relatively) of the caller's
2047 /// incoming argument stack.
2048 static
2049 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2050                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2051                          const TargetInstrInfo *TII) {
2052   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2053   int FI = INT_MAX;
2054   if (Arg.getOpcode() == ISD::CopyFromReg) {
2055     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2056     if (!TargetRegisterInfo::isVirtualRegister(VR))
2057       return false;
2058     MachineInstr *Def = MRI->getVRegDef(VR);
2059     if (!Def)
2060       return false;
2061     if (!Flags.isByVal()) {
2062       if (!TII->isLoadFromStackSlot(Def, FI))
2063         return false;
2064     } else {
2065       return false;
2066     }
2067   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2068     if (Flags.isByVal())
2069       // ByVal argument is passed in as a pointer but it's now being
2070       // dereferenced. e.g.
2071       // define @foo(%struct.X* %A) {
2072       //   tail call @bar(%struct.X* byval %A)
2073       // }
2074       return false;
2075     SDValue Ptr = Ld->getBasePtr();
2076     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2077     if (!FINode)
2078       return false;
2079     FI = FINode->getIndex();
2080   } else
2081     return false;
2082 
2083   assert(FI != INT_MAX);
2084   if (!MFI->isFixedObjectIndex(FI))
2085     return false;
2086   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2087 }
2088 
2089 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2090 /// for tail call optimization. Targets which want to do tail call
2091 /// optimization should implement this function.
2092 bool
2093 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2094                                                      CallingConv::ID CalleeCC,
2095                                                      bool isVarArg,
2096                                                      bool isCalleeStructRet,
2097                                                      bool isCallerStructRet,
2098                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2099                                     const SmallVectorImpl<SDValue> &OutVals,
2100                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2101                                                      SelectionDAG& DAG) const {
2102   MachineFunction &MF = DAG.getMachineFunction();
2103   const Function *CallerF = MF.getFunction();
2104   CallingConv::ID CallerCC = CallerF->getCallingConv();
2105 
2106   assert(Subtarget->supportsTailCall());
2107 
2108   // Look for obvious safe cases to perform tail call optimization that do not
2109   // require ABI changes. This is what gcc calls sibcall.
2110 
2111   // Do not sibcall optimize vararg calls unless the call site is not passing
2112   // any arguments.
2113   if (isVarArg && !Outs.empty())
2114     return false;
2115 
2116   // Exception-handling functions need a special set of instructions to indicate
2117   // a return to the hardware. Tail-calling another function would probably
2118   // break this.
2119   if (CallerF->hasFnAttribute("interrupt"))
2120     return false;
2121 
2122   // Also avoid sibcall optimization if either caller or callee uses struct
2123   // return semantics.
2124   if (isCalleeStructRet || isCallerStructRet)
2125     return false;
2126 
2127   // Externally-defined functions with weak linkage should not be
2128   // tail-called on ARM when the OS does not support dynamic
2129   // pre-emption of symbols, as the AAELF spec requires normal calls
2130   // to undefined weak functions to be replaced with a NOP or jump to the
2131   // next instruction. The behaviour of branch instructions in this
2132   // situation (as used for tail calls) is implementation-defined, so we
2133   // cannot rely on the linker replacing the tail call with a return.
2134   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2135     const GlobalValue *GV = G->getGlobal();
2136     const Triple &TT = getTargetMachine().getTargetTriple();
2137     if (GV->hasExternalWeakLinkage() &&
2138         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2139       return false;
2140   }
2141 
2142   // Check that the call results are passed in the same way.
2143   LLVMContext &C = *DAG.getContext();
2144   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2145                                   CCAssignFnForNode(CalleeCC, true, isVarArg),
2146                                   CCAssignFnForNode(CallerCC, true, isVarArg)))
2147     return false;
2148   // The callee has to preserve all registers the caller needs to preserve.
2149   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2150   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2151   if (CalleeCC != CallerCC) {
2152     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2153     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2154       return false;
2155   }
2156 
2157   // If Caller's vararg or byval argument has been split between registers and
2158   // stack, do not perform tail call, since part of the argument is in caller's
2159   // local frame.
2160   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2161   if (AFI_Caller->getArgRegsSaveSize())
2162     return false;
2163 
2164   // If the callee takes no arguments then go on to check the results of the
2165   // call.
2166   if (!Outs.empty()) {
2167     // Check if stack adjustment is needed. For now, do not do this if any
2168     // argument is passed on the stack.
2169     SmallVector<CCValAssign, 16> ArgLocs;
2170     ARMCCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C, Call);
2171     CCInfo.AnalyzeCallOperands(Outs,
2172                                CCAssignFnForNode(CalleeCC, false, isVarArg));
2173     if (CCInfo.getNextStackOffset()) {
2174       // Check if the arguments are already laid out in the right way as
2175       // the caller's fixed stack objects.
2176       MachineFrameInfo *MFI = MF.getFrameInfo();
2177       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2178       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2179       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2180            i != e;
2181            ++i, ++realArgIdx) {
2182         CCValAssign &VA = ArgLocs[i];
2183         EVT RegVT = VA.getLocVT();
2184         SDValue Arg = OutVals[realArgIdx];
2185         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2186         if (VA.getLocInfo() == CCValAssign::Indirect)
2187           return false;
2188         if (VA.needsCustom()) {
2189           // f64 and vector types are split into multiple registers or
2190           // register/stack-slot combinations.  The types will not match
2191           // the registers; give up on memory f64 refs until we figure
2192           // out what to do about this.
2193           if (!VA.isRegLoc())
2194             return false;
2195           if (!ArgLocs[++i].isRegLoc())
2196             return false;
2197           if (RegVT == MVT::v2f64) {
2198             if (!ArgLocs[++i].isRegLoc())
2199               return false;
2200             if (!ArgLocs[++i].isRegLoc())
2201               return false;
2202           }
2203         } else if (!VA.isRegLoc()) {
2204           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2205                                    MFI, MRI, TII))
2206             return false;
2207         }
2208       }
2209     }
2210 
2211     const MachineRegisterInfo &MRI = MF.getRegInfo();
2212     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2213       return false;
2214   }
2215 
2216   return true;
2217 }
2218 
2219 bool
2220 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2221                                   MachineFunction &MF, bool isVarArg,
2222                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2223                                   LLVMContext &Context) const {
2224   SmallVector<CCValAssign, 16> RVLocs;
2225   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2226   return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2227                                                     isVarArg));
2228 }
2229 
2230 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2231                                     SDLoc DL, SelectionDAG &DAG) {
2232   const MachineFunction &MF = DAG.getMachineFunction();
2233   const Function *F = MF.getFunction();
2234 
2235   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2236 
2237   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2238   // version of the "preferred return address". These offsets affect the return
2239   // instruction if this is a return from PL1 without hypervisor extensions.
2240   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2241   //    SWI:     0      "subs pc, lr, #0"
2242   //    ABORT:   +4     "subs pc, lr, #4"
2243   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2244   // UNDEF varies depending on where the exception came from ARM or Thumb
2245   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2246 
2247   int64_t LROffset;
2248   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2249       IntKind == "ABORT")
2250     LROffset = 4;
2251   else if (IntKind == "SWI" || IntKind == "UNDEF")
2252     LROffset = 0;
2253   else
2254     report_fatal_error("Unsupported interrupt attribute. If present, value "
2255                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2256 
2257   RetOps.insert(RetOps.begin() + 1,
2258                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2259 
2260   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2261 }
2262 
2263 SDValue
2264 ARMTargetLowering::LowerReturn(SDValue Chain,
2265                                CallingConv::ID CallConv, bool isVarArg,
2266                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2267                                const SmallVectorImpl<SDValue> &OutVals,
2268                                SDLoc dl, SelectionDAG &DAG) const {
2269 
2270   // CCValAssign - represent the assignment of the return value to a location.
2271   SmallVector<CCValAssign, 16> RVLocs;
2272 
2273   // CCState - Info about the registers and stack slots.
2274   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2275                     *DAG.getContext(), Call);
2276 
2277   // Analyze outgoing return values.
2278   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2279                                                isVarArg));
2280 
2281   SDValue Flag;
2282   SmallVector<SDValue, 4> RetOps;
2283   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2284   bool isLittleEndian = Subtarget->isLittle();
2285 
2286   MachineFunction &MF = DAG.getMachineFunction();
2287   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2288   AFI->setReturnRegsCount(RVLocs.size());
2289 
2290   // Copy the result values into the output registers.
2291   for (unsigned i = 0, realRVLocIdx = 0;
2292        i != RVLocs.size();
2293        ++i, ++realRVLocIdx) {
2294     CCValAssign &VA = RVLocs[i];
2295     assert(VA.isRegLoc() && "Can only return in registers!");
2296 
2297     SDValue Arg = OutVals[realRVLocIdx];
2298 
2299     switch (VA.getLocInfo()) {
2300     default: llvm_unreachable("Unknown loc info!");
2301     case CCValAssign::Full: break;
2302     case CCValAssign::BCvt:
2303       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2304       break;
2305     }
2306 
2307     if (VA.needsCustom()) {
2308       if (VA.getLocVT() == MVT::v2f64) {
2309         // Extract the first half and return it in two registers.
2310         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2311                                    DAG.getConstant(0, dl, MVT::i32));
2312         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2313                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2314 
2315         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2316                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2317                                  Flag);
2318         Flag = Chain.getValue(1);
2319         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2320         VA = RVLocs[++i]; // skip ahead to next loc
2321         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2322                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2323                                  Flag);
2324         Flag = Chain.getValue(1);
2325         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2326         VA = RVLocs[++i]; // skip ahead to next loc
2327 
2328         // Extract the 2nd half and fall through to handle it as an f64 value.
2329         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2330                           DAG.getConstant(1, dl, MVT::i32));
2331       }
2332       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2333       // available.
2334       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2335                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2336       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2337                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2338                                Flag);
2339       Flag = Chain.getValue(1);
2340       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2341       VA = RVLocs[++i]; // skip ahead to next loc
2342       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2343                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2344                                Flag);
2345     } else
2346       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2347 
2348     // Guarantee that all emitted copies are
2349     // stuck together, avoiding something bad.
2350     Flag = Chain.getValue(1);
2351     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2352   }
2353   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2354   const MCPhysReg *I =
2355       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2356   if (I) {
2357     for (; *I; ++I) {
2358       if (ARM::GPRRegClass.contains(*I))
2359         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2360       else if (ARM::DPRRegClass.contains(*I))
2361         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2362       else
2363         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2364     }
2365   }
2366 
2367   // Update chain and glue.
2368   RetOps[0] = Chain;
2369   if (Flag.getNode())
2370     RetOps.push_back(Flag);
2371 
2372   // CPUs which aren't M-class use a special sequence to return from
2373   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2374   // though we use "subs pc, lr, #N").
2375   //
2376   // M-class CPUs actually use a normal return sequence with a special
2377   // (hardware-provided) value in LR, so the normal code path works.
2378   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2379       !Subtarget->isMClass()) {
2380     if (Subtarget->isThumb1Only())
2381       report_fatal_error("interrupt attribute is not supported in Thumb1");
2382     return LowerInterruptReturn(RetOps, dl, DAG);
2383   }
2384 
2385   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2386 }
2387 
2388 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2389   if (N->getNumValues() != 1)
2390     return false;
2391   if (!N->hasNUsesOfValue(1, 0))
2392     return false;
2393 
2394   SDValue TCChain = Chain;
2395   SDNode *Copy = *N->use_begin();
2396   if (Copy->getOpcode() == ISD::CopyToReg) {
2397     // If the copy has a glue operand, we conservatively assume it isn't safe to
2398     // perform a tail call.
2399     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2400       return false;
2401     TCChain = Copy->getOperand(0);
2402   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2403     SDNode *VMov = Copy;
2404     // f64 returned in a pair of GPRs.
2405     SmallPtrSet<SDNode*, 2> Copies;
2406     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2407          UI != UE; ++UI) {
2408       if (UI->getOpcode() != ISD::CopyToReg)
2409         return false;
2410       Copies.insert(*UI);
2411     }
2412     if (Copies.size() > 2)
2413       return false;
2414 
2415     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2416          UI != UE; ++UI) {
2417       SDValue UseChain = UI->getOperand(0);
2418       if (Copies.count(UseChain.getNode()))
2419         // Second CopyToReg
2420         Copy = *UI;
2421       else {
2422         // We are at the top of this chain.
2423         // If the copy has a glue operand, we conservatively assume it
2424         // isn't safe to perform a tail call.
2425         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2426           return false;
2427         // First CopyToReg
2428         TCChain = UseChain;
2429       }
2430     }
2431   } else if (Copy->getOpcode() == ISD::BITCAST) {
2432     // f32 returned in a single GPR.
2433     if (!Copy->hasOneUse())
2434       return false;
2435     Copy = *Copy->use_begin();
2436     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2437       return false;
2438     // If the copy has a glue operand, we conservatively assume it isn't safe to
2439     // perform a tail call.
2440     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2441       return false;
2442     TCChain = Copy->getOperand(0);
2443   } else {
2444     return false;
2445   }
2446 
2447   bool HasRet = false;
2448   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2449        UI != UE; ++UI) {
2450     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2451         UI->getOpcode() != ARMISD::INTRET_FLAG)
2452       return false;
2453     HasRet = true;
2454   }
2455 
2456   if (!HasRet)
2457     return false;
2458 
2459   Chain = TCChain;
2460   return true;
2461 }
2462 
2463 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2464   if (!Subtarget->supportsTailCall())
2465     return false;
2466 
2467   auto Attr =
2468       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2469   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2470     return false;
2471 
2472   return true;
2473 }
2474 
2475 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2476 // and pass the lower and high parts through.
2477 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2478   SDLoc DL(Op);
2479   SDValue WriteValue = Op->getOperand(2);
2480 
2481   // This function is only supposed to be called for i64 type argument.
2482   assert(WriteValue.getValueType() == MVT::i64
2483           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2484 
2485   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2486                            DAG.getConstant(0, DL, MVT::i32));
2487   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2488                            DAG.getConstant(1, DL, MVT::i32));
2489   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2490   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2491 }
2492 
2493 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2494 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2495 // one of the above mentioned nodes. It has to be wrapped because otherwise
2496 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2497 // be used to form addressing mode. These wrapped nodes will be selected
2498 // into MOVi.
2499 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2500   EVT PtrVT = Op.getValueType();
2501   // FIXME there is no actual debug info here
2502   SDLoc dl(Op);
2503   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2504   SDValue Res;
2505   if (CP->isMachineConstantPoolEntry())
2506     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2507                                     CP->getAlignment());
2508   else
2509     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2510                                     CP->getAlignment());
2511   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2512 }
2513 
2514 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2515   return MachineJumpTableInfo::EK_Inline;
2516 }
2517 
2518 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2519                                              SelectionDAG &DAG) const {
2520   MachineFunction &MF = DAG.getMachineFunction();
2521   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2522   unsigned ARMPCLabelIndex = 0;
2523   SDLoc DL(Op);
2524   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2525   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2526   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2527   SDValue CPAddr;
2528   if (RelocM == Reloc::Static) {
2529     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2530   } else {
2531     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2532     ARMPCLabelIndex = AFI->createPICLabelUId();
2533     ARMConstantPoolValue *CPV =
2534       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2535                                       ARMCP::CPBlockAddress, PCAdj);
2536     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2537   }
2538   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2539   SDValue Result =
2540       DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2541                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2542                   false, false, false, 0);
2543   if (RelocM == Reloc::Static)
2544     return Result;
2545   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2546   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2547 }
2548 
2549 /// \brief Convert a TLS address reference into the correct sequence of loads
2550 /// and calls to compute the variable's address for Darwin, and return an
2551 /// SDValue containing the final node.
2552 
2553 /// Darwin only has one TLS scheme which must be capable of dealing with the
2554 /// fully general situation, in the worst case. This means:
2555 ///     + "extern __thread" declaration.
2556 ///     + Defined in a possibly unknown dynamic library.
2557 ///
2558 /// The general system is that each __thread variable has a [3 x i32] descriptor
2559 /// which contains information used by the runtime to calculate the address. The
2560 /// only part of this the compiler needs to know about is the first word, which
2561 /// contains a function pointer that must be called with the address of the
2562 /// entire descriptor in "r0".
2563 ///
2564 /// Since this descriptor may be in a different unit, in general access must
2565 /// proceed along the usual ARM rules. A common sequence to produce is:
2566 ///
2567 ///     movw rT1, :lower16:_var$non_lazy_ptr
2568 ///     movt rT1, :upper16:_var$non_lazy_ptr
2569 ///     ldr r0, [rT1]
2570 ///     ldr rT2, [r0]
2571 ///     blx rT2
2572 ///     [...address now in r0...]
2573 SDValue
2574 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2575                                                SelectionDAG &DAG) const {
2576   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2577   SDLoc DL(Op);
2578 
2579   // First step is to get the address of the actua global symbol. This is where
2580   // the TLS descriptor lives.
2581   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2582 
2583   // The first entry in the descriptor is a function pointer that we must call
2584   // to obtain the address of the variable.
2585   SDValue Chain = DAG.getEntryNode();
2586   SDValue FuncTLVGet =
2587       DAG.getLoad(MVT::i32, DL, Chain, DescAddr,
2588                   MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2589                   false, true, true, 4);
2590   Chain = FuncTLVGet.getValue(1);
2591 
2592   MachineFunction &F = DAG.getMachineFunction();
2593   MachineFrameInfo *MFI = F.getFrameInfo();
2594   MFI->setAdjustsStack(true);
2595 
2596   // TLS calls preserve all registers except those that absolutely must be
2597   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2598   // silly).
2599   auto TRI =
2600       getTargetMachine().getSubtargetImpl(*F.getFunction())->getRegisterInfo();
2601   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2602   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2603 
2604   // Finally, we can make the call. This is just a degenerate version of a
2605   // normal AArch64 call node: r0 takes the address of the descriptor, and
2606   // returns the address of the variable in this thread.
2607   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2608   Chain =
2609       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2610                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2611                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2612   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2613 }
2614 
2615 SDValue
2616 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2617                                                 SelectionDAG &DAG) const {
2618   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2619   SDValue Chain = DAG.getEntryNode();
2620   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2621   SDLoc DL(Op);
2622 
2623   // Load the current TEB (thread environment block)
2624   SDValue Ops[] = {Chain,
2625                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2626                    DAG.getConstant(15, DL, MVT::i32),
2627                    DAG.getConstant(0, DL, MVT::i32),
2628                    DAG.getConstant(13, DL, MVT::i32),
2629                    DAG.getConstant(0, DL, MVT::i32),
2630                    DAG.getConstant(2, DL, MVT::i32)};
2631   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2632                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2633 
2634   SDValue TEB = CurrentTEB.getValue(0);
2635   Chain = CurrentTEB.getValue(1);
2636 
2637   // Load the ThreadLocalStoragePointer from the TEB
2638   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2639   SDValue TLSArray =
2640       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2641   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo(),
2642                          false, false, false, 0);
2643 
2644   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2645   // offset into the TLSArray.
2646 
2647   // Load the TLS index from the C runtime
2648   SDValue TLSIndex =
2649       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2650   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2651   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo(),
2652                          false, false, false, 0);
2653 
2654   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2655                               DAG.getConstant(2, DL, MVT::i32));
2656   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2657                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2658                             MachinePointerInfo(), false, false, false, 0);
2659 
2660   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS,
2661                      LowerGlobalAddressWindows(Op, DAG));
2662 }
2663 
2664 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2665 SDValue
2666 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2667                                                  SelectionDAG &DAG) const {
2668   SDLoc dl(GA);
2669   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2670   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2671   MachineFunction &MF = DAG.getMachineFunction();
2672   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2673   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2674   ARMConstantPoolValue *CPV =
2675     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2676                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2677   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2678   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2679   Argument =
2680       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2681                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2682                   false, false, false, 0);
2683   SDValue Chain = Argument.getValue(1);
2684 
2685   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2686   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2687 
2688   // call __tls_get_addr.
2689   ArgListTy Args;
2690   ArgListEntry Entry;
2691   Entry.Node = Argument;
2692   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2693   Args.push_back(Entry);
2694 
2695   // FIXME: is there useful debug info available here?
2696   TargetLowering::CallLoweringInfo CLI(DAG);
2697   CLI.setDebugLoc(dl).setChain(Chain)
2698     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2699                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
2700                0);
2701 
2702   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2703   return CallResult.first;
2704 }
2705 
2706 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2707 // "local exec" model.
2708 SDValue
2709 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2710                                         SelectionDAG &DAG,
2711                                         TLSModel::Model model) const {
2712   const GlobalValue *GV = GA->getGlobal();
2713   SDLoc dl(GA);
2714   SDValue Offset;
2715   SDValue Chain = DAG.getEntryNode();
2716   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2717   // Get the Thread Pointer
2718   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2719 
2720   if (model == TLSModel::InitialExec) {
2721     MachineFunction &MF = DAG.getMachineFunction();
2722     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2723     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2724     // Initial exec model.
2725     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2726     ARMConstantPoolValue *CPV =
2727       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2728                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2729                                       true);
2730     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2731     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2732     Offset = DAG.getLoad(
2733         PtrVT, dl, Chain, Offset,
2734         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2735         false, false, 0);
2736     Chain = Offset.getValue(1);
2737 
2738     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2739     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2740 
2741     Offset = DAG.getLoad(
2742         PtrVT, dl, Chain, Offset,
2743         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2744         false, false, 0);
2745   } else {
2746     // local exec model
2747     assert(model == TLSModel::LocalExec);
2748     ARMConstantPoolValue *CPV =
2749       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2750     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2751     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2752     Offset = DAG.getLoad(
2753         PtrVT, dl, Chain, Offset,
2754         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2755         false, false, 0);
2756   }
2757 
2758   // The address of the thread local variable is the add of the thread
2759   // pointer with the offset of the variable.
2760   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2761 }
2762 
2763 SDValue
2764 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2765   if (Subtarget->isTargetDarwin())
2766     return LowerGlobalTLSAddressDarwin(Op, DAG);
2767 
2768   if (Subtarget->isTargetWindows())
2769     return LowerGlobalTLSAddressWindows(Op, DAG);
2770 
2771   // TODO: implement the "local dynamic" model
2772   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
2773   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2774   if (DAG.getTarget().Options.EmulatedTLS)
2775     return LowerToTLSEmulatedModel(GA, DAG);
2776 
2777   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2778 
2779   switch (model) {
2780     case TLSModel::GeneralDynamic:
2781     case TLSModel::LocalDynamic:
2782       return LowerToTLSGeneralDynamicModel(GA, DAG);
2783     case TLSModel::InitialExec:
2784     case TLSModel::LocalExec:
2785       return LowerToTLSExecModels(GA, DAG, model);
2786   }
2787   llvm_unreachable("bogus TLS model");
2788 }
2789 
2790 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2791                                                  SelectionDAG &DAG) const {
2792   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2793   SDLoc dl(Op);
2794   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2795   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2796     bool UseGOT_PREL =
2797         !(GV->hasHiddenVisibility() || GV->hasLocalLinkage());
2798 
2799     MachineFunction &MF = DAG.getMachineFunction();
2800     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2801     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2802     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2803     SDLoc dl(Op);
2804     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2805     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2806         GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2807         UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2808         /*AddCurrentAddress=*/UseGOT_PREL);
2809     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2810     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2811     SDValue Result = DAG.getLoad(
2812         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2813         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2814         false, false, 0);
2815     SDValue Chain = Result.getValue(1);
2816     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2817     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2818     if (UseGOT_PREL)
2819       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2820                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2821                            false, false, false, 0);
2822     return Result;
2823   }
2824 
2825   // If we have T2 ops, we can materialize the address directly via movt/movw
2826   // pair. This is always cheaper.
2827   if (Subtarget->useMovt(DAG.getMachineFunction())) {
2828     ++NumMovwMovt;
2829     // FIXME: Once remat is capable of dealing with instructions with register
2830     // operands, expand this into two nodes.
2831     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2832                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2833   } else {
2834     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2835     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2836     return DAG.getLoad(
2837         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2838         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2839         false, false, 0);
2840   }
2841 }
2842 
2843 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2844                                                     SelectionDAG &DAG) const {
2845   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2846   SDLoc dl(Op);
2847   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2848   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2849 
2850   if (Subtarget->useMovt(DAG.getMachineFunction()))
2851     ++NumMovwMovt;
2852 
2853   // FIXME: Once remat is capable of dealing with instructions with register
2854   // operands, expand this into multiple nodes
2855   unsigned Wrapper =
2856       RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
2857 
2858   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
2859   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
2860 
2861   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2862     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2863                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2864                          false, false, false, 0);
2865   return Result;
2866 }
2867 
2868 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
2869                                                      SelectionDAG &DAG) const {
2870   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
2871   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
2872          "Windows on ARM expects to use movw/movt");
2873 
2874   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2875   const ARMII::TOF TargetFlags =
2876     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
2877   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2878   SDValue Result;
2879   SDLoc DL(Op);
2880 
2881   ++NumMovwMovt;
2882 
2883   // FIXME: Once remat is capable of dealing with instructions with register
2884   // operands, expand this into two nodes.
2885   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
2886                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
2887                                                   TargetFlags));
2888   if (GV->hasDLLImportStorageClass())
2889     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2890                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2891                          false, false, false, 0);
2892   return Result;
2893 }
2894 
2895 SDValue
2896 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2897   SDLoc dl(Op);
2898   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
2899   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2900                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2901                      Op.getOperand(1), Val);
2902 }
2903 
2904 SDValue
2905 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2906   SDLoc dl(Op);
2907   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2908                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
2909 }
2910 
2911 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
2912                                                       SelectionDAG &DAG) const {
2913   SDLoc dl(Op);
2914   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
2915                      Op.getOperand(0));
2916 }
2917 
2918 SDValue
2919 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2920                                           const ARMSubtarget *Subtarget) const {
2921   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2922   SDLoc dl(Op);
2923   switch (IntNo) {
2924   default: return SDValue();    // Don't custom lower most intrinsics.
2925   case Intrinsic::arm_rbit: {
2926     assert(Op.getOperand(1).getValueType() == MVT::i32 &&
2927            "RBIT intrinsic must have i32 type!");
2928     return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1));
2929   }
2930   case Intrinsic::thread_pointer: {
2931     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2932     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2933   }
2934   case Intrinsic::eh_sjlj_lsda: {
2935     MachineFunction &MF = DAG.getMachineFunction();
2936     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2937     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2938     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2939     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2940     SDValue CPAddr;
2941     unsigned PCAdj = (RelocM != Reloc::PIC_)
2942       ? 0 : (Subtarget->isThumb() ? 4 : 8);
2943     ARMConstantPoolValue *CPV =
2944       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2945                                       ARMCP::CPLSDA, PCAdj);
2946     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2947     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2948     SDValue Result = DAG.getLoad(
2949         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2950         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2951         false, false, 0);
2952 
2953     if (RelocM == Reloc::PIC_) {
2954       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2955       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2956     }
2957     return Result;
2958   }
2959   case Intrinsic::arm_neon_vmulls:
2960   case Intrinsic::arm_neon_vmullu: {
2961     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2962       ? ARMISD::VMULLs : ARMISD::VMULLu;
2963     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2964                        Op.getOperand(1), Op.getOperand(2));
2965   }
2966   case Intrinsic::arm_neon_vminnm:
2967   case Intrinsic::arm_neon_vmaxnm: {
2968     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
2969       ? ISD::FMINNUM : ISD::FMAXNUM;
2970     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2971                        Op.getOperand(1), Op.getOperand(2));
2972   }
2973   case Intrinsic::arm_neon_vminu:
2974   case Intrinsic::arm_neon_vmaxu: {
2975     if (Op.getValueType().isFloatingPoint())
2976       return SDValue();
2977     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
2978       ? ISD::UMIN : ISD::UMAX;
2979     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2980                          Op.getOperand(1), Op.getOperand(2));
2981   }
2982   case Intrinsic::arm_neon_vmins:
2983   case Intrinsic::arm_neon_vmaxs: {
2984     // v{min,max}s is overloaded between signed integers and floats.
2985     if (!Op.getValueType().isFloatingPoint()) {
2986       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
2987         ? ISD::SMIN : ISD::SMAX;
2988       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2989                          Op.getOperand(1), Op.getOperand(2));
2990     }
2991     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
2992       ? ISD::FMINNAN : ISD::FMAXNAN;
2993     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2994                        Op.getOperand(1), Op.getOperand(2));
2995   }
2996   }
2997 }
2998 
2999 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3000                                  const ARMSubtarget *Subtarget) {
3001   // FIXME: handle "fence singlethread" more efficiently.
3002   SDLoc dl(Op);
3003   if (!Subtarget->hasDataBarrier()) {
3004     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3005     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3006     // here.
3007     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3008            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3009     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3010                        DAG.getConstant(0, dl, MVT::i32));
3011   }
3012 
3013   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3014   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3015   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3016   if (Subtarget->isMClass()) {
3017     // Only a full system barrier exists in the M-class architectures.
3018     Domain = ARM_MB::SY;
3019   } else if (Subtarget->isSwift() && Ord == AtomicOrdering::Release) {
3020     // Swift happens to implement ISHST barriers in a way that's compatible with
3021     // Release semantics but weaker than ISH so we'd be fools not to use
3022     // it. Beware: other processors probably don't!
3023     Domain = ARM_MB::ISHST;
3024   }
3025 
3026   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3027                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3028                      DAG.getConstant(Domain, dl, MVT::i32));
3029 }
3030 
3031 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3032                              const ARMSubtarget *Subtarget) {
3033   // ARM pre v5TE and Thumb1 does not have preload instructions.
3034   if (!(Subtarget->isThumb2() ||
3035         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3036     // Just preserve the chain.
3037     return Op.getOperand(0);
3038 
3039   SDLoc dl(Op);
3040   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3041   if (!isRead &&
3042       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3043     // ARMv7 with MP extension has PLDW.
3044     return Op.getOperand(0);
3045 
3046   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3047   if (Subtarget->isThumb()) {
3048     // Invert the bits.
3049     isRead = ~isRead & 1;
3050     isData = ~isData & 1;
3051   }
3052 
3053   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3054                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3055                      DAG.getConstant(isData, dl, MVT::i32));
3056 }
3057 
3058 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3059   MachineFunction &MF = DAG.getMachineFunction();
3060   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3061 
3062   // vastart just stores the address of the VarArgsFrameIndex slot into the
3063   // memory location argument.
3064   SDLoc dl(Op);
3065   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3066   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3067   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3068   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3069                       MachinePointerInfo(SV), false, false, 0);
3070 }
3071 
3072 SDValue
3073 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
3074                                         SDValue &Root, SelectionDAG &DAG,
3075                                         SDLoc dl) const {
3076   MachineFunction &MF = DAG.getMachineFunction();
3077   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3078 
3079   const TargetRegisterClass *RC;
3080   if (AFI->isThumb1OnlyFunction())
3081     RC = &ARM::tGPRRegClass;
3082   else
3083     RC = &ARM::GPRRegClass;
3084 
3085   // Transform the arguments stored in physical registers into virtual ones.
3086   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3087   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3088 
3089   SDValue ArgValue2;
3090   if (NextVA.isMemLoc()) {
3091     MachineFrameInfo *MFI = MF.getFrameInfo();
3092     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3093 
3094     // Create load node to retrieve arguments from the stack.
3095     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3096     ArgValue2 = DAG.getLoad(
3097         MVT::i32, dl, Root, FIN,
3098         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
3099         false, false, 0);
3100   } else {
3101     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3102     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3103   }
3104   if (!Subtarget->isLittle())
3105     std::swap (ArgValue, ArgValue2);
3106   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3107 }
3108 
3109 // The remaining GPRs hold either the beginning of variable-argument
3110 // data, or the beginning of an aggregate passed by value (usually
3111 // byval).  Either way, we allocate stack slots adjacent to the data
3112 // provided by our caller, and store the unallocated registers there.
3113 // If this is a variadic function, the va_list pointer will begin with
3114 // these values; otherwise, this reassembles a (byval) structure that
3115 // was split between registers and memory.
3116 // Return: The frame index registers were stored into.
3117 int
3118 ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3119                                   SDLoc dl, SDValue &Chain,
3120                                   const Value *OrigArg,
3121                                   unsigned InRegsParamRecordIdx,
3122                                   int ArgOffset,
3123                                   unsigned ArgSize) const {
3124   // Currently, two use-cases possible:
3125   // Case #1. Non-var-args function, and we meet first byval parameter.
3126   //          Setup first unallocated register as first byval register;
3127   //          eat all remained registers
3128   //          (these two actions are performed by HandleByVal method).
3129   //          Then, here, we initialize stack frame with
3130   //          "store-reg" instructions.
3131   // Case #2. Var-args function, that doesn't contain byval parameters.
3132   //          The same: eat all remained unallocated registers,
3133   //          initialize stack frame.
3134 
3135   MachineFunction &MF = DAG.getMachineFunction();
3136   MachineFrameInfo *MFI = MF.getFrameInfo();
3137   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3138   unsigned RBegin, REnd;
3139   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3140     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3141   } else {
3142     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3143     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3144     REnd = ARM::R4;
3145   }
3146 
3147   if (REnd != RBegin)
3148     ArgOffset = -4 * (ARM::R4 - RBegin);
3149 
3150   auto PtrVT = getPointerTy(DAG.getDataLayout());
3151   int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
3152   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3153 
3154   SmallVector<SDValue, 4> MemOps;
3155   const TargetRegisterClass *RC =
3156       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3157 
3158   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3159     unsigned VReg = MF.addLiveIn(Reg, RC);
3160     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3161     SDValue Store =
3162         DAG.getStore(Val.getValue(1), dl, Val, FIN,
3163                      MachinePointerInfo(OrigArg, 4 * i), false, false, 0);
3164     MemOps.push_back(Store);
3165     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3166   }
3167 
3168   if (!MemOps.empty())
3169     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3170   return FrameIndex;
3171 }
3172 
3173 // Setup stack frame, the va_list pointer will start from.
3174 void
3175 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3176                                         SDLoc dl, SDValue &Chain,
3177                                         unsigned ArgOffset,
3178                                         unsigned TotalArgRegsSaveSize,
3179                                         bool ForceMutable) const {
3180   MachineFunction &MF = DAG.getMachineFunction();
3181   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3182 
3183   // Try to store any remaining integer argument regs
3184   // to their spots on the stack so that they may be loaded by deferencing
3185   // the result of va_next.
3186   // If there is no regs to be stored, just point address after last
3187   // argument passed via stack.
3188   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3189                                   CCInfo.getInRegsParamsCount(),
3190                                   CCInfo.getNextStackOffset(), 4);
3191   AFI->setVarArgsFrameIndex(FrameIndex);
3192 }
3193 
3194 SDValue
3195 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
3196                                         CallingConv::ID CallConv, bool isVarArg,
3197                                         const SmallVectorImpl<ISD::InputArg>
3198                                           &Ins,
3199                                         SDLoc dl, SelectionDAG &DAG,
3200                                         SmallVectorImpl<SDValue> &InVals)
3201                                           const {
3202   MachineFunction &MF = DAG.getMachineFunction();
3203   MachineFrameInfo *MFI = MF.getFrameInfo();
3204 
3205   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3206 
3207   // Assign locations to all of the incoming arguments.
3208   SmallVector<CCValAssign, 16> ArgLocs;
3209   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3210                     *DAG.getContext(), Prologue);
3211   CCInfo.AnalyzeFormalArguments(Ins,
3212                                 CCAssignFnForNode(CallConv, /* Return*/ false,
3213                                                   isVarArg));
3214 
3215   SmallVector<SDValue, 16> ArgValues;
3216   SDValue ArgValue;
3217   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
3218   unsigned CurArgIdx = 0;
3219 
3220   // Initially ArgRegsSaveSize is zero.
3221   // Then we increase this value each time we meet byval parameter.
3222   // We also increase this value in case of varargs function.
3223   AFI->setArgRegsSaveSize(0);
3224 
3225   // Calculate the amount of stack space that we need to allocate to store
3226   // byval and variadic arguments that are passed in registers.
3227   // We need to know this before we allocate the first byval or variadic
3228   // argument, as they will be allocated a stack slot below the CFA (Canonical
3229   // Frame Address, the stack pointer at entry to the function).
3230   unsigned ArgRegBegin = ARM::R4;
3231   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3232     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3233       break;
3234 
3235     CCValAssign &VA = ArgLocs[i];
3236     unsigned Index = VA.getValNo();
3237     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3238     if (!Flags.isByVal())
3239       continue;
3240 
3241     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3242     unsigned RBegin, REnd;
3243     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3244     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3245 
3246     CCInfo.nextInRegsParam();
3247   }
3248   CCInfo.rewindByValRegsInfo();
3249 
3250   int lastInsIndex = -1;
3251   if (isVarArg && MFI->hasVAStart()) {
3252     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3253     if (RegIdx != array_lengthof(GPRArgRegs))
3254       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3255   }
3256 
3257   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3258   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3259   auto PtrVT = getPointerTy(DAG.getDataLayout());
3260 
3261   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3262     CCValAssign &VA = ArgLocs[i];
3263     if (Ins[VA.getValNo()].isOrigArg()) {
3264       std::advance(CurOrigArg,
3265                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3266       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3267     }
3268     // Arguments stored in registers.
3269     if (VA.isRegLoc()) {
3270       EVT RegVT = VA.getLocVT();
3271 
3272       if (VA.needsCustom()) {
3273         // f64 and vector types are split up into multiple registers or
3274         // combinations of registers and stack slots.
3275         if (VA.getLocVT() == MVT::v2f64) {
3276           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3277                                                    Chain, DAG, dl);
3278           VA = ArgLocs[++i]; // skip ahead to next loc
3279           SDValue ArgValue2;
3280           if (VA.isMemLoc()) {
3281             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
3282             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3283             ArgValue2 = DAG.getLoad(
3284                 MVT::f64, dl, Chain, FIN,
3285                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3286                 false, false, false, 0);
3287           } else {
3288             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3289                                              Chain, DAG, dl);
3290           }
3291           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3292           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3293                                  ArgValue, ArgValue1,
3294                                  DAG.getIntPtrConstant(0, dl));
3295           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3296                                  ArgValue, ArgValue2,
3297                                  DAG.getIntPtrConstant(1, dl));
3298         } else
3299           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3300 
3301       } else {
3302         const TargetRegisterClass *RC;
3303 
3304         if (RegVT == MVT::f32)
3305           RC = &ARM::SPRRegClass;
3306         else if (RegVT == MVT::f64)
3307           RC = &ARM::DPRRegClass;
3308         else if (RegVT == MVT::v2f64)
3309           RC = &ARM::QPRRegClass;
3310         else if (RegVT == MVT::i32)
3311           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3312                                            : &ARM::GPRRegClass;
3313         else
3314           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3315 
3316         // Transform the arguments in physical registers into virtual ones.
3317         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3318         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3319       }
3320 
3321       // If this is an 8 or 16-bit value, it is really passed promoted
3322       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3323       // truncate to the right size.
3324       switch (VA.getLocInfo()) {
3325       default: llvm_unreachable("Unknown loc info!");
3326       case CCValAssign::Full: break;
3327       case CCValAssign::BCvt:
3328         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3329         break;
3330       case CCValAssign::SExt:
3331         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3332                                DAG.getValueType(VA.getValVT()));
3333         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3334         break;
3335       case CCValAssign::ZExt:
3336         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3337                                DAG.getValueType(VA.getValVT()));
3338         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3339         break;
3340       }
3341 
3342       InVals.push_back(ArgValue);
3343 
3344     } else { // VA.isRegLoc()
3345 
3346       // sanity check
3347       assert(VA.isMemLoc());
3348       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3349 
3350       int index = VA.getValNo();
3351 
3352       // Some Ins[] entries become multiple ArgLoc[] entries.
3353       // Process them only once.
3354       if (index != lastInsIndex)
3355         {
3356           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3357           // FIXME: For now, all byval parameter objects are marked mutable.
3358           // This can be changed with more analysis.
3359           // In case of tail call optimization mark all arguments mutable.
3360           // Since they could be overwritten by lowering of arguments in case of
3361           // a tail call.
3362           if (Flags.isByVal()) {
3363             assert(Ins[index].isOrigArg() &&
3364                    "Byval arguments cannot be implicit");
3365             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3366 
3367             int FrameIndex = StoreByValRegs(
3368                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3369                 VA.getLocMemOffset(), Flags.getByValSize());
3370             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3371             CCInfo.nextInRegsParam();
3372           } else {
3373             unsigned FIOffset = VA.getLocMemOffset();
3374             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3375                                             FIOffset, true);
3376 
3377             // Create load nodes to retrieve arguments from the stack.
3378             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3379             InVals.push_back(DAG.getLoad(
3380                 VA.getValVT(), dl, Chain, FIN,
3381                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3382                 false, false, false, 0));
3383           }
3384           lastInsIndex = index;
3385         }
3386     }
3387   }
3388 
3389   // varargs
3390   if (isVarArg && MFI->hasVAStart())
3391     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3392                          CCInfo.getNextStackOffset(),
3393                          TotalArgRegsSaveSize);
3394 
3395   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3396 
3397   return Chain;
3398 }
3399 
3400 /// isFloatingPointZero - Return true if this is +0.0.
3401 static bool isFloatingPointZero(SDValue Op) {
3402   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3403     return CFP->getValueAPF().isPosZero();
3404   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3405     // Maybe this has already been legalized into the constant pool?
3406     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3407       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3408       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3409         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3410           return CFP->getValueAPF().isPosZero();
3411     }
3412   } else if (Op->getOpcode() == ISD::BITCAST &&
3413              Op->getValueType(0) == MVT::f64) {
3414     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3415     // created by LowerConstantFP().
3416     SDValue BitcastOp = Op->getOperand(0);
3417     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3418         isNullConstant(BitcastOp->getOperand(0)))
3419       return true;
3420   }
3421   return false;
3422 }
3423 
3424 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3425 /// the given operands.
3426 SDValue
3427 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3428                              SDValue &ARMcc, SelectionDAG &DAG,
3429                              SDLoc dl) const {
3430   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3431     unsigned C = RHSC->getZExtValue();
3432     if (!isLegalICmpImmediate(C)) {
3433       // Constant does not fit, try adjusting it by one?
3434       switch (CC) {
3435       default: break;
3436       case ISD::SETLT:
3437       case ISD::SETGE:
3438         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3439           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3440           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3441         }
3442         break;
3443       case ISD::SETULT:
3444       case ISD::SETUGE:
3445         if (C != 0 && isLegalICmpImmediate(C-1)) {
3446           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3447           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3448         }
3449         break;
3450       case ISD::SETLE:
3451       case ISD::SETGT:
3452         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3453           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3454           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3455         }
3456         break;
3457       case ISD::SETULE:
3458       case ISD::SETUGT:
3459         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3460           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3461           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3462         }
3463         break;
3464       }
3465     }
3466   }
3467 
3468   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3469   ARMISD::NodeType CompareType;
3470   switch (CondCode) {
3471   default:
3472     CompareType = ARMISD::CMP;
3473     break;
3474   case ARMCC::EQ:
3475   case ARMCC::NE:
3476     // Uses only Z Flag
3477     CompareType = ARMISD::CMPZ;
3478     break;
3479   }
3480   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3481   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3482 }
3483 
3484 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3485 SDValue
3486 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
3487                              SDLoc dl) const {
3488   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3489   SDValue Cmp;
3490   if (!isFloatingPointZero(RHS))
3491     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3492   else
3493     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3494   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3495 }
3496 
3497 /// duplicateCmp - Glue values can have only one use, so this function
3498 /// duplicates a comparison node.
3499 SDValue
3500 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3501   unsigned Opc = Cmp.getOpcode();
3502   SDLoc DL(Cmp);
3503   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3504     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3505 
3506   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3507   Cmp = Cmp.getOperand(0);
3508   Opc = Cmp.getOpcode();
3509   if (Opc == ARMISD::CMPFP)
3510     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3511   else {
3512     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3513     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3514   }
3515   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3516 }
3517 
3518 std::pair<SDValue, SDValue>
3519 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3520                                  SDValue &ARMcc) const {
3521   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3522 
3523   SDValue Value, OverflowCmp;
3524   SDValue LHS = Op.getOperand(0);
3525   SDValue RHS = Op.getOperand(1);
3526   SDLoc dl(Op);
3527 
3528   // FIXME: We are currently always generating CMPs because we don't support
3529   // generating CMN through the backend. This is not as good as the natural
3530   // CMP case because it causes a register dependency and cannot be folded
3531   // later.
3532 
3533   switch (Op.getOpcode()) {
3534   default:
3535     llvm_unreachable("Unknown overflow instruction!");
3536   case ISD::SADDO:
3537     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3538     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3539     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3540     break;
3541   case ISD::UADDO:
3542     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3543     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3544     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3545     break;
3546   case ISD::SSUBO:
3547     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3548     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3549     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3550     break;
3551   case ISD::USUBO:
3552     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3553     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3554     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3555     break;
3556   } // switch (...)
3557 
3558   return std::make_pair(Value, OverflowCmp);
3559 }
3560 
3561 
3562 SDValue
3563 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
3564   // Let legalize expand this if it isn't a legal type yet.
3565   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3566     return SDValue();
3567 
3568   SDValue Value, OverflowCmp;
3569   SDValue ARMcc;
3570   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
3571   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3572   SDLoc dl(Op);
3573   // We use 0 and 1 as false and true values.
3574   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
3575   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
3576   EVT VT = Op.getValueType();
3577 
3578   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
3579                                  ARMcc, CCR, OverflowCmp);
3580 
3581   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3582   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
3583 }
3584 
3585 
3586 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3587   SDValue Cond = Op.getOperand(0);
3588   SDValue SelectTrue = Op.getOperand(1);
3589   SDValue SelectFalse = Op.getOperand(2);
3590   SDLoc dl(Op);
3591   unsigned Opc = Cond.getOpcode();
3592 
3593   if (Cond.getResNo() == 1 &&
3594       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3595        Opc == ISD::USUBO)) {
3596     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
3597       return SDValue();
3598 
3599     SDValue Value, OverflowCmp;
3600     SDValue ARMcc;
3601     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
3602     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3603     EVT VT = Op.getValueType();
3604 
3605     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
3606                    OverflowCmp, DAG);
3607   }
3608 
3609   // Convert:
3610   //
3611   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3612   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3613   //
3614   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3615     const ConstantSDNode *CMOVTrue =
3616       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3617     const ConstantSDNode *CMOVFalse =
3618       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3619 
3620     if (CMOVTrue && CMOVFalse) {
3621       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3622       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3623 
3624       SDValue True;
3625       SDValue False;
3626       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3627         True = SelectTrue;
3628         False = SelectFalse;
3629       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3630         True = SelectFalse;
3631         False = SelectTrue;
3632       }
3633 
3634       if (True.getNode() && False.getNode()) {
3635         EVT VT = Op.getValueType();
3636         SDValue ARMcc = Cond.getOperand(2);
3637         SDValue CCR = Cond.getOperand(3);
3638         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3639         assert(True.getValueType() == VT);
3640         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
3641       }
3642     }
3643   }
3644 
3645   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3646   // undefined bits before doing a full-word comparison with zero.
3647   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3648                      DAG.getConstant(1, dl, Cond.getValueType()));
3649 
3650   return DAG.getSelectCC(dl, Cond,
3651                          DAG.getConstant(0, dl, Cond.getValueType()),
3652                          SelectTrue, SelectFalse, ISD::SETNE);
3653 }
3654 
3655 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
3656                                  bool &swpCmpOps, bool &swpVselOps) {
3657   // Start by selecting the GE condition code for opcodes that return true for
3658   // 'equality'
3659   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3660       CC == ISD::SETULE)
3661     CondCode = ARMCC::GE;
3662 
3663   // and GT for opcodes that return false for 'equality'.
3664   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3665            CC == ISD::SETULT)
3666     CondCode = ARMCC::GT;
3667 
3668   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3669   // to swap the compare operands.
3670   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3671       CC == ISD::SETULT)
3672     swpCmpOps = true;
3673 
3674   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3675   // If we have an unordered opcode, we need to swap the operands to the VSEL
3676   // instruction (effectively negating the condition).
3677   //
3678   // This also has the effect of swapping which one of 'less' or 'greater'
3679   // returns true, so we also swap the compare operands. It also switches
3680   // whether we return true for 'equality', so we compensate by picking the
3681   // opposite condition code to our original choice.
3682   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3683       CC == ISD::SETUGT) {
3684     swpCmpOps = !swpCmpOps;
3685     swpVselOps = !swpVselOps;
3686     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3687   }
3688 
3689   // 'ordered' is 'anything but unordered', so use the VS condition code and
3690   // swap the VSEL operands.
3691   if (CC == ISD::SETO) {
3692     CondCode = ARMCC::VS;
3693     swpVselOps = true;
3694   }
3695 
3696   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3697   // code and swap the VSEL operands.
3698   if (CC == ISD::SETUNE) {
3699     CondCode = ARMCC::EQ;
3700     swpVselOps = true;
3701   }
3702 }
3703 
3704 SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal,
3705                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
3706                                    SDValue Cmp, SelectionDAG &DAG) const {
3707   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
3708     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3709                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
3710     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3711                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
3712 
3713     SDValue TrueLow = TrueVal.getValue(0);
3714     SDValue TrueHigh = TrueVal.getValue(1);
3715     SDValue FalseLow = FalseVal.getValue(0);
3716     SDValue FalseHigh = FalseVal.getValue(1);
3717 
3718     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
3719                               ARMcc, CCR, Cmp);
3720     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
3721                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
3722 
3723     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
3724   } else {
3725     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3726                        Cmp);
3727   }
3728 }
3729 
3730 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3731   EVT VT = Op.getValueType();
3732   SDValue LHS = Op.getOperand(0);
3733   SDValue RHS = Op.getOperand(1);
3734   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3735   SDValue TrueVal = Op.getOperand(2);
3736   SDValue FalseVal = Op.getOperand(3);
3737   SDLoc dl(Op);
3738 
3739   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3740     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3741                                                     dl);
3742 
3743     // If softenSetCCOperands only returned one value, we should compare it to
3744     // zero.
3745     if (!RHS.getNode()) {
3746       RHS = DAG.getConstant(0, dl, LHS.getValueType());
3747       CC = ISD::SETNE;
3748     }
3749   }
3750 
3751   if (LHS.getValueType() == MVT::i32) {
3752     // Try to generate VSEL on ARMv8.
3753     // The VSEL instruction can't use all the usual ARM condition
3754     // codes: it only has two bits to select the condition code, so it's
3755     // constrained to use only GE, GT, VS and EQ.
3756     //
3757     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
3758     // swap the operands of the previous compare instruction (effectively
3759     // inverting the compare condition, swapping 'less' and 'greater') and
3760     // sometimes need to swap the operands to the VSEL (which inverts the
3761     // condition in the sense of firing whenever the previous condition didn't)
3762     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3763                                     TrueVal.getValueType() == MVT::f64)) {
3764       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3765       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
3766           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
3767         CC = ISD::getSetCCInverse(CC, true);
3768         std::swap(TrueVal, FalseVal);
3769       }
3770     }
3771 
3772     SDValue ARMcc;
3773     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3774     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3775     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3776   }
3777 
3778   ARMCC::CondCodes CondCode, CondCode2;
3779   FPCCToARMCC(CC, CondCode, CondCode2);
3780 
3781   // Try to generate VMAXNM/VMINNM on ARMv8.
3782   if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3783                                   TrueVal.getValueType() == MVT::f64)) {
3784     bool swpCmpOps = false;
3785     bool swpVselOps = false;
3786     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
3787 
3788     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
3789         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
3790       if (swpCmpOps)
3791         std::swap(LHS, RHS);
3792       if (swpVselOps)
3793         std::swap(TrueVal, FalseVal);
3794     }
3795   }
3796 
3797   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3798   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3799   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3800   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3801   if (CondCode2 != ARMCC::AL) {
3802     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
3803     // FIXME: Needs another CMP because flag can have but one use.
3804     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3805     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
3806   }
3807   return Result;
3808 }
3809 
3810 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
3811 /// to morph to an integer compare sequence.
3812 static bool canChangeToInt(SDValue Op, bool &SeenZero,
3813                            const ARMSubtarget *Subtarget) {
3814   SDNode *N = Op.getNode();
3815   if (!N->hasOneUse())
3816     // Otherwise it requires moving the value from fp to integer registers.
3817     return false;
3818   if (!N->getNumValues())
3819     return false;
3820   EVT VT = Op.getValueType();
3821   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3822     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3823     // vmrs are very slow, e.g. cortex-a8.
3824     return false;
3825 
3826   if (isFloatingPointZero(Op)) {
3827     SeenZero = true;
3828     return true;
3829   }
3830   return ISD::isNormalLoad(N);
3831 }
3832 
3833 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3834   if (isFloatingPointZero(Op))
3835     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
3836 
3837   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3838     return DAG.getLoad(MVT::i32, SDLoc(Op),
3839                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3840                        Ld->isVolatile(), Ld->isNonTemporal(),
3841                        Ld->isInvariant(), Ld->getAlignment());
3842 
3843   llvm_unreachable("Unknown VFP cmp argument!");
3844 }
3845 
3846 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3847                            SDValue &RetVal1, SDValue &RetVal2) {
3848   SDLoc dl(Op);
3849 
3850   if (isFloatingPointZero(Op)) {
3851     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
3852     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
3853     return;
3854   }
3855 
3856   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3857     SDValue Ptr = Ld->getBasePtr();
3858     RetVal1 = DAG.getLoad(MVT::i32, dl,
3859                           Ld->getChain(), Ptr,
3860                           Ld->getPointerInfo(),
3861                           Ld->isVolatile(), Ld->isNonTemporal(),
3862                           Ld->isInvariant(), Ld->getAlignment());
3863 
3864     EVT PtrType = Ptr.getValueType();
3865     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3866     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
3867                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
3868     RetVal2 = DAG.getLoad(MVT::i32, dl,
3869                           Ld->getChain(), NewPtr,
3870                           Ld->getPointerInfo().getWithOffset(4),
3871                           Ld->isVolatile(), Ld->isNonTemporal(),
3872                           Ld->isInvariant(), NewAlign);
3873     return;
3874   }
3875 
3876   llvm_unreachable("Unknown VFP cmp argument!");
3877 }
3878 
3879 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3880 /// f32 and even f64 comparisons to integer ones.
3881 SDValue
3882 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3883   SDValue Chain = Op.getOperand(0);
3884   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3885   SDValue LHS = Op.getOperand(2);
3886   SDValue RHS = Op.getOperand(3);
3887   SDValue Dest = Op.getOperand(4);
3888   SDLoc dl(Op);
3889 
3890   bool LHSSeenZero = false;
3891   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3892   bool RHSSeenZero = false;
3893   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3894   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3895     // If unsafe fp math optimization is enabled and there are no other uses of
3896     // the CMP operands, and the condition code is EQ or NE, we can optimize it
3897     // to an integer comparison.
3898     if (CC == ISD::SETOEQ)
3899       CC = ISD::SETEQ;
3900     else if (CC == ISD::SETUNE)
3901       CC = ISD::SETNE;
3902 
3903     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
3904     SDValue ARMcc;
3905     if (LHS.getValueType() == MVT::f32) {
3906       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3907                         bitcastf32Toi32(LHS, DAG), Mask);
3908       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3909                         bitcastf32Toi32(RHS, DAG), Mask);
3910       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3911       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3912       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3913                          Chain, Dest, ARMcc, CCR, Cmp);
3914     }
3915 
3916     SDValue LHS1, LHS2;
3917     SDValue RHS1, RHS2;
3918     expandf64Toi32(LHS, DAG, LHS1, LHS2);
3919     expandf64Toi32(RHS, DAG, RHS1, RHS2);
3920     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3921     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3922     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3923     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3924     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3925     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3926     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
3927   }
3928 
3929   return SDValue();
3930 }
3931 
3932 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3933   SDValue Chain = Op.getOperand(0);
3934   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3935   SDValue LHS = Op.getOperand(2);
3936   SDValue RHS = Op.getOperand(3);
3937   SDValue Dest = Op.getOperand(4);
3938   SDLoc dl(Op);
3939 
3940   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3941     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3942                                                     dl);
3943 
3944     // If softenSetCCOperands only returned one value, we should compare it to
3945     // zero.
3946     if (!RHS.getNode()) {
3947       RHS = DAG.getConstant(0, dl, LHS.getValueType());
3948       CC = ISD::SETNE;
3949     }
3950   }
3951 
3952   if (LHS.getValueType() == MVT::i32) {
3953     SDValue ARMcc;
3954     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3955     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3956     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3957                        Chain, Dest, ARMcc, CCR, Cmp);
3958   }
3959 
3960   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3961 
3962   if (getTargetMachine().Options.UnsafeFPMath &&
3963       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3964        CC == ISD::SETNE || CC == ISD::SETUNE)) {
3965     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
3966       return Result;
3967   }
3968 
3969   ARMCC::CondCodes CondCode, CondCode2;
3970   FPCCToARMCC(CC, CondCode, CondCode2);
3971 
3972   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3973   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3974   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3975   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3976   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3977   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3978   if (CondCode2 != ARMCC::AL) {
3979     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
3980     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3981     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3982   }
3983   return Res;
3984 }
3985 
3986 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3987   SDValue Chain = Op.getOperand(0);
3988   SDValue Table = Op.getOperand(1);
3989   SDValue Index = Op.getOperand(2);
3990   SDLoc dl(Op);
3991 
3992   EVT PTy = getPointerTy(DAG.getDataLayout());
3993   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3994   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3995   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
3996   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
3997   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3998   if (Subtarget->isThumb2()) {
3999     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
4000     // which does another jump to the destination. This also makes it easier
4001     // to translate it to TBB / TBH later.
4002     // FIXME: This might not work if the function is extremely large.
4003     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4004                        Addr, Op.getOperand(2), JTI);
4005   }
4006   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
4007     Addr =
4008         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4009                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
4010                     false, false, false, 0);
4011     Chain = Addr.getValue(1);
4012     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
4013     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4014   } else {
4015     Addr =
4016         DAG.getLoad(PTy, dl, Chain, Addr,
4017                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
4018                     false, false, false, 0);
4019     Chain = Addr.getValue(1);
4020     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4021   }
4022 }
4023 
4024 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4025   EVT VT = Op.getValueType();
4026   SDLoc dl(Op);
4027 
4028   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4029     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4030       return Op;
4031     return DAG.UnrollVectorOp(Op.getNode());
4032   }
4033 
4034   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4035          "Invalid type for custom lowering!");
4036   if (VT != MVT::v4i16)
4037     return DAG.UnrollVectorOp(Op.getNode());
4038 
4039   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4040   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4041 }
4042 
4043 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4044   EVT VT = Op.getValueType();
4045   if (VT.isVector())
4046     return LowerVectorFP_TO_INT(Op, DAG);
4047   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4048     RTLIB::Libcall LC;
4049     if (Op.getOpcode() == ISD::FP_TO_SINT)
4050       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4051                               Op.getValueType());
4052     else
4053       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4054                               Op.getValueType());
4055     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4056                        /*isSigned*/ false, SDLoc(Op)).first;
4057   }
4058 
4059   return Op;
4060 }
4061 
4062 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4063   EVT VT = Op.getValueType();
4064   SDLoc dl(Op);
4065 
4066   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4067     if (VT.getVectorElementType() == MVT::f32)
4068       return Op;
4069     return DAG.UnrollVectorOp(Op.getNode());
4070   }
4071 
4072   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4073          "Invalid type for custom lowering!");
4074   if (VT != MVT::v4f32)
4075     return DAG.UnrollVectorOp(Op.getNode());
4076 
4077   unsigned CastOpc;
4078   unsigned Opc;
4079   switch (Op.getOpcode()) {
4080   default: llvm_unreachable("Invalid opcode!");
4081   case ISD::SINT_TO_FP:
4082     CastOpc = ISD::SIGN_EXTEND;
4083     Opc = ISD::SINT_TO_FP;
4084     break;
4085   case ISD::UINT_TO_FP:
4086     CastOpc = ISD::ZERO_EXTEND;
4087     Opc = ISD::UINT_TO_FP;
4088     break;
4089   }
4090 
4091   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4092   return DAG.getNode(Opc, dl, VT, Op);
4093 }
4094 
4095 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4096   EVT VT = Op.getValueType();
4097   if (VT.isVector())
4098     return LowerVectorINT_TO_FP(Op, DAG);
4099   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4100     RTLIB::Libcall LC;
4101     if (Op.getOpcode() == ISD::SINT_TO_FP)
4102       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4103                               Op.getValueType());
4104     else
4105       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4106                               Op.getValueType());
4107     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4108                        /*isSigned*/ false, SDLoc(Op)).first;
4109   }
4110 
4111   return Op;
4112 }
4113 
4114 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4115   // Implement fcopysign with a fabs and a conditional fneg.
4116   SDValue Tmp0 = Op.getOperand(0);
4117   SDValue Tmp1 = Op.getOperand(1);
4118   SDLoc dl(Op);
4119   EVT VT = Op.getValueType();
4120   EVT SrcVT = Tmp1.getValueType();
4121   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4122     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4123   bool UseNEON = !InGPR && Subtarget->hasNEON();
4124 
4125   if (UseNEON) {
4126     // Use VBSL to copy the sign bit.
4127     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4128     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4129                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4130     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4131     if (VT == MVT::f64)
4132       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4133                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4134                          DAG.getConstant(32, dl, MVT::i32));
4135     else /*if (VT == MVT::f32)*/
4136       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4137     if (SrcVT == MVT::f32) {
4138       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4139       if (VT == MVT::f64)
4140         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4141                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4142                            DAG.getConstant(32, dl, MVT::i32));
4143     } else if (VT == MVT::f32)
4144       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4145                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4146                          DAG.getConstant(32, dl, MVT::i32));
4147     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4148     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4149 
4150     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4151                                             dl, MVT::i32);
4152     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4153     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4154                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4155 
4156     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4157                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4158                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4159     if (VT == MVT::f32) {
4160       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4161       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4162                         DAG.getConstant(0, dl, MVT::i32));
4163     } else {
4164       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4165     }
4166 
4167     return Res;
4168   }
4169 
4170   // Bitcast operand 1 to i32.
4171   if (SrcVT == MVT::f64)
4172     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4173                        Tmp1).getValue(1);
4174   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4175 
4176   // Or in the signbit with integer operations.
4177   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4178   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4179   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4180   if (VT == MVT::f32) {
4181     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4182                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4183     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4184                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4185   }
4186 
4187   // f64: Or the high part with signbit and then combine two parts.
4188   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4189                      Tmp0);
4190   SDValue Lo = Tmp0.getValue(0);
4191   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4192   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4193   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4194 }
4195 
4196 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4197   MachineFunction &MF = DAG.getMachineFunction();
4198   MachineFrameInfo *MFI = MF.getFrameInfo();
4199   MFI->setReturnAddressIsTaken(true);
4200 
4201   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4202     return SDValue();
4203 
4204   EVT VT = Op.getValueType();
4205   SDLoc dl(Op);
4206   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4207   if (Depth) {
4208     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4209     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
4210     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
4211                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
4212                        MachinePointerInfo(), false, false, false, 0);
4213   }
4214 
4215   // Return LR, which contains the return address. Mark it an implicit live-in.
4216   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4217   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
4218 }
4219 
4220 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
4221   const ARMBaseRegisterInfo &ARI =
4222     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
4223   MachineFunction &MF = DAG.getMachineFunction();
4224   MachineFrameInfo *MFI = MF.getFrameInfo();
4225   MFI->setFrameAddressIsTaken(true);
4226 
4227   EVT VT = Op.getValueType();
4228   SDLoc dl(Op);  // FIXME probably not meaningful
4229   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4230   unsigned FrameReg = ARI.getFrameRegister(MF);
4231   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
4232   while (Depth--)
4233     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
4234                             MachinePointerInfo(),
4235                             false, false, false, 0);
4236   return FrameAddr;
4237 }
4238 
4239 // FIXME? Maybe this could be a TableGen attribute on some registers and
4240 // this table could be generated automatically from RegInfo.
4241 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4242                                               SelectionDAG &DAG) const {
4243   unsigned Reg = StringSwitch<unsigned>(RegName)
4244                        .Case("sp", ARM::SP)
4245                        .Default(0);
4246   if (Reg)
4247     return Reg;
4248   report_fatal_error(Twine("Invalid register name \""
4249                               + StringRef(RegName)  + "\"."));
4250 }
4251 
4252 // Result is 64 bit value so split into two 32 bit values and return as a
4253 // pair of values.
4254 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
4255                                 SelectionDAG &DAG) {
4256   SDLoc DL(N);
4257 
4258   // This function is only supposed to be called for i64 type destination.
4259   assert(N->getValueType(0) == MVT::i64
4260           && "ExpandREAD_REGISTER called for non-i64 type result.");
4261 
4262   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
4263                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
4264                              N->getOperand(0),
4265                              N->getOperand(1));
4266 
4267   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
4268                     Read.getValue(1)));
4269   Results.push_back(Read.getOperand(0));
4270 }
4271 
4272 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
4273 /// When \p DstVT, the destination type of \p BC, is on the vector
4274 /// register bank and the source of bitcast, \p Op, operates on the same bank,
4275 /// it might be possible to combine them, such that everything stays on the
4276 /// vector register bank.
4277 /// \p return The node that would replace \p BT, if the combine
4278 /// is possible.
4279 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
4280                                                 SelectionDAG &DAG) {
4281   SDValue Op = BC->getOperand(0);
4282   EVT DstVT = BC->getValueType(0);
4283 
4284   // The only vector instruction that can produce a scalar (remember,
4285   // since the bitcast was about to be turned into VMOVDRR, the source
4286   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
4287   // Moreover, we can do this combine only if there is one use.
4288   // Finally, if the destination type is not a vector, there is not
4289   // much point on forcing everything on the vector bank.
4290   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4291       !Op.hasOneUse())
4292     return SDValue();
4293 
4294   // If the index is not constant, we will introduce an additional
4295   // multiply that will stick.
4296   // Give up in that case.
4297   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4298   if (!Index)
4299     return SDValue();
4300   unsigned DstNumElt = DstVT.getVectorNumElements();
4301 
4302   // Compute the new index.
4303   const APInt &APIntIndex = Index->getAPIntValue();
4304   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
4305   NewIndex *= APIntIndex;
4306   // Check if the new constant index fits into i32.
4307   if (NewIndex.getBitWidth() > 32)
4308     return SDValue();
4309 
4310   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
4311   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
4312   SDLoc dl(Op);
4313   SDValue ExtractSrc = Op.getOperand(0);
4314   EVT VecVT = EVT::getVectorVT(
4315       *DAG.getContext(), DstVT.getScalarType(),
4316       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
4317   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
4318   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
4319                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
4320 }
4321 
4322 /// ExpandBITCAST - If the target supports VFP, this function is called to
4323 /// expand a bit convert where either the source or destination type is i64 to
4324 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
4325 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
4326 /// vectors), since the legalizer won't know what to do with that.
4327 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
4328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4329   SDLoc dl(N);
4330   SDValue Op = N->getOperand(0);
4331 
4332   // This function is only supposed to be called for i64 types, either as the
4333   // source or destination of the bit convert.
4334   EVT SrcVT = Op.getValueType();
4335   EVT DstVT = N->getValueType(0);
4336   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
4337          "ExpandBITCAST called for non-i64 type");
4338 
4339   // Turn i64->f64 into VMOVDRR.
4340   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
4341     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
4342     // if we can combine the bitcast with its source.
4343     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
4344       return Val;
4345 
4346     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4347                              DAG.getConstant(0, dl, MVT::i32));
4348     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4349                              DAG.getConstant(1, dl, MVT::i32));
4350     return DAG.getNode(ISD::BITCAST, dl, DstVT,
4351                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
4352   }
4353 
4354   // Turn f64->i64 into VMOVRRD.
4355   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
4356     SDValue Cvt;
4357     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
4358         SrcVT.getVectorNumElements() > 1)
4359       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4360                         DAG.getVTList(MVT::i32, MVT::i32),
4361                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
4362     else
4363       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4364                         DAG.getVTList(MVT::i32, MVT::i32), Op);
4365     // Merge the pieces into a single i64 value.
4366     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
4367   }
4368 
4369   return SDValue();
4370 }
4371 
4372 /// getZeroVector - Returns a vector of specified type with all zero elements.
4373 /// Zero vectors are used to represent vector negation and in those cases
4374 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
4375 /// not support i64 elements, so sometimes the zero vectors will need to be
4376 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
4377 /// zero vector.
4378 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
4379   assert(VT.isVector() && "Expected a vector type");
4380   // The canonical modified immediate encoding of a zero vector is....0!
4381   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
4382   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
4383   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
4384   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4385 }
4386 
4387 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4388 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
4389 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
4390                                                 SelectionDAG &DAG) const {
4391   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4392   EVT VT = Op.getValueType();
4393   unsigned VTBits = VT.getSizeInBits();
4394   SDLoc dl(Op);
4395   SDValue ShOpLo = Op.getOperand(0);
4396   SDValue ShOpHi = Op.getOperand(1);
4397   SDValue ShAmt  = Op.getOperand(2);
4398   SDValue ARMcc;
4399   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4400 
4401   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4402 
4403   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4404                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4405   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4406   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4407                                    DAG.getConstant(VTBits, dl, MVT::i32));
4408   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4409   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4410   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4411 
4412   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4413   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4414                           ISD::SETGE, ARMcc, DAG, dl);
4415   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4416   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
4417                            CCR, Cmp);
4418 
4419   SDValue Ops[2] = { Lo, Hi };
4420   return DAG.getMergeValues(Ops, dl);
4421 }
4422 
4423 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4424 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
4425 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
4426                                                SelectionDAG &DAG) const {
4427   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4428   EVT VT = Op.getValueType();
4429   unsigned VTBits = VT.getSizeInBits();
4430   SDLoc dl(Op);
4431   SDValue ShOpLo = Op.getOperand(0);
4432   SDValue ShOpHi = Op.getOperand(1);
4433   SDValue ShAmt  = Op.getOperand(2);
4434   SDValue ARMcc;
4435 
4436   assert(Op.getOpcode() == ISD::SHL_PARTS);
4437   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4438                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4439   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4440   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4441                                    DAG.getConstant(VTBits, dl, MVT::i32));
4442   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4443   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4444 
4445   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4446   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4447   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4448                           ISD::SETGE, ARMcc, DAG, dl);
4449   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4450   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
4451                            CCR, Cmp);
4452 
4453   SDValue Ops[2] = { Lo, Hi };
4454   return DAG.getMergeValues(Ops, dl);
4455 }
4456 
4457 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4458                                             SelectionDAG &DAG) const {
4459   // The rounding mode is in bits 23:22 of the FPSCR.
4460   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
4461   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
4462   // so that the shift + and get folded into a bitfield extract.
4463   SDLoc dl(Op);
4464   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
4465                               DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
4466                                               MVT::i32));
4467   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
4468                                   DAG.getConstant(1U << 22, dl, MVT::i32));
4469   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
4470                               DAG.getConstant(22, dl, MVT::i32));
4471   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
4472                      DAG.getConstant(3, dl, MVT::i32));
4473 }
4474 
4475 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
4476                          const ARMSubtarget *ST) {
4477   SDLoc dl(N);
4478   EVT VT = N->getValueType(0);
4479   if (VT.isVector()) {
4480     assert(ST->hasNEON());
4481 
4482     // Compute the least significant set bit: LSB = X & -X
4483     SDValue X = N->getOperand(0);
4484     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
4485     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
4486 
4487     EVT ElemTy = VT.getVectorElementType();
4488 
4489     if (ElemTy == MVT::i8) {
4490       // Compute with: cttz(x) = ctpop(lsb - 1)
4491       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4492                                 DAG.getTargetConstant(1, dl, ElemTy));
4493       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4494       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
4495     }
4496 
4497     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
4498         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
4499       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
4500       unsigned NumBits = ElemTy.getSizeInBits();
4501       SDValue WidthMinus1 =
4502           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4503                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
4504       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
4505       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
4506     }
4507 
4508     // Compute with: cttz(x) = ctpop(lsb - 1)
4509 
4510     // Since we can only compute the number of bits in a byte with vcnt.8, we
4511     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
4512     // and i64.
4513 
4514     // Compute LSB - 1.
4515     SDValue Bits;
4516     if (ElemTy == MVT::i64) {
4517       // Load constant 0xffff'ffff'ffff'ffff to register.
4518       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4519                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
4520       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
4521     } else {
4522       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4523                                 DAG.getTargetConstant(1, dl, ElemTy));
4524       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4525     }
4526 
4527     // Count #bits with vcnt.8.
4528     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4529     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
4530     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
4531 
4532     // Gather the #bits with vpaddl (pairwise add.)
4533     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4534     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
4535         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4536         Cnt8);
4537     if (ElemTy == MVT::i16)
4538       return Cnt16;
4539 
4540     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
4541     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
4542         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4543         Cnt16);
4544     if (ElemTy == MVT::i32)
4545       return Cnt32;
4546 
4547     assert(ElemTy == MVT::i64);
4548     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4549         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4550         Cnt32);
4551     return Cnt64;
4552   }
4553 
4554   if (!ST->hasV6T2Ops())
4555     return SDValue();
4556 
4557   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
4558   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
4559 }
4560 
4561 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
4562 /// for each 16-bit element from operand, repeated.  The basic idea is to
4563 /// leverage vcnt to get the 8-bit counts, gather and add the results.
4564 ///
4565 /// Trace for v4i16:
4566 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
4567 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
4568 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
4569 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
4570 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
4571 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
4572 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4573 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
4574 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
4575   EVT VT = N->getValueType(0);
4576   SDLoc DL(N);
4577 
4578   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4579   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4580   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4581   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4582   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4583   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4584 }
4585 
4586 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4587 /// bit-count for each 16-bit element from the operand.  We need slightly
4588 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
4589 /// 64/128-bit registers.
4590 ///
4591 /// Trace for v4i16:
4592 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
4593 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4594 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
4595 /// v4i16:Extracted = [k0    k1    k2    k3    ]
4596 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
4597   EVT VT = N->getValueType(0);
4598   SDLoc DL(N);
4599 
4600   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4601   if (VT.is64BitVector()) {
4602     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4603     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4604                        DAG.getIntPtrConstant(0, DL));
4605   } else {
4606     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4607                                     BitCounts, DAG.getIntPtrConstant(0, DL));
4608     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4609   }
4610 }
4611 
4612 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
4613 /// bit-count for each 32-bit element from the operand.  The idea here is
4614 /// to split the vector into 16-bit elements, leverage the 16-bit count
4615 /// routine, and then combine the results.
4616 ///
4617 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
4618 /// input    = [v0    v1    ] (vi: 32-bit elements)
4619 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
4620 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
4621 /// vrev: N0 = [k1 k0 k3 k2 ]
4622 ///            [k0 k1 k2 k3 ]
4623 ///       N1 =+[k1 k0 k3 k2 ]
4624 ///            [k0 k2 k1 k3 ]
4625 ///       N2 =+[k1 k3 k0 k2 ]
4626 ///            [k0    k2    k1    k3    ]
4627 /// Extended =+[k1    k3    k0    k2    ]
4628 ///            [k0    k2    ]
4629 /// Extracted=+[k1    k3    ]
4630 ///
4631 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
4632   EVT VT = N->getValueType(0);
4633   SDLoc DL(N);
4634 
4635   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4636 
4637   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
4638   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
4639   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
4640   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
4641   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
4642 
4643   if (VT.is64BitVector()) {
4644     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
4645     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
4646                        DAG.getIntPtrConstant(0, DL));
4647   } else {
4648     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
4649                                     DAG.getIntPtrConstant(0, DL));
4650     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
4651   }
4652 }
4653 
4654 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
4655                           const ARMSubtarget *ST) {
4656   EVT VT = N->getValueType(0);
4657 
4658   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
4659   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
4660           VT == MVT::v4i16 || VT == MVT::v8i16) &&
4661          "Unexpected type for custom ctpop lowering");
4662 
4663   if (VT.getVectorElementType() == MVT::i32)
4664     return lowerCTPOP32BitElements(N, DAG);
4665   else
4666     return lowerCTPOP16BitElements(N, DAG);
4667 }
4668 
4669 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
4670                           const ARMSubtarget *ST) {
4671   EVT VT = N->getValueType(0);
4672   SDLoc dl(N);
4673 
4674   if (!VT.isVector())
4675     return SDValue();
4676 
4677   // Lower vector shifts on NEON to use VSHL.
4678   assert(ST->hasNEON() && "unexpected vector shift");
4679 
4680   // Left shifts translate directly to the vshiftu intrinsic.
4681   if (N->getOpcode() == ISD::SHL)
4682     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4683                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
4684                                        MVT::i32),
4685                        N->getOperand(0), N->getOperand(1));
4686 
4687   assert((N->getOpcode() == ISD::SRA ||
4688           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
4689 
4690   // NEON uses the same intrinsics for both left and right shifts.  For
4691   // right shifts, the shift amounts are negative, so negate the vector of
4692   // shift amounts.
4693   EVT ShiftVT = N->getOperand(1).getValueType();
4694   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
4695                                      getZeroVector(ShiftVT, DAG, dl),
4696                                      N->getOperand(1));
4697   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
4698                              Intrinsic::arm_neon_vshifts :
4699                              Intrinsic::arm_neon_vshiftu);
4700   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4701                      DAG.getConstant(vshiftInt, dl, MVT::i32),
4702                      N->getOperand(0), NegatedCount);
4703 }
4704 
4705 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
4706                                 const ARMSubtarget *ST) {
4707   EVT VT = N->getValueType(0);
4708   SDLoc dl(N);
4709 
4710   // We can get here for a node like i32 = ISD::SHL i32, i64
4711   if (VT != MVT::i64)
4712     return SDValue();
4713 
4714   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
4715          "Unknown shift to lower!");
4716 
4717   // We only lower SRA, SRL of 1 here, all others use generic lowering.
4718   if (!isOneConstant(N->getOperand(1)))
4719     return SDValue();
4720 
4721   // If we are in thumb mode, we don't have RRX.
4722   if (ST->isThumb1Only()) return SDValue();
4723 
4724   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
4725   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4726                            DAG.getConstant(0, dl, MVT::i32));
4727   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4728                            DAG.getConstant(1, dl, MVT::i32));
4729 
4730   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
4731   // captures the result into a carry flag.
4732   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
4733   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
4734 
4735   // The low part is an ARMISD::RRX operand, which shifts the carry in.
4736   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
4737 
4738   // Merge the pieces into a single i64 value.
4739  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4740 }
4741 
4742 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4743   SDValue TmpOp0, TmpOp1;
4744   bool Invert = false;
4745   bool Swap = false;
4746   unsigned Opc = 0;
4747 
4748   SDValue Op0 = Op.getOperand(0);
4749   SDValue Op1 = Op.getOperand(1);
4750   SDValue CC = Op.getOperand(2);
4751   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
4752   EVT VT = Op.getValueType();
4753   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4754   SDLoc dl(Op);
4755 
4756   if (CmpVT.getVectorElementType() == MVT::i64)
4757     // 64-bit comparisons are not legal. We've marked SETCC as non-Custom,
4758     // but it's possible that our operands are 64-bit but our result is 32-bit.
4759     // Bail in this case.
4760     return SDValue();
4761 
4762   if (Op1.getValueType().isFloatingPoint()) {
4763     switch (SetCCOpcode) {
4764     default: llvm_unreachable("Illegal FP comparison");
4765     case ISD::SETUNE:
4766     case ISD::SETNE:  Invert = true; // Fallthrough
4767     case ISD::SETOEQ:
4768     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4769     case ISD::SETOLT:
4770     case ISD::SETLT: Swap = true; // Fallthrough
4771     case ISD::SETOGT:
4772     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4773     case ISD::SETOLE:
4774     case ISD::SETLE:  Swap = true; // Fallthrough
4775     case ISD::SETOGE:
4776     case ISD::SETGE: Opc = ARMISD::VCGE; break;
4777     case ISD::SETUGE: Swap = true; // Fallthrough
4778     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
4779     case ISD::SETUGT: Swap = true; // Fallthrough
4780     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
4781     case ISD::SETUEQ: Invert = true; // Fallthrough
4782     case ISD::SETONE:
4783       // Expand this to (OLT | OGT).
4784       TmpOp0 = Op0;
4785       TmpOp1 = Op1;
4786       Opc = ISD::OR;
4787       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
4788       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
4789       break;
4790     case ISD::SETUO: Invert = true; // Fallthrough
4791     case ISD::SETO:
4792       // Expand this to (OLT | OGE).
4793       TmpOp0 = Op0;
4794       TmpOp1 = Op1;
4795       Opc = ISD::OR;
4796       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
4797       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
4798       break;
4799     }
4800   } else {
4801     // Integer comparisons.
4802     switch (SetCCOpcode) {
4803     default: llvm_unreachable("Illegal integer comparison");
4804     case ISD::SETNE:  Invert = true;
4805     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4806     case ISD::SETLT:  Swap = true;
4807     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4808     case ISD::SETLE:  Swap = true;
4809     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
4810     case ISD::SETULT: Swap = true;
4811     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4812     case ISD::SETULE: Swap = true;
4813     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4814     }
4815 
4816     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4817     if (Opc == ARMISD::VCEQ) {
4818 
4819       SDValue AndOp;
4820       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4821         AndOp = Op0;
4822       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4823         AndOp = Op1;
4824 
4825       // Ignore bitconvert.
4826       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4827         AndOp = AndOp.getOperand(0);
4828 
4829       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4830         Opc = ARMISD::VTST;
4831         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
4832         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
4833         Invert = !Invert;
4834       }
4835     }
4836   }
4837 
4838   if (Swap)
4839     std::swap(Op0, Op1);
4840 
4841   // If one of the operands is a constant vector zero, attempt to fold the
4842   // comparison to a specialized compare-against-zero form.
4843   SDValue SingleOp;
4844   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4845     SingleOp = Op0;
4846   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4847     if (Opc == ARMISD::VCGE)
4848       Opc = ARMISD::VCLEZ;
4849     else if (Opc == ARMISD::VCGT)
4850       Opc = ARMISD::VCLTZ;
4851     SingleOp = Op1;
4852   }
4853 
4854   SDValue Result;
4855   if (SingleOp.getNode()) {
4856     switch (Opc) {
4857     case ARMISD::VCEQ:
4858       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
4859     case ARMISD::VCGE:
4860       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
4861     case ARMISD::VCLEZ:
4862       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
4863     case ARMISD::VCGT:
4864       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
4865     case ARMISD::VCLTZ:
4866       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
4867     default:
4868       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
4869     }
4870   } else {
4871      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
4872   }
4873 
4874   Result = DAG.getSExtOrTrunc(Result, dl, VT);
4875 
4876   if (Invert)
4877     Result = DAG.getNOT(dl, Result, VT);
4878 
4879   return Result;
4880 }
4881 
4882 static SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) {
4883   SDValue LHS = Op.getOperand(0);
4884   SDValue RHS = Op.getOperand(1);
4885   SDValue Carry = Op.getOperand(2);
4886   SDValue Cond = Op.getOperand(3);
4887   SDLoc DL(Op);
4888 
4889   assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
4890 
4891   assert(Carry.getOpcode() != ISD::CARRY_FALSE);
4892   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
4893   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
4894 
4895   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
4896   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
4897   SDValue ARMcc = DAG.getConstant(
4898       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
4899   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4900   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
4901                                    Cmp.getValue(1), SDValue());
4902   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
4903                      CCR, Chain.getValue(1));
4904 }
4905 
4906 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
4907 /// valid vector constant for a NEON instruction with a "modified immediate"
4908 /// operand (e.g., VMOV).  If so, return the encoded value.
4909 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
4910                                  unsigned SplatBitSize, SelectionDAG &DAG,
4911                                  SDLoc dl, EVT &VT, bool is128Bits,
4912                                  NEONModImmType type) {
4913   unsigned OpCmode, Imm;
4914 
4915   // SplatBitSize is set to the smallest size that splats the vector, so a
4916   // zero vector will always have SplatBitSize == 8.  However, NEON modified
4917   // immediate instructions others than VMOV do not support the 8-bit encoding
4918   // of a zero vector, and the default encoding of zero is supposed to be the
4919   // 32-bit version.
4920   if (SplatBits == 0)
4921     SplatBitSize = 32;
4922 
4923   switch (SplatBitSize) {
4924   case 8:
4925     if (type != VMOVModImm)
4926       return SDValue();
4927     // Any 1-byte value is OK.  Op=0, Cmode=1110.
4928     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
4929     OpCmode = 0xe;
4930     Imm = SplatBits;
4931     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
4932     break;
4933 
4934   case 16:
4935     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
4936     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
4937     if ((SplatBits & ~0xff) == 0) {
4938       // Value = 0x00nn: Op=x, Cmode=100x.
4939       OpCmode = 0x8;
4940       Imm = SplatBits;
4941       break;
4942     }
4943     if ((SplatBits & ~0xff00) == 0) {
4944       // Value = 0xnn00: Op=x, Cmode=101x.
4945       OpCmode = 0xa;
4946       Imm = SplatBits >> 8;
4947       break;
4948     }
4949     return SDValue();
4950 
4951   case 32:
4952     // NEON's 32-bit VMOV supports splat values where:
4953     // * only one byte is nonzero, or
4954     // * the least significant byte is 0xff and the second byte is nonzero, or
4955     // * the least significant 2 bytes are 0xff and the third is nonzero.
4956     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
4957     if ((SplatBits & ~0xff) == 0) {
4958       // Value = 0x000000nn: Op=x, Cmode=000x.
4959       OpCmode = 0;
4960       Imm = SplatBits;
4961       break;
4962     }
4963     if ((SplatBits & ~0xff00) == 0) {
4964       // Value = 0x0000nn00: Op=x, Cmode=001x.
4965       OpCmode = 0x2;
4966       Imm = SplatBits >> 8;
4967       break;
4968     }
4969     if ((SplatBits & ~0xff0000) == 0) {
4970       // Value = 0x00nn0000: Op=x, Cmode=010x.
4971       OpCmode = 0x4;
4972       Imm = SplatBits >> 16;
4973       break;
4974     }
4975     if ((SplatBits & ~0xff000000) == 0) {
4976       // Value = 0xnn000000: Op=x, Cmode=011x.
4977       OpCmode = 0x6;
4978       Imm = SplatBits >> 24;
4979       break;
4980     }
4981 
4982     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
4983     if (type == OtherModImm) return SDValue();
4984 
4985     if ((SplatBits & ~0xffff) == 0 &&
4986         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
4987       // Value = 0x0000nnff: Op=x, Cmode=1100.
4988       OpCmode = 0xc;
4989       Imm = SplatBits >> 8;
4990       break;
4991     }
4992 
4993     if ((SplatBits & ~0xffffff) == 0 &&
4994         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
4995       // Value = 0x00nnffff: Op=x, Cmode=1101.
4996       OpCmode = 0xd;
4997       Imm = SplatBits >> 16;
4998       break;
4999     }
5000 
5001     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5002     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5003     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5004     // and fall through here to test for a valid 64-bit splat.  But, then the
5005     // caller would also need to check and handle the change in size.
5006     return SDValue();
5007 
5008   case 64: {
5009     if (type != VMOVModImm)
5010       return SDValue();
5011     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5012     uint64_t BitMask = 0xff;
5013     uint64_t Val = 0;
5014     unsigned ImmMask = 1;
5015     Imm = 0;
5016     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5017       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5018         Val |= BitMask;
5019         Imm |= ImmMask;
5020       } else if ((SplatBits & BitMask) != 0) {
5021         return SDValue();
5022       }
5023       BitMask <<= 8;
5024       ImmMask <<= 1;
5025     }
5026 
5027     if (DAG.getDataLayout().isBigEndian())
5028       // swap higher and lower 32 bit word
5029       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5030 
5031     // Op=1, Cmode=1110.
5032     OpCmode = 0x1e;
5033     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5034     break;
5035   }
5036 
5037   default:
5038     llvm_unreachable("unexpected size for isNEONModifiedImm");
5039   }
5040 
5041   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5042   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5043 }
5044 
5045 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5046                                            const ARMSubtarget *ST) const {
5047   if (!ST->hasVFP3())
5048     return SDValue();
5049 
5050   bool IsDouble = Op.getValueType() == MVT::f64;
5051   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5052 
5053   // Use the default (constant pool) lowering for double constants when we have
5054   // an SP-only FPU
5055   if (IsDouble && Subtarget->isFPOnlySP())
5056     return SDValue();
5057 
5058   // Try splatting with a VMOV.f32...
5059   APFloat FPVal = CFP->getValueAPF();
5060   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5061 
5062   if (ImmVal != -1) {
5063     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
5064       // We have code in place to select a valid ConstantFP already, no need to
5065       // do any mangling.
5066       return Op;
5067     }
5068 
5069     // It's a float and we are trying to use NEON operations where
5070     // possible. Lower it to a splat followed by an extract.
5071     SDLoc DL(Op);
5072     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
5073     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
5074                                       NewVal);
5075     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
5076                        DAG.getConstant(0, DL, MVT::i32));
5077   }
5078 
5079   // The rest of our options are NEON only, make sure that's allowed before
5080   // proceeding..
5081   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
5082     return SDValue();
5083 
5084   EVT VMovVT;
5085   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
5086 
5087   // It wouldn't really be worth bothering for doubles except for one very
5088   // important value, which does happen to match: 0.0. So make sure we don't do
5089   // anything stupid.
5090   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
5091     return SDValue();
5092 
5093   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
5094   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
5095                                      VMovVT, false, VMOVModImm);
5096   if (NewVal != SDValue()) {
5097     SDLoc DL(Op);
5098     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
5099                                       NewVal);
5100     if (IsDouble)
5101       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5102 
5103     // It's a float: cast and extract a vector element.
5104     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5105                                        VecConstant);
5106     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5107                        DAG.getConstant(0, DL, MVT::i32));
5108   }
5109 
5110   // Finally, try a VMVN.i32
5111   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
5112                              false, VMVNModImm);
5113   if (NewVal != SDValue()) {
5114     SDLoc DL(Op);
5115     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
5116 
5117     if (IsDouble)
5118       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5119 
5120     // It's a float: cast and extract a vector element.
5121     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5122                                        VecConstant);
5123     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5124                        DAG.getConstant(0, DL, MVT::i32));
5125   }
5126 
5127   return SDValue();
5128 }
5129 
5130 // check if an VEXT instruction can handle the shuffle mask when the
5131 // vector sources of the shuffle are the same.
5132 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5133   unsigned NumElts = VT.getVectorNumElements();
5134 
5135   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5136   if (M[0] < 0)
5137     return false;
5138 
5139   Imm = M[0];
5140 
5141   // If this is a VEXT shuffle, the immediate value is the index of the first
5142   // element.  The other shuffle indices must be the successive elements after
5143   // the first one.
5144   unsigned ExpectedElt = Imm;
5145   for (unsigned i = 1; i < NumElts; ++i) {
5146     // Increment the expected index.  If it wraps around, just follow it
5147     // back to index zero and keep going.
5148     ++ExpectedElt;
5149     if (ExpectedElt == NumElts)
5150       ExpectedElt = 0;
5151 
5152     if (M[i] < 0) continue; // ignore UNDEF indices
5153     if (ExpectedElt != static_cast<unsigned>(M[i]))
5154       return false;
5155   }
5156 
5157   return true;
5158 }
5159 
5160 
5161 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
5162                        bool &ReverseVEXT, unsigned &Imm) {
5163   unsigned NumElts = VT.getVectorNumElements();
5164   ReverseVEXT = false;
5165 
5166   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5167   if (M[0] < 0)
5168     return false;
5169 
5170   Imm = M[0];
5171 
5172   // If this is a VEXT shuffle, the immediate value is the index of the first
5173   // element.  The other shuffle indices must be the successive elements after
5174   // the first one.
5175   unsigned ExpectedElt = Imm;
5176   for (unsigned i = 1; i < NumElts; ++i) {
5177     // Increment the expected index.  If it wraps around, it may still be
5178     // a VEXT but the source vectors must be swapped.
5179     ExpectedElt += 1;
5180     if (ExpectedElt == NumElts * 2) {
5181       ExpectedElt = 0;
5182       ReverseVEXT = true;
5183     }
5184 
5185     if (M[i] < 0) continue; // ignore UNDEF indices
5186     if (ExpectedElt != static_cast<unsigned>(M[i]))
5187       return false;
5188   }
5189 
5190   // Adjust the index value if the source operands will be swapped.
5191   if (ReverseVEXT)
5192     Imm -= NumElts;
5193 
5194   return true;
5195 }
5196 
5197 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
5198 /// instruction with the specified blocksize.  (The order of the elements
5199 /// within each block of the vector is reversed.)
5200 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5201   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
5202          "Only possible block sizes for VREV are: 16, 32, 64");
5203 
5204   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5205   if (EltSz == 64)
5206     return false;
5207 
5208   unsigned NumElts = VT.getVectorNumElements();
5209   unsigned BlockElts = M[0] + 1;
5210   // If the first shuffle index is UNDEF, be optimistic.
5211   if (M[0] < 0)
5212     BlockElts = BlockSize / EltSz;
5213 
5214   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5215     return false;
5216 
5217   for (unsigned i = 0; i < NumElts; ++i) {
5218     if (M[i] < 0) continue; // ignore UNDEF indices
5219     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
5220       return false;
5221   }
5222 
5223   return true;
5224 }
5225 
5226 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
5227   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
5228   // range, then 0 is placed into the resulting vector. So pretty much any mask
5229   // of 8 elements can work here.
5230   return VT == MVT::v8i8 && M.size() == 8;
5231 }
5232 
5233 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
5234 // checking that pairs of elements in the shuffle mask represent the same index
5235 // in each vector, incrementing the expected index by 2 at each step.
5236 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
5237 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
5238 //  v2={e,f,g,h}
5239 // WhichResult gives the offset for each element in the mask based on which
5240 // of the two results it belongs to.
5241 //
5242 // The transpose can be represented either as:
5243 // result1 = shufflevector v1, v2, result1_shuffle_mask
5244 // result2 = shufflevector v1, v2, result2_shuffle_mask
5245 // where v1/v2 and the shuffle masks have the same number of elements
5246 // (here WhichResult (see below) indicates which result is being checked)
5247 //
5248 // or as:
5249 // results = shufflevector v1, v2, shuffle_mask
5250 // where both results are returned in one vector and the shuffle mask has twice
5251 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
5252 // want to check the low half and high half of the shuffle mask as if it were
5253 // the other case
5254 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5255   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5256   if (EltSz == 64)
5257     return false;
5258 
5259   unsigned NumElts = VT.getVectorNumElements();
5260   if (M.size() != NumElts && M.size() != NumElts*2)
5261     return false;
5262 
5263   // If the mask is twice as long as the input vector then we need to check the
5264   // upper and lower parts of the mask with a matching value for WhichResult
5265   // FIXME: A mask with only even values will be rejected in case the first
5266   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
5267   // M[0] is used to determine WhichResult
5268   for (unsigned i = 0; i < M.size(); i += NumElts) {
5269     if (M.size() == NumElts * 2)
5270       WhichResult = i / NumElts;
5271     else
5272       WhichResult = M[i] == 0 ? 0 : 1;
5273     for (unsigned j = 0; j < NumElts; j += 2) {
5274       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5275           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
5276         return false;
5277     }
5278   }
5279 
5280   if (M.size() == NumElts*2)
5281     WhichResult = 0;
5282 
5283   return true;
5284 }
5285 
5286 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
5287 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5288 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5289 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5290   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5291   if (EltSz == 64)
5292     return false;
5293 
5294   unsigned NumElts = VT.getVectorNumElements();
5295   if (M.size() != NumElts && M.size() != NumElts*2)
5296     return false;
5297 
5298   for (unsigned i = 0; i < M.size(); i += NumElts) {
5299     if (M.size() == NumElts * 2)
5300       WhichResult = i / NumElts;
5301     else
5302       WhichResult = M[i] == 0 ? 0 : 1;
5303     for (unsigned j = 0; j < NumElts; j += 2) {
5304       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5305           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
5306         return false;
5307     }
5308   }
5309 
5310   if (M.size() == NumElts*2)
5311     WhichResult = 0;
5312 
5313   return true;
5314 }
5315 
5316 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
5317 // that the mask elements are either all even and in steps of size 2 or all odd
5318 // and in steps of size 2.
5319 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
5320 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
5321 //  v2={e,f,g,h}
5322 // Requires similar checks to that of isVTRNMask with
5323 // respect the how results are returned.
5324 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5325   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5326   if (EltSz == 64)
5327     return false;
5328 
5329   unsigned NumElts = VT.getVectorNumElements();
5330   if (M.size() != NumElts && M.size() != NumElts*2)
5331     return false;
5332 
5333   for (unsigned i = 0; i < M.size(); i += NumElts) {
5334     WhichResult = M[i] == 0 ? 0 : 1;
5335     for (unsigned j = 0; j < NumElts; ++j) {
5336       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
5337         return false;
5338     }
5339   }
5340 
5341   if (M.size() == NumElts*2)
5342     WhichResult = 0;
5343 
5344   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5345   if (VT.is64BitVector() && EltSz == 32)
5346     return false;
5347 
5348   return true;
5349 }
5350 
5351 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
5352 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5353 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5354 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5355   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5356   if (EltSz == 64)
5357     return false;
5358 
5359   unsigned NumElts = VT.getVectorNumElements();
5360   if (M.size() != NumElts && M.size() != NumElts*2)
5361     return false;
5362 
5363   unsigned Half = NumElts / 2;
5364   for (unsigned i = 0; i < M.size(); i += NumElts) {
5365     WhichResult = M[i] == 0 ? 0 : 1;
5366     for (unsigned j = 0; j < NumElts; j += Half) {
5367       unsigned Idx = WhichResult;
5368       for (unsigned k = 0; k < Half; ++k) {
5369         int MIdx = M[i + j + k];
5370         if (MIdx >= 0 && (unsigned) MIdx != Idx)
5371           return false;
5372         Idx += 2;
5373       }
5374     }
5375   }
5376 
5377   if (M.size() == NumElts*2)
5378     WhichResult = 0;
5379 
5380   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5381   if (VT.is64BitVector() && EltSz == 32)
5382     return false;
5383 
5384   return true;
5385 }
5386 
5387 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
5388 // that pairs of elements of the shufflemask represent the same index in each
5389 // vector incrementing sequentially through the vectors.
5390 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
5391 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
5392 //  v2={e,f,g,h}
5393 // Requires similar checks to that of isVTRNMask with respect the how results
5394 // are returned.
5395 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5396   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5397   if (EltSz == 64)
5398     return false;
5399 
5400   unsigned NumElts = VT.getVectorNumElements();
5401   if (M.size() != NumElts && M.size() != NumElts*2)
5402     return false;
5403 
5404   for (unsigned i = 0; i < M.size(); i += NumElts) {
5405     WhichResult = M[i] == 0 ? 0 : 1;
5406     unsigned Idx = WhichResult * NumElts / 2;
5407     for (unsigned j = 0; j < NumElts; j += 2) {
5408       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5409           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
5410         return false;
5411       Idx += 1;
5412     }
5413   }
5414 
5415   if (M.size() == NumElts*2)
5416     WhichResult = 0;
5417 
5418   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5419   if (VT.is64BitVector() && EltSz == 32)
5420     return false;
5421 
5422   return true;
5423 }
5424 
5425 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
5426 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5427 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5428 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5429   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5430   if (EltSz == 64)
5431     return false;
5432 
5433   unsigned NumElts = VT.getVectorNumElements();
5434   if (M.size() != NumElts && M.size() != NumElts*2)
5435     return false;
5436 
5437   for (unsigned i = 0; i < M.size(); i += NumElts) {
5438     WhichResult = M[i] == 0 ? 0 : 1;
5439     unsigned Idx = WhichResult * NumElts / 2;
5440     for (unsigned j = 0; j < NumElts; j += 2) {
5441       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5442           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
5443         return false;
5444       Idx += 1;
5445     }
5446   }
5447 
5448   if (M.size() == NumElts*2)
5449     WhichResult = 0;
5450 
5451   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5452   if (VT.is64BitVector() && EltSz == 32)
5453     return false;
5454 
5455   return true;
5456 }
5457 
5458 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
5459 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
5460 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
5461                                            unsigned &WhichResult,
5462                                            bool &isV_UNDEF) {
5463   isV_UNDEF = false;
5464   if (isVTRNMask(ShuffleMask, VT, WhichResult))
5465     return ARMISD::VTRN;
5466   if (isVUZPMask(ShuffleMask, VT, WhichResult))
5467     return ARMISD::VUZP;
5468   if (isVZIPMask(ShuffleMask, VT, WhichResult))
5469     return ARMISD::VZIP;
5470 
5471   isV_UNDEF = true;
5472   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5473     return ARMISD::VTRN;
5474   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5475     return ARMISD::VUZP;
5476   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5477     return ARMISD::VZIP;
5478 
5479   return 0;
5480 }
5481 
5482 /// \return true if this is a reverse operation on an vector.
5483 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
5484   unsigned NumElts = VT.getVectorNumElements();
5485   // Make sure the mask has the right size.
5486   if (NumElts != M.size())
5487       return false;
5488 
5489   // Look for <15, ..., 3, -1, 1, 0>.
5490   for (unsigned i = 0; i != NumElts; ++i)
5491     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
5492       return false;
5493 
5494   return true;
5495 }
5496 
5497 // If N is an integer constant that can be moved into a register in one
5498 // instruction, return an SDValue of such a constant (will become a MOV
5499 // instruction).  Otherwise return null.
5500 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
5501                                      const ARMSubtarget *ST, SDLoc dl) {
5502   uint64_t Val;
5503   if (!isa<ConstantSDNode>(N))
5504     return SDValue();
5505   Val = cast<ConstantSDNode>(N)->getZExtValue();
5506 
5507   if (ST->isThumb1Only()) {
5508     if (Val <= 255 || ~Val <= 255)
5509       return DAG.getConstant(Val, dl, MVT::i32);
5510   } else {
5511     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
5512       return DAG.getConstant(Val, dl, MVT::i32);
5513   }
5514   return SDValue();
5515 }
5516 
5517 // If this is a case we can't handle, return null and let the default
5518 // expansion code take care of it.
5519 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
5520                                              const ARMSubtarget *ST) const {
5521   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5522   SDLoc dl(Op);
5523   EVT VT = Op.getValueType();
5524 
5525   APInt SplatBits, SplatUndef;
5526   unsigned SplatBitSize;
5527   bool HasAnyUndefs;
5528   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5529     if (SplatBitSize <= 64) {
5530       // Check if an immediate VMOV works.
5531       EVT VmovVT;
5532       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5533                                       SplatUndef.getZExtValue(), SplatBitSize,
5534                                       DAG, dl, VmovVT, VT.is128BitVector(),
5535                                       VMOVModImm);
5536       if (Val.getNode()) {
5537         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
5538         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5539       }
5540 
5541       // Try an immediate VMVN.
5542       uint64_t NegatedImm = (~SplatBits).getZExtValue();
5543       Val = isNEONModifiedImm(NegatedImm,
5544                                       SplatUndef.getZExtValue(), SplatBitSize,
5545                                       DAG, dl, VmovVT, VT.is128BitVector(),
5546                                       VMVNModImm);
5547       if (Val.getNode()) {
5548         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
5549         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5550       }
5551 
5552       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
5553       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
5554         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
5555         if (ImmVal != -1) {
5556           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
5557           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
5558         }
5559       }
5560     }
5561   }
5562 
5563   // Scan through the operands to see if only one value is used.
5564   //
5565   // As an optimisation, even if more than one value is used it may be more
5566   // profitable to splat with one value then change some lanes.
5567   //
5568   // Heuristically we decide to do this if the vector has a "dominant" value,
5569   // defined as splatted to more than half of the lanes.
5570   unsigned NumElts = VT.getVectorNumElements();
5571   bool isOnlyLowElement = true;
5572   bool usesOnlyOneValue = true;
5573   bool hasDominantValue = false;
5574   bool isConstant = true;
5575 
5576   // Map of the number of times a particular SDValue appears in the
5577   // element list.
5578   DenseMap<SDValue, unsigned> ValueCounts;
5579   SDValue Value;
5580   for (unsigned i = 0; i < NumElts; ++i) {
5581     SDValue V = Op.getOperand(i);
5582     if (V.isUndef())
5583       continue;
5584     if (i > 0)
5585       isOnlyLowElement = false;
5586     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5587       isConstant = false;
5588 
5589     ValueCounts.insert(std::make_pair(V, 0));
5590     unsigned &Count = ValueCounts[V];
5591 
5592     // Is this value dominant? (takes up more than half of the lanes)
5593     if (++Count > (NumElts / 2)) {
5594       hasDominantValue = true;
5595       Value = V;
5596     }
5597   }
5598   if (ValueCounts.size() != 1)
5599     usesOnlyOneValue = false;
5600   if (!Value.getNode() && ValueCounts.size() > 0)
5601     Value = ValueCounts.begin()->first;
5602 
5603   if (ValueCounts.size() == 0)
5604     return DAG.getUNDEF(VT);
5605 
5606   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
5607   // Keep going if we are hitting this case.
5608   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
5609     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5610 
5611   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5612 
5613   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
5614   // i32 and try again.
5615   if (hasDominantValue && EltSize <= 32) {
5616     if (!isConstant) {
5617       SDValue N;
5618 
5619       // If we are VDUPing a value that comes directly from a vector, that will
5620       // cause an unnecessary move to and from a GPR, where instead we could
5621       // just use VDUPLANE. We can only do this if the lane being extracted
5622       // is at a constant index, as the VDUP from lane instructions only have
5623       // constant-index forms.
5624       ConstantSDNode *constIndex;
5625       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5626           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
5627         // We need to create a new undef vector to use for the VDUPLANE if the
5628         // size of the vector from which we get the value is different than the
5629         // size of the vector that we need to create. We will insert the element
5630         // such that the register coalescer will remove unnecessary copies.
5631         if (VT != Value->getOperand(0).getValueType()) {
5632           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
5633                              VT.getVectorNumElements();
5634           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5635                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
5636                         Value, DAG.getConstant(index, dl, MVT::i32)),
5637                            DAG.getConstant(index, dl, MVT::i32));
5638         } else
5639           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5640                         Value->getOperand(0), Value->getOperand(1));
5641       } else
5642         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
5643 
5644       if (!usesOnlyOneValue) {
5645         // The dominant value was splatted as 'N', but we now have to insert
5646         // all differing elements.
5647         for (unsigned I = 0; I < NumElts; ++I) {
5648           if (Op.getOperand(I) == Value)
5649             continue;
5650           SmallVector<SDValue, 3> Ops;
5651           Ops.push_back(N);
5652           Ops.push_back(Op.getOperand(I));
5653           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
5654           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
5655         }
5656       }
5657       return N;
5658     }
5659     if (VT.getVectorElementType().isFloatingPoint()) {
5660       SmallVector<SDValue, 8> Ops;
5661       for (unsigned i = 0; i < NumElts; ++i)
5662         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
5663                                   Op.getOperand(i)));
5664       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
5665       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
5666       Val = LowerBUILD_VECTOR(Val, DAG, ST);
5667       if (Val.getNode())
5668         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5669     }
5670     if (usesOnlyOneValue) {
5671       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
5672       if (isConstant && Val.getNode())
5673         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
5674     }
5675   }
5676 
5677   // If all elements are constants and the case above didn't get hit, fall back
5678   // to the default expansion, which will generate a load from the constant
5679   // pool.
5680   if (isConstant)
5681     return SDValue();
5682 
5683   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5684   if (NumElts >= 4) {
5685     SDValue shuffle = ReconstructShuffle(Op, DAG);
5686     if (shuffle != SDValue())
5687       return shuffle;
5688   }
5689 
5690   // Vectors with 32- or 64-bit elements can be built by directly assigning
5691   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
5692   // will be legalized.
5693   if (EltSize >= 32) {
5694     // Do the expansion with floating-point types, since that is what the VFP
5695     // registers are defined to use, and since i64 is not legal.
5696     EVT EltVT = EVT::getFloatingPointVT(EltSize);
5697     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5698     SmallVector<SDValue, 8> Ops;
5699     for (unsigned i = 0; i < NumElts; ++i)
5700       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
5701     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5702     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5703   }
5704 
5705   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5706   // know the default expansion would otherwise fall back on something even
5707   // worse. For a vector with one or two non-undef values, that's
5708   // scalar_to_vector for the elements followed by a shuffle (provided the
5709   // shuffle is valid for the target) and materialization element by element
5710   // on the stack followed by a load for everything else.
5711   if (!isConstant && !usesOnlyOneValue) {
5712     SDValue Vec = DAG.getUNDEF(VT);
5713     for (unsigned i = 0 ; i < NumElts; ++i) {
5714       SDValue V = Op.getOperand(i);
5715       if (V.isUndef())
5716         continue;
5717       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
5718       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5719     }
5720     return Vec;
5721   }
5722 
5723   return SDValue();
5724 }
5725 
5726 // Gather data to see if the operation can be modelled as a
5727 // shuffle in combination with VEXTs.
5728 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
5729                                               SelectionDAG &DAG) const {
5730   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5731   SDLoc dl(Op);
5732   EVT VT = Op.getValueType();
5733   unsigned NumElts = VT.getVectorNumElements();
5734 
5735   struct ShuffleSourceInfo {
5736     SDValue Vec;
5737     unsigned MinElt;
5738     unsigned MaxElt;
5739 
5740     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
5741     // be compatible with the shuffle we intend to construct. As a result
5742     // ShuffleVec will be some sliding window into the original Vec.
5743     SDValue ShuffleVec;
5744 
5745     // Code should guarantee that element i in Vec starts at element "WindowBase
5746     // + i * WindowScale in ShuffleVec".
5747     int WindowBase;
5748     int WindowScale;
5749 
5750     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
5751     ShuffleSourceInfo(SDValue Vec)
5752         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
5753           WindowScale(1) {}
5754   };
5755 
5756   // First gather all vectors used as an immediate source for this BUILD_VECTOR
5757   // node.
5758   SmallVector<ShuffleSourceInfo, 2> Sources;
5759   for (unsigned i = 0; i < NumElts; ++i) {
5760     SDValue V = Op.getOperand(i);
5761     if (V.isUndef())
5762       continue;
5763     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
5764       // A shuffle can only come from building a vector from various
5765       // elements of other vectors.
5766       return SDValue();
5767     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
5768       // Furthermore, shuffles require a constant mask, whereas extractelts
5769       // accept variable indices.
5770       return SDValue();
5771     }
5772 
5773     // Add this element source to the list if it's not already there.
5774     SDValue SourceVec = V.getOperand(0);
5775     auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
5776     if (Source == Sources.end())
5777       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
5778 
5779     // Update the minimum and maximum lane number seen.
5780     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5781     Source->MinElt = std::min(Source->MinElt, EltNo);
5782     Source->MaxElt = std::max(Source->MaxElt, EltNo);
5783   }
5784 
5785   // Currently only do something sane when at most two source vectors
5786   // are involved.
5787   if (Sources.size() > 2)
5788     return SDValue();
5789 
5790   // Find out the smallest element size among result and two sources, and use
5791   // it as element size to build the shuffle_vector.
5792   EVT SmallestEltTy = VT.getVectorElementType();
5793   for (auto &Source : Sources) {
5794     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
5795     if (SrcEltTy.bitsLT(SmallestEltTy))
5796       SmallestEltTy = SrcEltTy;
5797   }
5798   unsigned ResMultiplier =
5799       VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
5800   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
5801   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
5802 
5803   // If the source vector is too wide or too narrow, we may nevertheless be able
5804   // to construct a compatible shuffle either by concatenating it with UNDEF or
5805   // extracting a suitable range of elements.
5806   for (auto &Src : Sources) {
5807     EVT SrcVT = Src.ShuffleVec.getValueType();
5808 
5809     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
5810       continue;
5811 
5812     // This stage of the search produces a source with the same element type as
5813     // the original, but with a total width matching the BUILD_VECTOR output.
5814     EVT EltVT = SrcVT.getVectorElementType();
5815     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5816     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
5817 
5818     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5819       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
5820         return SDValue();
5821       // We can pad out the smaller vector for free, so if it's part of a
5822       // shuffle...
5823       Src.ShuffleVec =
5824           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5825                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
5826       continue;
5827     }
5828 
5829     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
5830       return SDValue();
5831 
5832     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
5833       // Span too large for a VEXT to cope
5834       return SDValue();
5835     }
5836 
5837     if (Src.MinElt >= NumSrcElts) {
5838       // The extraction can just take the second half
5839       Src.ShuffleVec =
5840           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5841                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
5842       Src.WindowBase = -NumSrcElts;
5843     } else if (Src.MaxElt < NumSrcElts) {
5844       // The extraction can just take the first half
5845       Src.ShuffleVec =
5846           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5847                       DAG.getConstant(0, dl, MVT::i32));
5848     } else {
5849       // An actual VEXT is needed
5850       SDValue VEXTSrc1 =
5851           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5852                       DAG.getConstant(0, dl, MVT::i32));
5853       SDValue VEXTSrc2 =
5854           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5855                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
5856 
5857       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
5858                                    VEXTSrc2,
5859                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
5860       Src.WindowBase = -Src.MinElt;
5861     }
5862   }
5863 
5864   // Another possible incompatibility occurs from the vector element types. We
5865   // can fix this by bitcasting the source vectors to the same type we intend
5866   // for the shuffle.
5867   for (auto &Src : Sources) {
5868     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5869     if (SrcEltTy == SmallestEltTy)
5870       continue;
5871     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5872     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5873     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5874     Src.WindowBase *= Src.WindowScale;
5875   }
5876 
5877   // Final sanity check before we try to actually produce a shuffle.
5878   DEBUG(
5879     for (auto Src : Sources)
5880       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
5881   );
5882 
5883   // The stars all align, our next step is to produce the mask for the shuffle.
5884   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
5885   int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
5886   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
5887     SDValue Entry = Op.getOperand(i);
5888     if (Entry.isUndef())
5889       continue;
5890 
5891     auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
5892     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5893 
5894     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5895     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5896     // segment.
5897     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
5898     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
5899                                VT.getVectorElementType().getSizeInBits());
5900     int LanesDefined = BitsDefined / BitsPerShuffleLane;
5901 
5902     // This source is expected to fill ResMultiplier lanes of the final shuffle,
5903     // starting at the appropriate offset.
5904     int *LaneMask = &Mask[i * ResMultiplier];
5905 
5906     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5907     ExtractBase += NumElts * (Src - Sources.begin());
5908     for (int j = 0; j < LanesDefined; ++j)
5909       LaneMask[j] = ExtractBase + j;
5910   }
5911 
5912   // Final check before we try to produce nonsense...
5913   if (!isShuffleMaskLegal(Mask, ShuffleVT))
5914     return SDValue();
5915 
5916   // We can't handle more than two sources. This should have already
5917   // been checked before this point.
5918   assert(Sources.size() <= 2 && "Too many sources!");
5919 
5920   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5921   for (unsigned i = 0; i < Sources.size(); ++i)
5922     ShuffleOps[i] = Sources[i].ShuffleVec;
5923 
5924   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5925                                          ShuffleOps[1], &Mask[0]);
5926   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
5927 }
5928 
5929 /// isShuffleMaskLegal - Targets can use this to indicate that they only
5930 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5931 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5932 /// are assumed to be legal.
5933 bool
5934 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5935                                       EVT VT) const {
5936   if (VT.getVectorNumElements() == 4 &&
5937       (VT.is128BitVector() || VT.is64BitVector())) {
5938     unsigned PFIndexes[4];
5939     for (unsigned i = 0; i != 4; ++i) {
5940       if (M[i] < 0)
5941         PFIndexes[i] = 8;
5942       else
5943         PFIndexes[i] = M[i];
5944     }
5945 
5946     // Compute the index in the perfect shuffle table.
5947     unsigned PFTableIndex =
5948       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5949     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5950     unsigned Cost = (PFEntry >> 30);
5951 
5952     if (Cost <= 4)
5953       return true;
5954   }
5955 
5956   bool ReverseVEXT, isV_UNDEF;
5957   unsigned Imm, WhichResult;
5958 
5959   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5960   return (EltSize >= 32 ||
5961           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
5962           isVREVMask(M, VT, 64) ||
5963           isVREVMask(M, VT, 32) ||
5964           isVREVMask(M, VT, 16) ||
5965           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
5966           isVTBLMask(M, VT) ||
5967           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
5968           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
5969 }
5970 
5971 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5972 /// the specified operations to build the shuffle.
5973 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5974                                       SDValue RHS, SelectionDAG &DAG,
5975                                       SDLoc dl) {
5976   unsigned OpNum = (PFEntry >> 26) & 0x0F;
5977   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5978   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5979 
5980   enum {
5981     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5982     OP_VREV,
5983     OP_VDUP0,
5984     OP_VDUP1,
5985     OP_VDUP2,
5986     OP_VDUP3,
5987     OP_VEXT1,
5988     OP_VEXT2,
5989     OP_VEXT3,
5990     OP_VUZPL, // VUZP, left result
5991     OP_VUZPR, // VUZP, right result
5992     OP_VZIPL, // VZIP, left result
5993     OP_VZIPR, // VZIP, right result
5994     OP_VTRNL, // VTRN, left result
5995     OP_VTRNR  // VTRN, right result
5996   };
5997 
5998   if (OpNum == OP_COPY) {
5999     if (LHSID == (1*9+2)*9+3) return LHS;
6000     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6001     return RHS;
6002   }
6003 
6004   SDValue OpLHS, OpRHS;
6005   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6006   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6007   EVT VT = OpLHS.getValueType();
6008 
6009   switch (OpNum) {
6010   default: llvm_unreachable("Unknown shuffle opcode!");
6011   case OP_VREV:
6012     // VREV divides the vector in half and swaps within the half.
6013     if (VT.getVectorElementType() == MVT::i32 ||
6014         VT.getVectorElementType() == MVT::f32)
6015       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6016     // vrev <4 x i16> -> VREV32
6017     if (VT.getVectorElementType() == MVT::i16)
6018       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6019     // vrev <4 x i8> -> VREV16
6020     assert(VT.getVectorElementType() == MVT::i8);
6021     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6022   case OP_VDUP0:
6023   case OP_VDUP1:
6024   case OP_VDUP2:
6025   case OP_VDUP3:
6026     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6027                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6028   case OP_VEXT1:
6029   case OP_VEXT2:
6030   case OP_VEXT3:
6031     return DAG.getNode(ARMISD::VEXT, dl, VT,
6032                        OpLHS, OpRHS,
6033                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6034   case OP_VUZPL:
6035   case OP_VUZPR:
6036     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6037                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6038   case OP_VZIPL:
6039   case OP_VZIPR:
6040     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6041                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6042   case OP_VTRNL:
6043   case OP_VTRNR:
6044     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6045                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6046   }
6047 }
6048 
6049 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
6050                                        ArrayRef<int> ShuffleMask,
6051                                        SelectionDAG &DAG) {
6052   // Check to see if we can use the VTBL instruction.
6053   SDValue V1 = Op.getOperand(0);
6054   SDValue V2 = Op.getOperand(1);
6055   SDLoc DL(Op);
6056 
6057   SmallVector<SDValue, 8> VTBLMask;
6058   for (ArrayRef<int>::iterator
6059          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
6060     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
6061 
6062   if (V2.getNode()->isUndef())
6063     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
6064                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6065 
6066   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
6067                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6068 }
6069 
6070 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
6071                                                       SelectionDAG &DAG) {
6072   SDLoc DL(Op);
6073   SDValue OpLHS = Op.getOperand(0);
6074   EVT VT = OpLHS.getValueType();
6075 
6076   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
6077          "Expect an v8i16/v16i8 type");
6078   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
6079   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
6080   // extract the first 8 bytes into the top double word and the last 8 bytes
6081   // into the bottom double word. The v8i16 case is similar.
6082   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
6083   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
6084                      DAG.getConstant(ExtractNum, DL, MVT::i32));
6085 }
6086 
6087 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
6088   SDValue V1 = Op.getOperand(0);
6089   SDValue V2 = Op.getOperand(1);
6090   SDLoc dl(Op);
6091   EVT VT = Op.getValueType();
6092   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6093 
6094   // Convert shuffles that are directly supported on NEON to target-specific
6095   // DAG nodes, instead of keeping them as shuffles and matching them again
6096   // during code selection.  This is more efficient and avoids the possibility
6097   // of inconsistencies between legalization and selection.
6098   // FIXME: floating-point vectors should be canonicalized to integer vectors
6099   // of the same time so that they get CSEd properly.
6100   ArrayRef<int> ShuffleMask = SVN->getMask();
6101 
6102   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6103   if (EltSize <= 32) {
6104     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
6105       int Lane = SVN->getSplatIndex();
6106       // If this is undef splat, generate it via "just" vdup, if possible.
6107       if (Lane == -1) Lane = 0;
6108 
6109       // Test if V1 is a SCALAR_TO_VECTOR.
6110       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6111         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6112       }
6113       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
6114       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
6115       // reaches it).
6116       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
6117           !isa<ConstantSDNode>(V1.getOperand(0))) {
6118         bool IsScalarToVector = true;
6119         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
6120           if (!V1.getOperand(i).isUndef()) {
6121             IsScalarToVector = false;
6122             break;
6123           }
6124         if (IsScalarToVector)
6125           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6126       }
6127       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
6128                          DAG.getConstant(Lane, dl, MVT::i32));
6129     }
6130 
6131     bool ReverseVEXT;
6132     unsigned Imm;
6133     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
6134       if (ReverseVEXT)
6135         std::swap(V1, V2);
6136       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
6137                          DAG.getConstant(Imm, dl, MVT::i32));
6138     }
6139 
6140     if (isVREVMask(ShuffleMask, VT, 64))
6141       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
6142     if (isVREVMask(ShuffleMask, VT, 32))
6143       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
6144     if (isVREVMask(ShuffleMask, VT, 16))
6145       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
6146 
6147     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
6148       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
6149                          DAG.getConstant(Imm, dl, MVT::i32));
6150     }
6151 
6152     // Check for Neon shuffles that modify both input vectors in place.
6153     // If both results are used, i.e., if there are two shuffles with the same
6154     // source operands and with masks corresponding to both results of one of
6155     // these operations, DAG memoization will ensure that a single node is
6156     // used for both shuffles.
6157     unsigned WhichResult;
6158     bool isV_UNDEF;
6159     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6160             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
6161       if (isV_UNDEF)
6162         V2 = V1;
6163       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
6164           .getValue(WhichResult);
6165     }
6166 
6167     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
6168     // shuffles that produce a result larger than their operands with:
6169     //   shuffle(concat(v1, undef), concat(v2, undef))
6170     // ->
6171     //   shuffle(concat(v1, v2), undef)
6172     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
6173     //
6174     // This is useful in the general case, but there are special cases where
6175     // native shuffles produce larger results: the two-result ops.
6176     //
6177     // Look through the concat when lowering them:
6178     //   shuffle(concat(v1, v2), undef)
6179     // ->
6180     //   concat(VZIP(v1, v2):0, :1)
6181     //
6182     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
6183       SDValue SubV1 = V1->getOperand(0);
6184       SDValue SubV2 = V1->getOperand(1);
6185       EVT SubVT = SubV1.getValueType();
6186 
6187       // We expect these to have been canonicalized to -1.
6188       assert(std::all_of(ShuffleMask.begin(), ShuffleMask.end(), [&](int i) {
6189         return i < (int)VT.getVectorNumElements();
6190       }) && "Unexpected shuffle index into UNDEF operand!");
6191 
6192       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6193               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
6194         if (isV_UNDEF)
6195           SubV2 = SubV1;
6196         assert((WhichResult == 0) &&
6197                "In-place shuffle of concat can only have one result!");
6198         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
6199                                   SubV1, SubV2);
6200         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
6201                            Res.getValue(1));
6202       }
6203     }
6204   }
6205 
6206   // If the shuffle is not directly supported and it has 4 elements, use
6207   // the PerfectShuffle-generated table to synthesize it from other shuffles.
6208   unsigned NumElts = VT.getVectorNumElements();
6209   if (NumElts == 4) {
6210     unsigned PFIndexes[4];
6211     for (unsigned i = 0; i != 4; ++i) {
6212       if (ShuffleMask[i] < 0)
6213         PFIndexes[i] = 8;
6214       else
6215         PFIndexes[i] = ShuffleMask[i];
6216     }
6217 
6218     // Compute the index in the perfect shuffle table.
6219     unsigned PFTableIndex =
6220       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6221     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6222     unsigned Cost = (PFEntry >> 30);
6223 
6224     if (Cost <= 4)
6225       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6226   }
6227 
6228   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
6229   if (EltSize >= 32) {
6230     // Do the expansion with floating-point types, since that is what the VFP
6231     // registers are defined to use, and since i64 is not legal.
6232     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6233     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6234     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
6235     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
6236     SmallVector<SDValue, 8> Ops;
6237     for (unsigned i = 0; i < NumElts; ++i) {
6238       if (ShuffleMask[i] < 0)
6239         Ops.push_back(DAG.getUNDEF(EltVT));
6240       else
6241         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6242                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
6243                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
6244                                                   dl, MVT::i32)));
6245     }
6246     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6247     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6248   }
6249 
6250   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
6251     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
6252 
6253   if (VT == MVT::v8i8)
6254     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
6255       return NewOp;
6256 
6257   return SDValue();
6258 }
6259 
6260 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6261   // INSERT_VECTOR_ELT is legal only for immediate indexes.
6262   SDValue Lane = Op.getOperand(2);
6263   if (!isa<ConstantSDNode>(Lane))
6264     return SDValue();
6265 
6266   return Op;
6267 }
6268 
6269 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6270   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
6271   SDValue Lane = Op.getOperand(1);
6272   if (!isa<ConstantSDNode>(Lane))
6273     return SDValue();
6274 
6275   SDValue Vec = Op.getOperand(0);
6276   if (Op.getValueType() == MVT::i32 &&
6277       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
6278     SDLoc dl(Op);
6279     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
6280   }
6281 
6282   return Op;
6283 }
6284 
6285 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6286   // The only time a CONCAT_VECTORS operation can have legal types is when
6287   // two 64-bit vectors are concatenated to a 128-bit vector.
6288   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
6289          "unexpected CONCAT_VECTORS");
6290   SDLoc dl(Op);
6291   SDValue Val = DAG.getUNDEF(MVT::v2f64);
6292   SDValue Op0 = Op.getOperand(0);
6293   SDValue Op1 = Op.getOperand(1);
6294   if (!Op0.isUndef())
6295     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6296                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
6297                       DAG.getIntPtrConstant(0, dl));
6298   if (!Op1.isUndef())
6299     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6300                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
6301                       DAG.getIntPtrConstant(1, dl));
6302   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
6303 }
6304 
6305 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
6306 /// element has been zero/sign-extended, depending on the isSigned parameter,
6307 /// from an integer type half its size.
6308 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
6309                                    bool isSigned) {
6310   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
6311   EVT VT = N->getValueType(0);
6312   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
6313     SDNode *BVN = N->getOperand(0).getNode();
6314     if (BVN->getValueType(0) != MVT::v4i32 ||
6315         BVN->getOpcode() != ISD::BUILD_VECTOR)
6316       return false;
6317     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6318     unsigned HiElt = 1 - LoElt;
6319     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
6320     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
6321     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
6322     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
6323     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
6324       return false;
6325     if (isSigned) {
6326       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
6327           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
6328         return true;
6329     } else {
6330       if (Hi0->isNullValue() && Hi1->isNullValue())
6331         return true;
6332     }
6333     return false;
6334   }
6335 
6336   if (N->getOpcode() != ISD::BUILD_VECTOR)
6337     return false;
6338 
6339   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6340     SDNode *Elt = N->getOperand(i).getNode();
6341     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
6342       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6343       unsigned HalfSize = EltSize / 2;
6344       if (isSigned) {
6345         if (!isIntN(HalfSize, C->getSExtValue()))
6346           return false;
6347       } else {
6348         if (!isUIntN(HalfSize, C->getZExtValue()))
6349           return false;
6350       }
6351       continue;
6352     }
6353     return false;
6354   }
6355 
6356   return true;
6357 }
6358 
6359 /// isSignExtended - Check if a node is a vector value that is sign-extended
6360 /// or a constant BUILD_VECTOR with sign-extended elements.
6361 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
6362   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
6363     return true;
6364   if (isExtendedBUILD_VECTOR(N, DAG, true))
6365     return true;
6366   return false;
6367 }
6368 
6369 /// isZeroExtended - Check if a node is a vector value that is zero-extended
6370 /// or a constant BUILD_VECTOR with zero-extended elements.
6371 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
6372   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
6373     return true;
6374   if (isExtendedBUILD_VECTOR(N, DAG, false))
6375     return true;
6376   return false;
6377 }
6378 
6379 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
6380   if (OrigVT.getSizeInBits() >= 64)
6381     return OrigVT;
6382 
6383   assert(OrigVT.isSimple() && "Expecting a simple value type");
6384 
6385   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
6386   switch (OrigSimpleTy) {
6387   default: llvm_unreachable("Unexpected Vector Type");
6388   case MVT::v2i8:
6389   case MVT::v2i16:
6390      return MVT::v2i32;
6391   case MVT::v4i8:
6392     return  MVT::v4i16;
6393   }
6394 }
6395 
6396 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
6397 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
6398 /// We insert the required extension here to get the vector to fill a D register.
6399 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
6400                                             const EVT &OrigTy,
6401                                             const EVT &ExtTy,
6402                                             unsigned ExtOpcode) {
6403   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
6404   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
6405   // 64-bits we need to insert a new extension so that it will be 64-bits.
6406   assert(ExtTy.is128BitVector() && "Unexpected extension size");
6407   if (OrigTy.getSizeInBits() >= 64)
6408     return N;
6409 
6410   // Must extend size to at least 64 bits to be used as an operand for VMULL.
6411   EVT NewVT = getExtensionTo64Bits(OrigTy);
6412 
6413   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
6414 }
6415 
6416 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
6417 /// does not do any sign/zero extension. If the original vector is less
6418 /// than 64 bits, an appropriate extension will be added after the load to
6419 /// reach a total size of 64 bits. We have to add the extension separately
6420 /// because ARM does not have a sign/zero extending load for vectors.
6421 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
6422   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
6423 
6424   // The load already has the right type.
6425   if (ExtendedTy == LD->getMemoryVT())
6426     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
6427                 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
6428                 LD->isNonTemporal(), LD->isInvariant(),
6429                 LD->getAlignment());
6430 
6431   // We need to create a zextload/sextload. We cannot just create a load
6432   // followed by a zext/zext node because LowerMUL is also run during normal
6433   // operation legalization where we can't create illegal types.
6434   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
6435                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
6436                         LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
6437                         LD->isNonTemporal(), LD->getAlignment());
6438 }
6439 
6440 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
6441 /// extending load, or BUILD_VECTOR with extended elements, return the
6442 /// unextended value. The unextended vector should be 64 bits so that it can
6443 /// be used as an operand to a VMULL instruction. If the original vector size
6444 /// before extension is less than 64 bits we add a an extension to resize
6445 /// the vector to 64 bits.
6446 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
6447   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
6448     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
6449                                         N->getOperand(0)->getValueType(0),
6450                                         N->getValueType(0),
6451                                         N->getOpcode());
6452 
6453   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
6454     return SkipLoadExtensionForVMULL(LD, DAG);
6455 
6456   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
6457   // have been legalized as a BITCAST from v4i32.
6458   if (N->getOpcode() == ISD::BITCAST) {
6459     SDNode *BVN = N->getOperand(0).getNode();
6460     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
6461            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
6462     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6463     return DAG.getBuildVector(
6464         MVT::v2i32, SDLoc(N),
6465         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
6466   }
6467   // Construct a new BUILD_VECTOR with elements truncated to half the size.
6468   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
6469   EVT VT = N->getValueType(0);
6470   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
6471   unsigned NumElts = VT.getVectorNumElements();
6472   MVT TruncVT = MVT::getIntegerVT(EltSize);
6473   SmallVector<SDValue, 8> Ops;
6474   SDLoc dl(N);
6475   for (unsigned i = 0; i != NumElts; ++i) {
6476     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
6477     const APInt &CInt = C->getAPIntValue();
6478     // Element types smaller than 32 bits are not legal, so use i32 elements.
6479     // The values are implicitly truncated so sext vs. zext doesn't matter.
6480     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
6481   }
6482   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
6483 }
6484 
6485 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
6486   unsigned Opcode = N->getOpcode();
6487   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6488     SDNode *N0 = N->getOperand(0).getNode();
6489     SDNode *N1 = N->getOperand(1).getNode();
6490     return N0->hasOneUse() && N1->hasOneUse() &&
6491       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
6492   }
6493   return false;
6494 }
6495 
6496 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
6497   unsigned Opcode = N->getOpcode();
6498   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6499     SDNode *N0 = N->getOperand(0).getNode();
6500     SDNode *N1 = N->getOperand(1).getNode();
6501     return N0->hasOneUse() && N1->hasOneUse() &&
6502       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
6503   }
6504   return false;
6505 }
6506 
6507 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
6508   // Multiplications are only custom-lowered for 128-bit vectors so that
6509   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
6510   EVT VT = Op.getValueType();
6511   assert(VT.is128BitVector() && VT.isInteger() &&
6512          "unexpected type for custom-lowering ISD::MUL");
6513   SDNode *N0 = Op.getOperand(0).getNode();
6514   SDNode *N1 = Op.getOperand(1).getNode();
6515   unsigned NewOpc = 0;
6516   bool isMLA = false;
6517   bool isN0SExt = isSignExtended(N0, DAG);
6518   bool isN1SExt = isSignExtended(N1, DAG);
6519   if (isN0SExt && isN1SExt)
6520     NewOpc = ARMISD::VMULLs;
6521   else {
6522     bool isN0ZExt = isZeroExtended(N0, DAG);
6523     bool isN1ZExt = isZeroExtended(N1, DAG);
6524     if (isN0ZExt && isN1ZExt)
6525       NewOpc = ARMISD::VMULLu;
6526     else if (isN1SExt || isN1ZExt) {
6527       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
6528       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
6529       if (isN1SExt && isAddSubSExt(N0, DAG)) {
6530         NewOpc = ARMISD::VMULLs;
6531         isMLA = true;
6532       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
6533         NewOpc = ARMISD::VMULLu;
6534         isMLA = true;
6535       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
6536         std::swap(N0, N1);
6537         NewOpc = ARMISD::VMULLu;
6538         isMLA = true;
6539       }
6540     }
6541 
6542     if (!NewOpc) {
6543       if (VT == MVT::v2i64)
6544         // Fall through to expand this.  It is not legal.
6545         return SDValue();
6546       else
6547         // Other vector multiplications are legal.
6548         return Op;
6549     }
6550   }
6551 
6552   // Legalize to a VMULL instruction.
6553   SDLoc DL(Op);
6554   SDValue Op0;
6555   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
6556   if (!isMLA) {
6557     Op0 = SkipExtensionForVMULL(N0, DAG);
6558     assert(Op0.getValueType().is64BitVector() &&
6559            Op1.getValueType().is64BitVector() &&
6560            "unexpected types for extended operands to VMULL");
6561     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
6562   }
6563 
6564   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
6565   // isel lowering to take advantage of no-stall back to back vmul + vmla.
6566   //   vmull q0, d4, d6
6567   //   vmlal q0, d5, d6
6568   // is faster than
6569   //   vaddl q0, d4, d5
6570   //   vmovl q1, d6
6571   //   vmul  q0, q0, q1
6572   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
6573   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
6574   EVT Op1VT = Op1.getValueType();
6575   return DAG.getNode(N0->getOpcode(), DL, VT,
6576                      DAG.getNode(NewOpc, DL, VT,
6577                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
6578                      DAG.getNode(NewOpc, DL, VT,
6579                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
6580 }
6581 
6582 static SDValue
6583 LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
6584   // TODO: Should this propagate fast-math-flags?
6585 
6586   // Convert to float
6587   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
6588   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
6589   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
6590   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
6591   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
6592   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
6593   // Get reciprocal estimate.
6594   // float4 recip = vrecpeq_f32(yf);
6595   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6596                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6597                    Y);
6598   // Because char has a smaller range than uchar, we can actually get away
6599   // without any newton steps.  This requires that we use a weird bias
6600   // of 0xb000, however (again, this has been exhaustively tested).
6601   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
6602   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
6603   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
6604   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
6605   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
6606   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
6607   // Convert back to short.
6608   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
6609   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
6610   return X;
6611 }
6612 
6613 static SDValue
6614 LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
6615   // TODO: Should this propagate fast-math-flags?
6616 
6617   SDValue N2;
6618   // Convert to float.
6619   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
6620   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
6621   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
6622   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
6623   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6624   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6625 
6626   // Use reciprocal estimate and one refinement step.
6627   // float4 recip = vrecpeq_f32(yf);
6628   // recip *= vrecpsq_f32(yf, recip);
6629   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6630                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6631                    N1);
6632   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6633                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6634                    N1, N2);
6635   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6636   // Because short has a smaller range than ushort, we can actually get away
6637   // with only a single newton step.  This requires that we use a weird bias
6638   // of 89, however (again, this has been exhaustively tested).
6639   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
6640   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6641   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6642   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
6643   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6644   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6645   // Convert back to integer and return.
6646   // return vmovn_s32(vcvt_s32_f32(result));
6647   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6648   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6649   return N0;
6650 }
6651 
6652 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
6653   EVT VT = Op.getValueType();
6654   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6655          "unexpected type for custom-lowering ISD::SDIV");
6656 
6657   SDLoc dl(Op);
6658   SDValue N0 = Op.getOperand(0);
6659   SDValue N1 = Op.getOperand(1);
6660   SDValue N2, N3;
6661 
6662   if (VT == MVT::v8i8) {
6663     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
6664     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
6665 
6666     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6667                      DAG.getIntPtrConstant(4, dl));
6668     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6669                      DAG.getIntPtrConstant(4, dl));
6670     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6671                      DAG.getIntPtrConstant(0, dl));
6672     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6673                      DAG.getIntPtrConstant(0, dl));
6674 
6675     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
6676     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
6677 
6678     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6679     N0 = LowerCONCAT_VECTORS(N0, DAG);
6680 
6681     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
6682     return N0;
6683   }
6684   return LowerSDIV_v4i16(N0, N1, dl, DAG);
6685 }
6686 
6687 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
6688   // TODO: Should this propagate fast-math-flags?
6689   EVT VT = Op.getValueType();
6690   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6691          "unexpected type for custom-lowering ISD::UDIV");
6692 
6693   SDLoc dl(Op);
6694   SDValue N0 = Op.getOperand(0);
6695   SDValue N1 = Op.getOperand(1);
6696   SDValue N2, N3;
6697 
6698   if (VT == MVT::v8i8) {
6699     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
6700     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
6701 
6702     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6703                      DAG.getIntPtrConstant(4, dl));
6704     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6705                      DAG.getIntPtrConstant(4, dl));
6706     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6707                      DAG.getIntPtrConstant(0, dl));
6708     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6709                      DAG.getIntPtrConstant(0, dl));
6710 
6711     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
6712     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
6713 
6714     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6715     N0 = LowerCONCAT_VECTORS(N0, DAG);
6716 
6717     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
6718                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
6719                                      MVT::i32),
6720                      N0);
6721     return N0;
6722   }
6723 
6724   // v4i16 sdiv ... Convert to float.
6725   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
6726   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
6727   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
6728   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
6729   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6730   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6731 
6732   // Use reciprocal estimate and two refinement steps.
6733   // float4 recip = vrecpeq_f32(yf);
6734   // recip *= vrecpsq_f32(yf, recip);
6735   // recip *= vrecpsq_f32(yf, recip);
6736   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6737                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6738                    BN1);
6739   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6740                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6741                    BN1, N2);
6742   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6743   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6744                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6745                    BN1, N2);
6746   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6747   // Simply multiplying by the reciprocal estimate can leave us a few ulps
6748   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
6749   // and that it will never cause us to return an answer too large).
6750   // float4 result = as_float4(as_int4(xf*recip) + 2);
6751   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6752   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6753   N1 = DAG.getConstant(2, dl, MVT::v4i32);
6754   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6755   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6756   // Convert back to integer and return.
6757   // return vmovn_u32(vcvt_s32_f32(result));
6758   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6759   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6760   return N0;
6761 }
6762 
6763 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
6764   EVT VT = Op.getNode()->getValueType(0);
6765   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
6766 
6767   unsigned Opc;
6768   bool ExtraOp = false;
6769   switch (Op.getOpcode()) {
6770   default: llvm_unreachable("Invalid code");
6771   case ISD::ADDC: Opc = ARMISD::ADDC; break;
6772   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
6773   case ISD::SUBC: Opc = ARMISD::SUBC; break;
6774   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
6775   }
6776 
6777   if (!ExtraOp)
6778     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6779                        Op.getOperand(1));
6780   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6781                      Op.getOperand(1), Op.getOperand(2));
6782 }
6783 
6784 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
6785   assert(Subtarget->isTargetDarwin());
6786 
6787   // For iOS, we want to call an alternative entry point: __sincos_stret,
6788   // return values are passed via sret.
6789   SDLoc dl(Op);
6790   SDValue Arg = Op.getOperand(0);
6791   EVT ArgVT = Arg.getValueType();
6792   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
6793   auto PtrVT = getPointerTy(DAG.getDataLayout());
6794 
6795   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6797 
6798   // Pair of floats / doubles used to pass the result.
6799   Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
6800   auto &DL = DAG.getDataLayout();
6801 
6802   ArgListTy Args;
6803   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
6804   SDValue SRet;
6805   if (ShouldUseSRet) {
6806     // Create stack object for sret.
6807     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
6808     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
6809     int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
6810     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
6811 
6812     ArgListEntry Entry;
6813     Entry.Node = SRet;
6814     Entry.Ty = RetTy->getPointerTo();
6815     Entry.isSExt = false;
6816     Entry.isZExt = false;
6817     Entry.isSRet = true;
6818     Args.push_back(Entry);
6819     RetTy = Type::getVoidTy(*DAG.getContext());
6820   }
6821 
6822   ArgListEntry Entry;
6823   Entry.Node = Arg;
6824   Entry.Ty = ArgTy;
6825   Entry.isSExt = false;
6826   Entry.isZExt = false;
6827   Args.push_back(Entry);
6828 
6829   const char *LibcallName =
6830       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
6831   RTLIB::Libcall LC =
6832       (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
6833   CallingConv::ID CC = getLibcallCallingConv(LC);
6834   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
6835 
6836   TargetLowering::CallLoweringInfo CLI(DAG);
6837   CLI.setDebugLoc(dl)
6838       .setChain(DAG.getEntryNode())
6839       .setCallee(CC, RetTy, Callee, std::move(Args), 0)
6840       .setDiscardResult(ShouldUseSRet);
6841   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6842 
6843   if (!ShouldUseSRet)
6844     return CallResult.first;
6845 
6846   SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
6847                                 MachinePointerInfo(), false, false, false, 0);
6848 
6849   // Address of cos field.
6850   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
6851                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
6852   SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
6853                                 MachinePointerInfo(), false, false, false, 0);
6854 
6855   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
6856   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
6857                      LoadSin.getValue(0), LoadCos.getValue(0));
6858 }
6859 
6860 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
6861                                                   bool Signed,
6862                                                   SDValue &Chain) const {
6863   EVT VT = Op.getValueType();
6864   assert((VT == MVT::i32 || VT == MVT::i64) &&
6865          "unexpected type for custom lowering DIV");
6866   SDLoc dl(Op);
6867 
6868   const auto &DL = DAG.getDataLayout();
6869   const auto &TLI = DAG.getTargetLoweringInfo();
6870 
6871   const char *Name = nullptr;
6872   if (Signed)
6873     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
6874   else
6875     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
6876 
6877   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
6878 
6879   ARMTargetLowering::ArgListTy Args;
6880 
6881   for (auto AI : {1, 0}) {
6882     ArgListEntry Arg;
6883     Arg.Node = Op.getOperand(AI);
6884     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
6885     Args.push_back(Arg);
6886   }
6887 
6888   CallLoweringInfo CLI(DAG);
6889   CLI.setDebugLoc(dl)
6890     .setChain(Chain)
6891     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
6892                ES, std::move(Args), 0);
6893 
6894   return LowerCallTo(CLI).first;
6895 }
6896 
6897 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
6898                                             bool Signed) const {
6899   assert(Op.getValueType() == MVT::i32 &&
6900          "unexpected type for custom lowering DIV");
6901   SDLoc dl(Op);
6902 
6903   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
6904                                DAG.getEntryNode(), Op.getOperand(1));
6905 
6906   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
6907 }
6908 
6909 void ARMTargetLowering::ExpandDIV_Windows(
6910     SDValue Op, SelectionDAG &DAG, bool Signed,
6911     SmallVectorImpl<SDValue> &Results) const {
6912   const auto &DL = DAG.getDataLayout();
6913   const auto &TLI = DAG.getTargetLoweringInfo();
6914 
6915   assert(Op.getValueType() == MVT::i64 &&
6916          "unexpected type for custom lowering DIV");
6917   SDLoc dl(Op);
6918 
6919   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
6920                            DAG.getConstant(0, dl, MVT::i32));
6921   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
6922                            DAG.getConstant(1, dl, MVT::i32));
6923   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi);
6924 
6925   SDValue DBZCHK =
6926       DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or);
6927 
6928   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
6929 
6930   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
6931   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
6932                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
6933   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
6934 
6935   Results.push_back(Lower);
6936   Results.push_back(Upper);
6937 }
6938 
6939 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
6940   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
6941     // Acquire/Release load/store is not legal for targets without a dmb or
6942     // equivalent available.
6943     return SDValue();
6944 
6945   // Monotonic load/store is legal for all targets.
6946   return Op;
6947 }
6948 
6949 static void ReplaceREADCYCLECOUNTER(SDNode *N,
6950                                     SmallVectorImpl<SDValue> &Results,
6951                                     SelectionDAG &DAG,
6952                                     const ARMSubtarget *Subtarget) {
6953   SDLoc DL(N);
6954   // Under Power Management extensions, the cycle-count is:
6955   //    mrc p15, #0, <Rt>, c9, c13, #0
6956   SDValue Ops[] = { N->getOperand(0), // Chain
6957                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
6958                     DAG.getConstant(15, DL, MVT::i32),
6959                     DAG.getConstant(0, DL, MVT::i32),
6960                     DAG.getConstant(9, DL, MVT::i32),
6961                     DAG.getConstant(13, DL, MVT::i32),
6962                     DAG.getConstant(0, DL, MVT::i32)
6963   };
6964 
6965   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
6966                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
6967   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
6968                                 DAG.getConstant(0, DL, MVT::i32)));
6969   Results.push_back(Cycles32.getValue(1));
6970 }
6971 
6972 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
6973   SDLoc dl(V.getNode());
6974   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
6975   SDValue VHi = DAG.getAnyExtOrTrunc(
6976       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
6977       dl, MVT::i32);
6978   SDValue RegClass =
6979       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
6980   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
6981   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
6982   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
6983   return SDValue(
6984       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
6985 }
6986 
6987 static void ReplaceCMP_SWAP_64Results(SDNode *N,
6988                                        SmallVectorImpl<SDValue> & Results,
6989                                        SelectionDAG &DAG) {
6990   assert(N->getValueType(0) == MVT::i64 &&
6991          "AtomicCmpSwap on types less than 64 should be legal");
6992   SDValue Ops[] = {N->getOperand(1),
6993                    createGPRPairNode(DAG, N->getOperand(2)),
6994                    createGPRPairNode(DAG, N->getOperand(3)),
6995                    N->getOperand(0)};
6996   SDNode *CmpSwap = DAG.getMachineNode(
6997       ARM::CMP_SWAP_64, SDLoc(N),
6998       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
6999 
7000   MachineFunction &MF = DAG.getMachineFunction();
7001   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
7002   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
7003   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
7004 
7005   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_0, SDLoc(N), MVT::i32,
7006                                                SDValue(CmpSwap, 0)));
7007   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_1, SDLoc(N), MVT::i32,
7008                                                SDValue(CmpSwap, 0)));
7009   Results.push_back(SDValue(CmpSwap, 2));
7010 }
7011 
7012 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7013   switch (Op.getOpcode()) {
7014   default: llvm_unreachable("Don't know how to custom lower this!");
7015   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
7016   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
7017   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
7018   case ISD::GlobalAddress:
7019     switch (Subtarget->getTargetTriple().getObjectFormat()) {
7020     default: llvm_unreachable("unknown object format");
7021     case Triple::COFF:
7022       return LowerGlobalAddressWindows(Op, DAG);
7023     case Triple::ELF:
7024       return LowerGlobalAddressELF(Op, DAG);
7025     case Triple::MachO:
7026       return LowerGlobalAddressDarwin(Op, DAG);
7027     }
7028   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
7029   case ISD::SELECT:        return LowerSELECT(Op, DAG);
7030   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
7031   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
7032   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
7033   case ISD::VASTART:       return LowerVASTART(Op, DAG);
7034   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
7035   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
7036   case ISD::SINT_TO_FP:
7037   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
7038   case ISD::FP_TO_SINT:
7039   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
7040   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
7041   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
7042   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
7043   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
7044   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
7045   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
7046   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
7047                                                                Subtarget);
7048   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
7049   case ISD::SHL:
7050   case ISD::SRL:
7051   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
7052   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
7053   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
7054   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
7055   case ISD::SRL_PARTS:
7056   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
7057   case ISD::CTTZ:
7058   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
7059   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
7060   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
7061   case ISD::SETCCE:        return LowerSETCCE(Op, DAG);
7062   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
7063   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
7064   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
7065   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
7066   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7067   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
7068   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
7069   case ISD::MUL:           return LowerMUL(Op, DAG);
7070   case ISD::SDIV:
7071     if (Subtarget->isTargetWindows())
7072       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
7073     return LowerSDIV(Op, DAG);
7074   case ISD::UDIV:
7075     if (Subtarget->isTargetWindows())
7076       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
7077     return LowerUDIV(Op, DAG);
7078   case ISD::ADDC:
7079   case ISD::ADDE:
7080   case ISD::SUBC:
7081   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
7082   case ISD::SADDO:
7083   case ISD::UADDO:
7084   case ISD::SSUBO:
7085   case ISD::USUBO:
7086     return LowerXALUO(Op, DAG);
7087   case ISD::ATOMIC_LOAD:
7088   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
7089   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
7090   case ISD::SDIVREM:
7091   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
7092   case ISD::DYNAMIC_STACKALLOC:
7093     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
7094       return LowerDYNAMIC_STACKALLOC(Op, DAG);
7095     llvm_unreachable("Don't know how to custom lower this!");
7096   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
7097   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
7098   case ARMISD::WIN__DBZCHK: return SDValue();
7099   }
7100 }
7101 
7102 /// ReplaceNodeResults - Replace the results of node with an illegal result
7103 /// type with new values built out of custom code.
7104 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
7105                                            SmallVectorImpl<SDValue> &Results,
7106                                            SelectionDAG &DAG) const {
7107   SDValue Res;
7108   switch (N->getOpcode()) {
7109   default:
7110     llvm_unreachable("Don't know how to custom expand this!");
7111   case ISD::READ_REGISTER:
7112     ExpandREAD_REGISTER(N, Results, DAG);
7113     break;
7114   case ISD::BITCAST:
7115     Res = ExpandBITCAST(N, DAG);
7116     break;
7117   case ISD::SRL:
7118   case ISD::SRA:
7119     Res = Expand64BitShift(N, DAG, Subtarget);
7120     break;
7121   case ISD::SREM:
7122   case ISD::UREM:
7123     Res = LowerREM(N, DAG);
7124     break;
7125   case ISD::SDIVREM:
7126   case ISD::UDIVREM:
7127     Res = LowerDivRem(SDValue(N, 0), DAG);
7128     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
7129     Results.push_back(Res.getValue(0));
7130     Results.push_back(Res.getValue(1));
7131     return;
7132   case ISD::READCYCLECOUNTER:
7133     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
7134     return;
7135   case ISD::UDIV:
7136   case ISD::SDIV:
7137     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
7138     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
7139                              Results);
7140   case ISD::ATOMIC_CMP_SWAP:
7141     ReplaceCMP_SWAP_64Results(N, Results, DAG);
7142     return;
7143   }
7144   if (Res.getNode())
7145     Results.push_back(Res);
7146 }
7147 
7148 //===----------------------------------------------------------------------===//
7149 //                           ARM Scheduler Hooks
7150 //===----------------------------------------------------------------------===//
7151 
7152 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
7153 /// registers the function context.
7154 void ARMTargetLowering::
7155 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
7156                        MachineBasicBlock *DispatchBB, int FI) const {
7157   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7158   DebugLoc dl = MI->getDebugLoc();
7159   MachineFunction *MF = MBB->getParent();
7160   MachineRegisterInfo *MRI = &MF->getRegInfo();
7161   MachineConstantPool *MCP = MF->getConstantPool();
7162   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
7163   const Function *F = MF->getFunction();
7164 
7165   bool isThumb = Subtarget->isThumb();
7166   bool isThumb2 = Subtarget->isThumb2();
7167 
7168   unsigned PCLabelId = AFI->createPICLabelUId();
7169   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
7170   ARMConstantPoolValue *CPV =
7171     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
7172   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
7173 
7174   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
7175                                            : &ARM::GPRRegClass;
7176 
7177   // Grab constant pool and fixed stack memory operands.
7178   MachineMemOperand *CPMMO =
7179       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
7180                                MachineMemOperand::MOLoad, 4, 4);
7181 
7182   MachineMemOperand *FIMMOSt =
7183       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
7184                                MachineMemOperand::MOStore, 4, 4);
7185 
7186   // Load the address of the dispatch MBB into the jump buffer.
7187   if (isThumb2) {
7188     // Incoming value: jbuf
7189     //   ldr.n  r5, LCPI1_1
7190     //   orr    r5, r5, #1
7191     //   add    r5, pc
7192     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
7193     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7194     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
7195                    .addConstantPoolIndex(CPI)
7196                    .addMemOperand(CPMMO));
7197     // Set the low bit because of thumb mode.
7198     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7199     AddDefaultCC(
7200       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
7201                      .addReg(NewVReg1, RegState::Kill)
7202                      .addImm(0x01)));
7203     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7204     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
7205       .addReg(NewVReg2, RegState::Kill)
7206       .addImm(PCLabelId);
7207     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
7208                    .addReg(NewVReg3, RegState::Kill)
7209                    .addFrameIndex(FI)
7210                    .addImm(36)  // &jbuf[1] :: pc
7211                    .addMemOperand(FIMMOSt));
7212   } else if (isThumb) {
7213     // Incoming value: jbuf
7214     //   ldr.n  r1, LCPI1_4
7215     //   add    r1, pc
7216     //   mov    r2, #1
7217     //   orrs   r1, r2
7218     //   add    r2, $jbuf, #+4 ; &jbuf[1]
7219     //   str    r1, [r2]
7220     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7221     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
7222                    .addConstantPoolIndex(CPI)
7223                    .addMemOperand(CPMMO));
7224     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7225     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
7226       .addReg(NewVReg1, RegState::Kill)
7227       .addImm(PCLabelId);
7228     // Set the low bit because of thumb mode.
7229     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7230     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
7231                    .addReg(ARM::CPSR, RegState::Define)
7232                    .addImm(1));
7233     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7234     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
7235                    .addReg(ARM::CPSR, RegState::Define)
7236                    .addReg(NewVReg2, RegState::Kill)
7237                    .addReg(NewVReg3, RegState::Kill));
7238     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7239     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
7240             .addFrameIndex(FI)
7241             .addImm(36); // &jbuf[1] :: pc
7242     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
7243                    .addReg(NewVReg4, RegState::Kill)
7244                    .addReg(NewVReg5, RegState::Kill)
7245                    .addImm(0)
7246                    .addMemOperand(FIMMOSt));
7247   } else {
7248     // Incoming value: jbuf
7249     //   ldr  r1, LCPI1_1
7250     //   add  r1, pc, r1
7251     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
7252     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7253     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
7254                    .addConstantPoolIndex(CPI)
7255                    .addImm(0)
7256                    .addMemOperand(CPMMO));
7257     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7258     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
7259                    .addReg(NewVReg1, RegState::Kill)
7260                    .addImm(PCLabelId));
7261     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
7262                    .addReg(NewVReg2, RegState::Kill)
7263                    .addFrameIndex(FI)
7264                    .addImm(36)  // &jbuf[1] :: pc
7265                    .addMemOperand(FIMMOSt));
7266   }
7267 }
7268 
7269 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr *MI,
7270                                               MachineBasicBlock *MBB) const {
7271   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7272   DebugLoc dl = MI->getDebugLoc();
7273   MachineFunction *MF = MBB->getParent();
7274   MachineRegisterInfo *MRI = &MF->getRegInfo();
7275   MachineFrameInfo *MFI = MF->getFrameInfo();
7276   int FI = MFI->getFunctionContextIndex();
7277 
7278   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
7279                                                         : &ARM::GPRnopcRegClass;
7280 
7281   // Get a mapping of the call site numbers to all of the landing pads they're
7282   // associated with.
7283   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
7284   unsigned MaxCSNum = 0;
7285   MachineModuleInfo &MMI = MF->getMMI();
7286   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
7287        ++BB) {
7288     if (!BB->isEHPad()) continue;
7289 
7290     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
7291     // pad.
7292     for (MachineBasicBlock::iterator
7293            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
7294       if (!II->isEHLabel()) continue;
7295 
7296       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
7297       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
7298 
7299       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
7300       for (SmallVectorImpl<unsigned>::iterator
7301              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
7302            CSI != CSE; ++CSI) {
7303         CallSiteNumToLPad[*CSI].push_back(&*BB);
7304         MaxCSNum = std::max(MaxCSNum, *CSI);
7305       }
7306       break;
7307     }
7308   }
7309 
7310   // Get an ordered list of the machine basic blocks for the jump table.
7311   std::vector<MachineBasicBlock*> LPadList;
7312   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
7313   LPadList.reserve(CallSiteNumToLPad.size());
7314   for (unsigned I = 1; I <= MaxCSNum; ++I) {
7315     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
7316     for (SmallVectorImpl<MachineBasicBlock*>::iterator
7317            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
7318       LPadList.push_back(*II);
7319       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
7320     }
7321   }
7322 
7323   assert(!LPadList.empty() &&
7324          "No landing pad destinations for the dispatch jump table!");
7325 
7326   // Create the jump table and associated information.
7327   MachineJumpTableInfo *JTI =
7328     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
7329   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
7330   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
7331 
7332   // Create the MBBs for the dispatch code.
7333 
7334   // Shove the dispatch's address into the return slot in the function context.
7335   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
7336   DispatchBB->setIsEHPad();
7337 
7338   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
7339   unsigned trap_opcode;
7340   if (Subtarget->isThumb())
7341     trap_opcode = ARM::tTRAP;
7342   else
7343     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
7344 
7345   BuildMI(TrapBB, dl, TII->get(trap_opcode));
7346   DispatchBB->addSuccessor(TrapBB);
7347 
7348   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
7349   DispatchBB->addSuccessor(DispContBB);
7350 
7351   // Insert and MBBs.
7352   MF->insert(MF->end(), DispatchBB);
7353   MF->insert(MF->end(), DispContBB);
7354   MF->insert(MF->end(), TrapBB);
7355 
7356   // Insert code into the entry block that creates and registers the function
7357   // context.
7358   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
7359 
7360   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
7361       MachinePointerInfo::getFixedStack(*MF, FI),
7362       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
7363 
7364   MachineInstrBuilder MIB;
7365   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
7366 
7367   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
7368   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
7369 
7370   // Add a register mask with no preserved registers.  This results in all
7371   // registers being marked as clobbered.
7372   MIB.addRegMask(RI.getNoPreservedMask());
7373 
7374   unsigned NumLPads = LPadList.size();
7375   if (Subtarget->isThumb2()) {
7376     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7377     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
7378                    .addFrameIndex(FI)
7379                    .addImm(4)
7380                    .addMemOperand(FIMMOLd));
7381 
7382     if (NumLPads < 256) {
7383       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
7384                      .addReg(NewVReg1)
7385                      .addImm(LPadList.size()));
7386     } else {
7387       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7388       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
7389                      .addImm(NumLPads & 0xFFFF));
7390 
7391       unsigned VReg2 = VReg1;
7392       if ((NumLPads & 0xFFFF0000) != 0) {
7393         VReg2 = MRI->createVirtualRegister(TRC);
7394         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
7395                        .addReg(VReg1)
7396                        .addImm(NumLPads >> 16));
7397       }
7398 
7399       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
7400                      .addReg(NewVReg1)
7401                      .addReg(VReg2));
7402     }
7403 
7404     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
7405       .addMBB(TrapBB)
7406       .addImm(ARMCC::HI)
7407       .addReg(ARM::CPSR);
7408 
7409     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7410     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
7411                    .addJumpTableIndex(MJTI));
7412 
7413     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7414     AddDefaultCC(
7415       AddDefaultPred(
7416         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
7417         .addReg(NewVReg3, RegState::Kill)
7418         .addReg(NewVReg1)
7419         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
7420 
7421     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
7422       .addReg(NewVReg4, RegState::Kill)
7423       .addReg(NewVReg1)
7424       .addJumpTableIndex(MJTI);
7425   } else if (Subtarget->isThumb()) {
7426     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7427     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
7428                    .addFrameIndex(FI)
7429                    .addImm(1)
7430                    .addMemOperand(FIMMOLd));
7431 
7432     if (NumLPads < 256) {
7433       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
7434                      .addReg(NewVReg1)
7435                      .addImm(NumLPads));
7436     } else {
7437       MachineConstantPool *ConstantPool = MF->getConstantPool();
7438       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7439       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7440 
7441       // MachineConstantPool wants an explicit alignment.
7442       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7443       if (Align == 0)
7444         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7445       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7446 
7447       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7448       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
7449                      .addReg(VReg1, RegState::Define)
7450                      .addConstantPoolIndex(Idx));
7451       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
7452                      .addReg(NewVReg1)
7453                      .addReg(VReg1));
7454     }
7455 
7456     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
7457       .addMBB(TrapBB)
7458       .addImm(ARMCC::HI)
7459       .addReg(ARM::CPSR);
7460 
7461     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7462     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
7463                    .addReg(ARM::CPSR, RegState::Define)
7464                    .addReg(NewVReg1)
7465                    .addImm(2));
7466 
7467     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7468     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
7469                    .addJumpTableIndex(MJTI));
7470 
7471     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7472     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
7473                    .addReg(ARM::CPSR, RegState::Define)
7474                    .addReg(NewVReg2, RegState::Kill)
7475                    .addReg(NewVReg3));
7476 
7477     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
7478         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
7479 
7480     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7481     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
7482                    .addReg(NewVReg4, RegState::Kill)
7483                    .addImm(0)
7484                    .addMemOperand(JTMMOLd));
7485 
7486     unsigned NewVReg6 = NewVReg5;
7487     if (RelocM == Reloc::PIC_) {
7488       NewVReg6 = MRI->createVirtualRegister(TRC);
7489       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
7490                      .addReg(ARM::CPSR, RegState::Define)
7491                      .addReg(NewVReg5, RegState::Kill)
7492                      .addReg(NewVReg3));
7493     }
7494 
7495     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
7496       .addReg(NewVReg6, RegState::Kill)
7497       .addJumpTableIndex(MJTI);
7498   } else {
7499     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7500     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
7501                    .addFrameIndex(FI)
7502                    .addImm(4)
7503                    .addMemOperand(FIMMOLd));
7504 
7505     if (NumLPads < 256) {
7506       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
7507                      .addReg(NewVReg1)
7508                      .addImm(NumLPads));
7509     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
7510       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7511       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
7512                      .addImm(NumLPads & 0xFFFF));
7513 
7514       unsigned VReg2 = VReg1;
7515       if ((NumLPads & 0xFFFF0000) != 0) {
7516         VReg2 = MRI->createVirtualRegister(TRC);
7517         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
7518                        .addReg(VReg1)
7519                        .addImm(NumLPads >> 16));
7520       }
7521 
7522       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7523                      .addReg(NewVReg1)
7524                      .addReg(VReg2));
7525     } else {
7526       MachineConstantPool *ConstantPool = MF->getConstantPool();
7527       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7528       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7529 
7530       // MachineConstantPool wants an explicit alignment.
7531       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7532       if (Align == 0)
7533         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7534       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7535 
7536       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7537       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
7538                      .addReg(VReg1, RegState::Define)
7539                      .addConstantPoolIndex(Idx)
7540                      .addImm(0));
7541       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7542                      .addReg(NewVReg1)
7543                      .addReg(VReg1, RegState::Kill));
7544     }
7545 
7546     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
7547       .addMBB(TrapBB)
7548       .addImm(ARMCC::HI)
7549       .addReg(ARM::CPSR);
7550 
7551     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7552     AddDefaultCC(
7553       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
7554                      .addReg(NewVReg1)
7555                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
7556     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7557     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
7558                    .addJumpTableIndex(MJTI));
7559 
7560     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
7561         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
7562     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7563     AddDefaultPred(
7564       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
7565       .addReg(NewVReg3, RegState::Kill)
7566       .addReg(NewVReg4)
7567       .addImm(0)
7568       .addMemOperand(JTMMOLd));
7569 
7570     if (RelocM == Reloc::PIC_) {
7571       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
7572         .addReg(NewVReg5, RegState::Kill)
7573         .addReg(NewVReg4)
7574         .addJumpTableIndex(MJTI);
7575     } else {
7576       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
7577         .addReg(NewVReg5, RegState::Kill)
7578         .addJumpTableIndex(MJTI);
7579     }
7580   }
7581 
7582   // Add the jump table entries as successors to the MBB.
7583   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
7584   for (std::vector<MachineBasicBlock*>::iterator
7585          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
7586     MachineBasicBlock *CurMBB = *I;
7587     if (SeenMBBs.insert(CurMBB).second)
7588       DispContBB->addSuccessor(CurMBB);
7589   }
7590 
7591   // N.B. the order the invoke BBs are processed in doesn't matter here.
7592   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
7593   SmallVector<MachineBasicBlock*, 64> MBBLPads;
7594   for (MachineBasicBlock *BB : InvokeBBs) {
7595 
7596     // Remove the landing pad successor from the invoke block and replace it
7597     // with the new dispatch block.
7598     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
7599                                                   BB->succ_end());
7600     while (!Successors.empty()) {
7601       MachineBasicBlock *SMBB = Successors.pop_back_val();
7602       if (SMBB->isEHPad()) {
7603         BB->removeSuccessor(SMBB);
7604         MBBLPads.push_back(SMBB);
7605       }
7606     }
7607 
7608     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
7609     BB->normalizeSuccProbs();
7610 
7611     // Find the invoke call and mark all of the callee-saved registers as
7612     // 'implicit defined' so that they're spilled. This prevents code from
7613     // moving instructions to before the EH block, where they will never be
7614     // executed.
7615     for (MachineBasicBlock::reverse_iterator
7616            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
7617       if (!II->isCall()) continue;
7618 
7619       DenseMap<unsigned, bool> DefRegs;
7620       for (MachineInstr::mop_iterator
7621              OI = II->operands_begin(), OE = II->operands_end();
7622            OI != OE; ++OI) {
7623         if (!OI->isReg()) continue;
7624         DefRegs[OI->getReg()] = true;
7625       }
7626 
7627       MachineInstrBuilder MIB(*MF, &*II);
7628 
7629       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
7630         unsigned Reg = SavedRegs[i];
7631         if (Subtarget->isThumb2() &&
7632             !ARM::tGPRRegClass.contains(Reg) &&
7633             !ARM::hGPRRegClass.contains(Reg))
7634           continue;
7635         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
7636           continue;
7637         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
7638           continue;
7639         if (!DefRegs[Reg])
7640           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
7641       }
7642 
7643       break;
7644     }
7645   }
7646 
7647   // Mark all former landing pads as non-landing pads. The dispatch is the only
7648   // landing pad now.
7649   for (SmallVectorImpl<MachineBasicBlock*>::iterator
7650          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
7651     (*I)->setIsEHPad(false);
7652 
7653   // The instruction is gone now.
7654   MI->eraseFromParent();
7655 }
7656 
7657 static
7658 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
7659   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
7660        E = MBB->succ_end(); I != E; ++I)
7661     if (*I != Succ)
7662       return *I;
7663   llvm_unreachable("Expecting a BB with two successors!");
7664 }
7665 
7666 /// Return the load opcode for a given load size. If load size >= 8,
7667 /// neon opcode will be returned.
7668 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
7669   if (LdSize >= 8)
7670     return LdSize == 16 ? ARM::VLD1q32wb_fixed
7671                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
7672   if (IsThumb1)
7673     return LdSize == 4 ? ARM::tLDRi
7674                        : LdSize == 2 ? ARM::tLDRHi
7675                                      : LdSize == 1 ? ARM::tLDRBi : 0;
7676   if (IsThumb2)
7677     return LdSize == 4 ? ARM::t2LDR_POST
7678                        : LdSize == 2 ? ARM::t2LDRH_POST
7679                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
7680   return LdSize == 4 ? ARM::LDR_POST_IMM
7681                      : LdSize == 2 ? ARM::LDRH_POST
7682                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
7683 }
7684 
7685 /// Return the store opcode for a given store size. If store size >= 8,
7686 /// neon opcode will be returned.
7687 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
7688   if (StSize >= 8)
7689     return StSize == 16 ? ARM::VST1q32wb_fixed
7690                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
7691   if (IsThumb1)
7692     return StSize == 4 ? ARM::tSTRi
7693                        : StSize == 2 ? ARM::tSTRHi
7694                                      : StSize == 1 ? ARM::tSTRBi : 0;
7695   if (IsThumb2)
7696     return StSize == 4 ? ARM::t2STR_POST
7697                        : StSize == 2 ? ARM::t2STRH_POST
7698                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
7699   return StSize == 4 ? ARM::STR_POST_IMM
7700                      : StSize == 2 ? ARM::STRH_POST
7701                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
7702 }
7703 
7704 /// Emit a post-increment load operation with given size. The instructions
7705 /// will be added to BB at Pos.
7706 static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
7707                        const TargetInstrInfo *TII, DebugLoc dl,
7708                        unsigned LdSize, unsigned Data, unsigned AddrIn,
7709                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7710   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
7711   assert(LdOpc != 0 && "Should have a load opcode");
7712   if (LdSize >= 8) {
7713     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7714                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7715                        .addImm(0));
7716   } else if (IsThumb1) {
7717     // load + update AddrIn
7718     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7719                        .addReg(AddrIn).addImm(0));
7720     MachineInstrBuilder MIB =
7721         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7722     MIB = AddDefaultT1CC(MIB);
7723     MIB.addReg(AddrIn).addImm(LdSize);
7724     AddDefaultPred(MIB);
7725   } else if (IsThumb2) {
7726     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7727                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7728                        .addImm(LdSize));
7729   } else { // arm
7730     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7731                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7732                        .addReg(0).addImm(LdSize));
7733   }
7734 }
7735 
7736 /// Emit a post-increment store operation with given size. The instructions
7737 /// will be added to BB at Pos.
7738 static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
7739                        const TargetInstrInfo *TII, DebugLoc dl,
7740                        unsigned StSize, unsigned Data, unsigned AddrIn,
7741                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7742   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
7743   assert(StOpc != 0 && "Should have a store opcode");
7744   if (StSize >= 8) {
7745     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7746                        .addReg(AddrIn).addImm(0).addReg(Data));
7747   } else if (IsThumb1) {
7748     // store + update AddrIn
7749     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
7750                        .addReg(AddrIn).addImm(0));
7751     MachineInstrBuilder MIB =
7752         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7753     MIB = AddDefaultT1CC(MIB);
7754     MIB.addReg(AddrIn).addImm(StSize);
7755     AddDefaultPred(MIB);
7756   } else if (IsThumb2) {
7757     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7758                        .addReg(Data).addReg(AddrIn).addImm(StSize));
7759   } else { // arm
7760     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7761                        .addReg(Data).addReg(AddrIn).addReg(0)
7762                        .addImm(StSize));
7763   }
7764 }
7765 
7766 MachineBasicBlock *
7767 ARMTargetLowering::EmitStructByval(MachineInstr *MI,
7768                                    MachineBasicBlock *BB) const {
7769   // This pseudo instruction has 3 operands: dst, src, size
7770   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
7771   // Otherwise, we will generate unrolled scalar copies.
7772   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7773   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7774   MachineFunction::iterator It = ++BB->getIterator();
7775 
7776   unsigned dest = MI->getOperand(0).getReg();
7777   unsigned src = MI->getOperand(1).getReg();
7778   unsigned SizeVal = MI->getOperand(2).getImm();
7779   unsigned Align = MI->getOperand(3).getImm();
7780   DebugLoc dl = MI->getDebugLoc();
7781 
7782   MachineFunction *MF = BB->getParent();
7783   MachineRegisterInfo &MRI = MF->getRegInfo();
7784   unsigned UnitSize = 0;
7785   const TargetRegisterClass *TRC = nullptr;
7786   const TargetRegisterClass *VecTRC = nullptr;
7787 
7788   bool IsThumb1 = Subtarget->isThumb1Only();
7789   bool IsThumb2 = Subtarget->isThumb2();
7790 
7791   if (Align & 1) {
7792     UnitSize = 1;
7793   } else if (Align & 2) {
7794     UnitSize = 2;
7795   } else {
7796     // Check whether we can use NEON instructions.
7797     if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
7798         Subtarget->hasNEON()) {
7799       if ((Align % 16 == 0) && SizeVal >= 16)
7800         UnitSize = 16;
7801       else if ((Align % 8 == 0) && SizeVal >= 8)
7802         UnitSize = 8;
7803     }
7804     // Can't use NEON instructions.
7805     if (UnitSize == 0)
7806       UnitSize = 4;
7807   }
7808 
7809   // Select the correct opcode and register class for unit size load/store
7810   bool IsNeon = UnitSize >= 8;
7811   TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
7812   if (IsNeon)
7813     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
7814                             : UnitSize == 8 ? &ARM::DPRRegClass
7815                                             : nullptr;
7816 
7817   unsigned BytesLeft = SizeVal % UnitSize;
7818   unsigned LoopSize = SizeVal - BytesLeft;
7819 
7820   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
7821     // Use LDR and STR to copy.
7822     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
7823     // [destOut] = STR_POST(scratch, destIn, UnitSize)
7824     unsigned srcIn = src;
7825     unsigned destIn = dest;
7826     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
7827       unsigned srcOut = MRI.createVirtualRegister(TRC);
7828       unsigned destOut = MRI.createVirtualRegister(TRC);
7829       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7830       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
7831                  IsThumb1, IsThumb2);
7832       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
7833                  IsThumb1, IsThumb2);
7834       srcIn = srcOut;
7835       destIn = destOut;
7836     }
7837 
7838     // Handle the leftover bytes with LDRB and STRB.
7839     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
7840     // [destOut] = STRB_POST(scratch, destIn, 1)
7841     for (unsigned i = 0; i < BytesLeft; i++) {
7842       unsigned srcOut = MRI.createVirtualRegister(TRC);
7843       unsigned destOut = MRI.createVirtualRegister(TRC);
7844       unsigned scratch = MRI.createVirtualRegister(TRC);
7845       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
7846                  IsThumb1, IsThumb2);
7847       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
7848                  IsThumb1, IsThumb2);
7849       srcIn = srcOut;
7850       destIn = destOut;
7851     }
7852     MI->eraseFromParent();   // The instruction is gone now.
7853     return BB;
7854   }
7855 
7856   // Expand the pseudo op to a loop.
7857   // thisMBB:
7858   //   ...
7859   //   movw varEnd, # --> with thumb2
7860   //   movt varEnd, #
7861   //   ldrcp varEnd, idx --> without thumb2
7862   //   fallthrough --> loopMBB
7863   // loopMBB:
7864   //   PHI varPhi, varEnd, varLoop
7865   //   PHI srcPhi, src, srcLoop
7866   //   PHI destPhi, dst, destLoop
7867   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7868   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
7869   //   subs varLoop, varPhi, #UnitSize
7870   //   bne loopMBB
7871   //   fallthrough --> exitMBB
7872   // exitMBB:
7873   //   epilogue to handle left-over bytes
7874   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7875   //   [destOut] = STRB_POST(scratch, destLoop, 1)
7876   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7877   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7878   MF->insert(It, loopMBB);
7879   MF->insert(It, exitMBB);
7880 
7881   // Transfer the remainder of BB and its successor edges to exitMBB.
7882   exitMBB->splice(exitMBB->begin(), BB,
7883                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7884   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7885 
7886   // Load an immediate to varEnd.
7887   unsigned varEnd = MRI.createVirtualRegister(TRC);
7888   if (Subtarget->useMovt(*MF)) {
7889     unsigned Vtmp = varEnd;
7890     if ((LoopSize & 0xFFFF0000) != 0)
7891       Vtmp = MRI.createVirtualRegister(TRC);
7892     AddDefaultPred(BuildMI(BB, dl,
7893                            TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16),
7894                            Vtmp).addImm(LoopSize & 0xFFFF));
7895 
7896     if ((LoopSize & 0xFFFF0000) != 0)
7897       AddDefaultPred(BuildMI(BB, dl,
7898                              TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16),
7899                              varEnd)
7900                          .addReg(Vtmp)
7901                          .addImm(LoopSize >> 16));
7902   } else {
7903     MachineConstantPool *ConstantPool = MF->getConstantPool();
7904     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7905     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
7906 
7907     // MachineConstantPool wants an explicit alignment.
7908     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7909     if (Align == 0)
7910       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7911     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7912 
7913     if (IsThumb1)
7914       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
7915           varEnd, RegState::Define).addConstantPoolIndex(Idx));
7916     else
7917       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
7918           varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
7919   }
7920   BB->addSuccessor(loopMBB);
7921 
7922   // Generate the loop body:
7923   //   varPhi = PHI(varLoop, varEnd)
7924   //   srcPhi = PHI(srcLoop, src)
7925   //   destPhi = PHI(destLoop, dst)
7926   MachineBasicBlock *entryBB = BB;
7927   BB = loopMBB;
7928   unsigned varLoop = MRI.createVirtualRegister(TRC);
7929   unsigned varPhi = MRI.createVirtualRegister(TRC);
7930   unsigned srcLoop = MRI.createVirtualRegister(TRC);
7931   unsigned srcPhi = MRI.createVirtualRegister(TRC);
7932   unsigned destLoop = MRI.createVirtualRegister(TRC);
7933   unsigned destPhi = MRI.createVirtualRegister(TRC);
7934 
7935   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
7936     .addReg(varLoop).addMBB(loopMBB)
7937     .addReg(varEnd).addMBB(entryBB);
7938   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
7939     .addReg(srcLoop).addMBB(loopMBB)
7940     .addReg(src).addMBB(entryBB);
7941   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
7942     .addReg(destLoop).addMBB(loopMBB)
7943     .addReg(dest).addMBB(entryBB);
7944 
7945   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7946   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
7947   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7948   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
7949              IsThumb1, IsThumb2);
7950   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
7951              IsThumb1, IsThumb2);
7952 
7953   // Decrement loop variable by UnitSize.
7954   if (IsThumb1) {
7955     MachineInstrBuilder MIB =
7956         BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
7957     MIB = AddDefaultT1CC(MIB);
7958     MIB.addReg(varPhi).addImm(UnitSize);
7959     AddDefaultPred(MIB);
7960   } else {
7961     MachineInstrBuilder MIB =
7962         BuildMI(*BB, BB->end(), dl,
7963                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
7964     AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
7965     MIB->getOperand(5).setReg(ARM::CPSR);
7966     MIB->getOperand(5).setIsDef(true);
7967   }
7968   BuildMI(*BB, BB->end(), dl,
7969           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
7970       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
7971 
7972   // loopMBB can loop back to loopMBB or fall through to exitMBB.
7973   BB->addSuccessor(loopMBB);
7974   BB->addSuccessor(exitMBB);
7975 
7976   // Add epilogue to handle BytesLeft.
7977   BB = exitMBB;
7978   MachineInstr *StartOfExit = exitMBB->begin();
7979 
7980   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7981   //   [destOut] = STRB_POST(scratch, destLoop, 1)
7982   unsigned srcIn = srcLoop;
7983   unsigned destIn = destLoop;
7984   for (unsigned i = 0; i < BytesLeft; i++) {
7985     unsigned srcOut = MRI.createVirtualRegister(TRC);
7986     unsigned destOut = MRI.createVirtualRegister(TRC);
7987     unsigned scratch = MRI.createVirtualRegister(TRC);
7988     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
7989                IsThumb1, IsThumb2);
7990     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
7991                IsThumb1, IsThumb2);
7992     srcIn = srcOut;
7993     destIn = destOut;
7994   }
7995 
7996   MI->eraseFromParent();   // The instruction is gone now.
7997   return BB;
7998 }
7999 
8000 MachineBasicBlock *
8001 ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
8002                                        MachineBasicBlock *MBB) const {
8003   const TargetMachine &TM = getTargetMachine();
8004   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
8005   DebugLoc DL = MI->getDebugLoc();
8006 
8007   assert(Subtarget->isTargetWindows() &&
8008          "__chkstk is only supported on Windows");
8009   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
8010 
8011   // __chkstk takes the number of words to allocate on the stack in R4, and
8012   // returns the stack adjustment in number of bytes in R4.  This will not
8013   // clober any other registers (other than the obvious lr).
8014   //
8015   // Although, technically, IP should be considered a register which may be
8016   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
8017   // thumb-2 environment, so there is no interworking required.  As a result, we
8018   // do not expect a veneer to be emitted by the linker, clobbering IP.
8019   //
8020   // Each module receives its own copy of __chkstk, so no import thunk is
8021   // required, again, ensuring that IP is not clobbered.
8022   //
8023   // Finally, although some linkers may theoretically provide a trampoline for
8024   // out of range calls (which is quite common due to a 32M range limitation of
8025   // branches for Thumb), we can generate the long-call version via
8026   // -mcmodel=large, alleviating the need for the trampoline which may clobber
8027   // IP.
8028 
8029   switch (TM.getCodeModel()) {
8030   case CodeModel::Small:
8031   case CodeModel::Medium:
8032   case CodeModel::Default:
8033   case CodeModel::Kernel:
8034     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
8035       .addImm((unsigned)ARMCC::AL).addReg(0)
8036       .addExternalSymbol("__chkstk")
8037       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8038       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8039       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
8040     break;
8041   case CodeModel::Large:
8042   case CodeModel::JITDefault: {
8043     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
8044     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
8045 
8046     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
8047       .addExternalSymbol("__chkstk");
8048     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
8049       .addImm((unsigned)ARMCC::AL).addReg(0)
8050       .addReg(Reg, RegState::Kill)
8051       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8052       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8053       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
8054     break;
8055   }
8056   }
8057 
8058   AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
8059                                       ARM::SP)
8060                          .addReg(ARM::SP, RegState::Kill)
8061                          .addReg(ARM::R4, RegState::Kill)
8062                          .setMIFlags(MachineInstr::FrameSetup)));
8063 
8064   MI->eraseFromParent();
8065   return MBB;
8066 }
8067 
8068 MachineBasicBlock *
8069 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr *MI,
8070                                        MachineBasicBlock *MBB) const {
8071   DebugLoc DL = MI->getDebugLoc();
8072   MachineFunction *MF = MBB->getParent();
8073   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8074 
8075   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
8076   MF->insert(++MBB->getIterator(), ContBB);
8077   ContBB->splice(ContBB->begin(), MBB,
8078                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8079   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
8080 
8081   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8082   MF->push_back(TrapBB);
8083   BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249);
8084   MBB->addSuccessor(TrapBB);
8085 
8086   BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ))
8087       .addReg(MI->getOperand(0).getReg())
8088       .addMBB(TrapBB);
8089   AddDefaultPred(BuildMI(*MBB, MI, DL, TII->get(ARM::t2B)).addMBB(ContBB));
8090   MBB->addSuccessor(ContBB);
8091 
8092   MI->eraseFromParent();
8093   return ContBB;
8094 }
8095 
8096 MachineBasicBlock *
8097 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8098                                                MachineBasicBlock *BB) const {
8099   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8100   DebugLoc dl = MI->getDebugLoc();
8101   bool isThumb2 = Subtarget->isThumb2();
8102   switch (MI->getOpcode()) {
8103   default: {
8104     MI->dump();
8105     llvm_unreachable("Unexpected instr type to insert");
8106   }
8107   // The Thumb2 pre-indexed stores have the same MI operands, they just
8108   // define them differently in the .td files from the isel patterns, so
8109   // they need pseudos.
8110   case ARM::t2STR_preidx:
8111     MI->setDesc(TII->get(ARM::t2STR_PRE));
8112     return BB;
8113   case ARM::t2STRB_preidx:
8114     MI->setDesc(TII->get(ARM::t2STRB_PRE));
8115     return BB;
8116   case ARM::t2STRH_preidx:
8117     MI->setDesc(TII->get(ARM::t2STRH_PRE));
8118     return BB;
8119 
8120   case ARM::STRi_preidx:
8121   case ARM::STRBi_preidx: {
8122     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
8123       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
8124     // Decode the offset.
8125     unsigned Offset = MI->getOperand(4).getImm();
8126     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
8127     Offset = ARM_AM::getAM2Offset(Offset);
8128     if (isSub)
8129       Offset = -Offset;
8130 
8131     MachineMemOperand *MMO = *MI->memoperands_begin();
8132     BuildMI(*BB, MI, dl, TII->get(NewOpc))
8133       .addOperand(MI->getOperand(0))  // Rn_wb
8134       .addOperand(MI->getOperand(1))  // Rt
8135       .addOperand(MI->getOperand(2))  // Rn
8136       .addImm(Offset)                 // offset (skip GPR==zero_reg)
8137       .addOperand(MI->getOperand(5))  // pred
8138       .addOperand(MI->getOperand(6))
8139       .addMemOperand(MMO);
8140     MI->eraseFromParent();
8141     return BB;
8142   }
8143   case ARM::STRr_preidx:
8144   case ARM::STRBr_preidx:
8145   case ARM::STRH_preidx: {
8146     unsigned NewOpc;
8147     switch (MI->getOpcode()) {
8148     default: llvm_unreachable("unexpected opcode!");
8149     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
8150     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
8151     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
8152     }
8153     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
8154     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
8155       MIB.addOperand(MI->getOperand(i));
8156     MI->eraseFromParent();
8157     return BB;
8158   }
8159 
8160   case ARM::tMOVCCr_pseudo: {
8161     // To "insert" a SELECT_CC instruction, we actually have to insert the
8162     // diamond control-flow pattern.  The incoming instruction knows the
8163     // destination vreg to set, the condition code register to branch on, the
8164     // true/false values to select between, and a branch opcode to use.
8165     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8166     MachineFunction::iterator It = ++BB->getIterator();
8167 
8168     //  thisMBB:
8169     //  ...
8170     //   TrueVal = ...
8171     //   cmpTY ccX, r1, r2
8172     //   bCC copy1MBB
8173     //   fallthrough --> copy0MBB
8174     MachineBasicBlock *thisMBB  = BB;
8175     MachineFunction *F = BB->getParent();
8176     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8177     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
8178     F->insert(It, copy0MBB);
8179     F->insert(It, sinkMBB);
8180 
8181     // Transfer the remainder of BB and its successor edges to sinkMBB.
8182     sinkMBB->splice(sinkMBB->begin(), BB,
8183                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8184     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8185 
8186     BB->addSuccessor(copy0MBB);
8187     BB->addSuccessor(sinkMBB);
8188 
8189     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
8190       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
8191 
8192     //  copy0MBB:
8193     //   %FalseValue = ...
8194     //   # fallthrough to sinkMBB
8195     BB = copy0MBB;
8196 
8197     // Update machine-CFG edges
8198     BB->addSuccessor(sinkMBB);
8199 
8200     //  sinkMBB:
8201     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8202     //  ...
8203     BB = sinkMBB;
8204     BuildMI(*BB, BB->begin(), dl,
8205             TII->get(ARM::PHI), MI->getOperand(0).getReg())
8206       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8207       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8208 
8209     MI->eraseFromParent();   // The pseudo instruction is gone now.
8210     return BB;
8211   }
8212 
8213   case ARM::BCCi64:
8214   case ARM::BCCZi64: {
8215     // If there is an unconditional branch to the other successor, remove it.
8216     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
8217 
8218     // Compare both parts that make up the double comparison separately for
8219     // equality.
8220     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
8221 
8222     unsigned LHS1 = MI->getOperand(1).getReg();
8223     unsigned LHS2 = MI->getOperand(2).getReg();
8224     if (RHSisZero) {
8225       AddDefaultPred(BuildMI(BB, dl,
8226                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8227                      .addReg(LHS1).addImm(0));
8228       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8229         .addReg(LHS2).addImm(0)
8230         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8231     } else {
8232       unsigned RHS1 = MI->getOperand(3).getReg();
8233       unsigned RHS2 = MI->getOperand(4).getReg();
8234       AddDefaultPred(BuildMI(BB, dl,
8235                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8236                      .addReg(LHS1).addReg(RHS1));
8237       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8238         .addReg(LHS2).addReg(RHS2)
8239         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8240     }
8241 
8242     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
8243     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
8244     if (MI->getOperand(0).getImm() == ARMCC::NE)
8245       std::swap(destMBB, exitMBB);
8246 
8247     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
8248       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
8249     if (isThumb2)
8250       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
8251     else
8252       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
8253 
8254     MI->eraseFromParent();   // The pseudo instruction is gone now.
8255     return BB;
8256   }
8257 
8258   case ARM::Int_eh_sjlj_setjmp:
8259   case ARM::Int_eh_sjlj_setjmp_nofp:
8260   case ARM::tInt_eh_sjlj_setjmp:
8261   case ARM::t2Int_eh_sjlj_setjmp:
8262   case ARM::t2Int_eh_sjlj_setjmp_nofp:
8263     return BB;
8264 
8265   case ARM::Int_eh_sjlj_setup_dispatch:
8266     EmitSjLjDispatchBlock(MI, BB);
8267     return BB;
8268 
8269   case ARM::ABS:
8270   case ARM::t2ABS: {
8271     // To insert an ABS instruction, we have to insert the
8272     // diamond control-flow pattern.  The incoming instruction knows the
8273     // source vreg to test against 0, the destination vreg to set,
8274     // the condition code register to branch on, the
8275     // true/false values to select between, and a branch opcode to use.
8276     // It transforms
8277     //     V1 = ABS V0
8278     // into
8279     //     V2 = MOVS V0
8280     //     BCC                      (branch to SinkBB if V0 >= 0)
8281     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
8282     //     SinkBB: V1 = PHI(V2, V3)
8283     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8284     MachineFunction::iterator BBI = ++BB->getIterator();
8285     MachineFunction *Fn = BB->getParent();
8286     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
8287     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
8288     Fn->insert(BBI, RSBBB);
8289     Fn->insert(BBI, SinkBB);
8290 
8291     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
8292     unsigned int ABSDstReg = MI->getOperand(0).getReg();
8293     bool ABSSrcKIll = MI->getOperand(1).isKill();
8294     bool isThumb2 = Subtarget->isThumb2();
8295     MachineRegisterInfo &MRI = Fn->getRegInfo();
8296     // In Thumb mode S must not be specified if source register is the SP or
8297     // PC and if destination register is the SP, so restrict register class
8298     unsigned NewRsbDstReg =
8299       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
8300 
8301     // Transfer the remainder of BB and its successor edges to sinkMBB.
8302     SinkBB->splice(SinkBB->begin(), BB,
8303                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8304     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
8305 
8306     BB->addSuccessor(RSBBB);
8307     BB->addSuccessor(SinkBB);
8308 
8309     // fall through to SinkMBB
8310     RSBBB->addSuccessor(SinkBB);
8311 
8312     // insert a cmp at the end of BB
8313     AddDefaultPred(BuildMI(BB, dl,
8314                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8315                    .addReg(ABSSrcReg).addImm(0));
8316 
8317     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
8318     BuildMI(BB, dl,
8319       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
8320       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
8321 
8322     // insert rsbri in RSBBB
8323     // Note: BCC and rsbri will be converted into predicated rsbmi
8324     // by if-conversion pass
8325     BuildMI(*RSBBB, RSBBB->begin(), dl,
8326       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
8327       .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
8328       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
8329 
8330     // insert PHI in SinkBB,
8331     // reuse ABSDstReg to not change uses of ABS instruction
8332     BuildMI(*SinkBB, SinkBB->begin(), dl,
8333       TII->get(ARM::PHI), ABSDstReg)
8334       .addReg(NewRsbDstReg).addMBB(RSBBB)
8335       .addReg(ABSSrcReg).addMBB(BB);
8336 
8337     // remove ABS instruction
8338     MI->eraseFromParent();
8339 
8340     // return last added BB
8341     return SinkBB;
8342   }
8343   case ARM::COPY_STRUCT_BYVAL_I32:
8344     ++NumLoopByVals;
8345     return EmitStructByval(MI, BB);
8346   case ARM::WIN__CHKSTK:
8347     return EmitLowered__chkstk(MI, BB);
8348   case ARM::WIN__DBZCHK:
8349     return EmitLowered__dbzchk(MI, BB);
8350   }
8351 }
8352 
8353 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers
8354 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
8355 /// instead of as a custom inserter because we need the use list from the SDNode.
8356 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
8357                                    MachineInstr *MI, const SDNode *Node) {
8358   bool isThumb1 = Subtarget->isThumb1Only();
8359 
8360   DebugLoc DL = MI->getDebugLoc();
8361   MachineFunction *MF = MI->getParent()->getParent();
8362   MachineRegisterInfo &MRI = MF->getRegInfo();
8363   MachineInstrBuilder MIB(*MF, MI);
8364 
8365   // If the new dst/src is unused mark it as dead.
8366   if (!Node->hasAnyUseOfValue(0)) {
8367     MI->getOperand(0).setIsDead(true);
8368   }
8369   if (!Node->hasAnyUseOfValue(1)) {
8370     MI->getOperand(1).setIsDead(true);
8371   }
8372 
8373   // The MEMCPY both defines and kills the scratch registers.
8374   for (unsigned I = 0; I != MI->getOperand(4).getImm(); ++I) {
8375     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
8376                                                          : &ARM::GPRRegClass);
8377     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
8378   }
8379 }
8380 
8381 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
8382                                                       SDNode *Node) const {
8383   if (MI->getOpcode() == ARM::MEMCPY) {
8384     attachMEMCPYScratchRegs(Subtarget, MI, Node);
8385     return;
8386   }
8387 
8388   const MCInstrDesc *MCID = &MI->getDesc();
8389   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
8390   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
8391   // operand is still set to noreg. If needed, set the optional operand's
8392   // register to CPSR, and remove the redundant implicit def.
8393   //
8394   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
8395 
8396   // Rename pseudo opcodes.
8397   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
8398   if (NewOpc) {
8399     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
8400     MCID = &TII->get(NewOpc);
8401 
8402     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
8403            "converted opcode should be the same except for cc_out");
8404 
8405     MI->setDesc(*MCID);
8406 
8407     // Add the optional cc_out operand
8408     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
8409   }
8410   unsigned ccOutIdx = MCID->getNumOperands() - 1;
8411 
8412   // Any ARM instruction that sets the 's' bit should specify an optional
8413   // "cc_out" operand in the last operand position.
8414   if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
8415     assert(!NewOpc && "Optional cc_out operand required");
8416     return;
8417   }
8418   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
8419   // since we already have an optional CPSR def.
8420   bool definesCPSR = false;
8421   bool deadCPSR = false;
8422   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
8423        i != e; ++i) {
8424     const MachineOperand &MO = MI->getOperand(i);
8425     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
8426       definesCPSR = true;
8427       if (MO.isDead())
8428         deadCPSR = true;
8429       MI->RemoveOperand(i);
8430       break;
8431     }
8432   }
8433   if (!definesCPSR) {
8434     assert(!NewOpc && "Optional cc_out operand required");
8435     return;
8436   }
8437   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
8438   if (deadCPSR) {
8439     assert(!MI->getOperand(ccOutIdx).getReg() &&
8440            "expect uninitialized optional cc_out operand");
8441     return;
8442   }
8443 
8444   // If this instruction was defined with an optional CPSR def and its dag node
8445   // had a live implicit CPSR def, then activate the optional CPSR def.
8446   MachineOperand &MO = MI->getOperand(ccOutIdx);
8447   MO.setReg(ARM::CPSR);
8448   MO.setIsDef(true);
8449 }
8450 
8451 //===----------------------------------------------------------------------===//
8452 //                           ARM Optimization Hooks
8453 //===----------------------------------------------------------------------===//
8454 
8455 // Helper function that checks if N is a null or all ones constant.
8456 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
8457   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
8458 }
8459 
8460 // Return true if N is conditionally 0 or all ones.
8461 // Detects these expressions where cc is an i1 value:
8462 //
8463 //   (select cc 0, y)   [AllOnes=0]
8464 //   (select cc y, 0)   [AllOnes=0]
8465 //   (zext cc)          [AllOnes=0]
8466 //   (sext cc)          [AllOnes=0/1]
8467 //   (select cc -1, y)  [AllOnes=1]
8468 //   (select cc y, -1)  [AllOnes=1]
8469 //
8470 // Invert is set when N is the null/all ones constant when CC is false.
8471 // OtherOp is set to the alternative value of N.
8472 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
8473                                        SDValue &CC, bool &Invert,
8474                                        SDValue &OtherOp,
8475                                        SelectionDAG &DAG) {
8476   switch (N->getOpcode()) {
8477   default: return false;
8478   case ISD::SELECT: {
8479     CC = N->getOperand(0);
8480     SDValue N1 = N->getOperand(1);
8481     SDValue N2 = N->getOperand(2);
8482     if (isZeroOrAllOnes(N1, AllOnes)) {
8483       Invert = false;
8484       OtherOp = N2;
8485       return true;
8486     }
8487     if (isZeroOrAllOnes(N2, AllOnes)) {
8488       Invert = true;
8489       OtherOp = N1;
8490       return true;
8491     }
8492     return false;
8493   }
8494   case ISD::ZERO_EXTEND:
8495     // (zext cc) can never be the all ones value.
8496     if (AllOnes)
8497       return false;
8498     // Fall through.
8499   case ISD::SIGN_EXTEND: {
8500     SDLoc dl(N);
8501     EVT VT = N->getValueType(0);
8502     CC = N->getOperand(0);
8503     if (CC.getValueType() != MVT::i1)
8504       return false;
8505     Invert = !AllOnes;
8506     if (AllOnes)
8507       // When looking for an AllOnes constant, N is an sext, and the 'other'
8508       // value is 0.
8509       OtherOp = DAG.getConstant(0, dl, VT);
8510     else if (N->getOpcode() == ISD::ZERO_EXTEND)
8511       // When looking for a 0 constant, N can be zext or sext.
8512       OtherOp = DAG.getConstant(1, dl, VT);
8513     else
8514       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
8515                                 VT);
8516     return true;
8517   }
8518   }
8519 }
8520 
8521 // Combine a constant select operand into its use:
8522 //
8523 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
8524 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
8525 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
8526 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
8527 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
8528 //
8529 // The transform is rejected if the select doesn't have a constant operand that
8530 // is null, or all ones when AllOnes is set.
8531 //
8532 // Also recognize sext/zext from i1:
8533 //
8534 //   (add (zext cc), x) -> (select cc (add x, 1), x)
8535 //   (add (sext cc), x) -> (select cc (add x, -1), x)
8536 //
8537 // These transformations eventually create predicated instructions.
8538 //
8539 // @param N       The node to transform.
8540 // @param Slct    The N operand that is a select.
8541 // @param OtherOp The other N operand (x above).
8542 // @param DCI     Context.
8543 // @param AllOnes Require the select constant to be all ones instead of null.
8544 // @returns The new node, or SDValue() on failure.
8545 static
8546 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
8547                             TargetLowering::DAGCombinerInfo &DCI,
8548                             bool AllOnes = false) {
8549   SelectionDAG &DAG = DCI.DAG;
8550   EVT VT = N->getValueType(0);
8551   SDValue NonConstantVal;
8552   SDValue CCOp;
8553   bool SwapSelectOps;
8554   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
8555                                   NonConstantVal, DAG))
8556     return SDValue();
8557 
8558   // Slct is now know to be the desired identity constant when CC is true.
8559   SDValue TrueVal = OtherOp;
8560   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
8561                                  OtherOp, NonConstantVal);
8562   // Unless SwapSelectOps says CC should be false.
8563   if (SwapSelectOps)
8564     std::swap(TrueVal, FalseVal);
8565 
8566   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
8567                      CCOp, TrueVal, FalseVal);
8568 }
8569 
8570 // Attempt combineSelectAndUse on each operand of a commutative operator N.
8571 static
8572 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
8573                                        TargetLowering::DAGCombinerInfo &DCI) {
8574   SDValue N0 = N->getOperand(0);
8575   SDValue N1 = N->getOperand(1);
8576   if (N0.getNode()->hasOneUse())
8577     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
8578       return Result;
8579   if (N1.getNode()->hasOneUse())
8580     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
8581       return Result;
8582   return SDValue();
8583 }
8584 
8585 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
8586 // (only after legalization).
8587 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
8588                                  TargetLowering::DAGCombinerInfo &DCI,
8589                                  const ARMSubtarget *Subtarget) {
8590 
8591   // Only perform optimization if after legalize, and if NEON is available. We
8592   // also expected both operands to be BUILD_VECTORs.
8593   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
8594       || N0.getOpcode() != ISD::BUILD_VECTOR
8595       || N1.getOpcode() != ISD::BUILD_VECTOR)
8596     return SDValue();
8597 
8598   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
8599   EVT VT = N->getValueType(0);
8600   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
8601     return SDValue();
8602 
8603   // Check that the vector operands are of the right form.
8604   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
8605   // operands, where N is the size of the formed vector.
8606   // Each EXTRACT_VECTOR should have the same input vector and odd or even
8607   // index such that we have a pair wise add pattern.
8608 
8609   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
8610   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8611     return SDValue();
8612   SDValue Vec = N0->getOperand(0)->getOperand(0);
8613   SDNode *V = Vec.getNode();
8614   unsigned nextIndex = 0;
8615 
8616   // For each operands to the ADD which are BUILD_VECTORs,
8617   // check to see if each of their operands are an EXTRACT_VECTOR with
8618   // the same vector and appropriate index.
8619   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
8620     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
8621         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8622 
8623       SDValue ExtVec0 = N0->getOperand(i);
8624       SDValue ExtVec1 = N1->getOperand(i);
8625 
8626       // First operand is the vector, verify its the same.
8627       if (V != ExtVec0->getOperand(0).getNode() ||
8628           V != ExtVec1->getOperand(0).getNode())
8629         return SDValue();
8630 
8631       // Second is the constant, verify its correct.
8632       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
8633       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
8634 
8635       // For the constant, we want to see all the even or all the odd.
8636       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
8637           || C1->getZExtValue() != nextIndex+1)
8638         return SDValue();
8639 
8640       // Increment index.
8641       nextIndex+=2;
8642     } else
8643       return SDValue();
8644   }
8645 
8646   // Create VPADDL node.
8647   SelectionDAG &DAG = DCI.DAG;
8648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8649 
8650   SDLoc dl(N);
8651 
8652   // Build operand list.
8653   SmallVector<SDValue, 8> Ops;
8654   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
8655                                 TLI.getPointerTy(DAG.getDataLayout())));
8656 
8657   // Input is the vector.
8658   Ops.push_back(Vec);
8659 
8660   // Get widened type and narrowed type.
8661   MVT widenType;
8662   unsigned numElem = VT.getVectorNumElements();
8663 
8664   EVT inputLaneType = Vec.getValueType().getVectorElementType();
8665   switch (inputLaneType.getSimpleVT().SimpleTy) {
8666     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
8667     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
8668     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
8669     default:
8670       llvm_unreachable("Invalid vector element type for padd optimization.");
8671   }
8672 
8673   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
8674   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
8675   return DAG.getNode(ExtOp, dl, VT, tmp);
8676 }
8677 
8678 static SDValue findMUL_LOHI(SDValue V) {
8679   if (V->getOpcode() == ISD::UMUL_LOHI ||
8680       V->getOpcode() == ISD::SMUL_LOHI)
8681     return V;
8682   return SDValue();
8683 }
8684 
8685 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
8686                                      TargetLowering::DAGCombinerInfo &DCI,
8687                                      const ARMSubtarget *Subtarget) {
8688 
8689   if (Subtarget->isThumb1Only()) return SDValue();
8690 
8691   // Only perform the checks after legalize when the pattern is available.
8692   if (DCI.isBeforeLegalize()) return SDValue();
8693 
8694   // Look for multiply add opportunities.
8695   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
8696   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
8697   // a glue link from the first add to the second add.
8698   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
8699   // a S/UMLAL instruction.
8700   //                  UMUL_LOHI
8701   //                 / :lo    \ :hi
8702   //                /          \          [no multiline comment]
8703   //    loAdd ->  ADDE         |
8704   //                 \ :glue  /
8705   //                  \      /
8706   //                    ADDC   <- hiAdd
8707   //
8708   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
8709   SDValue AddcOp0 = AddcNode->getOperand(0);
8710   SDValue AddcOp1 = AddcNode->getOperand(1);
8711 
8712   // Check if the two operands are from the same mul_lohi node.
8713   if (AddcOp0.getNode() == AddcOp1.getNode())
8714     return SDValue();
8715 
8716   assert(AddcNode->getNumValues() == 2 &&
8717          AddcNode->getValueType(0) == MVT::i32 &&
8718          "Expect ADDC with two result values. First: i32");
8719 
8720   // Check that we have a glued ADDC node.
8721   if (AddcNode->getValueType(1) != MVT::Glue)
8722     return SDValue();
8723 
8724   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
8725   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
8726       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
8727       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
8728       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
8729     return SDValue();
8730 
8731   // Look for the glued ADDE.
8732   SDNode* AddeNode = AddcNode->getGluedUser();
8733   if (!AddeNode)
8734     return SDValue();
8735 
8736   // Make sure it is really an ADDE.
8737   if (AddeNode->getOpcode() != ISD::ADDE)
8738     return SDValue();
8739 
8740   assert(AddeNode->getNumOperands() == 3 &&
8741          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
8742          "ADDE node has the wrong inputs");
8743 
8744   // Check for the triangle shape.
8745   SDValue AddeOp0 = AddeNode->getOperand(0);
8746   SDValue AddeOp1 = AddeNode->getOperand(1);
8747 
8748   // Make sure that the ADDE operands are not coming from the same node.
8749   if (AddeOp0.getNode() == AddeOp1.getNode())
8750     return SDValue();
8751 
8752   // Find the MUL_LOHI node walking up ADDE's operands.
8753   bool IsLeftOperandMUL = false;
8754   SDValue MULOp = findMUL_LOHI(AddeOp0);
8755   if (MULOp == SDValue())
8756    MULOp = findMUL_LOHI(AddeOp1);
8757   else
8758     IsLeftOperandMUL = true;
8759   if (MULOp == SDValue())
8760     return SDValue();
8761 
8762   // Figure out the right opcode.
8763   unsigned Opc = MULOp->getOpcode();
8764   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
8765 
8766   // Figure out the high and low input values to the MLAL node.
8767   SDValue* HiAdd = nullptr;
8768   SDValue* LoMul = nullptr;
8769   SDValue* LowAdd = nullptr;
8770 
8771   // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
8772   if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
8773     return SDValue();
8774 
8775   if (IsLeftOperandMUL)
8776     HiAdd = &AddeOp1;
8777   else
8778     HiAdd = &AddeOp0;
8779 
8780 
8781   // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
8782   // whose low result is fed to the ADDC we are checking.
8783 
8784   if (AddcOp0 == MULOp.getValue(0)) {
8785     LoMul = &AddcOp0;
8786     LowAdd = &AddcOp1;
8787   }
8788   if (AddcOp1 == MULOp.getValue(0)) {
8789     LoMul = &AddcOp1;
8790     LowAdd = &AddcOp0;
8791   }
8792 
8793   if (!LoMul)
8794     return SDValue();
8795 
8796   // Create the merged node.
8797   SelectionDAG &DAG = DCI.DAG;
8798 
8799   // Build operand list.
8800   SmallVector<SDValue, 8> Ops;
8801   Ops.push_back(LoMul->getOperand(0));
8802   Ops.push_back(LoMul->getOperand(1));
8803   Ops.push_back(*LowAdd);
8804   Ops.push_back(*HiAdd);
8805 
8806   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
8807                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
8808 
8809   // Replace the ADDs' nodes uses by the MLA node's values.
8810   SDValue HiMLALResult(MLALNode.getNode(), 1);
8811   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
8812 
8813   SDValue LoMLALResult(MLALNode.getNode(), 0);
8814   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
8815 
8816   // Return original node to notify the driver to stop replacing.
8817   SDValue resNode(AddcNode, 0);
8818   return resNode;
8819 }
8820 
8821 /// PerformADDCCombine - Target-specific dag combine transform from
8822 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
8823 static SDValue PerformADDCCombine(SDNode *N,
8824                                  TargetLowering::DAGCombinerInfo &DCI,
8825                                  const ARMSubtarget *Subtarget) {
8826 
8827   return AddCombineTo64bitMLAL(N, DCI, Subtarget);
8828 
8829 }
8830 
8831 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
8832 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
8833 /// called with the default operands, and if that fails, with commuted
8834 /// operands.
8835 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
8836                                           TargetLowering::DAGCombinerInfo &DCI,
8837                                           const ARMSubtarget *Subtarget){
8838 
8839   // Attempt to create vpaddl for this add.
8840   if (SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget))
8841     return Result;
8842 
8843   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
8844   if (N0.getNode()->hasOneUse())
8845     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
8846       return Result;
8847   return SDValue();
8848 }
8849 
8850 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
8851 ///
8852 static SDValue PerformADDCombine(SDNode *N,
8853                                  TargetLowering::DAGCombinerInfo &DCI,
8854                                  const ARMSubtarget *Subtarget) {
8855   SDValue N0 = N->getOperand(0);
8856   SDValue N1 = N->getOperand(1);
8857 
8858   // First try with the default operand order.
8859   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
8860     return Result;
8861 
8862   // If that didn't work, try again with the operands commuted.
8863   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
8864 }
8865 
8866 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
8867 ///
8868 static SDValue PerformSUBCombine(SDNode *N,
8869                                  TargetLowering::DAGCombinerInfo &DCI) {
8870   SDValue N0 = N->getOperand(0);
8871   SDValue N1 = N->getOperand(1);
8872 
8873   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
8874   if (N1.getNode()->hasOneUse())
8875     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
8876       return Result;
8877 
8878   return SDValue();
8879 }
8880 
8881 /// PerformVMULCombine
8882 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
8883 /// special multiplier accumulator forwarding.
8884 ///   vmul d3, d0, d2
8885 ///   vmla d3, d1, d2
8886 /// is faster than
8887 ///   vadd d3, d0, d1
8888 ///   vmul d3, d3, d2
8889 //  However, for (A + B) * (A + B),
8890 //    vadd d2, d0, d1
8891 //    vmul d3, d0, d2
8892 //    vmla d3, d1, d2
8893 //  is slower than
8894 //    vadd d2, d0, d1
8895 //    vmul d3, d2, d2
8896 static SDValue PerformVMULCombine(SDNode *N,
8897                                   TargetLowering::DAGCombinerInfo &DCI,
8898                                   const ARMSubtarget *Subtarget) {
8899   if (!Subtarget->hasVMLxForwarding())
8900     return SDValue();
8901 
8902   SelectionDAG &DAG = DCI.DAG;
8903   SDValue N0 = N->getOperand(0);
8904   SDValue N1 = N->getOperand(1);
8905   unsigned Opcode = N0.getOpcode();
8906   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8907       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
8908     Opcode = N1.getOpcode();
8909     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8910         Opcode != ISD::FADD && Opcode != ISD::FSUB)
8911       return SDValue();
8912     std::swap(N0, N1);
8913   }
8914 
8915   if (N0 == N1)
8916     return SDValue();
8917 
8918   EVT VT = N->getValueType(0);
8919   SDLoc DL(N);
8920   SDValue N00 = N0->getOperand(0);
8921   SDValue N01 = N0->getOperand(1);
8922   return DAG.getNode(Opcode, DL, VT,
8923                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
8924                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
8925 }
8926 
8927 static SDValue PerformMULCombine(SDNode *N,
8928                                  TargetLowering::DAGCombinerInfo &DCI,
8929                                  const ARMSubtarget *Subtarget) {
8930   SelectionDAG &DAG = DCI.DAG;
8931 
8932   if (Subtarget->isThumb1Only())
8933     return SDValue();
8934 
8935   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8936     return SDValue();
8937 
8938   EVT VT = N->getValueType(0);
8939   if (VT.is64BitVector() || VT.is128BitVector())
8940     return PerformVMULCombine(N, DCI, Subtarget);
8941   if (VT != MVT::i32)
8942     return SDValue();
8943 
8944   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8945   if (!C)
8946     return SDValue();
8947 
8948   int64_t MulAmt = C->getSExtValue();
8949   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
8950 
8951   ShiftAmt = ShiftAmt & (32 - 1);
8952   SDValue V = N->getOperand(0);
8953   SDLoc DL(N);
8954 
8955   SDValue Res;
8956   MulAmt >>= ShiftAmt;
8957 
8958   if (MulAmt >= 0) {
8959     if (isPowerOf2_32(MulAmt - 1)) {
8960       // (mul x, 2^N + 1) => (add (shl x, N), x)
8961       Res = DAG.getNode(ISD::ADD, DL, VT,
8962                         V,
8963                         DAG.getNode(ISD::SHL, DL, VT,
8964                                     V,
8965                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
8966                                                     MVT::i32)));
8967     } else if (isPowerOf2_32(MulAmt + 1)) {
8968       // (mul x, 2^N - 1) => (sub (shl x, N), x)
8969       Res = DAG.getNode(ISD::SUB, DL, VT,
8970                         DAG.getNode(ISD::SHL, DL, VT,
8971                                     V,
8972                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
8973                                                     MVT::i32)),
8974                         V);
8975     } else
8976       return SDValue();
8977   } else {
8978     uint64_t MulAmtAbs = -MulAmt;
8979     if (isPowerOf2_32(MulAmtAbs + 1)) {
8980       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8981       Res = DAG.getNode(ISD::SUB, DL, VT,
8982                         V,
8983                         DAG.getNode(ISD::SHL, DL, VT,
8984                                     V,
8985                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
8986                                                     MVT::i32)));
8987     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
8988       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8989       Res = DAG.getNode(ISD::ADD, DL, VT,
8990                         V,
8991                         DAG.getNode(ISD::SHL, DL, VT,
8992                                     V,
8993                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
8994                                                     MVT::i32)));
8995       Res = DAG.getNode(ISD::SUB, DL, VT,
8996                         DAG.getConstant(0, DL, MVT::i32), Res);
8997 
8998     } else
8999       return SDValue();
9000   }
9001 
9002   if (ShiftAmt != 0)
9003     Res = DAG.getNode(ISD::SHL, DL, VT,
9004                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
9005 
9006   // Do not add new nodes to DAG combiner worklist.
9007   DCI.CombineTo(N, Res, false);
9008   return SDValue();
9009 }
9010 
9011 static SDValue PerformANDCombine(SDNode *N,
9012                                  TargetLowering::DAGCombinerInfo &DCI,
9013                                  const ARMSubtarget *Subtarget) {
9014 
9015   // Attempt to use immediate-form VBIC
9016   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9017   SDLoc dl(N);
9018   EVT VT = N->getValueType(0);
9019   SelectionDAG &DAG = DCI.DAG;
9020 
9021   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9022     return SDValue();
9023 
9024   APInt SplatBits, SplatUndef;
9025   unsigned SplatBitSize;
9026   bool HasAnyUndefs;
9027   if (BVN &&
9028       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9029     if (SplatBitSize <= 64) {
9030       EVT VbicVT;
9031       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
9032                                       SplatUndef.getZExtValue(), SplatBitSize,
9033                                       DAG, dl, VbicVT, VT.is128BitVector(),
9034                                       OtherModImm);
9035       if (Val.getNode()) {
9036         SDValue Input =
9037           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
9038         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
9039         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
9040       }
9041     }
9042   }
9043 
9044   if (!Subtarget->isThumb1Only()) {
9045     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
9046     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
9047       return Result;
9048   }
9049 
9050   return SDValue();
9051 }
9052 
9053 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
9054 static SDValue PerformORCombine(SDNode *N,
9055                                 TargetLowering::DAGCombinerInfo &DCI,
9056                                 const ARMSubtarget *Subtarget) {
9057   // Attempt to use immediate-form VORR
9058   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9059   SDLoc dl(N);
9060   EVT VT = N->getValueType(0);
9061   SelectionDAG &DAG = DCI.DAG;
9062 
9063   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9064     return SDValue();
9065 
9066   APInt SplatBits, SplatUndef;
9067   unsigned SplatBitSize;
9068   bool HasAnyUndefs;
9069   if (BVN && Subtarget->hasNEON() &&
9070       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9071     if (SplatBitSize <= 64) {
9072       EVT VorrVT;
9073       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
9074                                       SplatUndef.getZExtValue(), SplatBitSize,
9075                                       DAG, dl, VorrVT, VT.is128BitVector(),
9076                                       OtherModImm);
9077       if (Val.getNode()) {
9078         SDValue Input =
9079           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
9080         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
9081         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
9082       }
9083     }
9084   }
9085 
9086   if (!Subtarget->isThumb1Only()) {
9087     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
9088     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9089       return Result;
9090   }
9091 
9092   // The code below optimizes (or (and X, Y), Z).
9093   // The AND operand needs to have a single user to make these optimizations
9094   // profitable.
9095   SDValue N0 = N->getOperand(0);
9096   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
9097     return SDValue();
9098   SDValue N1 = N->getOperand(1);
9099 
9100   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
9101   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
9102       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
9103     APInt SplatUndef;
9104     unsigned SplatBitSize;
9105     bool HasAnyUndefs;
9106 
9107     APInt SplatBits0, SplatBits1;
9108     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
9109     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
9110     // Ensure that the second operand of both ands are constants
9111     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
9112                                       HasAnyUndefs) && !HasAnyUndefs) {
9113         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
9114                                           HasAnyUndefs) && !HasAnyUndefs) {
9115             // Ensure that the bit width of the constants are the same and that
9116             // the splat arguments are logical inverses as per the pattern we
9117             // are trying to simplify.
9118             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
9119                 SplatBits0 == ~SplatBits1) {
9120                 // Canonicalize the vector type to make instruction selection
9121                 // simpler.
9122                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
9123                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
9124                                              N0->getOperand(1),
9125                                              N0->getOperand(0),
9126                                              N1->getOperand(0));
9127                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9128             }
9129         }
9130     }
9131   }
9132 
9133   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
9134   // reasonable.
9135 
9136   // BFI is only available on V6T2+
9137   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
9138     return SDValue();
9139 
9140   SDLoc DL(N);
9141   // 1) or (and A, mask), val => ARMbfi A, val, mask
9142   //      iff (val & mask) == val
9143   //
9144   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9145   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
9146   //          && mask == ~mask2
9147   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
9148   //          && ~mask == mask2
9149   //  (i.e., copy a bitfield value into another bitfield of the same width)
9150 
9151   if (VT != MVT::i32)
9152     return SDValue();
9153 
9154   SDValue N00 = N0.getOperand(0);
9155 
9156   // The value and the mask need to be constants so we can verify this is
9157   // actually a bitfield set. If the mask is 0xffff, we can do better
9158   // via a movt instruction, so don't use BFI in that case.
9159   SDValue MaskOp = N0.getOperand(1);
9160   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
9161   if (!MaskC)
9162     return SDValue();
9163   unsigned Mask = MaskC->getZExtValue();
9164   if (Mask == 0xffff)
9165     return SDValue();
9166   SDValue Res;
9167   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
9168   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9169   if (N1C) {
9170     unsigned Val = N1C->getZExtValue();
9171     if ((Val & ~Mask) != Val)
9172       return SDValue();
9173 
9174     if (ARM::isBitFieldInvertedMask(Mask)) {
9175       Val >>= countTrailingZeros(~Mask);
9176 
9177       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
9178                         DAG.getConstant(Val, DL, MVT::i32),
9179                         DAG.getConstant(Mask, DL, MVT::i32));
9180 
9181       // Do not add new nodes to DAG combiner worklist.
9182       DCI.CombineTo(N, Res, false);
9183       return SDValue();
9184     }
9185   } else if (N1.getOpcode() == ISD::AND) {
9186     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9187     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9188     if (!N11C)
9189       return SDValue();
9190     unsigned Mask2 = N11C->getZExtValue();
9191 
9192     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
9193     // as is to match.
9194     if (ARM::isBitFieldInvertedMask(Mask) &&
9195         (Mask == ~Mask2)) {
9196       // The pack halfword instruction works better for masks that fit it,
9197       // so use that when it's available.
9198       if (Subtarget->hasT2ExtractPack() &&
9199           (Mask == 0xffff || Mask == 0xffff0000))
9200         return SDValue();
9201       // 2a
9202       unsigned amt = countTrailingZeros(Mask2);
9203       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
9204                         DAG.getConstant(amt, DL, MVT::i32));
9205       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
9206                         DAG.getConstant(Mask, DL, MVT::i32));
9207       // Do not add new nodes to DAG combiner worklist.
9208       DCI.CombineTo(N, Res, false);
9209       return SDValue();
9210     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
9211                (~Mask == Mask2)) {
9212       // The pack halfword instruction works better for masks that fit it,
9213       // so use that when it's available.
9214       if (Subtarget->hasT2ExtractPack() &&
9215           (Mask2 == 0xffff || Mask2 == 0xffff0000))
9216         return SDValue();
9217       // 2b
9218       unsigned lsb = countTrailingZeros(Mask);
9219       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
9220                         DAG.getConstant(lsb, DL, MVT::i32));
9221       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
9222                         DAG.getConstant(Mask2, DL, MVT::i32));
9223       // Do not add new nodes to DAG combiner worklist.
9224       DCI.CombineTo(N, Res, false);
9225       return SDValue();
9226     }
9227   }
9228 
9229   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
9230       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
9231       ARM::isBitFieldInvertedMask(~Mask)) {
9232     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
9233     // where lsb(mask) == #shamt and masked bits of B are known zero.
9234     SDValue ShAmt = N00.getOperand(1);
9235     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9236     unsigned LSB = countTrailingZeros(Mask);
9237     if (ShAmtC != LSB)
9238       return SDValue();
9239 
9240     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
9241                       DAG.getConstant(~Mask, DL, MVT::i32));
9242 
9243     // Do not add new nodes to DAG combiner worklist.
9244     DCI.CombineTo(N, Res, false);
9245   }
9246 
9247   return SDValue();
9248 }
9249 
9250 static SDValue PerformXORCombine(SDNode *N,
9251                                  TargetLowering::DAGCombinerInfo &DCI,
9252                                  const ARMSubtarget *Subtarget) {
9253   EVT VT = N->getValueType(0);
9254   SelectionDAG &DAG = DCI.DAG;
9255 
9256   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9257     return SDValue();
9258 
9259   if (!Subtarget->isThumb1Only()) {
9260     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
9261     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9262       return Result;
9263   }
9264 
9265   return SDValue();
9266 }
9267 
9268 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
9269 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
9270 // their position in "to" (Rd).
9271 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
9272   assert(N->getOpcode() == ARMISD::BFI);
9273 
9274   SDValue From = N->getOperand(1);
9275   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
9276   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
9277 
9278   // If the Base came from a SHR #C, we can deduce that it is really testing bit
9279   // #C in the base of the SHR.
9280   if (From->getOpcode() == ISD::SRL &&
9281       isa<ConstantSDNode>(From->getOperand(1))) {
9282     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
9283     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
9284     FromMask <<= Shift.getLimitedValue(31);
9285     From = From->getOperand(0);
9286   }
9287 
9288   return From;
9289 }
9290 
9291 // If A and B contain one contiguous set of bits, does A | B == A . B?
9292 //
9293 // Neither A nor B must be zero.
9294 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
9295   unsigned LastActiveBitInA =  A.countTrailingZeros();
9296   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
9297   return LastActiveBitInA - 1 == FirstActiveBitInB;
9298 }
9299 
9300 static SDValue FindBFIToCombineWith(SDNode *N) {
9301   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
9302   // if one exists.
9303   APInt ToMask, FromMask;
9304   SDValue From = ParseBFI(N, ToMask, FromMask);
9305   SDValue To = N->getOperand(0);
9306 
9307   // Now check for a compatible BFI to merge with. We can pass through BFIs that
9308   // aren't compatible, but not if they set the same bit in their destination as
9309   // we do (or that of any BFI we're going to combine with).
9310   SDValue V = To;
9311   APInt CombinedToMask = ToMask;
9312   while (V.getOpcode() == ARMISD::BFI) {
9313     APInt NewToMask, NewFromMask;
9314     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
9315     if (NewFrom != From) {
9316       // This BFI has a different base. Keep going.
9317       CombinedToMask |= NewToMask;
9318       V = V.getOperand(0);
9319       continue;
9320     }
9321 
9322     // Do the written bits conflict with any we've seen so far?
9323     if ((NewToMask & CombinedToMask).getBoolValue())
9324       // Conflicting bits - bail out because going further is unsafe.
9325       return SDValue();
9326 
9327     // Are the new bits contiguous when combined with the old bits?
9328     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
9329         BitsProperlyConcatenate(FromMask, NewFromMask))
9330       return V;
9331     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
9332         BitsProperlyConcatenate(NewFromMask, FromMask))
9333       return V;
9334 
9335     // We've seen a write to some bits, so track it.
9336     CombinedToMask |= NewToMask;
9337     // Keep going...
9338     V = V.getOperand(0);
9339   }
9340 
9341   return SDValue();
9342 }
9343 
9344 static SDValue PerformBFICombine(SDNode *N,
9345                                  TargetLowering::DAGCombinerInfo &DCI) {
9346   SDValue N1 = N->getOperand(1);
9347   if (N1.getOpcode() == ISD::AND) {
9348     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
9349     // the bits being cleared by the AND are not demanded by the BFI.
9350     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9351     if (!N11C)
9352       return SDValue();
9353     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
9354     unsigned LSB = countTrailingZeros(~InvMask);
9355     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
9356     assert(Width <
9357                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
9358            "undefined behavior");
9359     unsigned Mask = (1u << Width) - 1;
9360     unsigned Mask2 = N11C->getZExtValue();
9361     if ((Mask & (~Mask2)) == 0)
9362       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
9363                              N->getOperand(0), N1.getOperand(0),
9364                              N->getOperand(2));
9365   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
9366     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
9367     // Keep track of any consecutive bits set that all come from the same base
9368     // value. We can combine these together into a single BFI.
9369     SDValue CombineBFI = FindBFIToCombineWith(N);
9370     if (CombineBFI == SDValue())
9371       return SDValue();
9372 
9373     // We've found a BFI.
9374     APInt ToMask1, FromMask1;
9375     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
9376 
9377     APInt ToMask2, FromMask2;
9378     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
9379     assert(From1 == From2);
9380     (void)From2;
9381 
9382     // First, unlink CombineBFI.
9383     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
9384     // Then create a new BFI, combining the two together.
9385     APInt NewFromMask = FromMask1 | FromMask2;
9386     APInt NewToMask = ToMask1 | ToMask2;
9387 
9388     EVT VT = N->getValueType(0);
9389     SDLoc dl(N);
9390 
9391     if (NewFromMask[0] == 0)
9392       From1 = DCI.DAG.getNode(
9393         ISD::SRL, dl, VT, From1,
9394         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
9395     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
9396                            DCI.DAG.getConstant(~NewToMask, dl, VT));
9397   }
9398   return SDValue();
9399 }
9400 
9401 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
9402 /// ARMISD::VMOVRRD.
9403 static SDValue PerformVMOVRRDCombine(SDNode *N,
9404                                      TargetLowering::DAGCombinerInfo &DCI,
9405                                      const ARMSubtarget *Subtarget) {
9406   // vmovrrd(vmovdrr x, y) -> x,y
9407   SDValue InDouble = N->getOperand(0);
9408   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
9409     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
9410 
9411   // vmovrrd(load f64) -> (load i32), (load i32)
9412   SDNode *InNode = InDouble.getNode();
9413   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
9414       InNode->getValueType(0) == MVT::f64 &&
9415       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
9416       !cast<LoadSDNode>(InNode)->isVolatile()) {
9417     // TODO: Should this be done for non-FrameIndex operands?
9418     LoadSDNode *LD = cast<LoadSDNode>(InNode);
9419 
9420     SelectionDAG &DAG = DCI.DAG;
9421     SDLoc DL(LD);
9422     SDValue BasePtr = LD->getBasePtr();
9423     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
9424                                  LD->getPointerInfo(), LD->isVolatile(),
9425                                  LD->isNonTemporal(), LD->isInvariant(),
9426                                  LD->getAlignment());
9427 
9428     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
9429                                     DAG.getConstant(4, DL, MVT::i32));
9430     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
9431                                  LD->getPointerInfo(), LD->isVolatile(),
9432                                  LD->isNonTemporal(), LD->isInvariant(),
9433                                  std::min(4U, LD->getAlignment() / 2));
9434 
9435     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
9436     if (DCI.DAG.getDataLayout().isBigEndian())
9437       std::swap (NewLD1, NewLD2);
9438     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
9439     return Result;
9440   }
9441 
9442   return SDValue();
9443 }
9444 
9445 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
9446 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
9447 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
9448   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
9449   SDValue Op0 = N->getOperand(0);
9450   SDValue Op1 = N->getOperand(1);
9451   if (Op0.getOpcode() == ISD::BITCAST)
9452     Op0 = Op0.getOperand(0);
9453   if (Op1.getOpcode() == ISD::BITCAST)
9454     Op1 = Op1.getOperand(0);
9455   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
9456       Op0.getNode() == Op1.getNode() &&
9457       Op0.getResNo() == 0 && Op1.getResNo() == 1)
9458     return DAG.getNode(ISD::BITCAST, SDLoc(N),
9459                        N->getValueType(0), Op0.getOperand(0));
9460   return SDValue();
9461 }
9462 
9463 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
9464 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
9465 /// i64 vector to have f64 elements, since the value can then be loaded
9466 /// directly into a VFP register.
9467 static bool hasNormalLoadOperand(SDNode *N) {
9468   unsigned NumElts = N->getValueType(0).getVectorNumElements();
9469   for (unsigned i = 0; i < NumElts; ++i) {
9470     SDNode *Elt = N->getOperand(i).getNode();
9471     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
9472       return true;
9473   }
9474   return false;
9475 }
9476 
9477 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
9478 /// ISD::BUILD_VECTOR.
9479 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
9480                                           TargetLowering::DAGCombinerInfo &DCI,
9481                                           const ARMSubtarget *Subtarget) {
9482   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
9483   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
9484   // into a pair of GPRs, which is fine when the value is used as a scalar,
9485   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
9486   SelectionDAG &DAG = DCI.DAG;
9487   if (N->getNumOperands() == 2)
9488     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
9489       return RV;
9490 
9491   // Load i64 elements as f64 values so that type legalization does not split
9492   // them up into i32 values.
9493   EVT VT = N->getValueType(0);
9494   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
9495     return SDValue();
9496   SDLoc dl(N);
9497   SmallVector<SDValue, 8> Ops;
9498   unsigned NumElts = VT.getVectorNumElements();
9499   for (unsigned i = 0; i < NumElts; ++i) {
9500     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
9501     Ops.push_back(V);
9502     // Make the DAGCombiner fold the bitcast.
9503     DCI.AddToWorklist(V.getNode());
9504   }
9505   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
9506   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
9507   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9508 }
9509 
9510 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
9511 static SDValue
9512 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9513   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
9514   // At that time, we may have inserted bitcasts from integer to float.
9515   // If these bitcasts have survived DAGCombine, change the lowering of this
9516   // BUILD_VECTOR in something more vector friendly, i.e., that does not
9517   // force to use floating point types.
9518 
9519   // Make sure we can change the type of the vector.
9520   // This is possible iff:
9521   // 1. The vector is only used in a bitcast to a integer type. I.e.,
9522   //    1.1. Vector is used only once.
9523   //    1.2. Use is a bit convert to an integer type.
9524   // 2. The size of its operands are 32-bits (64-bits are not legal).
9525   EVT VT = N->getValueType(0);
9526   EVT EltVT = VT.getVectorElementType();
9527 
9528   // Check 1.1. and 2.
9529   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
9530     return SDValue();
9531 
9532   // By construction, the input type must be float.
9533   assert(EltVT == MVT::f32 && "Unexpected type!");
9534 
9535   // Check 1.2.
9536   SDNode *Use = *N->use_begin();
9537   if (Use->getOpcode() != ISD::BITCAST ||
9538       Use->getValueType(0).isFloatingPoint())
9539     return SDValue();
9540 
9541   // Check profitability.
9542   // Model is, if more than half of the relevant operands are bitcast from
9543   // i32, turn the build_vector into a sequence of insert_vector_elt.
9544   // Relevant operands are everything that is not statically
9545   // (i.e., at compile time) bitcasted.
9546   unsigned NumOfBitCastedElts = 0;
9547   unsigned NumElts = VT.getVectorNumElements();
9548   unsigned NumOfRelevantElts = NumElts;
9549   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
9550     SDValue Elt = N->getOperand(Idx);
9551     if (Elt->getOpcode() == ISD::BITCAST) {
9552       // Assume only bit cast to i32 will go away.
9553       if (Elt->getOperand(0).getValueType() == MVT::i32)
9554         ++NumOfBitCastedElts;
9555     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
9556       // Constants are statically casted, thus do not count them as
9557       // relevant operands.
9558       --NumOfRelevantElts;
9559   }
9560 
9561   // Check if more than half of the elements require a non-free bitcast.
9562   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
9563     return SDValue();
9564 
9565   SelectionDAG &DAG = DCI.DAG;
9566   // Create the new vector type.
9567   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
9568   // Check if the type is legal.
9569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9570   if (!TLI.isTypeLegal(VecVT))
9571     return SDValue();
9572 
9573   // Combine:
9574   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
9575   // => BITCAST INSERT_VECTOR_ELT
9576   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
9577   //                      (BITCAST EN), N.
9578   SDValue Vec = DAG.getUNDEF(VecVT);
9579   SDLoc dl(N);
9580   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
9581     SDValue V = N->getOperand(Idx);
9582     if (V.isUndef())
9583       continue;
9584     if (V.getOpcode() == ISD::BITCAST &&
9585         V->getOperand(0).getValueType() == MVT::i32)
9586       // Fold obvious case.
9587       V = V.getOperand(0);
9588     else {
9589       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
9590       // Make the DAGCombiner fold the bitcasts.
9591       DCI.AddToWorklist(V.getNode());
9592     }
9593     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
9594     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
9595   }
9596   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
9597   // Make the DAGCombiner fold the bitcasts.
9598   DCI.AddToWorklist(Vec.getNode());
9599   return Vec;
9600 }
9601 
9602 /// PerformInsertEltCombine - Target-specific dag combine xforms for
9603 /// ISD::INSERT_VECTOR_ELT.
9604 static SDValue PerformInsertEltCombine(SDNode *N,
9605                                        TargetLowering::DAGCombinerInfo &DCI) {
9606   // Bitcast an i64 load inserted into a vector to f64.
9607   // Otherwise, the i64 value will be legalized to a pair of i32 values.
9608   EVT VT = N->getValueType(0);
9609   SDNode *Elt = N->getOperand(1).getNode();
9610   if (VT.getVectorElementType() != MVT::i64 ||
9611       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
9612     return SDValue();
9613 
9614   SelectionDAG &DAG = DCI.DAG;
9615   SDLoc dl(N);
9616   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
9617                                  VT.getVectorNumElements());
9618   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
9619   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
9620   // Make the DAGCombiner fold the bitcasts.
9621   DCI.AddToWorklist(Vec.getNode());
9622   DCI.AddToWorklist(V.getNode());
9623   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
9624                                Vec, V, N->getOperand(2));
9625   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
9626 }
9627 
9628 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
9629 /// ISD::VECTOR_SHUFFLE.
9630 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
9631   // The LLVM shufflevector instruction does not require the shuffle mask
9632   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
9633   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
9634   // operands do not match the mask length, they are extended by concatenating
9635   // them with undef vectors.  That is probably the right thing for other
9636   // targets, but for NEON it is better to concatenate two double-register
9637   // size vector operands into a single quad-register size vector.  Do that
9638   // transformation here:
9639   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
9640   //   shuffle(concat(v1, v2), undef)
9641   SDValue Op0 = N->getOperand(0);
9642   SDValue Op1 = N->getOperand(1);
9643   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
9644       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
9645       Op0.getNumOperands() != 2 ||
9646       Op1.getNumOperands() != 2)
9647     return SDValue();
9648   SDValue Concat0Op1 = Op0.getOperand(1);
9649   SDValue Concat1Op1 = Op1.getOperand(1);
9650   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
9651     return SDValue();
9652   // Skip the transformation if any of the types are illegal.
9653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9654   EVT VT = N->getValueType(0);
9655   if (!TLI.isTypeLegal(VT) ||
9656       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
9657       !TLI.isTypeLegal(Concat1Op1.getValueType()))
9658     return SDValue();
9659 
9660   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
9661                                   Op0.getOperand(0), Op1.getOperand(0));
9662   // Translate the shuffle mask.
9663   SmallVector<int, 16> NewMask;
9664   unsigned NumElts = VT.getVectorNumElements();
9665   unsigned HalfElts = NumElts/2;
9666   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9667   for (unsigned n = 0; n < NumElts; ++n) {
9668     int MaskElt = SVN->getMaskElt(n);
9669     int NewElt = -1;
9670     if (MaskElt < (int)HalfElts)
9671       NewElt = MaskElt;
9672     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
9673       NewElt = HalfElts + MaskElt - NumElts;
9674     NewMask.push_back(NewElt);
9675   }
9676   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
9677                               DAG.getUNDEF(VT), NewMask.data());
9678 }
9679 
9680 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
9681 /// NEON load/store intrinsics, and generic vector load/stores, to merge
9682 /// base address updates.
9683 /// For generic load/stores, the memory type is assumed to be a vector.
9684 /// The caller is assumed to have checked legality.
9685 static SDValue CombineBaseUpdate(SDNode *N,
9686                                  TargetLowering::DAGCombinerInfo &DCI) {
9687   SelectionDAG &DAG = DCI.DAG;
9688   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
9689                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
9690   const bool isStore = N->getOpcode() == ISD::STORE;
9691   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
9692   SDValue Addr = N->getOperand(AddrOpIdx);
9693   MemSDNode *MemN = cast<MemSDNode>(N);
9694   SDLoc dl(N);
9695 
9696   // Search for a use of the address operand that is an increment.
9697   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9698          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9699     SDNode *User = *UI;
9700     if (User->getOpcode() != ISD::ADD ||
9701         UI.getUse().getResNo() != Addr.getResNo())
9702       continue;
9703 
9704     // Check that the add is independent of the load/store.  Otherwise, folding
9705     // it would create a cycle.
9706     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9707       continue;
9708 
9709     // Find the new opcode for the updating load/store.
9710     bool isLoadOp = true;
9711     bool isLaneOp = false;
9712     unsigned NewOpc = 0;
9713     unsigned NumVecs = 0;
9714     if (isIntrinsic) {
9715       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9716       switch (IntNo) {
9717       default: llvm_unreachable("unexpected intrinsic for Neon base update");
9718       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
9719         NumVecs = 1; break;
9720       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
9721         NumVecs = 2; break;
9722       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
9723         NumVecs = 3; break;
9724       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
9725         NumVecs = 4; break;
9726       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
9727         NumVecs = 2; isLaneOp = true; break;
9728       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
9729         NumVecs = 3; isLaneOp = true; break;
9730       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
9731         NumVecs = 4; isLaneOp = true; break;
9732       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
9733         NumVecs = 1; isLoadOp = false; break;
9734       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
9735         NumVecs = 2; isLoadOp = false; break;
9736       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
9737         NumVecs = 3; isLoadOp = false; break;
9738       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
9739         NumVecs = 4; isLoadOp = false; break;
9740       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
9741         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
9742       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
9743         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
9744       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
9745         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
9746       }
9747     } else {
9748       isLaneOp = true;
9749       switch (N->getOpcode()) {
9750       default: llvm_unreachable("unexpected opcode for Neon base update");
9751       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
9752       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
9753       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
9754       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
9755         NumVecs = 1; isLaneOp = false; break;
9756       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
9757         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
9758       }
9759     }
9760 
9761     // Find the size of memory referenced by the load/store.
9762     EVT VecTy;
9763     if (isLoadOp) {
9764       VecTy = N->getValueType(0);
9765     } else if (isIntrinsic) {
9766       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
9767     } else {
9768       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
9769       VecTy = N->getOperand(1).getValueType();
9770     }
9771 
9772     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9773     if (isLaneOp)
9774       NumBytes /= VecTy.getVectorNumElements();
9775 
9776     // If the increment is a constant, it must match the memory ref size.
9777     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9778     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9779       uint64_t IncVal = CInc->getZExtValue();
9780       if (IncVal != NumBytes)
9781         continue;
9782     } else if (NumBytes >= 3 * 16) {
9783       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
9784       // separate instructions that make it harder to use a non-constant update.
9785       continue;
9786     }
9787 
9788     // OK, we found an ADD we can fold into the base update.
9789     // Now, create a _UPD node, taking care of not breaking alignment.
9790 
9791     EVT AlignedVecTy = VecTy;
9792     unsigned Alignment = MemN->getAlignment();
9793 
9794     // If this is a less-than-standard-aligned load/store, change the type to
9795     // match the standard alignment.
9796     // The alignment is overlooked when selecting _UPD variants; and it's
9797     // easier to introduce bitcasts here than fix that.
9798     // There are 3 ways to get to this base-update combine:
9799     // - intrinsics: they are assumed to be properly aligned (to the standard
9800     //   alignment of the memory type), so we don't need to do anything.
9801     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
9802     //   intrinsics, so, likewise, there's nothing to do.
9803     // - generic load/store instructions: the alignment is specified as an
9804     //   explicit operand, rather than implicitly as the standard alignment
9805     //   of the memory type (like the intrisics).  We need to change the
9806     //   memory type to match the explicit alignment.  That way, we don't
9807     //   generate non-standard-aligned ARMISD::VLDx nodes.
9808     if (isa<LSBaseSDNode>(N)) {
9809       if (Alignment == 0)
9810         Alignment = 1;
9811       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
9812         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
9813         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
9814         assert(!isLaneOp && "Unexpected generic load/store lane.");
9815         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
9816         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
9817       }
9818       // Don't set an explicit alignment on regular load/stores that we want
9819       // to transform to VLD/VST 1_UPD nodes.
9820       // This matches the behavior of regular load/stores, which only get an
9821       // explicit alignment if the MMO alignment is larger than the standard
9822       // alignment of the memory type.
9823       // Intrinsics, however, always get an explicit alignment, set to the
9824       // alignment of the MMO.
9825       Alignment = 1;
9826     }
9827 
9828     // Create the new updating load/store node.
9829     // First, create an SDVTList for the new updating node's results.
9830     EVT Tys[6];
9831     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
9832     unsigned n;
9833     for (n = 0; n < NumResultVecs; ++n)
9834       Tys[n] = AlignedVecTy;
9835     Tys[n++] = MVT::i32;
9836     Tys[n] = MVT::Other;
9837     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
9838 
9839     // Then, gather the new node's operands.
9840     SmallVector<SDValue, 8> Ops;
9841     Ops.push_back(N->getOperand(0)); // incoming chain
9842     Ops.push_back(N->getOperand(AddrOpIdx));
9843     Ops.push_back(Inc);
9844 
9845     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
9846       // Try to match the intrinsic's signature
9847       Ops.push_back(StN->getValue());
9848     } else {
9849       // Loads (and of course intrinsics) match the intrinsics' signature,
9850       // so just add all but the alignment operand.
9851       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
9852         Ops.push_back(N->getOperand(i));
9853     }
9854 
9855     // For all node types, the alignment operand is always the last one.
9856     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
9857 
9858     // If this is a non-standard-aligned STORE, the penultimate operand is the
9859     // stored value.  Bitcast it to the aligned type.
9860     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
9861       SDValue &StVal = Ops[Ops.size()-2];
9862       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
9863     }
9864 
9865     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys,
9866                                            Ops, AlignedVecTy,
9867                                            MemN->getMemOperand());
9868 
9869     // Update the uses.
9870     SmallVector<SDValue, 5> NewResults;
9871     for (unsigned i = 0; i < NumResultVecs; ++i)
9872       NewResults.push_back(SDValue(UpdN.getNode(), i));
9873 
9874     // If this is an non-standard-aligned LOAD, the first result is the loaded
9875     // value.  Bitcast it to the expected result type.
9876     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
9877       SDValue &LdVal = NewResults[0];
9878       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
9879     }
9880 
9881     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
9882     DCI.CombineTo(N, NewResults);
9883     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9884 
9885     break;
9886   }
9887   return SDValue();
9888 }
9889 
9890 static SDValue PerformVLDCombine(SDNode *N,
9891                                  TargetLowering::DAGCombinerInfo &DCI) {
9892   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9893     return SDValue();
9894 
9895   return CombineBaseUpdate(N, DCI);
9896 }
9897 
9898 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
9899 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
9900 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
9901 /// return true.
9902 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9903   SelectionDAG &DAG = DCI.DAG;
9904   EVT VT = N->getValueType(0);
9905   // vldN-dup instructions only support 64-bit vectors for N > 1.
9906   if (!VT.is64BitVector())
9907     return false;
9908 
9909   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
9910   SDNode *VLD = N->getOperand(0).getNode();
9911   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
9912     return false;
9913   unsigned NumVecs = 0;
9914   unsigned NewOpc = 0;
9915   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
9916   if (IntNo == Intrinsic::arm_neon_vld2lane) {
9917     NumVecs = 2;
9918     NewOpc = ARMISD::VLD2DUP;
9919   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
9920     NumVecs = 3;
9921     NewOpc = ARMISD::VLD3DUP;
9922   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
9923     NumVecs = 4;
9924     NewOpc = ARMISD::VLD4DUP;
9925   } else {
9926     return false;
9927   }
9928 
9929   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
9930   // numbers match the load.
9931   unsigned VLDLaneNo =
9932     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
9933   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9934        UI != UE; ++UI) {
9935     // Ignore uses of the chain result.
9936     if (UI.getUse().getResNo() == NumVecs)
9937       continue;
9938     SDNode *User = *UI;
9939     if (User->getOpcode() != ARMISD::VDUPLANE ||
9940         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
9941       return false;
9942   }
9943 
9944   // Create the vldN-dup node.
9945   EVT Tys[5];
9946   unsigned n;
9947   for (n = 0; n < NumVecs; ++n)
9948     Tys[n] = VT;
9949   Tys[n] = MVT::Other;
9950   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
9951   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
9952   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
9953   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
9954                                            Ops, VLDMemInt->getMemoryVT(),
9955                                            VLDMemInt->getMemOperand());
9956 
9957   // Update the uses.
9958   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9959        UI != UE; ++UI) {
9960     unsigned ResNo = UI.getUse().getResNo();
9961     // Ignore uses of the chain result.
9962     if (ResNo == NumVecs)
9963       continue;
9964     SDNode *User = *UI;
9965     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
9966   }
9967 
9968   // Now the vldN-lane intrinsic is dead except for its chain result.
9969   // Update uses of the chain.
9970   std::vector<SDValue> VLDDupResults;
9971   for (unsigned n = 0; n < NumVecs; ++n)
9972     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
9973   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
9974   DCI.CombineTo(VLD, VLDDupResults);
9975 
9976   return true;
9977 }
9978 
9979 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
9980 /// ARMISD::VDUPLANE.
9981 static SDValue PerformVDUPLANECombine(SDNode *N,
9982                                       TargetLowering::DAGCombinerInfo &DCI) {
9983   SDValue Op = N->getOperand(0);
9984 
9985   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
9986   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
9987   if (CombineVLDDUP(N, DCI))
9988     return SDValue(N, 0);
9989 
9990   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
9991   // redundant.  Ignore bit_converts for now; element sizes are checked below.
9992   while (Op.getOpcode() == ISD::BITCAST)
9993     Op = Op.getOperand(0);
9994   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
9995     return SDValue();
9996 
9997   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
9998   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
9999   // The canonical VMOV for a zero vector uses a 32-bit element size.
10000   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10001   unsigned EltBits;
10002   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
10003     EltSize = 8;
10004   EVT VT = N->getValueType(0);
10005   if (EltSize > VT.getVectorElementType().getSizeInBits())
10006     return SDValue();
10007 
10008   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
10009 }
10010 
10011 static SDValue PerformLOADCombine(SDNode *N,
10012                                   TargetLowering::DAGCombinerInfo &DCI) {
10013   EVT VT = N->getValueType(0);
10014 
10015   // If this is a legal vector load, try to combine it into a VLD1_UPD.
10016   if (ISD::isNormalLoad(N) && VT.isVector() &&
10017       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10018     return CombineBaseUpdate(N, DCI);
10019 
10020   return SDValue();
10021 }
10022 
10023 /// PerformSTORECombine - Target-specific dag combine xforms for
10024 /// ISD::STORE.
10025 static SDValue PerformSTORECombine(SDNode *N,
10026                                    TargetLowering::DAGCombinerInfo &DCI) {
10027   StoreSDNode *St = cast<StoreSDNode>(N);
10028   if (St->isVolatile())
10029     return SDValue();
10030 
10031   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
10032   // pack all of the elements in one place.  Next, store to memory in fewer
10033   // chunks.
10034   SDValue StVal = St->getValue();
10035   EVT VT = StVal.getValueType();
10036   if (St->isTruncatingStore() && VT.isVector()) {
10037     SelectionDAG &DAG = DCI.DAG;
10038     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10039     EVT StVT = St->getMemoryVT();
10040     unsigned NumElems = VT.getVectorNumElements();
10041     assert(StVT != VT && "Cannot truncate to the same type");
10042     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
10043     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
10044 
10045     // From, To sizes and ElemCount must be pow of two
10046     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
10047 
10048     // We are going to use the original vector elt for storing.
10049     // Accumulated smaller vector elements must be a multiple of the store size.
10050     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
10051 
10052     unsigned SizeRatio  = FromEltSz / ToEltSz;
10053     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
10054 
10055     // Create a type on which we perform the shuffle.
10056     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
10057                                      NumElems*SizeRatio);
10058     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
10059 
10060     SDLoc DL(St);
10061     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
10062     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
10063     for (unsigned i = 0; i < NumElems; ++i)
10064       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
10065                           ? (i + 1) * SizeRatio - 1
10066                           : i * SizeRatio;
10067 
10068     // Can't shuffle using an illegal type.
10069     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
10070 
10071     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
10072                                 DAG.getUNDEF(WideVec.getValueType()),
10073                                 ShuffleVec.data());
10074     // At this point all of the data is stored at the bottom of the
10075     // register. We now need to save it to mem.
10076 
10077     // Find the largest store unit
10078     MVT StoreType = MVT::i8;
10079     for (MVT Tp : MVT::integer_valuetypes()) {
10080       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
10081         StoreType = Tp;
10082     }
10083     // Didn't find a legal store type.
10084     if (!TLI.isTypeLegal(StoreType))
10085       return SDValue();
10086 
10087     // Bitcast the original vector into a vector of store-size units
10088     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
10089             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
10090     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
10091     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
10092     SmallVector<SDValue, 8> Chains;
10093     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
10094                                         TLI.getPointerTy(DAG.getDataLayout()));
10095     SDValue BasePtr = St->getBasePtr();
10096 
10097     // Perform one or more big stores into memory.
10098     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
10099     for (unsigned I = 0; I < E; I++) {
10100       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
10101                                    StoreType, ShuffWide,
10102                                    DAG.getIntPtrConstant(I, DL));
10103       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
10104                                 St->getPointerInfo(), St->isVolatile(),
10105                                 St->isNonTemporal(), St->getAlignment());
10106       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
10107                             Increment);
10108       Chains.push_back(Ch);
10109     }
10110     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
10111   }
10112 
10113   if (!ISD::isNormalStore(St))
10114     return SDValue();
10115 
10116   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
10117   // ARM stores of arguments in the same cache line.
10118   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
10119       StVal.getNode()->hasOneUse()) {
10120     SelectionDAG  &DAG = DCI.DAG;
10121     bool isBigEndian = DAG.getDataLayout().isBigEndian();
10122     SDLoc DL(St);
10123     SDValue BasePtr = St->getBasePtr();
10124     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
10125                                   StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
10126                                   BasePtr, St->getPointerInfo(), St->isVolatile(),
10127                                   St->isNonTemporal(), St->getAlignment());
10128 
10129     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
10130                                     DAG.getConstant(4, DL, MVT::i32));
10131     return DAG.getStore(NewST1.getValue(0), DL,
10132                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
10133                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
10134                         St->isNonTemporal(),
10135                         std::min(4U, St->getAlignment() / 2));
10136   }
10137 
10138   if (StVal.getValueType() == MVT::i64 &&
10139       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10140 
10141     // Bitcast an i64 store extracted from a vector to f64.
10142     // Otherwise, the i64 value will be legalized to a pair of i32 values.
10143     SelectionDAG &DAG = DCI.DAG;
10144     SDLoc dl(StVal);
10145     SDValue IntVec = StVal.getOperand(0);
10146     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
10147                                    IntVec.getValueType().getVectorNumElements());
10148     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
10149     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
10150                                  Vec, StVal.getOperand(1));
10151     dl = SDLoc(N);
10152     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
10153     // Make the DAGCombiner fold the bitcasts.
10154     DCI.AddToWorklist(Vec.getNode());
10155     DCI.AddToWorklist(ExtElt.getNode());
10156     DCI.AddToWorklist(V.getNode());
10157     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
10158                         St->getPointerInfo(), St->isVolatile(),
10159                         St->isNonTemporal(), St->getAlignment(),
10160                         St->getAAInfo());
10161   }
10162 
10163   // If this is a legal vector store, try to combine it into a VST1_UPD.
10164   if (ISD::isNormalStore(N) && VT.isVector() &&
10165       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10166     return CombineBaseUpdate(N, DCI);
10167 
10168   return SDValue();
10169 }
10170 
10171 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
10172 /// can replace combinations of VMUL and VCVT (floating-point to integer)
10173 /// when the VMUL has a constant operand that is a power of 2.
10174 ///
10175 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10176 ///  vmul.f32        d16, d17, d16
10177 ///  vcvt.s32.f32    d16, d16
10178 /// becomes:
10179 ///  vcvt.s32.f32    d16, d16, #3
10180 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
10181                                   const ARMSubtarget *Subtarget) {
10182   if (!Subtarget->hasNEON())
10183     return SDValue();
10184 
10185   SDValue Op = N->getOperand(0);
10186   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
10187       Op.getOpcode() != ISD::FMUL)
10188     return SDValue();
10189 
10190   SDValue ConstVec = Op->getOperand(1);
10191   if (!isa<BuildVectorSDNode>(ConstVec))
10192     return SDValue();
10193 
10194   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
10195   uint32_t FloatBits = FloatTy.getSizeInBits();
10196   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
10197   uint32_t IntBits = IntTy.getSizeInBits();
10198   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10199   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
10200     // These instructions only exist converting from f32 to i32. We can handle
10201     // smaller integers by generating an extra truncate, but larger ones would
10202     // be lossy. We also can't handle more then 4 lanes, since these intructions
10203     // only support v2i32/v4i32 types.
10204     return SDValue();
10205   }
10206 
10207   BitVector UndefElements;
10208   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10209   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
10210   if (C == -1 || C == 0 || C > 32)
10211     return SDValue();
10212 
10213   SDLoc dl(N);
10214   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
10215   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
10216     Intrinsic::arm_neon_vcvtfp2fxu;
10217   SDValue FixConv = DAG.getNode(
10218       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
10219       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
10220       DAG.getConstant(C, dl, MVT::i32));
10221 
10222   if (IntBits < FloatBits)
10223     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
10224 
10225   return FixConv;
10226 }
10227 
10228 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
10229 /// can replace combinations of VCVT (integer to floating-point) and VDIV
10230 /// when the VDIV has a constant operand that is a power of 2.
10231 ///
10232 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10233 ///  vcvt.f32.s32    d16, d16
10234 ///  vdiv.f32        d16, d17, d16
10235 /// becomes:
10236 ///  vcvt.f32.s32    d16, d16, #3
10237 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
10238                                   const ARMSubtarget *Subtarget) {
10239   if (!Subtarget->hasNEON())
10240     return SDValue();
10241 
10242   SDValue Op = N->getOperand(0);
10243   unsigned OpOpcode = Op.getNode()->getOpcode();
10244   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
10245       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
10246     return SDValue();
10247 
10248   SDValue ConstVec = N->getOperand(1);
10249   if (!isa<BuildVectorSDNode>(ConstVec))
10250     return SDValue();
10251 
10252   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
10253   uint32_t FloatBits = FloatTy.getSizeInBits();
10254   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
10255   uint32_t IntBits = IntTy.getSizeInBits();
10256   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10257   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
10258     // These instructions only exist converting from i32 to f32. We can handle
10259     // smaller integers by generating an extra extend, but larger ones would
10260     // be lossy. We also can't handle more then 4 lanes, since these intructions
10261     // only support v2i32/v4i32 types.
10262     return SDValue();
10263   }
10264 
10265   BitVector UndefElements;
10266   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10267   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
10268   if (C == -1 || C == 0 || C > 32)
10269     return SDValue();
10270 
10271   SDLoc dl(N);
10272   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
10273   SDValue ConvInput = Op.getOperand(0);
10274   if (IntBits < FloatBits)
10275     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
10276                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
10277                             ConvInput);
10278 
10279   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
10280     Intrinsic::arm_neon_vcvtfxu2fp;
10281   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
10282                      Op.getValueType(),
10283                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
10284                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
10285 }
10286 
10287 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
10288 /// operand of a vector shift operation, where all the elements of the
10289 /// build_vector must have the same constant integer value.
10290 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
10291   // Ignore bit_converts.
10292   while (Op.getOpcode() == ISD::BITCAST)
10293     Op = Op.getOperand(0);
10294   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
10295   APInt SplatBits, SplatUndef;
10296   unsigned SplatBitSize;
10297   bool HasAnyUndefs;
10298   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
10299                                       HasAnyUndefs, ElementBits) ||
10300       SplatBitSize > ElementBits)
10301     return false;
10302   Cnt = SplatBits.getSExtValue();
10303   return true;
10304 }
10305 
10306 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
10307 /// operand of a vector shift left operation.  That value must be in the range:
10308 ///   0 <= Value < ElementBits for a left shift; or
10309 ///   0 <= Value <= ElementBits for a long left shift.
10310 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
10311   assert(VT.isVector() && "vector shift count is not a vector type");
10312   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
10313   if (! getVShiftImm(Op, ElementBits, Cnt))
10314     return false;
10315   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
10316 }
10317 
10318 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
10319 /// operand of a vector shift right operation.  For a shift opcode, the value
10320 /// is positive, but for an intrinsic the value count must be negative. The
10321 /// absolute value must be in the range:
10322 ///   1 <= |Value| <= ElementBits for a right shift; or
10323 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
10324 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
10325                          int64_t &Cnt) {
10326   assert(VT.isVector() && "vector shift count is not a vector type");
10327   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
10328   if (! getVShiftImm(Op, ElementBits, Cnt))
10329     return false;
10330   if (!isIntrinsic)
10331     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
10332   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
10333     Cnt = -Cnt;
10334     return true;
10335   }
10336   return false;
10337 }
10338 
10339 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
10340 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
10341   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10342   switch (IntNo) {
10343   default:
10344     // Don't do anything for most intrinsics.
10345     break;
10346 
10347   // Vector shifts: check for immediate versions and lower them.
10348   // Note: This is done during DAG combining instead of DAG legalizing because
10349   // the build_vectors for 64-bit vector element shift counts are generally
10350   // not legal, and it is hard to see their values after they get legalized to
10351   // loads from a constant pool.
10352   case Intrinsic::arm_neon_vshifts:
10353   case Intrinsic::arm_neon_vshiftu:
10354   case Intrinsic::arm_neon_vrshifts:
10355   case Intrinsic::arm_neon_vrshiftu:
10356   case Intrinsic::arm_neon_vrshiftn:
10357   case Intrinsic::arm_neon_vqshifts:
10358   case Intrinsic::arm_neon_vqshiftu:
10359   case Intrinsic::arm_neon_vqshiftsu:
10360   case Intrinsic::arm_neon_vqshiftns:
10361   case Intrinsic::arm_neon_vqshiftnu:
10362   case Intrinsic::arm_neon_vqshiftnsu:
10363   case Intrinsic::arm_neon_vqrshiftns:
10364   case Intrinsic::arm_neon_vqrshiftnu:
10365   case Intrinsic::arm_neon_vqrshiftnsu: {
10366     EVT VT = N->getOperand(1).getValueType();
10367     int64_t Cnt;
10368     unsigned VShiftOpc = 0;
10369 
10370     switch (IntNo) {
10371     case Intrinsic::arm_neon_vshifts:
10372     case Intrinsic::arm_neon_vshiftu:
10373       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
10374         VShiftOpc = ARMISD::VSHL;
10375         break;
10376       }
10377       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
10378         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
10379                      ARMISD::VSHRs : ARMISD::VSHRu);
10380         break;
10381       }
10382       return SDValue();
10383 
10384     case Intrinsic::arm_neon_vrshifts:
10385     case Intrinsic::arm_neon_vrshiftu:
10386       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
10387         break;
10388       return SDValue();
10389 
10390     case Intrinsic::arm_neon_vqshifts:
10391     case Intrinsic::arm_neon_vqshiftu:
10392       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
10393         break;
10394       return SDValue();
10395 
10396     case Intrinsic::arm_neon_vqshiftsu:
10397       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
10398         break;
10399       llvm_unreachable("invalid shift count for vqshlu intrinsic");
10400 
10401     case Intrinsic::arm_neon_vrshiftn:
10402     case Intrinsic::arm_neon_vqshiftns:
10403     case Intrinsic::arm_neon_vqshiftnu:
10404     case Intrinsic::arm_neon_vqshiftnsu:
10405     case Intrinsic::arm_neon_vqrshiftns:
10406     case Intrinsic::arm_neon_vqrshiftnu:
10407     case Intrinsic::arm_neon_vqrshiftnsu:
10408       // Narrowing shifts require an immediate right shift.
10409       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
10410         break;
10411       llvm_unreachable("invalid shift count for narrowing vector shift "
10412                        "intrinsic");
10413 
10414     default:
10415       llvm_unreachable("unhandled vector shift");
10416     }
10417 
10418     switch (IntNo) {
10419     case Intrinsic::arm_neon_vshifts:
10420     case Intrinsic::arm_neon_vshiftu:
10421       // Opcode already set above.
10422       break;
10423     case Intrinsic::arm_neon_vrshifts:
10424       VShiftOpc = ARMISD::VRSHRs; break;
10425     case Intrinsic::arm_neon_vrshiftu:
10426       VShiftOpc = ARMISD::VRSHRu; break;
10427     case Intrinsic::arm_neon_vrshiftn:
10428       VShiftOpc = ARMISD::VRSHRN; break;
10429     case Intrinsic::arm_neon_vqshifts:
10430       VShiftOpc = ARMISD::VQSHLs; break;
10431     case Intrinsic::arm_neon_vqshiftu:
10432       VShiftOpc = ARMISD::VQSHLu; break;
10433     case Intrinsic::arm_neon_vqshiftsu:
10434       VShiftOpc = ARMISD::VQSHLsu; break;
10435     case Intrinsic::arm_neon_vqshiftns:
10436       VShiftOpc = ARMISD::VQSHRNs; break;
10437     case Intrinsic::arm_neon_vqshiftnu:
10438       VShiftOpc = ARMISD::VQSHRNu; break;
10439     case Intrinsic::arm_neon_vqshiftnsu:
10440       VShiftOpc = ARMISD::VQSHRNsu; break;
10441     case Intrinsic::arm_neon_vqrshiftns:
10442       VShiftOpc = ARMISD::VQRSHRNs; break;
10443     case Intrinsic::arm_neon_vqrshiftnu:
10444       VShiftOpc = ARMISD::VQRSHRNu; break;
10445     case Intrinsic::arm_neon_vqrshiftnsu:
10446       VShiftOpc = ARMISD::VQRSHRNsu; break;
10447     }
10448 
10449     SDLoc dl(N);
10450     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
10451                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
10452   }
10453 
10454   case Intrinsic::arm_neon_vshiftins: {
10455     EVT VT = N->getOperand(1).getValueType();
10456     int64_t Cnt;
10457     unsigned VShiftOpc = 0;
10458 
10459     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
10460       VShiftOpc = ARMISD::VSLI;
10461     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
10462       VShiftOpc = ARMISD::VSRI;
10463     else {
10464       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
10465     }
10466 
10467     SDLoc dl(N);
10468     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
10469                        N->getOperand(1), N->getOperand(2),
10470                        DAG.getConstant(Cnt, dl, MVT::i32));
10471   }
10472 
10473   case Intrinsic::arm_neon_vqrshifts:
10474   case Intrinsic::arm_neon_vqrshiftu:
10475     // No immediate versions of these to check for.
10476     break;
10477   }
10478 
10479   return SDValue();
10480 }
10481 
10482 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
10483 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
10484 /// combining instead of DAG legalizing because the build_vectors for 64-bit
10485 /// vector element shift counts are generally not legal, and it is hard to see
10486 /// their values after they get legalized to loads from a constant pool.
10487 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
10488                                    const ARMSubtarget *ST) {
10489   EVT VT = N->getValueType(0);
10490   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
10491     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
10492     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
10493     SDValue N1 = N->getOperand(1);
10494     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
10495       SDValue N0 = N->getOperand(0);
10496       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
10497           DAG.MaskedValueIsZero(N0.getOperand(0),
10498                                 APInt::getHighBitsSet(32, 16)))
10499         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
10500     }
10501   }
10502 
10503   // Nothing to be done for scalar shifts.
10504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10505   if (!VT.isVector() || !TLI.isTypeLegal(VT))
10506     return SDValue();
10507 
10508   assert(ST->hasNEON() && "unexpected vector shift");
10509   int64_t Cnt;
10510 
10511   switch (N->getOpcode()) {
10512   default: llvm_unreachable("unexpected shift opcode");
10513 
10514   case ISD::SHL:
10515     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
10516       SDLoc dl(N);
10517       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
10518                          DAG.getConstant(Cnt, dl, MVT::i32));
10519     }
10520     break;
10521 
10522   case ISD::SRA:
10523   case ISD::SRL:
10524     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
10525       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
10526                             ARMISD::VSHRs : ARMISD::VSHRu);
10527       SDLoc dl(N);
10528       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
10529                          DAG.getConstant(Cnt, dl, MVT::i32));
10530     }
10531   }
10532   return SDValue();
10533 }
10534 
10535 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
10536 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
10537 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
10538                                     const ARMSubtarget *ST) {
10539   SDValue N0 = N->getOperand(0);
10540 
10541   // Check for sign- and zero-extensions of vector extract operations of 8-
10542   // and 16-bit vector elements.  NEON supports these directly.  They are
10543   // handled during DAG combining because type legalization will promote them
10544   // to 32-bit types and it is messy to recognize the operations after that.
10545   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10546     SDValue Vec = N0.getOperand(0);
10547     SDValue Lane = N0.getOperand(1);
10548     EVT VT = N->getValueType(0);
10549     EVT EltVT = N0.getValueType();
10550     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10551 
10552     if (VT == MVT::i32 &&
10553         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
10554         TLI.isTypeLegal(Vec.getValueType()) &&
10555         isa<ConstantSDNode>(Lane)) {
10556 
10557       unsigned Opc = 0;
10558       switch (N->getOpcode()) {
10559       default: llvm_unreachable("unexpected opcode");
10560       case ISD::SIGN_EXTEND:
10561         Opc = ARMISD::VGETLANEs;
10562         break;
10563       case ISD::ZERO_EXTEND:
10564       case ISD::ANY_EXTEND:
10565         Opc = ARMISD::VGETLANEu;
10566         break;
10567       }
10568       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
10569     }
10570   }
10571 
10572   return SDValue();
10573 }
10574 
10575 static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
10576                              APInt &KnownOne) {
10577   if (Op.getOpcode() == ARMISD::BFI) {
10578     // Conservatively, we can recurse down the first operand
10579     // and just mask out all affected bits.
10580     computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
10581 
10582     // The operand to BFI is already a mask suitable for removing the bits it
10583     // sets.
10584     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
10585     APInt Mask = CI->getAPIntValue();
10586     KnownZero &= Mask;
10587     KnownOne &= Mask;
10588     return;
10589   }
10590   if (Op.getOpcode() == ARMISD::CMOV) {
10591     APInt KZ2(KnownZero.getBitWidth(), 0);
10592     APInt KO2(KnownOne.getBitWidth(), 0);
10593     computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
10594     computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
10595 
10596     KnownZero &= KZ2;
10597     KnownOne &= KO2;
10598     return;
10599   }
10600   return DAG.computeKnownBits(Op, KnownZero, KnownOne);
10601 }
10602 
10603 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
10604   // If we have a CMOV, OR and AND combination such as:
10605   //   if (x & CN)
10606   //     y |= CM;
10607   //
10608   // And:
10609   //   * CN is a single bit;
10610   //   * All bits covered by CM are known zero in y
10611   //
10612   // Then we can convert this into a sequence of BFI instructions. This will
10613   // always be a win if CM is a single bit, will always be no worse than the
10614   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
10615   // three bits (due to the extra IT instruction).
10616 
10617   SDValue Op0 = CMOV->getOperand(0);
10618   SDValue Op1 = CMOV->getOperand(1);
10619   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
10620   auto CC = CCNode->getAPIntValue().getLimitedValue();
10621   SDValue CmpZ = CMOV->getOperand(4);
10622 
10623   // The compare must be against zero.
10624   if (!isNullConstant(CmpZ->getOperand(1)))
10625     return SDValue();
10626 
10627   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
10628   SDValue And = CmpZ->getOperand(0);
10629   if (And->getOpcode() != ISD::AND)
10630     return SDValue();
10631   ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
10632   if (!AndC || !AndC->getAPIntValue().isPowerOf2())
10633     return SDValue();
10634   SDValue X = And->getOperand(0);
10635 
10636   if (CC == ARMCC::EQ) {
10637     // We're performing an "equal to zero" compare. Swap the operands so we
10638     // canonicalize on a "not equal to zero" compare.
10639     std::swap(Op0, Op1);
10640   } else {
10641     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
10642   }
10643 
10644   if (Op1->getOpcode() != ISD::OR)
10645     return SDValue();
10646 
10647   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
10648   if (!OrC)
10649     return SDValue();
10650   SDValue Y = Op1->getOperand(0);
10651 
10652   if (Op0 != Y)
10653     return SDValue();
10654 
10655   // Now, is it profitable to continue?
10656   APInt OrCI = OrC->getAPIntValue();
10657   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
10658   if (OrCI.countPopulation() > Heuristic)
10659     return SDValue();
10660 
10661   // Lastly, can we determine that the bits defined by OrCI
10662   // are zero in Y?
10663   APInt KnownZero, KnownOne;
10664   computeKnownBits(DAG, Y, KnownZero, KnownOne);
10665   if ((OrCI & KnownZero) != OrCI)
10666     return SDValue();
10667 
10668   // OK, we can do the combine.
10669   SDValue V = Y;
10670   SDLoc dl(X);
10671   EVT VT = X.getValueType();
10672   unsigned BitInX = AndC->getAPIntValue().logBase2();
10673 
10674   if (BitInX != 0) {
10675     // We must shift X first.
10676     X = DAG.getNode(ISD::SRL, dl, VT, X,
10677                     DAG.getConstant(BitInX, dl, VT));
10678   }
10679 
10680   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
10681        BitInY < NumActiveBits; ++BitInY) {
10682     if (OrCI[BitInY] == 0)
10683       continue;
10684     APInt Mask(VT.getSizeInBits(), 0);
10685     Mask.setBit(BitInY);
10686     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
10687                     // Confusingly, the operand is an *inverted* mask.
10688                     DAG.getConstant(~Mask, dl, VT));
10689   }
10690 
10691   return V;
10692 }
10693 
10694 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
10695 SDValue
10696 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
10697   SDValue Cmp = N->getOperand(4);
10698   if (Cmp.getOpcode() != ARMISD::CMPZ)
10699     // Only looking at NE cases.
10700     return SDValue();
10701 
10702   EVT VT = N->getValueType(0);
10703   SDLoc dl(N);
10704   SDValue LHS = Cmp.getOperand(0);
10705   SDValue RHS = Cmp.getOperand(1);
10706   SDValue Chain = N->getOperand(0);
10707   SDValue BB = N->getOperand(1);
10708   SDValue ARMcc = N->getOperand(2);
10709   ARMCC::CondCodes CC =
10710     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
10711 
10712   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
10713   // -> (brcond Chain BB CC CPSR Cmp)
10714   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
10715       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
10716       LHS->getOperand(0)->hasOneUse()) {
10717     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
10718     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
10719     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
10720     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
10721     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
10722         (LHS01C && LHS01C->getZExtValue() == 1) &&
10723         (LHS1C && LHS1C->getZExtValue() == 1) &&
10724         (RHSC && RHSC->getZExtValue() == 0)) {
10725       return DAG.getNode(
10726           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
10727           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
10728     }
10729   }
10730 
10731   return SDValue();
10732 }
10733 
10734 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
10735 SDValue
10736 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
10737   SDValue Cmp = N->getOperand(4);
10738   if (Cmp.getOpcode() != ARMISD::CMPZ)
10739     // Only looking at EQ and NE cases.
10740     return SDValue();
10741 
10742   EVT VT = N->getValueType(0);
10743   SDLoc dl(N);
10744   SDValue LHS = Cmp.getOperand(0);
10745   SDValue RHS = Cmp.getOperand(1);
10746   SDValue FalseVal = N->getOperand(0);
10747   SDValue TrueVal = N->getOperand(1);
10748   SDValue ARMcc = N->getOperand(2);
10749   ARMCC::CondCodes CC =
10750     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
10751 
10752   // BFI is only available on V6T2+.
10753   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
10754     SDValue R = PerformCMOVToBFICombine(N, DAG);
10755     if (R)
10756       return R;
10757   }
10758 
10759   // Simplify
10760   //   mov     r1, r0
10761   //   cmp     r1, x
10762   //   mov     r0, y
10763   //   moveq   r0, x
10764   // to
10765   //   cmp     r0, x
10766   //   movne   r0, y
10767   //
10768   //   mov     r1, r0
10769   //   cmp     r1, x
10770   //   mov     r0, x
10771   //   movne   r0, y
10772   // to
10773   //   cmp     r0, x
10774   //   movne   r0, y
10775   /// FIXME: Turn this into a target neutral optimization?
10776   SDValue Res;
10777   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
10778     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
10779                       N->getOperand(3), Cmp);
10780   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
10781     SDValue ARMcc;
10782     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
10783     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
10784                       N->getOperand(3), NewCmp);
10785   }
10786 
10787   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
10788   // -> (cmov F T CC CPSR Cmp)
10789   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
10790     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
10791     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
10792     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
10793     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
10794         (LHS1C && LHS1C->getZExtValue() == 1) &&
10795         (RHSC && RHSC->getZExtValue() == 0)) {
10796       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
10797                          LHS->getOperand(2), LHS->getOperand(3),
10798                          LHS->getOperand(4));
10799     }
10800   }
10801 
10802   if (Res.getNode()) {
10803     APInt KnownZero, KnownOne;
10804     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
10805     // Capture demanded bits information that would be otherwise lost.
10806     if (KnownZero == 0xfffffffe)
10807       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10808                         DAG.getValueType(MVT::i1));
10809     else if (KnownZero == 0xffffff00)
10810       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10811                         DAG.getValueType(MVT::i8));
10812     else if (KnownZero == 0xffff0000)
10813       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10814                         DAG.getValueType(MVT::i16));
10815   }
10816 
10817   return Res;
10818 }
10819 
10820 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
10821                                              DAGCombinerInfo &DCI) const {
10822   switch (N->getOpcode()) {
10823   default: break;
10824   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
10825   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
10826   case ISD::SUB:        return PerformSUBCombine(N, DCI);
10827   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
10828   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
10829   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
10830   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
10831   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
10832   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
10833   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
10834   case ISD::STORE:      return PerformSTORECombine(N, DCI);
10835   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
10836   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
10837   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
10838   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
10839   case ISD::FP_TO_SINT:
10840   case ISD::FP_TO_UINT:
10841     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
10842   case ISD::FDIV:
10843     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
10844   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
10845   case ISD::SHL:
10846   case ISD::SRA:
10847   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
10848   case ISD::SIGN_EXTEND:
10849   case ISD::ZERO_EXTEND:
10850   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
10851   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
10852   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
10853   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
10854   case ARMISD::VLD2DUP:
10855   case ARMISD::VLD3DUP:
10856   case ARMISD::VLD4DUP:
10857     return PerformVLDCombine(N, DCI);
10858   case ARMISD::BUILD_VECTOR:
10859     return PerformARMBUILD_VECTORCombine(N, DCI);
10860   case ISD::INTRINSIC_VOID:
10861   case ISD::INTRINSIC_W_CHAIN:
10862     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10863     case Intrinsic::arm_neon_vld1:
10864     case Intrinsic::arm_neon_vld2:
10865     case Intrinsic::arm_neon_vld3:
10866     case Intrinsic::arm_neon_vld4:
10867     case Intrinsic::arm_neon_vld2lane:
10868     case Intrinsic::arm_neon_vld3lane:
10869     case Intrinsic::arm_neon_vld4lane:
10870     case Intrinsic::arm_neon_vst1:
10871     case Intrinsic::arm_neon_vst2:
10872     case Intrinsic::arm_neon_vst3:
10873     case Intrinsic::arm_neon_vst4:
10874     case Intrinsic::arm_neon_vst2lane:
10875     case Intrinsic::arm_neon_vst3lane:
10876     case Intrinsic::arm_neon_vst4lane:
10877       return PerformVLDCombine(N, DCI);
10878     default: break;
10879     }
10880     break;
10881   }
10882   return SDValue();
10883 }
10884 
10885 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
10886                                                           EVT VT) const {
10887   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
10888 }
10889 
10890 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
10891                                                        unsigned,
10892                                                        unsigned,
10893                                                        bool *Fast) const {
10894   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
10895   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
10896 
10897   switch (VT.getSimpleVT().SimpleTy) {
10898   default:
10899     return false;
10900   case MVT::i8:
10901   case MVT::i16:
10902   case MVT::i32: {
10903     // Unaligned access can use (for example) LRDB, LRDH, LDR
10904     if (AllowsUnaligned) {
10905       if (Fast)
10906         *Fast = Subtarget->hasV7Ops();
10907       return true;
10908     }
10909     return false;
10910   }
10911   case MVT::f64:
10912   case MVT::v2f64: {
10913     // For any little-endian targets with neon, we can support unaligned ld/st
10914     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
10915     // A big-endian target may also explicitly support unaligned accesses
10916     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
10917       if (Fast)
10918         *Fast = true;
10919       return true;
10920     }
10921     return false;
10922   }
10923   }
10924 }
10925 
10926 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
10927                        unsigned AlignCheck) {
10928   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
10929           (DstAlign == 0 || DstAlign % AlignCheck == 0));
10930 }
10931 
10932 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
10933                                            unsigned DstAlign, unsigned SrcAlign,
10934                                            bool IsMemset, bool ZeroMemset,
10935                                            bool MemcpyStrSrc,
10936                                            MachineFunction &MF) const {
10937   const Function *F = MF.getFunction();
10938 
10939   // See if we can use NEON instructions for this...
10940   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
10941       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10942     bool Fast;
10943     if (Size >= 16 &&
10944         (memOpAlign(SrcAlign, DstAlign, 16) ||
10945          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
10946       return MVT::v2f64;
10947     } else if (Size >= 8 &&
10948                (memOpAlign(SrcAlign, DstAlign, 8) ||
10949                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
10950                  Fast))) {
10951       return MVT::f64;
10952     }
10953   }
10954 
10955   // Lowering to i32/i16 if the size permits.
10956   if (Size >= 4)
10957     return MVT::i32;
10958   else if (Size >= 2)
10959     return MVT::i16;
10960 
10961   // Let the target-independent logic figure it out.
10962   return MVT::Other;
10963 }
10964 
10965 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
10966   if (Val.getOpcode() != ISD::LOAD)
10967     return false;
10968 
10969   EVT VT1 = Val.getValueType();
10970   if (!VT1.isSimple() || !VT1.isInteger() ||
10971       !VT2.isSimple() || !VT2.isInteger())
10972     return false;
10973 
10974   switch (VT1.getSimpleVT().SimpleTy) {
10975   default: break;
10976   case MVT::i1:
10977   case MVT::i8:
10978   case MVT::i16:
10979     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
10980     return true;
10981   }
10982 
10983   return false;
10984 }
10985 
10986 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
10987   EVT VT = ExtVal.getValueType();
10988 
10989   if (!isTypeLegal(VT))
10990     return false;
10991 
10992   // Don't create a loadext if we can fold the extension into a wide/long
10993   // instruction.
10994   // If there's more than one user instruction, the loadext is desirable no
10995   // matter what.  There can be two uses by the same instruction.
10996   if (ExtVal->use_empty() ||
10997       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
10998     return true;
10999 
11000   SDNode *U = *ExtVal->use_begin();
11001   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
11002        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
11003     return false;
11004 
11005   return true;
11006 }
11007 
11008 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
11009   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11010     return false;
11011 
11012   if (!isTypeLegal(EVT::getEVT(Ty1)))
11013     return false;
11014 
11015   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
11016 
11017   // Assuming the caller doesn't have a zeroext or signext return parameter,
11018   // truncation all the way down to i1 is valid.
11019   return true;
11020 }
11021 
11022 
11023 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
11024   if (V < 0)
11025     return false;
11026 
11027   unsigned Scale = 1;
11028   switch (VT.getSimpleVT().SimpleTy) {
11029   default: return false;
11030   case MVT::i1:
11031   case MVT::i8:
11032     // Scale == 1;
11033     break;
11034   case MVT::i16:
11035     // Scale == 2;
11036     Scale = 2;
11037     break;
11038   case MVT::i32:
11039     // Scale == 4;
11040     Scale = 4;
11041     break;
11042   }
11043 
11044   if ((V & (Scale - 1)) != 0)
11045     return false;
11046   V /= Scale;
11047   return V == (V & ((1LL << 5) - 1));
11048 }
11049 
11050 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
11051                                       const ARMSubtarget *Subtarget) {
11052   bool isNeg = false;
11053   if (V < 0) {
11054     isNeg = true;
11055     V = - V;
11056   }
11057 
11058   switch (VT.getSimpleVT().SimpleTy) {
11059   default: return false;
11060   case MVT::i1:
11061   case MVT::i8:
11062   case MVT::i16:
11063   case MVT::i32:
11064     // + imm12 or - imm8
11065     if (isNeg)
11066       return V == (V & ((1LL << 8) - 1));
11067     return V == (V & ((1LL << 12) - 1));
11068   case MVT::f32:
11069   case MVT::f64:
11070     // Same as ARM mode. FIXME: NEON?
11071     if (!Subtarget->hasVFP2())
11072       return false;
11073     if ((V & 3) != 0)
11074       return false;
11075     V >>= 2;
11076     return V == (V & ((1LL << 8) - 1));
11077   }
11078 }
11079 
11080 /// isLegalAddressImmediate - Return true if the integer value can be used
11081 /// as the offset of the target addressing mode for load / store of the
11082 /// given type.
11083 static bool isLegalAddressImmediate(int64_t V, EVT VT,
11084                                     const ARMSubtarget *Subtarget) {
11085   if (V == 0)
11086     return true;
11087 
11088   if (!VT.isSimple())
11089     return false;
11090 
11091   if (Subtarget->isThumb1Only())
11092     return isLegalT1AddressImmediate(V, VT);
11093   else if (Subtarget->isThumb2())
11094     return isLegalT2AddressImmediate(V, VT, Subtarget);
11095 
11096   // ARM mode.
11097   if (V < 0)
11098     V = - V;
11099   switch (VT.getSimpleVT().SimpleTy) {
11100   default: return false;
11101   case MVT::i1:
11102   case MVT::i8:
11103   case MVT::i32:
11104     // +- imm12
11105     return V == (V & ((1LL << 12) - 1));
11106   case MVT::i16:
11107     // +- imm8
11108     return V == (V & ((1LL << 8) - 1));
11109   case MVT::f32:
11110   case MVT::f64:
11111     if (!Subtarget->hasVFP2()) // FIXME: NEON?
11112       return false;
11113     if ((V & 3) != 0)
11114       return false;
11115     V >>= 2;
11116     return V == (V & ((1LL << 8) - 1));
11117   }
11118 }
11119 
11120 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
11121                                                       EVT VT) const {
11122   int Scale = AM.Scale;
11123   if (Scale < 0)
11124     return false;
11125 
11126   switch (VT.getSimpleVT().SimpleTy) {
11127   default: return false;
11128   case MVT::i1:
11129   case MVT::i8:
11130   case MVT::i16:
11131   case MVT::i32:
11132     if (Scale == 1)
11133       return true;
11134     // r + r << imm
11135     Scale = Scale & ~1;
11136     return Scale == 2 || Scale == 4 || Scale == 8;
11137   case MVT::i64:
11138     // r + r
11139     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11140       return true;
11141     return false;
11142   case MVT::isVoid:
11143     // Note, we allow "void" uses (basically, uses that aren't loads or
11144     // stores), because arm allows folding a scale into many arithmetic
11145     // operations.  This should be made more precise and revisited later.
11146 
11147     // Allow r << imm, but the imm has to be a multiple of two.
11148     if (Scale & 1) return false;
11149     return isPowerOf2_32(Scale);
11150   }
11151 }
11152 
11153 /// isLegalAddressingMode - Return true if the addressing mode represented
11154 /// by AM is legal for this target, for a load/store of the specified type.
11155 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11156                                               const AddrMode &AM, Type *Ty,
11157                                               unsigned AS) const {
11158   EVT VT = getValueType(DL, Ty, true);
11159   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
11160     return false;
11161 
11162   // Can never fold addr of global into load/store.
11163   if (AM.BaseGV)
11164     return false;
11165 
11166   switch (AM.Scale) {
11167   case 0:  // no scale reg, must be "r+i" or "r", or "i".
11168     break;
11169   case 1:
11170     if (Subtarget->isThumb1Only())
11171       return false;
11172     // FALL THROUGH.
11173   default:
11174     // ARM doesn't support any R+R*scale+imm addr modes.
11175     if (AM.BaseOffs)
11176       return false;
11177 
11178     if (!VT.isSimple())
11179       return false;
11180 
11181     if (Subtarget->isThumb2())
11182       return isLegalT2ScaledAddressingMode(AM, VT);
11183 
11184     int Scale = AM.Scale;
11185     switch (VT.getSimpleVT().SimpleTy) {
11186     default: return false;
11187     case MVT::i1:
11188     case MVT::i8:
11189     case MVT::i32:
11190       if (Scale < 0) Scale = -Scale;
11191       if (Scale == 1)
11192         return true;
11193       // r + r << imm
11194       return isPowerOf2_32(Scale & ~1);
11195     case MVT::i16:
11196     case MVT::i64:
11197       // r + r
11198       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11199         return true;
11200       return false;
11201 
11202     case MVT::isVoid:
11203       // Note, we allow "void" uses (basically, uses that aren't loads or
11204       // stores), because arm allows folding a scale into many arithmetic
11205       // operations.  This should be made more precise and revisited later.
11206 
11207       // Allow r << imm, but the imm has to be a multiple of two.
11208       if (Scale & 1) return false;
11209       return isPowerOf2_32(Scale);
11210     }
11211   }
11212   return true;
11213 }
11214 
11215 /// isLegalICmpImmediate - Return true if the specified immediate is legal
11216 /// icmp immediate, that is the target has icmp instructions which can compare
11217 /// a register against the immediate without having to materialize the
11218 /// immediate into a register.
11219 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11220   // Thumb2 and ARM modes can use cmn for negative immediates.
11221   if (!Subtarget->isThumb())
11222     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
11223   if (Subtarget->isThumb2())
11224     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
11225   // Thumb1 doesn't have cmn, and only 8-bit immediates.
11226   return Imm >= 0 && Imm <= 255;
11227 }
11228 
11229 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
11230 /// *or sub* immediate, that is the target has add or sub instructions which can
11231 /// add a register with the immediate without having to materialize the
11232 /// immediate into a register.
11233 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11234   // Same encoding for add/sub, just flip the sign.
11235   int64_t AbsImm = std::abs(Imm);
11236   if (!Subtarget->isThumb())
11237     return ARM_AM::getSOImmVal(AbsImm) != -1;
11238   if (Subtarget->isThumb2())
11239     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
11240   // Thumb1 only has 8-bit unsigned immediate.
11241   return AbsImm >= 0 && AbsImm <= 255;
11242 }
11243 
11244 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
11245                                       bool isSEXTLoad, SDValue &Base,
11246                                       SDValue &Offset, bool &isInc,
11247                                       SelectionDAG &DAG) {
11248   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
11249     return false;
11250 
11251   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
11252     // AddressingMode 3
11253     Base = Ptr->getOperand(0);
11254     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11255       int RHSC = (int)RHS->getZExtValue();
11256       if (RHSC < 0 && RHSC > -256) {
11257         assert(Ptr->getOpcode() == ISD::ADD);
11258         isInc = false;
11259         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11260         return true;
11261       }
11262     }
11263     isInc = (Ptr->getOpcode() == ISD::ADD);
11264     Offset = Ptr->getOperand(1);
11265     return true;
11266   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
11267     // AddressingMode 2
11268     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11269       int RHSC = (int)RHS->getZExtValue();
11270       if (RHSC < 0 && RHSC > -0x1000) {
11271         assert(Ptr->getOpcode() == ISD::ADD);
11272         isInc = false;
11273         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11274         Base = Ptr->getOperand(0);
11275         return true;
11276       }
11277     }
11278 
11279     if (Ptr->getOpcode() == ISD::ADD) {
11280       isInc = true;
11281       ARM_AM::ShiftOpc ShOpcVal=
11282         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
11283       if (ShOpcVal != ARM_AM::no_shift) {
11284         Base = Ptr->getOperand(1);
11285         Offset = Ptr->getOperand(0);
11286       } else {
11287         Base = Ptr->getOperand(0);
11288         Offset = Ptr->getOperand(1);
11289       }
11290       return true;
11291     }
11292 
11293     isInc = (Ptr->getOpcode() == ISD::ADD);
11294     Base = Ptr->getOperand(0);
11295     Offset = Ptr->getOperand(1);
11296     return true;
11297   }
11298 
11299   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
11300   return false;
11301 }
11302 
11303 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
11304                                      bool isSEXTLoad, SDValue &Base,
11305                                      SDValue &Offset, bool &isInc,
11306                                      SelectionDAG &DAG) {
11307   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
11308     return false;
11309 
11310   Base = Ptr->getOperand(0);
11311   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11312     int RHSC = (int)RHS->getZExtValue();
11313     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
11314       assert(Ptr->getOpcode() == ISD::ADD);
11315       isInc = false;
11316       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11317       return true;
11318     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
11319       isInc = Ptr->getOpcode() == ISD::ADD;
11320       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
11321       return true;
11322     }
11323   }
11324 
11325   return false;
11326 }
11327 
11328 /// getPreIndexedAddressParts - returns true by value, base pointer and
11329 /// offset pointer and addressing mode by reference if the node's address
11330 /// can be legally represented as pre-indexed load / store address.
11331 bool
11332 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11333                                              SDValue &Offset,
11334                                              ISD::MemIndexedMode &AM,
11335                                              SelectionDAG &DAG) const {
11336   if (Subtarget->isThumb1Only())
11337     return false;
11338 
11339   EVT VT;
11340   SDValue Ptr;
11341   bool isSEXTLoad = false;
11342   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11343     Ptr = LD->getBasePtr();
11344     VT  = LD->getMemoryVT();
11345     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
11346   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11347     Ptr = ST->getBasePtr();
11348     VT  = ST->getMemoryVT();
11349   } else
11350     return false;
11351 
11352   bool isInc;
11353   bool isLegal = false;
11354   if (Subtarget->isThumb2())
11355     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
11356                                        Offset, isInc, DAG);
11357   else
11358     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
11359                                         Offset, isInc, DAG);
11360   if (!isLegal)
11361     return false;
11362 
11363   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
11364   return true;
11365 }
11366 
11367 /// getPostIndexedAddressParts - returns true by value, base pointer and
11368 /// offset pointer and addressing mode by reference if this node can be
11369 /// combined with a load / store to form a post-indexed load / store.
11370 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
11371                                                    SDValue &Base,
11372                                                    SDValue &Offset,
11373                                                    ISD::MemIndexedMode &AM,
11374                                                    SelectionDAG &DAG) const {
11375   if (Subtarget->isThumb1Only())
11376     return false;
11377 
11378   EVT VT;
11379   SDValue Ptr;
11380   bool isSEXTLoad = false;
11381   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11382     VT  = LD->getMemoryVT();
11383     Ptr = LD->getBasePtr();
11384     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
11385   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11386     VT  = ST->getMemoryVT();
11387     Ptr = ST->getBasePtr();
11388   } else
11389     return false;
11390 
11391   bool isInc;
11392   bool isLegal = false;
11393   if (Subtarget->isThumb2())
11394     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
11395                                        isInc, DAG);
11396   else
11397     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
11398                                         isInc, DAG);
11399   if (!isLegal)
11400     return false;
11401 
11402   if (Ptr != Base) {
11403     // Swap base ptr and offset to catch more post-index load / store when
11404     // it's legal. In Thumb2 mode, offset must be an immediate.
11405     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
11406         !Subtarget->isThumb2())
11407       std::swap(Base, Offset);
11408 
11409     // Post-indexed load / store update the base pointer.
11410     if (Ptr != Base)
11411       return false;
11412   }
11413 
11414   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
11415   return true;
11416 }
11417 
11418 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11419                                                       APInt &KnownZero,
11420                                                       APInt &KnownOne,
11421                                                       const SelectionDAG &DAG,
11422                                                       unsigned Depth) const {
11423   unsigned BitWidth = KnownOne.getBitWidth();
11424   KnownZero = KnownOne = APInt(BitWidth, 0);
11425   switch (Op.getOpcode()) {
11426   default: break;
11427   case ARMISD::ADDC:
11428   case ARMISD::ADDE:
11429   case ARMISD::SUBC:
11430   case ARMISD::SUBE:
11431     // These nodes' second result is a boolean
11432     if (Op.getResNo() == 0)
11433       break;
11434     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
11435     break;
11436   case ARMISD::CMOV: {
11437     // Bits are known zero/one if known on the LHS and RHS.
11438     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
11439     if (KnownZero == 0 && KnownOne == 0) return;
11440 
11441     APInt KnownZeroRHS, KnownOneRHS;
11442     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
11443     KnownZero &= KnownZeroRHS;
11444     KnownOne  &= KnownOneRHS;
11445     return;
11446   }
11447   case ISD::INTRINSIC_W_CHAIN: {
11448     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
11449     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
11450     switch (IntID) {
11451     default: return;
11452     case Intrinsic::arm_ldaex:
11453     case Intrinsic::arm_ldrex: {
11454       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
11455       unsigned MemBits = VT.getScalarType().getSizeInBits();
11456       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
11457       return;
11458     }
11459     }
11460   }
11461   }
11462 }
11463 
11464 //===----------------------------------------------------------------------===//
11465 //                           ARM Inline Assembly Support
11466 //===----------------------------------------------------------------------===//
11467 
11468 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
11469   // Looking for "rev" which is V6+.
11470   if (!Subtarget->hasV6Ops())
11471     return false;
11472 
11473   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11474   std::string AsmStr = IA->getAsmString();
11475   SmallVector<StringRef, 4> AsmPieces;
11476   SplitString(AsmStr, AsmPieces, ";\n");
11477 
11478   switch (AsmPieces.size()) {
11479   default: return false;
11480   case 1:
11481     AsmStr = AsmPieces[0];
11482     AsmPieces.clear();
11483     SplitString(AsmStr, AsmPieces, " \t,");
11484 
11485     // rev $0, $1
11486     if (AsmPieces.size() == 3 &&
11487         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
11488         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
11489       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11490       if (Ty && Ty->getBitWidth() == 32)
11491         return IntrinsicLowering::LowerToByteSwap(CI);
11492     }
11493     break;
11494   }
11495 
11496   return false;
11497 }
11498 
11499 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
11500   // At this point, we have to lower this constraint to something else, so we
11501   // lower it to an "r" or "w". However, by doing this we will force the result
11502   // to be in register, while the X constraint is much more permissive.
11503   //
11504   // Although we are correct (we are free to emit anything, without
11505   // constraints), we might break use cases that would expect us to be more
11506   // efficient and emit something else.
11507   if (!Subtarget->hasVFP2())
11508     return "r";
11509   if (ConstraintVT.isFloatingPoint())
11510     return "w";
11511   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
11512      (ConstraintVT.getSizeInBits() == 64 ||
11513       ConstraintVT.getSizeInBits() == 128))
11514     return "w";
11515 
11516   return "r";
11517 }
11518 
11519 /// getConstraintType - Given a constraint letter, return the type of
11520 /// constraint it is for this target.
11521 ARMTargetLowering::ConstraintType
11522 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
11523   if (Constraint.size() == 1) {
11524     switch (Constraint[0]) {
11525     default:  break;
11526     case 'l': return C_RegisterClass;
11527     case 'w': return C_RegisterClass;
11528     case 'h': return C_RegisterClass;
11529     case 'x': return C_RegisterClass;
11530     case 't': return C_RegisterClass;
11531     case 'j': return C_Other; // Constant for movw.
11532       // An address with a single base register. Due to the way we
11533       // currently handle addresses it is the same as an 'r' memory constraint.
11534     case 'Q': return C_Memory;
11535     }
11536   } else if (Constraint.size() == 2) {
11537     switch (Constraint[0]) {
11538     default: break;
11539     // All 'U+' constraints are addresses.
11540     case 'U': return C_Memory;
11541     }
11542   }
11543   return TargetLowering::getConstraintType(Constraint);
11544 }
11545 
11546 /// Examine constraint type and operand type and determine a weight value.
11547 /// This object must already have been set up with the operand type
11548 /// and the current alternative constraint selected.
11549 TargetLowering::ConstraintWeight
11550 ARMTargetLowering::getSingleConstraintMatchWeight(
11551     AsmOperandInfo &info, const char *constraint) const {
11552   ConstraintWeight weight = CW_Invalid;
11553   Value *CallOperandVal = info.CallOperandVal;
11554     // If we don't have a value, we can't do a match,
11555     // but allow it at the lowest weight.
11556   if (!CallOperandVal)
11557     return CW_Default;
11558   Type *type = CallOperandVal->getType();
11559   // Look at the constraint type.
11560   switch (*constraint) {
11561   default:
11562     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11563     break;
11564   case 'l':
11565     if (type->isIntegerTy()) {
11566       if (Subtarget->isThumb())
11567         weight = CW_SpecificReg;
11568       else
11569         weight = CW_Register;
11570     }
11571     break;
11572   case 'w':
11573     if (type->isFloatingPointTy())
11574       weight = CW_Register;
11575     break;
11576   }
11577   return weight;
11578 }
11579 
11580 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
11581 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
11582     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
11583   if (Constraint.size() == 1) {
11584     // GCC ARM Constraint Letters
11585     switch (Constraint[0]) {
11586     case 'l': // Low regs or general regs.
11587       if (Subtarget->isThumb())
11588         return RCPair(0U, &ARM::tGPRRegClass);
11589       return RCPair(0U, &ARM::GPRRegClass);
11590     case 'h': // High regs or no regs.
11591       if (Subtarget->isThumb())
11592         return RCPair(0U, &ARM::hGPRRegClass);
11593       break;
11594     case 'r':
11595       if (Subtarget->isThumb1Only())
11596         return RCPair(0U, &ARM::tGPRRegClass);
11597       return RCPair(0U, &ARM::GPRRegClass);
11598     case 'w':
11599       if (VT == MVT::Other)
11600         break;
11601       if (VT == MVT::f32)
11602         return RCPair(0U, &ARM::SPRRegClass);
11603       if (VT.getSizeInBits() == 64)
11604         return RCPair(0U, &ARM::DPRRegClass);
11605       if (VT.getSizeInBits() == 128)
11606         return RCPair(0U, &ARM::QPRRegClass);
11607       break;
11608     case 'x':
11609       if (VT == MVT::Other)
11610         break;
11611       if (VT == MVT::f32)
11612         return RCPair(0U, &ARM::SPR_8RegClass);
11613       if (VT.getSizeInBits() == 64)
11614         return RCPair(0U, &ARM::DPR_8RegClass);
11615       if (VT.getSizeInBits() == 128)
11616         return RCPair(0U, &ARM::QPR_8RegClass);
11617       break;
11618     case 't':
11619       if (VT == MVT::f32)
11620         return RCPair(0U, &ARM::SPRRegClass);
11621       break;
11622     }
11623   }
11624   if (StringRef("{cc}").equals_lower(Constraint))
11625     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
11626 
11627   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11628 }
11629 
11630 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11631 /// vector.  If it is invalid, don't add anything to Ops.
11632 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11633                                                      std::string &Constraint,
11634                                                      std::vector<SDValue>&Ops,
11635                                                      SelectionDAG &DAG) const {
11636   SDValue Result;
11637 
11638   // Currently only support length 1 constraints.
11639   if (Constraint.length() != 1) return;
11640 
11641   char ConstraintLetter = Constraint[0];
11642   switch (ConstraintLetter) {
11643   default: break;
11644   case 'j':
11645   case 'I': case 'J': case 'K': case 'L':
11646   case 'M': case 'N': case 'O':
11647     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
11648     if (!C)
11649       return;
11650 
11651     int64_t CVal64 = C->getSExtValue();
11652     int CVal = (int) CVal64;
11653     // None of these constraints allow values larger than 32 bits.  Check
11654     // that the value fits in an int.
11655     if (CVal != CVal64)
11656       return;
11657 
11658     switch (ConstraintLetter) {
11659       case 'j':
11660         // Constant suitable for movw, must be between 0 and
11661         // 65535.
11662         if (Subtarget->hasV6T2Ops())
11663           if (CVal >= 0 && CVal <= 65535)
11664             break;
11665         return;
11666       case 'I':
11667         if (Subtarget->isThumb1Only()) {
11668           // This must be a constant between 0 and 255, for ADD
11669           // immediates.
11670           if (CVal >= 0 && CVal <= 255)
11671             break;
11672         } else if (Subtarget->isThumb2()) {
11673           // A constant that can be used as an immediate value in a
11674           // data-processing instruction.
11675           if (ARM_AM::getT2SOImmVal(CVal) != -1)
11676             break;
11677         } else {
11678           // A constant that can be used as an immediate value in a
11679           // data-processing instruction.
11680           if (ARM_AM::getSOImmVal(CVal) != -1)
11681             break;
11682         }
11683         return;
11684 
11685       case 'J':
11686         if (Subtarget->isThumb1Only()) {
11687           // This must be a constant between -255 and -1, for negated ADD
11688           // immediates. This can be used in GCC with an "n" modifier that
11689           // prints the negated value, for use with SUB instructions. It is
11690           // not useful otherwise but is implemented for compatibility.
11691           if (CVal >= -255 && CVal <= -1)
11692             break;
11693         } else {
11694           // This must be a constant between -4095 and 4095. It is not clear
11695           // what this constraint is intended for. Implemented for
11696           // compatibility with GCC.
11697           if (CVal >= -4095 && CVal <= 4095)
11698             break;
11699         }
11700         return;
11701 
11702       case 'K':
11703         if (Subtarget->isThumb1Only()) {
11704           // A 32-bit value where only one byte has a nonzero value. Exclude
11705           // zero to match GCC. This constraint is used by GCC internally for
11706           // constants that can be loaded with a move/shift combination.
11707           // It is not useful otherwise but is implemented for compatibility.
11708           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
11709             break;
11710         } else if (Subtarget->isThumb2()) {
11711           // A constant whose bitwise inverse can be used as an immediate
11712           // value in a data-processing instruction. This can be used in GCC
11713           // with a "B" modifier that prints the inverted value, for use with
11714           // BIC and MVN instructions. It is not useful otherwise but is
11715           // implemented for compatibility.
11716           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
11717             break;
11718         } else {
11719           // A constant whose bitwise inverse can be used as an immediate
11720           // value in a data-processing instruction. This can be used in GCC
11721           // with a "B" modifier that prints the inverted value, for use with
11722           // BIC and MVN instructions. It is not useful otherwise but is
11723           // implemented for compatibility.
11724           if (ARM_AM::getSOImmVal(~CVal) != -1)
11725             break;
11726         }
11727         return;
11728 
11729       case 'L':
11730         if (Subtarget->isThumb1Only()) {
11731           // This must be a constant between -7 and 7,
11732           // for 3-operand ADD/SUB immediate instructions.
11733           if (CVal >= -7 && CVal < 7)
11734             break;
11735         } else if (Subtarget->isThumb2()) {
11736           // A constant whose negation can be used as an immediate value in a
11737           // data-processing instruction. This can be used in GCC with an "n"
11738           // modifier that prints the negated value, for use with SUB
11739           // instructions. It is not useful otherwise but is implemented for
11740           // compatibility.
11741           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
11742             break;
11743         } else {
11744           // A constant whose negation can be used as an immediate value in a
11745           // data-processing instruction. This can be used in GCC with an "n"
11746           // modifier that prints the negated value, for use with SUB
11747           // instructions. It is not useful otherwise but is implemented for
11748           // compatibility.
11749           if (ARM_AM::getSOImmVal(-CVal) != -1)
11750             break;
11751         }
11752         return;
11753 
11754       case 'M':
11755         if (Subtarget->isThumb1Only()) {
11756           // This must be a multiple of 4 between 0 and 1020, for
11757           // ADD sp + immediate.
11758           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
11759             break;
11760         } else {
11761           // A power of two or a constant between 0 and 32.  This is used in
11762           // GCC for the shift amount on shifted register operands, but it is
11763           // useful in general for any shift amounts.
11764           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
11765             break;
11766         }
11767         return;
11768 
11769       case 'N':
11770         if (Subtarget->isThumb()) {  // FIXME thumb2
11771           // This must be a constant between 0 and 31, for shift amounts.
11772           if (CVal >= 0 && CVal <= 31)
11773             break;
11774         }
11775         return;
11776 
11777       case 'O':
11778         if (Subtarget->isThumb()) {  // FIXME thumb2
11779           // This must be a multiple of 4 between -508 and 508, for
11780           // ADD/SUB sp = sp + immediate.
11781           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
11782             break;
11783         }
11784         return;
11785     }
11786     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
11787     break;
11788   }
11789 
11790   if (Result.getNode()) {
11791     Ops.push_back(Result);
11792     return;
11793   }
11794   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11795 }
11796 
11797 static RTLIB::Libcall getDivRemLibcall(
11798     const SDNode *N, MVT::SimpleValueType SVT) {
11799   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
11800           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
11801          "Unhandled Opcode in getDivRemLibcall");
11802   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
11803                   N->getOpcode() == ISD::SREM;
11804   RTLIB::Libcall LC;
11805   switch (SVT) {
11806   default: llvm_unreachable("Unexpected request for libcall!");
11807   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
11808   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
11809   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
11810   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
11811   }
11812   return LC;
11813 }
11814 
11815 static TargetLowering::ArgListTy getDivRemArgList(
11816     const SDNode *N, LLVMContext *Context) {
11817   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
11818           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
11819          "Unhandled Opcode in getDivRemArgList");
11820   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
11821                   N->getOpcode() == ISD::SREM;
11822   TargetLowering::ArgListTy Args;
11823   TargetLowering::ArgListEntry Entry;
11824   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
11825     EVT ArgVT = N->getOperand(i).getValueType();
11826     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
11827     Entry.Node = N->getOperand(i);
11828     Entry.Ty = ArgTy;
11829     Entry.isSExt = isSigned;
11830     Entry.isZExt = !isSigned;
11831     Args.push_back(Entry);
11832   }
11833   return Args;
11834 }
11835 
11836 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
11837   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
11838           Subtarget->isTargetGNUAEABI()) &&
11839          "Register-based DivRem lowering only");
11840   unsigned Opcode = Op->getOpcode();
11841   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
11842          "Invalid opcode for Div/Rem lowering");
11843   bool isSigned = (Opcode == ISD::SDIVREM);
11844   EVT VT = Op->getValueType(0);
11845   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
11846 
11847   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
11848                                        VT.getSimpleVT().SimpleTy);
11849   SDValue InChain = DAG.getEntryNode();
11850 
11851   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
11852                                                     DAG.getContext());
11853 
11854   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
11855                                          getPointerTy(DAG.getDataLayout()));
11856 
11857   Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
11858 
11859   SDLoc dl(Op);
11860   TargetLowering::CallLoweringInfo CLI(DAG);
11861   CLI.setDebugLoc(dl).setChain(InChain)
11862     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
11863     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
11864 
11865   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
11866   return CallInfo.first;
11867 }
11868 
11869 // Lowers REM using divmod helpers
11870 // see RTABI section 4.2/4.3
11871 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
11872   // Build return types (div and rem)
11873   std::vector<Type*> RetTyParams;
11874   Type *RetTyElement;
11875 
11876   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
11877   default: llvm_unreachable("Unexpected request for libcall!");
11878   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
11879   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
11880   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
11881   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
11882   }
11883 
11884   RetTyParams.push_back(RetTyElement);
11885   RetTyParams.push_back(RetTyElement);
11886   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
11887   Type *RetTy = StructType::get(*DAG.getContext(), ret);
11888 
11889   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
11890                                                              SimpleTy);
11891   SDValue InChain = DAG.getEntryNode();
11892   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext());
11893   bool isSigned = N->getOpcode() == ISD::SREM;
11894   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
11895                                          getPointerTy(DAG.getDataLayout()));
11896 
11897   // Lower call
11898   CallLoweringInfo CLI(DAG);
11899   CLI.setChain(InChain)
11900      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args), 0)
11901      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
11902   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
11903 
11904   // Return second (rem) result operand (first contains div)
11905   SDNode *ResNode = CallResult.first.getNode();
11906   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
11907   return ResNode->getOperand(1);
11908 }
11909 
11910 SDValue
11911 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
11912   assert(Subtarget->isTargetWindows() && "unsupported target platform");
11913   SDLoc DL(Op);
11914 
11915   // Get the inputs.
11916   SDValue Chain = Op.getOperand(0);
11917   SDValue Size  = Op.getOperand(1);
11918 
11919   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
11920                               DAG.getConstant(2, DL, MVT::i32));
11921 
11922   SDValue Flag;
11923   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
11924   Flag = Chain.getValue(1);
11925 
11926   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11927   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
11928 
11929   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
11930   Chain = NewSP.getValue(1);
11931 
11932   SDValue Ops[2] = { NewSP, Chain };
11933   return DAG.getMergeValues(Ops, DL);
11934 }
11935 
11936 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11937   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
11938          "Unexpected type for custom-lowering FP_EXTEND");
11939 
11940   RTLIB::Libcall LC;
11941   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
11942 
11943   SDValue SrcVal = Op.getOperand(0);
11944   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
11945                      SDLoc(Op)).first;
11946 }
11947 
11948 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
11949   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
11950          Subtarget->isFPOnlySP() &&
11951          "Unexpected type for custom-lowering FP_ROUND");
11952 
11953   RTLIB::Libcall LC;
11954   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
11955 
11956   SDValue SrcVal = Op.getOperand(0);
11957   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
11958                      SDLoc(Op)).first;
11959 }
11960 
11961 bool
11962 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11963   // The ARM target isn't yet aware of offsets.
11964   return false;
11965 }
11966 
11967 bool ARM::isBitFieldInvertedMask(unsigned v) {
11968   if (v == 0xffffffff)
11969     return false;
11970 
11971   // there can be 1's on either or both "outsides", all the "inside"
11972   // bits must be 0's
11973   return isShiftedMask_32(~v);
11974 }
11975 
11976 /// isFPImmLegal - Returns true if the target can instruction select the
11977 /// specified FP immediate natively. If false, the legalizer will
11978 /// materialize the FP immediate as a load from a constant pool.
11979 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
11980   if (!Subtarget->hasVFP3())
11981     return false;
11982   if (VT == MVT::f32)
11983     return ARM_AM::getFP32Imm(Imm) != -1;
11984   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
11985     return ARM_AM::getFP64Imm(Imm) != -1;
11986   return false;
11987 }
11988 
11989 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
11990 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
11991 /// specified in the intrinsic calls.
11992 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11993                                            const CallInst &I,
11994                                            unsigned Intrinsic) const {
11995   switch (Intrinsic) {
11996   case Intrinsic::arm_neon_vld1:
11997   case Intrinsic::arm_neon_vld2:
11998   case Intrinsic::arm_neon_vld3:
11999   case Intrinsic::arm_neon_vld4:
12000   case Intrinsic::arm_neon_vld2lane:
12001   case Intrinsic::arm_neon_vld3lane:
12002   case Intrinsic::arm_neon_vld4lane: {
12003     Info.opc = ISD::INTRINSIC_W_CHAIN;
12004     // Conservatively set memVT to the entire set of vectors loaded.
12005     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12006     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
12007     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12008     Info.ptrVal = I.getArgOperand(0);
12009     Info.offset = 0;
12010     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12011     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12012     Info.vol = false; // volatile loads with NEON intrinsics not supported
12013     Info.readMem = true;
12014     Info.writeMem = false;
12015     return true;
12016   }
12017   case Intrinsic::arm_neon_vst1:
12018   case Intrinsic::arm_neon_vst2:
12019   case Intrinsic::arm_neon_vst3:
12020   case Intrinsic::arm_neon_vst4:
12021   case Intrinsic::arm_neon_vst2lane:
12022   case Intrinsic::arm_neon_vst3lane:
12023   case Intrinsic::arm_neon_vst4lane: {
12024     Info.opc = ISD::INTRINSIC_VOID;
12025     // Conservatively set memVT to the entire set of vectors stored.
12026     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12027     unsigned NumElts = 0;
12028     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
12029       Type *ArgTy = I.getArgOperand(ArgI)->getType();
12030       if (!ArgTy->isVectorTy())
12031         break;
12032       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
12033     }
12034     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12035     Info.ptrVal = I.getArgOperand(0);
12036     Info.offset = 0;
12037     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12038     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12039     Info.vol = false; // volatile stores with NEON intrinsics not supported
12040     Info.readMem = false;
12041     Info.writeMem = true;
12042     return true;
12043   }
12044   case Intrinsic::arm_ldaex:
12045   case Intrinsic::arm_ldrex: {
12046     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12047     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
12048     Info.opc = ISD::INTRINSIC_W_CHAIN;
12049     Info.memVT = MVT::getVT(PtrTy->getElementType());
12050     Info.ptrVal = I.getArgOperand(0);
12051     Info.offset = 0;
12052     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12053     Info.vol = true;
12054     Info.readMem = true;
12055     Info.writeMem = false;
12056     return true;
12057   }
12058   case Intrinsic::arm_stlex:
12059   case Intrinsic::arm_strex: {
12060     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12061     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
12062     Info.opc = ISD::INTRINSIC_W_CHAIN;
12063     Info.memVT = MVT::getVT(PtrTy->getElementType());
12064     Info.ptrVal = I.getArgOperand(1);
12065     Info.offset = 0;
12066     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12067     Info.vol = true;
12068     Info.readMem = false;
12069     Info.writeMem = true;
12070     return true;
12071   }
12072   case Intrinsic::arm_stlexd:
12073   case Intrinsic::arm_strexd: {
12074     Info.opc = ISD::INTRINSIC_W_CHAIN;
12075     Info.memVT = MVT::i64;
12076     Info.ptrVal = I.getArgOperand(2);
12077     Info.offset = 0;
12078     Info.align = 8;
12079     Info.vol = true;
12080     Info.readMem = false;
12081     Info.writeMem = true;
12082     return true;
12083   }
12084   case Intrinsic::arm_ldaexd:
12085   case Intrinsic::arm_ldrexd: {
12086     Info.opc = ISD::INTRINSIC_W_CHAIN;
12087     Info.memVT = MVT::i64;
12088     Info.ptrVal = I.getArgOperand(0);
12089     Info.offset = 0;
12090     Info.align = 8;
12091     Info.vol = true;
12092     Info.readMem = true;
12093     Info.writeMem = false;
12094     return true;
12095   }
12096   default:
12097     break;
12098   }
12099 
12100   return false;
12101 }
12102 
12103 /// \brief Returns true if it is beneficial to convert a load of a constant
12104 /// to just the constant itself.
12105 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
12106                                                           Type *Ty) const {
12107   assert(Ty->isIntegerTy());
12108 
12109   unsigned Bits = Ty->getPrimitiveSizeInBits();
12110   if (Bits == 0 || Bits > 32)
12111     return false;
12112   return true;
12113 }
12114 
12115 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
12116                                         ARM_MB::MemBOpt Domain) const {
12117   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12118 
12119   // First, if the target has no DMB, see what fallback we can use.
12120   if (!Subtarget->hasDataBarrier()) {
12121     // Some ARMv6 cpus can support data barriers with an mcr instruction.
12122     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
12123     // here.
12124     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
12125       Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
12126       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
12127                         Builder.getInt32(0), Builder.getInt32(7),
12128                         Builder.getInt32(10), Builder.getInt32(5)};
12129       return Builder.CreateCall(MCR, args);
12130     } else {
12131       // Instead of using barriers, atomic accesses on these subtargets use
12132       // libcalls.
12133       llvm_unreachable("makeDMB on a target so old that it has no barriers");
12134     }
12135   } else {
12136     Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
12137     // Only a full system barrier exists in the M-class architectures.
12138     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
12139     Constant *CDomain = Builder.getInt32(Domain);
12140     return Builder.CreateCall(DMB, CDomain);
12141   }
12142 }
12143 
12144 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
12145 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
12146                                          AtomicOrdering Ord, bool IsStore,
12147                                          bool IsLoad) const {
12148   switch (Ord) {
12149   case AtomicOrdering::NotAtomic:
12150   case AtomicOrdering::Unordered:
12151     llvm_unreachable("Invalid fence: unordered/non-atomic");
12152   case AtomicOrdering::Monotonic:
12153   case AtomicOrdering::Acquire:
12154     return nullptr; // Nothing to do
12155   case AtomicOrdering::SequentiallyConsistent:
12156     if (!IsStore)
12157       return nullptr; // Nothing to do
12158     /*FALLTHROUGH*/
12159   case AtomicOrdering::Release:
12160   case AtomicOrdering::AcquireRelease:
12161     if (Subtarget->isSwift())
12162       return makeDMB(Builder, ARM_MB::ISHST);
12163     // FIXME: add a comment with a link to documentation justifying this.
12164     else
12165       return makeDMB(Builder, ARM_MB::ISH);
12166   }
12167   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
12168 }
12169 
12170 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
12171                                           AtomicOrdering Ord, bool IsStore,
12172                                           bool IsLoad) const {
12173   switch (Ord) {
12174   case AtomicOrdering::NotAtomic:
12175   case AtomicOrdering::Unordered:
12176     llvm_unreachable("Invalid fence: unordered/not-atomic");
12177   case AtomicOrdering::Monotonic:
12178   case AtomicOrdering::Release:
12179     return nullptr; // Nothing to do
12180   case AtomicOrdering::Acquire:
12181   case AtomicOrdering::AcquireRelease:
12182   case AtomicOrdering::SequentiallyConsistent:
12183     return makeDMB(Builder, ARM_MB::ISH);
12184   }
12185   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
12186 }
12187 
12188 // Loads and stores less than 64-bits are already atomic; ones above that
12189 // are doomed anyway, so defer to the default libcall and blame the OS when
12190 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
12191 // anything for those.
12192 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
12193   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
12194   return (Size == 64) && !Subtarget->isMClass();
12195 }
12196 
12197 // Loads and stores less than 64-bits are already atomic; ones above that
12198 // are doomed anyway, so defer to the default libcall and blame the OS when
12199 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
12200 // anything for those.
12201 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
12202 // guarantee, see DDI0406C ARM architecture reference manual,
12203 // sections A8.8.72-74 LDRD)
12204 TargetLowering::AtomicExpansionKind
12205 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
12206   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
12207   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
12208                                                   : AtomicExpansionKind::None;
12209 }
12210 
12211 // For the real atomic operations, we have ldrex/strex up to 32 bits,
12212 // and up to 64 bits on the non-M profiles
12213 TargetLowering::AtomicExpansionKind
12214 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12215   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12216   return (Size <= (Subtarget->isMClass() ? 32U : 64U))
12217              ? AtomicExpansionKind::LLSC
12218              : AtomicExpansionKind::None;
12219 }
12220 
12221 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
12222     AtomicCmpXchgInst *AI) const {
12223   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
12224   // implement cmpxchg without spilling. If the address being exchanged is also
12225   // on the stack and close enough to the spill slot, this can lead to a
12226   // situation where the monitor always gets cleared and the atomic operation
12227   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
12228   return getTargetMachine().getOptLevel() != 0;
12229 }
12230 
12231 bool ARMTargetLowering::shouldInsertFencesForAtomic(
12232     const Instruction *I) const {
12233   return InsertFencesForAtomic;
12234 }
12235 
12236 // This has so far only been implemented for MachO.
12237 bool ARMTargetLowering::useLoadStackGuardNode() const {
12238   return Subtarget->isTargetMachO();
12239 }
12240 
12241 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
12242                                                   unsigned &Cost) const {
12243   // If we do not have NEON, vector types are not natively supported.
12244   if (!Subtarget->hasNEON())
12245     return false;
12246 
12247   // Floating point values and vector values map to the same register file.
12248   // Therefore, although we could do a store extract of a vector type, this is
12249   // better to leave at float as we have more freedom in the addressing mode for
12250   // those.
12251   if (VectorTy->isFPOrFPVectorTy())
12252     return false;
12253 
12254   // If the index is unknown at compile time, this is very expensive to lower
12255   // and it is not possible to combine the store with the extract.
12256   if (!isa<ConstantInt>(Idx))
12257     return false;
12258 
12259   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
12260   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
12261   // We can do a store + vector extract on any vector that fits perfectly in a D
12262   // or Q register.
12263   if (BitWidth == 64 || BitWidth == 128) {
12264     Cost = 0;
12265     return true;
12266   }
12267   return false;
12268 }
12269 
12270 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
12271   return Subtarget->hasV6T2Ops();
12272 }
12273 
12274 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
12275   return Subtarget->hasV6T2Ops();
12276 }
12277 
12278 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
12279                                          AtomicOrdering Ord) const {
12280   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12281   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
12282   bool IsAcquire = isAcquireOrStronger(Ord);
12283 
12284   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
12285   // intrinsic must return {i32, i32} and we have to recombine them into a
12286   // single i64 here.
12287   if (ValTy->getPrimitiveSizeInBits() == 64) {
12288     Intrinsic::ID Int =
12289         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
12290     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
12291 
12292     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12293     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
12294 
12295     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
12296     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
12297     if (!Subtarget->isLittle())
12298       std::swap (Lo, Hi);
12299     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
12300     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
12301     return Builder.CreateOr(
12302         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
12303   }
12304 
12305   Type *Tys[] = { Addr->getType() };
12306   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
12307   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
12308 
12309   return Builder.CreateTruncOrBitCast(
12310       Builder.CreateCall(Ldrex, Addr),
12311       cast<PointerType>(Addr->getType())->getElementType());
12312 }
12313 
12314 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
12315     IRBuilder<> &Builder) const {
12316   if (!Subtarget->hasV7Ops())
12317     return;
12318   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12319   Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
12320 }
12321 
12322 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
12323                                                Value *Addr,
12324                                                AtomicOrdering Ord) const {
12325   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12326   bool IsRelease = isReleaseOrStronger(Ord);
12327 
12328   // Since the intrinsics must have legal type, the i64 intrinsics take two
12329   // parameters: "i32, i32". We must marshal Val into the appropriate form
12330   // before the call.
12331   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
12332     Intrinsic::ID Int =
12333         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
12334     Function *Strex = Intrinsic::getDeclaration(M, Int);
12335     Type *Int32Ty = Type::getInt32Ty(M->getContext());
12336 
12337     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
12338     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
12339     if (!Subtarget->isLittle())
12340       std::swap (Lo, Hi);
12341     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12342     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
12343   }
12344 
12345   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
12346   Type *Tys[] = { Addr->getType() };
12347   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
12348 
12349   return Builder.CreateCall(
12350       Strex, {Builder.CreateZExtOrBitCast(
12351                   Val, Strex->getFunctionType()->getParamType(0)),
12352               Addr});
12353 }
12354 
12355 /// \brief Lower an interleaved load into a vldN intrinsic.
12356 ///
12357 /// E.g. Lower an interleaved load (Factor = 2):
12358 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
12359 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
12360 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
12361 ///
12362 ///      Into:
12363 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
12364 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
12365 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
12366 bool ARMTargetLowering::lowerInterleavedLoad(
12367     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
12368     ArrayRef<unsigned> Indices, unsigned Factor) const {
12369   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
12370          "Invalid interleave factor");
12371   assert(!Shuffles.empty() && "Empty shufflevector input");
12372   assert(Shuffles.size() == Indices.size() &&
12373          "Unmatched number of shufflevectors and indices");
12374 
12375   VectorType *VecTy = Shuffles[0]->getType();
12376   Type *EltTy = VecTy->getVectorElementType();
12377 
12378   const DataLayout &DL = LI->getModule()->getDataLayout();
12379   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
12380   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
12381 
12382   // Skip if we do not have NEON and skip illegal vector types and vector types
12383   // with i64/f64 elements (vldN doesn't support i64/f64 elements).
12384   if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
12385     return false;
12386 
12387   // A pointer vector can not be the return type of the ldN intrinsics. Need to
12388   // load integer vectors first and then convert to pointer vectors.
12389   if (EltTy->isPointerTy())
12390     VecTy =
12391         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
12392 
12393   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
12394                                             Intrinsic::arm_neon_vld3,
12395                                             Intrinsic::arm_neon_vld4};
12396 
12397   IRBuilder<> Builder(LI);
12398   SmallVector<Value *, 2> Ops;
12399 
12400   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
12401   Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
12402   Ops.push_back(Builder.getInt32(LI->getAlignment()));
12403 
12404   Type *Tys[] = { VecTy, Int8Ptr };
12405   Function *VldnFunc =
12406       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
12407   CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
12408 
12409   // Replace uses of each shufflevector with the corresponding vector loaded
12410   // by ldN.
12411   for (unsigned i = 0; i < Shuffles.size(); i++) {
12412     ShuffleVectorInst *SV = Shuffles[i];
12413     unsigned Index = Indices[i];
12414 
12415     Value *SubVec = Builder.CreateExtractValue(VldN, Index);
12416 
12417     // Convert the integer vector to pointer vector if the element is pointer.
12418     if (EltTy->isPointerTy())
12419       SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
12420 
12421     SV->replaceAllUsesWith(SubVec);
12422   }
12423 
12424   return true;
12425 }
12426 
12427 /// \brief Get a mask consisting of sequential integers starting from \p Start.
12428 ///
12429 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
12430 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
12431                                    unsigned NumElts) {
12432   SmallVector<Constant *, 16> Mask;
12433   for (unsigned i = 0; i < NumElts; i++)
12434     Mask.push_back(Builder.getInt32(Start + i));
12435 
12436   return ConstantVector::get(Mask);
12437 }
12438 
12439 /// \brief Lower an interleaved store into a vstN intrinsic.
12440 ///
12441 /// E.g. Lower an interleaved store (Factor = 3):
12442 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
12443 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
12444 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
12445 ///
12446 ///      Into:
12447 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
12448 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
12449 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
12450 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
12451 ///
12452 /// Note that the new shufflevectors will be removed and we'll only generate one
12453 /// vst3 instruction in CodeGen.
12454 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
12455                                               ShuffleVectorInst *SVI,
12456                                               unsigned Factor) const {
12457   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
12458          "Invalid interleave factor");
12459 
12460   VectorType *VecTy = SVI->getType();
12461   assert(VecTy->getVectorNumElements() % Factor == 0 &&
12462          "Invalid interleaved store");
12463 
12464   unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
12465   Type *EltTy = VecTy->getVectorElementType();
12466   VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
12467 
12468   const DataLayout &DL = SI->getModule()->getDataLayout();
12469   unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
12470   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
12471 
12472   // Skip if we do not have NEON and skip illegal vector types and vector types
12473   // with i64/f64 elements (vstN doesn't support i64/f64 elements).
12474   if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
12475       EltIs64Bits)
12476     return false;
12477 
12478   Value *Op0 = SVI->getOperand(0);
12479   Value *Op1 = SVI->getOperand(1);
12480   IRBuilder<> Builder(SI);
12481 
12482   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
12483   // vectors to integer vectors.
12484   if (EltTy->isPointerTy()) {
12485     Type *IntTy = DL.getIntPtrType(EltTy);
12486 
12487     // Convert to the corresponding integer vector.
12488     Type *IntVecTy =
12489         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
12490     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
12491     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
12492 
12493     SubVecTy = VectorType::get(IntTy, NumSubElts);
12494   }
12495 
12496   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
12497                                              Intrinsic::arm_neon_vst3,
12498                                              Intrinsic::arm_neon_vst4};
12499   SmallVector<Value *, 6> Ops;
12500 
12501   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
12502   Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
12503 
12504   Type *Tys[] = { Int8Ptr, SubVecTy };
12505   Function *VstNFunc = Intrinsic::getDeclaration(
12506       SI->getModule(), StoreInts[Factor - 2], Tys);
12507 
12508   // Split the shufflevector operands into sub vectors for the new vstN call.
12509   for (unsigned i = 0; i < Factor; i++)
12510     Ops.push_back(Builder.CreateShuffleVector(
12511         Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
12512 
12513   Ops.push_back(Builder.getInt32(SI->getAlignment()));
12514   Builder.CreateCall(VstNFunc, Ops);
12515   return true;
12516 }
12517 
12518 enum HABaseType {
12519   HA_UNKNOWN = 0,
12520   HA_FLOAT,
12521   HA_DOUBLE,
12522   HA_VECT64,
12523   HA_VECT128
12524 };
12525 
12526 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
12527                                    uint64_t &Members) {
12528   if (auto *ST = dyn_cast<StructType>(Ty)) {
12529     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
12530       uint64_t SubMembers = 0;
12531       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
12532         return false;
12533       Members += SubMembers;
12534     }
12535   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
12536     uint64_t SubMembers = 0;
12537     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
12538       return false;
12539     Members += SubMembers * AT->getNumElements();
12540   } else if (Ty->isFloatTy()) {
12541     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
12542       return false;
12543     Members = 1;
12544     Base = HA_FLOAT;
12545   } else if (Ty->isDoubleTy()) {
12546     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
12547       return false;
12548     Members = 1;
12549     Base = HA_DOUBLE;
12550   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
12551     Members = 1;
12552     switch (Base) {
12553     case HA_FLOAT:
12554     case HA_DOUBLE:
12555       return false;
12556     case HA_VECT64:
12557       return VT->getBitWidth() == 64;
12558     case HA_VECT128:
12559       return VT->getBitWidth() == 128;
12560     case HA_UNKNOWN:
12561       switch (VT->getBitWidth()) {
12562       case 64:
12563         Base = HA_VECT64;
12564         return true;
12565       case 128:
12566         Base = HA_VECT128;
12567         return true;
12568       default:
12569         return false;
12570       }
12571     }
12572   }
12573 
12574   return (Members > 0 && Members <= 4);
12575 }
12576 
12577 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
12578 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
12579 /// passing according to AAPCS rules.
12580 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
12581     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
12582   if (getEffectiveCallingConv(CallConv, isVarArg) !=
12583       CallingConv::ARM_AAPCS_VFP)
12584     return false;
12585 
12586   HABaseType Base = HA_UNKNOWN;
12587   uint64_t Members = 0;
12588   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
12589   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
12590 
12591   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
12592   return IsHA || IsIntArray;
12593 }
12594 
12595 unsigned ARMTargetLowering::getExceptionPointerRegister(
12596     const Constant *PersonalityFn) const {
12597   // Platforms which do not use SjLj EH may return values in these registers
12598   // via the personality function.
12599   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
12600 }
12601 
12602 unsigned ARMTargetLowering::getExceptionSelectorRegister(
12603     const Constant *PersonalityFn) const {
12604   // Platforms which do not use SjLj EH may return values in these registers
12605   // via the personality function.
12606   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
12607 }
12608 
12609 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12610   // Update IsSplitCSR in ARMFunctionInfo.
12611   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
12612   AFI->setIsSplitCSR(true);
12613 }
12614 
12615 void ARMTargetLowering::insertCopiesSplitCSR(
12616     MachineBasicBlock *Entry,
12617     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12618   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
12619   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12620   if (!IStart)
12621     return;
12622 
12623   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
12624   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12625   MachineBasicBlock::iterator MBBI = Entry->begin();
12626   for (const MCPhysReg *I = IStart; *I; ++I) {
12627     const TargetRegisterClass *RC = nullptr;
12628     if (ARM::GPRRegClass.contains(*I))
12629       RC = &ARM::GPRRegClass;
12630     else if (ARM::DPRRegClass.contains(*I))
12631       RC = &ARM::DPRRegClass;
12632     else
12633       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12634 
12635     unsigned NewVR = MRI->createVirtualRegister(RC);
12636     // Create copy from CSR to a virtual register.
12637     // FIXME: this currently does not emit CFI pseudo-instructions, it works
12638     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12639     // nounwind. If we want to generalize this later, we may need to emit
12640     // CFI pseudo-instructions.
12641     assert(Entry->getParent()->getFunction()->hasFnAttribute(
12642                Attribute::NoUnwind) &&
12643            "Function should be nounwind in insertCopiesSplitCSR!");
12644     Entry->addLiveIn(*I);
12645     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12646         .addReg(*I);
12647 
12648     // Insert the copy-back instructions right before the terminator.
12649     for (auto *Exit : Exits)
12650       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12651               TII->get(TargetOpcode::COPY), *I)
12652           .addReg(NewVR);
12653   }
12654 }
12655