1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMISelLowering.h"
16 #include "ARMCallingConv.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMPerfectShuffle.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMTargetObjectFile.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/IntrinsicLowering.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/MC/MCSectionMachO.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <utility>
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "arm-isel"
59 
60 STATISTIC(NumTailCalls, "Number of tail calls");
61 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
62 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
63 STATISTIC(NumConstpoolPromoted,
64   "Number of constants with their storage promoted into constant pools");
65 
66 static cl::opt<bool>
67 ARMInterworking("arm-interworking", cl::Hidden,
68   cl::desc("Enable / disable ARM interworking (for debugging only)"),
69   cl::init(true));
70 
71 static cl::opt<bool> EnableConstpoolPromotion(
72     "arm-promote-constant", cl::Hidden,
73     cl::desc("Enable / disable promotion of unnamed_addr constants into "
74              "constant pools"),
75     cl::init(true));
76 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
77     "arm-promote-constant-max-size", cl::Hidden,
78     cl::desc("Maximum size of constant to promote into a constant pool"),
79     cl::init(64));
80 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
81     "arm-promote-constant-max-total", cl::Hidden,
82     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
83     cl::init(128));
84 
85 namespace {
86   class ARMCCState : public CCState {
87   public:
88     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
89                SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
90                ParmContext PC)
91         : CCState(CC, isVarArg, MF, locs, C) {
92       assert(((PC == Call) || (PC == Prologue)) &&
93              "ARMCCState users must specify whether their context is call"
94              "or prologue generation.");
95       CallOrPrologue = PC;
96     }
97   };
98 }
99 
100 // The APCS parameter registers.
101 static const MCPhysReg GPRArgRegs[] = {
102   ARM::R0, ARM::R1, ARM::R2, ARM::R3
103 };
104 
105 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
106                                        MVT PromotedBitwiseVT) {
107   if (VT != PromotedLdStVT) {
108     setOperationAction(ISD::LOAD, VT, Promote);
109     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
110 
111     setOperationAction(ISD::STORE, VT, Promote);
112     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
113   }
114 
115   MVT ElemTy = VT.getVectorElementType();
116   if (ElemTy != MVT::f64)
117     setOperationAction(ISD::SETCC, VT, Custom);
118   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
119   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
120   if (ElemTy == MVT::i32) {
121     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
122     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
123     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
124     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
125   } else {
126     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
127     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
128     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
129     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
130   }
131   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
132   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
133   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
134   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
135   setOperationAction(ISD::SELECT,            VT, Expand);
136   setOperationAction(ISD::SELECT_CC,         VT, Expand);
137   setOperationAction(ISD::VSELECT,           VT, Expand);
138   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
139   if (VT.isInteger()) {
140     setOperationAction(ISD::SHL, VT, Custom);
141     setOperationAction(ISD::SRA, VT, Custom);
142     setOperationAction(ISD::SRL, VT, Custom);
143   }
144 
145   // Promote all bit-wise operations.
146   if (VT.isInteger() && VT != PromotedBitwiseVT) {
147     setOperationAction(ISD::AND, VT, Promote);
148     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
149     setOperationAction(ISD::OR,  VT, Promote);
150     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
151     setOperationAction(ISD::XOR, VT, Promote);
152     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
153   }
154 
155   // Neon does not support vector divide/remainder operations.
156   setOperationAction(ISD::SDIV, VT, Expand);
157   setOperationAction(ISD::UDIV, VT, Expand);
158   setOperationAction(ISD::FDIV, VT, Expand);
159   setOperationAction(ISD::SREM, VT, Expand);
160   setOperationAction(ISD::UREM, VT, Expand);
161   setOperationAction(ISD::FREM, VT, Expand);
162 
163   if (!VT.isFloatingPoint() &&
164       VT != MVT::v2i64 && VT != MVT::v1i64)
165     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
166       setOperationAction(Opcode, VT, Legal);
167 }
168 
169 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
170   addRegisterClass(VT, &ARM::DPRRegClass);
171   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
172 }
173 
174 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
175   addRegisterClass(VT, &ARM::DPairRegClass);
176   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
177 }
178 
179 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
180                                      const ARMSubtarget &STI)
181     : TargetLowering(TM), Subtarget(&STI) {
182   RegInfo = Subtarget->getRegisterInfo();
183   Itins = Subtarget->getInstrItineraryData();
184 
185   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186 
187   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
188       !Subtarget->isTargetWatchOS()) {
189     const auto &E = Subtarget->getTargetTriple().getEnvironment();
190 
191     bool IsHFTarget = E == Triple::EABIHF || E == Triple::GNUEABIHF ||
192                       E == Triple::MuslEABIHF;
193     // Windows is a special case.  Technically, we will replace all of the "GNU"
194     // calls with calls to MSVCRT if appropriate and adjust the calling
195     // convention then.
196     IsHFTarget = IsHFTarget || Subtarget->isTargetWindows();
197 
198     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
199       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
200                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
201                                        : CallingConv::ARM_AAPCS);
202   }
203 
204   if (Subtarget->isTargetMachO()) {
205     // Uses VFP for Thumb libfuncs if available.
206     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
207         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
208       static const struct {
209         const RTLIB::Libcall Op;
210         const char * const Name;
211         const ISD::CondCode Cond;
212       } LibraryCalls[] = {
213         // Single-precision floating-point arithmetic.
214         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
215         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
216         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
217         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
218 
219         // Double-precision floating-point arithmetic.
220         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
221         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
222         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
223         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
224 
225         // Single-precision comparisons.
226         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
227         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
228         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
229         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
230         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
231         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
232         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
233         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
234 
235         // Double-precision comparisons.
236         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
237         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
238         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
239         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
240         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
241         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
242         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
243         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
244 
245         // Floating-point to integer conversions.
246         // i64 conversions are done via library routines even when generating VFP
247         // instructions, so use the same ones.
248         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
249         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
250         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
251         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
252 
253         // Conversions between floating types.
254         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
255         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
256 
257         // Integer to floating-point conversions.
258         // i64 conversions are done via library routines even when generating VFP
259         // instructions, so use the same ones.
260         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
261         // e.g., __floatunsidf vs. __floatunssidfvfp.
262         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
263         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
264         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
265         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
266       };
267 
268       for (const auto &LC : LibraryCalls) {
269         setLibcallName(LC.Op, LC.Name);
270         if (LC.Cond != ISD::SETCC_INVALID)
271           setCmpLibcallCC(LC.Op, LC.Cond);
272       }
273     }
274 
275     // Set the correct calling convention for ARMv7k WatchOS. It's just
276     // AAPCS_VFP for functions as simple as libcalls.
277     if (Subtarget->isTargetWatchABI()) {
278       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
279         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
280     }
281   }
282 
283   // These libcalls are not available in 32-bit.
284   setLibcallName(RTLIB::SHL_I128, nullptr);
285   setLibcallName(RTLIB::SRL_I128, nullptr);
286   setLibcallName(RTLIB::SRA_I128, nullptr);
287 
288   // RTLIB
289   if (Subtarget->isAAPCS_ABI() &&
290       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
291        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
292     static const struct {
293       const RTLIB::Libcall Op;
294       const char * const Name;
295       const CallingConv::ID CC;
296       const ISD::CondCode Cond;
297     } LibraryCalls[] = {
298       // Double-precision floating-point arithmetic helper functions
299       // RTABI chapter 4.1.2, Table 2
300       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
301       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
302       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
303       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
304 
305       // Double-precision floating-point comparison helper functions
306       // RTABI chapter 4.1.2, Table 3
307       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
308       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
309       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
310       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
311       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
312       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
313       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
314       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
315 
316       // Single-precision floating-point arithmetic helper functions
317       // RTABI chapter 4.1.2, Table 4
318       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
319       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
320       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
321       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
322 
323       // Single-precision floating-point comparison helper functions
324       // RTABI chapter 4.1.2, Table 5
325       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
326       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
327       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
328       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
329       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
330       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
331       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
332       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
333 
334       // Floating-point to integer conversions.
335       // RTABI chapter 4.1.2, Table 6
336       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
337       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
340       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
341       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
342       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
343       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
344 
345       // Conversions between floating types.
346       // RTABI chapter 4.1.2, Table 7
347       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
348       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
349       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
350 
351       // Integer to floating-point conversions.
352       // RTABI chapter 4.1.2, Table 8
353       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
354       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
355       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
356       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
357       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
358       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
359       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
360       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
361 
362       // Long long helper functions
363       // RTABI chapter 4.2, Table 9
364       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
365       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
366       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
367       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
368 
369       // Integer division functions
370       // RTABI chapter 4.3.1
371       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
372       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
373       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
374       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
375       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
376       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
377       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
378       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
379     };
380 
381     for (const auto &LC : LibraryCalls) {
382       setLibcallName(LC.Op, LC.Name);
383       setLibcallCallingConv(LC.Op, LC.CC);
384       if (LC.Cond != ISD::SETCC_INVALID)
385         setCmpLibcallCC(LC.Op, LC.Cond);
386     }
387 
388     // EABI dependent RTLIB
389     if (TM.Options.EABIVersion == EABI::EABI4 ||
390         TM.Options.EABIVersion == EABI::EABI5) {
391       static const struct {
392         const RTLIB::Libcall Op;
393         const char *const Name;
394         const CallingConv::ID CC;
395         const ISD::CondCode Cond;
396       } MemOpsLibraryCalls[] = {
397         // Memory operations
398         // RTABI chapter 4.3.4
399         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
400         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
401         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
402       };
403 
404       for (const auto &LC : MemOpsLibraryCalls) {
405         setLibcallName(LC.Op, LC.Name);
406         setLibcallCallingConv(LC.Op, LC.CC);
407         if (LC.Cond != ISD::SETCC_INVALID)
408           setCmpLibcallCC(LC.Op, LC.Cond);
409       }
410     }
411   }
412 
413   if (Subtarget->isTargetWindows()) {
414     static const struct {
415       const RTLIB::Libcall Op;
416       const char * const Name;
417       const CallingConv::ID CC;
418     } LibraryCalls[] = {
419       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
420       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
421       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
422       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
423       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
424       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
425       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
426       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
427     };
428 
429     for (const auto &LC : LibraryCalls) {
430       setLibcallName(LC.Op, LC.Name);
431       setLibcallCallingConv(LC.Op, LC.CC);
432     }
433   }
434 
435   // Use divmod compiler-rt calls for iOS 5.0 and later.
436   if (Subtarget->isTargetWatchOS() ||
437       (Subtarget->isTargetIOS() &&
438        !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
439     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
440     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
441   }
442 
443   // The half <-> float conversion functions are always soft-float on
444   // non-watchos platforms, but are needed for some targets which use a
445   // hard-float calling convention by default.
446   if (!Subtarget->isTargetWatchABI()) {
447     if (Subtarget->isAAPCS_ABI()) {
448       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
449       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
450       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
451     } else {
452       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
453       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
454       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
455     }
456   }
457 
458   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
459   // a __gnu_ prefix (which is the default).
460   if (Subtarget->isTargetAEABI()) {
461     static const struct {
462       const RTLIB::Libcall Op;
463       const char * const Name;
464       const CallingConv::ID CC;
465     } LibraryCalls[] = {
466       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
467       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
468       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
469     };
470 
471     for (const auto &LC : LibraryCalls) {
472       setLibcallName(LC.Op, LC.Name);
473       setLibcallCallingConv(LC.Op, LC.CC);
474     }
475   }
476 
477   if (Subtarget->isThumb1Only())
478     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
479   else
480     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
481 
482   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
483       !Subtarget->isThumb1Only()) {
484     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
485     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
486   }
487 
488   for (MVT VT : MVT::vector_valuetypes()) {
489     for (MVT InnerVT : MVT::vector_valuetypes()) {
490       setTruncStoreAction(VT, InnerVT, Expand);
491       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
492       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
493       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
494     }
495 
496     setOperationAction(ISD::MULHS, VT, Expand);
497     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
498     setOperationAction(ISD::MULHU, VT, Expand);
499     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
500 
501     setOperationAction(ISD::BSWAP, VT, Expand);
502   }
503 
504   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
505   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
506 
507   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
508   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
509 
510   if (Subtarget->hasNEON()) {
511     addDRTypeForNEON(MVT::v2f32);
512     addDRTypeForNEON(MVT::v8i8);
513     addDRTypeForNEON(MVT::v4i16);
514     addDRTypeForNEON(MVT::v2i32);
515     addDRTypeForNEON(MVT::v1i64);
516 
517     addQRTypeForNEON(MVT::v4f32);
518     addQRTypeForNEON(MVT::v2f64);
519     addQRTypeForNEON(MVT::v16i8);
520     addQRTypeForNEON(MVT::v8i16);
521     addQRTypeForNEON(MVT::v4i32);
522     addQRTypeForNEON(MVT::v2i64);
523 
524     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
525     // neither Neon nor VFP support any arithmetic operations on it.
526     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
527     // supported for v4f32.
528     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
529     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
530     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
531     // FIXME: Code duplication: FDIV and FREM are expanded always, see
532     // ARMTargetLowering::addTypeForNEON method for details.
533     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
534     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
535     // FIXME: Create unittest.
536     // In another words, find a way when "copysign" appears in DAG with vector
537     // operands.
538     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
539     // FIXME: Code duplication: SETCC has custom operation action, see
540     // ARMTargetLowering::addTypeForNEON method for details.
541     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
542     // FIXME: Create unittest for FNEG and for FABS.
543     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
544     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
545     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
546     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
547     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
548     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
549     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
550     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
551     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
552     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
553     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
554     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
555     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
556     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
557     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
558     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
559     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
560     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
561     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
562 
563     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
564     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
565     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
566     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
567     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
568     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
569     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
570     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
571     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
572     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
573     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
574     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
575     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
576     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
577     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
578 
579     // Mark v2f32 intrinsics.
580     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
581     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
582     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
583     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
584     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
585     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
586     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
587     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
588     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
589     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
590     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
591     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
592     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
593     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
594     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
595 
596     // Neon does not support some operations on v1i64 and v2i64 types.
597     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
598     // Custom handling for some quad-vector types to detect VMULL.
599     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
600     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
601     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
602     // Custom handling for some vector types to avoid expensive expansions
603     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
604     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
605     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
606     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
607     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
608     // a destination type that is wider than the source, and nor does
609     // it have a FP_TO_[SU]INT instruction with a narrower destination than
610     // source.
611     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
612     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
613     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
614     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
615 
616     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
617     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
618 
619     // NEON does not have single instruction CTPOP for vectors with element
620     // types wider than 8-bits.  However, custom lowering can leverage the
621     // v8i8/v16i8 vcnt instruction.
622     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
623     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
624     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
625     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
626     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
627     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
628 
629     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
630     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
631 
632     // NEON does not have single instruction CTTZ for vectors.
633     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
634     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
635     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
636     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
637 
638     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
639     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
640     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
641     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
642 
643     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
644     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
645     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
646     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
647 
648     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
649     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
650     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
651     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
652 
653     // NEON only has FMA instructions as of VFP4.
654     if (!Subtarget->hasVFP4()) {
655       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
656       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
657     }
658 
659     setTargetDAGCombine(ISD::INTRINSIC_VOID);
660     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
661     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
662     setTargetDAGCombine(ISD::SHL);
663     setTargetDAGCombine(ISD::SRL);
664     setTargetDAGCombine(ISD::SRA);
665     setTargetDAGCombine(ISD::SIGN_EXTEND);
666     setTargetDAGCombine(ISD::ZERO_EXTEND);
667     setTargetDAGCombine(ISD::ANY_EXTEND);
668     setTargetDAGCombine(ISD::BUILD_VECTOR);
669     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
670     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
671     setTargetDAGCombine(ISD::STORE);
672     setTargetDAGCombine(ISD::FP_TO_SINT);
673     setTargetDAGCombine(ISD::FP_TO_UINT);
674     setTargetDAGCombine(ISD::FDIV);
675     setTargetDAGCombine(ISD::LOAD);
676 
677     // It is legal to extload from v4i8 to v4i16 or v4i32.
678     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
679                    MVT::v2i32}) {
680       for (MVT VT : MVT::integer_vector_valuetypes()) {
681         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
682         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
683         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
684       }
685     }
686   }
687 
688   // ARM and Thumb2 support UMLAL/SMLAL.
689   if (!Subtarget->isThumb1Only())
690     setTargetDAGCombine(ISD::ADDC);
691 
692   if (Subtarget->isFPOnlySP()) {
693     // When targeting a floating-point unit with only single-precision
694     // operations, f64 is legal for the few double-precision instructions which
695     // are present However, no double-precision operations other than moves,
696     // loads and stores are provided by the hardware.
697     setOperationAction(ISD::FADD,       MVT::f64, Expand);
698     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
699     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
700     setOperationAction(ISD::FMA,        MVT::f64, Expand);
701     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
702     setOperationAction(ISD::FREM,       MVT::f64, Expand);
703     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
704     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
705     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
706     setOperationAction(ISD::FABS,       MVT::f64, Expand);
707     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
708     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
709     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
710     setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
711     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
712     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
713     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
714     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
715     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
716     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
717     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
718     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
719     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
720     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
721     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
722     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
723     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
724     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
725     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
726     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
727     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
728     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
729     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
730   }
731 
732   computeRegisterProperties(Subtarget->getRegisterInfo());
733 
734   // ARM does not have floating-point extending loads.
735   for (MVT VT : MVT::fp_valuetypes()) {
736     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
737     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
738   }
739 
740   // ... or truncating stores
741   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
742   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
743   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
744 
745   // ARM does not have i1 sign extending load.
746   for (MVT VT : MVT::integer_valuetypes())
747     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
748 
749   // ARM supports all 4 flavors of integer indexed load / store.
750   if (!Subtarget->isThumb1Only()) {
751     for (unsigned im = (unsigned)ISD::PRE_INC;
752          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
753       setIndexedLoadAction(im,  MVT::i1,  Legal);
754       setIndexedLoadAction(im,  MVT::i8,  Legal);
755       setIndexedLoadAction(im,  MVT::i16, Legal);
756       setIndexedLoadAction(im,  MVT::i32, Legal);
757       setIndexedStoreAction(im, MVT::i1,  Legal);
758       setIndexedStoreAction(im, MVT::i8,  Legal);
759       setIndexedStoreAction(im, MVT::i16, Legal);
760       setIndexedStoreAction(im, MVT::i32, Legal);
761     }
762   } else {
763     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
764     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
765     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
766   }
767 
768   setOperationAction(ISD::SADDO, MVT::i32, Custom);
769   setOperationAction(ISD::UADDO, MVT::i32, Custom);
770   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
771   setOperationAction(ISD::USUBO, MVT::i32, Custom);
772 
773   // i64 operation support.
774   setOperationAction(ISD::MUL,     MVT::i64, Expand);
775   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
776   if (Subtarget->isThumb1Only()) {
777     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
778     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
779   }
780   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
781       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
782     setOperationAction(ISD::MULHS, MVT::i32, Expand);
783 
784   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
785   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
786   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
787   setOperationAction(ISD::SRL,       MVT::i64, Custom);
788   setOperationAction(ISD::SRA,       MVT::i64, Custom);
789 
790   if (!Subtarget->isThumb1Only()) {
791     // FIXME: We should do this for Thumb1 as well.
792     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
793     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
794     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
795     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
796   }
797 
798   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
799     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
800 
801   // ARM does not have ROTL.
802   setOperationAction(ISD::ROTL, MVT::i32, Expand);
803   for (MVT VT : MVT::vector_valuetypes()) {
804     setOperationAction(ISD::ROTL, VT, Expand);
805     setOperationAction(ISD::ROTR, VT, Expand);
806   }
807   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
808   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
809   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
810     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
811 
812   // @llvm.readcyclecounter requires the Performance Monitors extension.
813   // Default to the 0 expansion on unsupported platforms.
814   // FIXME: Technically there are older ARM CPUs that have
815   // implementation-specific ways of obtaining this information.
816   if (Subtarget->hasPerfMon())
817     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
818 
819   // Only ARMv6 has BSWAP.
820   if (!Subtarget->hasV6Ops())
821     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
822 
823   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
824                                         : Subtarget->hasDivideInARMMode();
825   if (!hasDivide) {
826     // These are expanded into libcalls if the cpu doesn't have HW divider.
827     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
828     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
829   }
830 
831   if (Subtarget->isTargetWindows() && !Subtarget->hasDivide()) {
832     setOperationAction(ISD::SDIV, MVT::i32, Custom);
833     setOperationAction(ISD::UDIV, MVT::i32, Custom);
834 
835     setOperationAction(ISD::SDIV, MVT::i64, Custom);
836     setOperationAction(ISD::UDIV, MVT::i64, Custom);
837   }
838 
839   setOperationAction(ISD::SREM,  MVT::i32, Expand);
840   setOperationAction(ISD::UREM,  MVT::i32, Expand);
841 
842   // Register based DivRem for AEABI (RTABI 4.2)
843   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
844       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
845       Subtarget->isTargetWindows()) {
846     setOperationAction(ISD::SREM, MVT::i64, Custom);
847     setOperationAction(ISD::UREM, MVT::i64, Custom);
848     HasStandaloneRem = false;
849 
850     if (Subtarget->isTargetWindows()) {
851       const struct {
852         const RTLIB::Libcall Op;
853         const char * const Name;
854         const CallingConv::ID CC;
855       } LibraryCalls[] = {
856         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
857         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
858         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
859         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
860 
861         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
862         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
863         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
864         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
865       };
866 
867       for (const auto &LC : LibraryCalls) {
868         setLibcallName(LC.Op, LC.Name);
869         setLibcallCallingConv(LC.Op, LC.CC);
870       }
871     } else {
872       const struct {
873         const RTLIB::Libcall Op;
874         const char * const Name;
875         const CallingConv::ID CC;
876       } LibraryCalls[] = {
877         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
878         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
879         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
880         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
881 
882         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
883         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
884         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
885         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
886       };
887 
888       for (const auto &LC : LibraryCalls) {
889         setLibcallName(LC.Op, LC.Name);
890         setLibcallCallingConv(LC.Op, LC.CC);
891       }
892     }
893 
894     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
895     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
896     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
897     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
898   } else {
899     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
900     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
901   }
902 
903   if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
904     for (auto &VT : {MVT::f32, MVT::f64})
905       setOperationAction(ISD::FPOWI, VT, Custom);
906 
907   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
908   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
909   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
910   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
911 
912   setOperationAction(ISD::TRAP, MVT::Other, Legal);
913 
914   // Use the default implementation.
915   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
916   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
917   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
918   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
919   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
920   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
921 
922   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
923     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
924   else
925     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
926 
927   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
928   // the default expansion.
929   InsertFencesForAtomic = false;
930   if (Subtarget->hasAnyDataBarrier() &&
931       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
932     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
933     // to ldrex/strex loops already.
934     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
935     if (!Subtarget->isThumb() || !Subtarget->isMClass())
936       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
937 
938     // On v8, we have particularly efficient implementations of atomic fences
939     // if they can be combined with nearby atomic loads and stores.
940     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
941       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
942       InsertFencesForAtomic = true;
943     }
944   } else {
945     // If there's anything we can use as a barrier, go through custom lowering
946     // for ATOMIC_FENCE.
947     // If target has DMB in thumb, Fences can be inserted.
948     if (Subtarget->hasDataBarrier())
949       InsertFencesForAtomic = true;
950 
951     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
952                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
953 
954     // Set them all for expansion, which will force libcalls.
955     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
956     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
957     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
958     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
959     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
960     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
961     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
962     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
963     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
964     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
965     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
966     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
967     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
968     // Unordered/Monotonic case.
969     if (!InsertFencesForAtomic) {
970       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
971       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
972     }
973   }
974 
975   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
976 
977   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
978   if (!Subtarget->hasV6Ops()) {
979     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
980     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
981   }
982   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
983 
984   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
985       !Subtarget->isThumb1Only()) {
986     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
987     // iff target supports vfp2.
988     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
989     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
990   }
991 
992   // We want to custom lower some of our intrinsics.
993   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
994   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
995   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
996   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
997   if (Subtarget->useSjLjEH())
998     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
999 
1000   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1001   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1002   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1003   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1004   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1005   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1006   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1007   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1008   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1009 
1010   // Thumb-1 cannot currently select ARMISD::SUBE.
1011   if (!Subtarget->isThumb1Only())
1012     setOperationAction(ISD::SETCCE, MVT::i32, Custom);
1013 
1014   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
1015   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1016   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1017   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1018   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1019 
1020   // We don't support sin/cos/fmod/copysign/pow
1021   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1022   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1023   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1024   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1025   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1026   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1027   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1028   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1029   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1030       !Subtarget->isThumb1Only()) {
1031     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1032     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1033   }
1034   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1035   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1036 
1037   if (!Subtarget->hasVFP4()) {
1038     setOperationAction(ISD::FMA, MVT::f64, Expand);
1039     setOperationAction(ISD::FMA, MVT::f32, Expand);
1040   }
1041 
1042   // Various VFP goodness
1043   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1044     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1045     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
1046       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1047       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1048     }
1049 
1050     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1051     if (!Subtarget->hasFP16()) {
1052       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1053       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1054     }
1055   }
1056 
1057   // Combine sin / cos into one node or libcall if possible.
1058   if (Subtarget->hasSinCos()) {
1059     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1060     setLibcallName(RTLIB::SINCOS_F64, "sincos");
1061     if (Subtarget->isTargetWatchABI()) {
1062       setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
1063       setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
1064     }
1065     if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
1066       // For iOS, we don't want to the normal expansion of a libcall to
1067       // sincos. We want to issue a libcall to __sincos_stret.
1068       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1069       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1070     }
1071   }
1072 
1073   // FP-ARMv8 implements a lot of rounding-like FP operations.
1074   if (Subtarget->hasFPARMv8()) {
1075     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1076     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1077     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1078     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1079     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1080     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1081     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1082     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1083     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1084     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1085     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1086     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1087 
1088     if (!Subtarget->isFPOnlySP()) {
1089       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1090       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1091       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1092       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1093       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1094       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1095       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1096       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1097     }
1098   }
1099 
1100   if (Subtarget->hasNEON()) {
1101     // vmin and vmax aren't available in a scalar form, so we use
1102     // a NEON instruction with an undef lane instead.
1103     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1104     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1105     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1106     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1107     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1108     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1109   }
1110 
1111   // We have target-specific dag combine patterns for the following nodes:
1112   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1113   setTargetDAGCombine(ISD::ADD);
1114   setTargetDAGCombine(ISD::SUB);
1115   setTargetDAGCombine(ISD::MUL);
1116   setTargetDAGCombine(ISD::AND);
1117   setTargetDAGCombine(ISD::OR);
1118   setTargetDAGCombine(ISD::XOR);
1119 
1120   if (Subtarget->hasV6Ops())
1121     setTargetDAGCombine(ISD::SRL);
1122 
1123   setStackPointerRegisterToSaveRestore(ARM::SP);
1124 
1125   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1126       !Subtarget->hasVFP2())
1127     setSchedulingPreference(Sched::RegPressure);
1128   else
1129     setSchedulingPreference(Sched::Hybrid);
1130 
1131   //// temporary - rewrite interface to use type
1132   MaxStoresPerMemset = 8;
1133   MaxStoresPerMemsetOptSize = 4;
1134   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1135   MaxStoresPerMemcpyOptSize = 2;
1136   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1137   MaxStoresPerMemmoveOptSize = 2;
1138 
1139   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1140   // are at least 4 bytes aligned.
1141   setMinStackArgumentAlignment(4);
1142 
1143   // Prefer likely predicted branches to selects on out-of-order cores.
1144   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1145 
1146   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1147 }
1148 
1149 bool ARMTargetLowering::useSoftFloat() const {
1150   return Subtarget->useSoftFloat();
1151 }
1152 
1153 // FIXME: It might make sense to define the representative register class as the
1154 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1155 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1156 // SPR's representative would be DPR_VFP2. This should work well if register
1157 // pressure tracking were modified such that a register use would increment the
1158 // pressure of the register class's representative and all of it's super
1159 // classes' representatives transitively. We have not implemented this because
1160 // of the difficulty prior to coalescing of modeling operand register classes
1161 // due to the common occurrence of cross class copies and subregister insertions
1162 // and extractions.
1163 std::pair<const TargetRegisterClass *, uint8_t>
1164 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1165                                            MVT VT) const {
1166   const TargetRegisterClass *RRC = nullptr;
1167   uint8_t Cost = 1;
1168   switch (VT.SimpleTy) {
1169   default:
1170     return TargetLowering::findRepresentativeClass(TRI, VT);
1171   // Use DPR as representative register class for all floating point
1172   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1173   // the cost is 1 for both f32 and f64.
1174   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1175   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1176     RRC = &ARM::DPRRegClass;
1177     // When NEON is used for SP, only half of the register file is available
1178     // because operations that define both SP and DP results will be constrained
1179     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1180     // coalescing by double-counting the SP regs. See the FIXME above.
1181     if (Subtarget->useNEONForSinglePrecisionFP())
1182       Cost = 2;
1183     break;
1184   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1185   case MVT::v4f32: case MVT::v2f64:
1186     RRC = &ARM::DPRRegClass;
1187     Cost = 2;
1188     break;
1189   case MVT::v4i64:
1190     RRC = &ARM::DPRRegClass;
1191     Cost = 4;
1192     break;
1193   case MVT::v8i64:
1194     RRC = &ARM::DPRRegClass;
1195     Cost = 8;
1196     break;
1197   }
1198   return std::make_pair(RRC, Cost);
1199 }
1200 
1201 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1202   switch ((ARMISD::NodeType)Opcode) {
1203   case ARMISD::FIRST_NUMBER:  break;
1204   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1205   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1206   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1207   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1208   case ARMISD::CALL:          return "ARMISD::CALL";
1209   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1210   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1211   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1212   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1213   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1214   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1215   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1216   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1217   case ARMISD::CMP:           return "ARMISD::CMP";
1218   case ARMISD::CMN:           return "ARMISD::CMN";
1219   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1220   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1221   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1222   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1223   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1224 
1225   case ARMISD::CMOV:          return "ARMISD::CMOV";
1226 
1227   case ARMISD::SSAT:          return "ARMISD::SSAT";
1228 
1229   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1230   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1231   case ARMISD::RRX:           return "ARMISD::RRX";
1232 
1233   case ARMISD::ADDC:          return "ARMISD::ADDC";
1234   case ARMISD::ADDE:          return "ARMISD::ADDE";
1235   case ARMISD::SUBC:          return "ARMISD::SUBC";
1236   case ARMISD::SUBE:          return "ARMISD::SUBE";
1237 
1238   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1239   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1240 
1241   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1242   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1243   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1244 
1245   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1246 
1247   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1248 
1249   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1250 
1251   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1252 
1253   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1254 
1255   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1256   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1257 
1258   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1259   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1260   case ARMISD::VCGE:          return "ARMISD::VCGE";
1261   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1262   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1263   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1264   case ARMISD::VCGT:          return "ARMISD::VCGT";
1265   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1266   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1267   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1268   case ARMISD::VTST:          return "ARMISD::VTST";
1269 
1270   case ARMISD::VSHL:          return "ARMISD::VSHL";
1271   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1272   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1273   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1274   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1275   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1276   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1277   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1278   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1279   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1280   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1281   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1282   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1283   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1284   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1285   case ARMISD::VSLI:          return "ARMISD::VSLI";
1286   case ARMISD::VSRI:          return "ARMISD::VSRI";
1287   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1288   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1289   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1290   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1291   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1292   case ARMISD::VDUP:          return "ARMISD::VDUP";
1293   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1294   case ARMISD::VEXT:          return "ARMISD::VEXT";
1295   case ARMISD::VREV64:        return "ARMISD::VREV64";
1296   case ARMISD::VREV32:        return "ARMISD::VREV32";
1297   case ARMISD::VREV16:        return "ARMISD::VREV16";
1298   case ARMISD::VZIP:          return "ARMISD::VZIP";
1299   case ARMISD::VUZP:          return "ARMISD::VUZP";
1300   case ARMISD::VTRN:          return "ARMISD::VTRN";
1301   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1302   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1303   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1304   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1305   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1306   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1307   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1308   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1309   case ARMISD::BFI:           return "ARMISD::BFI";
1310   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1311   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1312   case ARMISD::VBSL:          return "ARMISD::VBSL";
1313   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1314   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1315   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1316   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1317   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1318   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1319   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1320   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1321   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1322   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1323   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1324   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1325   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1326   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1327   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1328   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1329   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1330   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1331   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1332   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1333   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1334   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1335   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1336   }
1337   return nullptr;
1338 }
1339 
1340 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1341                                           EVT VT) const {
1342   if (!VT.isVector())
1343     return getPointerTy(DL);
1344   return VT.changeVectorElementTypeToInteger();
1345 }
1346 
1347 /// getRegClassFor - Return the register class that should be used for the
1348 /// specified value type.
1349 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1350   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1351   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1352   // load / store 4 to 8 consecutive D registers.
1353   if (Subtarget->hasNEON()) {
1354     if (VT == MVT::v4i64)
1355       return &ARM::QQPRRegClass;
1356     if (VT == MVT::v8i64)
1357       return &ARM::QQQQPRRegClass;
1358   }
1359   return TargetLowering::getRegClassFor(VT);
1360 }
1361 
1362 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1363 // source/dest is aligned and the copy size is large enough. We therefore want
1364 // to align such objects passed to memory intrinsics.
1365 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1366                                                unsigned &PrefAlign) const {
1367   if (!isa<MemIntrinsic>(CI))
1368     return false;
1369   MinSize = 8;
1370   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1371   // cycle faster than 4-byte aligned LDM.
1372   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1373   return true;
1374 }
1375 
1376 // Create a fast isel object.
1377 FastISel *
1378 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1379                                   const TargetLibraryInfo *libInfo) const {
1380   return ARM::createFastISel(funcInfo, libInfo);
1381 }
1382 
1383 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1384   unsigned NumVals = N->getNumValues();
1385   if (!NumVals)
1386     return Sched::RegPressure;
1387 
1388   for (unsigned i = 0; i != NumVals; ++i) {
1389     EVT VT = N->getValueType(i);
1390     if (VT == MVT::Glue || VT == MVT::Other)
1391       continue;
1392     if (VT.isFloatingPoint() || VT.isVector())
1393       return Sched::ILP;
1394   }
1395 
1396   if (!N->isMachineOpcode())
1397     return Sched::RegPressure;
1398 
1399   // Load are scheduled for latency even if there instruction itinerary
1400   // is not available.
1401   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1402   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1403 
1404   if (MCID.getNumDefs() == 0)
1405     return Sched::RegPressure;
1406   if (!Itins->isEmpty() &&
1407       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1408     return Sched::ILP;
1409 
1410   return Sched::RegPressure;
1411 }
1412 
1413 //===----------------------------------------------------------------------===//
1414 // Lowering Code
1415 //===----------------------------------------------------------------------===//
1416 
1417 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1418 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1419   switch (CC) {
1420   default: llvm_unreachable("Unknown condition code!");
1421   case ISD::SETNE:  return ARMCC::NE;
1422   case ISD::SETEQ:  return ARMCC::EQ;
1423   case ISD::SETGT:  return ARMCC::GT;
1424   case ISD::SETGE:  return ARMCC::GE;
1425   case ISD::SETLT:  return ARMCC::LT;
1426   case ISD::SETLE:  return ARMCC::LE;
1427   case ISD::SETUGT: return ARMCC::HI;
1428   case ISD::SETUGE: return ARMCC::HS;
1429   case ISD::SETULT: return ARMCC::LO;
1430   case ISD::SETULE: return ARMCC::LS;
1431   }
1432 }
1433 
1434 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1435 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1436                         ARMCC::CondCodes &CondCode2) {
1437   CondCode2 = ARMCC::AL;
1438   switch (CC) {
1439   default: llvm_unreachable("Unknown FP condition!");
1440   case ISD::SETEQ:
1441   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1442   case ISD::SETGT:
1443   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1444   case ISD::SETGE:
1445   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1446   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1447   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1448   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1449   case ISD::SETO:   CondCode = ARMCC::VC; break;
1450   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1451   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1452   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1453   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1454   case ISD::SETLT:
1455   case ISD::SETULT: CondCode = ARMCC::LT; break;
1456   case ISD::SETLE:
1457   case ISD::SETULE: CondCode = ARMCC::LE; break;
1458   case ISD::SETNE:
1459   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1460   }
1461 }
1462 
1463 //===----------------------------------------------------------------------===//
1464 //                      Calling Convention Implementation
1465 //===----------------------------------------------------------------------===//
1466 
1467 #include "ARMGenCallingConv.inc"
1468 
1469 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1470 /// account presence of floating point hardware and calling convention
1471 /// limitations, such as support for variadic functions.
1472 CallingConv::ID
1473 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1474                                            bool isVarArg) const {
1475   switch (CC) {
1476   default:
1477     llvm_unreachable("Unsupported calling convention");
1478   case CallingConv::ARM_AAPCS:
1479   case CallingConv::ARM_APCS:
1480   case CallingConv::GHC:
1481     return CC;
1482   case CallingConv::PreserveMost:
1483     return CallingConv::PreserveMost;
1484   case CallingConv::ARM_AAPCS_VFP:
1485   case CallingConv::Swift:
1486     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1487   case CallingConv::C:
1488     if (!Subtarget->isAAPCS_ABI())
1489       return CallingConv::ARM_APCS;
1490     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1491              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1492              !isVarArg)
1493       return CallingConv::ARM_AAPCS_VFP;
1494     else
1495       return CallingConv::ARM_AAPCS;
1496   case CallingConv::Fast:
1497   case CallingConv::CXX_FAST_TLS:
1498     if (!Subtarget->isAAPCS_ABI()) {
1499       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1500         return CallingConv::Fast;
1501       return CallingConv::ARM_APCS;
1502     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1503       return CallingConv::ARM_AAPCS_VFP;
1504     else
1505       return CallingConv::ARM_AAPCS;
1506   }
1507 }
1508 
1509 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1510                                                  bool isVarArg) const {
1511   return CCAssignFnForNode(CC, false, isVarArg);
1512 }
1513 
1514 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1515                                                    bool isVarArg) const {
1516   return CCAssignFnForNode(CC, true, isVarArg);
1517 }
1518 
1519 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1520 /// CallingConvention.
1521 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1522                                                  bool Return,
1523                                                  bool isVarArg) const {
1524   switch (getEffectiveCallingConv(CC, isVarArg)) {
1525   default:
1526     llvm_unreachable("Unsupported calling convention");
1527   case CallingConv::ARM_APCS:
1528     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1529   case CallingConv::ARM_AAPCS:
1530     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1531   case CallingConv::ARM_AAPCS_VFP:
1532     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1533   case CallingConv::Fast:
1534     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1535   case CallingConv::GHC:
1536     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1537   case CallingConv::PreserveMost:
1538     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1539   }
1540 }
1541 
1542 /// LowerCallResult - Lower the result values of a call into the
1543 /// appropriate copies out of appropriate physical registers.
1544 SDValue ARMTargetLowering::LowerCallResult(
1545     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1546     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1547     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1548     SDValue ThisVal) const {
1549 
1550   // Assign locations to each value returned by this call.
1551   SmallVector<CCValAssign, 16> RVLocs;
1552   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1553                     *DAG.getContext(), Call);
1554   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1555 
1556   // Copy all of the result registers out of their specified physreg.
1557   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1558     CCValAssign VA = RVLocs[i];
1559 
1560     // Pass 'this' value directly from the argument to return value, to avoid
1561     // reg unit interference
1562     if (i == 0 && isThisReturn) {
1563       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1564              "unexpected return calling convention register assignment");
1565       InVals.push_back(ThisVal);
1566       continue;
1567     }
1568 
1569     SDValue Val;
1570     if (VA.needsCustom()) {
1571       // Handle f64 or half of a v2f64.
1572       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1573                                       InFlag);
1574       Chain = Lo.getValue(1);
1575       InFlag = Lo.getValue(2);
1576       VA = RVLocs[++i]; // skip ahead to next loc
1577       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1578                                       InFlag);
1579       Chain = Hi.getValue(1);
1580       InFlag = Hi.getValue(2);
1581       if (!Subtarget->isLittle())
1582         std::swap (Lo, Hi);
1583       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1584 
1585       if (VA.getLocVT() == MVT::v2f64) {
1586         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1587         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1588                           DAG.getConstant(0, dl, MVT::i32));
1589 
1590         VA = RVLocs[++i]; // skip ahead to next loc
1591         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1592         Chain = Lo.getValue(1);
1593         InFlag = Lo.getValue(2);
1594         VA = RVLocs[++i]; // skip ahead to next loc
1595         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1596         Chain = Hi.getValue(1);
1597         InFlag = Hi.getValue(2);
1598         if (!Subtarget->isLittle())
1599           std::swap (Lo, Hi);
1600         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1601         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1602                           DAG.getConstant(1, dl, MVT::i32));
1603       }
1604     } else {
1605       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1606                                InFlag);
1607       Chain = Val.getValue(1);
1608       InFlag = Val.getValue(2);
1609     }
1610 
1611     switch (VA.getLocInfo()) {
1612     default: llvm_unreachable("Unknown loc info!");
1613     case CCValAssign::Full: break;
1614     case CCValAssign::BCvt:
1615       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1616       break;
1617     }
1618 
1619     InVals.push_back(Val);
1620   }
1621 
1622   return Chain;
1623 }
1624 
1625 /// LowerMemOpCallTo - Store the argument to the stack.
1626 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1627                                             SDValue Arg, const SDLoc &dl,
1628                                             SelectionDAG &DAG,
1629                                             const CCValAssign &VA,
1630                                             ISD::ArgFlagsTy Flags) const {
1631   unsigned LocMemOffset = VA.getLocMemOffset();
1632   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1633   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1634                        StackPtr, PtrOff);
1635   return DAG.getStore(
1636       Chain, dl, Arg, PtrOff,
1637       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1638 }
1639 
1640 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1641                                          SDValue Chain, SDValue &Arg,
1642                                          RegsToPassVector &RegsToPass,
1643                                          CCValAssign &VA, CCValAssign &NextVA,
1644                                          SDValue &StackPtr,
1645                                          SmallVectorImpl<SDValue> &MemOpChains,
1646                                          ISD::ArgFlagsTy Flags) const {
1647 
1648   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1649                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1650   unsigned id = Subtarget->isLittle() ? 0 : 1;
1651   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1652 
1653   if (NextVA.isRegLoc())
1654     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1655   else {
1656     assert(NextVA.isMemLoc());
1657     if (!StackPtr.getNode())
1658       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1659                                     getPointerTy(DAG.getDataLayout()));
1660 
1661     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1662                                            dl, DAG, NextVA,
1663                                            Flags));
1664   }
1665 }
1666 
1667 /// LowerCall - Lowering a call into a callseq_start <-
1668 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1669 /// nodes.
1670 SDValue
1671 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1672                              SmallVectorImpl<SDValue> &InVals) const {
1673   SelectionDAG &DAG                     = CLI.DAG;
1674   SDLoc &dl                             = CLI.DL;
1675   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1676   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1677   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1678   SDValue Chain                         = CLI.Chain;
1679   SDValue Callee                        = CLI.Callee;
1680   bool &isTailCall                      = CLI.IsTailCall;
1681   CallingConv::ID CallConv              = CLI.CallConv;
1682   bool doesNotRet                       = CLI.DoesNotReturn;
1683   bool isVarArg                         = CLI.IsVarArg;
1684 
1685   MachineFunction &MF = DAG.getMachineFunction();
1686   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1687   bool isThisReturn   = false;
1688   bool isSibCall      = false;
1689   auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
1690 
1691   // Disable tail calls if they're not supported.
1692   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1693     isTailCall = false;
1694 
1695   if (isTailCall) {
1696     // Check if it's really possible to do a tail call.
1697     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1698                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1699                                                    Outs, OutVals, Ins, DAG);
1700     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
1701       report_fatal_error("failed to perform tail call elimination on a call "
1702                          "site marked musttail");
1703     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1704     // detected sibcalls.
1705     if (isTailCall) {
1706       ++NumTailCalls;
1707       isSibCall = true;
1708     }
1709   }
1710 
1711   // Analyze operands of the call, assigning locations to each operand.
1712   SmallVector<CCValAssign, 16> ArgLocs;
1713   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1714                     *DAG.getContext(), Call);
1715   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
1716 
1717   // Get a count of how many bytes are to be pushed on the stack.
1718   unsigned NumBytes = CCInfo.getNextStackOffset();
1719 
1720   // For tail calls, memory operands are available in our caller's stack.
1721   if (isSibCall)
1722     NumBytes = 0;
1723 
1724   // Adjust the stack pointer for the new arguments...
1725   // These operations are automatically eliminated by the prolog/epilog pass
1726   if (!isSibCall)
1727     Chain = DAG.getCALLSEQ_START(Chain,
1728                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
1729 
1730   SDValue StackPtr =
1731       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1732 
1733   RegsToPassVector RegsToPass;
1734   SmallVector<SDValue, 8> MemOpChains;
1735 
1736   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1737   // of tail call optimization, arguments are handled later.
1738   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1739        i != e;
1740        ++i, ++realArgIdx) {
1741     CCValAssign &VA = ArgLocs[i];
1742     SDValue Arg = OutVals[realArgIdx];
1743     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1744     bool isByVal = Flags.isByVal();
1745 
1746     // Promote the value if needed.
1747     switch (VA.getLocInfo()) {
1748     default: llvm_unreachable("Unknown loc info!");
1749     case CCValAssign::Full: break;
1750     case CCValAssign::SExt:
1751       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1752       break;
1753     case CCValAssign::ZExt:
1754       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1755       break;
1756     case CCValAssign::AExt:
1757       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1758       break;
1759     case CCValAssign::BCvt:
1760       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1761       break;
1762     }
1763 
1764     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1765     if (VA.needsCustom()) {
1766       if (VA.getLocVT() == MVT::v2f64) {
1767         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1768                                   DAG.getConstant(0, dl, MVT::i32));
1769         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1770                                   DAG.getConstant(1, dl, MVT::i32));
1771 
1772         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1773                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1774 
1775         VA = ArgLocs[++i]; // skip ahead to next loc
1776         if (VA.isRegLoc()) {
1777           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1778                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1779         } else {
1780           assert(VA.isMemLoc());
1781 
1782           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1783                                                  dl, DAG, VA, Flags));
1784         }
1785       } else {
1786         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1787                          StackPtr, MemOpChains, Flags);
1788       }
1789     } else if (VA.isRegLoc()) {
1790       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1791         assert(VA.getLocVT() == MVT::i32 &&
1792                "unexpected calling convention register assignment");
1793         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1794                "unexpected use of 'returned'");
1795         isThisReturn = true;
1796       }
1797       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1798     } else if (isByVal) {
1799       assert(VA.isMemLoc());
1800       unsigned offset = 0;
1801 
1802       // True if this byval aggregate will be split between registers
1803       // and memory.
1804       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1805       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1806 
1807       if (CurByValIdx < ByValArgsCount) {
1808 
1809         unsigned RegBegin, RegEnd;
1810         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1811 
1812         EVT PtrVT =
1813             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1814         unsigned int i, j;
1815         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1816           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1817           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1818           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1819                                      MachinePointerInfo(),
1820                                      DAG.InferPtrAlignment(AddArg));
1821           MemOpChains.push_back(Load.getValue(1));
1822           RegsToPass.push_back(std::make_pair(j, Load));
1823         }
1824 
1825         // If parameter size outsides register area, "offset" value
1826         // helps us to calculate stack slot for remained part properly.
1827         offset = RegEnd - RegBegin;
1828 
1829         CCInfo.nextInRegsParam();
1830       }
1831 
1832       if (Flags.getByValSize() > 4*offset) {
1833         auto PtrVT = getPointerTy(DAG.getDataLayout());
1834         unsigned LocMemOffset = VA.getLocMemOffset();
1835         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1836         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1837         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1838         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1839         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1840                                            MVT::i32);
1841         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1842                                             MVT::i32);
1843 
1844         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1845         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1846         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1847                                           Ops));
1848       }
1849     } else if (!isSibCall) {
1850       assert(VA.isMemLoc());
1851 
1852       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1853                                              dl, DAG, VA, Flags));
1854     }
1855   }
1856 
1857   if (!MemOpChains.empty())
1858     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1859 
1860   // Build a sequence of copy-to-reg nodes chained together with token chain
1861   // and flag operands which copy the outgoing args into the appropriate regs.
1862   SDValue InFlag;
1863   // Tail call byval lowering might overwrite argument registers so in case of
1864   // tail call optimization the copies to registers are lowered later.
1865   if (!isTailCall)
1866     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1867       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1868                                RegsToPass[i].second, InFlag);
1869       InFlag = Chain.getValue(1);
1870     }
1871 
1872   // For tail calls lower the arguments to the 'real' stack slot.
1873   if (isTailCall) {
1874     // Force all the incoming stack arguments to be loaded from the stack
1875     // before any new outgoing arguments are stored to the stack, because the
1876     // outgoing stack slots may alias the incoming argument stack slots, and
1877     // the alias isn't otherwise explicit. This is slightly more conservative
1878     // than necessary, because it means that each store effectively depends
1879     // on every argument instead of just those arguments it would clobber.
1880 
1881     // Do not flag preceding copytoreg stuff together with the following stuff.
1882     InFlag = SDValue();
1883     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1884       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1885                                RegsToPass[i].second, InFlag);
1886       InFlag = Chain.getValue(1);
1887     }
1888     InFlag = SDValue();
1889   }
1890 
1891   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1892   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1893   // node so that legalize doesn't hack it.
1894   bool isDirect = false;
1895 
1896   const TargetMachine &TM = getTargetMachine();
1897   const Module *Mod = MF.getFunction()->getParent();
1898   const GlobalValue *GV = nullptr;
1899   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1900     GV = G->getGlobal();
1901   bool isStub =
1902       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
1903 
1904   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1905   bool isLocalARMFunc = false;
1906   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1907   auto PtrVt = getPointerTy(DAG.getDataLayout());
1908 
1909   if (Subtarget->genLongCalls()) {
1910     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
1911            "long-calls codegen is not position independent!");
1912     // Handle a global address or an external symbol. If it's not one of
1913     // those, the target's already in a register, so we don't need to do
1914     // anything extra.
1915     if (isa<GlobalAddressSDNode>(Callee)) {
1916       // Create a constant pool entry for the callee address
1917       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1918       ARMConstantPoolValue *CPV =
1919         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1920 
1921       // Get the address of the callee into a register
1922       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1923       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1924       Callee = DAG.getLoad(
1925           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1926           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
1927     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1928       const char *Sym = S->getSymbol();
1929 
1930       // Create a constant pool entry for the callee address
1931       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1932       ARMConstantPoolValue *CPV =
1933         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1934                                       ARMPCLabelIndex, 0);
1935       // Get the address of the callee into a register
1936       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1937       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1938       Callee = DAG.getLoad(
1939           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1940           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
1941     }
1942   } else if (isa<GlobalAddressSDNode>(Callee)) {
1943     // If we're optimizing for minimum size and the function is called three or
1944     // more times in this block, we can improve codesize by calling indirectly
1945     // as BLXr has a 16-bit encoding.
1946     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
1947     auto *BB = CLI.CS->getParent();
1948     bool PreferIndirect =
1949         Subtarget->isThumb() && MF.getFunction()->optForMinSize() &&
1950         count_if(GV->users(), [&BB](const User *U) {
1951           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
1952         }) > 2;
1953 
1954     if (!PreferIndirect) {
1955       isDirect = true;
1956       bool isDef = GV->isStrongDefinitionForLinker();
1957 
1958       // ARM call to a local ARM function is predicable.
1959       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
1960       // tBX takes a register source operand.
1961       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1962         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
1963         Callee = DAG.getNode(
1964             ARMISD::WrapperPIC, dl, PtrVt,
1965             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
1966         Callee = DAG.getLoad(
1967             PtrVt, dl, DAG.getEntryNode(), Callee,
1968             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
1969             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
1970                                      MachineMemOperand::MOInvariant);
1971       } else if (Subtarget->isTargetCOFF()) {
1972         assert(Subtarget->isTargetWindows() &&
1973                "Windows is the only supported COFF target");
1974         unsigned TargetFlags = GV->hasDLLImportStorageClass()
1975                                    ? ARMII::MO_DLLIMPORT
1976                                    : ARMII::MO_NO_FLAG;
1977         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
1978                                             TargetFlags);
1979         if (GV->hasDLLImportStorageClass())
1980           Callee =
1981               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
1982                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
1983                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1984       } else {
1985         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
1986       }
1987     }
1988   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1989     isDirect = true;
1990     // tBX takes a register source operand.
1991     const char *Sym = S->getSymbol();
1992     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1993       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1994       ARMConstantPoolValue *CPV =
1995         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1996                                       ARMPCLabelIndex, 4);
1997       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1998       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1999       Callee = DAG.getLoad(
2000           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2001           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2002       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2003       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2004     } else {
2005       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2006     }
2007   }
2008 
2009   // FIXME: handle tail calls differently.
2010   unsigned CallOpc;
2011   if (Subtarget->isThumb()) {
2012     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2013       CallOpc = ARMISD::CALL_NOLINK;
2014     else
2015       CallOpc = ARMISD::CALL;
2016   } else {
2017     if (!isDirect && !Subtarget->hasV5TOps())
2018       CallOpc = ARMISD::CALL_NOLINK;
2019     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2020              // Emit regular call when code size is the priority
2021              !MF.getFunction()->optForMinSize())
2022       // "mov lr, pc; b _foo" to avoid confusing the RSP
2023       CallOpc = ARMISD::CALL_NOLINK;
2024     else
2025       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2026   }
2027 
2028   std::vector<SDValue> Ops;
2029   Ops.push_back(Chain);
2030   Ops.push_back(Callee);
2031 
2032   // Add argument registers to the end of the list so that they are known live
2033   // into the call.
2034   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2035     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2036                                   RegsToPass[i].second.getValueType()));
2037 
2038   // Add a register mask operand representing the call-preserved registers.
2039   if (!isTailCall) {
2040     const uint32_t *Mask;
2041     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2042     if (isThisReturn) {
2043       // For 'this' returns, use the R0-preserving mask if applicable
2044       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2045       if (!Mask) {
2046         // Set isThisReturn to false if the calling convention is not one that
2047         // allows 'returned' to be modeled in this way, so LowerCallResult does
2048         // not try to pass 'this' straight through
2049         isThisReturn = false;
2050         Mask = ARI->getCallPreservedMask(MF, CallConv);
2051       }
2052     } else
2053       Mask = ARI->getCallPreservedMask(MF, CallConv);
2054 
2055     assert(Mask && "Missing call preserved mask for calling convention");
2056     Ops.push_back(DAG.getRegisterMask(Mask));
2057   }
2058 
2059   if (InFlag.getNode())
2060     Ops.push_back(InFlag);
2061 
2062   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2063   if (isTailCall) {
2064     MF.getFrameInfo().setHasTailCall();
2065     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2066   }
2067 
2068   // Returns a chain and a flag for retval copy to use.
2069   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2070   InFlag = Chain.getValue(1);
2071 
2072   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2073                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2074   if (!Ins.empty())
2075     InFlag = Chain.getValue(1);
2076 
2077   // Handle result values, copying them out of physregs into vregs that we
2078   // return.
2079   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2080                          InVals, isThisReturn,
2081                          isThisReturn ? OutVals[0] : SDValue());
2082 }
2083 
2084 /// HandleByVal - Every parameter *after* a byval parameter is passed
2085 /// on the stack.  Remember the next parameter register to allocate,
2086 /// and then confiscate the rest of the parameter registers to insure
2087 /// this.
2088 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2089                                     unsigned Align) const {
2090   assert((State->getCallOrPrologue() == Prologue ||
2091           State->getCallOrPrologue() == Call) &&
2092          "unhandled ParmContext");
2093 
2094   // Byval (as with any stack) slots are always at least 4 byte aligned.
2095   Align = std::max(Align, 4U);
2096 
2097   unsigned Reg = State->AllocateReg(GPRArgRegs);
2098   if (!Reg)
2099     return;
2100 
2101   unsigned AlignInRegs = Align / 4;
2102   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2103   for (unsigned i = 0; i < Waste; ++i)
2104     Reg = State->AllocateReg(GPRArgRegs);
2105 
2106   if (!Reg)
2107     return;
2108 
2109   unsigned Excess = 4 * (ARM::R4 - Reg);
2110 
2111   // Special case when NSAA != SP and parameter size greater than size of
2112   // all remained GPR regs. In that case we can't split parameter, we must
2113   // send it to stack. We also must set NCRN to R4, so waste all
2114   // remained registers.
2115   const unsigned NSAAOffset = State->getNextStackOffset();
2116   if (NSAAOffset != 0 && Size > Excess) {
2117     while (State->AllocateReg(GPRArgRegs))
2118       ;
2119     return;
2120   }
2121 
2122   // First register for byval parameter is the first register that wasn't
2123   // allocated before this method call, so it would be "reg".
2124   // If parameter is small enough to be saved in range [reg, r4), then
2125   // the end (first after last) register would be reg + param-size-in-regs,
2126   // else parameter would be splitted between registers and stack,
2127   // end register would be r4 in this case.
2128   unsigned ByValRegBegin = Reg;
2129   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2130   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2131   // Note, first register is allocated in the beginning of function already,
2132   // allocate remained amount of registers we need.
2133   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2134     State->AllocateReg(GPRArgRegs);
2135   // A byval parameter that is split between registers and memory needs its
2136   // size truncated here.
2137   // In the case where the entire structure fits in registers, we set the
2138   // size in memory to zero.
2139   Size = std::max<int>(Size - Excess, 0);
2140 }
2141 
2142 /// MatchingStackOffset - Return true if the given stack call argument is
2143 /// already available in the same position (relatively) of the caller's
2144 /// incoming argument stack.
2145 static
2146 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2147                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2148                          const TargetInstrInfo *TII) {
2149   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2150   int FI = INT_MAX;
2151   if (Arg.getOpcode() == ISD::CopyFromReg) {
2152     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2153     if (!TargetRegisterInfo::isVirtualRegister(VR))
2154       return false;
2155     MachineInstr *Def = MRI->getVRegDef(VR);
2156     if (!Def)
2157       return false;
2158     if (!Flags.isByVal()) {
2159       if (!TII->isLoadFromStackSlot(*Def, FI))
2160         return false;
2161     } else {
2162       return false;
2163     }
2164   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2165     if (Flags.isByVal())
2166       // ByVal argument is passed in as a pointer but it's now being
2167       // dereferenced. e.g.
2168       // define @foo(%struct.X* %A) {
2169       //   tail call @bar(%struct.X* byval %A)
2170       // }
2171       return false;
2172     SDValue Ptr = Ld->getBasePtr();
2173     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2174     if (!FINode)
2175       return false;
2176     FI = FINode->getIndex();
2177   } else
2178     return false;
2179 
2180   assert(FI != INT_MAX);
2181   if (!MFI.isFixedObjectIndex(FI))
2182     return false;
2183   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2184 }
2185 
2186 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2187 /// for tail call optimization. Targets which want to do tail call
2188 /// optimization should implement this function.
2189 bool
2190 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2191                                                      CallingConv::ID CalleeCC,
2192                                                      bool isVarArg,
2193                                                      bool isCalleeStructRet,
2194                                                      bool isCallerStructRet,
2195                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2196                                     const SmallVectorImpl<SDValue> &OutVals,
2197                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2198                                                      SelectionDAG& DAG) const {
2199   MachineFunction &MF = DAG.getMachineFunction();
2200   const Function *CallerF = MF.getFunction();
2201   CallingConv::ID CallerCC = CallerF->getCallingConv();
2202 
2203   assert(Subtarget->supportsTailCall());
2204 
2205   // Look for obvious safe cases to perform tail call optimization that do not
2206   // require ABI changes. This is what gcc calls sibcall.
2207 
2208   // Exception-handling functions need a special set of instructions to indicate
2209   // a return to the hardware. Tail-calling another function would probably
2210   // break this.
2211   if (CallerF->hasFnAttribute("interrupt"))
2212     return false;
2213 
2214   // Also avoid sibcall optimization if either caller or callee uses struct
2215   // return semantics.
2216   if (isCalleeStructRet || isCallerStructRet)
2217     return false;
2218 
2219   // Externally-defined functions with weak linkage should not be
2220   // tail-called on ARM when the OS does not support dynamic
2221   // pre-emption of symbols, as the AAELF spec requires normal calls
2222   // to undefined weak functions to be replaced with a NOP or jump to the
2223   // next instruction. The behaviour of branch instructions in this
2224   // situation (as used for tail calls) is implementation-defined, so we
2225   // cannot rely on the linker replacing the tail call with a return.
2226   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2227     const GlobalValue *GV = G->getGlobal();
2228     const Triple &TT = getTargetMachine().getTargetTriple();
2229     if (GV->hasExternalWeakLinkage() &&
2230         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2231       return false;
2232   }
2233 
2234   // Check that the call results are passed in the same way.
2235   LLVMContext &C = *DAG.getContext();
2236   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2237                                   CCAssignFnForReturn(CalleeCC, isVarArg),
2238                                   CCAssignFnForReturn(CallerCC, isVarArg)))
2239     return false;
2240   // The callee has to preserve all registers the caller needs to preserve.
2241   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2242   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2243   if (CalleeCC != CallerCC) {
2244     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2245     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2246       return false;
2247   }
2248 
2249   // If Caller's vararg or byval argument has been split between registers and
2250   // stack, do not perform tail call, since part of the argument is in caller's
2251   // local frame.
2252   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2253   if (AFI_Caller->getArgRegsSaveSize())
2254     return false;
2255 
2256   // If the callee takes no arguments then go on to check the results of the
2257   // call.
2258   if (!Outs.empty()) {
2259     // Check if stack adjustment is needed. For now, do not do this if any
2260     // argument is passed on the stack.
2261     SmallVector<CCValAssign, 16> ArgLocs;
2262     ARMCCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C, Call);
2263     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2264     if (CCInfo.getNextStackOffset()) {
2265       // Check if the arguments are already laid out in the right way as
2266       // the caller's fixed stack objects.
2267       MachineFrameInfo &MFI = MF.getFrameInfo();
2268       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2269       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2270       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2271            i != e;
2272            ++i, ++realArgIdx) {
2273         CCValAssign &VA = ArgLocs[i];
2274         EVT RegVT = VA.getLocVT();
2275         SDValue Arg = OutVals[realArgIdx];
2276         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2277         if (VA.getLocInfo() == CCValAssign::Indirect)
2278           return false;
2279         if (VA.needsCustom()) {
2280           // f64 and vector types are split into multiple registers or
2281           // register/stack-slot combinations.  The types will not match
2282           // the registers; give up on memory f64 refs until we figure
2283           // out what to do about this.
2284           if (!VA.isRegLoc())
2285             return false;
2286           if (!ArgLocs[++i].isRegLoc())
2287             return false;
2288           if (RegVT == MVT::v2f64) {
2289             if (!ArgLocs[++i].isRegLoc())
2290               return false;
2291             if (!ArgLocs[++i].isRegLoc())
2292               return false;
2293           }
2294         } else if (!VA.isRegLoc()) {
2295           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2296                                    MFI, MRI, TII))
2297             return false;
2298         }
2299       }
2300     }
2301 
2302     const MachineRegisterInfo &MRI = MF.getRegInfo();
2303     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2304       return false;
2305   }
2306 
2307   return true;
2308 }
2309 
2310 bool
2311 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2312                                   MachineFunction &MF, bool isVarArg,
2313                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2314                                   LLVMContext &Context) const {
2315   SmallVector<CCValAssign, 16> RVLocs;
2316   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2317   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2318 }
2319 
2320 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2321                                     const SDLoc &DL, SelectionDAG &DAG) {
2322   const MachineFunction &MF = DAG.getMachineFunction();
2323   const Function *F = MF.getFunction();
2324 
2325   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2326 
2327   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2328   // version of the "preferred return address". These offsets affect the return
2329   // instruction if this is a return from PL1 without hypervisor extensions.
2330   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2331   //    SWI:     0      "subs pc, lr, #0"
2332   //    ABORT:   +4     "subs pc, lr, #4"
2333   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2334   // UNDEF varies depending on where the exception came from ARM or Thumb
2335   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2336 
2337   int64_t LROffset;
2338   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2339       IntKind == "ABORT")
2340     LROffset = 4;
2341   else if (IntKind == "SWI" || IntKind == "UNDEF")
2342     LROffset = 0;
2343   else
2344     report_fatal_error("Unsupported interrupt attribute. If present, value "
2345                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2346 
2347   RetOps.insert(RetOps.begin() + 1,
2348                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2349 
2350   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2351 }
2352 
2353 SDValue
2354 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2355                                bool isVarArg,
2356                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2357                                const SmallVectorImpl<SDValue> &OutVals,
2358                                const SDLoc &dl, SelectionDAG &DAG) const {
2359 
2360   // CCValAssign - represent the assignment of the return value to a location.
2361   SmallVector<CCValAssign, 16> RVLocs;
2362 
2363   // CCState - Info about the registers and stack slots.
2364   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2365                     *DAG.getContext(), Call);
2366 
2367   // Analyze outgoing return values.
2368   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2369 
2370   SDValue Flag;
2371   SmallVector<SDValue, 4> RetOps;
2372   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2373   bool isLittleEndian = Subtarget->isLittle();
2374 
2375   MachineFunction &MF = DAG.getMachineFunction();
2376   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2377   AFI->setReturnRegsCount(RVLocs.size());
2378 
2379   // Copy the result values into the output registers.
2380   for (unsigned i = 0, realRVLocIdx = 0;
2381        i != RVLocs.size();
2382        ++i, ++realRVLocIdx) {
2383     CCValAssign &VA = RVLocs[i];
2384     assert(VA.isRegLoc() && "Can only return in registers!");
2385 
2386     SDValue Arg = OutVals[realRVLocIdx];
2387 
2388     switch (VA.getLocInfo()) {
2389     default: llvm_unreachable("Unknown loc info!");
2390     case CCValAssign::Full: break;
2391     case CCValAssign::BCvt:
2392       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2393       break;
2394     }
2395 
2396     if (VA.needsCustom()) {
2397       if (VA.getLocVT() == MVT::v2f64) {
2398         // Extract the first half and return it in two registers.
2399         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2400                                    DAG.getConstant(0, dl, MVT::i32));
2401         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2402                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2403 
2404         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2405                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2406                                  Flag);
2407         Flag = Chain.getValue(1);
2408         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2409         VA = RVLocs[++i]; // skip ahead to next loc
2410         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2411                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2412                                  Flag);
2413         Flag = Chain.getValue(1);
2414         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2415         VA = RVLocs[++i]; // skip ahead to next loc
2416 
2417         // Extract the 2nd half and fall through to handle it as an f64 value.
2418         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2419                           DAG.getConstant(1, dl, MVT::i32));
2420       }
2421       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2422       // available.
2423       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2424                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2425       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2426                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2427                                Flag);
2428       Flag = Chain.getValue(1);
2429       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2430       VA = RVLocs[++i]; // skip ahead to next loc
2431       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2432                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2433                                Flag);
2434     } else
2435       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2436 
2437     // Guarantee that all emitted copies are
2438     // stuck together, avoiding something bad.
2439     Flag = Chain.getValue(1);
2440     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2441   }
2442   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2443   const MCPhysReg *I =
2444       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2445   if (I) {
2446     for (; *I; ++I) {
2447       if (ARM::GPRRegClass.contains(*I))
2448         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2449       else if (ARM::DPRRegClass.contains(*I))
2450         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2451       else
2452         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2453     }
2454   }
2455 
2456   // Update chain and glue.
2457   RetOps[0] = Chain;
2458   if (Flag.getNode())
2459     RetOps.push_back(Flag);
2460 
2461   // CPUs which aren't M-class use a special sequence to return from
2462   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2463   // though we use "subs pc, lr, #N").
2464   //
2465   // M-class CPUs actually use a normal return sequence with a special
2466   // (hardware-provided) value in LR, so the normal code path works.
2467   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2468       !Subtarget->isMClass()) {
2469     if (Subtarget->isThumb1Only())
2470       report_fatal_error("interrupt attribute is not supported in Thumb1");
2471     return LowerInterruptReturn(RetOps, dl, DAG);
2472   }
2473 
2474   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2475 }
2476 
2477 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2478   if (N->getNumValues() != 1)
2479     return false;
2480   if (!N->hasNUsesOfValue(1, 0))
2481     return false;
2482 
2483   SDValue TCChain = Chain;
2484   SDNode *Copy = *N->use_begin();
2485   if (Copy->getOpcode() == ISD::CopyToReg) {
2486     // If the copy has a glue operand, we conservatively assume it isn't safe to
2487     // perform a tail call.
2488     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2489       return false;
2490     TCChain = Copy->getOperand(0);
2491   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2492     SDNode *VMov = Copy;
2493     // f64 returned in a pair of GPRs.
2494     SmallPtrSet<SDNode*, 2> Copies;
2495     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2496          UI != UE; ++UI) {
2497       if (UI->getOpcode() != ISD::CopyToReg)
2498         return false;
2499       Copies.insert(*UI);
2500     }
2501     if (Copies.size() > 2)
2502       return false;
2503 
2504     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2505          UI != UE; ++UI) {
2506       SDValue UseChain = UI->getOperand(0);
2507       if (Copies.count(UseChain.getNode()))
2508         // Second CopyToReg
2509         Copy = *UI;
2510       else {
2511         // We are at the top of this chain.
2512         // If the copy has a glue operand, we conservatively assume it
2513         // isn't safe to perform a tail call.
2514         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2515           return false;
2516         // First CopyToReg
2517         TCChain = UseChain;
2518       }
2519     }
2520   } else if (Copy->getOpcode() == ISD::BITCAST) {
2521     // f32 returned in a single GPR.
2522     if (!Copy->hasOneUse())
2523       return false;
2524     Copy = *Copy->use_begin();
2525     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2526       return false;
2527     // If the copy has a glue operand, we conservatively assume it isn't safe to
2528     // perform a tail call.
2529     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2530       return false;
2531     TCChain = Copy->getOperand(0);
2532   } else {
2533     return false;
2534   }
2535 
2536   bool HasRet = false;
2537   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2538        UI != UE; ++UI) {
2539     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2540         UI->getOpcode() != ARMISD::INTRET_FLAG)
2541       return false;
2542     HasRet = true;
2543   }
2544 
2545   if (!HasRet)
2546     return false;
2547 
2548   Chain = TCChain;
2549   return true;
2550 }
2551 
2552 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2553   if (!Subtarget->supportsTailCall())
2554     return false;
2555 
2556   auto Attr =
2557       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2558   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2559     return false;
2560 
2561   return true;
2562 }
2563 
2564 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2565 // and pass the lower and high parts through.
2566 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2567   SDLoc DL(Op);
2568   SDValue WriteValue = Op->getOperand(2);
2569 
2570   // This function is only supposed to be called for i64 type argument.
2571   assert(WriteValue.getValueType() == MVT::i64
2572           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2573 
2574   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2575                            DAG.getConstant(0, DL, MVT::i32));
2576   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2577                            DAG.getConstant(1, DL, MVT::i32));
2578   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2579   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2580 }
2581 
2582 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2583 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2584 // one of the above mentioned nodes. It has to be wrapped because otherwise
2585 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2586 // be used to form addressing mode. These wrapped nodes will be selected
2587 // into MOVi.
2588 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2589   EVT PtrVT = Op.getValueType();
2590   // FIXME there is no actual debug info here
2591   SDLoc dl(Op);
2592   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2593   SDValue Res;
2594   if (CP->isMachineConstantPoolEntry())
2595     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2596                                     CP->getAlignment());
2597   else
2598     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2599                                     CP->getAlignment());
2600   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2601 }
2602 
2603 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2604   return MachineJumpTableInfo::EK_Inline;
2605 }
2606 
2607 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2608                                              SelectionDAG &DAG) const {
2609   MachineFunction &MF = DAG.getMachineFunction();
2610   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2611   unsigned ARMPCLabelIndex = 0;
2612   SDLoc DL(Op);
2613   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2614   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2615   SDValue CPAddr;
2616   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2617   if (!IsPositionIndependent) {
2618     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2619   } else {
2620     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2621     ARMPCLabelIndex = AFI->createPICLabelUId();
2622     ARMConstantPoolValue *CPV =
2623       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2624                                       ARMCP::CPBlockAddress, PCAdj);
2625     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2626   }
2627   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2628   SDValue Result = DAG.getLoad(
2629       PtrVT, DL, DAG.getEntryNode(), CPAddr,
2630       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2631   if (!IsPositionIndependent)
2632     return Result;
2633   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2634   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2635 }
2636 
2637 /// \brief Convert a TLS address reference into the correct sequence of loads
2638 /// and calls to compute the variable's address for Darwin, and return an
2639 /// SDValue containing the final node.
2640 
2641 /// Darwin only has one TLS scheme which must be capable of dealing with the
2642 /// fully general situation, in the worst case. This means:
2643 ///     + "extern __thread" declaration.
2644 ///     + Defined in a possibly unknown dynamic library.
2645 ///
2646 /// The general system is that each __thread variable has a [3 x i32] descriptor
2647 /// which contains information used by the runtime to calculate the address. The
2648 /// only part of this the compiler needs to know about is the first word, which
2649 /// contains a function pointer that must be called with the address of the
2650 /// entire descriptor in "r0".
2651 ///
2652 /// Since this descriptor may be in a different unit, in general access must
2653 /// proceed along the usual ARM rules. A common sequence to produce is:
2654 ///
2655 ///     movw rT1, :lower16:_var$non_lazy_ptr
2656 ///     movt rT1, :upper16:_var$non_lazy_ptr
2657 ///     ldr r0, [rT1]
2658 ///     ldr rT2, [r0]
2659 ///     blx rT2
2660 ///     [...address now in r0...]
2661 SDValue
2662 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2663                                                SelectionDAG &DAG) const {
2664   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2665   SDLoc DL(Op);
2666 
2667   // First step is to get the address of the actua global symbol. This is where
2668   // the TLS descriptor lives.
2669   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2670 
2671   // The first entry in the descriptor is a function pointer that we must call
2672   // to obtain the address of the variable.
2673   SDValue Chain = DAG.getEntryNode();
2674   SDValue FuncTLVGet = DAG.getLoad(
2675       MVT::i32, DL, Chain, DescAddr,
2676       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2677       /* Alignment = */ 4,
2678       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2679           MachineMemOperand::MOInvariant);
2680   Chain = FuncTLVGet.getValue(1);
2681 
2682   MachineFunction &F = DAG.getMachineFunction();
2683   MachineFrameInfo &MFI = F.getFrameInfo();
2684   MFI.setAdjustsStack(true);
2685 
2686   // TLS calls preserve all registers except those that absolutely must be
2687   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2688   // silly).
2689   auto TRI =
2690       getTargetMachine().getSubtargetImpl(*F.getFunction())->getRegisterInfo();
2691   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2692   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2693 
2694   // Finally, we can make the call. This is just a degenerate version of a
2695   // normal AArch64 call node: r0 takes the address of the descriptor, and
2696   // returns the address of the variable in this thread.
2697   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2698   Chain =
2699       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2700                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2701                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2702   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2703 }
2704 
2705 SDValue
2706 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2707                                                 SelectionDAG &DAG) const {
2708   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2709 
2710   SDValue Chain = DAG.getEntryNode();
2711   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2712   SDLoc DL(Op);
2713 
2714   // Load the current TEB (thread environment block)
2715   SDValue Ops[] = {Chain,
2716                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2717                    DAG.getConstant(15, DL, MVT::i32),
2718                    DAG.getConstant(0, DL, MVT::i32),
2719                    DAG.getConstant(13, DL, MVT::i32),
2720                    DAG.getConstant(0, DL, MVT::i32),
2721                    DAG.getConstant(2, DL, MVT::i32)};
2722   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2723                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2724 
2725   SDValue TEB = CurrentTEB.getValue(0);
2726   Chain = CurrentTEB.getValue(1);
2727 
2728   // Load the ThreadLocalStoragePointer from the TEB
2729   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2730   SDValue TLSArray =
2731       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2732   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
2733 
2734   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2735   // offset into the TLSArray.
2736 
2737   // Load the TLS index from the C runtime
2738   SDValue TLSIndex =
2739       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2740   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2741   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
2742 
2743   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2744                               DAG.getConstant(2, DL, MVT::i32));
2745   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2746                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2747                             MachinePointerInfo());
2748 
2749   // Get the offset of the start of the .tls section (section base)
2750   const auto *GA = cast<GlobalAddressSDNode>(Op);
2751   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2752   SDValue Offset = DAG.getLoad(
2753       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2754                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2755       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2756 
2757   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2758 }
2759 
2760 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2761 SDValue
2762 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2763                                                  SelectionDAG &DAG) const {
2764   SDLoc dl(GA);
2765   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2766   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2767   MachineFunction &MF = DAG.getMachineFunction();
2768   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2769   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2770   ARMConstantPoolValue *CPV =
2771     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2772                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2773   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2774   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2775   Argument = DAG.getLoad(
2776       PtrVT, dl, DAG.getEntryNode(), Argument,
2777       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2778   SDValue Chain = Argument.getValue(1);
2779 
2780   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2781   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2782 
2783   // call __tls_get_addr.
2784   ArgListTy Args;
2785   ArgListEntry Entry;
2786   Entry.Node = Argument;
2787   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2788   Args.push_back(Entry);
2789 
2790   // FIXME: is there useful debug info available here?
2791   TargetLowering::CallLoweringInfo CLI(DAG);
2792   CLI.setDebugLoc(dl).setChain(Chain)
2793     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2794                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2795 
2796   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2797   return CallResult.first;
2798 }
2799 
2800 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2801 // "local exec" model.
2802 SDValue
2803 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2804                                         SelectionDAG &DAG,
2805                                         TLSModel::Model model) const {
2806   const GlobalValue *GV = GA->getGlobal();
2807   SDLoc dl(GA);
2808   SDValue Offset;
2809   SDValue Chain = DAG.getEntryNode();
2810   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2811   // Get the Thread Pointer
2812   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2813 
2814   if (model == TLSModel::InitialExec) {
2815     MachineFunction &MF = DAG.getMachineFunction();
2816     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2817     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2818     // Initial exec model.
2819     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2820     ARMConstantPoolValue *CPV =
2821       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2822                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2823                                       true);
2824     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2825     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2826     Offset = DAG.getLoad(
2827         PtrVT, dl, Chain, Offset,
2828         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2829     Chain = Offset.getValue(1);
2830 
2831     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2832     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2833 
2834     Offset = DAG.getLoad(
2835         PtrVT, dl, Chain, Offset,
2836         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2837   } else {
2838     // local exec model
2839     assert(model == TLSModel::LocalExec);
2840     ARMConstantPoolValue *CPV =
2841       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2842     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2843     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2844     Offset = DAG.getLoad(
2845         PtrVT, dl, Chain, Offset,
2846         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2847   }
2848 
2849   // The address of the thread local variable is the add of the thread
2850   // pointer with the offset of the variable.
2851   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2852 }
2853 
2854 SDValue
2855 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2856   if (Subtarget->isTargetDarwin())
2857     return LowerGlobalTLSAddressDarwin(Op, DAG);
2858 
2859   if (Subtarget->isTargetWindows())
2860     return LowerGlobalTLSAddressWindows(Op, DAG);
2861 
2862   // TODO: implement the "local dynamic" model
2863   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
2864   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2865   if (DAG.getTarget().Options.EmulatedTLS)
2866     return LowerToTLSEmulatedModel(GA, DAG);
2867 
2868   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2869 
2870   switch (model) {
2871     case TLSModel::GeneralDynamic:
2872     case TLSModel::LocalDynamic:
2873       return LowerToTLSGeneralDynamicModel(GA, DAG);
2874     case TLSModel::InitialExec:
2875     case TLSModel::LocalExec:
2876       return LowerToTLSExecModels(GA, DAG, model);
2877   }
2878   llvm_unreachable("bogus TLS model");
2879 }
2880 
2881 /// Return true if all users of V are within function F, looking through
2882 /// ConstantExprs.
2883 static bool allUsersAreInFunction(const Value *V, const Function *F) {
2884   SmallVector<const User*,4> Worklist;
2885   for (auto *U : V->users())
2886     Worklist.push_back(U);
2887   while (!Worklist.empty()) {
2888     auto *U = Worklist.pop_back_val();
2889     if (isa<ConstantExpr>(U)) {
2890       for (auto *UU : U->users())
2891         Worklist.push_back(UU);
2892       continue;
2893     }
2894 
2895     auto *I = dyn_cast<Instruction>(U);
2896     if (!I || I->getParent()->getParent() != F)
2897       return false;
2898   }
2899   return true;
2900 }
2901 
2902 /// Return true if all users of V are within some (any) function, looking through
2903 /// ConstantExprs. In other words, are there any global constant users?
2904 static bool allUsersAreInFunctions(const Value *V) {
2905   SmallVector<const User*,4> Worklist;
2906   for (auto *U : V->users())
2907     Worklist.push_back(U);
2908   while (!Worklist.empty()) {
2909     auto *U = Worklist.pop_back_val();
2910     if (isa<ConstantExpr>(U)) {
2911       for (auto *UU : U->users())
2912         Worklist.push_back(UU);
2913       continue;
2914     }
2915 
2916     if (!isa<Instruction>(U))
2917       return false;
2918   }
2919   return true;
2920 }
2921 
2922 // Return true if T is an integer, float or an array/vector of either.
2923 static bool isSimpleType(Type *T) {
2924   if (T->isIntegerTy() || T->isFloatingPointTy())
2925     return true;
2926   Type *SubT = nullptr;
2927   if (T->isArrayTy())
2928     SubT = T->getArrayElementType();
2929   else if (T->isVectorTy())
2930     SubT = T->getVectorElementType();
2931   else
2932     return false;
2933   return SubT->isIntegerTy() || SubT->isFloatingPointTy();
2934 }
2935 
2936 static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG,
2937                                      EVT PtrVT, const SDLoc &dl) {
2938   // If we're creating a pool entry for a constant global with unnamed address,
2939   // and the global is small enough, we can emit it inline into the constant pool
2940   // to save ourselves an indirection.
2941   //
2942   // This is a win if the constant is only used in one function (so it doesn't
2943   // need to be duplicated) or duplicating the constant wouldn't increase code
2944   // size (implying the constant is no larger than 4 bytes).
2945   const Function *F = DAG.getMachineFunction().getFunction();
2946 
2947   // We rely on this decision to inline being idemopotent and unrelated to the
2948   // use-site. We know that if we inline a variable at one use site, we'll
2949   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
2950   // doesn't know about this optimization, so bail out if it's enabled else
2951   // we could decide to inline here (and thus never emit the GV) but require
2952   // the GV from fast-isel generated code.
2953   if (!EnableConstpoolPromotion ||
2954       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
2955       return SDValue();
2956 
2957   auto *GVar = dyn_cast<GlobalVariable>(GV);
2958   if (!GVar || !GVar->hasInitializer() ||
2959       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
2960       !GVar->hasLocalLinkage())
2961     return SDValue();
2962 
2963   // Ensure that we don't try and inline any type that contains pointers. If
2964   // we inline a value that contains relocations, we move the relocations from
2965   // .data to .text which is not ideal.
2966   auto *Init = GVar->getInitializer();
2967   if (!isSimpleType(Init->getType()))
2968     return SDValue();
2969 
2970   // The constant islands pass can only really deal with alignment requests
2971   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
2972   // any type wanting greater alignment requirements than 4 bytes. We also
2973   // can only promote constants that are multiples of 4 bytes in size or
2974   // are paddable to a multiple of 4. Currently we only try and pad constants
2975   // that are strings for simplicity.
2976   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
2977   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
2978   unsigned Align = GVar->getAlignment();
2979   unsigned RequiredPadding = 4 - (Size % 4);
2980   bool PaddingPossible =
2981     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
2982   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize)
2983     return SDValue();
2984 
2985   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
2986   MachineFunction &MF = DAG.getMachineFunction();
2987   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2988 
2989   // We can't bloat the constant pool too much, else the ConstantIslands pass
2990   // may fail to converge. If we haven't promoted this global yet (it may have
2991   // multiple uses), and promoting it would increase the constant pool size (Sz
2992   // > 4), ensure we have space to do so up to MaxTotal.
2993   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
2994     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
2995         ConstpoolPromotionMaxTotal)
2996       return SDValue();
2997 
2998   // This is only valid if all users are in a single function OR it has users
2999   // in multiple functions but it no larger than a pointer. We also check if
3000   // GVar has constant (non-ConstantExpr) users. If so, it essentially has its
3001   // address taken.
3002   if (!allUsersAreInFunction(GVar, F) &&
3003       !(Size <= 4 && allUsersAreInFunctions(GVar)))
3004     return SDValue();
3005 
3006   // We're going to inline this global. Pad it out if needed.
3007   if (RequiredPadding != 4) {
3008     StringRef S = CDAInit->getAsString();
3009 
3010     SmallVector<uint8_t,16> V(S.size());
3011     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3012     while (RequiredPadding--)
3013       V.push_back(0);
3014     Init = ConstantDataArray::get(*DAG.getContext(), V);
3015   }
3016 
3017   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3018   SDValue CPAddr =
3019     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3020   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3021     AFI->markGlobalAsPromotedToConstantPool(GVar);
3022     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3023                                       PaddedSize - 4);
3024   }
3025   ++NumConstpoolPromoted;
3026   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3027 }
3028 
3029 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3030                                                  SelectionDAG &DAG) const {
3031   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3032   SDLoc dl(Op);
3033   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3034   const TargetMachine &TM = getTargetMachine();
3035   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3036     GV = GA->getBaseObject();
3037   bool IsRO =
3038       (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
3039       isa<Function>(GV);
3040 
3041   // promoteToConstantPool only if not generating XO text section
3042   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3043     if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl))
3044       return V;
3045 
3046   if (isPositionIndependent()) {
3047     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3048 
3049     MachineFunction &MF = DAG.getMachineFunction();
3050     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3051     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3052     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3053     SDLoc dl(Op);
3054     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3055     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
3056         GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
3057         UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
3058         /*AddCurrentAddress=*/UseGOT_PREL);
3059     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3060     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3061     SDValue Result = DAG.getLoad(
3062         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3063         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3064     SDValue Chain = Result.getValue(1);
3065     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3066     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3067     if (UseGOT_PREL)
3068       Result =
3069           DAG.getLoad(PtrVT, dl, Chain, Result,
3070                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3071     return Result;
3072   } else if (Subtarget->isROPI() && IsRO) {
3073     // PC-relative.
3074     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3075     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3076     return Result;
3077   } else if (Subtarget->isRWPI() && !IsRO) {
3078     // SB-relative.
3079     ARMConstantPoolValue *CPV =
3080       ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3081     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3082     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3083     SDValue G = DAG.getLoad(
3084         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3085         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3086     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3087     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, G);
3088     return Result;
3089   }
3090 
3091   // If we have T2 ops, we can materialize the address directly via movt/movw
3092   // pair. This is always cheaper.
3093   if (Subtarget->useMovt(DAG.getMachineFunction())) {
3094     ++NumMovwMovt;
3095     // FIXME: Once remat is capable of dealing with instructions with register
3096     // operands, expand this into two nodes.
3097     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3098                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3099   } else {
3100     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3101     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3102     return DAG.getLoad(
3103         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3104         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3105   }
3106 }
3107 
3108 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3109                                                     SelectionDAG &DAG) const {
3110   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3111          "ROPI/RWPI not currently supported for Darwin");
3112   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3113   SDLoc dl(Op);
3114   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3115 
3116   if (Subtarget->useMovt(DAG.getMachineFunction()))
3117     ++NumMovwMovt;
3118 
3119   // FIXME: Once remat is capable of dealing with instructions with register
3120   // operands, expand this into multiple nodes
3121   unsigned Wrapper =
3122       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3123 
3124   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3125   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3126 
3127   if (Subtarget->isGVIndirectSymbol(GV))
3128     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3129                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3130   return Result;
3131 }
3132 
3133 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3134                                                      SelectionDAG &DAG) const {
3135   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3136   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
3137          "Windows on ARM expects to use movw/movt");
3138   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3139          "ROPI/RWPI not currently supported for Windows");
3140 
3141   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3142   const ARMII::TOF TargetFlags =
3143     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
3144   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3145   SDValue Result;
3146   SDLoc DL(Op);
3147 
3148   ++NumMovwMovt;
3149 
3150   // FIXME: Once remat is capable of dealing with instructions with register
3151   // operands, expand this into two nodes.
3152   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3153                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3154                                                   TargetFlags));
3155   if (GV->hasDLLImportStorageClass())
3156     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3157                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3158   return Result;
3159 }
3160 
3161 SDValue
3162 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3163   SDLoc dl(Op);
3164   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3165   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3166                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3167                      Op.getOperand(1), Val);
3168 }
3169 
3170 SDValue
3171 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3172   SDLoc dl(Op);
3173   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3174                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3175 }
3176 
3177 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3178                                                       SelectionDAG &DAG) const {
3179   SDLoc dl(Op);
3180   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3181                      Op.getOperand(0));
3182 }
3183 
3184 SDValue
3185 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3186                                           const ARMSubtarget *Subtarget) const {
3187   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3188   SDLoc dl(Op);
3189   switch (IntNo) {
3190   default: return SDValue();    // Don't custom lower most intrinsics.
3191   case Intrinsic::thread_pointer: {
3192     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3193     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3194   }
3195   case Intrinsic::eh_sjlj_lsda: {
3196     MachineFunction &MF = DAG.getMachineFunction();
3197     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3198     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3199     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3200     SDValue CPAddr;
3201     bool IsPositionIndependent = isPositionIndependent();
3202     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3203     ARMConstantPoolValue *CPV =
3204       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
3205                                       ARMCP::CPLSDA, PCAdj);
3206     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3207     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3208     SDValue Result = DAG.getLoad(
3209         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3210         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3211 
3212     if (IsPositionIndependent) {
3213       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3214       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3215     }
3216     return Result;
3217   }
3218   case Intrinsic::arm_neon_vmulls:
3219   case Intrinsic::arm_neon_vmullu: {
3220     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3221       ? ARMISD::VMULLs : ARMISD::VMULLu;
3222     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3223                        Op.getOperand(1), Op.getOperand(2));
3224   }
3225   case Intrinsic::arm_neon_vminnm:
3226   case Intrinsic::arm_neon_vmaxnm: {
3227     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3228       ? ISD::FMINNUM : ISD::FMAXNUM;
3229     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3230                        Op.getOperand(1), Op.getOperand(2));
3231   }
3232   case Intrinsic::arm_neon_vminu:
3233   case Intrinsic::arm_neon_vmaxu: {
3234     if (Op.getValueType().isFloatingPoint())
3235       return SDValue();
3236     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3237       ? ISD::UMIN : ISD::UMAX;
3238     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3239                          Op.getOperand(1), Op.getOperand(2));
3240   }
3241   case Intrinsic::arm_neon_vmins:
3242   case Intrinsic::arm_neon_vmaxs: {
3243     // v{min,max}s is overloaded between signed integers and floats.
3244     if (!Op.getValueType().isFloatingPoint()) {
3245       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3246         ? ISD::SMIN : ISD::SMAX;
3247       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3248                          Op.getOperand(1), Op.getOperand(2));
3249     }
3250     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3251       ? ISD::FMINNAN : ISD::FMAXNAN;
3252     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3253                        Op.getOperand(1), Op.getOperand(2));
3254   }
3255   }
3256 }
3257 
3258 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3259                                  const ARMSubtarget *Subtarget) {
3260   // FIXME: handle "fence singlethread" more efficiently.
3261   SDLoc dl(Op);
3262   if (!Subtarget->hasDataBarrier()) {
3263     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3264     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3265     // here.
3266     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3267            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3268     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3269                        DAG.getConstant(0, dl, MVT::i32));
3270   }
3271 
3272   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3273   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3274   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3275   if (Subtarget->isMClass()) {
3276     // Only a full system barrier exists in the M-class architectures.
3277     Domain = ARM_MB::SY;
3278   } else if (Subtarget->preferISHSTBarriers() &&
3279              Ord == AtomicOrdering::Release) {
3280     // Swift happens to implement ISHST barriers in a way that's compatible with
3281     // Release semantics but weaker than ISH so we'd be fools not to use
3282     // it. Beware: other processors probably don't!
3283     Domain = ARM_MB::ISHST;
3284   }
3285 
3286   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3287                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3288                      DAG.getConstant(Domain, dl, MVT::i32));
3289 }
3290 
3291 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3292                              const ARMSubtarget *Subtarget) {
3293   // ARM pre v5TE and Thumb1 does not have preload instructions.
3294   if (!(Subtarget->isThumb2() ||
3295         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3296     // Just preserve the chain.
3297     return Op.getOperand(0);
3298 
3299   SDLoc dl(Op);
3300   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3301   if (!isRead &&
3302       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3303     // ARMv7 with MP extension has PLDW.
3304     return Op.getOperand(0);
3305 
3306   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3307   if (Subtarget->isThumb()) {
3308     // Invert the bits.
3309     isRead = ~isRead & 1;
3310     isData = ~isData & 1;
3311   }
3312 
3313   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3314                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3315                      DAG.getConstant(isData, dl, MVT::i32));
3316 }
3317 
3318 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3319   MachineFunction &MF = DAG.getMachineFunction();
3320   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3321 
3322   // vastart just stores the address of the VarArgsFrameIndex slot into the
3323   // memory location argument.
3324   SDLoc dl(Op);
3325   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3326   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3327   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3328   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3329                       MachinePointerInfo(SV));
3330 }
3331 
3332 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3333                                                 CCValAssign &NextVA,
3334                                                 SDValue &Root,
3335                                                 SelectionDAG &DAG,
3336                                                 const SDLoc &dl) const {
3337   MachineFunction &MF = DAG.getMachineFunction();
3338   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3339 
3340   const TargetRegisterClass *RC;
3341   if (AFI->isThumb1OnlyFunction())
3342     RC = &ARM::tGPRRegClass;
3343   else
3344     RC = &ARM::GPRRegClass;
3345 
3346   // Transform the arguments stored in physical registers into virtual ones.
3347   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3348   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3349 
3350   SDValue ArgValue2;
3351   if (NextVA.isMemLoc()) {
3352     MachineFrameInfo &MFI = MF.getFrameInfo();
3353     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3354 
3355     // Create load node to retrieve arguments from the stack.
3356     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3357     ArgValue2 = DAG.getLoad(
3358         MVT::i32, dl, Root, FIN,
3359         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3360   } else {
3361     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3362     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3363   }
3364   if (!Subtarget->isLittle())
3365     std::swap (ArgValue, ArgValue2);
3366   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3367 }
3368 
3369 // The remaining GPRs hold either the beginning of variable-argument
3370 // data, or the beginning of an aggregate passed by value (usually
3371 // byval).  Either way, we allocate stack slots adjacent to the data
3372 // provided by our caller, and store the unallocated registers there.
3373 // If this is a variadic function, the va_list pointer will begin with
3374 // these values; otherwise, this reassembles a (byval) structure that
3375 // was split between registers and memory.
3376 // Return: The frame index registers were stored into.
3377 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3378                                       const SDLoc &dl, SDValue &Chain,
3379                                       const Value *OrigArg,
3380                                       unsigned InRegsParamRecordIdx,
3381                                       int ArgOffset, unsigned ArgSize) const {
3382   // Currently, two use-cases possible:
3383   // Case #1. Non-var-args function, and we meet first byval parameter.
3384   //          Setup first unallocated register as first byval register;
3385   //          eat all remained registers
3386   //          (these two actions are performed by HandleByVal method).
3387   //          Then, here, we initialize stack frame with
3388   //          "store-reg" instructions.
3389   // Case #2. Var-args function, that doesn't contain byval parameters.
3390   //          The same: eat all remained unallocated registers,
3391   //          initialize stack frame.
3392 
3393   MachineFunction &MF = DAG.getMachineFunction();
3394   MachineFrameInfo &MFI = MF.getFrameInfo();
3395   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3396   unsigned RBegin, REnd;
3397   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3398     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3399   } else {
3400     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3401     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3402     REnd = ARM::R4;
3403   }
3404 
3405   if (REnd != RBegin)
3406     ArgOffset = -4 * (ARM::R4 - RBegin);
3407 
3408   auto PtrVT = getPointerTy(DAG.getDataLayout());
3409   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3410   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3411 
3412   SmallVector<SDValue, 4> MemOps;
3413   const TargetRegisterClass *RC =
3414       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3415 
3416   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3417     unsigned VReg = MF.addLiveIn(Reg, RC);
3418     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3419     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3420                                  MachinePointerInfo(OrigArg, 4 * i));
3421     MemOps.push_back(Store);
3422     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3423   }
3424 
3425   if (!MemOps.empty())
3426     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3427   return FrameIndex;
3428 }
3429 
3430 // Setup stack frame, the va_list pointer will start from.
3431 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3432                                              const SDLoc &dl, SDValue &Chain,
3433                                              unsigned ArgOffset,
3434                                              unsigned TotalArgRegsSaveSize,
3435                                              bool ForceMutable) const {
3436   MachineFunction &MF = DAG.getMachineFunction();
3437   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3438 
3439   // Try to store any remaining integer argument regs
3440   // to their spots on the stack so that they may be loaded by dereferencing
3441   // the result of va_next.
3442   // If there is no regs to be stored, just point address after last
3443   // argument passed via stack.
3444   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3445                                   CCInfo.getInRegsParamsCount(),
3446                                   CCInfo.getNextStackOffset(), 4);
3447   AFI->setVarArgsFrameIndex(FrameIndex);
3448 }
3449 
3450 SDValue ARMTargetLowering::LowerFormalArguments(
3451     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3452     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3453     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3454   MachineFunction &MF = DAG.getMachineFunction();
3455   MachineFrameInfo &MFI = MF.getFrameInfo();
3456 
3457   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3458 
3459   // Assign locations to all of the incoming arguments.
3460   SmallVector<CCValAssign, 16> ArgLocs;
3461   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3462                     *DAG.getContext(), Prologue);
3463   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3464 
3465   SmallVector<SDValue, 16> ArgValues;
3466   SDValue ArgValue;
3467   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
3468   unsigned CurArgIdx = 0;
3469 
3470   // Initially ArgRegsSaveSize is zero.
3471   // Then we increase this value each time we meet byval parameter.
3472   // We also increase this value in case of varargs function.
3473   AFI->setArgRegsSaveSize(0);
3474 
3475   // Calculate the amount of stack space that we need to allocate to store
3476   // byval and variadic arguments that are passed in registers.
3477   // We need to know this before we allocate the first byval or variadic
3478   // argument, as they will be allocated a stack slot below the CFA (Canonical
3479   // Frame Address, the stack pointer at entry to the function).
3480   unsigned ArgRegBegin = ARM::R4;
3481   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3482     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3483       break;
3484 
3485     CCValAssign &VA = ArgLocs[i];
3486     unsigned Index = VA.getValNo();
3487     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3488     if (!Flags.isByVal())
3489       continue;
3490 
3491     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3492     unsigned RBegin, REnd;
3493     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3494     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3495 
3496     CCInfo.nextInRegsParam();
3497   }
3498   CCInfo.rewindByValRegsInfo();
3499 
3500   int lastInsIndex = -1;
3501   if (isVarArg && MFI.hasVAStart()) {
3502     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3503     if (RegIdx != array_lengthof(GPRArgRegs))
3504       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3505   }
3506 
3507   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3508   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3509   auto PtrVT = getPointerTy(DAG.getDataLayout());
3510 
3511   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3512     CCValAssign &VA = ArgLocs[i];
3513     if (Ins[VA.getValNo()].isOrigArg()) {
3514       std::advance(CurOrigArg,
3515                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3516       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3517     }
3518     // Arguments stored in registers.
3519     if (VA.isRegLoc()) {
3520       EVT RegVT = VA.getLocVT();
3521 
3522       if (VA.needsCustom()) {
3523         // f64 and vector types are split up into multiple registers or
3524         // combinations of registers and stack slots.
3525         if (VA.getLocVT() == MVT::v2f64) {
3526           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3527                                                    Chain, DAG, dl);
3528           VA = ArgLocs[++i]; // skip ahead to next loc
3529           SDValue ArgValue2;
3530           if (VA.isMemLoc()) {
3531             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3532             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3533             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3534                                     MachinePointerInfo::getFixedStack(
3535                                         DAG.getMachineFunction(), FI));
3536           } else {
3537             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3538                                              Chain, DAG, dl);
3539           }
3540           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3541           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3542                                  ArgValue, ArgValue1,
3543                                  DAG.getIntPtrConstant(0, dl));
3544           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3545                                  ArgValue, ArgValue2,
3546                                  DAG.getIntPtrConstant(1, dl));
3547         } else
3548           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3549 
3550       } else {
3551         const TargetRegisterClass *RC;
3552 
3553         if (RegVT == MVT::f32)
3554           RC = &ARM::SPRRegClass;
3555         else if (RegVT == MVT::f64)
3556           RC = &ARM::DPRRegClass;
3557         else if (RegVT == MVT::v2f64)
3558           RC = &ARM::QPRRegClass;
3559         else if (RegVT == MVT::i32)
3560           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3561                                            : &ARM::GPRRegClass;
3562         else
3563           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3564 
3565         // Transform the arguments in physical registers into virtual ones.
3566         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3567         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3568       }
3569 
3570       // If this is an 8 or 16-bit value, it is really passed promoted
3571       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3572       // truncate to the right size.
3573       switch (VA.getLocInfo()) {
3574       default: llvm_unreachable("Unknown loc info!");
3575       case CCValAssign::Full: break;
3576       case CCValAssign::BCvt:
3577         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3578         break;
3579       case CCValAssign::SExt:
3580         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3581                                DAG.getValueType(VA.getValVT()));
3582         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3583         break;
3584       case CCValAssign::ZExt:
3585         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3586                                DAG.getValueType(VA.getValVT()));
3587         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3588         break;
3589       }
3590 
3591       InVals.push_back(ArgValue);
3592 
3593     } else { // VA.isRegLoc()
3594 
3595       // sanity check
3596       assert(VA.isMemLoc());
3597       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3598 
3599       int index = VA.getValNo();
3600 
3601       // Some Ins[] entries become multiple ArgLoc[] entries.
3602       // Process them only once.
3603       if (index != lastInsIndex)
3604         {
3605           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3606           // FIXME: For now, all byval parameter objects are marked mutable.
3607           // This can be changed with more analysis.
3608           // In case of tail call optimization mark all arguments mutable.
3609           // Since they could be overwritten by lowering of arguments in case of
3610           // a tail call.
3611           if (Flags.isByVal()) {
3612             assert(Ins[index].isOrigArg() &&
3613                    "Byval arguments cannot be implicit");
3614             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3615 
3616             int FrameIndex = StoreByValRegs(
3617                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3618                 VA.getLocMemOffset(), Flags.getByValSize());
3619             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3620             CCInfo.nextInRegsParam();
3621           } else {
3622             unsigned FIOffset = VA.getLocMemOffset();
3623             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3624                                            FIOffset, true);
3625 
3626             // Create load nodes to retrieve arguments from the stack.
3627             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3628             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3629                                          MachinePointerInfo::getFixedStack(
3630                                              DAG.getMachineFunction(), FI)));
3631           }
3632           lastInsIndex = index;
3633         }
3634     }
3635   }
3636 
3637   // varargs
3638   if (isVarArg && MFI.hasVAStart())
3639     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3640                          CCInfo.getNextStackOffset(),
3641                          TotalArgRegsSaveSize);
3642 
3643   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3644 
3645   return Chain;
3646 }
3647 
3648 /// isFloatingPointZero - Return true if this is +0.0.
3649 static bool isFloatingPointZero(SDValue Op) {
3650   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3651     return CFP->getValueAPF().isPosZero();
3652   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3653     // Maybe this has already been legalized into the constant pool?
3654     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3655       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3656       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3657         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3658           return CFP->getValueAPF().isPosZero();
3659     }
3660   } else if (Op->getOpcode() == ISD::BITCAST &&
3661              Op->getValueType(0) == MVT::f64) {
3662     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3663     // created by LowerConstantFP().
3664     SDValue BitcastOp = Op->getOperand(0);
3665     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3666         isNullConstant(BitcastOp->getOperand(0)))
3667       return true;
3668   }
3669   return false;
3670 }
3671 
3672 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3673 /// the given operands.
3674 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3675                                      SDValue &ARMcc, SelectionDAG &DAG,
3676                                      const SDLoc &dl) const {
3677   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3678     unsigned C = RHSC->getZExtValue();
3679     if (!isLegalICmpImmediate(C)) {
3680       // Constant does not fit, try adjusting it by one?
3681       switch (CC) {
3682       default: break;
3683       case ISD::SETLT:
3684       case ISD::SETGE:
3685         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3686           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3687           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3688         }
3689         break;
3690       case ISD::SETULT:
3691       case ISD::SETUGE:
3692         if (C != 0 && isLegalICmpImmediate(C-1)) {
3693           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3694           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3695         }
3696         break;
3697       case ISD::SETLE:
3698       case ISD::SETGT:
3699         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3700           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3701           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3702         }
3703         break;
3704       case ISD::SETULE:
3705       case ISD::SETUGT:
3706         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3707           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3708           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3709         }
3710         break;
3711       }
3712     }
3713   }
3714 
3715   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3716   ARMISD::NodeType CompareType;
3717   switch (CondCode) {
3718   default:
3719     CompareType = ARMISD::CMP;
3720     break;
3721   case ARMCC::EQ:
3722   case ARMCC::NE:
3723     // Uses only Z Flag
3724     CompareType = ARMISD::CMPZ;
3725     break;
3726   }
3727   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3728   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3729 }
3730 
3731 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3732 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3733                                      SelectionDAG &DAG, const SDLoc &dl) const {
3734   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3735   SDValue Cmp;
3736   if (!isFloatingPointZero(RHS))
3737     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3738   else
3739     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3740   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3741 }
3742 
3743 /// duplicateCmp - Glue values can have only one use, so this function
3744 /// duplicates a comparison node.
3745 SDValue
3746 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3747   unsigned Opc = Cmp.getOpcode();
3748   SDLoc DL(Cmp);
3749   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3750     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3751 
3752   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3753   Cmp = Cmp.getOperand(0);
3754   Opc = Cmp.getOpcode();
3755   if (Opc == ARMISD::CMPFP)
3756     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3757   else {
3758     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3759     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3760   }
3761   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3762 }
3763 
3764 std::pair<SDValue, SDValue>
3765 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3766                                  SDValue &ARMcc) const {
3767   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3768 
3769   SDValue Value, OverflowCmp;
3770   SDValue LHS = Op.getOperand(0);
3771   SDValue RHS = Op.getOperand(1);
3772   SDLoc dl(Op);
3773 
3774   // FIXME: We are currently always generating CMPs because we don't support
3775   // generating CMN through the backend. This is not as good as the natural
3776   // CMP case because it causes a register dependency and cannot be folded
3777   // later.
3778 
3779   switch (Op.getOpcode()) {
3780   default:
3781     llvm_unreachable("Unknown overflow instruction!");
3782   case ISD::SADDO:
3783     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3784     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3785     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3786     break;
3787   case ISD::UADDO:
3788     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3789     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3790     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3791     break;
3792   case ISD::SSUBO:
3793     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3794     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3795     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3796     break;
3797   case ISD::USUBO:
3798     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3799     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3800     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3801     break;
3802   } // switch (...)
3803 
3804   return std::make_pair(Value, OverflowCmp);
3805 }
3806 
3807 
3808 SDValue
3809 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
3810   // Let legalize expand this if it isn't a legal type yet.
3811   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3812     return SDValue();
3813 
3814   SDValue Value, OverflowCmp;
3815   SDValue ARMcc;
3816   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
3817   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3818   SDLoc dl(Op);
3819   // We use 0 and 1 as false and true values.
3820   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
3821   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
3822   EVT VT = Op.getValueType();
3823 
3824   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
3825                                  ARMcc, CCR, OverflowCmp);
3826 
3827   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3828   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
3829 }
3830 
3831 
3832 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3833   SDValue Cond = Op.getOperand(0);
3834   SDValue SelectTrue = Op.getOperand(1);
3835   SDValue SelectFalse = Op.getOperand(2);
3836   SDLoc dl(Op);
3837   unsigned Opc = Cond.getOpcode();
3838 
3839   if (Cond.getResNo() == 1 &&
3840       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3841        Opc == ISD::USUBO)) {
3842     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
3843       return SDValue();
3844 
3845     SDValue Value, OverflowCmp;
3846     SDValue ARMcc;
3847     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
3848     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3849     EVT VT = Op.getValueType();
3850 
3851     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
3852                    OverflowCmp, DAG);
3853   }
3854 
3855   // Convert:
3856   //
3857   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3858   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3859   //
3860   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3861     const ConstantSDNode *CMOVTrue =
3862       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3863     const ConstantSDNode *CMOVFalse =
3864       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3865 
3866     if (CMOVTrue && CMOVFalse) {
3867       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3868       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3869 
3870       SDValue True;
3871       SDValue False;
3872       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3873         True = SelectTrue;
3874         False = SelectFalse;
3875       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3876         True = SelectFalse;
3877         False = SelectTrue;
3878       }
3879 
3880       if (True.getNode() && False.getNode()) {
3881         EVT VT = Op.getValueType();
3882         SDValue ARMcc = Cond.getOperand(2);
3883         SDValue CCR = Cond.getOperand(3);
3884         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3885         assert(True.getValueType() == VT);
3886         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
3887       }
3888     }
3889   }
3890 
3891   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3892   // undefined bits before doing a full-word comparison with zero.
3893   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3894                      DAG.getConstant(1, dl, Cond.getValueType()));
3895 
3896   return DAG.getSelectCC(dl, Cond,
3897                          DAG.getConstant(0, dl, Cond.getValueType()),
3898                          SelectTrue, SelectFalse, ISD::SETNE);
3899 }
3900 
3901 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
3902                                  bool &swpCmpOps, bool &swpVselOps) {
3903   // Start by selecting the GE condition code for opcodes that return true for
3904   // 'equality'
3905   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3906       CC == ISD::SETULE)
3907     CondCode = ARMCC::GE;
3908 
3909   // and GT for opcodes that return false for 'equality'.
3910   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3911            CC == ISD::SETULT)
3912     CondCode = ARMCC::GT;
3913 
3914   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3915   // to swap the compare operands.
3916   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3917       CC == ISD::SETULT)
3918     swpCmpOps = true;
3919 
3920   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3921   // If we have an unordered opcode, we need to swap the operands to the VSEL
3922   // instruction (effectively negating the condition).
3923   //
3924   // This also has the effect of swapping which one of 'less' or 'greater'
3925   // returns true, so we also swap the compare operands. It also switches
3926   // whether we return true for 'equality', so we compensate by picking the
3927   // opposite condition code to our original choice.
3928   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3929       CC == ISD::SETUGT) {
3930     swpCmpOps = !swpCmpOps;
3931     swpVselOps = !swpVselOps;
3932     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3933   }
3934 
3935   // 'ordered' is 'anything but unordered', so use the VS condition code and
3936   // swap the VSEL operands.
3937   if (CC == ISD::SETO) {
3938     CondCode = ARMCC::VS;
3939     swpVselOps = true;
3940   }
3941 
3942   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3943   // code and swap the VSEL operands.
3944   if (CC == ISD::SETUNE) {
3945     CondCode = ARMCC::EQ;
3946     swpVselOps = true;
3947   }
3948 }
3949 
3950 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
3951                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
3952                                    SDValue Cmp, SelectionDAG &DAG) const {
3953   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
3954     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3955                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
3956     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3957                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
3958 
3959     SDValue TrueLow = TrueVal.getValue(0);
3960     SDValue TrueHigh = TrueVal.getValue(1);
3961     SDValue FalseLow = FalseVal.getValue(0);
3962     SDValue FalseHigh = FalseVal.getValue(1);
3963 
3964     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
3965                               ARMcc, CCR, Cmp);
3966     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
3967                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
3968 
3969     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
3970   } else {
3971     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3972                        Cmp);
3973   }
3974 }
3975 
3976 static bool isGTorGE(ISD::CondCode CC) {
3977   return CC == ISD::SETGT || CC == ISD::SETGE;
3978 }
3979 
3980 static bool isLTorLE(ISD::CondCode CC) {
3981   return CC == ISD::SETLT || CC == ISD::SETLE;
3982 }
3983 
3984 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
3985 // All of these conditions (and their <= and >= counterparts) will do:
3986 //          x < k ? k : x
3987 //          x > k ? x : k
3988 //          k < x ? x : k
3989 //          k > x ? k : x
3990 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
3991                             const SDValue TrueVal, const SDValue FalseVal,
3992                             const ISD::CondCode CC, const SDValue K) {
3993   return (isGTorGE(CC) &&
3994           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
3995          (isLTorLE(CC) &&
3996           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
3997 }
3998 
3999 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4000 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4001                             const SDValue TrueVal, const SDValue FalseVal,
4002                             const ISD::CondCode CC, const SDValue K) {
4003   return (isGTorGE(CC) &&
4004           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4005          (isLTorLE(CC) &&
4006           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4007 }
4008 
4009 // Check if two chained conditionals could be converted into SSAT.
4010 //
4011 // SSAT can replace a set of two conditional selectors that bound a number to an
4012 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4013 //
4014 //     x < -k ? -k : (x > k ? k : x)
4015 //     x < -k ? -k : (x < k ? x : k)
4016 //     x > -k ? (x > k ? k : x) : -k
4017 //     x < k ? (x < -k ? -k : x) : k
4018 //     etc.
4019 //
4020 // It returns true if the conversion can be done, false otherwise.
4021 // Additionally, the variable is returned in parameter V and the constant in K.
4022 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4023                                     uint64_t &K) {
4024 
4025   SDValue LHS1 = Op.getOperand(0);
4026   SDValue RHS1 = Op.getOperand(1);
4027   SDValue TrueVal1 = Op.getOperand(2);
4028   SDValue FalseVal1 = Op.getOperand(3);
4029   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4030 
4031   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4032   if (Op2.getOpcode() != ISD::SELECT_CC)
4033     return false;
4034 
4035   SDValue LHS2 = Op2.getOperand(0);
4036   SDValue RHS2 = Op2.getOperand(1);
4037   SDValue TrueVal2 = Op2.getOperand(2);
4038   SDValue FalseVal2 = Op2.getOperand(3);
4039   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4040 
4041   // Find out which are the constants and which are the variables
4042   // in each conditional
4043   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4044                                                         ? &RHS1
4045                                                         : NULL;
4046   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4047                                                         ? &RHS2
4048                                                         : NULL;
4049   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4050   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4051   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4052   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4053 
4054   // We must detect cases where the original operations worked with 16- or
4055   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4056   // must work with sign-extended values but the select operations return
4057   // the original non-extended value.
4058   SDValue V2TmpReg = V2Tmp;
4059   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4060     V2TmpReg = V2Tmp->getOperand(0);
4061 
4062   // Check that the registers and the constants have the correct values
4063   // in both conditionals
4064   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4065       V2TmpReg != V2)
4066     return false;
4067 
4068   // Figure out which conditional is saturating the lower/upper bound.
4069   const SDValue *LowerCheckOp =
4070       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4071           ? &Op
4072           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
4073                                                                        : NULL;
4074   const SDValue *UpperCheckOp =
4075       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4076           ? &Op
4077           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
4078                                                                        : NULL;
4079 
4080   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4081     return false;
4082 
4083   // Check that the constant in the lower-bound check is
4084   // the opposite of the constant in the upper-bound check
4085   // in 1's complement.
4086   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4087   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4088   int64_t PosVal = std::max(Val1, Val2);
4089 
4090   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4091        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4092       Val1 == ~Val2 && isPowerOf2_64(PosVal + 1)) {
4093 
4094     V = V2;
4095     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4096     return true;
4097   }
4098 
4099   return false;
4100 }
4101 
4102 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4103 
4104   EVT VT = Op.getValueType();
4105   SDLoc dl(Op);
4106 
4107   // Try to convert two saturating conditional selects into a single SSAT
4108   SDValue SatValue;
4109   uint64_t SatConstant;
4110   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4111       isSaturatingConditional(Op, SatValue, SatConstant))
4112     return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4113                        DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4114 
4115   SDValue LHS = Op.getOperand(0);
4116   SDValue RHS = Op.getOperand(1);
4117   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4118   SDValue TrueVal = Op.getOperand(2);
4119   SDValue FalseVal = Op.getOperand(3);
4120 
4121   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4122     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4123                                                     dl);
4124 
4125     // If softenSetCCOperands only returned one value, we should compare it to
4126     // zero.
4127     if (!RHS.getNode()) {
4128       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4129       CC = ISD::SETNE;
4130     }
4131   }
4132 
4133   if (LHS.getValueType() == MVT::i32) {
4134     // Try to generate VSEL on ARMv8.
4135     // The VSEL instruction can't use all the usual ARM condition
4136     // codes: it only has two bits to select the condition code, so it's
4137     // constrained to use only GE, GT, VS and EQ.
4138     //
4139     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4140     // swap the operands of the previous compare instruction (effectively
4141     // inverting the compare condition, swapping 'less' and 'greater') and
4142     // sometimes need to swap the operands to the VSEL (which inverts the
4143     // condition in the sense of firing whenever the previous condition didn't)
4144     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4145                                     TrueVal.getValueType() == MVT::f64)) {
4146       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4147       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4148           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4149         CC = ISD::getSetCCInverse(CC, true);
4150         std::swap(TrueVal, FalseVal);
4151       }
4152     }
4153 
4154     SDValue ARMcc;
4155     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4156     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4157     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4158   }
4159 
4160   ARMCC::CondCodes CondCode, CondCode2;
4161   FPCCToARMCC(CC, CondCode, CondCode2);
4162 
4163   // Try to generate VMAXNM/VMINNM on ARMv8.
4164   if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4165                                   TrueVal.getValueType() == MVT::f64)) {
4166     bool swpCmpOps = false;
4167     bool swpVselOps = false;
4168     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4169 
4170     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4171         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4172       if (swpCmpOps)
4173         std::swap(LHS, RHS);
4174       if (swpVselOps)
4175         std::swap(TrueVal, FalseVal);
4176     }
4177   }
4178 
4179   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4180   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
4181   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4182   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4183   if (CondCode2 != ARMCC::AL) {
4184     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4185     // FIXME: Needs another CMP because flag can have but one use.
4186     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
4187     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4188   }
4189   return Result;
4190 }
4191 
4192 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4193 /// to morph to an integer compare sequence.
4194 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4195                            const ARMSubtarget *Subtarget) {
4196   SDNode *N = Op.getNode();
4197   if (!N->hasOneUse())
4198     // Otherwise it requires moving the value from fp to integer registers.
4199     return false;
4200   if (!N->getNumValues())
4201     return false;
4202   EVT VT = Op.getValueType();
4203   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4204     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4205     // vmrs are very slow, e.g. cortex-a8.
4206     return false;
4207 
4208   if (isFloatingPointZero(Op)) {
4209     SeenZero = true;
4210     return true;
4211   }
4212   return ISD::isNormalLoad(N);
4213 }
4214 
4215 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4216   if (isFloatingPointZero(Op))
4217     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4218 
4219   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4220     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4221                        Ld->getPointerInfo(), Ld->getAlignment(),
4222                        Ld->getMemOperand()->getFlags());
4223 
4224   llvm_unreachable("Unknown VFP cmp argument!");
4225 }
4226 
4227 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4228                            SDValue &RetVal1, SDValue &RetVal2) {
4229   SDLoc dl(Op);
4230 
4231   if (isFloatingPointZero(Op)) {
4232     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4233     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4234     return;
4235   }
4236 
4237   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4238     SDValue Ptr = Ld->getBasePtr();
4239     RetVal1 =
4240         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4241                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4242 
4243     EVT PtrType = Ptr.getValueType();
4244     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4245     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4246                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4247     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4248                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
4249                           Ld->getMemOperand()->getFlags());
4250     return;
4251   }
4252 
4253   llvm_unreachable("Unknown VFP cmp argument!");
4254 }
4255 
4256 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4257 /// f32 and even f64 comparisons to integer ones.
4258 SDValue
4259 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4260   SDValue Chain = Op.getOperand(0);
4261   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4262   SDValue LHS = Op.getOperand(2);
4263   SDValue RHS = Op.getOperand(3);
4264   SDValue Dest = Op.getOperand(4);
4265   SDLoc dl(Op);
4266 
4267   bool LHSSeenZero = false;
4268   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4269   bool RHSSeenZero = false;
4270   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4271   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4272     // If unsafe fp math optimization is enabled and there are no other uses of
4273     // the CMP operands, and the condition code is EQ or NE, we can optimize it
4274     // to an integer comparison.
4275     if (CC == ISD::SETOEQ)
4276       CC = ISD::SETEQ;
4277     else if (CC == ISD::SETUNE)
4278       CC = ISD::SETNE;
4279 
4280     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4281     SDValue ARMcc;
4282     if (LHS.getValueType() == MVT::f32) {
4283       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4284                         bitcastf32Toi32(LHS, DAG), Mask);
4285       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4286                         bitcastf32Toi32(RHS, DAG), Mask);
4287       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4288       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4289       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4290                          Chain, Dest, ARMcc, CCR, Cmp);
4291     }
4292 
4293     SDValue LHS1, LHS2;
4294     SDValue RHS1, RHS2;
4295     expandf64Toi32(LHS, DAG, LHS1, LHS2);
4296     expandf64Toi32(RHS, DAG, RHS1, RHS2);
4297     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4298     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4299     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4300     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4301     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4302     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4303     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4304   }
4305 
4306   return SDValue();
4307 }
4308 
4309 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4310   SDValue Chain = Op.getOperand(0);
4311   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4312   SDValue LHS = Op.getOperand(2);
4313   SDValue RHS = Op.getOperand(3);
4314   SDValue Dest = Op.getOperand(4);
4315   SDLoc dl(Op);
4316 
4317   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4318     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4319                                                     dl);
4320 
4321     // If softenSetCCOperands only returned one value, we should compare it to
4322     // zero.
4323     if (!RHS.getNode()) {
4324       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4325       CC = ISD::SETNE;
4326     }
4327   }
4328 
4329   if (LHS.getValueType() == MVT::i32) {
4330     SDValue ARMcc;
4331     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4332     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4333     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4334                        Chain, Dest, ARMcc, CCR, Cmp);
4335   }
4336 
4337   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4338 
4339   if (getTargetMachine().Options.UnsafeFPMath &&
4340       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4341        CC == ISD::SETNE || CC == ISD::SETUNE)) {
4342     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4343       return Result;
4344   }
4345 
4346   ARMCC::CondCodes CondCode, CondCode2;
4347   FPCCToARMCC(CC, CondCode, CondCode2);
4348 
4349   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4350   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
4351   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4352   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4353   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4354   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4355   if (CondCode2 != ARMCC::AL) {
4356     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4357     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4358     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4359   }
4360   return Res;
4361 }
4362 
4363 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4364   SDValue Chain = Op.getOperand(0);
4365   SDValue Table = Op.getOperand(1);
4366   SDValue Index = Op.getOperand(2);
4367   SDLoc dl(Op);
4368 
4369   EVT PTy = getPointerTy(DAG.getDataLayout());
4370   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4371   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4372   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4373   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4374   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
4375   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
4376     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4377     // which does another jump to the destination. This also makes it easier
4378     // to translate it to TBB / TBH later (Thumb2 only).
4379     // FIXME: This might not work if the function is extremely large.
4380     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4381                        Addr, Op.getOperand(2), JTI);
4382   }
4383   if (isPositionIndependent() || Subtarget->isROPI()) {
4384     Addr =
4385         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4386                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4387     Chain = Addr.getValue(1);
4388     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
4389     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4390   } else {
4391     Addr =
4392         DAG.getLoad(PTy, dl, Chain, Addr,
4393                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4394     Chain = Addr.getValue(1);
4395     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4396   }
4397 }
4398 
4399 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4400   EVT VT = Op.getValueType();
4401   SDLoc dl(Op);
4402 
4403   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4404     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4405       return Op;
4406     return DAG.UnrollVectorOp(Op.getNode());
4407   }
4408 
4409   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4410          "Invalid type for custom lowering!");
4411   if (VT != MVT::v4i16)
4412     return DAG.UnrollVectorOp(Op.getNode());
4413 
4414   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4415   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4416 }
4417 
4418 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4419   EVT VT = Op.getValueType();
4420   if (VT.isVector())
4421     return LowerVectorFP_TO_INT(Op, DAG);
4422   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4423     RTLIB::Libcall LC;
4424     if (Op.getOpcode() == ISD::FP_TO_SINT)
4425       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4426                               Op.getValueType());
4427     else
4428       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4429                               Op.getValueType());
4430     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4431                        /*isSigned*/ false, SDLoc(Op)).first;
4432   }
4433 
4434   return Op;
4435 }
4436 
4437 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4438   EVT VT = Op.getValueType();
4439   SDLoc dl(Op);
4440 
4441   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4442     if (VT.getVectorElementType() == MVT::f32)
4443       return Op;
4444     return DAG.UnrollVectorOp(Op.getNode());
4445   }
4446 
4447   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4448          "Invalid type for custom lowering!");
4449   if (VT != MVT::v4f32)
4450     return DAG.UnrollVectorOp(Op.getNode());
4451 
4452   unsigned CastOpc;
4453   unsigned Opc;
4454   switch (Op.getOpcode()) {
4455   default: llvm_unreachable("Invalid opcode!");
4456   case ISD::SINT_TO_FP:
4457     CastOpc = ISD::SIGN_EXTEND;
4458     Opc = ISD::SINT_TO_FP;
4459     break;
4460   case ISD::UINT_TO_FP:
4461     CastOpc = ISD::ZERO_EXTEND;
4462     Opc = ISD::UINT_TO_FP;
4463     break;
4464   }
4465 
4466   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4467   return DAG.getNode(Opc, dl, VT, Op);
4468 }
4469 
4470 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4471   EVT VT = Op.getValueType();
4472   if (VT.isVector())
4473     return LowerVectorINT_TO_FP(Op, DAG);
4474   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4475     RTLIB::Libcall LC;
4476     if (Op.getOpcode() == ISD::SINT_TO_FP)
4477       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4478                               Op.getValueType());
4479     else
4480       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4481                               Op.getValueType());
4482     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4483                        /*isSigned*/ false, SDLoc(Op)).first;
4484   }
4485 
4486   return Op;
4487 }
4488 
4489 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4490   // Implement fcopysign with a fabs and a conditional fneg.
4491   SDValue Tmp0 = Op.getOperand(0);
4492   SDValue Tmp1 = Op.getOperand(1);
4493   SDLoc dl(Op);
4494   EVT VT = Op.getValueType();
4495   EVT SrcVT = Tmp1.getValueType();
4496   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4497     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4498   bool UseNEON = !InGPR && Subtarget->hasNEON();
4499 
4500   if (UseNEON) {
4501     // Use VBSL to copy the sign bit.
4502     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4503     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4504                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4505     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4506     if (VT == MVT::f64)
4507       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4508                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4509                          DAG.getConstant(32, dl, MVT::i32));
4510     else /*if (VT == MVT::f32)*/
4511       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4512     if (SrcVT == MVT::f32) {
4513       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4514       if (VT == MVT::f64)
4515         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4516                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4517                            DAG.getConstant(32, dl, MVT::i32));
4518     } else if (VT == MVT::f32)
4519       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4520                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4521                          DAG.getConstant(32, dl, MVT::i32));
4522     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4523     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4524 
4525     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4526                                             dl, MVT::i32);
4527     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4528     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4529                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4530 
4531     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4532                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4533                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4534     if (VT == MVT::f32) {
4535       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4536       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4537                         DAG.getConstant(0, dl, MVT::i32));
4538     } else {
4539       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4540     }
4541 
4542     return Res;
4543   }
4544 
4545   // Bitcast operand 1 to i32.
4546   if (SrcVT == MVT::f64)
4547     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4548                        Tmp1).getValue(1);
4549   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4550 
4551   // Or in the signbit with integer operations.
4552   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4553   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4554   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4555   if (VT == MVT::f32) {
4556     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4557                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4558     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4559                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4560   }
4561 
4562   // f64: Or the high part with signbit and then combine two parts.
4563   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4564                      Tmp0);
4565   SDValue Lo = Tmp0.getValue(0);
4566   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4567   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4568   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4569 }
4570 
4571 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4572   MachineFunction &MF = DAG.getMachineFunction();
4573   MachineFrameInfo &MFI = MF.getFrameInfo();
4574   MFI.setReturnAddressIsTaken(true);
4575 
4576   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4577     return SDValue();
4578 
4579   EVT VT = Op.getValueType();
4580   SDLoc dl(Op);
4581   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4582   if (Depth) {
4583     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4584     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
4585     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
4586                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
4587                        MachinePointerInfo());
4588   }
4589 
4590   // Return LR, which contains the return address. Mark it an implicit live-in.
4591   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4592   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
4593 }
4594 
4595 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
4596   const ARMBaseRegisterInfo &ARI =
4597     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
4598   MachineFunction &MF = DAG.getMachineFunction();
4599   MachineFrameInfo &MFI = MF.getFrameInfo();
4600   MFI.setFrameAddressIsTaken(true);
4601 
4602   EVT VT = Op.getValueType();
4603   SDLoc dl(Op);  // FIXME probably not meaningful
4604   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4605   unsigned FrameReg = ARI.getFrameRegister(MF);
4606   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
4607   while (Depth--)
4608     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
4609                             MachinePointerInfo());
4610   return FrameAddr;
4611 }
4612 
4613 // FIXME? Maybe this could be a TableGen attribute on some registers and
4614 // this table could be generated automatically from RegInfo.
4615 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4616                                               SelectionDAG &DAG) const {
4617   unsigned Reg = StringSwitch<unsigned>(RegName)
4618                        .Case("sp", ARM::SP)
4619                        .Default(0);
4620   if (Reg)
4621     return Reg;
4622   report_fatal_error(Twine("Invalid register name \""
4623                               + StringRef(RegName)  + "\"."));
4624 }
4625 
4626 // Result is 64 bit value so split into two 32 bit values and return as a
4627 // pair of values.
4628 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
4629                                 SelectionDAG &DAG) {
4630   SDLoc DL(N);
4631 
4632   // This function is only supposed to be called for i64 type destination.
4633   assert(N->getValueType(0) == MVT::i64
4634           && "ExpandREAD_REGISTER called for non-i64 type result.");
4635 
4636   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
4637                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
4638                              N->getOperand(0),
4639                              N->getOperand(1));
4640 
4641   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
4642                     Read.getValue(1)));
4643   Results.push_back(Read.getOperand(0));
4644 }
4645 
4646 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
4647 /// When \p DstVT, the destination type of \p BC, is on the vector
4648 /// register bank and the source of bitcast, \p Op, operates on the same bank,
4649 /// it might be possible to combine them, such that everything stays on the
4650 /// vector register bank.
4651 /// \p return The node that would replace \p BT, if the combine
4652 /// is possible.
4653 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
4654                                                 SelectionDAG &DAG) {
4655   SDValue Op = BC->getOperand(0);
4656   EVT DstVT = BC->getValueType(0);
4657 
4658   // The only vector instruction that can produce a scalar (remember,
4659   // since the bitcast was about to be turned into VMOVDRR, the source
4660   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
4661   // Moreover, we can do this combine only if there is one use.
4662   // Finally, if the destination type is not a vector, there is not
4663   // much point on forcing everything on the vector bank.
4664   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4665       !Op.hasOneUse())
4666     return SDValue();
4667 
4668   // If the index is not constant, we will introduce an additional
4669   // multiply that will stick.
4670   // Give up in that case.
4671   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4672   if (!Index)
4673     return SDValue();
4674   unsigned DstNumElt = DstVT.getVectorNumElements();
4675 
4676   // Compute the new index.
4677   const APInt &APIntIndex = Index->getAPIntValue();
4678   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
4679   NewIndex *= APIntIndex;
4680   // Check if the new constant index fits into i32.
4681   if (NewIndex.getBitWidth() > 32)
4682     return SDValue();
4683 
4684   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
4685   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
4686   SDLoc dl(Op);
4687   SDValue ExtractSrc = Op.getOperand(0);
4688   EVT VecVT = EVT::getVectorVT(
4689       *DAG.getContext(), DstVT.getScalarType(),
4690       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
4691   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
4692   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
4693                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
4694 }
4695 
4696 /// ExpandBITCAST - If the target supports VFP, this function is called to
4697 /// expand a bit convert where either the source or destination type is i64 to
4698 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
4699 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
4700 /// vectors), since the legalizer won't know what to do with that.
4701 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
4702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4703   SDLoc dl(N);
4704   SDValue Op = N->getOperand(0);
4705 
4706   // This function is only supposed to be called for i64 types, either as the
4707   // source or destination of the bit convert.
4708   EVT SrcVT = Op.getValueType();
4709   EVT DstVT = N->getValueType(0);
4710   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
4711          "ExpandBITCAST called for non-i64 type");
4712 
4713   // Turn i64->f64 into VMOVDRR.
4714   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
4715     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
4716     // if we can combine the bitcast with its source.
4717     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
4718       return Val;
4719 
4720     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4721                              DAG.getConstant(0, dl, MVT::i32));
4722     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4723                              DAG.getConstant(1, dl, MVT::i32));
4724     return DAG.getNode(ISD::BITCAST, dl, DstVT,
4725                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
4726   }
4727 
4728   // Turn f64->i64 into VMOVRRD.
4729   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
4730     SDValue Cvt;
4731     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
4732         SrcVT.getVectorNumElements() > 1)
4733       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4734                         DAG.getVTList(MVT::i32, MVT::i32),
4735                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
4736     else
4737       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4738                         DAG.getVTList(MVT::i32, MVT::i32), Op);
4739     // Merge the pieces into a single i64 value.
4740     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
4741   }
4742 
4743   return SDValue();
4744 }
4745 
4746 /// getZeroVector - Returns a vector of specified type with all zero elements.
4747 /// Zero vectors are used to represent vector negation and in those cases
4748 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
4749 /// not support i64 elements, so sometimes the zero vectors will need to be
4750 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
4751 /// zero vector.
4752 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
4753   assert(VT.isVector() && "Expected a vector type");
4754   // The canonical modified immediate encoding of a zero vector is....0!
4755   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
4756   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
4757   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
4758   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4759 }
4760 
4761 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4762 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
4763 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
4764                                                 SelectionDAG &DAG) const {
4765   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4766   EVT VT = Op.getValueType();
4767   unsigned VTBits = VT.getSizeInBits();
4768   SDLoc dl(Op);
4769   SDValue ShOpLo = Op.getOperand(0);
4770   SDValue ShOpHi = Op.getOperand(1);
4771   SDValue ShAmt  = Op.getOperand(2);
4772   SDValue ARMcc;
4773   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4774   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4775 
4776   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4777 
4778   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4779                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4780   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4781   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4782                                    DAG.getConstant(VTBits, dl, MVT::i32));
4783   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4784   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4785   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4786   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4787                             ISD::SETGE, ARMcc, DAG, dl);
4788   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
4789                            ARMcc, CCR, CmpLo);
4790 
4791 
4792   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4793   SDValue HiBigShift = Opc == ISD::SRA
4794                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
4795                                          DAG.getConstant(VTBits - 1, dl, VT))
4796                            : DAG.getConstant(0, dl, VT);
4797   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4798                             ISD::SETGE, ARMcc, DAG, dl);
4799   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
4800                            ARMcc, CCR, CmpHi);
4801 
4802   SDValue Ops[2] = { Lo, Hi };
4803   return DAG.getMergeValues(Ops, dl);
4804 }
4805 
4806 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4807 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
4808 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
4809                                                SelectionDAG &DAG) const {
4810   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4811   EVT VT = Op.getValueType();
4812   unsigned VTBits = VT.getSizeInBits();
4813   SDLoc dl(Op);
4814   SDValue ShOpLo = Op.getOperand(0);
4815   SDValue ShOpHi = Op.getOperand(1);
4816   SDValue ShAmt  = Op.getOperand(2);
4817   SDValue ARMcc;
4818   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4819 
4820   assert(Op.getOpcode() == ISD::SHL_PARTS);
4821   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4822                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4823   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4824   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4825   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4826 
4827   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4828                                    DAG.getConstant(VTBits, dl, MVT::i32));
4829   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4830   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4831                             ISD::SETGE, ARMcc, DAG, dl);
4832   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
4833                            ARMcc, CCR, CmpHi);
4834 
4835   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4836                           ISD::SETGE, ARMcc, DAG, dl);
4837   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4838   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
4839                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
4840 
4841   SDValue Ops[2] = { Lo, Hi };
4842   return DAG.getMergeValues(Ops, dl);
4843 }
4844 
4845 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4846                                             SelectionDAG &DAG) const {
4847   // The rounding mode is in bits 23:22 of the FPSCR.
4848   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
4849   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
4850   // so that the shift + and get folded into a bitfield extract.
4851   SDLoc dl(Op);
4852   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
4853                               DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
4854                                               MVT::i32));
4855   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
4856                                   DAG.getConstant(1U << 22, dl, MVT::i32));
4857   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
4858                               DAG.getConstant(22, dl, MVT::i32));
4859   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
4860                      DAG.getConstant(3, dl, MVT::i32));
4861 }
4862 
4863 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
4864                          const ARMSubtarget *ST) {
4865   SDLoc dl(N);
4866   EVT VT = N->getValueType(0);
4867   if (VT.isVector()) {
4868     assert(ST->hasNEON());
4869 
4870     // Compute the least significant set bit: LSB = X & -X
4871     SDValue X = N->getOperand(0);
4872     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
4873     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
4874 
4875     EVT ElemTy = VT.getVectorElementType();
4876 
4877     if (ElemTy == MVT::i8) {
4878       // Compute with: cttz(x) = ctpop(lsb - 1)
4879       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4880                                 DAG.getTargetConstant(1, dl, ElemTy));
4881       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4882       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
4883     }
4884 
4885     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
4886         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
4887       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
4888       unsigned NumBits = ElemTy.getSizeInBits();
4889       SDValue WidthMinus1 =
4890           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4891                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
4892       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
4893       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
4894     }
4895 
4896     // Compute with: cttz(x) = ctpop(lsb - 1)
4897 
4898     // Since we can only compute the number of bits in a byte with vcnt.8, we
4899     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
4900     // and i64.
4901 
4902     // Compute LSB - 1.
4903     SDValue Bits;
4904     if (ElemTy == MVT::i64) {
4905       // Load constant 0xffff'ffff'ffff'ffff to register.
4906       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4907                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
4908       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
4909     } else {
4910       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4911                                 DAG.getTargetConstant(1, dl, ElemTy));
4912       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4913     }
4914 
4915     // Count #bits with vcnt.8.
4916     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4917     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
4918     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
4919 
4920     // Gather the #bits with vpaddl (pairwise add.)
4921     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4922     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
4923         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4924         Cnt8);
4925     if (ElemTy == MVT::i16)
4926       return Cnt16;
4927 
4928     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
4929     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
4930         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4931         Cnt16);
4932     if (ElemTy == MVT::i32)
4933       return Cnt32;
4934 
4935     assert(ElemTy == MVT::i64);
4936     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4937         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4938         Cnt32);
4939     return Cnt64;
4940   }
4941 
4942   if (!ST->hasV6T2Ops())
4943     return SDValue();
4944 
4945   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
4946   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
4947 }
4948 
4949 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
4950 /// for each 16-bit element from operand, repeated.  The basic idea is to
4951 /// leverage vcnt to get the 8-bit counts, gather and add the results.
4952 ///
4953 /// Trace for v4i16:
4954 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
4955 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
4956 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
4957 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
4958 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
4959 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
4960 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4961 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
4962 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
4963   EVT VT = N->getValueType(0);
4964   SDLoc DL(N);
4965 
4966   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4967   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4968   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4969   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4970   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4971   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4972 }
4973 
4974 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4975 /// bit-count for each 16-bit element from the operand.  We need slightly
4976 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
4977 /// 64/128-bit registers.
4978 ///
4979 /// Trace for v4i16:
4980 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
4981 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4982 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
4983 /// v4i16:Extracted = [k0    k1    k2    k3    ]
4984 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
4985   EVT VT = N->getValueType(0);
4986   SDLoc DL(N);
4987 
4988   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4989   if (VT.is64BitVector()) {
4990     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4991     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4992                        DAG.getIntPtrConstant(0, DL));
4993   } else {
4994     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4995                                     BitCounts, DAG.getIntPtrConstant(0, DL));
4996     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4997   }
4998 }
4999 
5000 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
5001 /// bit-count for each 32-bit element from the operand.  The idea here is
5002 /// to split the vector into 16-bit elements, leverage the 16-bit count
5003 /// routine, and then combine the results.
5004 ///
5005 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
5006 /// input    = [v0    v1    ] (vi: 32-bit elements)
5007 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
5008 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
5009 /// vrev: N0 = [k1 k0 k3 k2 ]
5010 ///            [k0 k1 k2 k3 ]
5011 ///       N1 =+[k1 k0 k3 k2 ]
5012 ///            [k0 k2 k1 k3 ]
5013 ///       N2 =+[k1 k3 k0 k2 ]
5014 ///            [k0    k2    k1    k3    ]
5015 /// Extended =+[k1    k3    k0    k2    ]
5016 ///            [k0    k2    ]
5017 /// Extracted=+[k1    k3    ]
5018 ///
5019 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
5020   EVT VT = N->getValueType(0);
5021   SDLoc DL(N);
5022 
5023   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5024 
5025   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
5026   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
5027   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
5028   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
5029   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
5030 
5031   if (VT.is64BitVector()) {
5032     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
5033     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
5034                        DAG.getIntPtrConstant(0, DL));
5035   } else {
5036     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
5037                                     DAG.getIntPtrConstant(0, DL));
5038     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
5039   }
5040 }
5041 
5042 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5043                           const ARMSubtarget *ST) {
5044   EVT VT = N->getValueType(0);
5045 
5046   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5047   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
5048           VT == MVT::v4i16 || VT == MVT::v8i16) &&
5049          "Unexpected type for custom ctpop lowering");
5050 
5051   if (VT.getVectorElementType() == MVT::i32)
5052     return lowerCTPOP32BitElements(N, DAG);
5053   else
5054     return lowerCTPOP16BitElements(N, DAG);
5055 }
5056 
5057 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5058                           const ARMSubtarget *ST) {
5059   EVT VT = N->getValueType(0);
5060   SDLoc dl(N);
5061 
5062   if (!VT.isVector())
5063     return SDValue();
5064 
5065   // Lower vector shifts on NEON to use VSHL.
5066   assert(ST->hasNEON() && "unexpected vector shift");
5067 
5068   // Left shifts translate directly to the vshiftu intrinsic.
5069   if (N->getOpcode() == ISD::SHL)
5070     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5071                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
5072                                        MVT::i32),
5073                        N->getOperand(0), N->getOperand(1));
5074 
5075   assert((N->getOpcode() == ISD::SRA ||
5076           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5077 
5078   // NEON uses the same intrinsics for both left and right shifts.  For
5079   // right shifts, the shift amounts are negative, so negate the vector of
5080   // shift amounts.
5081   EVT ShiftVT = N->getOperand(1).getValueType();
5082   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5083                                      getZeroVector(ShiftVT, DAG, dl),
5084                                      N->getOperand(1));
5085   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5086                              Intrinsic::arm_neon_vshifts :
5087                              Intrinsic::arm_neon_vshiftu);
5088   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5089                      DAG.getConstant(vshiftInt, dl, MVT::i32),
5090                      N->getOperand(0), NegatedCount);
5091 }
5092 
5093 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5094                                 const ARMSubtarget *ST) {
5095   EVT VT = N->getValueType(0);
5096   SDLoc dl(N);
5097 
5098   // We can get here for a node like i32 = ISD::SHL i32, i64
5099   if (VT != MVT::i64)
5100     return SDValue();
5101 
5102   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
5103          "Unknown shift to lower!");
5104 
5105   // We only lower SRA, SRL of 1 here, all others use generic lowering.
5106   if (!isOneConstant(N->getOperand(1)))
5107     return SDValue();
5108 
5109   // If we are in thumb mode, we don't have RRX.
5110   if (ST->isThumb1Only()) return SDValue();
5111 
5112   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
5113   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5114                            DAG.getConstant(0, dl, MVT::i32));
5115   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5116                            DAG.getConstant(1, dl, MVT::i32));
5117 
5118   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5119   // captures the result into a carry flag.
5120   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5121   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5122 
5123   // The low part is an ARMISD::RRX operand, which shifts the carry in.
5124   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5125 
5126   // Merge the pieces into a single i64 value.
5127  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5128 }
5129 
5130 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5131   SDValue TmpOp0, TmpOp1;
5132   bool Invert = false;
5133   bool Swap = false;
5134   unsigned Opc = 0;
5135 
5136   SDValue Op0 = Op.getOperand(0);
5137   SDValue Op1 = Op.getOperand(1);
5138   SDValue CC = Op.getOperand(2);
5139   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5140   EVT VT = Op.getValueType();
5141   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5142   SDLoc dl(Op);
5143 
5144   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5145       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5146     // Special-case integer 64-bit equality comparisons. They aren't legal,
5147     // but they can be lowered with a few vector instructions.
5148     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5149     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5150     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5151     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5152     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5153                               DAG.getCondCode(ISD::SETEQ));
5154     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5155     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5156     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5157     if (SetCCOpcode == ISD::SETNE)
5158       Merged = DAG.getNOT(dl, Merged, CmpVT);
5159     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5160     return Merged;
5161   }
5162 
5163   if (CmpVT.getVectorElementType() == MVT::i64)
5164     // 64-bit comparisons are not legal in general.
5165     return SDValue();
5166 
5167   if (Op1.getValueType().isFloatingPoint()) {
5168     switch (SetCCOpcode) {
5169     default: llvm_unreachable("Illegal FP comparison");
5170     case ISD::SETUNE:
5171     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5172     case ISD::SETOEQ:
5173     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5174     case ISD::SETOLT:
5175     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5176     case ISD::SETOGT:
5177     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5178     case ISD::SETOLE:
5179     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5180     case ISD::SETOGE:
5181     case ISD::SETGE: Opc = ARMISD::VCGE; break;
5182     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5183     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5184     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5185     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5186     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5187     case ISD::SETONE:
5188       // Expand this to (OLT | OGT).
5189       TmpOp0 = Op0;
5190       TmpOp1 = Op1;
5191       Opc = ISD::OR;
5192       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5193       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5194       break;
5195     case ISD::SETUO:
5196       Invert = true;
5197       LLVM_FALLTHROUGH;
5198     case ISD::SETO:
5199       // Expand this to (OLT | OGE).
5200       TmpOp0 = Op0;
5201       TmpOp1 = Op1;
5202       Opc = ISD::OR;
5203       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5204       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5205       break;
5206     }
5207   } else {
5208     // Integer comparisons.
5209     switch (SetCCOpcode) {
5210     default: llvm_unreachable("Illegal integer comparison");
5211     case ISD::SETNE:  Invert = true;
5212     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5213     case ISD::SETLT:  Swap = true;
5214     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5215     case ISD::SETLE:  Swap = true;
5216     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
5217     case ISD::SETULT: Swap = true;
5218     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5219     case ISD::SETULE: Swap = true;
5220     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5221     }
5222 
5223     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5224     if (Opc == ARMISD::VCEQ) {
5225 
5226       SDValue AndOp;
5227       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5228         AndOp = Op0;
5229       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5230         AndOp = Op1;
5231 
5232       // Ignore bitconvert.
5233       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5234         AndOp = AndOp.getOperand(0);
5235 
5236       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5237         Opc = ARMISD::VTST;
5238         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5239         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5240         Invert = !Invert;
5241       }
5242     }
5243   }
5244 
5245   if (Swap)
5246     std::swap(Op0, Op1);
5247 
5248   // If one of the operands is a constant vector zero, attempt to fold the
5249   // comparison to a specialized compare-against-zero form.
5250   SDValue SingleOp;
5251   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5252     SingleOp = Op0;
5253   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5254     if (Opc == ARMISD::VCGE)
5255       Opc = ARMISD::VCLEZ;
5256     else if (Opc == ARMISD::VCGT)
5257       Opc = ARMISD::VCLTZ;
5258     SingleOp = Op1;
5259   }
5260 
5261   SDValue Result;
5262   if (SingleOp.getNode()) {
5263     switch (Opc) {
5264     case ARMISD::VCEQ:
5265       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5266     case ARMISD::VCGE:
5267       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5268     case ARMISD::VCLEZ:
5269       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5270     case ARMISD::VCGT:
5271       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5272     case ARMISD::VCLTZ:
5273       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5274     default:
5275       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5276     }
5277   } else {
5278      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5279   }
5280 
5281   Result = DAG.getSExtOrTrunc(Result, dl, VT);
5282 
5283   if (Invert)
5284     Result = DAG.getNOT(dl, Result, VT);
5285 
5286   return Result;
5287 }
5288 
5289 static SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) {
5290   SDValue LHS = Op.getOperand(0);
5291   SDValue RHS = Op.getOperand(1);
5292   SDValue Carry = Op.getOperand(2);
5293   SDValue Cond = Op.getOperand(3);
5294   SDLoc DL(Op);
5295 
5296   assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
5297 
5298   assert(Carry.getOpcode() != ISD::CARRY_FALSE);
5299   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5300   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5301 
5302   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5303   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5304   SDValue ARMcc = DAG.getConstant(
5305       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5306   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5307   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5308                                    Cmp.getValue(1), SDValue());
5309   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5310                      CCR, Chain.getValue(1));
5311 }
5312 
5313 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5314 /// valid vector constant for a NEON instruction with a "modified immediate"
5315 /// operand (e.g., VMOV).  If so, return the encoded value.
5316 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5317                                  unsigned SplatBitSize, SelectionDAG &DAG,
5318                                  const SDLoc &dl, EVT &VT, bool is128Bits,
5319                                  NEONModImmType type) {
5320   unsigned OpCmode, Imm;
5321 
5322   // SplatBitSize is set to the smallest size that splats the vector, so a
5323   // zero vector will always have SplatBitSize == 8.  However, NEON modified
5324   // immediate instructions others than VMOV do not support the 8-bit encoding
5325   // of a zero vector, and the default encoding of zero is supposed to be the
5326   // 32-bit version.
5327   if (SplatBits == 0)
5328     SplatBitSize = 32;
5329 
5330   switch (SplatBitSize) {
5331   case 8:
5332     if (type != VMOVModImm)
5333       return SDValue();
5334     // Any 1-byte value is OK.  Op=0, Cmode=1110.
5335     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5336     OpCmode = 0xe;
5337     Imm = SplatBits;
5338     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5339     break;
5340 
5341   case 16:
5342     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5343     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5344     if ((SplatBits & ~0xff) == 0) {
5345       // Value = 0x00nn: Op=x, Cmode=100x.
5346       OpCmode = 0x8;
5347       Imm = SplatBits;
5348       break;
5349     }
5350     if ((SplatBits & ~0xff00) == 0) {
5351       // Value = 0xnn00: Op=x, Cmode=101x.
5352       OpCmode = 0xa;
5353       Imm = SplatBits >> 8;
5354       break;
5355     }
5356     return SDValue();
5357 
5358   case 32:
5359     // NEON's 32-bit VMOV supports splat values where:
5360     // * only one byte is nonzero, or
5361     // * the least significant byte is 0xff and the second byte is nonzero, or
5362     // * the least significant 2 bytes are 0xff and the third is nonzero.
5363     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5364     if ((SplatBits & ~0xff) == 0) {
5365       // Value = 0x000000nn: Op=x, Cmode=000x.
5366       OpCmode = 0;
5367       Imm = SplatBits;
5368       break;
5369     }
5370     if ((SplatBits & ~0xff00) == 0) {
5371       // Value = 0x0000nn00: Op=x, Cmode=001x.
5372       OpCmode = 0x2;
5373       Imm = SplatBits >> 8;
5374       break;
5375     }
5376     if ((SplatBits & ~0xff0000) == 0) {
5377       // Value = 0x00nn0000: Op=x, Cmode=010x.
5378       OpCmode = 0x4;
5379       Imm = SplatBits >> 16;
5380       break;
5381     }
5382     if ((SplatBits & ~0xff000000) == 0) {
5383       // Value = 0xnn000000: Op=x, Cmode=011x.
5384       OpCmode = 0x6;
5385       Imm = SplatBits >> 24;
5386       break;
5387     }
5388 
5389     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5390     if (type == OtherModImm) return SDValue();
5391 
5392     if ((SplatBits & ~0xffff) == 0 &&
5393         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5394       // Value = 0x0000nnff: Op=x, Cmode=1100.
5395       OpCmode = 0xc;
5396       Imm = SplatBits >> 8;
5397       break;
5398     }
5399 
5400     if ((SplatBits & ~0xffffff) == 0 &&
5401         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5402       // Value = 0x00nnffff: Op=x, Cmode=1101.
5403       OpCmode = 0xd;
5404       Imm = SplatBits >> 16;
5405       break;
5406     }
5407 
5408     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5409     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5410     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5411     // and fall through here to test for a valid 64-bit splat.  But, then the
5412     // caller would also need to check and handle the change in size.
5413     return SDValue();
5414 
5415   case 64: {
5416     if (type != VMOVModImm)
5417       return SDValue();
5418     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5419     uint64_t BitMask = 0xff;
5420     uint64_t Val = 0;
5421     unsigned ImmMask = 1;
5422     Imm = 0;
5423     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5424       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5425         Val |= BitMask;
5426         Imm |= ImmMask;
5427       } else if ((SplatBits & BitMask) != 0) {
5428         return SDValue();
5429       }
5430       BitMask <<= 8;
5431       ImmMask <<= 1;
5432     }
5433 
5434     if (DAG.getDataLayout().isBigEndian())
5435       // swap higher and lower 32 bit word
5436       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5437 
5438     // Op=1, Cmode=1110.
5439     OpCmode = 0x1e;
5440     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5441     break;
5442   }
5443 
5444   default:
5445     llvm_unreachable("unexpected size for isNEONModifiedImm");
5446   }
5447 
5448   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5449   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5450 }
5451 
5452 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5453                                            const ARMSubtarget *ST) const {
5454   bool IsDouble = Op.getValueType() == MVT::f64;
5455   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5456   const APFloat &FPVal = CFP->getValueAPF();
5457 
5458   // Prevent floating-point constants from using literal loads
5459   // when execute-only is enabled.
5460   if (ST->genExecuteOnly()) {
5461     APInt INTVal = FPVal.bitcastToAPInt();
5462     SDLoc DL(CFP);
5463     if (IsDouble) {
5464       SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
5465       SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
5466       if (!ST->isLittle())
5467         std::swap(Lo, Hi);
5468       return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
5469     } else {
5470       return DAG.getConstant(INTVal, DL, MVT::i32);
5471     }
5472   }
5473 
5474   if (!ST->hasVFP3())
5475     return SDValue();
5476 
5477   // Use the default (constant pool) lowering for double constants when we have
5478   // an SP-only FPU
5479   if (IsDouble && Subtarget->isFPOnlySP())
5480     return SDValue();
5481 
5482   // Try splatting with a VMOV.f32...
5483   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5484 
5485   if (ImmVal != -1) {
5486     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
5487       // We have code in place to select a valid ConstantFP already, no need to
5488       // do any mangling.
5489       return Op;
5490     }
5491 
5492     // It's a float and we are trying to use NEON operations where
5493     // possible. Lower it to a splat followed by an extract.
5494     SDLoc DL(Op);
5495     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
5496     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
5497                                       NewVal);
5498     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
5499                        DAG.getConstant(0, DL, MVT::i32));
5500   }
5501 
5502   // The rest of our options are NEON only, make sure that's allowed before
5503   // proceeding..
5504   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
5505     return SDValue();
5506 
5507   EVT VMovVT;
5508   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
5509 
5510   // It wouldn't really be worth bothering for doubles except for one very
5511   // important value, which does happen to match: 0.0. So make sure we don't do
5512   // anything stupid.
5513   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
5514     return SDValue();
5515 
5516   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
5517   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
5518                                      VMovVT, false, VMOVModImm);
5519   if (NewVal != SDValue()) {
5520     SDLoc DL(Op);
5521     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
5522                                       NewVal);
5523     if (IsDouble)
5524       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5525 
5526     // It's a float: cast and extract a vector element.
5527     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5528                                        VecConstant);
5529     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5530                        DAG.getConstant(0, DL, MVT::i32));
5531   }
5532 
5533   // Finally, try a VMVN.i32
5534   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
5535                              false, VMVNModImm);
5536   if (NewVal != SDValue()) {
5537     SDLoc DL(Op);
5538     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
5539 
5540     if (IsDouble)
5541       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5542 
5543     // It's a float: cast and extract a vector element.
5544     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5545                                        VecConstant);
5546     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5547                        DAG.getConstant(0, DL, MVT::i32));
5548   }
5549 
5550   return SDValue();
5551 }
5552 
5553 // check if an VEXT instruction can handle the shuffle mask when the
5554 // vector sources of the shuffle are the same.
5555 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5556   unsigned NumElts = VT.getVectorNumElements();
5557 
5558   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5559   if (M[0] < 0)
5560     return false;
5561 
5562   Imm = M[0];
5563 
5564   // If this is a VEXT shuffle, the immediate value is the index of the first
5565   // element.  The other shuffle indices must be the successive elements after
5566   // the first one.
5567   unsigned ExpectedElt = Imm;
5568   for (unsigned i = 1; i < NumElts; ++i) {
5569     // Increment the expected index.  If it wraps around, just follow it
5570     // back to index zero and keep going.
5571     ++ExpectedElt;
5572     if (ExpectedElt == NumElts)
5573       ExpectedElt = 0;
5574 
5575     if (M[i] < 0) continue; // ignore UNDEF indices
5576     if (ExpectedElt != static_cast<unsigned>(M[i]))
5577       return false;
5578   }
5579 
5580   return true;
5581 }
5582 
5583 
5584 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
5585                        bool &ReverseVEXT, unsigned &Imm) {
5586   unsigned NumElts = VT.getVectorNumElements();
5587   ReverseVEXT = false;
5588 
5589   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5590   if (M[0] < 0)
5591     return false;
5592 
5593   Imm = M[0];
5594 
5595   // If this is a VEXT shuffle, the immediate value is the index of the first
5596   // element.  The other shuffle indices must be the successive elements after
5597   // the first one.
5598   unsigned ExpectedElt = Imm;
5599   for (unsigned i = 1; i < NumElts; ++i) {
5600     // Increment the expected index.  If it wraps around, it may still be
5601     // a VEXT but the source vectors must be swapped.
5602     ExpectedElt += 1;
5603     if (ExpectedElt == NumElts * 2) {
5604       ExpectedElt = 0;
5605       ReverseVEXT = true;
5606     }
5607 
5608     if (M[i] < 0) continue; // ignore UNDEF indices
5609     if (ExpectedElt != static_cast<unsigned>(M[i]))
5610       return false;
5611   }
5612 
5613   // Adjust the index value if the source operands will be swapped.
5614   if (ReverseVEXT)
5615     Imm -= NumElts;
5616 
5617   return true;
5618 }
5619 
5620 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
5621 /// instruction with the specified blocksize.  (The order of the elements
5622 /// within each block of the vector is reversed.)
5623 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5624   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
5625          "Only possible block sizes for VREV are: 16, 32, 64");
5626 
5627   unsigned EltSz = VT.getScalarSizeInBits();
5628   if (EltSz == 64)
5629     return false;
5630 
5631   unsigned NumElts = VT.getVectorNumElements();
5632   unsigned BlockElts = M[0] + 1;
5633   // If the first shuffle index is UNDEF, be optimistic.
5634   if (M[0] < 0)
5635     BlockElts = BlockSize / EltSz;
5636 
5637   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5638     return false;
5639 
5640   for (unsigned i = 0; i < NumElts; ++i) {
5641     if (M[i] < 0) continue; // ignore UNDEF indices
5642     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
5643       return false;
5644   }
5645 
5646   return true;
5647 }
5648 
5649 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
5650   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
5651   // range, then 0 is placed into the resulting vector. So pretty much any mask
5652   // of 8 elements can work here.
5653   return VT == MVT::v8i8 && M.size() == 8;
5654 }
5655 
5656 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
5657 // checking that pairs of elements in the shuffle mask represent the same index
5658 // in each vector, incrementing the expected index by 2 at each step.
5659 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
5660 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
5661 //  v2={e,f,g,h}
5662 // WhichResult gives the offset for each element in the mask based on which
5663 // of the two results it belongs to.
5664 //
5665 // The transpose can be represented either as:
5666 // result1 = shufflevector v1, v2, result1_shuffle_mask
5667 // result2 = shufflevector v1, v2, result2_shuffle_mask
5668 // where v1/v2 and the shuffle masks have the same number of elements
5669 // (here WhichResult (see below) indicates which result is being checked)
5670 //
5671 // or as:
5672 // results = shufflevector v1, v2, shuffle_mask
5673 // where both results are returned in one vector and the shuffle mask has twice
5674 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
5675 // want to check the low half and high half of the shuffle mask as if it were
5676 // the other case
5677 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5678   unsigned EltSz = VT.getScalarSizeInBits();
5679   if (EltSz == 64)
5680     return false;
5681 
5682   unsigned NumElts = VT.getVectorNumElements();
5683   if (M.size() != NumElts && M.size() != NumElts*2)
5684     return false;
5685 
5686   // If the mask is twice as long as the input vector then we need to check the
5687   // upper and lower parts of the mask with a matching value for WhichResult
5688   // FIXME: A mask with only even values will be rejected in case the first
5689   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
5690   // M[0] is used to determine WhichResult
5691   for (unsigned i = 0; i < M.size(); i += NumElts) {
5692     if (M.size() == NumElts * 2)
5693       WhichResult = i / NumElts;
5694     else
5695       WhichResult = M[i] == 0 ? 0 : 1;
5696     for (unsigned j = 0; j < NumElts; j += 2) {
5697       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5698           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
5699         return false;
5700     }
5701   }
5702 
5703   if (M.size() == NumElts*2)
5704     WhichResult = 0;
5705 
5706   return true;
5707 }
5708 
5709 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
5710 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5711 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5712 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5713   unsigned EltSz = VT.getScalarSizeInBits();
5714   if (EltSz == 64)
5715     return false;
5716 
5717   unsigned NumElts = VT.getVectorNumElements();
5718   if (M.size() != NumElts && M.size() != NumElts*2)
5719     return false;
5720 
5721   for (unsigned i = 0; i < M.size(); i += NumElts) {
5722     if (M.size() == NumElts * 2)
5723       WhichResult = i / NumElts;
5724     else
5725       WhichResult = M[i] == 0 ? 0 : 1;
5726     for (unsigned j = 0; j < NumElts; j += 2) {
5727       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5728           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
5729         return false;
5730     }
5731   }
5732 
5733   if (M.size() == NumElts*2)
5734     WhichResult = 0;
5735 
5736   return true;
5737 }
5738 
5739 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
5740 // that the mask elements are either all even and in steps of size 2 or all odd
5741 // and in steps of size 2.
5742 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
5743 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
5744 //  v2={e,f,g,h}
5745 // Requires similar checks to that of isVTRNMask with
5746 // respect the how results are returned.
5747 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5748   unsigned EltSz = VT.getScalarSizeInBits();
5749   if (EltSz == 64)
5750     return false;
5751 
5752   unsigned NumElts = VT.getVectorNumElements();
5753   if (M.size() != NumElts && M.size() != NumElts*2)
5754     return false;
5755 
5756   for (unsigned i = 0; i < M.size(); i += NumElts) {
5757     WhichResult = M[i] == 0 ? 0 : 1;
5758     for (unsigned j = 0; j < NumElts; ++j) {
5759       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
5760         return false;
5761     }
5762   }
5763 
5764   if (M.size() == NumElts*2)
5765     WhichResult = 0;
5766 
5767   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5768   if (VT.is64BitVector() && EltSz == 32)
5769     return false;
5770 
5771   return true;
5772 }
5773 
5774 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
5775 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5776 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5777 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5778   unsigned EltSz = VT.getScalarSizeInBits();
5779   if (EltSz == 64)
5780     return false;
5781 
5782   unsigned NumElts = VT.getVectorNumElements();
5783   if (M.size() != NumElts && M.size() != NumElts*2)
5784     return false;
5785 
5786   unsigned Half = NumElts / 2;
5787   for (unsigned i = 0; i < M.size(); i += NumElts) {
5788     WhichResult = M[i] == 0 ? 0 : 1;
5789     for (unsigned j = 0; j < NumElts; j += Half) {
5790       unsigned Idx = WhichResult;
5791       for (unsigned k = 0; k < Half; ++k) {
5792         int MIdx = M[i + j + k];
5793         if (MIdx >= 0 && (unsigned) MIdx != Idx)
5794           return false;
5795         Idx += 2;
5796       }
5797     }
5798   }
5799 
5800   if (M.size() == NumElts*2)
5801     WhichResult = 0;
5802 
5803   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5804   if (VT.is64BitVector() && EltSz == 32)
5805     return false;
5806 
5807   return true;
5808 }
5809 
5810 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
5811 // that pairs of elements of the shufflemask represent the same index in each
5812 // vector incrementing sequentially through the vectors.
5813 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
5814 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
5815 //  v2={e,f,g,h}
5816 // Requires similar checks to that of isVTRNMask with respect the how results
5817 // are returned.
5818 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5819   unsigned EltSz = VT.getScalarSizeInBits();
5820   if (EltSz == 64)
5821     return false;
5822 
5823   unsigned NumElts = VT.getVectorNumElements();
5824   if (M.size() != NumElts && M.size() != NumElts*2)
5825     return false;
5826 
5827   for (unsigned i = 0; i < M.size(); i += NumElts) {
5828     WhichResult = M[i] == 0 ? 0 : 1;
5829     unsigned Idx = WhichResult * NumElts / 2;
5830     for (unsigned j = 0; j < NumElts; j += 2) {
5831       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5832           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
5833         return false;
5834       Idx += 1;
5835     }
5836   }
5837 
5838   if (M.size() == NumElts*2)
5839     WhichResult = 0;
5840 
5841   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5842   if (VT.is64BitVector() && EltSz == 32)
5843     return false;
5844 
5845   return true;
5846 }
5847 
5848 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
5849 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5850 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5851 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5852   unsigned EltSz = VT.getScalarSizeInBits();
5853   if (EltSz == 64)
5854     return false;
5855 
5856   unsigned NumElts = VT.getVectorNumElements();
5857   if (M.size() != NumElts && M.size() != NumElts*2)
5858     return false;
5859 
5860   for (unsigned i = 0; i < M.size(); i += NumElts) {
5861     WhichResult = M[i] == 0 ? 0 : 1;
5862     unsigned Idx = WhichResult * NumElts / 2;
5863     for (unsigned j = 0; j < NumElts; j += 2) {
5864       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5865           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
5866         return false;
5867       Idx += 1;
5868     }
5869   }
5870 
5871   if (M.size() == NumElts*2)
5872     WhichResult = 0;
5873 
5874   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5875   if (VT.is64BitVector() && EltSz == 32)
5876     return false;
5877 
5878   return true;
5879 }
5880 
5881 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
5882 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
5883 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
5884                                            unsigned &WhichResult,
5885                                            bool &isV_UNDEF) {
5886   isV_UNDEF = false;
5887   if (isVTRNMask(ShuffleMask, VT, WhichResult))
5888     return ARMISD::VTRN;
5889   if (isVUZPMask(ShuffleMask, VT, WhichResult))
5890     return ARMISD::VUZP;
5891   if (isVZIPMask(ShuffleMask, VT, WhichResult))
5892     return ARMISD::VZIP;
5893 
5894   isV_UNDEF = true;
5895   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5896     return ARMISD::VTRN;
5897   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5898     return ARMISD::VUZP;
5899   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5900     return ARMISD::VZIP;
5901 
5902   return 0;
5903 }
5904 
5905 /// \return true if this is a reverse operation on an vector.
5906 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
5907   unsigned NumElts = VT.getVectorNumElements();
5908   // Make sure the mask has the right size.
5909   if (NumElts != M.size())
5910       return false;
5911 
5912   // Look for <15, ..., 3, -1, 1, 0>.
5913   for (unsigned i = 0; i != NumElts; ++i)
5914     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
5915       return false;
5916 
5917   return true;
5918 }
5919 
5920 // If N is an integer constant that can be moved into a register in one
5921 // instruction, return an SDValue of such a constant (will become a MOV
5922 // instruction).  Otherwise return null.
5923 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
5924                                      const ARMSubtarget *ST, const SDLoc &dl) {
5925   uint64_t Val;
5926   if (!isa<ConstantSDNode>(N))
5927     return SDValue();
5928   Val = cast<ConstantSDNode>(N)->getZExtValue();
5929 
5930   if (ST->isThumb1Only()) {
5931     if (Val <= 255 || ~Val <= 255)
5932       return DAG.getConstant(Val, dl, MVT::i32);
5933   } else {
5934     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
5935       return DAG.getConstant(Val, dl, MVT::i32);
5936   }
5937   return SDValue();
5938 }
5939 
5940 // If this is a case we can't handle, return null and let the default
5941 // expansion code take care of it.
5942 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
5943                                              const ARMSubtarget *ST) const {
5944   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5945   SDLoc dl(Op);
5946   EVT VT = Op.getValueType();
5947 
5948   APInt SplatBits, SplatUndef;
5949   unsigned SplatBitSize;
5950   bool HasAnyUndefs;
5951   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5952     if (SplatUndef.isAllOnesValue())
5953       return DAG.getUNDEF(VT);
5954 
5955     if (SplatBitSize <= 64) {
5956       // Check if an immediate VMOV works.
5957       EVT VmovVT;
5958       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5959                                       SplatUndef.getZExtValue(), SplatBitSize,
5960                                       DAG, dl, VmovVT, VT.is128BitVector(),
5961                                       VMOVModImm);
5962       if (Val.getNode()) {
5963         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
5964         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5965       }
5966 
5967       // Try an immediate VMVN.
5968       uint64_t NegatedImm = (~SplatBits).getZExtValue();
5969       Val = isNEONModifiedImm(NegatedImm,
5970                                       SplatUndef.getZExtValue(), SplatBitSize,
5971                                       DAG, dl, VmovVT, VT.is128BitVector(),
5972                                       VMVNModImm);
5973       if (Val.getNode()) {
5974         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
5975         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5976       }
5977 
5978       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
5979       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
5980         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
5981         if (ImmVal != -1) {
5982           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
5983           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
5984         }
5985       }
5986     }
5987   }
5988 
5989   // Scan through the operands to see if only one value is used.
5990   //
5991   // As an optimisation, even if more than one value is used it may be more
5992   // profitable to splat with one value then change some lanes.
5993   //
5994   // Heuristically we decide to do this if the vector has a "dominant" value,
5995   // defined as splatted to more than half of the lanes.
5996   unsigned NumElts = VT.getVectorNumElements();
5997   bool isOnlyLowElement = true;
5998   bool usesOnlyOneValue = true;
5999   bool hasDominantValue = false;
6000   bool isConstant = true;
6001 
6002   // Map of the number of times a particular SDValue appears in the
6003   // element list.
6004   DenseMap<SDValue, unsigned> ValueCounts;
6005   SDValue Value;
6006   for (unsigned i = 0; i < NumElts; ++i) {
6007     SDValue V = Op.getOperand(i);
6008     if (V.isUndef())
6009       continue;
6010     if (i > 0)
6011       isOnlyLowElement = false;
6012     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6013       isConstant = false;
6014 
6015     ValueCounts.insert(std::make_pair(V, 0));
6016     unsigned &Count = ValueCounts[V];
6017 
6018     // Is this value dominant? (takes up more than half of the lanes)
6019     if (++Count > (NumElts / 2)) {
6020       hasDominantValue = true;
6021       Value = V;
6022     }
6023   }
6024   if (ValueCounts.size() != 1)
6025     usesOnlyOneValue = false;
6026   if (!Value.getNode() && ValueCounts.size() > 0)
6027     Value = ValueCounts.begin()->first;
6028 
6029   if (ValueCounts.size() == 0)
6030     return DAG.getUNDEF(VT);
6031 
6032   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6033   // Keep going if we are hitting this case.
6034   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6035     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6036 
6037   unsigned EltSize = VT.getScalarSizeInBits();
6038 
6039   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
6040   // i32 and try again.
6041   if (hasDominantValue && EltSize <= 32) {
6042     if (!isConstant) {
6043       SDValue N;
6044 
6045       // If we are VDUPing a value that comes directly from a vector, that will
6046       // cause an unnecessary move to and from a GPR, where instead we could
6047       // just use VDUPLANE. We can only do this if the lane being extracted
6048       // is at a constant index, as the VDUP from lane instructions only have
6049       // constant-index forms.
6050       ConstantSDNode *constIndex;
6051       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6052           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6053         // We need to create a new undef vector to use for the VDUPLANE if the
6054         // size of the vector from which we get the value is different than the
6055         // size of the vector that we need to create. We will insert the element
6056         // such that the register coalescer will remove unnecessary copies.
6057         if (VT != Value->getOperand(0).getValueType()) {
6058           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6059                              VT.getVectorNumElements();
6060           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6061                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6062                         Value, DAG.getConstant(index, dl, MVT::i32)),
6063                            DAG.getConstant(index, dl, MVT::i32));
6064         } else
6065           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6066                         Value->getOperand(0), Value->getOperand(1));
6067       } else
6068         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6069 
6070       if (!usesOnlyOneValue) {
6071         // The dominant value was splatted as 'N', but we now have to insert
6072         // all differing elements.
6073         for (unsigned I = 0; I < NumElts; ++I) {
6074           if (Op.getOperand(I) == Value)
6075             continue;
6076           SmallVector<SDValue, 3> Ops;
6077           Ops.push_back(N);
6078           Ops.push_back(Op.getOperand(I));
6079           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6080           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6081         }
6082       }
6083       return N;
6084     }
6085     if (VT.getVectorElementType().isFloatingPoint()) {
6086       SmallVector<SDValue, 8> Ops;
6087       for (unsigned i = 0; i < NumElts; ++i)
6088         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
6089                                   Op.getOperand(i)));
6090       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
6091       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6092       Val = LowerBUILD_VECTOR(Val, DAG, ST);
6093       if (Val.getNode())
6094         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6095     }
6096     if (usesOnlyOneValue) {
6097       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6098       if (isConstant && Val.getNode())
6099         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6100     }
6101   }
6102 
6103   // If all elements are constants and the case above didn't get hit, fall back
6104   // to the default expansion, which will generate a load from the constant
6105   // pool.
6106   if (isConstant)
6107     return SDValue();
6108 
6109   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6110   if (NumElts >= 4) {
6111     SDValue shuffle = ReconstructShuffle(Op, DAG);
6112     if (shuffle != SDValue())
6113       return shuffle;
6114   }
6115 
6116   if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
6117     // If we haven't found an efficient lowering, try splitting a 128-bit vector
6118     // into two 64-bit vectors; we might discover a better way to lower it.
6119     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
6120     EVT ExtVT = VT.getVectorElementType();
6121     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
6122     SDValue Lower =
6123         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
6124     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
6125       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
6126     SDValue Upper = DAG.getBuildVector(
6127         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
6128     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
6129       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
6130     if (Lower && Upper)
6131       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
6132   }
6133 
6134   // Vectors with 32- or 64-bit elements can be built by directly assigning
6135   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
6136   // will be legalized.
6137   if (EltSize >= 32) {
6138     // Do the expansion with floating-point types, since that is what the VFP
6139     // registers are defined to use, and since i64 is not legal.
6140     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6141     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6142     SmallVector<SDValue, 8> Ops;
6143     for (unsigned i = 0; i < NumElts; ++i)
6144       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6145     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6146     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6147   }
6148 
6149   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6150   // know the default expansion would otherwise fall back on something even
6151   // worse. For a vector with one or two non-undef values, that's
6152   // scalar_to_vector for the elements followed by a shuffle (provided the
6153   // shuffle is valid for the target) and materialization element by element
6154   // on the stack followed by a load for everything else.
6155   if (!isConstant && !usesOnlyOneValue) {
6156     SDValue Vec = DAG.getUNDEF(VT);
6157     for (unsigned i = 0 ; i < NumElts; ++i) {
6158       SDValue V = Op.getOperand(i);
6159       if (V.isUndef())
6160         continue;
6161       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6162       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6163     }
6164     return Vec;
6165   }
6166 
6167   return SDValue();
6168 }
6169 
6170 // Gather data to see if the operation can be modelled as a
6171 // shuffle in combination with VEXTs.
6172 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6173                                               SelectionDAG &DAG) const {
6174   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6175   SDLoc dl(Op);
6176   EVT VT = Op.getValueType();
6177   unsigned NumElts = VT.getVectorNumElements();
6178 
6179   struct ShuffleSourceInfo {
6180     SDValue Vec;
6181     unsigned MinElt;
6182     unsigned MaxElt;
6183 
6184     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6185     // be compatible with the shuffle we intend to construct. As a result
6186     // ShuffleVec will be some sliding window into the original Vec.
6187     SDValue ShuffleVec;
6188 
6189     // Code should guarantee that element i in Vec starts at element "WindowBase
6190     // + i * WindowScale in ShuffleVec".
6191     int WindowBase;
6192     int WindowScale;
6193 
6194     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6195     ShuffleSourceInfo(SDValue Vec)
6196         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
6197           WindowScale(1) {}
6198   };
6199 
6200   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6201   // node.
6202   SmallVector<ShuffleSourceInfo, 2> Sources;
6203   for (unsigned i = 0; i < NumElts; ++i) {
6204     SDValue V = Op.getOperand(i);
6205     if (V.isUndef())
6206       continue;
6207     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6208       // A shuffle can only come from building a vector from various
6209       // elements of other vectors.
6210       return SDValue();
6211     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6212       // Furthermore, shuffles require a constant mask, whereas extractelts
6213       // accept variable indices.
6214       return SDValue();
6215     }
6216 
6217     // Add this element source to the list if it's not already there.
6218     SDValue SourceVec = V.getOperand(0);
6219     auto Source = find(Sources, SourceVec);
6220     if (Source == Sources.end())
6221       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6222 
6223     // Update the minimum and maximum lane number seen.
6224     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6225     Source->MinElt = std::min(Source->MinElt, EltNo);
6226     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6227   }
6228 
6229   // Currently only do something sane when at most two source vectors
6230   // are involved.
6231   if (Sources.size() > 2)
6232     return SDValue();
6233 
6234   // Find out the smallest element size among result and two sources, and use
6235   // it as element size to build the shuffle_vector.
6236   EVT SmallestEltTy = VT.getVectorElementType();
6237   for (auto &Source : Sources) {
6238     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6239     if (SrcEltTy.bitsLT(SmallestEltTy))
6240       SmallestEltTy = SrcEltTy;
6241   }
6242   unsigned ResMultiplier =
6243       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6244   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6245   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6246 
6247   // If the source vector is too wide or too narrow, we may nevertheless be able
6248   // to construct a compatible shuffle either by concatenating it with UNDEF or
6249   // extracting a suitable range of elements.
6250   for (auto &Src : Sources) {
6251     EVT SrcVT = Src.ShuffleVec.getValueType();
6252 
6253     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6254       continue;
6255 
6256     // This stage of the search produces a source with the same element type as
6257     // the original, but with a total width matching the BUILD_VECTOR output.
6258     EVT EltVT = SrcVT.getVectorElementType();
6259     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6260     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6261 
6262     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6263       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6264         return SDValue();
6265       // We can pad out the smaller vector for free, so if it's part of a
6266       // shuffle...
6267       Src.ShuffleVec =
6268           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6269                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6270       continue;
6271     }
6272 
6273     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6274       return SDValue();
6275 
6276     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6277       // Span too large for a VEXT to cope
6278       return SDValue();
6279     }
6280 
6281     if (Src.MinElt >= NumSrcElts) {
6282       // The extraction can just take the second half
6283       Src.ShuffleVec =
6284           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6285                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6286       Src.WindowBase = -NumSrcElts;
6287     } else if (Src.MaxElt < NumSrcElts) {
6288       // The extraction can just take the first half
6289       Src.ShuffleVec =
6290           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6291                       DAG.getConstant(0, dl, MVT::i32));
6292     } else {
6293       // An actual VEXT is needed
6294       SDValue VEXTSrc1 =
6295           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6296                       DAG.getConstant(0, dl, MVT::i32));
6297       SDValue VEXTSrc2 =
6298           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6299                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6300 
6301       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6302                                    VEXTSrc2,
6303                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
6304       Src.WindowBase = -Src.MinElt;
6305     }
6306   }
6307 
6308   // Another possible incompatibility occurs from the vector element types. We
6309   // can fix this by bitcasting the source vectors to the same type we intend
6310   // for the shuffle.
6311   for (auto &Src : Sources) {
6312     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6313     if (SrcEltTy == SmallestEltTy)
6314       continue;
6315     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6316     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6317     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6318     Src.WindowBase *= Src.WindowScale;
6319   }
6320 
6321   // Final sanity check before we try to actually produce a shuffle.
6322   DEBUG(
6323     for (auto Src : Sources)
6324       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
6325   );
6326 
6327   // The stars all align, our next step is to produce the mask for the shuffle.
6328   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6329   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6330   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6331     SDValue Entry = Op.getOperand(i);
6332     if (Entry.isUndef())
6333       continue;
6334 
6335     auto Src = find(Sources, Entry.getOperand(0));
6336     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6337 
6338     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6339     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6340     // segment.
6341     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6342     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6343                                VT.getScalarSizeInBits());
6344     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6345 
6346     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6347     // starting at the appropriate offset.
6348     int *LaneMask = &Mask[i * ResMultiplier];
6349 
6350     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6351     ExtractBase += NumElts * (Src - Sources.begin());
6352     for (int j = 0; j < LanesDefined; ++j)
6353       LaneMask[j] = ExtractBase + j;
6354   }
6355 
6356   // Final check before we try to produce nonsense...
6357   if (!isShuffleMaskLegal(Mask, ShuffleVT))
6358     return SDValue();
6359 
6360   // We can't handle more than two sources. This should have already
6361   // been checked before this point.
6362   assert(Sources.size() <= 2 && "Too many sources!");
6363 
6364   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6365   for (unsigned i = 0; i < Sources.size(); ++i)
6366     ShuffleOps[i] = Sources[i].ShuffleVec;
6367 
6368   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6369                                          ShuffleOps[1], Mask);
6370   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6371 }
6372 
6373 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6374 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6375 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6376 /// are assumed to be legal.
6377 bool
6378 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6379                                       EVT VT) const {
6380   if (VT.getVectorNumElements() == 4 &&
6381       (VT.is128BitVector() || VT.is64BitVector())) {
6382     unsigned PFIndexes[4];
6383     for (unsigned i = 0; i != 4; ++i) {
6384       if (M[i] < 0)
6385         PFIndexes[i] = 8;
6386       else
6387         PFIndexes[i] = M[i];
6388     }
6389 
6390     // Compute the index in the perfect shuffle table.
6391     unsigned PFTableIndex =
6392       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6393     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6394     unsigned Cost = (PFEntry >> 30);
6395 
6396     if (Cost <= 4)
6397       return true;
6398   }
6399 
6400   bool ReverseVEXT, isV_UNDEF;
6401   unsigned Imm, WhichResult;
6402 
6403   unsigned EltSize = VT.getScalarSizeInBits();
6404   return (EltSize >= 32 ||
6405           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6406           isVREVMask(M, VT, 64) ||
6407           isVREVMask(M, VT, 32) ||
6408           isVREVMask(M, VT, 16) ||
6409           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6410           isVTBLMask(M, VT) ||
6411           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6412           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6413 }
6414 
6415 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6416 /// the specified operations to build the shuffle.
6417 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6418                                       SDValue RHS, SelectionDAG &DAG,
6419                                       const SDLoc &dl) {
6420   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6421   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6422   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
6423 
6424   enum {
6425     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6426     OP_VREV,
6427     OP_VDUP0,
6428     OP_VDUP1,
6429     OP_VDUP2,
6430     OP_VDUP3,
6431     OP_VEXT1,
6432     OP_VEXT2,
6433     OP_VEXT3,
6434     OP_VUZPL, // VUZP, left result
6435     OP_VUZPR, // VUZP, right result
6436     OP_VZIPL, // VZIP, left result
6437     OP_VZIPR, // VZIP, right result
6438     OP_VTRNL, // VTRN, left result
6439     OP_VTRNR  // VTRN, right result
6440   };
6441 
6442   if (OpNum == OP_COPY) {
6443     if (LHSID == (1*9+2)*9+3) return LHS;
6444     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6445     return RHS;
6446   }
6447 
6448   SDValue OpLHS, OpRHS;
6449   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6450   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6451   EVT VT = OpLHS.getValueType();
6452 
6453   switch (OpNum) {
6454   default: llvm_unreachable("Unknown shuffle opcode!");
6455   case OP_VREV:
6456     // VREV divides the vector in half and swaps within the half.
6457     if (VT.getVectorElementType() == MVT::i32 ||
6458         VT.getVectorElementType() == MVT::f32)
6459       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6460     // vrev <4 x i16> -> VREV32
6461     if (VT.getVectorElementType() == MVT::i16)
6462       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6463     // vrev <4 x i8> -> VREV16
6464     assert(VT.getVectorElementType() == MVT::i8);
6465     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6466   case OP_VDUP0:
6467   case OP_VDUP1:
6468   case OP_VDUP2:
6469   case OP_VDUP3:
6470     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6471                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6472   case OP_VEXT1:
6473   case OP_VEXT2:
6474   case OP_VEXT3:
6475     return DAG.getNode(ARMISD::VEXT, dl, VT,
6476                        OpLHS, OpRHS,
6477                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6478   case OP_VUZPL:
6479   case OP_VUZPR:
6480     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6481                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6482   case OP_VZIPL:
6483   case OP_VZIPR:
6484     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6485                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6486   case OP_VTRNL:
6487   case OP_VTRNR:
6488     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6489                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6490   }
6491 }
6492 
6493 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
6494                                        ArrayRef<int> ShuffleMask,
6495                                        SelectionDAG &DAG) {
6496   // Check to see if we can use the VTBL instruction.
6497   SDValue V1 = Op.getOperand(0);
6498   SDValue V2 = Op.getOperand(1);
6499   SDLoc DL(Op);
6500 
6501   SmallVector<SDValue, 8> VTBLMask;
6502   for (ArrayRef<int>::iterator
6503          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
6504     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
6505 
6506   if (V2.getNode()->isUndef())
6507     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
6508                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6509 
6510   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
6511                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6512 }
6513 
6514 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
6515                                                       SelectionDAG &DAG) {
6516   SDLoc DL(Op);
6517   SDValue OpLHS = Op.getOperand(0);
6518   EVT VT = OpLHS.getValueType();
6519 
6520   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
6521          "Expect an v8i16/v16i8 type");
6522   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
6523   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
6524   // extract the first 8 bytes into the top double word and the last 8 bytes
6525   // into the bottom double word. The v8i16 case is similar.
6526   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
6527   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
6528                      DAG.getConstant(ExtractNum, DL, MVT::i32));
6529 }
6530 
6531 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
6532   SDValue V1 = Op.getOperand(0);
6533   SDValue V2 = Op.getOperand(1);
6534   SDLoc dl(Op);
6535   EVT VT = Op.getValueType();
6536   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6537 
6538   // Convert shuffles that are directly supported on NEON to target-specific
6539   // DAG nodes, instead of keeping them as shuffles and matching them again
6540   // during code selection.  This is more efficient and avoids the possibility
6541   // of inconsistencies between legalization and selection.
6542   // FIXME: floating-point vectors should be canonicalized to integer vectors
6543   // of the same time so that they get CSEd properly.
6544   ArrayRef<int> ShuffleMask = SVN->getMask();
6545 
6546   unsigned EltSize = VT.getScalarSizeInBits();
6547   if (EltSize <= 32) {
6548     if (SVN->isSplat()) {
6549       int Lane = SVN->getSplatIndex();
6550       // If this is undef splat, generate it via "just" vdup, if possible.
6551       if (Lane == -1) Lane = 0;
6552 
6553       // Test if V1 is a SCALAR_TO_VECTOR.
6554       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6555         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6556       }
6557       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
6558       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
6559       // reaches it).
6560       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
6561           !isa<ConstantSDNode>(V1.getOperand(0))) {
6562         bool IsScalarToVector = true;
6563         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
6564           if (!V1.getOperand(i).isUndef()) {
6565             IsScalarToVector = false;
6566             break;
6567           }
6568         if (IsScalarToVector)
6569           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6570       }
6571       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
6572                          DAG.getConstant(Lane, dl, MVT::i32));
6573     }
6574 
6575     bool ReverseVEXT;
6576     unsigned Imm;
6577     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
6578       if (ReverseVEXT)
6579         std::swap(V1, V2);
6580       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
6581                          DAG.getConstant(Imm, dl, MVT::i32));
6582     }
6583 
6584     if (isVREVMask(ShuffleMask, VT, 64))
6585       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
6586     if (isVREVMask(ShuffleMask, VT, 32))
6587       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
6588     if (isVREVMask(ShuffleMask, VT, 16))
6589       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
6590 
6591     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
6592       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
6593                          DAG.getConstant(Imm, dl, MVT::i32));
6594     }
6595 
6596     // Check for Neon shuffles that modify both input vectors in place.
6597     // If both results are used, i.e., if there are two shuffles with the same
6598     // source operands and with masks corresponding to both results of one of
6599     // these operations, DAG memoization will ensure that a single node is
6600     // used for both shuffles.
6601     unsigned WhichResult;
6602     bool isV_UNDEF;
6603     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6604             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
6605       if (isV_UNDEF)
6606         V2 = V1;
6607       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
6608           .getValue(WhichResult);
6609     }
6610 
6611     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
6612     // shuffles that produce a result larger than their operands with:
6613     //   shuffle(concat(v1, undef), concat(v2, undef))
6614     // ->
6615     //   shuffle(concat(v1, v2), undef)
6616     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
6617     //
6618     // This is useful in the general case, but there are special cases where
6619     // native shuffles produce larger results: the two-result ops.
6620     //
6621     // Look through the concat when lowering them:
6622     //   shuffle(concat(v1, v2), undef)
6623     // ->
6624     //   concat(VZIP(v1, v2):0, :1)
6625     //
6626     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
6627       SDValue SubV1 = V1->getOperand(0);
6628       SDValue SubV2 = V1->getOperand(1);
6629       EVT SubVT = SubV1.getValueType();
6630 
6631       // We expect these to have been canonicalized to -1.
6632       assert(all_of(ShuffleMask, [&](int i) {
6633         return i < (int)VT.getVectorNumElements();
6634       }) && "Unexpected shuffle index into UNDEF operand!");
6635 
6636       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6637               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
6638         if (isV_UNDEF)
6639           SubV2 = SubV1;
6640         assert((WhichResult == 0) &&
6641                "In-place shuffle of concat can only have one result!");
6642         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
6643                                   SubV1, SubV2);
6644         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
6645                            Res.getValue(1));
6646       }
6647     }
6648   }
6649 
6650   // If the shuffle is not directly supported and it has 4 elements, use
6651   // the PerfectShuffle-generated table to synthesize it from other shuffles.
6652   unsigned NumElts = VT.getVectorNumElements();
6653   if (NumElts == 4) {
6654     unsigned PFIndexes[4];
6655     for (unsigned i = 0; i != 4; ++i) {
6656       if (ShuffleMask[i] < 0)
6657         PFIndexes[i] = 8;
6658       else
6659         PFIndexes[i] = ShuffleMask[i];
6660     }
6661 
6662     // Compute the index in the perfect shuffle table.
6663     unsigned PFTableIndex =
6664       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6665     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6666     unsigned Cost = (PFEntry >> 30);
6667 
6668     if (Cost <= 4)
6669       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6670   }
6671 
6672   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
6673   if (EltSize >= 32) {
6674     // Do the expansion with floating-point types, since that is what the VFP
6675     // registers are defined to use, and since i64 is not legal.
6676     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6677     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6678     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
6679     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
6680     SmallVector<SDValue, 8> Ops;
6681     for (unsigned i = 0; i < NumElts; ++i) {
6682       if (ShuffleMask[i] < 0)
6683         Ops.push_back(DAG.getUNDEF(EltVT));
6684       else
6685         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6686                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
6687                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
6688                                                   dl, MVT::i32)));
6689     }
6690     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6691     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6692   }
6693 
6694   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
6695     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
6696 
6697   if (VT == MVT::v8i8)
6698     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
6699       return NewOp;
6700 
6701   return SDValue();
6702 }
6703 
6704 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6705   // INSERT_VECTOR_ELT is legal only for immediate indexes.
6706   SDValue Lane = Op.getOperand(2);
6707   if (!isa<ConstantSDNode>(Lane))
6708     return SDValue();
6709 
6710   return Op;
6711 }
6712 
6713 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6714   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
6715   SDValue Lane = Op.getOperand(1);
6716   if (!isa<ConstantSDNode>(Lane))
6717     return SDValue();
6718 
6719   SDValue Vec = Op.getOperand(0);
6720   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
6721     SDLoc dl(Op);
6722     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
6723   }
6724 
6725   return Op;
6726 }
6727 
6728 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6729   // The only time a CONCAT_VECTORS operation can have legal types is when
6730   // two 64-bit vectors are concatenated to a 128-bit vector.
6731   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
6732          "unexpected CONCAT_VECTORS");
6733   SDLoc dl(Op);
6734   SDValue Val = DAG.getUNDEF(MVT::v2f64);
6735   SDValue Op0 = Op.getOperand(0);
6736   SDValue Op1 = Op.getOperand(1);
6737   if (!Op0.isUndef())
6738     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6739                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
6740                       DAG.getIntPtrConstant(0, dl));
6741   if (!Op1.isUndef())
6742     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6743                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
6744                       DAG.getIntPtrConstant(1, dl));
6745   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
6746 }
6747 
6748 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
6749 /// element has been zero/sign-extended, depending on the isSigned parameter,
6750 /// from an integer type half its size.
6751 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
6752                                    bool isSigned) {
6753   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
6754   EVT VT = N->getValueType(0);
6755   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
6756     SDNode *BVN = N->getOperand(0).getNode();
6757     if (BVN->getValueType(0) != MVT::v4i32 ||
6758         BVN->getOpcode() != ISD::BUILD_VECTOR)
6759       return false;
6760     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6761     unsigned HiElt = 1 - LoElt;
6762     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
6763     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
6764     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
6765     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
6766     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
6767       return false;
6768     if (isSigned) {
6769       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
6770           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
6771         return true;
6772     } else {
6773       if (Hi0->isNullValue() && Hi1->isNullValue())
6774         return true;
6775     }
6776     return false;
6777   }
6778 
6779   if (N->getOpcode() != ISD::BUILD_VECTOR)
6780     return false;
6781 
6782   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6783     SDNode *Elt = N->getOperand(i).getNode();
6784     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
6785       unsigned EltSize = VT.getScalarSizeInBits();
6786       unsigned HalfSize = EltSize / 2;
6787       if (isSigned) {
6788         if (!isIntN(HalfSize, C->getSExtValue()))
6789           return false;
6790       } else {
6791         if (!isUIntN(HalfSize, C->getZExtValue()))
6792           return false;
6793       }
6794       continue;
6795     }
6796     return false;
6797   }
6798 
6799   return true;
6800 }
6801 
6802 /// isSignExtended - Check if a node is a vector value that is sign-extended
6803 /// or a constant BUILD_VECTOR with sign-extended elements.
6804 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
6805   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
6806     return true;
6807   if (isExtendedBUILD_VECTOR(N, DAG, true))
6808     return true;
6809   return false;
6810 }
6811 
6812 /// isZeroExtended - Check if a node is a vector value that is zero-extended
6813 /// or a constant BUILD_VECTOR with zero-extended elements.
6814 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
6815   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
6816     return true;
6817   if (isExtendedBUILD_VECTOR(N, DAG, false))
6818     return true;
6819   return false;
6820 }
6821 
6822 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
6823   if (OrigVT.getSizeInBits() >= 64)
6824     return OrigVT;
6825 
6826   assert(OrigVT.isSimple() && "Expecting a simple value type");
6827 
6828   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
6829   switch (OrigSimpleTy) {
6830   default: llvm_unreachable("Unexpected Vector Type");
6831   case MVT::v2i8:
6832   case MVT::v2i16:
6833      return MVT::v2i32;
6834   case MVT::v4i8:
6835     return  MVT::v4i16;
6836   }
6837 }
6838 
6839 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
6840 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
6841 /// We insert the required extension here to get the vector to fill a D register.
6842 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
6843                                             const EVT &OrigTy,
6844                                             const EVT &ExtTy,
6845                                             unsigned ExtOpcode) {
6846   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
6847   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
6848   // 64-bits we need to insert a new extension so that it will be 64-bits.
6849   assert(ExtTy.is128BitVector() && "Unexpected extension size");
6850   if (OrigTy.getSizeInBits() >= 64)
6851     return N;
6852 
6853   // Must extend size to at least 64 bits to be used as an operand for VMULL.
6854   EVT NewVT = getExtensionTo64Bits(OrigTy);
6855 
6856   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
6857 }
6858 
6859 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
6860 /// does not do any sign/zero extension. If the original vector is less
6861 /// than 64 bits, an appropriate extension will be added after the load to
6862 /// reach a total size of 64 bits. We have to add the extension separately
6863 /// because ARM does not have a sign/zero extending load for vectors.
6864 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
6865   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
6866 
6867   // The load already has the right type.
6868   if (ExtendedTy == LD->getMemoryVT())
6869     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
6870                        LD->getBasePtr(), LD->getPointerInfo(),
6871                        LD->getAlignment(), LD->getMemOperand()->getFlags());
6872 
6873   // We need to create a zextload/sextload. We cannot just create a load
6874   // followed by a zext/zext node because LowerMUL is also run during normal
6875   // operation legalization where we can't create illegal types.
6876   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
6877                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
6878                         LD->getMemoryVT(), LD->getAlignment(),
6879                         LD->getMemOperand()->getFlags());
6880 }
6881 
6882 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
6883 /// extending load, or BUILD_VECTOR with extended elements, return the
6884 /// unextended value. The unextended vector should be 64 bits so that it can
6885 /// be used as an operand to a VMULL instruction. If the original vector size
6886 /// before extension is less than 64 bits we add a an extension to resize
6887 /// the vector to 64 bits.
6888 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
6889   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
6890     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
6891                                         N->getOperand(0)->getValueType(0),
6892                                         N->getValueType(0),
6893                                         N->getOpcode());
6894 
6895   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
6896     return SkipLoadExtensionForVMULL(LD, DAG);
6897 
6898   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
6899   // have been legalized as a BITCAST from v4i32.
6900   if (N->getOpcode() == ISD::BITCAST) {
6901     SDNode *BVN = N->getOperand(0).getNode();
6902     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
6903            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
6904     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6905     return DAG.getBuildVector(
6906         MVT::v2i32, SDLoc(N),
6907         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
6908   }
6909   // Construct a new BUILD_VECTOR with elements truncated to half the size.
6910   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
6911   EVT VT = N->getValueType(0);
6912   unsigned EltSize = VT.getScalarSizeInBits() / 2;
6913   unsigned NumElts = VT.getVectorNumElements();
6914   MVT TruncVT = MVT::getIntegerVT(EltSize);
6915   SmallVector<SDValue, 8> Ops;
6916   SDLoc dl(N);
6917   for (unsigned i = 0; i != NumElts; ++i) {
6918     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
6919     const APInt &CInt = C->getAPIntValue();
6920     // Element types smaller than 32 bits are not legal, so use i32 elements.
6921     // The values are implicitly truncated so sext vs. zext doesn't matter.
6922     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
6923   }
6924   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
6925 }
6926 
6927 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
6928   unsigned Opcode = N->getOpcode();
6929   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6930     SDNode *N0 = N->getOperand(0).getNode();
6931     SDNode *N1 = N->getOperand(1).getNode();
6932     return N0->hasOneUse() && N1->hasOneUse() &&
6933       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
6934   }
6935   return false;
6936 }
6937 
6938 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
6939   unsigned Opcode = N->getOpcode();
6940   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6941     SDNode *N0 = N->getOperand(0).getNode();
6942     SDNode *N1 = N->getOperand(1).getNode();
6943     return N0->hasOneUse() && N1->hasOneUse() &&
6944       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
6945   }
6946   return false;
6947 }
6948 
6949 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
6950   // Multiplications are only custom-lowered for 128-bit vectors so that
6951   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
6952   EVT VT = Op.getValueType();
6953   assert(VT.is128BitVector() && VT.isInteger() &&
6954          "unexpected type for custom-lowering ISD::MUL");
6955   SDNode *N0 = Op.getOperand(0).getNode();
6956   SDNode *N1 = Op.getOperand(1).getNode();
6957   unsigned NewOpc = 0;
6958   bool isMLA = false;
6959   bool isN0SExt = isSignExtended(N0, DAG);
6960   bool isN1SExt = isSignExtended(N1, DAG);
6961   if (isN0SExt && isN1SExt)
6962     NewOpc = ARMISD::VMULLs;
6963   else {
6964     bool isN0ZExt = isZeroExtended(N0, DAG);
6965     bool isN1ZExt = isZeroExtended(N1, DAG);
6966     if (isN0ZExt && isN1ZExt)
6967       NewOpc = ARMISD::VMULLu;
6968     else if (isN1SExt || isN1ZExt) {
6969       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
6970       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
6971       if (isN1SExt && isAddSubSExt(N0, DAG)) {
6972         NewOpc = ARMISD::VMULLs;
6973         isMLA = true;
6974       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
6975         NewOpc = ARMISD::VMULLu;
6976         isMLA = true;
6977       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
6978         std::swap(N0, N1);
6979         NewOpc = ARMISD::VMULLu;
6980         isMLA = true;
6981       }
6982     }
6983 
6984     if (!NewOpc) {
6985       if (VT == MVT::v2i64)
6986         // Fall through to expand this.  It is not legal.
6987         return SDValue();
6988       else
6989         // Other vector multiplications are legal.
6990         return Op;
6991     }
6992   }
6993 
6994   // Legalize to a VMULL instruction.
6995   SDLoc DL(Op);
6996   SDValue Op0;
6997   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
6998   if (!isMLA) {
6999     Op0 = SkipExtensionForVMULL(N0, DAG);
7000     assert(Op0.getValueType().is64BitVector() &&
7001            Op1.getValueType().is64BitVector() &&
7002            "unexpected types for extended operands to VMULL");
7003     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
7004   }
7005 
7006   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7007   // isel lowering to take advantage of no-stall back to back vmul + vmla.
7008   //   vmull q0, d4, d6
7009   //   vmlal q0, d5, d6
7010   // is faster than
7011   //   vaddl q0, d4, d5
7012   //   vmovl q1, d6
7013   //   vmul  q0, q0, q1
7014   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
7015   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
7016   EVT Op1VT = Op1.getValueType();
7017   return DAG.getNode(N0->getOpcode(), DL, VT,
7018                      DAG.getNode(NewOpc, DL, VT,
7019                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
7020                      DAG.getNode(NewOpc, DL, VT,
7021                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
7022 }
7023 
7024 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
7025                               SelectionDAG &DAG) {
7026   // TODO: Should this propagate fast-math-flags?
7027 
7028   // Convert to float
7029   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7030   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7031   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
7032   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
7033   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
7034   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
7035   // Get reciprocal estimate.
7036   // float4 recip = vrecpeq_f32(yf);
7037   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7038                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7039                    Y);
7040   // Because char has a smaller range than uchar, we can actually get away
7041   // without any newton steps.  This requires that we use a weird bias
7042   // of 0xb000, however (again, this has been exhaustively tested).
7043   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7044   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
7045   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
7046   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
7047   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
7048   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
7049   // Convert back to short.
7050   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
7051   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
7052   return X;
7053 }
7054 
7055 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
7056                                SelectionDAG &DAG) {
7057   // TODO: Should this propagate fast-math-flags?
7058 
7059   SDValue N2;
7060   // Convert to float.
7061   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7062   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7063   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
7064   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
7065   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7066   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7067 
7068   // Use reciprocal estimate and one refinement step.
7069   // float4 recip = vrecpeq_f32(yf);
7070   // recip *= vrecpsq_f32(yf, recip);
7071   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7072                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7073                    N1);
7074   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7075                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7076                    N1, N2);
7077   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7078   // Because short has a smaller range than ushort, we can actually get away
7079   // with only a single newton step.  This requires that we use a weird bias
7080   // of 89, however (again, this has been exhaustively tested).
7081   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7082   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7083   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7084   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
7085   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7086   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7087   // Convert back to integer and return.
7088   // return vmovn_s32(vcvt_s32_f32(result));
7089   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7090   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7091   return N0;
7092 }
7093 
7094 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
7095   EVT VT = Op.getValueType();
7096   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7097          "unexpected type for custom-lowering ISD::SDIV");
7098 
7099   SDLoc dl(Op);
7100   SDValue N0 = Op.getOperand(0);
7101   SDValue N1 = Op.getOperand(1);
7102   SDValue N2, N3;
7103 
7104   if (VT == MVT::v8i8) {
7105     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
7106     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
7107 
7108     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7109                      DAG.getIntPtrConstant(4, dl));
7110     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7111                      DAG.getIntPtrConstant(4, dl));
7112     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7113                      DAG.getIntPtrConstant(0, dl));
7114     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7115                      DAG.getIntPtrConstant(0, dl));
7116 
7117     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
7118     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
7119 
7120     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7121     N0 = LowerCONCAT_VECTORS(N0, DAG);
7122 
7123     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
7124     return N0;
7125   }
7126   return LowerSDIV_v4i16(N0, N1, dl, DAG);
7127 }
7128 
7129 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7130   // TODO: Should this propagate fast-math-flags?
7131   EVT VT = Op.getValueType();
7132   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7133          "unexpected type for custom-lowering ISD::UDIV");
7134 
7135   SDLoc dl(Op);
7136   SDValue N0 = Op.getOperand(0);
7137   SDValue N1 = Op.getOperand(1);
7138   SDValue N2, N3;
7139 
7140   if (VT == MVT::v8i8) {
7141     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7142     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7143 
7144     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7145                      DAG.getIntPtrConstant(4, dl));
7146     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7147                      DAG.getIntPtrConstant(4, dl));
7148     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7149                      DAG.getIntPtrConstant(0, dl));
7150     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7151                      DAG.getIntPtrConstant(0, dl));
7152 
7153     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7154     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7155 
7156     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7157     N0 = LowerCONCAT_VECTORS(N0, DAG);
7158 
7159     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7160                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7161                                      MVT::i32),
7162                      N0);
7163     return N0;
7164   }
7165 
7166   // v4i16 sdiv ... Convert to float.
7167   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7168   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7169   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7170   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7171   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7172   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7173 
7174   // Use reciprocal estimate and two refinement steps.
7175   // float4 recip = vrecpeq_f32(yf);
7176   // recip *= vrecpsq_f32(yf, recip);
7177   // recip *= vrecpsq_f32(yf, recip);
7178   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7179                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7180                    BN1);
7181   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7182                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7183                    BN1, N2);
7184   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7185   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7186                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7187                    BN1, N2);
7188   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7189   // Simply multiplying by the reciprocal estimate can leave us a few ulps
7190   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7191   // and that it will never cause us to return an answer too large).
7192   // float4 result = as_float4(as_int4(xf*recip) + 2);
7193   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7194   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7195   N1 = DAG.getConstant(2, dl, MVT::v4i32);
7196   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7197   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7198   // Convert back to integer and return.
7199   // return vmovn_u32(vcvt_s32_f32(result));
7200   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7201   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7202   return N0;
7203 }
7204 
7205 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
7206   EVT VT = Op.getNode()->getValueType(0);
7207   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7208 
7209   unsigned Opc;
7210   bool ExtraOp = false;
7211   switch (Op.getOpcode()) {
7212   default: llvm_unreachable("Invalid code");
7213   case ISD::ADDC: Opc = ARMISD::ADDC; break;
7214   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
7215   case ISD::SUBC: Opc = ARMISD::SUBC; break;
7216   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
7217   }
7218 
7219   if (!ExtraOp)
7220     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
7221                        Op.getOperand(1));
7222   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
7223                      Op.getOperand(1), Op.getOperand(2));
7224 }
7225 
7226 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7227   assert(Subtarget->isTargetDarwin());
7228 
7229   // For iOS, we want to call an alternative entry point: __sincos_stret,
7230   // return values are passed via sret.
7231   SDLoc dl(Op);
7232   SDValue Arg = Op.getOperand(0);
7233   EVT ArgVT = Arg.getValueType();
7234   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7235   auto PtrVT = getPointerTy(DAG.getDataLayout());
7236 
7237   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7238   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7239 
7240   // Pair of floats / doubles used to pass the result.
7241   Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
7242   auto &DL = DAG.getDataLayout();
7243 
7244   ArgListTy Args;
7245   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7246   SDValue SRet;
7247   if (ShouldUseSRet) {
7248     // Create stack object for sret.
7249     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7250     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7251     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7252     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7253 
7254     ArgListEntry Entry;
7255     Entry.Node = SRet;
7256     Entry.Ty = RetTy->getPointerTo();
7257     Entry.isSExt = false;
7258     Entry.isZExt = false;
7259     Entry.isSRet = true;
7260     Args.push_back(Entry);
7261     RetTy = Type::getVoidTy(*DAG.getContext());
7262   }
7263 
7264   ArgListEntry Entry;
7265   Entry.Node = Arg;
7266   Entry.Ty = ArgTy;
7267   Entry.isSExt = false;
7268   Entry.isZExt = false;
7269   Args.push_back(Entry);
7270 
7271   const char *LibcallName =
7272       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
7273   RTLIB::Libcall LC =
7274       (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
7275   CallingConv::ID CC = getLibcallCallingConv(LC);
7276   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7277 
7278   TargetLowering::CallLoweringInfo CLI(DAG);
7279   CLI.setDebugLoc(dl)
7280       .setChain(DAG.getEntryNode())
7281       .setCallee(CC, RetTy, Callee, std::move(Args))
7282       .setDiscardResult(ShouldUseSRet);
7283   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7284 
7285   if (!ShouldUseSRet)
7286     return CallResult.first;
7287 
7288   SDValue LoadSin =
7289       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
7290 
7291   // Address of cos field.
7292   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
7293                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
7294   SDValue LoadCos =
7295       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
7296 
7297   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
7298   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
7299                      LoadSin.getValue(0), LoadCos.getValue(0));
7300 }
7301 
7302 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
7303                                                   bool Signed,
7304                                                   SDValue &Chain) const {
7305   EVT VT = Op.getValueType();
7306   assert((VT == MVT::i32 || VT == MVT::i64) &&
7307          "unexpected type for custom lowering DIV");
7308   SDLoc dl(Op);
7309 
7310   const auto &DL = DAG.getDataLayout();
7311   const auto &TLI = DAG.getTargetLoweringInfo();
7312 
7313   const char *Name = nullptr;
7314   if (Signed)
7315     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7316   else
7317     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7318 
7319   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7320 
7321   ARMTargetLowering::ArgListTy Args;
7322 
7323   for (auto AI : {1, 0}) {
7324     ArgListEntry Arg;
7325     Arg.Node = Op.getOperand(AI);
7326     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7327     Args.push_back(Arg);
7328   }
7329 
7330   CallLoweringInfo CLI(DAG);
7331   CLI.setDebugLoc(dl)
7332     .setChain(Chain)
7333     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7334                ES, std::move(Args));
7335 
7336   return LowerCallTo(CLI).first;
7337 }
7338 
7339 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7340                                             bool Signed) const {
7341   assert(Op.getValueType() == MVT::i32 &&
7342          "unexpected type for custom lowering DIV");
7343   SDLoc dl(Op);
7344 
7345   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7346                                DAG.getEntryNode(), Op.getOperand(1));
7347 
7348   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7349 }
7350 
7351 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
7352   SDLoc DL(N);
7353   SDValue Op = N->getOperand(1);
7354   if (N->getValueType(0) == MVT::i32)
7355     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
7356   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7357                            DAG.getConstant(0, DL, MVT::i32));
7358   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7359                            DAG.getConstant(1, DL, MVT::i32));
7360   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
7361                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
7362 }
7363 
7364 void ARMTargetLowering::ExpandDIV_Windows(
7365     SDValue Op, SelectionDAG &DAG, bool Signed,
7366     SmallVectorImpl<SDValue> &Results) const {
7367   const auto &DL = DAG.getDataLayout();
7368   const auto &TLI = DAG.getTargetLoweringInfo();
7369 
7370   assert(Op.getValueType() == MVT::i64 &&
7371          "unexpected type for custom lowering DIV");
7372   SDLoc dl(Op);
7373 
7374   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
7375 
7376   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7377 
7378   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7379   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7380                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7381   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7382 
7383   Results.push_back(Lower);
7384   Results.push_back(Upper);
7385 }
7386 
7387 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7388   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7389     // Acquire/Release load/store is not legal for targets without a dmb or
7390     // equivalent available.
7391     return SDValue();
7392 
7393   // Monotonic load/store is legal for all targets.
7394   return Op;
7395 }
7396 
7397 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7398                                     SmallVectorImpl<SDValue> &Results,
7399                                     SelectionDAG &DAG,
7400                                     const ARMSubtarget *Subtarget) {
7401   SDLoc DL(N);
7402   // Under Power Management extensions, the cycle-count is:
7403   //    mrc p15, #0, <Rt>, c9, c13, #0
7404   SDValue Ops[] = { N->getOperand(0), // Chain
7405                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7406                     DAG.getConstant(15, DL, MVT::i32),
7407                     DAG.getConstant(0, DL, MVT::i32),
7408                     DAG.getConstant(9, DL, MVT::i32),
7409                     DAG.getConstant(13, DL, MVT::i32),
7410                     DAG.getConstant(0, DL, MVT::i32)
7411   };
7412 
7413   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7414                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
7415   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7416                                 DAG.getConstant(0, DL, MVT::i32)));
7417   Results.push_back(Cycles32.getValue(1));
7418 }
7419 
7420 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7421   SDLoc dl(V.getNode());
7422   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7423   SDValue VHi = DAG.getAnyExtOrTrunc(
7424       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7425       dl, MVT::i32);
7426   SDValue RegClass =
7427       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
7428   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
7429   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
7430   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
7431   return SDValue(
7432       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
7433 }
7434 
7435 static void ReplaceCMP_SWAP_64Results(SDNode *N,
7436                                        SmallVectorImpl<SDValue> & Results,
7437                                        SelectionDAG &DAG) {
7438   assert(N->getValueType(0) == MVT::i64 &&
7439          "AtomicCmpSwap on types less than 64 should be legal");
7440   SDValue Ops[] = {N->getOperand(1),
7441                    createGPRPairNode(DAG, N->getOperand(2)),
7442                    createGPRPairNode(DAG, N->getOperand(3)),
7443                    N->getOperand(0)};
7444   SDNode *CmpSwap = DAG.getMachineNode(
7445       ARM::CMP_SWAP_64, SDLoc(N),
7446       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
7447 
7448   MachineFunction &MF = DAG.getMachineFunction();
7449   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
7450   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
7451   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
7452 
7453   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_0, SDLoc(N), MVT::i32,
7454                                                SDValue(CmpSwap, 0)));
7455   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_1, SDLoc(N), MVT::i32,
7456                                                SDValue(CmpSwap, 0)));
7457   Results.push_back(SDValue(CmpSwap, 2));
7458 }
7459 
7460 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
7461                           SelectionDAG &DAG) {
7462   const auto &TLI = DAG.getTargetLoweringInfo();
7463 
7464   assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
7465          "Custom lowering is MSVCRT specific!");
7466 
7467   SDLoc dl(Op);
7468   SDValue Val = Op.getOperand(0);
7469   MVT Ty = Val->getSimpleValueType(0);
7470   SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
7471   SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
7472                                          TLI.getPointerTy(DAG.getDataLayout()));
7473 
7474   TargetLowering::ArgListTy Args;
7475   TargetLowering::ArgListEntry Entry;
7476 
7477   Entry.Node = Val;
7478   Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
7479   Entry.isZExt = true;
7480   Args.push_back(Entry);
7481 
7482   Entry.Node = Exponent;
7483   Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
7484   Entry.isZExt = true;
7485   Args.push_back(Entry);
7486 
7487   Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
7488 
7489   // In the in-chain to the call is the entry node  If we are emitting a
7490   // tailcall, the chain will be mutated if the node has a non-entry input
7491   // chain.
7492   SDValue InChain = DAG.getEntryNode();
7493   SDValue TCChain = InChain;
7494 
7495   const auto *F = DAG.getMachineFunction().getFunction();
7496   bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
7497               F->getReturnType() == LCRTy;
7498   if (IsTC)
7499     InChain = TCChain;
7500 
7501   TargetLowering::CallLoweringInfo CLI(DAG);
7502   CLI.setDebugLoc(dl)
7503       .setChain(InChain)
7504       .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
7505       .setTailCall(IsTC);
7506   std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
7507 
7508   // Return the chain (the DAG root) if it is a tail call
7509   return !CI.second.getNode() ? DAG.getRoot() : CI.first;
7510 }
7511 
7512 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7513   switch (Op.getOpcode()) {
7514   default: llvm_unreachable("Don't know how to custom lower this!");
7515   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
7516   case ISD::ConstantPool:
7517     if (Subtarget->genExecuteOnly())
7518       llvm_unreachable("execute-only should not generate constant pools");
7519     return LowerConstantPool(Op, DAG);
7520   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
7521   case ISD::GlobalAddress:
7522     switch (Subtarget->getTargetTriple().getObjectFormat()) {
7523     default: llvm_unreachable("unknown object format");
7524     case Triple::COFF:
7525       return LowerGlobalAddressWindows(Op, DAG);
7526     case Triple::ELF:
7527       return LowerGlobalAddressELF(Op, DAG);
7528     case Triple::MachO:
7529       return LowerGlobalAddressDarwin(Op, DAG);
7530     }
7531   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
7532   case ISD::SELECT:        return LowerSELECT(Op, DAG);
7533   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
7534   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
7535   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
7536   case ISD::VASTART:       return LowerVASTART(Op, DAG);
7537   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
7538   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
7539   case ISD::SINT_TO_FP:
7540   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
7541   case ISD::FP_TO_SINT:
7542   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
7543   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
7544   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
7545   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
7546   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
7547   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
7548   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
7549   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
7550                                                                Subtarget);
7551   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
7552   case ISD::SHL:
7553   case ISD::SRL:
7554   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
7555   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
7556   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
7557   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
7558   case ISD::SRL_PARTS:
7559   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
7560   case ISD::CTTZ:
7561   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
7562   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
7563   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
7564   case ISD::SETCCE:        return LowerSETCCE(Op, DAG);
7565   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
7566   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
7567   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
7568   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
7569   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7570   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
7571   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
7572   case ISD::MUL:           return LowerMUL(Op, DAG);
7573   case ISD::SDIV:
7574     if (Subtarget->isTargetWindows())
7575       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
7576     return LowerSDIV(Op, DAG);
7577   case ISD::UDIV:
7578     if (Subtarget->isTargetWindows())
7579       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
7580     return LowerUDIV(Op, DAG);
7581   case ISD::ADDC:
7582   case ISD::ADDE:
7583   case ISD::SUBC:
7584   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
7585   case ISD::SADDO:
7586   case ISD::UADDO:
7587   case ISD::SSUBO:
7588   case ISD::USUBO:
7589     return LowerXALUO(Op, DAG);
7590   case ISD::ATOMIC_LOAD:
7591   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
7592   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
7593   case ISD::SDIVREM:
7594   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
7595   case ISD::DYNAMIC_STACKALLOC:
7596     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
7597       return LowerDYNAMIC_STACKALLOC(Op, DAG);
7598     llvm_unreachable("Don't know how to custom lower this!");
7599   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
7600   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
7601   case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
7602   case ARMISD::WIN__DBZCHK: return SDValue();
7603   }
7604 }
7605 
7606 /// ReplaceNodeResults - Replace the results of node with an illegal result
7607 /// type with new values built out of custom code.
7608 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
7609                                            SmallVectorImpl<SDValue> &Results,
7610                                            SelectionDAG &DAG) const {
7611   SDValue Res;
7612   switch (N->getOpcode()) {
7613   default:
7614     llvm_unreachable("Don't know how to custom expand this!");
7615   case ISD::READ_REGISTER:
7616     ExpandREAD_REGISTER(N, Results, DAG);
7617     break;
7618   case ISD::BITCAST:
7619     Res = ExpandBITCAST(N, DAG);
7620     break;
7621   case ISD::SRL:
7622   case ISD::SRA:
7623     Res = Expand64BitShift(N, DAG, Subtarget);
7624     break;
7625   case ISD::SREM:
7626   case ISD::UREM:
7627     Res = LowerREM(N, DAG);
7628     break;
7629   case ISD::SDIVREM:
7630   case ISD::UDIVREM:
7631     Res = LowerDivRem(SDValue(N, 0), DAG);
7632     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
7633     Results.push_back(Res.getValue(0));
7634     Results.push_back(Res.getValue(1));
7635     return;
7636   case ISD::READCYCLECOUNTER:
7637     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
7638     return;
7639   case ISD::UDIV:
7640   case ISD::SDIV:
7641     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
7642     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
7643                              Results);
7644   case ISD::ATOMIC_CMP_SWAP:
7645     ReplaceCMP_SWAP_64Results(N, Results, DAG);
7646     return;
7647   }
7648   if (Res.getNode())
7649     Results.push_back(Res);
7650 }
7651 
7652 //===----------------------------------------------------------------------===//
7653 //                           ARM Scheduler Hooks
7654 //===----------------------------------------------------------------------===//
7655 
7656 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
7657 /// registers the function context.
7658 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
7659                                                MachineBasicBlock *MBB,
7660                                                MachineBasicBlock *DispatchBB,
7661                                                int FI) const {
7662   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
7663          "ROPI/RWPI not currently supported with SjLj");
7664   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7665   DebugLoc dl = MI.getDebugLoc();
7666   MachineFunction *MF = MBB->getParent();
7667   MachineRegisterInfo *MRI = &MF->getRegInfo();
7668   MachineConstantPool *MCP = MF->getConstantPool();
7669   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
7670   const Function *F = MF->getFunction();
7671 
7672   bool isThumb = Subtarget->isThumb();
7673   bool isThumb2 = Subtarget->isThumb2();
7674 
7675   unsigned PCLabelId = AFI->createPICLabelUId();
7676   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
7677   ARMConstantPoolValue *CPV =
7678     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
7679   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
7680 
7681   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
7682                                            : &ARM::GPRRegClass;
7683 
7684   // Grab constant pool and fixed stack memory operands.
7685   MachineMemOperand *CPMMO =
7686       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
7687                                MachineMemOperand::MOLoad, 4, 4);
7688 
7689   MachineMemOperand *FIMMOSt =
7690       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
7691                                MachineMemOperand::MOStore, 4, 4);
7692 
7693   // Load the address of the dispatch MBB into the jump buffer.
7694   if (isThumb2) {
7695     // Incoming value: jbuf
7696     //   ldr.n  r5, LCPI1_1
7697     //   orr    r5, r5, #1
7698     //   add    r5, pc
7699     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
7700     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7701     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
7702         .addConstantPoolIndex(CPI)
7703         .addMemOperand(CPMMO)
7704         .add(predOps(ARMCC::AL));
7705     // Set the low bit because of thumb mode.
7706     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7707     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
7708         .addReg(NewVReg1, RegState::Kill)
7709         .addImm(0x01)
7710         .add(predOps(ARMCC::AL))
7711         .add(condCodeOp());
7712     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7713     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
7714       .addReg(NewVReg2, RegState::Kill)
7715       .addImm(PCLabelId);
7716     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
7717         .addReg(NewVReg3, RegState::Kill)
7718         .addFrameIndex(FI)
7719         .addImm(36) // &jbuf[1] :: pc
7720         .addMemOperand(FIMMOSt)
7721         .add(predOps(ARMCC::AL));
7722   } else if (isThumb) {
7723     // Incoming value: jbuf
7724     //   ldr.n  r1, LCPI1_4
7725     //   add    r1, pc
7726     //   mov    r2, #1
7727     //   orrs   r1, r2
7728     //   add    r2, $jbuf, #+4 ; &jbuf[1]
7729     //   str    r1, [r2]
7730     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7731     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
7732         .addConstantPoolIndex(CPI)
7733         .addMemOperand(CPMMO)
7734         .add(predOps(ARMCC::AL));
7735     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7736     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
7737       .addReg(NewVReg1, RegState::Kill)
7738       .addImm(PCLabelId);
7739     // Set the low bit because of thumb mode.
7740     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7741     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
7742         .addReg(ARM::CPSR, RegState::Define)
7743         .addImm(1)
7744         .add(predOps(ARMCC::AL));
7745     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7746     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
7747         .addReg(ARM::CPSR, RegState::Define)
7748         .addReg(NewVReg2, RegState::Kill)
7749         .addReg(NewVReg3, RegState::Kill)
7750         .add(predOps(ARMCC::AL));
7751     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7752     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
7753             .addFrameIndex(FI)
7754             .addImm(36); // &jbuf[1] :: pc
7755     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
7756         .addReg(NewVReg4, RegState::Kill)
7757         .addReg(NewVReg5, RegState::Kill)
7758         .addImm(0)
7759         .addMemOperand(FIMMOSt)
7760         .add(predOps(ARMCC::AL));
7761   } else {
7762     // Incoming value: jbuf
7763     //   ldr  r1, LCPI1_1
7764     //   add  r1, pc, r1
7765     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
7766     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7767     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
7768         .addConstantPoolIndex(CPI)
7769         .addImm(0)
7770         .addMemOperand(CPMMO)
7771         .add(predOps(ARMCC::AL));
7772     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7773     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
7774         .addReg(NewVReg1, RegState::Kill)
7775         .addImm(PCLabelId)
7776         .add(predOps(ARMCC::AL));
7777     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
7778         .addReg(NewVReg2, RegState::Kill)
7779         .addFrameIndex(FI)
7780         .addImm(36) // &jbuf[1] :: pc
7781         .addMemOperand(FIMMOSt)
7782         .add(predOps(ARMCC::AL));
7783   }
7784 }
7785 
7786 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
7787                                               MachineBasicBlock *MBB) const {
7788   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7789   DebugLoc dl = MI.getDebugLoc();
7790   MachineFunction *MF = MBB->getParent();
7791   MachineRegisterInfo *MRI = &MF->getRegInfo();
7792   MachineFrameInfo &MFI = MF->getFrameInfo();
7793   int FI = MFI.getFunctionContextIndex();
7794 
7795   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
7796                                                         : &ARM::GPRnopcRegClass;
7797 
7798   // Get a mapping of the call site numbers to all of the landing pads they're
7799   // associated with.
7800   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
7801   unsigned MaxCSNum = 0;
7802   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
7803        ++BB) {
7804     if (!BB->isEHPad()) continue;
7805 
7806     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
7807     // pad.
7808     for (MachineBasicBlock::iterator
7809            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
7810       if (!II->isEHLabel()) continue;
7811 
7812       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
7813       if (!MF->hasCallSiteLandingPad(Sym)) continue;
7814 
7815       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
7816       for (SmallVectorImpl<unsigned>::iterator
7817              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
7818            CSI != CSE; ++CSI) {
7819         CallSiteNumToLPad[*CSI].push_back(&*BB);
7820         MaxCSNum = std::max(MaxCSNum, *CSI);
7821       }
7822       break;
7823     }
7824   }
7825 
7826   // Get an ordered list of the machine basic blocks for the jump table.
7827   std::vector<MachineBasicBlock*> LPadList;
7828   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
7829   LPadList.reserve(CallSiteNumToLPad.size());
7830   for (unsigned I = 1; I <= MaxCSNum; ++I) {
7831     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
7832     for (SmallVectorImpl<MachineBasicBlock*>::iterator
7833            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
7834       LPadList.push_back(*II);
7835       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
7836     }
7837   }
7838 
7839   assert(!LPadList.empty() &&
7840          "No landing pad destinations for the dispatch jump table!");
7841 
7842   // Create the jump table and associated information.
7843   MachineJumpTableInfo *JTI =
7844     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
7845   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
7846 
7847   // Create the MBBs for the dispatch code.
7848 
7849   // Shove the dispatch's address into the return slot in the function context.
7850   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
7851   DispatchBB->setIsEHPad();
7852 
7853   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
7854   unsigned trap_opcode;
7855   if (Subtarget->isThumb())
7856     trap_opcode = ARM::tTRAP;
7857   else
7858     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
7859 
7860   BuildMI(TrapBB, dl, TII->get(trap_opcode));
7861   DispatchBB->addSuccessor(TrapBB);
7862 
7863   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
7864   DispatchBB->addSuccessor(DispContBB);
7865 
7866   // Insert and MBBs.
7867   MF->insert(MF->end(), DispatchBB);
7868   MF->insert(MF->end(), DispContBB);
7869   MF->insert(MF->end(), TrapBB);
7870 
7871   // Insert code into the entry block that creates and registers the function
7872   // context.
7873   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
7874 
7875   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
7876       MachinePointerInfo::getFixedStack(*MF, FI),
7877       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
7878 
7879   MachineInstrBuilder MIB;
7880   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
7881 
7882   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
7883   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
7884 
7885   // Add a register mask with no preserved registers.  This results in all
7886   // registers being marked as clobbered. This can't work if the dispatch block
7887   // is in a Thumb1 function and is linked with ARM code which uses the FP
7888   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
7889   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
7890 
7891   bool IsPositionIndependent = isPositionIndependent();
7892   unsigned NumLPads = LPadList.size();
7893   if (Subtarget->isThumb2()) {
7894     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7895     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
7896         .addFrameIndex(FI)
7897         .addImm(4)
7898         .addMemOperand(FIMMOLd)
7899         .add(predOps(ARMCC::AL));
7900 
7901     if (NumLPads < 256) {
7902       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
7903           .addReg(NewVReg1)
7904           .addImm(LPadList.size())
7905           .add(predOps(ARMCC::AL));
7906     } else {
7907       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7908       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
7909           .addImm(NumLPads & 0xFFFF)
7910           .add(predOps(ARMCC::AL));
7911 
7912       unsigned VReg2 = VReg1;
7913       if ((NumLPads & 0xFFFF0000) != 0) {
7914         VReg2 = MRI->createVirtualRegister(TRC);
7915         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
7916             .addReg(VReg1)
7917             .addImm(NumLPads >> 16)
7918             .add(predOps(ARMCC::AL));
7919       }
7920 
7921       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
7922           .addReg(NewVReg1)
7923           .addReg(VReg2)
7924           .add(predOps(ARMCC::AL));
7925     }
7926 
7927     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
7928       .addMBB(TrapBB)
7929       .addImm(ARMCC::HI)
7930       .addReg(ARM::CPSR);
7931 
7932     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7933     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
7934         .addJumpTableIndex(MJTI)
7935         .add(predOps(ARMCC::AL));
7936 
7937     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7938     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
7939         .addReg(NewVReg3, RegState::Kill)
7940         .addReg(NewVReg1)
7941         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
7942         .add(predOps(ARMCC::AL))
7943         .add(condCodeOp());
7944 
7945     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
7946       .addReg(NewVReg4, RegState::Kill)
7947       .addReg(NewVReg1)
7948       .addJumpTableIndex(MJTI);
7949   } else if (Subtarget->isThumb()) {
7950     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7951     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
7952         .addFrameIndex(FI)
7953         .addImm(1)
7954         .addMemOperand(FIMMOLd)
7955         .add(predOps(ARMCC::AL));
7956 
7957     if (NumLPads < 256) {
7958       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
7959           .addReg(NewVReg1)
7960           .addImm(NumLPads)
7961           .add(predOps(ARMCC::AL));
7962     } else {
7963       MachineConstantPool *ConstantPool = MF->getConstantPool();
7964       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7965       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7966 
7967       // MachineConstantPool wants an explicit alignment.
7968       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7969       if (Align == 0)
7970         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7971       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7972 
7973       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7974       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
7975           .addReg(VReg1, RegState::Define)
7976           .addConstantPoolIndex(Idx)
7977           .add(predOps(ARMCC::AL));
7978       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
7979           .addReg(NewVReg1)
7980           .addReg(VReg1)
7981           .add(predOps(ARMCC::AL));
7982     }
7983 
7984     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
7985       .addMBB(TrapBB)
7986       .addImm(ARMCC::HI)
7987       .addReg(ARM::CPSR);
7988 
7989     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7990     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
7991         .addReg(ARM::CPSR, RegState::Define)
7992         .addReg(NewVReg1)
7993         .addImm(2)
7994         .add(predOps(ARMCC::AL));
7995 
7996     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7997     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
7998         .addJumpTableIndex(MJTI)
7999         .add(predOps(ARMCC::AL));
8000 
8001     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8002     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
8003         .addReg(ARM::CPSR, RegState::Define)
8004         .addReg(NewVReg2, RegState::Kill)
8005         .addReg(NewVReg3)
8006         .add(predOps(ARMCC::AL));
8007 
8008     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8009         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8010 
8011     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8012     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
8013         .addReg(NewVReg4, RegState::Kill)
8014         .addImm(0)
8015         .addMemOperand(JTMMOLd)
8016         .add(predOps(ARMCC::AL));
8017 
8018     unsigned NewVReg6 = NewVReg5;
8019     if (IsPositionIndependent) {
8020       NewVReg6 = MRI->createVirtualRegister(TRC);
8021       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
8022           .addReg(ARM::CPSR, RegState::Define)
8023           .addReg(NewVReg5, RegState::Kill)
8024           .addReg(NewVReg3)
8025           .add(predOps(ARMCC::AL));
8026     }
8027 
8028     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
8029       .addReg(NewVReg6, RegState::Kill)
8030       .addJumpTableIndex(MJTI);
8031   } else {
8032     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8033     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
8034         .addFrameIndex(FI)
8035         .addImm(4)
8036         .addMemOperand(FIMMOLd)
8037         .add(predOps(ARMCC::AL));
8038 
8039     if (NumLPads < 256) {
8040       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
8041           .addReg(NewVReg1)
8042           .addImm(NumLPads)
8043           .add(predOps(ARMCC::AL));
8044     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
8045       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8046       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
8047           .addImm(NumLPads & 0xFFFF)
8048           .add(predOps(ARMCC::AL));
8049 
8050       unsigned VReg2 = VReg1;
8051       if ((NumLPads & 0xFFFF0000) != 0) {
8052         VReg2 = MRI->createVirtualRegister(TRC);
8053         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
8054             .addReg(VReg1)
8055             .addImm(NumLPads >> 16)
8056             .add(predOps(ARMCC::AL));
8057       }
8058 
8059       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8060           .addReg(NewVReg1)
8061           .addReg(VReg2)
8062           .add(predOps(ARMCC::AL));
8063     } else {
8064       MachineConstantPool *ConstantPool = MF->getConstantPool();
8065       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
8066       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8067 
8068       // MachineConstantPool wants an explicit alignment.
8069       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8070       if (Align == 0)
8071         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8072       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8073 
8074       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8075       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
8076           .addReg(VReg1, RegState::Define)
8077           .addConstantPoolIndex(Idx)
8078           .addImm(0)
8079           .add(predOps(ARMCC::AL));
8080       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8081           .addReg(NewVReg1)
8082           .addReg(VReg1, RegState::Kill)
8083           .add(predOps(ARMCC::AL));
8084     }
8085 
8086     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
8087       .addMBB(TrapBB)
8088       .addImm(ARMCC::HI)
8089       .addReg(ARM::CPSR);
8090 
8091     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8092     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
8093         .addReg(NewVReg1)
8094         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8095         .add(predOps(ARMCC::AL))
8096         .add(condCodeOp());
8097     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8098     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
8099         .addJumpTableIndex(MJTI)
8100         .add(predOps(ARMCC::AL));
8101 
8102     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8103         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8104     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8105     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
8106         .addReg(NewVReg3, RegState::Kill)
8107         .addReg(NewVReg4)
8108         .addImm(0)
8109         .addMemOperand(JTMMOLd)
8110         .add(predOps(ARMCC::AL));
8111 
8112     if (IsPositionIndependent) {
8113       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
8114         .addReg(NewVReg5, RegState::Kill)
8115         .addReg(NewVReg4)
8116         .addJumpTableIndex(MJTI);
8117     } else {
8118       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
8119         .addReg(NewVReg5, RegState::Kill)
8120         .addJumpTableIndex(MJTI);
8121     }
8122   }
8123 
8124   // Add the jump table entries as successors to the MBB.
8125   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
8126   for (std::vector<MachineBasicBlock*>::iterator
8127          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
8128     MachineBasicBlock *CurMBB = *I;
8129     if (SeenMBBs.insert(CurMBB).second)
8130       DispContBB->addSuccessor(CurMBB);
8131   }
8132 
8133   // N.B. the order the invoke BBs are processed in doesn't matter here.
8134   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
8135   SmallVector<MachineBasicBlock*, 64> MBBLPads;
8136   for (MachineBasicBlock *BB : InvokeBBs) {
8137 
8138     // Remove the landing pad successor from the invoke block and replace it
8139     // with the new dispatch block.
8140     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
8141                                                   BB->succ_end());
8142     while (!Successors.empty()) {
8143       MachineBasicBlock *SMBB = Successors.pop_back_val();
8144       if (SMBB->isEHPad()) {
8145         BB->removeSuccessor(SMBB);
8146         MBBLPads.push_back(SMBB);
8147       }
8148     }
8149 
8150     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
8151     BB->normalizeSuccProbs();
8152 
8153     // Find the invoke call and mark all of the callee-saved registers as
8154     // 'implicit defined' so that they're spilled. This prevents code from
8155     // moving instructions to before the EH block, where they will never be
8156     // executed.
8157     for (MachineBasicBlock::reverse_iterator
8158            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
8159       if (!II->isCall()) continue;
8160 
8161       DenseMap<unsigned, bool> DefRegs;
8162       for (MachineInstr::mop_iterator
8163              OI = II->operands_begin(), OE = II->operands_end();
8164            OI != OE; ++OI) {
8165         if (!OI->isReg()) continue;
8166         DefRegs[OI->getReg()] = true;
8167       }
8168 
8169       MachineInstrBuilder MIB(*MF, &*II);
8170 
8171       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
8172         unsigned Reg = SavedRegs[i];
8173         if (Subtarget->isThumb2() &&
8174             !ARM::tGPRRegClass.contains(Reg) &&
8175             !ARM::hGPRRegClass.contains(Reg))
8176           continue;
8177         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
8178           continue;
8179         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
8180           continue;
8181         if (!DefRegs[Reg])
8182           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
8183       }
8184 
8185       break;
8186     }
8187   }
8188 
8189   // Mark all former landing pads as non-landing pads. The dispatch is the only
8190   // landing pad now.
8191   for (SmallVectorImpl<MachineBasicBlock*>::iterator
8192          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
8193     (*I)->setIsEHPad(false);
8194 
8195   // The instruction is gone now.
8196   MI.eraseFromParent();
8197 }
8198 
8199 static
8200 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
8201   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
8202        E = MBB->succ_end(); I != E; ++I)
8203     if (*I != Succ)
8204       return *I;
8205   llvm_unreachable("Expecting a BB with two successors!");
8206 }
8207 
8208 /// Return the load opcode for a given load size. If load size >= 8,
8209 /// neon opcode will be returned.
8210 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
8211   if (LdSize >= 8)
8212     return LdSize == 16 ? ARM::VLD1q32wb_fixed
8213                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
8214   if (IsThumb1)
8215     return LdSize == 4 ? ARM::tLDRi
8216                        : LdSize == 2 ? ARM::tLDRHi
8217                                      : LdSize == 1 ? ARM::tLDRBi : 0;
8218   if (IsThumb2)
8219     return LdSize == 4 ? ARM::t2LDR_POST
8220                        : LdSize == 2 ? ARM::t2LDRH_POST
8221                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
8222   return LdSize == 4 ? ARM::LDR_POST_IMM
8223                      : LdSize == 2 ? ARM::LDRH_POST
8224                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
8225 }
8226 
8227 /// Return the store opcode for a given store size. If store size >= 8,
8228 /// neon opcode will be returned.
8229 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
8230   if (StSize >= 8)
8231     return StSize == 16 ? ARM::VST1q32wb_fixed
8232                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
8233   if (IsThumb1)
8234     return StSize == 4 ? ARM::tSTRi
8235                        : StSize == 2 ? ARM::tSTRHi
8236                                      : StSize == 1 ? ARM::tSTRBi : 0;
8237   if (IsThumb2)
8238     return StSize == 4 ? ARM::t2STR_POST
8239                        : StSize == 2 ? ARM::t2STRH_POST
8240                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
8241   return StSize == 4 ? ARM::STR_POST_IMM
8242                      : StSize == 2 ? ARM::STRH_POST
8243                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
8244 }
8245 
8246 /// Emit a post-increment load operation with given size. The instructions
8247 /// will be added to BB at Pos.
8248 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8249                        const TargetInstrInfo *TII, const DebugLoc &dl,
8250                        unsigned LdSize, unsigned Data, unsigned AddrIn,
8251                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8252   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
8253   assert(LdOpc != 0 && "Should have a load opcode");
8254   if (LdSize >= 8) {
8255     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8256         .addReg(AddrOut, RegState::Define)
8257         .addReg(AddrIn)
8258         .addImm(0)
8259         .add(predOps(ARMCC::AL));
8260   } else if (IsThumb1) {
8261     // load + update AddrIn
8262     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8263         .addReg(AddrIn)
8264         .addImm(0)
8265         .add(predOps(ARMCC::AL));
8266     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8267         .add(t1CondCodeOp())
8268         .addReg(AddrIn)
8269         .addImm(LdSize)
8270         .add(predOps(ARMCC::AL));
8271   } else if (IsThumb2) {
8272     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8273         .addReg(AddrOut, RegState::Define)
8274         .addReg(AddrIn)
8275         .addImm(LdSize)
8276         .add(predOps(ARMCC::AL));
8277   } else { // arm
8278     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8279         .addReg(AddrOut, RegState::Define)
8280         .addReg(AddrIn)
8281         .addReg(0)
8282         .addImm(LdSize)
8283         .add(predOps(ARMCC::AL));
8284   }
8285 }
8286 
8287 /// Emit a post-increment store operation with given size. The instructions
8288 /// will be added to BB at Pos.
8289 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8290                        const TargetInstrInfo *TII, const DebugLoc &dl,
8291                        unsigned StSize, unsigned Data, unsigned AddrIn,
8292                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8293   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
8294   assert(StOpc != 0 && "Should have a store opcode");
8295   if (StSize >= 8) {
8296     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8297         .addReg(AddrIn)
8298         .addImm(0)
8299         .addReg(Data)
8300         .add(predOps(ARMCC::AL));
8301   } else if (IsThumb1) {
8302     // store + update AddrIn
8303     BuildMI(*BB, Pos, dl, TII->get(StOpc))
8304         .addReg(Data)
8305         .addReg(AddrIn)
8306         .addImm(0)
8307         .add(predOps(ARMCC::AL));
8308     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8309         .add(t1CondCodeOp())
8310         .addReg(AddrIn)
8311         .addImm(StSize)
8312         .add(predOps(ARMCC::AL));
8313   } else if (IsThumb2) {
8314     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8315         .addReg(Data)
8316         .addReg(AddrIn)
8317         .addImm(StSize)
8318         .add(predOps(ARMCC::AL));
8319   } else { // arm
8320     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8321         .addReg(Data)
8322         .addReg(AddrIn)
8323         .addReg(0)
8324         .addImm(StSize)
8325         .add(predOps(ARMCC::AL));
8326   }
8327 }
8328 
8329 MachineBasicBlock *
8330 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
8331                                    MachineBasicBlock *BB) const {
8332   // This pseudo instruction has 3 operands: dst, src, size
8333   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
8334   // Otherwise, we will generate unrolled scalar copies.
8335   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8336   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8337   MachineFunction::iterator It = ++BB->getIterator();
8338 
8339   unsigned dest = MI.getOperand(0).getReg();
8340   unsigned src = MI.getOperand(1).getReg();
8341   unsigned SizeVal = MI.getOperand(2).getImm();
8342   unsigned Align = MI.getOperand(3).getImm();
8343   DebugLoc dl = MI.getDebugLoc();
8344 
8345   MachineFunction *MF = BB->getParent();
8346   MachineRegisterInfo &MRI = MF->getRegInfo();
8347   unsigned UnitSize = 0;
8348   const TargetRegisterClass *TRC = nullptr;
8349   const TargetRegisterClass *VecTRC = nullptr;
8350 
8351   bool IsThumb1 = Subtarget->isThumb1Only();
8352   bool IsThumb2 = Subtarget->isThumb2();
8353   bool IsThumb = Subtarget->isThumb();
8354 
8355   if (Align & 1) {
8356     UnitSize = 1;
8357   } else if (Align & 2) {
8358     UnitSize = 2;
8359   } else {
8360     // Check whether we can use NEON instructions.
8361     if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
8362         Subtarget->hasNEON()) {
8363       if ((Align % 16 == 0) && SizeVal >= 16)
8364         UnitSize = 16;
8365       else if ((Align % 8 == 0) && SizeVal >= 8)
8366         UnitSize = 8;
8367     }
8368     // Can't use NEON instructions.
8369     if (UnitSize == 0)
8370       UnitSize = 4;
8371   }
8372 
8373   // Select the correct opcode and register class for unit size load/store
8374   bool IsNeon = UnitSize >= 8;
8375   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
8376   if (IsNeon)
8377     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
8378                             : UnitSize == 8 ? &ARM::DPRRegClass
8379                                             : nullptr;
8380 
8381   unsigned BytesLeft = SizeVal % UnitSize;
8382   unsigned LoopSize = SizeVal - BytesLeft;
8383 
8384   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
8385     // Use LDR and STR to copy.
8386     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
8387     // [destOut] = STR_POST(scratch, destIn, UnitSize)
8388     unsigned srcIn = src;
8389     unsigned destIn = dest;
8390     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
8391       unsigned srcOut = MRI.createVirtualRegister(TRC);
8392       unsigned destOut = MRI.createVirtualRegister(TRC);
8393       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8394       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
8395                  IsThumb1, IsThumb2);
8396       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
8397                  IsThumb1, IsThumb2);
8398       srcIn = srcOut;
8399       destIn = destOut;
8400     }
8401 
8402     // Handle the leftover bytes with LDRB and STRB.
8403     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
8404     // [destOut] = STRB_POST(scratch, destIn, 1)
8405     for (unsigned i = 0; i < BytesLeft; i++) {
8406       unsigned srcOut = MRI.createVirtualRegister(TRC);
8407       unsigned destOut = MRI.createVirtualRegister(TRC);
8408       unsigned scratch = MRI.createVirtualRegister(TRC);
8409       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
8410                  IsThumb1, IsThumb2);
8411       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
8412                  IsThumb1, IsThumb2);
8413       srcIn = srcOut;
8414       destIn = destOut;
8415     }
8416     MI.eraseFromParent(); // The instruction is gone now.
8417     return BB;
8418   }
8419 
8420   // Expand the pseudo op to a loop.
8421   // thisMBB:
8422   //   ...
8423   //   movw varEnd, # --> with thumb2
8424   //   movt varEnd, #
8425   //   ldrcp varEnd, idx --> without thumb2
8426   //   fallthrough --> loopMBB
8427   // loopMBB:
8428   //   PHI varPhi, varEnd, varLoop
8429   //   PHI srcPhi, src, srcLoop
8430   //   PHI destPhi, dst, destLoop
8431   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
8432   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
8433   //   subs varLoop, varPhi, #UnitSize
8434   //   bne loopMBB
8435   //   fallthrough --> exitMBB
8436   // exitMBB:
8437   //   epilogue to handle left-over bytes
8438   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
8439   //   [destOut] = STRB_POST(scratch, destLoop, 1)
8440   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8441   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8442   MF->insert(It, loopMBB);
8443   MF->insert(It, exitMBB);
8444 
8445   // Transfer the remainder of BB and its successor edges to exitMBB.
8446   exitMBB->splice(exitMBB->begin(), BB,
8447                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8448   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8449 
8450   // Load an immediate to varEnd.
8451   unsigned varEnd = MRI.createVirtualRegister(TRC);
8452   if (Subtarget->useMovt(*MF)) {
8453     unsigned Vtmp = varEnd;
8454     if ((LoopSize & 0xFFFF0000) != 0)
8455       Vtmp = MRI.createVirtualRegister(TRC);
8456     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
8457         .addImm(LoopSize & 0xFFFF)
8458         .add(predOps(ARMCC::AL));
8459 
8460     if ((LoopSize & 0xFFFF0000) != 0)
8461       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
8462           .addReg(Vtmp)
8463           .addImm(LoopSize >> 16)
8464           .add(predOps(ARMCC::AL));
8465   } else {
8466     MachineConstantPool *ConstantPool = MF->getConstantPool();
8467     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
8468     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
8469 
8470     // MachineConstantPool wants an explicit alignment.
8471     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8472     if (Align == 0)
8473       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8474     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8475 
8476     if (IsThumb)
8477       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
8478           .addReg(varEnd, RegState::Define)
8479           .addConstantPoolIndex(Idx)
8480           .add(predOps(ARMCC::AL));
8481     else
8482       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
8483           .addReg(varEnd, RegState::Define)
8484           .addConstantPoolIndex(Idx)
8485           .addImm(0)
8486           .add(predOps(ARMCC::AL));
8487   }
8488   BB->addSuccessor(loopMBB);
8489 
8490   // Generate the loop body:
8491   //   varPhi = PHI(varLoop, varEnd)
8492   //   srcPhi = PHI(srcLoop, src)
8493   //   destPhi = PHI(destLoop, dst)
8494   MachineBasicBlock *entryBB = BB;
8495   BB = loopMBB;
8496   unsigned varLoop = MRI.createVirtualRegister(TRC);
8497   unsigned varPhi = MRI.createVirtualRegister(TRC);
8498   unsigned srcLoop = MRI.createVirtualRegister(TRC);
8499   unsigned srcPhi = MRI.createVirtualRegister(TRC);
8500   unsigned destLoop = MRI.createVirtualRegister(TRC);
8501   unsigned destPhi = MRI.createVirtualRegister(TRC);
8502 
8503   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
8504     .addReg(varLoop).addMBB(loopMBB)
8505     .addReg(varEnd).addMBB(entryBB);
8506   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
8507     .addReg(srcLoop).addMBB(loopMBB)
8508     .addReg(src).addMBB(entryBB);
8509   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
8510     .addReg(destLoop).addMBB(loopMBB)
8511     .addReg(dest).addMBB(entryBB);
8512 
8513   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
8514   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
8515   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8516   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
8517              IsThumb1, IsThumb2);
8518   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
8519              IsThumb1, IsThumb2);
8520 
8521   // Decrement loop variable by UnitSize.
8522   if (IsThumb1) {
8523     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
8524         .add(t1CondCodeOp())
8525         .addReg(varPhi)
8526         .addImm(UnitSize)
8527         .add(predOps(ARMCC::AL));
8528   } else {
8529     MachineInstrBuilder MIB =
8530         BuildMI(*BB, BB->end(), dl,
8531                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
8532     MIB.addReg(varPhi)
8533         .addImm(UnitSize)
8534         .add(predOps(ARMCC::AL))
8535         .add(condCodeOp());
8536     MIB->getOperand(5).setReg(ARM::CPSR);
8537     MIB->getOperand(5).setIsDef(true);
8538   }
8539   BuildMI(*BB, BB->end(), dl,
8540           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
8541       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
8542 
8543   // loopMBB can loop back to loopMBB or fall through to exitMBB.
8544   BB->addSuccessor(loopMBB);
8545   BB->addSuccessor(exitMBB);
8546 
8547   // Add epilogue to handle BytesLeft.
8548   BB = exitMBB;
8549   auto StartOfExit = exitMBB->begin();
8550 
8551   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
8552   //   [destOut] = STRB_POST(scratch, destLoop, 1)
8553   unsigned srcIn = srcLoop;
8554   unsigned destIn = destLoop;
8555   for (unsigned i = 0; i < BytesLeft; i++) {
8556     unsigned srcOut = MRI.createVirtualRegister(TRC);
8557     unsigned destOut = MRI.createVirtualRegister(TRC);
8558     unsigned scratch = MRI.createVirtualRegister(TRC);
8559     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
8560                IsThumb1, IsThumb2);
8561     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
8562                IsThumb1, IsThumb2);
8563     srcIn = srcOut;
8564     destIn = destOut;
8565   }
8566 
8567   MI.eraseFromParent(); // The instruction is gone now.
8568   return BB;
8569 }
8570 
8571 MachineBasicBlock *
8572 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
8573                                        MachineBasicBlock *MBB) const {
8574   const TargetMachine &TM = getTargetMachine();
8575   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
8576   DebugLoc DL = MI.getDebugLoc();
8577 
8578   assert(Subtarget->isTargetWindows() &&
8579          "__chkstk is only supported on Windows");
8580   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
8581 
8582   // __chkstk takes the number of words to allocate on the stack in R4, and
8583   // returns the stack adjustment in number of bytes in R4.  This will not
8584   // clober any other registers (other than the obvious lr).
8585   //
8586   // Although, technically, IP should be considered a register which may be
8587   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
8588   // thumb-2 environment, so there is no interworking required.  As a result, we
8589   // do not expect a veneer to be emitted by the linker, clobbering IP.
8590   //
8591   // Each module receives its own copy of __chkstk, so no import thunk is
8592   // required, again, ensuring that IP is not clobbered.
8593   //
8594   // Finally, although some linkers may theoretically provide a trampoline for
8595   // out of range calls (which is quite common due to a 32M range limitation of
8596   // branches for Thumb), we can generate the long-call version via
8597   // -mcmodel=large, alleviating the need for the trampoline which may clobber
8598   // IP.
8599 
8600   switch (TM.getCodeModel()) {
8601   case CodeModel::Small:
8602   case CodeModel::Medium:
8603   case CodeModel::Default:
8604   case CodeModel::Kernel:
8605     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
8606         .add(predOps(ARMCC::AL))
8607         .addExternalSymbol("__chkstk")
8608         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8609         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8610         .addReg(ARM::R12,
8611                 RegState::Implicit | RegState::Define | RegState::Dead);
8612     break;
8613   case CodeModel::Large:
8614   case CodeModel::JITDefault: {
8615     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
8616     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
8617 
8618     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
8619       .addExternalSymbol("__chkstk");
8620     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
8621         .add(predOps(ARMCC::AL))
8622         .addReg(Reg, RegState::Kill)
8623         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8624         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8625         .addReg(ARM::R12,
8626                 RegState::Implicit | RegState::Define | RegState::Dead);
8627     break;
8628   }
8629   }
8630 
8631   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
8632       .addReg(ARM::SP, RegState::Kill)
8633       .addReg(ARM::R4, RegState::Kill)
8634       .setMIFlags(MachineInstr::FrameSetup)
8635       .add(predOps(ARMCC::AL))
8636       .add(condCodeOp());
8637 
8638   MI.eraseFromParent();
8639   return MBB;
8640 }
8641 
8642 MachineBasicBlock *
8643 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
8644                                        MachineBasicBlock *MBB) const {
8645   DebugLoc DL = MI.getDebugLoc();
8646   MachineFunction *MF = MBB->getParent();
8647   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8648 
8649   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
8650   MF->insert(++MBB->getIterator(), ContBB);
8651   ContBB->splice(ContBB->begin(), MBB,
8652                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8653   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
8654   MBB->addSuccessor(ContBB);
8655 
8656   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8657   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
8658   MF->push_back(TrapBB);
8659   MBB->addSuccessor(TrapBB);
8660 
8661   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
8662       .addReg(MI.getOperand(0).getReg())
8663       .addImm(0)
8664       .add(predOps(ARMCC::AL));
8665   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
8666       .addMBB(TrapBB)
8667       .addImm(ARMCC::EQ)
8668       .addReg(ARM::CPSR);
8669 
8670   MI.eraseFromParent();
8671   return ContBB;
8672 }
8673 
8674 MachineBasicBlock *
8675 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8676                                                MachineBasicBlock *BB) const {
8677   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8678   DebugLoc dl = MI.getDebugLoc();
8679   bool isThumb2 = Subtarget->isThumb2();
8680   switch (MI.getOpcode()) {
8681   default: {
8682     MI.dump();
8683     llvm_unreachable("Unexpected instr type to insert");
8684   }
8685 
8686   // Thumb1 post-indexed loads are really just single-register LDMs.
8687   case ARM::tLDR_postidx: {
8688     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
8689         .add(MI.getOperand(1))  // Rn_wb
8690         .add(MI.getOperand(2))  // Rn
8691         .add(MI.getOperand(3))  // PredImm
8692         .add(MI.getOperand(4))  // PredReg
8693         .add(MI.getOperand(0)); // Rt
8694     MI.eraseFromParent();
8695     return BB;
8696   }
8697 
8698   // The Thumb2 pre-indexed stores have the same MI operands, they just
8699   // define them differently in the .td files from the isel patterns, so
8700   // they need pseudos.
8701   case ARM::t2STR_preidx:
8702     MI.setDesc(TII->get(ARM::t2STR_PRE));
8703     return BB;
8704   case ARM::t2STRB_preidx:
8705     MI.setDesc(TII->get(ARM::t2STRB_PRE));
8706     return BB;
8707   case ARM::t2STRH_preidx:
8708     MI.setDesc(TII->get(ARM::t2STRH_PRE));
8709     return BB;
8710 
8711   case ARM::STRi_preidx:
8712   case ARM::STRBi_preidx: {
8713     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
8714                                                          : ARM::STRB_PRE_IMM;
8715     // Decode the offset.
8716     unsigned Offset = MI.getOperand(4).getImm();
8717     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
8718     Offset = ARM_AM::getAM2Offset(Offset);
8719     if (isSub)
8720       Offset = -Offset;
8721 
8722     MachineMemOperand *MMO = *MI.memoperands_begin();
8723     BuildMI(*BB, MI, dl, TII->get(NewOpc))
8724         .add(MI.getOperand(0)) // Rn_wb
8725         .add(MI.getOperand(1)) // Rt
8726         .add(MI.getOperand(2)) // Rn
8727         .addImm(Offset)        // offset (skip GPR==zero_reg)
8728         .add(MI.getOperand(5)) // pred
8729         .add(MI.getOperand(6))
8730         .addMemOperand(MMO);
8731     MI.eraseFromParent();
8732     return BB;
8733   }
8734   case ARM::STRr_preidx:
8735   case ARM::STRBr_preidx:
8736   case ARM::STRH_preidx: {
8737     unsigned NewOpc;
8738     switch (MI.getOpcode()) {
8739     default: llvm_unreachable("unexpected opcode!");
8740     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
8741     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
8742     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
8743     }
8744     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
8745     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
8746       MIB.add(MI.getOperand(i));
8747     MI.eraseFromParent();
8748     return BB;
8749   }
8750 
8751   case ARM::tMOVCCr_pseudo: {
8752     // To "insert" a SELECT_CC instruction, we actually have to insert the
8753     // diamond control-flow pattern.  The incoming instruction knows the
8754     // destination vreg to set, the condition code register to branch on, the
8755     // true/false values to select between, and a branch opcode to use.
8756     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8757     MachineFunction::iterator It = ++BB->getIterator();
8758 
8759     //  thisMBB:
8760     //  ...
8761     //   TrueVal = ...
8762     //   cmpTY ccX, r1, r2
8763     //   bCC copy1MBB
8764     //   fallthrough --> copy0MBB
8765     MachineBasicBlock *thisMBB  = BB;
8766     MachineFunction *F = BB->getParent();
8767     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8768     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
8769     F->insert(It, copy0MBB);
8770     F->insert(It, sinkMBB);
8771 
8772     // Transfer the remainder of BB and its successor edges to sinkMBB.
8773     sinkMBB->splice(sinkMBB->begin(), BB,
8774                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8775     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8776 
8777     BB->addSuccessor(copy0MBB);
8778     BB->addSuccessor(sinkMBB);
8779 
8780     BuildMI(BB, dl, TII->get(ARM::tBcc))
8781         .addMBB(sinkMBB)
8782         .addImm(MI.getOperand(3).getImm())
8783         .addReg(MI.getOperand(4).getReg());
8784 
8785     //  copy0MBB:
8786     //   %FalseValue = ...
8787     //   # fallthrough to sinkMBB
8788     BB = copy0MBB;
8789 
8790     // Update machine-CFG edges
8791     BB->addSuccessor(sinkMBB);
8792 
8793     //  sinkMBB:
8794     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8795     //  ...
8796     BB = sinkMBB;
8797     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
8798         .addReg(MI.getOperand(1).getReg())
8799         .addMBB(copy0MBB)
8800         .addReg(MI.getOperand(2).getReg())
8801         .addMBB(thisMBB);
8802 
8803     MI.eraseFromParent(); // The pseudo instruction is gone now.
8804     return BB;
8805   }
8806 
8807   case ARM::BCCi64:
8808   case ARM::BCCZi64: {
8809     // If there is an unconditional branch to the other successor, remove it.
8810     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
8811 
8812     // Compare both parts that make up the double comparison separately for
8813     // equality.
8814     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
8815 
8816     unsigned LHS1 = MI.getOperand(1).getReg();
8817     unsigned LHS2 = MI.getOperand(2).getReg();
8818     if (RHSisZero) {
8819       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8820           .addReg(LHS1)
8821           .addImm(0)
8822           .add(predOps(ARMCC::AL));
8823       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8824         .addReg(LHS2).addImm(0)
8825         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8826     } else {
8827       unsigned RHS1 = MI.getOperand(3).getReg();
8828       unsigned RHS2 = MI.getOperand(4).getReg();
8829       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8830           .addReg(LHS1)
8831           .addReg(RHS1)
8832           .add(predOps(ARMCC::AL));
8833       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8834         .addReg(LHS2).addReg(RHS2)
8835         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8836     }
8837 
8838     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
8839     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
8840     if (MI.getOperand(0).getImm() == ARMCC::NE)
8841       std::swap(destMBB, exitMBB);
8842 
8843     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
8844       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
8845     if (isThumb2)
8846       BuildMI(BB, dl, TII->get(ARM::t2B))
8847           .addMBB(exitMBB)
8848           .add(predOps(ARMCC::AL));
8849     else
8850       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
8851 
8852     MI.eraseFromParent(); // The pseudo instruction is gone now.
8853     return BB;
8854   }
8855 
8856   case ARM::Int_eh_sjlj_setjmp:
8857   case ARM::Int_eh_sjlj_setjmp_nofp:
8858   case ARM::tInt_eh_sjlj_setjmp:
8859   case ARM::t2Int_eh_sjlj_setjmp:
8860   case ARM::t2Int_eh_sjlj_setjmp_nofp:
8861     return BB;
8862 
8863   case ARM::Int_eh_sjlj_setup_dispatch:
8864     EmitSjLjDispatchBlock(MI, BB);
8865     return BB;
8866 
8867   case ARM::ABS:
8868   case ARM::t2ABS: {
8869     // To insert an ABS instruction, we have to insert the
8870     // diamond control-flow pattern.  The incoming instruction knows the
8871     // source vreg to test against 0, the destination vreg to set,
8872     // the condition code register to branch on, the
8873     // true/false values to select between, and a branch opcode to use.
8874     // It transforms
8875     //     V1 = ABS V0
8876     // into
8877     //     V2 = MOVS V0
8878     //     BCC                      (branch to SinkBB if V0 >= 0)
8879     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
8880     //     SinkBB: V1 = PHI(V2, V3)
8881     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8882     MachineFunction::iterator BBI = ++BB->getIterator();
8883     MachineFunction *Fn = BB->getParent();
8884     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
8885     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
8886     Fn->insert(BBI, RSBBB);
8887     Fn->insert(BBI, SinkBB);
8888 
8889     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
8890     unsigned int ABSDstReg = MI.getOperand(0).getReg();
8891     bool ABSSrcKIll = MI.getOperand(1).isKill();
8892     bool isThumb2 = Subtarget->isThumb2();
8893     MachineRegisterInfo &MRI = Fn->getRegInfo();
8894     // In Thumb mode S must not be specified if source register is the SP or
8895     // PC and if destination register is the SP, so restrict register class
8896     unsigned NewRsbDstReg =
8897       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
8898 
8899     // Transfer the remainder of BB and its successor edges to sinkMBB.
8900     SinkBB->splice(SinkBB->begin(), BB,
8901                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8902     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
8903 
8904     BB->addSuccessor(RSBBB);
8905     BB->addSuccessor(SinkBB);
8906 
8907     // fall through to SinkMBB
8908     RSBBB->addSuccessor(SinkBB);
8909 
8910     // insert a cmp at the end of BB
8911     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8912         .addReg(ABSSrcReg)
8913         .addImm(0)
8914         .add(predOps(ARMCC::AL));
8915 
8916     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
8917     BuildMI(BB, dl,
8918       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
8919       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
8920 
8921     // insert rsbri in RSBBB
8922     // Note: BCC and rsbri will be converted into predicated rsbmi
8923     // by if-conversion pass
8924     BuildMI(*RSBBB, RSBBB->begin(), dl,
8925             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
8926         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
8927         .addImm(0)
8928         .add(predOps(ARMCC::AL))
8929         .add(condCodeOp());
8930 
8931     // insert PHI in SinkBB,
8932     // reuse ABSDstReg to not change uses of ABS instruction
8933     BuildMI(*SinkBB, SinkBB->begin(), dl,
8934       TII->get(ARM::PHI), ABSDstReg)
8935       .addReg(NewRsbDstReg).addMBB(RSBBB)
8936       .addReg(ABSSrcReg).addMBB(BB);
8937 
8938     // remove ABS instruction
8939     MI.eraseFromParent();
8940 
8941     // return last added BB
8942     return SinkBB;
8943   }
8944   case ARM::COPY_STRUCT_BYVAL_I32:
8945     ++NumLoopByVals;
8946     return EmitStructByval(MI, BB);
8947   case ARM::WIN__CHKSTK:
8948     return EmitLowered__chkstk(MI, BB);
8949   case ARM::WIN__DBZCHK:
8950     return EmitLowered__dbzchk(MI, BB);
8951   }
8952 }
8953 
8954 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers
8955 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
8956 /// instead of as a custom inserter because we need the use list from the SDNode.
8957 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
8958                                     MachineInstr &MI, const SDNode *Node) {
8959   bool isThumb1 = Subtarget->isThumb1Only();
8960 
8961   DebugLoc DL = MI.getDebugLoc();
8962   MachineFunction *MF = MI.getParent()->getParent();
8963   MachineRegisterInfo &MRI = MF->getRegInfo();
8964   MachineInstrBuilder MIB(*MF, MI);
8965 
8966   // If the new dst/src is unused mark it as dead.
8967   if (!Node->hasAnyUseOfValue(0)) {
8968     MI.getOperand(0).setIsDead(true);
8969   }
8970   if (!Node->hasAnyUseOfValue(1)) {
8971     MI.getOperand(1).setIsDead(true);
8972   }
8973 
8974   // The MEMCPY both defines and kills the scratch registers.
8975   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
8976     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
8977                                                          : &ARM::GPRRegClass);
8978     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
8979   }
8980 }
8981 
8982 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8983                                                       SDNode *Node) const {
8984   if (MI.getOpcode() == ARM::MEMCPY) {
8985     attachMEMCPYScratchRegs(Subtarget, MI, Node);
8986     return;
8987   }
8988 
8989   const MCInstrDesc *MCID = &MI.getDesc();
8990   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
8991   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
8992   // operand is still set to noreg. If needed, set the optional operand's
8993   // register to CPSR, and remove the redundant implicit def.
8994   //
8995   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
8996 
8997   // Rename pseudo opcodes.
8998   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
8999   if (NewOpc) {
9000     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
9001     MCID = &TII->get(NewOpc);
9002 
9003     assert(MCID->getNumOperands() == MI.getDesc().getNumOperands() + 1 &&
9004            "converted opcode should be the same except for cc_out");
9005 
9006     MI.setDesc(*MCID);
9007 
9008     // Add the optional cc_out operand
9009     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9010   }
9011   unsigned ccOutIdx = MCID->getNumOperands() - 1;
9012 
9013   // Any ARM instruction that sets the 's' bit should specify an optional
9014   // "cc_out" operand in the last operand position.
9015   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
9016     assert(!NewOpc && "Optional cc_out operand required");
9017     return;
9018   }
9019   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9020   // since we already have an optional CPSR def.
9021   bool definesCPSR = false;
9022   bool deadCPSR = false;
9023   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
9024        ++i) {
9025     const MachineOperand &MO = MI.getOperand(i);
9026     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
9027       definesCPSR = true;
9028       if (MO.isDead())
9029         deadCPSR = true;
9030       MI.RemoveOperand(i);
9031       break;
9032     }
9033   }
9034   if (!definesCPSR) {
9035     assert(!NewOpc && "Optional cc_out operand required");
9036     return;
9037   }
9038   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
9039   if (deadCPSR) {
9040     assert(!MI.getOperand(ccOutIdx).getReg() &&
9041            "expect uninitialized optional cc_out operand");
9042     return;
9043   }
9044 
9045   // If this instruction was defined with an optional CPSR def and its dag node
9046   // had a live implicit CPSR def, then activate the optional CPSR def.
9047   MachineOperand &MO = MI.getOperand(ccOutIdx);
9048   MO.setReg(ARM::CPSR);
9049   MO.setIsDef(true);
9050 }
9051 
9052 //===----------------------------------------------------------------------===//
9053 //                           ARM Optimization Hooks
9054 //===----------------------------------------------------------------------===//
9055 
9056 // Helper function that checks if N is a null or all ones constant.
9057 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
9058   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
9059 }
9060 
9061 // Return true if N is conditionally 0 or all ones.
9062 // Detects these expressions where cc is an i1 value:
9063 //
9064 //   (select cc 0, y)   [AllOnes=0]
9065 //   (select cc y, 0)   [AllOnes=0]
9066 //   (zext cc)          [AllOnes=0]
9067 //   (sext cc)          [AllOnes=0/1]
9068 //   (select cc -1, y)  [AllOnes=1]
9069 //   (select cc y, -1)  [AllOnes=1]
9070 //
9071 // Invert is set when N is the null/all ones constant when CC is false.
9072 // OtherOp is set to the alternative value of N.
9073 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
9074                                        SDValue &CC, bool &Invert,
9075                                        SDValue &OtherOp,
9076                                        SelectionDAG &DAG) {
9077   switch (N->getOpcode()) {
9078   default: return false;
9079   case ISD::SELECT: {
9080     CC = N->getOperand(0);
9081     SDValue N1 = N->getOperand(1);
9082     SDValue N2 = N->getOperand(2);
9083     if (isZeroOrAllOnes(N1, AllOnes)) {
9084       Invert = false;
9085       OtherOp = N2;
9086       return true;
9087     }
9088     if (isZeroOrAllOnes(N2, AllOnes)) {
9089       Invert = true;
9090       OtherOp = N1;
9091       return true;
9092     }
9093     return false;
9094   }
9095   case ISD::ZERO_EXTEND:
9096     // (zext cc) can never be the all ones value.
9097     if (AllOnes)
9098       return false;
9099     LLVM_FALLTHROUGH;
9100   case ISD::SIGN_EXTEND: {
9101     SDLoc dl(N);
9102     EVT VT = N->getValueType(0);
9103     CC = N->getOperand(0);
9104     if (CC.getValueType() != MVT::i1)
9105       return false;
9106     Invert = !AllOnes;
9107     if (AllOnes)
9108       // When looking for an AllOnes constant, N is an sext, and the 'other'
9109       // value is 0.
9110       OtherOp = DAG.getConstant(0, dl, VT);
9111     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9112       // When looking for a 0 constant, N can be zext or sext.
9113       OtherOp = DAG.getConstant(1, dl, VT);
9114     else
9115       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
9116                                 VT);
9117     return true;
9118   }
9119   }
9120 }
9121 
9122 // Combine a constant select operand into its use:
9123 //
9124 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
9125 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
9126 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
9127 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
9128 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
9129 //
9130 // The transform is rejected if the select doesn't have a constant operand that
9131 // is null, or all ones when AllOnes is set.
9132 //
9133 // Also recognize sext/zext from i1:
9134 //
9135 //   (add (zext cc), x) -> (select cc (add x, 1), x)
9136 //   (add (sext cc), x) -> (select cc (add x, -1), x)
9137 //
9138 // These transformations eventually create predicated instructions.
9139 //
9140 // @param N       The node to transform.
9141 // @param Slct    The N operand that is a select.
9142 // @param OtherOp The other N operand (x above).
9143 // @param DCI     Context.
9144 // @param AllOnes Require the select constant to be all ones instead of null.
9145 // @returns The new node, or SDValue() on failure.
9146 static
9147 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
9148                             TargetLowering::DAGCombinerInfo &DCI,
9149                             bool AllOnes = false) {
9150   SelectionDAG &DAG = DCI.DAG;
9151   EVT VT = N->getValueType(0);
9152   SDValue NonConstantVal;
9153   SDValue CCOp;
9154   bool SwapSelectOps;
9155   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
9156                                   NonConstantVal, DAG))
9157     return SDValue();
9158 
9159   // Slct is now know to be the desired identity constant when CC is true.
9160   SDValue TrueVal = OtherOp;
9161   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
9162                                  OtherOp, NonConstantVal);
9163   // Unless SwapSelectOps says CC should be false.
9164   if (SwapSelectOps)
9165     std::swap(TrueVal, FalseVal);
9166 
9167   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
9168                      CCOp, TrueVal, FalseVal);
9169 }
9170 
9171 // Attempt combineSelectAndUse on each operand of a commutative operator N.
9172 static
9173 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
9174                                        TargetLowering::DAGCombinerInfo &DCI) {
9175   SDValue N0 = N->getOperand(0);
9176   SDValue N1 = N->getOperand(1);
9177   if (N0.getNode()->hasOneUse())
9178     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
9179       return Result;
9180   if (N1.getNode()->hasOneUse())
9181     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
9182       return Result;
9183   return SDValue();
9184 }
9185 
9186 static bool IsVUZPShuffleNode(SDNode *N) {
9187   // VUZP shuffle node.
9188   if (N->getOpcode() == ARMISD::VUZP)
9189     return true;
9190 
9191   // "VUZP" on i32 is an alias for VTRN.
9192   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
9193     return true;
9194 
9195   return false;
9196 }
9197 
9198 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
9199                                  TargetLowering::DAGCombinerInfo &DCI,
9200                                  const ARMSubtarget *Subtarget) {
9201   // Look for ADD(VUZP.0, VUZP.1).
9202   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
9203       N0 == N1)
9204    return SDValue();
9205 
9206   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
9207   if (!N->getValueType(0).is64BitVector())
9208     return SDValue();
9209 
9210   // Generate vpadd.
9211   SelectionDAG &DAG = DCI.DAG;
9212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9213   SDLoc dl(N);
9214   SDNode *Unzip = N0.getNode();
9215   EVT VT = N->getValueType(0);
9216 
9217   SmallVector<SDValue, 8> Ops;
9218   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
9219                                 TLI.getPointerTy(DAG.getDataLayout())));
9220   Ops.push_back(Unzip->getOperand(0));
9221   Ops.push_back(Unzip->getOperand(1));
9222 
9223   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9224 }
9225 
9226 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9227                                       TargetLowering::DAGCombinerInfo &DCI,
9228                                       const ARMSubtarget *Subtarget) {
9229   // Check for two extended operands.
9230   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
9231         N1.getOpcode() == ISD::SIGN_EXTEND) &&
9232       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
9233         N1.getOpcode() == ISD::ZERO_EXTEND))
9234     return SDValue();
9235 
9236   SDValue N00 = N0.getOperand(0);
9237   SDValue N10 = N1.getOperand(0);
9238 
9239   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
9240   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
9241       N00 == N10)
9242     return SDValue();
9243 
9244   // We only recognize Q register paddl here; this can't be reached until
9245   // after type legalization.
9246   if (!N00.getValueType().is64BitVector() ||
9247       !N0.getValueType().is128BitVector())
9248     return SDValue();
9249 
9250   // Generate vpaddl.
9251   SelectionDAG &DAG = DCI.DAG;
9252   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9253   SDLoc dl(N);
9254   EVT VT = N->getValueType(0);
9255 
9256   SmallVector<SDValue, 8> Ops;
9257   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
9258   unsigned Opcode;
9259   if (N0.getOpcode() == ISD::SIGN_EXTEND)
9260     Opcode = Intrinsic::arm_neon_vpaddls;
9261   else
9262     Opcode = Intrinsic::arm_neon_vpaddlu;
9263   Ops.push_back(DAG.getConstant(Opcode, dl,
9264                                 TLI.getPointerTy(DAG.getDataLayout())));
9265   EVT ElemTy = N00.getValueType().getVectorElementType();
9266   unsigned NumElts = VT.getVectorNumElements();
9267   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
9268   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
9269                                N00.getOperand(0), N00.getOperand(1));
9270   Ops.push_back(Concat);
9271 
9272   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9273 }
9274 
9275 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
9276 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
9277 // much easier to match.
9278 static SDValue
9279 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9280                                TargetLowering::DAGCombinerInfo &DCI,
9281                                const ARMSubtarget *Subtarget) {
9282   // Only perform optimization if after legalize, and if NEON is available. We
9283   // also expected both operands to be BUILD_VECTORs.
9284   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
9285       || N0.getOpcode() != ISD::BUILD_VECTOR
9286       || N1.getOpcode() != ISD::BUILD_VECTOR)
9287     return SDValue();
9288 
9289   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
9290   EVT VT = N->getValueType(0);
9291   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
9292     return SDValue();
9293 
9294   // Check that the vector operands are of the right form.
9295   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
9296   // operands, where N is the size of the formed vector.
9297   // Each EXTRACT_VECTOR should have the same input vector and odd or even
9298   // index such that we have a pair wise add pattern.
9299 
9300   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
9301   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9302     return SDValue();
9303   SDValue Vec = N0->getOperand(0)->getOperand(0);
9304   SDNode *V = Vec.getNode();
9305   unsigned nextIndex = 0;
9306 
9307   // For each operands to the ADD which are BUILD_VECTORs,
9308   // check to see if each of their operands are an EXTRACT_VECTOR with
9309   // the same vector and appropriate index.
9310   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
9311     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
9312         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9313 
9314       SDValue ExtVec0 = N0->getOperand(i);
9315       SDValue ExtVec1 = N1->getOperand(i);
9316 
9317       // First operand is the vector, verify its the same.
9318       if (V != ExtVec0->getOperand(0).getNode() ||
9319           V != ExtVec1->getOperand(0).getNode())
9320         return SDValue();
9321 
9322       // Second is the constant, verify its correct.
9323       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
9324       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
9325 
9326       // For the constant, we want to see all the even or all the odd.
9327       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
9328           || C1->getZExtValue() != nextIndex+1)
9329         return SDValue();
9330 
9331       // Increment index.
9332       nextIndex+=2;
9333     } else
9334       return SDValue();
9335   }
9336 
9337   // Don't generate vpaddl+vmovn; we'll match it to vpadd later.
9338   if (Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
9339     return SDValue();
9340 
9341   // Create VPADDL node.
9342   SelectionDAG &DAG = DCI.DAG;
9343   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9344 
9345   SDLoc dl(N);
9346 
9347   // Build operand list.
9348   SmallVector<SDValue, 8> Ops;
9349   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
9350                                 TLI.getPointerTy(DAG.getDataLayout())));
9351 
9352   // Input is the vector.
9353   Ops.push_back(Vec);
9354 
9355   // Get widened type and narrowed type.
9356   MVT widenType;
9357   unsigned numElem = VT.getVectorNumElements();
9358 
9359   EVT inputLaneType = Vec.getValueType().getVectorElementType();
9360   switch (inputLaneType.getSimpleVT().SimpleTy) {
9361     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
9362     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
9363     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
9364     default:
9365       llvm_unreachable("Invalid vector element type for padd optimization.");
9366   }
9367 
9368   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
9369   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
9370   return DAG.getNode(ExtOp, dl, VT, tmp);
9371 }
9372 
9373 static SDValue findMUL_LOHI(SDValue V) {
9374   if (V->getOpcode() == ISD::UMUL_LOHI ||
9375       V->getOpcode() == ISD::SMUL_LOHI)
9376     return V;
9377   return SDValue();
9378 }
9379 
9380 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
9381                                      TargetLowering::DAGCombinerInfo &DCI,
9382                                      const ARMSubtarget *Subtarget) {
9383 
9384   // Look for multiply add opportunities.
9385   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
9386   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
9387   // a glue link from the first add to the second add.
9388   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
9389   // a S/UMLAL instruction.
9390   //                  UMUL_LOHI
9391   //                 / :lo    \ :hi
9392   //                /          \          [no multiline comment]
9393   //    loAdd ->  ADDE         |
9394   //                 \ :glue  /
9395   //                  \      /
9396   //                    ADDC   <- hiAdd
9397   //
9398   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
9399   SDValue AddcOp0 = AddcNode->getOperand(0);
9400   SDValue AddcOp1 = AddcNode->getOperand(1);
9401 
9402   // Check if the two operands are from the same mul_lohi node.
9403   if (AddcOp0.getNode() == AddcOp1.getNode())
9404     return SDValue();
9405 
9406   assert(AddcNode->getNumValues() == 2 &&
9407          AddcNode->getValueType(0) == MVT::i32 &&
9408          "Expect ADDC with two result values. First: i32");
9409 
9410   // Check that we have a glued ADDC node.
9411   if (AddcNode->getValueType(1) != MVT::Glue)
9412     return SDValue();
9413 
9414   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
9415   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
9416       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
9417       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
9418       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
9419     return SDValue();
9420 
9421   // Look for the glued ADDE.
9422   SDNode* AddeNode = AddcNode->getGluedUser();
9423   if (!AddeNode)
9424     return SDValue();
9425 
9426   // Make sure it is really an ADDE.
9427   if (AddeNode->getOpcode() != ISD::ADDE)
9428     return SDValue();
9429 
9430   assert(AddeNode->getNumOperands() == 3 &&
9431          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
9432          "ADDE node has the wrong inputs");
9433 
9434   // Check for the triangle shape.
9435   SDValue AddeOp0 = AddeNode->getOperand(0);
9436   SDValue AddeOp1 = AddeNode->getOperand(1);
9437 
9438   // Make sure that the ADDE operands are not coming from the same node.
9439   if (AddeOp0.getNode() == AddeOp1.getNode())
9440     return SDValue();
9441 
9442   // Find the MUL_LOHI node walking up ADDE's operands.
9443   bool IsLeftOperandMUL = false;
9444   SDValue MULOp = findMUL_LOHI(AddeOp0);
9445   if (MULOp == SDValue())
9446    MULOp = findMUL_LOHI(AddeOp1);
9447   else
9448     IsLeftOperandMUL = true;
9449   if (MULOp == SDValue())
9450     return SDValue();
9451 
9452   // Figure out the right opcode.
9453   unsigned Opc = MULOp->getOpcode();
9454   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
9455 
9456   // Figure out the high and low input values to the MLAL node.
9457   SDValue* HiAdd = nullptr;
9458   SDValue* LoMul = nullptr;
9459   SDValue* LowAdd = nullptr;
9460 
9461   // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
9462   if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
9463     return SDValue();
9464 
9465   if (IsLeftOperandMUL)
9466     HiAdd = &AddeOp1;
9467   else
9468     HiAdd = &AddeOp0;
9469 
9470 
9471   // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
9472   // whose low result is fed to the ADDC we are checking.
9473 
9474   if (AddcOp0 == MULOp.getValue(0)) {
9475     LoMul = &AddcOp0;
9476     LowAdd = &AddcOp1;
9477   }
9478   if (AddcOp1 == MULOp.getValue(0)) {
9479     LoMul = &AddcOp1;
9480     LowAdd = &AddcOp0;
9481   }
9482 
9483   if (!LoMul)
9484     return SDValue();
9485 
9486   // Create the merged node.
9487   SelectionDAG &DAG = DCI.DAG;
9488 
9489   // Build operand list.
9490   SmallVector<SDValue, 8> Ops;
9491   Ops.push_back(LoMul->getOperand(0));
9492   Ops.push_back(LoMul->getOperand(1));
9493   Ops.push_back(*LowAdd);
9494   Ops.push_back(*HiAdd);
9495 
9496   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
9497                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
9498 
9499   // Replace the ADDs' nodes uses by the MLA node's values.
9500   SDValue HiMLALResult(MLALNode.getNode(), 1);
9501   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
9502 
9503   SDValue LoMLALResult(MLALNode.getNode(), 0);
9504   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
9505 
9506   // Return original node to notify the driver to stop replacing.
9507   SDValue resNode(AddcNode, 0);
9508   return resNode;
9509 }
9510 
9511 static SDValue AddCombineTo64bitUMAAL(SDNode *AddcNode,
9512                                       TargetLowering::DAGCombinerInfo &DCI,
9513                                       const ARMSubtarget *Subtarget) {
9514   // UMAAL is similar to UMLAL except that it adds two unsigned values.
9515   // While trying to combine for the other MLAL nodes, first search for the
9516   // chance to use UMAAL. Check if Addc uses another addc node which can first
9517   // be combined into a UMLAL. The other pattern is AddcNode being combined
9518   // into an UMLAL and then using another addc is handled in ISelDAGToDAG.
9519 
9520   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP() ||
9521       (Subtarget->isThumb() && !Subtarget->hasThumb2()))
9522     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
9523 
9524   SDNode *PrevAddc = nullptr;
9525   if (AddcNode->getOperand(0).getOpcode() == ISD::ADDC)
9526     PrevAddc = AddcNode->getOperand(0).getNode();
9527   else if (AddcNode->getOperand(1).getOpcode() == ISD::ADDC)
9528     PrevAddc = AddcNode->getOperand(1).getNode();
9529 
9530   // If there's no addc chains, just return a search for any MLAL.
9531   if (PrevAddc == nullptr)
9532     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
9533 
9534   // Try to convert the addc operand to an MLAL and if that fails try to
9535   // combine AddcNode.
9536   SDValue MLAL = AddCombineTo64bitMLAL(PrevAddc, DCI, Subtarget);
9537   if (MLAL != SDValue(PrevAddc, 0))
9538     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
9539 
9540   // Find the converted UMAAL or quit if it doesn't exist.
9541   SDNode *UmlalNode = nullptr;
9542   SDValue AddHi;
9543   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
9544     UmlalNode = AddcNode->getOperand(0).getNode();
9545     AddHi = AddcNode->getOperand(1);
9546   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
9547     UmlalNode = AddcNode->getOperand(1).getNode();
9548     AddHi = AddcNode->getOperand(0);
9549   } else {
9550     return SDValue();
9551   }
9552 
9553   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
9554   // the ADDC as well as Zero.
9555   auto *Zero = dyn_cast<ConstantSDNode>(UmlalNode->getOperand(3));
9556 
9557   if (!Zero || Zero->getZExtValue() != 0)
9558     return SDValue();
9559 
9560   // Check that we have a glued ADDC node.
9561   if (AddcNode->getValueType(1) != MVT::Glue)
9562     return SDValue();
9563 
9564   // Look for the glued ADDE.
9565   SDNode* AddeNode = AddcNode->getGluedUser();
9566   if (!AddeNode)
9567     return SDValue();
9568 
9569   if ((AddeNode->getOperand(0).getNode() == Zero &&
9570        AddeNode->getOperand(1).getNode() == UmlalNode) ||
9571       (AddeNode->getOperand(0).getNode() == UmlalNode &&
9572        AddeNode->getOperand(1).getNode() == Zero)) {
9573 
9574     SelectionDAG &DAG = DCI.DAG;
9575     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
9576                       UmlalNode->getOperand(2), AddHi };
9577     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
9578                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
9579 
9580     // Replace the ADDs' nodes uses by the UMAAL node's values.
9581     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
9582     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
9583 
9584     // Return original node to notify the driver to stop replacing.
9585     return SDValue(AddcNode, 0);
9586   }
9587   return SDValue();
9588 }
9589 
9590 /// PerformADDCCombine - Target-specific dag combine transform from
9591 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL or
9592 /// ISD::ADDC, ISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
9593 static SDValue PerformADDCCombine(SDNode *N,
9594                                  TargetLowering::DAGCombinerInfo &DCI,
9595                                  const ARMSubtarget *Subtarget) {
9596 
9597   if (Subtarget->isThumb1Only()) return SDValue();
9598 
9599   // Only perform the checks after legalize when the pattern is available.
9600   if (DCI.isBeforeLegalize()) return SDValue();
9601 
9602   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
9603 }
9604 
9605 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
9606 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
9607 /// called with the default operands, and if that fails, with commuted
9608 /// operands.
9609 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
9610                                           TargetLowering::DAGCombinerInfo &DCI,
9611                                           const ARMSubtarget *Subtarget){
9612   // Attempt to create vpadd for this add.
9613   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
9614     return Result;
9615 
9616   // Attempt to create vpaddl for this add.
9617   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
9618     return Result;
9619   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
9620                                                       Subtarget))
9621     return Result;
9622 
9623   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
9624   if (N0.getNode()->hasOneUse())
9625     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
9626       return Result;
9627   return SDValue();
9628 }
9629 
9630 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
9631 ///
9632 static SDValue PerformADDCombine(SDNode *N,
9633                                  TargetLowering::DAGCombinerInfo &DCI,
9634                                  const ARMSubtarget *Subtarget) {
9635   SDValue N0 = N->getOperand(0);
9636   SDValue N1 = N->getOperand(1);
9637 
9638   // First try with the default operand order.
9639   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
9640     return Result;
9641 
9642   // If that didn't work, try again with the operands commuted.
9643   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
9644 }
9645 
9646 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
9647 ///
9648 static SDValue PerformSUBCombine(SDNode *N,
9649                                  TargetLowering::DAGCombinerInfo &DCI) {
9650   SDValue N0 = N->getOperand(0);
9651   SDValue N1 = N->getOperand(1);
9652 
9653   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
9654   if (N1.getNode()->hasOneUse())
9655     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
9656       return Result;
9657 
9658   return SDValue();
9659 }
9660 
9661 /// PerformVMULCombine
9662 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
9663 /// special multiplier accumulator forwarding.
9664 ///   vmul d3, d0, d2
9665 ///   vmla d3, d1, d2
9666 /// is faster than
9667 ///   vadd d3, d0, d1
9668 ///   vmul d3, d3, d2
9669 //  However, for (A + B) * (A + B),
9670 //    vadd d2, d0, d1
9671 //    vmul d3, d0, d2
9672 //    vmla d3, d1, d2
9673 //  is slower than
9674 //    vadd d2, d0, d1
9675 //    vmul d3, d2, d2
9676 static SDValue PerformVMULCombine(SDNode *N,
9677                                   TargetLowering::DAGCombinerInfo &DCI,
9678                                   const ARMSubtarget *Subtarget) {
9679   if (!Subtarget->hasVMLxForwarding())
9680     return SDValue();
9681 
9682   SelectionDAG &DAG = DCI.DAG;
9683   SDValue N0 = N->getOperand(0);
9684   SDValue N1 = N->getOperand(1);
9685   unsigned Opcode = N0.getOpcode();
9686   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
9687       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
9688     Opcode = N1.getOpcode();
9689     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
9690         Opcode != ISD::FADD && Opcode != ISD::FSUB)
9691       return SDValue();
9692     std::swap(N0, N1);
9693   }
9694 
9695   if (N0 == N1)
9696     return SDValue();
9697 
9698   EVT VT = N->getValueType(0);
9699   SDLoc DL(N);
9700   SDValue N00 = N0->getOperand(0);
9701   SDValue N01 = N0->getOperand(1);
9702   return DAG.getNode(Opcode, DL, VT,
9703                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
9704                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
9705 }
9706 
9707 static SDValue PerformMULCombine(SDNode *N,
9708                                  TargetLowering::DAGCombinerInfo &DCI,
9709                                  const ARMSubtarget *Subtarget) {
9710   SelectionDAG &DAG = DCI.DAG;
9711 
9712   if (Subtarget->isThumb1Only())
9713     return SDValue();
9714 
9715   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9716     return SDValue();
9717 
9718   EVT VT = N->getValueType(0);
9719   if (VT.is64BitVector() || VT.is128BitVector())
9720     return PerformVMULCombine(N, DCI, Subtarget);
9721   if (VT != MVT::i32)
9722     return SDValue();
9723 
9724   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9725   if (!C)
9726     return SDValue();
9727 
9728   int64_t MulAmt = C->getSExtValue();
9729   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
9730 
9731   ShiftAmt = ShiftAmt & (32 - 1);
9732   SDValue V = N->getOperand(0);
9733   SDLoc DL(N);
9734 
9735   SDValue Res;
9736   MulAmt >>= ShiftAmt;
9737 
9738   if (MulAmt >= 0) {
9739     if (isPowerOf2_32(MulAmt - 1)) {
9740       // (mul x, 2^N + 1) => (add (shl x, N), x)
9741       Res = DAG.getNode(ISD::ADD, DL, VT,
9742                         V,
9743                         DAG.getNode(ISD::SHL, DL, VT,
9744                                     V,
9745                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
9746                                                     MVT::i32)));
9747     } else if (isPowerOf2_32(MulAmt + 1)) {
9748       // (mul x, 2^N - 1) => (sub (shl x, N), x)
9749       Res = DAG.getNode(ISD::SUB, DL, VT,
9750                         DAG.getNode(ISD::SHL, DL, VT,
9751                                     V,
9752                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
9753                                                     MVT::i32)),
9754                         V);
9755     } else
9756       return SDValue();
9757   } else {
9758     uint64_t MulAmtAbs = -MulAmt;
9759     if (isPowerOf2_32(MulAmtAbs + 1)) {
9760       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9761       Res = DAG.getNode(ISD::SUB, DL, VT,
9762                         V,
9763                         DAG.getNode(ISD::SHL, DL, VT,
9764                                     V,
9765                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
9766                                                     MVT::i32)));
9767     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
9768       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9769       Res = DAG.getNode(ISD::ADD, DL, VT,
9770                         V,
9771                         DAG.getNode(ISD::SHL, DL, VT,
9772                                     V,
9773                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
9774                                                     MVT::i32)));
9775       Res = DAG.getNode(ISD::SUB, DL, VT,
9776                         DAG.getConstant(0, DL, MVT::i32), Res);
9777 
9778     } else
9779       return SDValue();
9780   }
9781 
9782   if (ShiftAmt != 0)
9783     Res = DAG.getNode(ISD::SHL, DL, VT,
9784                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
9785 
9786   // Do not add new nodes to DAG combiner worklist.
9787   DCI.CombineTo(N, Res, false);
9788   return SDValue();
9789 }
9790 
9791 static SDValue PerformANDCombine(SDNode *N,
9792                                  TargetLowering::DAGCombinerInfo &DCI,
9793                                  const ARMSubtarget *Subtarget) {
9794 
9795   // Attempt to use immediate-form VBIC
9796   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9797   SDLoc dl(N);
9798   EVT VT = N->getValueType(0);
9799   SelectionDAG &DAG = DCI.DAG;
9800 
9801   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9802     return SDValue();
9803 
9804   APInt SplatBits, SplatUndef;
9805   unsigned SplatBitSize;
9806   bool HasAnyUndefs;
9807   if (BVN &&
9808       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9809     if (SplatBitSize <= 64) {
9810       EVT VbicVT;
9811       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
9812                                       SplatUndef.getZExtValue(), SplatBitSize,
9813                                       DAG, dl, VbicVT, VT.is128BitVector(),
9814                                       OtherModImm);
9815       if (Val.getNode()) {
9816         SDValue Input =
9817           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
9818         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
9819         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
9820       }
9821     }
9822   }
9823 
9824   if (!Subtarget->isThumb1Only()) {
9825     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
9826     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
9827       return Result;
9828   }
9829 
9830   return SDValue();
9831 }
9832 
9833 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
9834 static SDValue PerformORCombine(SDNode *N,
9835                                 TargetLowering::DAGCombinerInfo &DCI,
9836                                 const ARMSubtarget *Subtarget) {
9837   // Attempt to use immediate-form VORR
9838   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9839   SDLoc dl(N);
9840   EVT VT = N->getValueType(0);
9841   SelectionDAG &DAG = DCI.DAG;
9842 
9843   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9844     return SDValue();
9845 
9846   APInt SplatBits, SplatUndef;
9847   unsigned SplatBitSize;
9848   bool HasAnyUndefs;
9849   if (BVN && Subtarget->hasNEON() &&
9850       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9851     if (SplatBitSize <= 64) {
9852       EVT VorrVT;
9853       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
9854                                       SplatUndef.getZExtValue(), SplatBitSize,
9855                                       DAG, dl, VorrVT, VT.is128BitVector(),
9856                                       OtherModImm);
9857       if (Val.getNode()) {
9858         SDValue Input =
9859           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
9860         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
9861         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
9862       }
9863     }
9864   }
9865 
9866   if (!Subtarget->isThumb1Only()) {
9867     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
9868     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9869       return Result;
9870   }
9871 
9872   // The code below optimizes (or (and X, Y), Z).
9873   // The AND operand needs to have a single user to make these optimizations
9874   // profitable.
9875   SDValue N0 = N->getOperand(0);
9876   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
9877     return SDValue();
9878   SDValue N1 = N->getOperand(1);
9879 
9880   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
9881   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
9882       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
9883     APInt SplatUndef;
9884     unsigned SplatBitSize;
9885     bool HasAnyUndefs;
9886 
9887     APInt SplatBits0, SplatBits1;
9888     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
9889     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
9890     // Ensure that the second operand of both ands are constants
9891     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
9892                                       HasAnyUndefs) && !HasAnyUndefs) {
9893         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
9894                                           HasAnyUndefs) && !HasAnyUndefs) {
9895             // Ensure that the bit width of the constants are the same and that
9896             // the splat arguments are logical inverses as per the pattern we
9897             // are trying to simplify.
9898             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
9899                 SplatBits0 == ~SplatBits1) {
9900                 // Canonicalize the vector type to make instruction selection
9901                 // simpler.
9902                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
9903                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
9904                                              N0->getOperand(1),
9905                                              N0->getOperand(0),
9906                                              N1->getOperand(0));
9907                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9908             }
9909         }
9910     }
9911   }
9912 
9913   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
9914   // reasonable.
9915 
9916   // BFI is only available on V6T2+
9917   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
9918     return SDValue();
9919 
9920   SDLoc DL(N);
9921   // 1) or (and A, mask), val => ARMbfi A, val, mask
9922   //      iff (val & mask) == val
9923   //
9924   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9925   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
9926   //          && mask == ~mask2
9927   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
9928   //          && ~mask == mask2
9929   //  (i.e., copy a bitfield value into another bitfield of the same width)
9930 
9931   if (VT != MVT::i32)
9932     return SDValue();
9933 
9934   SDValue N00 = N0.getOperand(0);
9935 
9936   // The value and the mask need to be constants so we can verify this is
9937   // actually a bitfield set. If the mask is 0xffff, we can do better
9938   // via a movt instruction, so don't use BFI in that case.
9939   SDValue MaskOp = N0.getOperand(1);
9940   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
9941   if (!MaskC)
9942     return SDValue();
9943   unsigned Mask = MaskC->getZExtValue();
9944   if (Mask == 0xffff)
9945     return SDValue();
9946   SDValue Res;
9947   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
9948   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9949   if (N1C) {
9950     unsigned Val = N1C->getZExtValue();
9951     if ((Val & ~Mask) != Val)
9952       return SDValue();
9953 
9954     if (ARM::isBitFieldInvertedMask(Mask)) {
9955       Val >>= countTrailingZeros(~Mask);
9956 
9957       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
9958                         DAG.getConstant(Val, DL, MVT::i32),
9959                         DAG.getConstant(Mask, DL, MVT::i32));
9960 
9961       // Do not add new nodes to DAG combiner worklist.
9962       DCI.CombineTo(N, Res, false);
9963       return SDValue();
9964     }
9965   } else if (N1.getOpcode() == ISD::AND) {
9966     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9967     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9968     if (!N11C)
9969       return SDValue();
9970     unsigned Mask2 = N11C->getZExtValue();
9971 
9972     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
9973     // as is to match.
9974     if (ARM::isBitFieldInvertedMask(Mask) &&
9975         (Mask == ~Mask2)) {
9976       // The pack halfword instruction works better for masks that fit it,
9977       // so use that when it's available.
9978       if (Subtarget->hasT2ExtractPack() &&
9979           (Mask == 0xffff || Mask == 0xffff0000))
9980         return SDValue();
9981       // 2a
9982       unsigned amt = countTrailingZeros(Mask2);
9983       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
9984                         DAG.getConstant(amt, DL, MVT::i32));
9985       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
9986                         DAG.getConstant(Mask, DL, MVT::i32));
9987       // Do not add new nodes to DAG combiner worklist.
9988       DCI.CombineTo(N, Res, false);
9989       return SDValue();
9990     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
9991                (~Mask == Mask2)) {
9992       // The pack halfword instruction works better for masks that fit it,
9993       // so use that when it's available.
9994       if (Subtarget->hasT2ExtractPack() &&
9995           (Mask2 == 0xffff || Mask2 == 0xffff0000))
9996         return SDValue();
9997       // 2b
9998       unsigned lsb = countTrailingZeros(Mask);
9999       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
10000                         DAG.getConstant(lsb, DL, MVT::i32));
10001       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
10002                         DAG.getConstant(Mask2, DL, MVT::i32));
10003       // Do not add new nodes to DAG combiner worklist.
10004       DCI.CombineTo(N, Res, false);
10005       return SDValue();
10006     }
10007   }
10008 
10009   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
10010       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
10011       ARM::isBitFieldInvertedMask(~Mask)) {
10012     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
10013     // where lsb(mask) == #shamt and masked bits of B are known zero.
10014     SDValue ShAmt = N00.getOperand(1);
10015     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10016     unsigned LSB = countTrailingZeros(Mask);
10017     if (ShAmtC != LSB)
10018       return SDValue();
10019 
10020     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
10021                       DAG.getConstant(~Mask, DL, MVT::i32));
10022 
10023     // Do not add new nodes to DAG combiner worklist.
10024     DCI.CombineTo(N, Res, false);
10025   }
10026 
10027   return SDValue();
10028 }
10029 
10030 static SDValue PerformXORCombine(SDNode *N,
10031                                  TargetLowering::DAGCombinerInfo &DCI,
10032                                  const ARMSubtarget *Subtarget) {
10033   EVT VT = N->getValueType(0);
10034   SelectionDAG &DAG = DCI.DAG;
10035 
10036   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10037     return SDValue();
10038 
10039   if (!Subtarget->isThumb1Only()) {
10040     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10041     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
10042       return Result;
10043   }
10044 
10045   return SDValue();
10046 }
10047 
10048 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
10049 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
10050 // their position in "to" (Rd).
10051 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
10052   assert(N->getOpcode() == ARMISD::BFI);
10053 
10054   SDValue From = N->getOperand(1);
10055   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
10056   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
10057 
10058   // If the Base came from a SHR #C, we can deduce that it is really testing bit
10059   // #C in the base of the SHR.
10060   if (From->getOpcode() == ISD::SRL &&
10061       isa<ConstantSDNode>(From->getOperand(1))) {
10062     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
10063     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
10064     FromMask <<= Shift.getLimitedValue(31);
10065     From = From->getOperand(0);
10066   }
10067 
10068   return From;
10069 }
10070 
10071 // If A and B contain one contiguous set of bits, does A | B == A . B?
10072 //
10073 // Neither A nor B must be zero.
10074 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
10075   unsigned LastActiveBitInA =  A.countTrailingZeros();
10076   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
10077   return LastActiveBitInA - 1 == FirstActiveBitInB;
10078 }
10079 
10080 static SDValue FindBFIToCombineWith(SDNode *N) {
10081   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
10082   // if one exists.
10083   APInt ToMask, FromMask;
10084   SDValue From = ParseBFI(N, ToMask, FromMask);
10085   SDValue To = N->getOperand(0);
10086 
10087   // Now check for a compatible BFI to merge with. We can pass through BFIs that
10088   // aren't compatible, but not if they set the same bit in their destination as
10089   // we do (or that of any BFI we're going to combine with).
10090   SDValue V = To;
10091   APInt CombinedToMask = ToMask;
10092   while (V.getOpcode() == ARMISD::BFI) {
10093     APInt NewToMask, NewFromMask;
10094     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
10095     if (NewFrom != From) {
10096       // This BFI has a different base. Keep going.
10097       CombinedToMask |= NewToMask;
10098       V = V.getOperand(0);
10099       continue;
10100     }
10101 
10102     // Do the written bits conflict with any we've seen so far?
10103     if ((NewToMask & CombinedToMask).getBoolValue())
10104       // Conflicting bits - bail out because going further is unsafe.
10105       return SDValue();
10106 
10107     // Are the new bits contiguous when combined with the old bits?
10108     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
10109         BitsProperlyConcatenate(FromMask, NewFromMask))
10110       return V;
10111     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
10112         BitsProperlyConcatenate(NewFromMask, FromMask))
10113       return V;
10114 
10115     // We've seen a write to some bits, so track it.
10116     CombinedToMask |= NewToMask;
10117     // Keep going...
10118     V = V.getOperand(0);
10119   }
10120 
10121   return SDValue();
10122 }
10123 
10124 static SDValue PerformBFICombine(SDNode *N,
10125                                  TargetLowering::DAGCombinerInfo &DCI) {
10126   SDValue N1 = N->getOperand(1);
10127   if (N1.getOpcode() == ISD::AND) {
10128     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
10129     // the bits being cleared by the AND are not demanded by the BFI.
10130     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
10131     if (!N11C)
10132       return SDValue();
10133     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
10134     unsigned LSB = countTrailingZeros(~InvMask);
10135     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
10136     assert(Width <
10137                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
10138            "undefined behavior");
10139     unsigned Mask = (1u << Width) - 1;
10140     unsigned Mask2 = N11C->getZExtValue();
10141     if ((Mask & (~Mask2)) == 0)
10142       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
10143                              N->getOperand(0), N1.getOperand(0),
10144                              N->getOperand(2));
10145   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
10146     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
10147     // Keep track of any consecutive bits set that all come from the same base
10148     // value. We can combine these together into a single BFI.
10149     SDValue CombineBFI = FindBFIToCombineWith(N);
10150     if (CombineBFI == SDValue())
10151       return SDValue();
10152 
10153     // We've found a BFI.
10154     APInt ToMask1, FromMask1;
10155     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
10156 
10157     APInt ToMask2, FromMask2;
10158     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
10159     assert(From1 == From2);
10160     (void)From2;
10161 
10162     // First, unlink CombineBFI.
10163     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
10164     // Then create a new BFI, combining the two together.
10165     APInt NewFromMask = FromMask1 | FromMask2;
10166     APInt NewToMask = ToMask1 | ToMask2;
10167 
10168     EVT VT = N->getValueType(0);
10169     SDLoc dl(N);
10170 
10171     if (NewFromMask[0] == 0)
10172       From1 = DCI.DAG.getNode(
10173         ISD::SRL, dl, VT, From1,
10174         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
10175     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
10176                            DCI.DAG.getConstant(~NewToMask, dl, VT));
10177   }
10178   return SDValue();
10179 }
10180 
10181 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
10182 /// ARMISD::VMOVRRD.
10183 static SDValue PerformVMOVRRDCombine(SDNode *N,
10184                                      TargetLowering::DAGCombinerInfo &DCI,
10185                                      const ARMSubtarget *Subtarget) {
10186   // vmovrrd(vmovdrr x, y) -> x,y
10187   SDValue InDouble = N->getOperand(0);
10188   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
10189     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
10190 
10191   // vmovrrd(load f64) -> (load i32), (load i32)
10192   SDNode *InNode = InDouble.getNode();
10193   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
10194       InNode->getValueType(0) == MVT::f64 &&
10195       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
10196       !cast<LoadSDNode>(InNode)->isVolatile()) {
10197     // TODO: Should this be done for non-FrameIndex operands?
10198     LoadSDNode *LD = cast<LoadSDNode>(InNode);
10199 
10200     SelectionDAG &DAG = DCI.DAG;
10201     SDLoc DL(LD);
10202     SDValue BasePtr = LD->getBasePtr();
10203     SDValue NewLD1 =
10204         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
10205                     LD->getAlignment(), LD->getMemOperand()->getFlags());
10206 
10207     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
10208                                     DAG.getConstant(4, DL, MVT::i32));
10209     SDValue NewLD2 = DAG.getLoad(
10210         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
10211         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
10212 
10213     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
10214     if (DCI.DAG.getDataLayout().isBigEndian())
10215       std::swap (NewLD1, NewLD2);
10216     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
10217     return Result;
10218   }
10219 
10220   return SDValue();
10221 }
10222 
10223 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
10224 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
10225 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
10226   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
10227   SDValue Op0 = N->getOperand(0);
10228   SDValue Op1 = N->getOperand(1);
10229   if (Op0.getOpcode() == ISD::BITCAST)
10230     Op0 = Op0.getOperand(0);
10231   if (Op1.getOpcode() == ISD::BITCAST)
10232     Op1 = Op1.getOperand(0);
10233   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
10234       Op0.getNode() == Op1.getNode() &&
10235       Op0.getResNo() == 0 && Op1.getResNo() == 1)
10236     return DAG.getNode(ISD::BITCAST, SDLoc(N),
10237                        N->getValueType(0), Op0.getOperand(0));
10238   return SDValue();
10239 }
10240 
10241 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
10242 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
10243 /// i64 vector to have f64 elements, since the value can then be loaded
10244 /// directly into a VFP register.
10245 static bool hasNormalLoadOperand(SDNode *N) {
10246   unsigned NumElts = N->getValueType(0).getVectorNumElements();
10247   for (unsigned i = 0; i < NumElts; ++i) {
10248     SDNode *Elt = N->getOperand(i).getNode();
10249     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
10250       return true;
10251   }
10252   return false;
10253 }
10254 
10255 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
10256 /// ISD::BUILD_VECTOR.
10257 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
10258                                           TargetLowering::DAGCombinerInfo &DCI,
10259                                           const ARMSubtarget *Subtarget) {
10260   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
10261   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
10262   // into a pair of GPRs, which is fine when the value is used as a scalar,
10263   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
10264   SelectionDAG &DAG = DCI.DAG;
10265   if (N->getNumOperands() == 2)
10266     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
10267       return RV;
10268 
10269   // Load i64 elements as f64 values so that type legalization does not split
10270   // them up into i32 values.
10271   EVT VT = N->getValueType(0);
10272   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
10273     return SDValue();
10274   SDLoc dl(N);
10275   SmallVector<SDValue, 8> Ops;
10276   unsigned NumElts = VT.getVectorNumElements();
10277   for (unsigned i = 0; i < NumElts; ++i) {
10278     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
10279     Ops.push_back(V);
10280     // Make the DAGCombiner fold the bitcast.
10281     DCI.AddToWorklist(V.getNode());
10282   }
10283   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
10284   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
10285   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
10286 }
10287 
10288 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
10289 static SDValue
10290 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
10291   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
10292   // At that time, we may have inserted bitcasts from integer to float.
10293   // If these bitcasts have survived DAGCombine, change the lowering of this
10294   // BUILD_VECTOR in something more vector friendly, i.e., that does not
10295   // force to use floating point types.
10296 
10297   // Make sure we can change the type of the vector.
10298   // This is possible iff:
10299   // 1. The vector is only used in a bitcast to a integer type. I.e.,
10300   //    1.1. Vector is used only once.
10301   //    1.2. Use is a bit convert to an integer type.
10302   // 2. The size of its operands are 32-bits (64-bits are not legal).
10303   EVT VT = N->getValueType(0);
10304   EVT EltVT = VT.getVectorElementType();
10305 
10306   // Check 1.1. and 2.
10307   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
10308     return SDValue();
10309 
10310   // By construction, the input type must be float.
10311   assert(EltVT == MVT::f32 && "Unexpected type!");
10312 
10313   // Check 1.2.
10314   SDNode *Use = *N->use_begin();
10315   if (Use->getOpcode() != ISD::BITCAST ||
10316       Use->getValueType(0).isFloatingPoint())
10317     return SDValue();
10318 
10319   // Check profitability.
10320   // Model is, if more than half of the relevant operands are bitcast from
10321   // i32, turn the build_vector into a sequence of insert_vector_elt.
10322   // Relevant operands are everything that is not statically
10323   // (i.e., at compile time) bitcasted.
10324   unsigned NumOfBitCastedElts = 0;
10325   unsigned NumElts = VT.getVectorNumElements();
10326   unsigned NumOfRelevantElts = NumElts;
10327   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
10328     SDValue Elt = N->getOperand(Idx);
10329     if (Elt->getOpcode() == ISD::BITCAST) {
10330       // Assume only bit cast to i32 will go away.
10331       if (Elt->getOperand(0).getValueType() == MVT::i32)
10332         ++NumOfBitCastedElts;
10333     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
10334       // Constants are statically casted, thus do not count them as
10335       // relevant operands.
10336       --NumOfRelevantElts;
10337   }
10338 
10339   // Check if more than half of the elements require a non-free bitcast.
10340   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
10341     return SDValue();
10342 
10343   SelectionDAG &DAG = DCI.DAG;
10344   // Create the new vector type.
10345   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
10346   // Check if the type is legal.
10347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10348   if (!TLI.isTypeLegal(VecVT))
10349     return SDValue();
10350 
10351   // Combine:
10352   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
10353   // => BITCAST INSERT_VECTOR_ELT
10354   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
10355   //                      (BITCAST EN), N.
10356   SDValue Vec = DAG.getUNDEF(VecVT);
10357   SDLoc dl(N);
10358   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
10359     SDValue V = N->getOperand(Idx);
10360     if (V.isUndef())
10361       continue;
10362     if (V.getOpcode() == ISD::BITCAST &&
10363         V->getOperand(0).getValueType() == MVT::i32)
10364       // Fold obvious case.
10365       V = V.getOperand(0);
10366     else {
10367       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
10368       // Make the DAGCombiner fold the bitcasts.
10369       DCI.AddToWorklist(V.getNode());
10370     }
10371     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
10372     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
10373   }
10374   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
10375   // Make the DAGCombiner fold the bitcasts.
10376   DCI.AddToWorklist(Vec.getNode());
10377   return Vec;
10378 }
10379 
10380 /// PerformInsertEltCombine - Target-specific dag combine xforms for
10381 /// ISD::INSERT_VECTOR_ELT.
10382 static SDValue PerformInsertEltCombine(SDNode *N,
10383                                        TargetLowering::DAGCombinerInfo &DCI) {
10384   // Bitcast an i64 load inserted into a vector to f64.
10385   // Otherwise, the i64 value will be legalized to a pair of i32 values.
10386   EVT VT = N->getValueType(0);
10387   SDNode *Elt = N->getOperand(1).getNode();
10388   if (VT.getVectorElementType() != MVT::i64 ||
10389       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
10390     return SDValue();
10391 
10392   SelectionDAG &DAG = DCI.DAG;
10393   SDLoc dl(N);
10394   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
10395                                  VT.getVectorNumElements());
10396   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
10397   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
10398   // Make the DAGCombiner fold the bitcasts.
10399   DCI.AddToWorklist(Vec.getNode());
10400   DCI.AddToWorklist(V.getNode());
10401   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
10402                                Vec, V, N->getOperand(2));
10403   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
10404 }
10405 
10406 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
10407 /// ISD::VECTOR_SHUFFLE.
10408 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
10409   // The LLVM shufflevector instruction does not require the shuffle mask
10410   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
10411   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
10412   // operands do not match the mask length, they are extended by concatenating
10413   // them with undef vectors.  That is probably the right thing for other
10414   // targets, but for NEON it is better to concatenate two double-register
10415   // size vector operands into a single quad-register size vector.  Do that
10416   // transformation here:
10417   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
10418   //   shuffle(concat(v1, v2), undef)
10419   SDValue Op0 = N->getOperand(0);
10420   SDValue Op1 = N->getOperand(1);
10421   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
10422       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
10423       Op0.getNumOperands() != 2 ||
10424       Op1.getNumOperands() != 2)
10425     return SDValue();
10426   SDValue Concat0Op1 = Op0.getOperand(1);
10427   SDValue Concat1Op1 = Op1.getOperand(1);
10428   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
10429     return SDValue();
10430   // Skip the transformation if any of the types are illegal.
10431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10432   EVT VT = N->getValueType(0);
10433   if (!TLI.isTypeLegal(VT) ||
10434       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
10435       !TLI.isTypeLegal(Concat1Op1.getValueType()))
10436     return SDValue();
10437 
10438   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
10439                                   Op0.getOperand(0), Op1.getOperand(0));
10440   // Translate the shuffle mask.
10441   SmallVector<int, 16> NewMask;
10442   unsigned NumElts = VT.getVectorNumElements();
10443   unsigned HalfElts = NumElts/2;
10444   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10445   for (unsigned n = 0; n < NumElts; ++n) {
10446     int MaskElt = SVN->getMaskElt(n);
10447     int NewElt = -1;
10448     if (MaskElt < (int)HalfElts)
10449       NewElt = MaskElt;
10450     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
10451       NewElt = HalfElts + MaskElt - NumElts;
10452     NewMask.push_back(NewElt);
10453   }
10454   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
10455                               DAG.getUNDEF(VT), NewMask);
10456 }
10457 
10458 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
10459 /// NEON load/store intrinsics, and generic vector load/stores, to merge
10460 /// base address updates.
10461 /// For generic load/stores, the memory type is assumed to be a vector.
10462 /// The caller is assumed to have checked legality.
10463 static SDValue CombineBaseUpdate(SDNode *N,
10464                                  TargetLowering::DAGCombinerInfo &DCI) {
10465   SelectionDAG &DAG = DCI.DAG;
10466   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
10467                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
10468   const bool isStore = N->getOpcode() == ISD::STORE;
10469   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
10470   SDValue Addr = N->getOperand(AddrOpIdx);
10471   MemSDNode *MemN = cast<MemSDNode>(N);
10472   SDLoc dl(N);
10473 
10474   // Search for a use of the address operand that is an increment.
10475   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
10476          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
10477     SDNode *User = *UI;
10478     if (User->getOpcode() != ISD::ADD ||
10479         UI.getUse().getResNo() != Addr.getResNo())
10480       continue;
10481 
10482     // Check that the add is independent of the load/store.  Otherwise, folding
10483     // it would create a cycle.
10484     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
10485       continue;
10486 
10487     // Find the new opcode for the updating load/store.
10488     bool isLoadOp = true;
10489     bool isLaneOp = false;
10490     unsigned NewOpc = 0;
10491     unsigned NumVecs = 0;
10492     if (isIntrinsic) {
10493       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10494       switch (IntNo) {
10495       default: llvm_unreachable("unexpected intrinsic for Neon base update");
10496       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
10497         NumVecs = 1; break;
10498       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
10499         NumVecs = 2; break;
10500       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
10501         NumVecs = 3; break;
10502       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
10503         NumVecs = 4; break;
10504       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
10505         NumVecs = 2; isLaneOp = true; break;
10506       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
10507         NumVecs = 3; isLaneOp = true; break;
10508       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
10509         NumVecs = 4; isLaneOp = true; break;
10510       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
10511         NumVecs = 1; isLoadOp = false; break;
10512       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
10513         NumVecs = 2; isLoadOp = false; break;
10514       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
10515         NumVecs = 3; isLoadOp = false; break;
10516       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
10517         NumVecs = 4; isLoadOp = false; break;
10518       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
10519         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
10520       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
10521         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
10522       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
10523         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
10524       }
10525     } else {
10526       isLaneOp = true;
10527       switch (N->getOpcode()) {
10528       default: llvm_unreachable("unexpected opcode for Neon base update");
10529       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
10530       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
10531       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
10532       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
10533       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
10534         NumVecs = 1; isLaneOp = false; break;
10535       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
10536         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
10537       }
10538     }
10539 
10540     // Find the size of memory referenced by the load/store.
10541     EVT VecTy;
10542     if (isLoadOp) {
10543       VecTy = N->getValueType(0);
10544     } else if (isIntrinsic) {
10545       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
10546     } else {
10547       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
10548       VecTy = N->getOperand(1).getValueType();
10549     }
10550 
10551     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
10552     if (isLaneOp)
10553       NumBytes /= VecTy.getVectorNumElements();
10554 
10555     // If the increment is a constant, it must match the memory ref size.
10556     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10557     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10558       uint64_t IncVal = CInc->getZExtValue();
10559       if (IncVal != NumBytes)
10560         continue;
10561     } else if (NumBytes >= 3 * 16) {
10562       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
10563       // separate instructions that make it harder to use a non-constant update.
10564       continue;
10565     }
10566 
10567     // OK, we found an ADD we can fold into the base update.
10568     // Now, create a _UPD node, taking care of not breaking alignment.
10569 
10570     EVT AlignedVecTy = VecTy;
10571     unsigned Alignment = MemN->getAlignment();
10572 
10573     // If this is a less-than-standard-aligned load/store, change the type to
10574     // match the standard alignment.
10575     // The alignment is overlooked when selecting _UPD variants; and it's
10576     // easier to introduce bitcasts here than fix that.
10577     // There are 3 ways to get to this base-update combine:
10578     // - intrinsics: they are assumed to be properly aligned (to the standard
10579     //   alignment of the memory type), so we don't need to do anything.
10580     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
10581     //   intrinsics, so, likewise, there's nothing to do.
10582     // - generic load/store instructions: the alignment is specified as an
10583     //   explicit operand, rather than implicitly as the standard alignment
10584     //   of the memory type (like the intrisics).  We need to change the
10585     //   memory type to match the explicit alignment.  That way, we don't
10586     //   generate non-standard-aligned ARMISD::VLDx nodes.
10587     if (isa<LSBaseSDNode>(N)) {
10588       if (Alignment == 0)
10589         Alignment = 1;
10590       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
10591         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
10592         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
10593         assert(!isLaneOp && "Unexpected generic load/store lane.");
10594         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
10595         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
10596       }
10597       // Don't set an explicit alignment on regular load/stores that we want
10598       // to transform to VLD/VST 1_UPD nodes.
10599       // This matches the behavior of regular load/stores, which only get an
10600       // explicit alignment if the MMO alignment is larger than the standard
10601       // alignment of the memory type.
10602       // Intrinsics, however, always get an explicit alignment, set to the
10603       // alignment of the MMO.
10604       Alignment = 1;
10605     }
10606 
10607     // Create the new updating load/store node.
10608     // First, create an SDVTList for the new updating node's results.
10609     EVT Tys[6];
10610     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
10611     unsigned n;
10612     for (n = 0; n < NumResultVecs; ++n)
10613       Tys[n] = AlignedVecTy;
10614     Tys[n++] = MVT::i32;
10615     Tys[n] = MVT::Other;
10616     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
10617 
10618     // Then, gather the new node's operands.
10619     SmallVector<SDValue, 8> Ops;
10620     Ops.push_back(N->getOperand(0)); // incoming chain
10621     Ops.push_back(N->getOperand(AddrOpIdx));
10622     Ops.push_back(Inc);
10623 
10624     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
10625       // Try to match the intrinsic's signature
10626       Ops.push_back(StN->getValue());
10627     } else {
10628       // Loads (and of course intrinsics) match the intrinsics' signature,
10629       // so just add all but the alignment operand.
10630       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
10631         Ops.push_back(N->getOperand(i));
10632     }
10633 
10634     // For all node types, the alignment operand is always the last one.
10635     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
10636 
10637     // If this is a non-standard-aligned STORE, the penultimate operand is the
10638     // stored value.  Bitcast it to the aligned type.
10639     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
10640       SDValue &StVal = Ops[Ops.size()-2];
10641       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
10642     }
10643 
10644     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
10645     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
10646                                            MemN->getMemOperand());
10647 
10648     // Update the uses.
10649     SmallVector<SDValue, 5> NewResults;
10650     for (unsigned i = 0; i < NumResultVecs; ++i)
10651       NewResults.push_back(SDValue(UpdN.getNode(), i));
10652 
10653     // If this is an non-standard-aligned LOAD, the first result is the loaded
10654     // value.  Bitcast it to the expected result type.
10655     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
10656       SDValue &LdVal = NewResults[0];
10657       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
10658     }
10659 
10660     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
10661     DCI.CombineTo(N, NewResults);
10662     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
10663 
10664     break;
10665   }
10666   return SDValue();
10667 }
10668 
10669 static SDValue PerformVLDCombine(SDNode *N,
10670                                  TargetLowering::DAGCombinerInfo &DCI) {
10671   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10672     return SDValue();
10673 
10674   return CombineBaseUpdate(N, DCI);
10675 }
10676 
10677 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
10678 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
10679 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
10680 /// return true.
10681 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
10682   SelectionDAG &DAG = DCI.DAG;
10683   EVT VT = N->getValueType(0);
10684   // vldN-dup instructions only support 64-bit vectors for N > 1.
10685   if (!VT.is64BitVector())
10686     return false;
10687 
10688   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
10689   SDNode *VLD = N->getOperand(0).getNode();
10690   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
10691     return false;
10692   unsigned NumVecs = 0;
10693   unsigned NewOpc = 0;
10694   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
10695   if (IntNo == Intrinsic::arm_neon_vld2lane) {
10696     NumVecs = 2;
10697     NewOpc = ARMISD::VLD2DUP;
10698   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
10699     NumVecs = 3;
10700     NewOpc = ARMISD::VLD3DUP;
10701   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
10702     NumVecs = 4;
10703     NewOpc = ARMISD::VLD4DUP;
10704   } else {
10705     return false;
10706   }
10707 
10708   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
10709   // numbers match the load.
10710   unsigned VLDLaneNo =
10711     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
10712   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
10713        UI != UE; ++UI) {
10714     // Ignore uses of the chain result.
10715     if (UI.getUse().getResNo() == NumVecs)
10716       continue;
10717     SDNode *User = *UI;
10718     if (User->getOpcode() != ARMISD::VDUPLANE ||
10719         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
10720       return false;
10721   }
10722 
10723   // Create the vldN-dup node.
10724   EVT Tys[5];
10725   unsigned n;
10726   for (n = 0; n < NumVecs; ++n)
10727     Tys[n] = VT;
10728   Tys[n] = MVT::Other;
10729   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
10730   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
10731   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
10732   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
10733                                            Ops, VLDMemInt->getMemoryVT(),
10734                                            VLDMemInt->getMemOperand());
10735 
10736   // Update the uses.
10737   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
10738        UI != UE; ++UI) {
10739     unsigned ResNo = UI.getUse().getResNo();
10740     // Ignore uses of the chain result.
10741     if (ResNo == NumVecs)
10742       continue;
10743     SDNode *User = *UI;
10744     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
10745   }
10746 
10747   // Now the vldN-lane intrinsic is dead except for its chain result.
10748   // Update uses of the chain.
10749   std::vector<SDValue> VLDDupResults;
10750   for (unsigned n = 0; n < NumVecs; ++n)
10751     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
10752   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
10753   DCI.CombineTo(VLD, VLDDupResults);
10754 
10755   return true;
10756 }
10757 
10758 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
10759 /// ARMISD::VDUPLANE.
10760 static SDValue PerformVDUPLANECombine(SDNode *N,
10761                                       TargetLowering::DAGCombinerInfo &DCI) {
10762   SDValue Op = N->getOperand(0);
10763 
10764   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
10765   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
10766   if (CombineVLDDUP(N, DCI))
10767     return SDValue(N, 0);
10768 
10769   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
10770   // redundant.  Ignore bit_converts for now; element sizes are checked below.
10771   while (Op.getOpcode() == ISD::BITCAST)
10772     Op = Op.getOperand(0);
10773   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
10774     return SDValue();
10775 
10776   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
10777   unsigned EltSize = Op.getScalarValueSizeInBits();
10778   // The canonical VMOV for a zero vector uses a 32-bit element size.
10779   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10780   unsigned EltBits;
10781   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
10782     EltSize = 8;
10783   EVT VT = N->getValueType(0);
10784   if (EltSize > VT.getScalarSizeInBits())
10785     return SDValue();
10786 
10787   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
10788 }
10789 
10790 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
10791 static SDValue PerformVDUPCombine(SDNode *N,
10792                                   TargetLowering::DAGCombinerInfo &DCI) {
10793   SelectionDAG &DAG = DCI.DAG;
10794   SDValue Op = N->getOperand(0);
10795 
10796   // Match VDUP(LOAD) -> VLD1DUP.
10797   // We match this pattern here rather than waiting for isel because the
10798   // transform is only legal for unindexed loads.
10799   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
10800   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
10801       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
10802     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
10803                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
10804     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
10805     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
10806                                              Ops, LD->getMemoryVT(),
10807                                              LD->getMemOperand());
10808     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
10809     return VLDDup;
10810   }
10811 
10812   return SDValue();
10813 }
10814 
10815 static SDValue PerformLOADCombine(SDNode *N,
10816                                   TargetLowering::DAGCombinerInfo &DCI) {
10817   EVT VT = N->getValueType(0);
10818 
10819   // If this is a legal vector load, try to combine it into a VLD1_UPD.
10820   if (ISD::isNormalLoad(N) && VT.isVector() &&
10821       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10822     return CombineBaseUpdate(N, DCI);
10823 
10824   return SDValue();
10825 }
10826 
10827 /// PerformSTORECombine - Target-specific dag combine xforms for
10828 /// ISD::STORE.
10829 static SDValue PerformSTORECombine(SDNode *N,
10830                                    TargetLowering::DAGCombinerInfo &DCI) {
10831   StoreSDNode *St = cast<StoreSDNode>(N);
10832   if (St->isVolatile())
10833     return SDValue();
10834 
10835   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
10836   // pack all of the elements in one place.  Next, store to memory in fewer
10837   // chunks.
10838   SDValue StVal = St->getValue();
10839   EVT VT = StVal.getValueType();
10840   if (St->isTruncatingStore() && VT.isVector()) {
10841     SelectionDAG &DAG = DCI.DAG;
10842     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10843     EVT StVT = St->getMemoryVT();
10844     unsigned NumElems = VT.getVectorNumElements();
10845     assert(StVT != VT && "Cannot truncate to the same type");
10846     unsigned FromEltSz = VT.getScalarSizeInBits();
10847     unsigned ToEltSz = StVT.getScalarSizeInBits();
10848 
10849     // From, To sizes and ElemCount must be pow of two
10850     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
10851 
10852     // We are going to use the original vector elt for storing.
10853     // Accumulated smaller vector elements must be a multiple of the store size.
10854     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
10855 
10856     unsigned SizeRatio  = FromEltSz / ToEltSz;
10857     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
10858 
10859     // Create a type on which we perform the shuffle.
10860     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
10861                                      NumElems*SizeRatio);
10862     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
10863 
10864     SDLoc DL(St);
10865     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
10866     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
10867     for (unsigned i = 0; i < NumElems; ++i)
10868       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
10869                           ? (i + 1) * SizeRatio - 1
10870                           : i * SizeRatio;
10871 
10872     // Can't shuffle using an illegal type.
10873     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
10874 
10875     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
10876                                 DAG.getUNDEF(WideVec.getValueType()),
10877                                 ShuffleVec);
10878     // At this point all of the data is stored at the bottom of the
10879     // register. We now need to save it to mem.
10880 
10881     // Find the largest store unit
10882     MVT StoreType = MVT::i8;
10883     for (MVT Tp : MVT::integer_valuetypes()) {
10884       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
10885         StoreType = Tp;
10886     }
10887     // Didn't find a legal store type.
10888     if (!TLI.isTypeLegal(StoreType))
10889       return SDValue();
10890 
10891     // Bitcast the original vector into a vector of store-size units
10892     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
10893             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
10894     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
10895     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
10896     SmallVector<SDValue, 8> Chains;
10897     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
10898                                         TLI.getPointerTy(DAG.getDataLayout()));
10899     SDValue BasePtr = St->getBasePtr();
10900 
10901     // Perform one or more big stores into memory.
10902     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
10903     for (unsigned I = 0; I < E; I++) {
10904       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
10905                                    StoreType, ShuffWide,
10906                                    DAG.getIntPtrConstant(I, DL));
10907       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
10908                                 St->getPointerInfo(), St->getAlignment(),
10909                                 St->getMemOperand()->getFlags());
10910       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
10911                             Increment);
10912       Chains.push_back(Ch);
10913     }
10914     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
10915   }
10916 
10917   if (!ISD::isNormalStore(St))
10918     return SDValue();
10919 
10920   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
10921   // ARM stores of arguments in the same cache line.
10922   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
10923       StVal.getNode()->hasOneUse()) {
10924     SelectionDAG  &DAG = DCI.DAG;
10925     bool isBigEndian = DAG.getDataLayout().isBigEndian();
10926     SDLoc DL(St);
10927     SDValue BasePtr = St->getBasePtr();
10928     SDValue NewST1 = DAG.getStore(
10929         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
10930         BasePtr, St->getPointerInfo(), St->getAlignment(),
10931         St->getMemOperand()->getFlags());
10932 
10933     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
10934                                     DAG.getConstant(4, DL, MVT::i32));
10935     return DAG.getStore(NewST1.getValue(0), DL,
10936                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
10937                         OffsetPtr, St->getPointerInfo(),
10938                         std::min(4U, St->getAlignment() / 2),
10939                         St->getMemOperand()->getFlags());
10940   }
10941 
10942   if (StVal.getValueType() == MVT::i64 &&
10943       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10944 
10945     // Bitcast an i64 store extracted from a vector to f64.
10946     // Otherwise, the i64 value will be legalized to a pair of i32 values.
10947     SelectionDAG &DAG = DCI.DAG;
10948     SDLoc dl(StVal);
10949     SDValue IntVec = StVal.getOperand(0);
10950     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
10951                                    IntVec.getValueType().getVectorNumElements());
10952     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
10953     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
10954                                  Vec, StVal.getOperand(1));
10955     dl = SDLoc(N);
10956     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
10957     // Make the DAGCombiner fold the bitcasts.
10958     DCI.AddToWorklist(Vec.getNode());
10959     DCI.AddToWorklist(ExtElt.getNode());
10960     DCI.AddToWorklist(V.getNode());
10961     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
10962                         St->getPointerInfo(), St->getAlignment(),
10963                         St->getMemOperand()->getFlags(), St->getAAInfo());
10964   }
10965 
10966   // If this is a legal vector store, try to combine it into a VST1_UPD.
10967   if (ISD::isNormalStore(N) && VT.isVector() &&
10968       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10969     return CombineBaseUpdate(N, DCI);
10970 
10971   return SDValue();
10972 }
10973 
10974 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
10975 /// can replace combinations of VMUL and VCVT (floating-point to integer)
10976 /// when the VMUL has a constant operand that is a power of 2.
10977 ///
10978 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10979 ///  vmul.f32        d16, d17, d16
10980 ///  vcvt.s32.f32    d16, d16
10981 /// becomes:
10982 ///  vcvt.s32.f32    d16, d16, #3
10983 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
10984                                   const ARMSubtarget *Subtarget) {
10985   if (!Subtarget->hasNEON())
10986     return SDValue();
10987 
10988   SDValue Op = N->getOperand(0);
10989   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
10990       Op.getOpcode() != ISD::FMUL)
10991     return SDValue();
10992 
10993   SDValue ConstVec = Op->getOperand(1);
10994   if (!isa<BuildVectorSDNode>(ConstVec))
10995     return SDValue();
10996 
10997   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
10998   uint32_t FloatBits = FloatTy.getSizeInBits();
10999   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
11000   uint32_t IntBits = IntTy.getSizeInBits();
11001   unsigned NumLanes = Op.getValueType().getVectorNumElements();
11002   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
11003     // These instructions only exist converting from f32 to i32. We can handle
11004     // smaller integers by generating an extra truncate, but larger ones would
11005     // be lossy. We also can't handle more then 4 lanes, since these intructions
11006     // only support v2i32/v4i32 types.
11007     return SDValue();
11008   }
11009 
11010   BitVector UndefElements;
11011   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
11012   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
11013   if (C == -1 || C == 0 || C > 32)
11014     return SDValue();
11015 
11016   SDLoc dl(N);
11017   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
11018   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
11019     Intrinsic::arm_neon_vcvtfp2fxu;
11020   SDValue FixConv = DAG.getNode(
11021       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
11022       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
11023       DAG.getConstant(C, dl, MVT::i32));
11024 
11025   if (IntBits < FloatBits)
11026     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
11027 
11028   return FixConv;
11029 }
11030 
11031 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
11032 /// can replace combinations of VCVT (integer to floating-point) and VDIV
11033 /// when the VDIV has a constant operand that is a power of 2.
11034 ///
11035 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
11036 ///  vcvt.f32.s32    d16, d16
11037 ///  vdiv.f32        d16, d17, d16
11038 /// becomes:
11039 ///  vcvt.f32.s32    d16, d16, #3
11040 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
11041                                   const ARMSubtarget *Subtarget) {
11042   if (!Subtarget->hasNEON())
11043     return SDValue();
11044 
11045   SDValue Op = N->getOperand(0);
11046   unsigned OpOpcode = Op.getNode()->getOpcode();
11047   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
11048       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
11049     return SDValue();
11050 
11051   SDValue ConstVec = N->getOperand(1);
11052   if (!isa<BuildVectorSDNode>(ConstVec))
11053     return SDValue();
11054 
11055   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
11056   uint32_t FloatBits = FloatTy.getSizeInBits();
11057   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
11058   uint32_t IntBits = IntTy.getSizeInBits();
11059   unsigned NumLanes = Op.getValueType().getVectorNumElements();
11060   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
11061     // These instructions only exist converting from i32 to f32. We can handle
11062     // smaller integers by generating an extra extend, but larger ones would
11063     // be lossy. We also can't handle more then 4 lanes, since these intructions
11064     // only support v2i32/v4i32 types.
11065     return SDValue();
11066   }
11067 
11068   BitVector UndefElements;
11069   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
11070   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
11071   if (C == -1 || C == 0 || C > 32)
11072     return SDValue();
11073 
11074   SDLoc dl(N);
11075   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
11076   SDValue ConvInput = Op.getOperand(0);
11077   if (IntBits < FloatBits)
11078     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
11079                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
11080                             ConvInput);
11081 
11082   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
11083     Intrinsic::arm_neon_vcvtfxu2fp;
11084   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
11085                      Op.getValueType(),
11086                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
11087                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
11088 }
11089 
11090 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
11091 /// operand of a vector shift operation, where all the elements of the
11092 /// build_vector must have the same constant integer value.
11093 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
11094   // Ignore bit_converts.
11095   while (Op.getOpcode() == ISD::BITCAST)
11096     Op = Op.getOperand(0);
11097   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
11098   APInt SplatBits, SplatUndef;
11099   unsigned SplatBitSize;
11100   bool HasAnyUndefs;
11101   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
11102                                       HasAnyUndefs, ElementBits) ||
11103       SplatBitSize > ElementBits)
11104     return false;
11105   Cnt = SplatBits.getSExtValue();
11106   return true;
11107 }
11108 
11109 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
11110 /// operand of a vector shift left operation.  That value must be in the range:
11111 ///   0 <= Value < ElementBits for a left shift; or
11112 ///   0 <= Value <= ElementBits for a long left shift.
11113 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
11114   assert(VT.isVector() && "vector shift count is not a vector type");
11115   int64_t ElementBits = VT.getScalarSizeInBits();
11116   if (! getVShiftImm(Op, ElementBits, Cnt))
11117     return false;
11118   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
11119 }
11120 
11121 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
11122 /// operand of a vector shift right operation.  For a shift opcode, the value
11123 /// is positive, but for an intrinsic the value count must be negative. The
11124 /// absolute value must be in the range:
11125 ///   1 <= |Value| <= ElementBits for a right shift; or
11126 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
11127 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
11128                          int64_t &Cnt) {
11129   assert(VT.isVector() && "vector shift count is not a vector type");
11130   int64_t ElementBits = VT.getScalarSizeInBits();
11131   if (! getVShiftImm(Op, ElementBits, Cnt))
11132     return false;
11133   if (!isIntrinsic)
11134     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
11135   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
11136     Cnt = -Cnt;
11137     return true;
11138   }
11139   return false;
11140 }
11141 
11142 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
11143 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
11144   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
11145   switch (IntNo) {
11146   default:
11147     // Don't do anything for most intrinsics.
11148     break;
11149 
11150   // Vector shifts: check for immediate versions and lower them.
11151   // Note: This is done during DAG combining instead of DAG legalizing because
11152   // the build_vectors for 64-bit vector element shift counts are generally
11153   // not legal, and it is hard to see their values after they get legalized to
11154   // loads from a constant pool.
11155   case Intrinsic::arm_neon_vshifts:
11156   case Intrinsic::arm_neon_vshiftu:
11157   case Intrinsic::arm_neon_vrshifts:
11158   case Intrinsic::arm_neon_vrshiftu:
11159   case Intrinsic::arm_neon_vrshiftn:
11160   case Intrinsic::arm_neon_vqshifts:
11161   case Intrinsic::arm_neon_vqshiftu:
11162   case Intrinsic::arm_neon_vqshiftsu:
11163   case Intrinsic::arm_neon_vqshiftns:
11164   case Intrinsic::arm_neon_vqshiftnu:
11165   case Intrinsic::arm_neon_vqshiftnsu:
11166   case Intrinsic::arm_neon_vqrshiftns:
11167   case Intrinsic::arm_neon_vqrshiftnu:
11168   case Intrinsic::arm_neon_vqrshiftnsu: {
11169     EVT VT = N->getOperand(1).getValueType();
11170     int64_t Cnt;
11171     unsigned VShiftOpc = 0;
11172 
11173     switch (IntNo) {
11174     case Intrinsic::arm_neon_vshifts:
11175     case Intrinsic::arm_neon_vshiftu:
11176       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
11177         VShiftOpc = ARMISD::VSHL;
11178         break;
11179       }
11180       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
11181         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
11182                      ARMISD::VSHRs : ARMISD::VSHRu);
11183         break;
11184       }
11185       return SDValue();
11186 
11187     case Intrinsic::arm_neon_vrshifts:
11188     case Intrinsic::arm_neon_vrshiftu:
11189       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
11190         break;
11191       return SDValue();
11192 
11193     case Intrinsic::arm_neon_vqshifts:
11194     case Intrinsic::arm_neon_vqshiftu:
11195       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
11196         break;
11197       return SDValue();
11198 
11199     case Intrinsic::arm_neon_vqshiftsu:
11200       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
11201         break;
11202       llvm_unreachable("invalid shift count for vqshlu intrinsic");
11203 
11204     case Intrinsic::arm_neon_vrshiftn:
11205     case Intrinsic::arm_neon_vqshiftns:
11206     case Intrinsic::arm_neon_vqshiftnu:
11207     case Intrinsic::arm_neon_vqshiftnsu:
11208     case Intrinsic::arm_neon_vqrshiftns:
11209     case Intrinsic::arm_neon_vqrshiftnu:
11210     case Intrinsic::arm_neon_vqrshiftnsu:
11211       // Narrowing shifts require an immediate right shift.
11212       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
11213         break;
11214       llvm_unreachable("invalid shift count for narrowing vector shift "
11215                        "intrinsic");
11216 
11217     default:
11218       llvm_unreachable("unhandled vector shift");
11219     }
11220 
11221     switch (IntNo) {
11222     case Intrinsic::arm_neon_vshifts:
11223     case Intrinsic::arm_neon_vshiftu:
11224       // Opcode already set above.
11225       break;
11226     case Intrinsic::arm_neon_vrshifts:
11227       VShiftOpc = ARMISD::VRSHRs; break;
11228     case Intrinsic::arm_neon_vrshiftu:
11229       VShiftOpc = ARMISD::VRSHRu; break;
11230     case Intrinsic::arm_neon_vrshiftn:
11231       VShiftOpc = ARMISD::VRSHRN; break;
11232     case Intrinsic::arm_neon_vqshifts:
11233       VShiftOpc = ARMISD::VQSHLs; break;
11234     case Intrinsic::arm_neon_vqshiftu:
11235       VShiftOpc = ARMISD::VQSHLu; break;
11236     case Intrinsic::arm_neon_vqshiftsu:
11237       VShiftOpc = ARMISD::VQSHLsu; break;
11238     case Intrinsic::arm_neon_vqshiftns:
11239       VShiftOpc = ARMISD::VQSHRNs; break;
11240     case Intrinsic::arm_neon_vqshiftnu:
11241       VShiftOpc = ARMISD::VQSHRNu; break;
11242     case Intrinsic::arm_neon_vqshiftnsu:
11243       VShiftOpc = ARMISD::VQSHRNsu; break;
11244     case Intrinsic::arm_neon_vqrshiftns:
11245       VShiftOpc = ARMISD::VQRSHRNs; break;
11246     case Intrinsic::arm_neon_vqrshiftnu:
11247       VShiftOpc = ARMISD::VQRSHRNu; break;
11248     case Intrinsic::arm_neon_vqrshiftnsu:
11249       VShiftOpc = ARMISD::VQRSHRNsu; break;
11250     }
11251 
11252     SDLoc dl(N);
11253     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
11254                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
11255   }
11256 
11257   case Intrinsic::arm_neon_vshiftins: {
11258     EVT VT = N->getOperand(1).getValueType();
11259     int64_t Cnt;
11260     unsigned VShiftOpc = 0;
11261 
11262     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
11263       VShiftOpc = ARMISD::VSLI;
11264     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
11265       VShiftOpc = ARMISD::VSRI;
11266     else {
11267       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
11268     }
11269 
11270     SDLoc dl(N);
11271     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
11272                        N->getOperand(1), N->getOperand(2),
11273                        DAG.getConstant(Cnt, dl, MVT::i32));
11274   }
11275 
11276   case Intrinsic::arm_neon_vqrshifts:
11277   case Intrinsic::arm_neon_vqrshiftu:
11278     // No immediate versions of these to check for.
11279     break;
11280   }
11281 
11282   return SDValue();
11283 }
11284 
11285 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
11286 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
11287 /// combining instead of DAG legalizing because the build_vectors for 64-bit
11288 /// vector element shift counts are generally not legal, and it is hard to see
11289 /// their values after they get legalized to loads from a constant pool.
11290 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
11291                                    const ARMSubtarget *ST) {
11292   EVT VT = N->getValueType(0);
11293   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
11294     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
11295     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
11296     SDValue N1 = N->getOperand(1);
11297     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
11298       SDValue N0 = N->getOperand(0);
11299       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
11300           DAG.MaskedValueIsZero(N0.getOperand(0),
11301                                 APInt::getHighBitsSet(32, 16)))
11302         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
11303     }
11304   }
11305 
11306   // Nothing to be done for scalar shifts.
11307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11308   if (!VT.isVector() || !TLI.isTypeLegal(VT))
11309     return SDValue();
11310 
11311   assert(ST->hasNEON() && "unexpected vector shift");
11312   int64_t Cnt;
11313 
11314   switch (N->getOpcode()) {
11315   default: llvm_unreachable("unexpected shift opcode");
11316 
11317   case ISD::SHL:
11318     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
11319       SDLoc dl(N);
11320       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
11321                          DAG.getConstant(Cnt, dl, MVT::i32));
11322     }
11323     break;
11324 
11325   case ISD::SRA:
11326   case ISD::SRL:
11327     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
11328       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
11329                             ARMISD::VSHRs : ARMISD::VSHRu);
11330       SDLoc dl(N);
11331       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
11332                          DAG.getConstant(Cnt, dl, MVT::i32));
11333     }
11334   }
11335   return SDValue();
11336 }
11337 
11338 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
11339 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
11340 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
11341                                     const ARMSubtarget *ST) {
11342   SDValue N0 = N->getOperand(0);
11343 
11344   // Check for sign- and zero-extensions of vector extract operations of 8-
11345   // and 16-bit vector elements.  NEON supports these directly.  They are
11346   // handled during DAG combining because type legalization will promote them
11347   // to 32-bit types and it is messy to recognize the operations after that.
11348   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
11349     SDValue Vec = N0.getOperand(0);
11350     SDValue Lane = N0.getOperand(1);
11351     EVT VT = N->getValueType(0);
11352     EVT EltVT = N0.getValueType();
11353     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11354 
11355     if (VT == MVT::i32 &&
11356         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
11357         TLI.isTypeLegal(Vec.getValueType()) &&
11358         isa<ConstantSDNode>(Lane)) {
11359 
11360       unsigned Opc = 0;
11361       switch (N->getOpcode()) {
11362       default: llvm_unreachable("unexpected opcode");
11363       case ISD::SIGN_EXTEND:
11364         Opc = ARMISD::VGETLANEs;
11365         break;
11366       case ISD::ZERO_EXTEND:
11367       case ISD::ANY_EXTEND:
11368         Opc = ARMISD::VGETLANEu;
11369         break;
11370       }
11371       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
11372     }
11373   }
11374 
11375   return SDValue();
11376 }
11377 
11378 static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
11379                              APInt &KnownOne) {
11380   if (Op.getOpcode() == ARMISD::BFI) {
11381     // Conservatively, we can recurse down the first operand
11382     // and just mask out all affected bits.
11383     computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
11384 
11385     // The operand to BFI is already a mask suitable for removing the bits it
11386     // sets.
11387     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
11388     const APInt &Mask = CI->getAPIntValue();
11389     KnownZero &= Mask;
11390     KnownOne &= Mask;
11391     return;
11392   }
11393   if (Op.getOpcode() == ARMISD::CMOV) {
11394     APInt KZ2(KnownZero.getBitWidth(), 0);
11395     APInt KO2(KnownOne.getBitWidth(), 0);
11396     computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
11397     computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
11398 
11399     KnownZero &= KZ2;
11400     KnownOne &= KO2;
11401     return;
11402   }
11403   return DAG.computeKnownBits(Op, KnownZero, KnownOne);
11404 }
11405 
11406 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
11407   // If we have a CMOV, OR and AND combination such as:
11408   //   if (x & CN)
11409   //     y |= CM;
11410   //
11411   // And:
11412   //   * CN is a single bit;
11413   //   * All bits covered by CM are known zero in y
11414   //
11415   // Then we can convert this into a sequence of BFI instructions. This will
11416   // always be a win if CM is a single bit, will always be no worse than the
11417   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
11418   // three bits (due to the extra IT instruction).
11419 
11420   SDValue Op0 = CMOV->getOperand(0);
11421   SDValue Op1 = CMOV->getOperand(1);
11422   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
11423   auto CC = CCNode->getAPIntValue().getLimitedValue();
11424   SDValue CmpZ = CMOV->getOperand(4);
11425 
11426   // The compare must be against zero.
11427   if (!isNullConstant(CmpZ->getOperand(1)))
11428     return SDValue();
11429 
11430   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
11431   SDValue And = CmpZ->getOperand(0);
11432   if (And->getOpcode() != ISD::AND)
11433     return SDValue();
11434   ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
11435   if (!AndC || !AndC->getAPIntValue().isPowerOf2())
11436     return SDValue();
11437   SDValue X = And->getOperand(0);
11438 
11439   if (CC == ARMCC::EQ) {
11440     // We're performing an "equal to zero" compare. Swap the operands so we
11441     // canonicalize on a "not equal to zero" compare.
11442     std::swap(Op0, Op1);
11443   } else {
11444     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
11445   }
11446 
11447   if (Op1->getOpcode() != ISD::OR)
11448     return SDValue();
11449 
11450   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
11451   if (!OrC)
11452     return SDValue();
11453   SDValue Y = Op1->getOperand(0);
11454 
11455   if (Op0 != Y)
11456     return SDValue();
11457 
11458   // Now, is it profitable to continue?
11459   APInt OrCI = OrC->getAPIntValue();
11460   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
11461   if (OrCI.countPopulation() > Heuristic)
11462     return SDValue();
11463 
11464   // Lastly, can we determine that the bits defined by OrCI
11465   // are zero in Y?
11466   APInt KnownZero, KnownOne;
11467   computeKnownBits(DAG, Y, KnownZero, KnownOne);
11468   if ((OrCI & KnownZero) != OrCI)
11469     return SDValue();
11470 
11471   // OK, we can do the combine.
11472   SDValue V = Y;
11473   SDLoc dl(X);
11474   EVT VT = X.getValueType();
11475   unsigned BitInX = AndC->getAPIntValue().logBase2();
11476 
11477   if (BitInX != 0) {
11478     // We must shift X first.
11479     X = DAG.getNode(ISD::SRL, dl, VT, X,
11480                     DAG.getConstant(BitInX, dl, VT));
11481   }
11482 
11483   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
11484        BitInY < NumActiveBits; ++BitInY) {
11485     if (OrCI[BitInY] == 0)
11486       continue;
11487     APInt Mask(VT.getSizeInBits(), 0);
11488     Mask.setBit(BitInY);
11489     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
11490                     // Confusingly, the operand is an *inverted* mask.
11491                     DAG.getConstant(~Mask, dl, VT));
11492   }
11493 
11494   return V;
11495 }
11496 
11497 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
11498 SDValue
11499 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
11500   SDValue Cmp = N->getOperand(4);
11501   if (Cmp.getOpcode() != ARMISD::CMPZ)
11502     // Only looking at NE cases.
11503     return SDValue();
11504 
11505   EVT VT = N->getValueType(0);
11506   SDLoc dl(N);
11507   SDValue LHS = Cmp.getOperand(0);
11508   SDValue RHS = Cmp.getOperand(1);
11509   SDValue Chain = N->getOperand(0);
11510   SDValue BB = N->getOperand(1);
11511   SDValue ARMcc = N->getOperand(2);
11512   ARMCC::CondCodes CC =
11513     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
11514 
11515   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
11516   // -> (brcond Chain BB CC CPSR Cmp)
11517   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
11518       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
11519       LHS->getOperand(0)->hasOneUse()) {
11520     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
11521     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
11522     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
11523     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
11524     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
11525         (LHS01C && LHS01C->getZExtValue() == 1) &&
11526         (LHS1C && LHS1C->getZExtValue() == 1) &&
11527         (RHSC && RHSC->getZExtValue() == 0)) {
11528       return DAG.getNode(
11529           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
11530           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
11531     }
11532   }
11533 
11534   return SDValue();
11535 }
11536 
11537 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
11538 SDValue
11539 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
11540   SDValue Cmp = N->getOperand(4);
11541   if (Cmp.getOpcode() != ARMISD::CMPZ)
11542     // Only looking at EQ and NE cases.
11543     return SDValue();
11544 
11545   EVT VT = N->getValueType(0);
11546   SDLoc dl(N);
11547   SDValue LHS = Cmp.getOperand(0);
11548   SDValue RHS = Cmp.getOperand(1);
11549   SDValue FalseVal = N->getOperand(0);
11550   SDValue TrueVal = N->getOperand(1);
11551   SDValue ARMcc = N->getOperand(2);
11552   ARMCC::CondCodes CC =
11553     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
11554 
11555   // BFI is only available on V6T2+.
11556   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
11557     SDValue R = PerformCMOVToBFICombine(N, DAG);
11558     if (R)
11559       return R;
11560   }
11561 
11562   // Simplify
11563   //   mov     r1, r0
11564   //   cmp     r1, x
11565   //   mov     r0, y
11566   //   moveq   r0, x
11567   // to
11568   //   cmp     r0, x
11569   //   movne   r0, y
11570   //
11571   //   mov     r1, r0
11572   //   cmp     r1, x
11573   //   mov     r0, x
11574   //   movne   r0, y
11575   // to
11576   //   cmp     r0, x
11577   //   movne   r0, y
11578   /// FIXME: Turn this into a target neutral optimization?
11579   SDValue Res;
11580   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
11581     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
11582                       N->getOperand(3), Cmp);
11583   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
11584     SDValue ARMcc;
11585     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
11586     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
11587                       N->getOperand(3), NewCmp);
11588   }
11589 
11590   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
11591   // -> (cmov F T CC CPSR Cmp)
11592   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
11593     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
11594     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
11595     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
11596     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
11597         (LHS1C && LHS1C->getZExtValue() == 1) &&
11598         (RHSC && RHSC->getZExtValue() == 0)) {
11599       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
11600                          LHS->getOperand(2), LHS->getOperand(3),
11601                          LHS->getOperand(4));
11602     }
11603   }
11604 
11605   if (Res.getNode()) {
11606     APInt KnownZero, KnownOne;
11607     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
11608     // Capture demanded bits information that would be otherwise lost.
11609     if (KnownZero == 0xfffffffe)
11610       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11611                         DAG.getValueType(MVT::i1));
11612     else if (KnownZero == 0xffffff00)
11613       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11614                         DAG.getValueType(MVT::i8));
11615     else if (KnownZero == 0xffff0000)
11616       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11617                         DAG.getValueType(MVT::i16));
11618   }
11619 
11620   return Res;
11621 }
11622 
11623 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
11624                                              DAGCombinerInfo &DCI) const {
11625   switch (N->getOpcode()) {
11626   default: break;
11627   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
11628   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
11629   case ISD::SUB:        return PerformSUBCombine(N, DCI);
11630   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
11631   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
11632   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
11633   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
11634   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
11635   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
11636   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
11637   case ISD::STORE:      return PerformSTORECombine(N, DCI);
11638   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
11639   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
11640   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
11641   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
11642   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
11643   case ISD::FP_TO_SINT:
11644   case ISD::FP_TO_UINT:
11645     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
11646   case ISD::FDIV:
11647     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
11648   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
11649   case ISD::SHL:
11650   case ISD::SRA:
11651   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
11652   case ISD::SIGN_EXTEND:
11653   case ISD::ZERO_EXTEND:
11654   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
11655   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
11656   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
11657   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
11658   case ARMISD::VLD1DUP:
11659   case ARMISD::VLD2DUP:
11660   case ARMISD::VLD3DUP:
11661   case ARMISD::VLD4DUP:
11662     return PerformVLDCombine(N, DCI);
11663   case ARMISD::BUILD_VECTOR:
11664     return PerformARMBUILD_VECTORCombine(N, DCI);
11665   case ISD::INTRINSIC_VOID:
11666   case ISD::INTRINSIC_W_CHAIN:
11667     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11668     case Intrinsic::arm_neon_vld1:
11669     case Intrinsic::arm_neon_vld2:
11670     case Intrinsic::arm_neon_vld3:
11671     case Intrinsic::arm_neon_vld4:
11672     case Intrinsic::arm_neon_vld2lane:
11673     case Intrinsic::arm_neon_vld3lane:
11674     case Intrinsic::arm_neon_vld4lane:
11675     case Intrinsic::arm_neon_vst1:
11676     case Intrinsic::arm_neon_vst2:
11677     case Intrinsic::arm_neon_vst3:
11678     case Intrinsic::arm_neon_vst4:
11679     case Intrinsic::arm_neon_vst2lane:
11680     case Intrinsic::arm_neon_vst3lane:
11681     case Intrinsic::arm_neon_vst4lane:
11682       return PerformVLDCombine(N, DCI);
11683     default: break;
11684     }
11685     break;
11686   }
11687   return SDValue();
11688 }
11689 
11690 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
11691                                                           EVT VT) const {
11692   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
11693 }
11694 
11695 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11696                                                        unsigned,
11697                                                        unsigned,
11698                                                        bool *Fast) const {
11699   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
11700   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
11701 
11702   switch (VT.getSimpleVT().SimpleTy) {
11703   default:
11704     return false;
11705   case MVT::i8:
11706   case MVT::i16:
11707   case MVT::i32: {
11708     // Unaligned access can use (for example) LRDB, LRDH, LDR
11709     if (AllowsUnaligned) {
11710       if (Fast)
11711         *Fast = Subtarget->hasV7Ops();
11712       return true;
11713     }
11714     return false;
11715   }
11716   case MVT::f64:
11717   case MVT::v2f64: {
11718     // For any little-endian targets with neon, we can support unaligned ld/st
11719     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
11720     // A big-endian target may also explicitly support unaligned accesses
11721     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
11722       if (Fast)
11723         *Fast = true;
11724       return true;
11725     }
11726     return false;
11727   }
11728   }
11729 }
11730 
11731 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
11732                        unsigned AlignCheck) {
11733   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
11734           (DstAlign == 0 || DstAlign % AlignCheck == 0));
11735 }
11736 
11737 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
11738                                            unsigned DstAlign, unsigned SrcAlign,
11739                                            bool IsMemset, bool ZeroMemset,
11740                                            bool MemcpyStrSrc,
11741                                            MachineFunction &MF) const {
11742   const Function *F = MF.getFunction();
11743 
11744   // See if we can use NEON instructions for this...
11745   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
11746       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11747     bool Fast;
11748     if (Size >= 16 &&
11749         (memOpAlign(SrcAlign, DstAlign, 16) ||
11750          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
11751       return MVT::v2f64;
11752     } else if (Size >= 8 &&
11753                (memOpAlign(SrcAlign, DstAlign, 8) ||
11754                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
11755                  Fast))) {
11756       return MVT::f64;
11757     }
11758   }
11759 
11760   // Lowering to i32/i16 if the size permits.
11761   if (Size >= 4)
11762     return MVT::i32;
11763   else if (Size >= 2)
11764     return MVT::i16;
11765 
11766   // Let the target-independent logic figure it out.
11767   return MVT::Other;
11768 }
11769 
11770 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11771   if (Val.getOpcode() != ISD::LOAD)
11772     return false;
11773 
11774   EVT VT1 = Val.getValueType();
11775   if (!VT1.isSimple() || !VT1.isInteger() ||
11776       !VT2.isSimple() || !VT2.isInteger())
11777     return false;
11778 
11779   switch (VT1.getSimpleVT().SimpleTy) {
11780   default: break;
11781   case MVT::i1:
11782   case MVT::i8:
11783   case MVT::i16:
11784     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
11785     return true;
11786   }
11787 
11788   return false;
11789 }
11790 
11791 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
11792   EVT VT = ExtVal.getValueType();
11793 
11794   if (!isTypeLegal(VT))
11795     return false;
11796 
11797   // Don't create a loadext if we can fold the extension into a wide/long
11798   // instruction.
11799   // If there's more than one user instruction, the loadext is desirable no
11800   // matter what.  There can be two uses by the same instruction.
11801   if (ExtVal->use_empty() ||
11802       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
11803     return true;
11804 
11805   SDNode *U = *ExtVal->use_begin();
11806   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
11807        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
11808     return false;
11809 
11810   return true;
11811 }
11812 
11813 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
11814   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11815     return false;
11816 
11817   if (!isTypeLegal(EVT::getEVT(Ty1)))
11818     return false;
11819 
11820   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
11821 
11822   // Assuming the caller doesn't have a zeroext or signext return parameter,
11823   // truncation all the way down to i1 is valid.
11824   return true;
11825 }
11826 
11827 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
11828                                                 const AddrMode &AM, Type *Ty,
11829                                                 unsigned AS) const {
11830   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
11831     if (Subtarget->hasFPAO())
11832       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
11833     return 0;
11834   }
11835   return -1;
11836 }
11837 
11838 
11839 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
11840   if (V < 0)
11841     return false;
11842 
11843   unsigned Scale = 1;
11844   switch (VT.getSimpleVT().SimpleTy) {
11845   default: return false;
11846   case MVT::i1:
11847   case MVT::i8:
11848     // Scale == 1;
11849     break;
11850   case MVT::i16:
11851     // Scale == 2;
11852     Scale = 2;
11853     break;
11854   case MVT::i32:
11855     // Scale == 4;
11856     Scale = 4;
11857     break;
11858   }
11859 
11860   if ((V & (Scale - 1)) != 0)
11861     return false;
11862   V /= Scale;
11863   return V == (V & ((1LL << 5) - 1));
11864 }
11865 
11866 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
11867                                       const ARMSubtarget *Subtarget) {
11868   bool isNeg = false;
11869   if (V < 0) {
11870     isNeg = true;
11871     V = - V;
11872   }
11873 
11874   switch (VT.getSimpleVT().SimpleTy) {
11875   default: return false;
11876   case MVT::i1:
11877   case MVT::i8:
11878   case MVT::i16:
11879   case MVT::i32:
11880     // + imm12 or - imm8
11881     if (isNeg)
11882       return V == (V & ((1LL << 8) - 1));
11883     return V == (V & ((1LL << 12) - 1));
11884   case MVT::f32:
11885   case MVT::f64:
11886     // Same as ARM mode. FIXME: NEON?
11887     if (!Subtarget->hasVFP2())
11888       return false;
11889     if ((V & 3) != 0)
11890       return false;
11891     V >>= 2;
11892     return V == (V & ((1LL << 8) - 1));
11893   }
11894 }
11895 
11896 /// isLegalAddressImmediate - Return true if the integer value can be used
11897 /// as the offset of the target addressing mode for load / store of the
11898 /// given type.
11899 static bool isLegalAddressImmediate(int64_t V, EVT VT,
11900                                     const ARMSubtarget *Subtarget) {
11901   if (V == 0)
11902     return true;
11903 
11904   if (!VT.isSimple())
11905     return false;
11906 
11907   if (Subtarget->isThumb1Only())
11908     return isLegalT1AddressImmediate(V, VT);
11909   else if (Subtarget->isThumb2())
11910     return isLegalT2AddressImmediate(V, VT, Subtarget);
11911 
11912   // ARM mode.
11913   if (V < 0)
11914     V = - V;
11915   switch (VT.getSimpleVT().SimpleTy) {
11916   default: return false;
11917   case MVT::i1:
11918   case MVT::i8:
11919   case MVT::i32:
11920     // +- imm12
11921     return V == (V & ((1LL << 12) - 1));
11922   case MVT::i16:
11923     // +- imm8
11924     return V == (V & ((1LL << 8) - 1));
11925   case MVT::f32:
11926   case MVT::f64:
11927     if (!Subtarget->hasVFP2()) // FIXME: NEON?
11928       return false;
11929     if ((V & 3) != 0)
11930       return false;
11931     V >>= 2;
11932     return V == (V & ((1LL << 8) - 1));
11933   }
11934 }
11935 
11936 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
11937                                                       EVT VT) const {
11938   int Scale = AM.Scale;
11939   if (Scale < 0)
11940     return false;
11941 
11942   switch (VT.getSimpleVT().SimpleTy) {
11943   default: return false;
11944   case MVT::i1:
11945   case MVT::i8:
11946   case MVT::i16:
11947   case MVT::i32:
11948     if (Scale == 1)
11949       return true;
11950     // r + r << imm
11951     Scale = Scale & ~1;
11952     return Scale == 2 || Scale == 4 || Scale == 8;
11953   case MVT::i64:
11954     // r + r
11955     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11956       return true;
11957     return false;
11958   case MVT::isVoid:
11959     // Note, we allow "void" uses (basically, uses that aren't loads or
11960     // stores), because arm allows folding a scale into many arithmetic
11961     // operations.  This should be made more precise and revisited later.
11962 
11963     // Allow r << imm, but the imm has to be a multiple of two.
11964     if (Scale & 1) return false;
11965     return isPowerOf2_32(Scale);
11966   }
11967 }
11968 
11969 /// isLegalAddressingMode - Return true if the addressing mode represented
11970 /// by AM is legal for this target, for a load/store of the specified type.
11971 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11972                                               const AddrMode &AM, Type *Ty,
11973                                               unsigned AS) const {
11974   EVT VT = getValueType(DL, Ty, true);
11975   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
11976     return false;
11977 
11978   // Can never fold addr of global into load/store.
11979   if (AM.BaseGV)
11980     return false;
11981 
11982   switch (AM.Scale) {
11983   case 0:  // no scale reg, must be "r+i" or "r", or "i".
11984     break;
11985   case 1:
11986     if (Subtarget->isThumb1Only())
11987       return false;
11988     LLVM_FALLTHROUGH;
11989   default:
11990     // ARM doesn't support any R+R*scale+imm addr modes.
11991     if (AM.BaseOffs)
11992       return false;
11993 
11994     if (!VT.isSimple())
11995       return false;
11996 
11997     if (Subtarget->isThumb2())
11998       return isLegalT2ScaledAddressingMode(AM, VT);
11999 
12000     int Scale = AM.Scale;
12001     switch (VT.getSimpleVT().SimpleTy) {
12002     default: return false;
12003     case MVT::i1:
12004     case MVT::i8:
12005     case MVT::i32:
12006       if (Scale < 0) Scale = -Scale;
12007       if (Scale == 1)
12008         return true;
12009       // r + r << imm
12010       return isPowerOf2_32(Scale & ~1);
12011     case MVT::i16:
12012     case MVT::i64:
12013       // r + r
12014       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
12015         return true;
12016       return false;
12017 
12018     case MVT::isVoid:
12019       // Note, we allow "void" uses (basically, uses that aren't loads or
12020       // stores), because arm allows folding a scale into many arithmetic
12021       // operations.  This should be made more precise and revisited later.
12022 
12023       // Allow r << imm, but the imm has to be a multiple of two.
12024       if (Scale & 1) return false;
12025       return isPowerOf2_32(Scale);
12026     }
12027   }
12028   return true;
12029 }
12030 
12031 /// isLegalICmpImmediate - Return true if the specified immediate is legal
12032 /// icmp immediate, that is the target has icmp instructions which can compare
12033 /// a register against the immediate without having to materialize the
12034 /// immediate into a register.
12035 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12036   // Thumb2 and ARM modes can use cmn for negative immediates.
12037   if (!Subtarget->isThumb())
12038     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
12039   if (Subtarget->isThumb2())
12040     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
12041   // Thumb1 doesn't have cmn, and only 8-bit immediates.
12042   return Imm >= 0 && Imm <= 255;
12043 }
12044 
12045 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
12046 /// *or sub* immediate, that is the target has add or sub instructions which can
12047 /// add a register with the immediate without having to materialize the
12048 /// immediate into a register.
12049 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
12050   // Same encoding for add/sub, just flip the sign.
12051   int64_t AbsImm = std::abs(Imm);
12052   if (!Subtarget->isThumb())
12053     return ARM_AM::getSOImmVal(AbsImm) != -1;
12054   if (Subtarget->isThumb2())
12055     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
12056   // Thumb1 only has 8-bit unsigned immediate.
12057   return AbsImm >= 0 && AbsImm <= 255;
12058 }
12059 
12060 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
12061                                       bool isSEXTLoad, SDValue &Base,
12062                                       SDValue &Offset, bool &isInc,
12063                                       SelectionDAG &DAG) {
12064   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
12065     return false;
12066 
12067   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
12068     // AddressingMode 3
12069     Base = Ptr->getOperand(0);
12070     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
12071       int RHSC = (int)RHS->getZExtValue();
12072       if (RHSC < 0 && RHSC > -256) {
12073         assert(Ptr->getOpcode() == ISD::ADD);
12074         isInc = false;
12075         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
12076         return true;
12077       }
12078     }
12079     isInc = (Ptr->getOpcode() == ISD::ADD);
12080     Offset = Ptr->getOperand(1);
12081     return true;
12082   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
12083     // AddressingMode 2
12084     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
12085       int RHSC = (int)RHS->getZExtValue();
12086       if (RHSC < 0 && RHSC > -0x1000) {
12087         assert(Ptr->getOpcode() == ISD::ADD);
12088         isInc = false;
12089         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
12090         Base = Ptr->getOperand(0);
12091         return true;
12092       }
12093     }
12094 
12095     if (Ptr->getOpcode() == ISD::ADD) {
12096       isInc = true;
12097       ARM_AM::ShiftOpc ShOpcVal=
12098         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
12099       if (ShOpcVal != ARM_AM::no_shift) {
12100         Base = Ptr->getOperand(1);
12101         Offset = Ptr->getOperand(0);
12102       } else {
12103         Base = Ptr->getOperand(0);
12104         Offset = Ptr->getOperand(1);
12105       }
12106       return true;
12107     }
12108 
12109     isInc = (Ptr->getOpcode() == ISD::ADD);
12110     Base = Ptr->getOperand(0);
12111     Offset = Ptr->getOperand(1);
12112     return true;
12113   }
12114 
12115   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
12116   return false;
12117 }
12118 
12119 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
12120                                      bool isSEXTLoad, SDValue &Base,
12121                                      SDValue &Offset, bool &isInc,
12122                                      SelectionDAG &DAG) {
12123   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
12124     return false;
12125 
12126   Base = Ptr->getOperand(0);
12127   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
12128     int RHSC = (int)RHS->getZExtValue();
12129     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
12130       assert(Ptr->getOpcode() == ISD::ADD);
12131       isInc = false;
12132       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
12133       return true;
12134     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
12135       isInc = Ptr->getOpcode() == ISD::ADD;
12136       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
12137       return true;
12138     }
12139   }
12140 
12141   return false;
12142 }
12143 
12144 /// getPreIndexedAddressParts - returns true by value, base pointer and
12145 /// offset pointer and addressing mode by reference if the node's address
12146 /// can be legally represented as pre-indexed load / store address.
12147 bool
12148 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
12149                                              SDValue &Offset,
12150                                              ISD::MemIndexedMode &AM,
12151                                              SelectionDAG &DAG) const {
12152   if (Subtarget->isThumb1Only())
12153     return false;
12154 
12155   EVT VT;
12156   SDValue Ptr;
12157   bool isSEXTLoad = false;
12158   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
12159     Ptr = LD->getBasePtr();
12160     VT  = LD->getMemoryVT();
12161     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
12162   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
12163     Ptr = ST->getBasePtr();
12164     VT  = ST->getMemoryVT();
12165   } else
12166     return false;
12167 
12168   bool isInc;
12169   bool isLegal = false;
12170   if (Subtarget->isThumb2())
12171     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
12172                                        Offset, isInc, DAG);
12173   else
12174     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
12175                                         Offset, isInc, DAG);
12176   if (!isLegal)
12177     return false;
12178 
12179   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
12180   return true;
12181 }
12182 
12183 /// getPostIndexedAddressParts - returns true by value, base pointer and
12184 /// offset pointer and addressing mode by reference if this node can be
12185 /// combined with a load / store to form a post-indexed load / store.
12186 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
12187                                                    SDValue &Base,
12188                                                    SDValue &Offset,
12189                                                    ISD::MemIndexedMode &AM,
12190                                                    SelectionDAG &DAG) const {
12191   EVT VT;
12192   SDValue Ptr;
12193   bool isSEXTLoad = false, isNonExt;
12194   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
12195     VT  = LD->getMemoryVT();
12196     Ptr = LD->getBasePtr();
12197     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
12198     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
12199   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
12200     VT  = ST->getMemoryVT();
12201     Ptr = ST->getBasePtr();
12202     isNonExt = !ST->isTruncatingStore();
12203   } else
12204     return false;
12205 
12206   if (Subtarget->isThumb1Only()) {
12207     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
12208     // must be non-extending/truncating, i32, with an offset of 4.
12209     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
12210     if (Op->getOpcode() != ISD::ADD || !isNonExt)
12211       return false;
12212     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
12213     if (!RHS || RHS->getZExtValue() != 4)
12214       return false;
12215 
12216     Offset = Op->getOperand(1);
12217     Base = Op->getOperand(0);
12218     AM = ISD::POST_INC;
12219     return true;
12220   }
12221 
12222   bool isInc;
12223   bool isLegal = false;
12224   if (Subtarget->isThumb2())
12225     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
12226                                        isInc, DAG);
12227   else
12228     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
12229                                         isInc, DAG);
12230   if (!isLegal)
12231     return false;
12232 
12233   if (Ptr != Base) {
12234     // Swap base ptr and offset to catch more post-index load / store when
12235     // it's legal. In Thumb2 mode, offset must be an immediate.
12236     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
12237         !Subtarget->isThumb2())
12238       std::swap(Base, Offset);
12239 
12240     // Post-indexed load / store update the base pointer.
12241     if (Ptr != Base)
12242       return false;
12243   }
12244 
12245   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
12246   return true;
12247 }
12248 
12249 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
12250                                                       APInt &KnownZero,
12251                                                       APInt &KnownOne,
12252                                                       const SelectionDAG &DAG,
12253                                                       unsigned Depth) const {
12254   unsigned BitWidth = KnownOne.getBitWidth();
12255   KnownZero = KnownOne = APInt(BitWidth, 0);
12256   switch (Op.getOpcode()) {
12257   default: break;
12258   case ARMISD::ADDC:
12259   case ARMISD::ADDE:
12260   case ARMISD::SUBC:
12261   case ARMISD::SUBE:
12262     // These nodes' second result is a boolean
12263     if (Op.getResNo() == 0)
12264       break;
12265     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12266     break;
12267   case ARMISD::CMOV: {
12268     // Bits are known zero/one if known on the LHS and RHS.
12269     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
12270     if (KnownZero == 0 && KnownOne == 0) return;
12271 
12272     APInt KnownZeroRHS, KnownOneRHS;
12273     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
12274     KnownZero &= KnownZeroRHS;
12275     KnownOne  &= KnownOneRHS;
12276     return;
12277   }
12278   case ISD::INTRINSIC_W_CHAIN: {
12279     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
12280     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
12281     switch (IntID) {
12282     default: return;
12283     case Intrinsic::arm_ldaex:
12284     case Intrinsic::arm_ldrex: {
12285       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
12286       unsigned MemBits = VT.getScalarSizeInBits();
12287       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
12288       return;
12289     }
12290     }
12291   }
12292   }
12293 }
12294 
12295 //===----------------------------------------------------------------------===//
12296 //                           ARM Inline Assembly Support
12297 //===----------------------------------------------------------------------===//
12298 
12299 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
12300   // Looking for "rev" which is V6+.
12301   if (!Subtarget->hasV6Ops())
12302     return false;
12303 
12304   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12305   std::string AsmStr = IA->getAsmString();
12306   SmallVector<StringRef, 4> AsmPieces;
12307   SplitString(AsmStr, AsmPieces, ";\n");
12308 
12309   switch (AsmPieces.size()) {
12310   default: return false;
12311   case 1:
12312     AsmStr = AsmPieces[0];
12313     AsmPieces.clear();
12314     SplitString(AsmStr, AsmPieces, " \t,");
12315 
12316     // rev $0, $1
12317     if (AsmPieces.size() == 3 &&
12318         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
12319         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
12320       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12321       if (Ty && Ty->getBitWidth() == 32)
12322         return IntrinsicLowering::LowerToByteSwap(CI);
12323     }
12324     break;
12325   }
12326 
12327   return false;
12328 }
12329 
12330 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
12331   // At this point, we have to lower this constraint to something else, so we
12332   // lower it to an "r" or "w". However, by doing this we will force the result
12333   // to be in register, while the X constraint is much more permissive.
12334   //
12335   // Although we are correct (we are free to emit anything, without
12336   // constraints), we might break use cases that would expect us to be more
12337   // efficient and emit something else.
12338   if (!Subtarget->hasVFP2())
12339     return "r";
12340   if (ConstraintVT.isFloatingPoint())
12341     return "w";
12342   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
12343      (ConstraintVT.getSizeInBits() == 64 ||
12344       ConstraintVT.getSizeInBits() == 128))
12345     return "w";
12346 
12347   return "r";
12348 }
12349 
12350 /// getConstraintType - Given a constraint letter, return the type of
12351 /// constraint it is for this target.
12352 ARMTargetLowering::ConstraintType
12353 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
12354   if (Constraint.size() == 1) {
12355     switch (Constraint[0]) {
12356     default:  break;
12357     case 'l': return C_RegisterClass;
12358     case 'w': return C_RegisterClass;
12359     case 'h': return C_RegisterClass;
12360     case 'x': return C_RegisterClass;
12361     case 't': return C_RegisterClass;
12362     case 'j': return C_Other; // Constant for movw.
12363       // An address with a single base register. Due to the way we
12364       // currently handle addresses it is the same as an 'r' memory constraint.
12365     case 'Q': return C_Memory;
12366     }
12367   } else if (Constraint.size() == 2) {
12368     switch (Constraint[0]) {
12369     default: break;
12370     // All 'U+' constraints are addresses.
12371     case 'U': return C_Memory;
12372     }
12373   }
12374   return TargetLowering::getConstraintType(Constraint);
12375 }
12376 
12377 /// Examine constraint type and operand type and determine a weight value.
12378 /// This object must already have been set up with the operand type
12379 /// and the current alternative constraint selected.
12380 TargetLowering::ConstraintWeight
12381 ARMTargetLowering::getSingleConstraintMatchWeight(
12382     AsmOperandInfo &info, const char *constraint) const {
12383   ConstraintWeight weight = CW_Invalid;
12384   Value *CallOperandVal = info.CallOperandVal;
12385     // If we don't have a value, we can't do a match,
12386     // but allow it at the lowest weight.
12387   if (!CallOperandVal)
12388     return CW_Default;
12389   Type *type = CallOperandVal->getType();
12390   // Look at the constraint type.
12391   switch (*constraint) {
12392   default:
12393     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12394     break;
12395   case 'l':
12396     if (type->isIntegerTy()) {
12397       if (Subtarget->isThumb())
12398         weight = CW_SpecificReg;
12399       else
12400         weight = CW_Register;
12401     }
12402     break;
12403   case 'w':
12404     if (type->isFloatingPointTy())
12405       weight = CW_Register;
12406     break;
12407   }
12408   return weight;
12409 }
12410 
12411 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
12412 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
12413     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
12414   if (Constraint.size() == 1) {
12415     // GCC ARM Constraint Letters
12416     switch (Constraint[0]) {
12417     case 'l': // Low regs or general regs.
12418       if (Subtarget->isThumb())
12419         return RCPair(0U, &ARM::tGPRRegClass);
12420       return RCPair(0U, &ARM::GPRRegClass);
12421     case 'h': // High regs or no regs.
12422       if (Subtarget->isThumb())
12423         return RCPair(0U, &ARM::hGPRRegClass);
12424       break;
12425     case 'r':
12426       if (Subtarget->isThumb1Only())
12427         return RCPair(0U, &ARM::tGPRRegClass);
12428       return RCPair(0U, &ARM::GPRRegClass);
12429     case 'w':
12430       if (VT == MVT::Other)
12431         break;
12432       if (VT == MVT::f32)
12433         return RCPair(0U, &ARM::SPRRegClass);
12434       if (VT.getSizeInBits() == 64)
12435         return RCPair(0U, &ARM::DPRRegClass);
12436       if (VT.getSizeInBits() == 128)
12437         return RCPair(0U, &ARM::QPRRegClass);
12438       break;
12439     case 'x':
12440       if (VT == MVT::Other)
12441         break;
12442       if (VT == MVT::f32)
12443         return RCPair(0U, &ARM::SPR_8RegClass);
12444       if (VT.getSizeInBits() == 64)
12445         return RCPair(0U, &ARM::DPR_8RegClass);
12446       if (VT.getSizeInBits() == 128)
12447         return RCPair(0U, &ARM::QPR_8RegClass);
12448       break;
12449     case 't':
12450       if (VT == MVT::f32)
12451         return RCPair(0U, &ARM::SPRRegClass);
12452       break;
12453     }
12454   }
12455   if (StringRef("{cc}").equals_lower(Constraint))
12456     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
12457 
12458   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12459 }
12460 
12461 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12462 /// vector.  If it is invalid, don't add anything to Ops.
12463 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12464                                                      std::string &Constraint,
12465                                                      std::vector<SDValue>&Ops,
12466                                                      SelectionDAG &DAG) const {
12467   SDValue Result;
12468 
12469   // Currently only support length 1 constraints.
12470   if (Constraint.length() != 1) return;
12471 
12472   char ConstraintLetter = Constraint[0];
12473   switch (ConstraintLetter) {
12474   default: break;
12475   case 'j':
12476   case 'I': case 'J': case 'K': case 'L':
12477   case 'M': case 'N': case 'O':
12478     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
12479     if (!C)
12480       return;
12481 
12482     int64_t CVal64 = C->getSExtValue();
12483     int CVal = (int) CVal64;
12484     // None of these constraints allow values larger than 32 bits.  Check
12485     // that the value fits in an int.
12486     if (CVal != CVal64)
12487       return;
12488 
12489     switch (ConstraintLetter) {
12490       case 'j':
12491         // Constant suitable for movw, must be between 0 and
12492         // 65535.
12493         if (Subtarget->hasV6T2Ops())
12494           if (CVal >= 0 && CVal <= 65535)
12495             break;
12496         return;
12497       case 'I':
12498         if (Subtarget->isThumb1Only()) {
12499           // This must be a constant between 0 and 255, for ADD
12500           // immediates.
12501           if (CVal >= 0 && CVal <= 255)
12502             break;
12503         } else if (Subtarget->isThumb2()) {
12504           // A constant that can be used as an immediate value in a
12505           // data-processing instruction.
12506           if (ARM_AM::getT2SOImmVal(CVal) != -1)
12507             break;
12508         } else {
12509           // A constant that can be used as an immediate value in a
12510           // data-processing instruction.
12511           if (ARM_AM::getSOImmVal(CVal) != -1)
12512             break;
12513         }
12514         return;
12515 
12516       case 'J':
12517         if (Subtarget->isThumb1Only()) {
12518           // This must be a constant between -255 and -1, for negated ADD
12519           // immediates. This can be used in GCC with an "n" modifier that
12520           // prints the negated value, for use with SUB instructions. It is
12521           // not useful otherwise but is implemented for compatibility.
12522           if (CVal >= -255 && CVal <= -1)
12523             break;
12524         } else {
12525           // This must be a constant between -4095 and 4095. It is not clear
12526           // what this constraint is intended for. Implemented for
12527           // compatibility with GCC.
12528           if (CVal >= -4095 && CVal <= 4095)
12529             break;
12530         }
12531         return;
12532 
12533       case 'K':
12534         if (Subtarget->isThumb1Only()) {
12535           // A 32-bit value where only one byte has a nonzero value. Exclude
12536           // zero to match GCC. This constraint is used by GCC internally for
12537           // constants that can be loaded with a move/shift combination.
12538           // It is not useful otherwise but is implemented for compatibility.
12539           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
12540             break;
12541         } else if (Subtarget->isThumb2()) {
12542           // A constant whose bitwise inverse can be used as an immediate
12543           // value in a data-processing instruction. This can be used in GCC
12544           // with a "B" modifier that prints the inverted value, for use with
12545           // BIC and MVN instructions. It is not useful otherwise but is
12546           // implemented for compatibility.
12547           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
12548             break;
12549         } else {
12550           // A constant whose bitwise inverse can be used as an immediate
12551           // value in a data-processing instruction. This can be used in GCC
12552           // with a "B" modifier that prints the inverted value, for use with
12553           // BIC and MVN instructions. It is not useful otherwise but is
12554           // implemented for compatibility.
12555           if (ARM_AM::getSOImmVal(~CVal) != -1)
12556             break;
12557         }
12558         return;
12559 
12560       case 'L':
12561         if (Subtarget->isThumb1Only()) {
12562           // This must be a constant between -7 and 7,
12563           // for 3-operand ADD/SUB immediate instructions.
12564           if (CVal >= -7 && CVal < 7)
12565             break;
12566         } else if (Subtarget->isThumb2()) {
12567           // A constant whose negation can be used as an immediate value in a
12568           // data-processing instruction. This can be used in GCC with an "n"
12569           // modifier that prints the negated value, for use with SUB
12570           // instructions. It is not useful otherwise but is implemented for
12571           // compatibility.
12572           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
12573             break;
12574         } else {
12575           // A constant whose negation can be used as an immediate value in a
12576           // data-processing instruction. This can be used in GCC with an "n"
12577           // modifier that prints the negated value, for use with SUB
12578           // instructions. It is not useful otherwise but is implemented for
12579           // compatibility.
12580           if (ARM_AM::getSOImmVal(-CVal) != -1)
12581             break;
12582         }
12583         return;
12584 
12585       case 'M':
12586         if (Subtarget->isThumb1Only()) {
12587           // This must be a multiple of 4 between 0 and 1020, for
12588           // ADD sp + immediate.
12589           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
12590             break;
12591         } else {
12592           // A power of two or a constant between 0 and 32.  This is used in
12593           // GCC for the shift amount on shifted register operands, but it is
12594           // useful in general for any shift amounts.
12595           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
12596             break;
12597         }
12598         return;
12599 
12600       case 'N':
12601         if (Subtarget->isThumb()) {  // FIXME thumb2
12602           // This must be a constant between 0 and 31, for shift amounts.
12603           if (CVal >= 0 && CVal <= 31)
12604             break;
12605         }
12606         return;
12607 
12608       case 'O':
12609         if (Subtarget->isThumb()) {  // FIXME thumb2
12610           // This must be a multiple of 4 between -508 and 508, for
12611           // ADD/SUB sp = sp + immediate.
12612           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
12613             break;
12614         }
12615         return;
12616     }
12617     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
12618     break;
12619   }
12620 
12621   if (Result.getNode()) {
12622     Ops.push_back(Result);
12623     return;
12624   }
12625   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12626 }
12627 
12628 static RTLIB::Libcall getDivRemLibcall(
12629     const SDNode *N, MVT::SimpleValueType SVT) {
12630   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
12631           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
12632          "Unhandled Opcode in getDivRemLibcall");
12633   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
12634                   N->getOpcode() == ISD::SREM;
12635   RTLIB::Libcall LC;
12636   switch (SVT) {
12637   default: llvm_unreachable("Unexpected request for libcall!");
12638   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
12639   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
12640   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
12641   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
12642   }
12643   return LC;
12644 }
12645 
12646 static TargetLowering::ArgListTy getDivRemArgList(
12647     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
12648   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
12649           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
12650          "Unhandled Opcode in getDivRemArgList");
12651   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
12652                   N->getOpcode() == ISD::SREM;
12653   TargetLowering::ArgListTy Args;
12654   TargetLowering::ArgListEntry Entry;
12655   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
12656     EVT ArgVT = N->getOperand(i).getValueType();
12657     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
12658     Entry.Node = N->getOperand(i);
12659     Entry.Ty = ArgTy;
12660     Entry.isSExt = isSigned;
12661     Entry.isZExt = !isSigned;
12662     Args.push_back(Entry);
12663   }
12664   if (Subtarget->isTargetWindows() && Args.size() >= 2)
12665     std::swap(Args[0], Args[1]);
12666   return Args;
12667 }
12668 
12669 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
12670   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
12671           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
12672           Subtarget->isTargetWindows()) &&
12673          "Register-based DivRem lowering only");
12674   unsigned Opcode = Op->getOpcode();
12675   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
12676          "Invalid opcode for Div/Rem lowering");
12677   bool isSigned = (Opcode == ISD::SDIVREM);
12678   EVT VT = Op->getValueType(0);
12679   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
12680   SDLoc dl(Op);
12681 
12682   // If the target has hardware divide, use divide + multiply + subtract:
12683   //     div = a / b
12684   //     rem = a - b * div
12685   //     return {div, rem}
12686   // This should be lowered into UDIV/SDIV + MLS later on.
12687   if (Subtarget->hasDivide() && Op->getValueType(0).isSimple() &&
12688       Op->getSimpleValueType(0) == MVT::i32) {
12689     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
12690     const SDValue Dividend = Op->getOperand(0);
12691     const SDValue Divisor = Op->getOperand(1);
12692     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
12693     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
12694     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
12695 
12696     SDValue Values[2] = {Div, Rem};
12697     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
12698   }
12699 
12700   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
12701                                        VT.getSimpleVT().SimpleTy);
12702   SDValue InChain = DAG.getEntryNode();
12703 
12704   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
12705                                                     DAG.getContext(),
12706                                                     Subtarget);
12707 
12708   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
12709                                          getPointerTy(DAG.getDataLayout()));
12710 
12711   Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
12712 
12713   if (Subtarget->isTargetWindows())
12714     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
12715 
12716   TargetLowering::CallLoweringInfo CLI(DAG);
12717   CLI.setDebugLoc(dl).setChain(InChain)
12718     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
12719     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
12720 
12721   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
12722   return CallInfo.first;
12723 }
12724 
12725 // Lowers REM using divmod helpers
12726 // see RTABI section 4.2/4.3
12727 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
12728   // Build return types (div and rem)
12729   std::vector<Type*> RetTyParams;
12730   Type *RetTyElement;
12731 
12732   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
12733   default: llvm_unreachable("Unexpected request for libcall!");
12734   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
12735   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
12736   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
12737   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
12738   }
12739 
12740   RetTyParams.push_back(RetTyElement);
12741   RetTyParams.push_back(RetTyElement);
12742   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
12743   Type *RetTy = StructType::get(*DAG.getContext(), ret);
12744 
12745   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
12746                                                              SimpleTy);
12747   SDValue InChain = DAG.getEntryNode();
12748   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
12749                                                     Subtarget);
12750   bool isSigned = N->getOpcode() == ISD::SREM;
12751   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
12752                                          getPointerTy(DAG.getDataLayout()));
12753 
12754   if (Subtarget->isTargetWindows())
12755     InChain = WinDBZCheckDenominator(DAG, N, InChain);
12756 
12757   // Lower call
12758   CallLoweringInfo CLI(DAG);
12759   CLI.setChain(InChain)
12760      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
12761      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
12762   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12763 
12764   // Return second (rem) result operand (first contains div)
12765   SDNode *ResNode = CallResult.first.getNode();
12766   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
12767   return ResNode->getOperand(1);
12768 }
12769 
12770 SDValue
12771 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
12772   assert(Subtarget->isTargetWindows() && "unsupported target platform");
12773   SDLoc DL(Op);
12774 
12775   // Get the inputs.
12776   SDValue Chain = Op.getOperand(0);
12777   SDValue Size  = Op.getOperand(1);
12778 
12779   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
12780                               DAG.getConstant(2, DL, MVT::i32));
12781 
12782   SDValue Flag;
12783   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
12784   Flag = Chain.getValue(1);
12785 
12786   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
12787   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
12788 
12789   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
12790   Chain = NewSP.getValue(1);
12791 
12792   SDValue Ops[2] = { NewSP, Chain };
12793   return DAG.getMergeValues(Ops, DL);
12794 }
12795 
12796 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
12797   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
12798          "Unexpected type for custom-lowering FP_EXTEND");
12799 
12800   RTLIB::Libcall LC;
12801   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
12802 
12803   SDValue SrcVal = Op.getOperand(0);
12804   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
12805                      SDLoc(Op)).first;
12806 }
12807 
12808 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
12809   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
12810          Subtarget->isFPOnlySP() &&
12811          "Unexpected type for custom-lowering FP_ROUND");
12812 
12813   RTLIB::Libcall LC;
12814   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
12815 
12816   SDValue SrcVal = Op.getOperand(0);
12817   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
12818                      SDLoc(Op)).first;
12819 }
12820 
12821 bool
12822 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
12823   // The ARM target isn't yet aware of offsets.
12824   return false;
12825 }
12826 
12827 bool ARM::isBitFieldInvertedMask(unsigned v) {
12828   if (v == 0xffffffff)
12829     return false;
12830 
12831   // there can be 1's on either or both "outsides", all the "inside"
12832   // bits must be 0's
12833   return isShiftedMask_32(~v);
12834 }
12835 
12836 /// isFPImmLegal - Returns true if the target can instruction select the
12837 /// specified FP immediate natively. If false, the legalizer will
12838 /// materialize the FP immediate as a load from a constant pool.
12839 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
12840   if (!Subtarget->hasVFP3())
12841     return false;
12842   if (VT == MVT::f32)
12843     return ARM_AM::getFP32Imm(Imm) != -1;
12844   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
12845     return ARM_AM::getFP64Imm(Imm) != -1;
12846   return false;
12847 }
12848 
12849 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
12850 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
12851 /// specified in the intrinsic calls.
12852 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
12853                                            const CallInst &I,
12854                                            unsigned Intrinsic) const {
12855   switch (Intrinsic) {
12856   case Intrinsic::arm_neon_vld1:
12857   case Intrinsic::arm_neon_vld2:
12858   case Intrinsic::arm_neon_vld3:
12859   case Intrinsic::arm_neon_vld4:
12860   case Intrinsic::arm_neon_vld2lane:
12861   case Intrinsic::arm_neon_vld3lane:
12862   case Intrinsic::arm_neon_vld4lane: {
12863     Info.opc = ISD::INTRINSIC_W_CHAIN;
12864     // Conservatively set memVT to the entire set of vectors loaded.
12865     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12866     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
12867     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12868     Info.ptrVal = I.getArgOperand(0);
12869     Info.offset = 0;
12870     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12871     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12872     Info.vol = false; // volatile loads with NEON intrinsics not supported
12873     Info.readMem = true;
12874     Info.writeMem = false;
12875     return true;
12876   }
12877   case Intrinsic::arm_neon_vst1:
12878   case Intrinsic::arm_neon_vst2:
12879   case Intrinsic::arm_neon_vst3:
12880   case Intrinsic::arm_neon_vst4:
12881   case Intrinsic::arm_neon_vst2lane:
12882   case Intrinsic::arm_neon_vst3lane:
12883   case Intrinsic::arm_neon_vst4lane: {
12884     Info.opc = ISD::INTRINSIC_VOID;
12885     // Conservatively set memVT to the entire set of vectors stored.
12886     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12887     unsigned NumElts = 0;
12888     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
12889       Type *ArgTy = I.getArgOperand(ArgI)->getType();
12890       if (!ArgTy->isVectorTy())
12891         break;
12892       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
12893     }
12894     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12895     Info.ptrVal = I.getArgOperand(0);
12896     Info.offset = 0;
12897     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12898     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12899     Info.vol = false; // volatile stores with NEON intrinsics not supported
12900     Info.readMem = false;
12901     Info.writeMem = true;
12902     return true;
12903   }
12904   case Intrinsic::arm_ldaex:
12905   case Intrinsic::arm_ldrex: {
12906     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12907     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
12908     Info.opc = ISD::INTRINSIC_W_CHAIN;
12909     Info.memVT = MVT::getVT(PtrTy->getElementType());
12910     Info.ptrVal = I.getArgOperand(0);
12911     Info.offset = 0;
12912     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12913     Info.vol = true;
12914     Info.readMem = true;
12915     Info.writeMem = false;
12916     return true;
12917   }
12918   case Intrinsic::arm_stlex:
12919   case Intrinsic::arm_strex: {
12920     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12921     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
12922     Info.opc = ISD::INTRINSIC_W_CHAIN;
12923     Info.memVT = MVT::getVT(PtrTy->getElementType());
12924     Info.ptrVal = I.getArgOperand(1);
12925     Info.offset = 0;
12926     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12927     Info.vol = true;
12928     Info.readMem = false;
12929     Info.writeMem = true;
12930     return true;
12931   }
12932   case Intrinsic::arm_stlexd:
12933   case Intrinsic::arm_strexd: {
12934     Info.opc = ISD::INTRINSIC_W_CHAIN;
12935     Info.memVT = MVT::i64;
12936     Info.ptrVal = I.getArgOperand(2);
12937     Info.offset = 0;
12938     Info.align = 8;
12939     Info.vol = true;
12940     Info.readMem = false;
12941     Info.writeMem = true;
12942     return true;
12943   }
12944   case Intrinsic::arm_ldaexd:
12945   case Intrinsic::arm_ldrexd: {
12946     Info.opc = ISD::INTRINSIC_W_CHAIN;
12947     Info.memVT = MVT::i64;
12948     Info.ptrVal = I.getArgOperand(0);
12949     Info.offset = 0;
12950     Info.align = 8;
12951     Info.vol = true;
12952     Info.readMem = true;
12953     Info.writeMem = false;
12954     return true;
12955   }
12956   default:
12957     break;
12958   }
12959 
12960   return false;
12961 }
12962 
12963 /// \brief Returns true if it is beneficial to convert a load of a constant
12964 /// to just the constant itself.
12965 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
12966                                                           Type *Ty) const {
12967   assert(Ty->isIntegerTy());
12968 
12969   unsigned Bits = Ty->getPrimitiveSizeInBits();
12970   if (Bits == 0 || Bits > 32)
12971     return false;
12972   return true;
12973 }
12974 
12975 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT,
12976                                                 unsigned Index) const {
12977   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
12978     return false;
12979 
12980   return (Index == 0 || Index == ResVT.getVectorNumElements());
12981 }
12982 
12983 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
12984                                         ARM_MB::MemBOpt Domain) const {
12985   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12986 
12987   // First, if the target has no DMB, see what fallback we can use.
12988   if (!Subtarget->hasDataBarrier()) {
12989     // Some ARMv6 cpus can support data barriers with an mcr instruction.
12990     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
12991     // here.
12992     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
12993       Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
12994       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
12995                         Builder.getInt32(0), Builder.getInt32(7),
12996                         Builder.getInt32(10), Builder.getInt32(5)};
12997       return Builder.CreateCall(MCR, args);
12998     } else {
12999       // Instead of using barriers, atomic accesses on these subtargets use
13000       // libcalls.
13001       llvm_unreachable("makeDMB on a target so old that it has no barriers");
13002     }
13003   } else {
13004     Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
13005     // Only a full system barrier exists in the M-class architectures.
13006     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
13007     Constant *CDomain = Builder.getInt32(Domain);
13008     return Builder.CreateCall(DMB, CDomain);
13009   }
13010 }
13011 
13012 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
13013 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
13014                                          AtomicOrdering Ord, bool IsStore,
13015                                          bool IsLoad) const {
13016   switch (Ord) {
13017   case AtomicOrdering::NotAtomic:
13018   case AtomicOrdering::Unordered:
13019     llvm_unreachable("Invalid fence: unordered/non-atomic");
13020   case AtomicOrdering::Monotonic:
13021   case AtomicOrdering::Acquire:
13022     return nullptr; // Nothing to do
13023   case AtomicOrdering::SequentiallyConsistent:
13024     if (!IsStore)
13025       return nullptr; // Nothing to do
13026     /*FALLTHROUGH*/
13027   case AtomicOrdering::Release:
13028   case AtomicOrdering::AcquireRelease:
13029     if (Subtarget->preferISHSTBarriers())
13030       return makeDMB(Builder, ARM_MB::ISHST);
13031     // FIXME: add a comment with a link to documentation justifying this.
13032     else
13033       return makeDMB(Builder, ARM_MB::ISH);
13034   }
13035   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
13036 }
13037 
13038 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
13039                                           AtomicOrdering Ord, bool IsStore,
13040                                           bool IsLoad) const {
13041   switch (Ord) {
13042   case AtomicOrdering::NotAtomic:
13043   case AtomicOrdering::Unordered:
13044     llvm_unreachable("Invalid fence: unordered/not-atomic");
13045   case AtomicOrdering::Monotonic:
13046   case AtomicOrdering::Release:
13047     return nullptr; // Nothing to do
13048   case AtomicOrdering::Acquire:
13049   case AtomicOrdering::AcquireRelease:
13050   case AtomicOrdering::SequentiallyConsistent:
13051     return makeDMB(Builder, ARM_MB::ISH);
13052   }
13053   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
13054 }
13055 
13056 // Loads and stores less than 64-bits are already atomic; ones above that
13057 // are doomed anyway, so defer to the default libcall and blame the OS when
13058 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
13059 // anything for those.
13060 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
13061   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
13062   return (Size == 64) && !Subtarget->isMClass();
13063 }
13064 
13065 // Loads and stores less than 64-bits are already atomic; ones above that
13066 // are doomed anyway, so defer to the default libcall and blame the OS when
13067 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
13068 // anything for those.
13069 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
13070 // guarantee, see DDI0406C ARM architecture reference manual,
13071 // sections A8.8.72-74 LDRD)
13072 TargetLowering::AtomicExpansionKind
13073 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
13074   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
13075   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
13076                                                   : AtomicExpansionKind::None;
13077 }
13078 
13079 // For the real atomic operations, we have ldrex/strex up to 32 bits,
13080 // and up to 64 bits on the non-M profiles
13081 TargetLowering::AtomicExpansionKind
13082 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
13083   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
13084   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
13085   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
13086              ? AtomicExpansionKind::LLSC
13087              : AtomicExpansionKind::None;
13088 }
13089 
13090 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
13091     AtomicCmpXchgInst *AI) const {
13092   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
13093   // implement cmpxchg without spilling. If the address being exchanged is also
13094   // on the stack and close enough to the spill slot, this can lead to a
13095   // situation where the monitor always gets cleared and the atomic operation
13096   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
13097   bool hasAtomicCmpXchg =
13098       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
13099   return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg;
13100 }
13101 
13102 bool ARMTargetLowering::shouldInsertFencesForAtomic(
13103     const Instruction *I) const {
13104   return InsertFencesForAtomic;
13105 }
13106 
13107 // This has so far only been implemented for MachO.
13108 bool ARMTargetLowering::useLoadStackGuardNode() const {
13109   return Subtarget->isTargetMachO();
13110 }
13111 
13112 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
13113                                                   unsigned &Cost) const {
13114   // If we do not have NEON, vector types are not natively supported.
13115   if (!Subtarget->hasNEON())
13116     return false;
13117 
13118   // Floating point values and vector values map to the same register file.
13119   // Therefore, although we could do a store extract of a vector type, this is
13120   // better to leave at float as we have more freedom in the addressing mode for
13121   // those.
13122   if (VectorTy->isFPOrFPVectorTy())
13123     return false;
13124 
13125   // If the index is unknown at compile time, this is very expensive to lower
13126   // and it is not possible to combine the store with the extract.
13127   if (!isa<ConstantInt>(Idx))
13128     return false;
13129 
13130   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
13131   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
13132   // We can do a store + vector extract on any vector that fits perfectly in a D
13133   // or Q register.
13134   if (BitWidth == 64 || BitWidth == 128) {
13135     Cost = 0;
13136     return true;
13137   }
13138   return false;
13139 }
13140 
13141 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
13142   return Subtarget->hasV6T2Ops();
13143 }
13144 
13145 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
13146   return Subtarget->hasV6T2Ops();
13147 }
13148 
13149 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
13150                                          AtomicOrdering Ord) const {
13151   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
13152   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
13153   bool IsAcquire = isAcquireOrStronger(Ord);
13154 
13155   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
13156   // intrinsic must return {i32, i32} and we have to recombine them into a
13157   // single i64 here.
13158   if (ValTy->getPrimitiveSizeInBits() == 64) {
13159     Intrinsic::ID Int =
13160         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
13161     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
13162 
13163     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
13164     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
13165 
13166     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
13167     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
13168     if (!Subtarget->isLittle())
13169       std::swap (Lo, Hi);
13170     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
13171     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
13172     return Builder.CreateOr(
13173         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
13174   }
13175 
13176   Type *Tys[] = { Addr->getType() };
13177   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
13178   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
13179 
13180   return Builder.CreateTruncOrBitCast(
13181       Builder.CreateCall(Ldrex, Addr),
13182       cast<PointerType>(Addr->getType())->getElementType());
13183 }
13184 
13185 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
13186     IRBuilder<> &Builder) const {
13187   if (!Subtarget->hasV7Ops())
13188     return;
13189   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
13190   Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
13191 }
13192 
13193 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
13194                                                Value *Addr,
13195                                                AtomicOrdering Ord) const {
13196   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
13197   bool IsRelease = isReleaseOrStronger(Ord);
13198 
13199   // Since the intrinsics must have legal type, the i64 intrinsics take two
13200   // parameters: "i32, i32". We must marshal Val into the appropriate form
13201   // before the call.
13202   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
13203     Intrinsic::ID Int =
13204         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
13205     Function *Strex = Intrinsic::getDeclaration(M, Int);
13206     Type *Int32Ty = Type::getInt32Ty(M->getContext());
13207 
13208     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
13209     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
13210     if (!Subtarget->isLittle())
13211       std::swap (Lo, Hi);
13212     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
13213     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
13214   }
13215 
13216   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
13217   Type *Tys[] = { Addr->getType() };
13218   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
13219 
13220   return Builder.CreateCall(
13221       Strex, {Builder.CreateZExtOrBitCast(
13222                   Val, Strex->getFunctionType()->getParamType(0)),
13223               Addr});
13224 }
13225 
13226 /// \brief Lower an interleaved load into a vldN intrinsic.
13227 ///
13228 /// E.g. Lower an interleaved load (Factor = 2):
13229 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
13230 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
13231 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
13232 ///
13233 ///      Into:
13234 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
13235 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
13236 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
13237 bool ARMTargetLowering::lowerInterleavedLoad(
13238     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
13239     ArrayRef<unsigned> Indices, unsigned Factor) const {
13240   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
13241          "Invalid interleave factor");
13242   assert(!Shuffles.empty() && "Empty shufflevector input");
13243   assert(Shuffles.size() == Indices.size() &&
13244          "Unmatched number of shufflevectors and indices");
13245 
13246   VectorType *VecTy = Shuffles[0]->getType();
13247   Type *EltTy = VecTy->getVectorElementType();
13248 
13249   const DataLayout &DL = LI->getModule()->getDataLayout();
13250   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
13251   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
13252 
13253   // Skip if we do not have NEON and skip illegal vector types and vector types
13254   // with i64/f64 elements (vldN doesn't support i64/f64 elements).
13255   if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
13256     return false;
13257 
13258   // A pointer vector can not be the return type of the ldN intrinsics. Need to
13259   // load integer vectors first and then convert to pointer vectors.
13260   if (EltTy->isPointerTy())
13261     VecTy =
13262         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
13263 
13264   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
13265                                             Intrinsic::arm_neon_vld3,
13266                                             Intrinsic::arm_neon_vld4};
13267 
13268   IRBuilder<> Builder(LI);
13269   SmallVector<Value *, 2> Ops;
13270 
13271   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
13272   Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
13273   Ops.push_back(Builder.getInt32(LI->getAlignment()));
13274 
13275   Type *Tys[] = { VecTy, Int8Ptr };
13276   Function *VldnFunc =
13277       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
13278   CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
13279 
13280   // Replace uses of each shufflevector with the corresponding vector loaded
13281   // by ldN.
13282   for (unsigned i = 0; i < Shuffles.size(); i++) {
13283     ShuffleVectorInst *SV = Shuffles[i];
13284     unsigned Index = Indices[i];
13285 
13286     Value *SubVec = Builder.CreateExtractValue(VldN, Index);
13287 
13288     // Convert the integer vector to pointer vector if the element is pointer.
13289     if (EltTy->isPointerTy())
13290       SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
13291 
13292     SV->replaceAllUsesWith(SubVec);
13293   }
13294 
13295   return true;
13296 }
13297 
13298 /// \brief Get a mask consisting of sequential integers starting from \p Start.
13299 ///
13300 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
13301 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
13302                                    unsigned NumElts) {
13303   SmallVector<Constant *, 16> Mask;
13304   for (unsigned i = 0; i < NumElts; i++)
13305     Mask.push_back(Builder.getInt32(Start + i));
13306 
13307   return ConstantVector::get(Mask);
13308 }
13309 
13310 /// \brief Lower an interleaved store into a vstN intrinsic.
13311 ///
13312 /// E.g. Lower an interleaved store (Factor = 3):
13313 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
13314 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
13315 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
13316 ///
13317 ///      Into:
13318 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
13319 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
13320 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
13321 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
13322 ///
13323 /// Note that the new shufflevectors will be removed and we'll only generate one
13324 /// vst3 instruction in CodeGen.
13325 ///
13326 /// Example for a more general valid mask (Factor 3). Lower:
13327 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
13328 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
13329 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
13330 ///
13331 ///      Into:
13332 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
13333 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
13334 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
13335 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
13336 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
13337                                               ShuffleVectorInst *SVI,
13338                                               unsigned Factor) const {
13339   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
13340          "Invalid interleave factor");
13341 
13342   VectorType *VecTy = SVI->getType();
13343   assert(VecTy->getVectorNumElements() % Factor == 0 &&
13344          "Invalid interleaved store");
13345 
13346   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
13347   Type *EltTy = VecTy->getVectorElementType();
13348   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
13349 
13350   const DataLayout &DL = SI->getModule()->getDataLayout();
13351   unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
13352   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
13353 
13354   // Skip if we do not have NEON and skip illegal vector types and vector types
13355   // with i64/f64 elements (vstN doesn't support i64/f64 elements).
13356   if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
13357       EltIs64Bits)
13358     return false;
13359 
13360   Value *Op0 = SVI->getOperand(0);
13361   Value *Op1 = SVI->getOperand(1);
13362   IRBuilder<> Builder(SI);
13363 
13364   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
13365   // vectors to integer vectors.
13366   if (EltTy->isPointerTy()) {
13367     Type *IntTy = DL.getIntPtrType(EltTy);
13368 
13369     // Convert to the corresponding integer vector.
13370     Type *IntVecTy =
13371         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
13372     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
13373     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
13374 
13375     SubVecTy = VectorType::get(IntTy, LaneLen);
13376   }
13377 
13378   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
13379                                              Intrinsic::arm_neon_vst3,
13380                                              Intrinsic::arm_neon_vst4};
13381   SmallVector<Value *, 6> Ops;
13382 
13383   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
13384   Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
13385 
13386   Type *Tys[] = { Int8Ptr, SubVecTy };
13387   Function *VstNFunc = Intrinsic::getDeclaration(
13388       SI->getModule(), StoreInts[Factor - 2], Tys);
13389 
13390   // Split the shufflevector operands into sub vectors for the new vstN call.
13391   auto Mask = SVI->getShuffleMask();
13392   for (unsigned i = 0; i < Factor; i++) {
13393     if (Mask[i] >= 0) {
13394       Ops.push_back(Builder.CreateShuffleVector(
13395         Op0, Op1, getSequentialMask(Builder, Mask[i], LaneLen)));
13396     } else {
13397       unsigned StartMask = 0;
13398       for (unsigned j = 1; j < LaneLen; j++) {
13399         if (Mask[j*Factor + i] >= 0) {
13400           StartMask = Mask[j*Factor + i] - j;
13401           break;
13402         }
13403       }
13404       // Note: If all elements in a chunk are undefs, StartMask=0!
13405       // Note: Filling undef gaps with random elements is ok, since
13406       // those elements were being written anyway (with undefs).
13407       // In the case of all undefs we're defaulting to using elems from 0
13408       // Note: StartMask cannot be negative, it's checked in isReInterleaveMask
13409       Ops.push_back(Builder.CreateShuffleVector(
13410         Op0, Op1, getSequentialMask(Builder, StartMask, LaneLen)));
13411     }
13412   }
13413 
13414   Ops.push_back(Builder.getInt32(SI->getAlignment()));
13415   Builder.CreateCall(VstNFunc, Ops);
13416   return true;
13417 }
13418 
13419 enum HABaseType {
13420   HA_UNKNOWN = 0,
13421   HA_FLOAT,
13422   HA_DOUBLE,
13423   HA_VECT64,
13424   HA_VECT128
13425 };
13426 
13427 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
13428                                    uint64_t &Members) {
13429   if (auto *ST = dyn_cast<StructType>(Ty)) {
13430     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
13431       uint64_t SubMembers = 0;
13432       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
13433         return false;
13434       Members += SubMembers;
13435     }
13436   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
13437     uint64_t SubMembers = 0;
13438     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
13439       return false;
13440     Members += SubMembers * AT->getNumElements();
13441   } else if (Ty->isFloatTy()) {
13442     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
13443       return false;
13444     Members = 1;
13445     Base = HA_FLOAT;
13446   } else if (Ty->isDoubleTy()) {
13447     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
13448       return false;
13449     Members = 1;
13450     Base = HA_DOUBLE;
13451   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
13452     Members = 1;
13453     switch (Base) {
13454     case HA_FLOAT:
13455     case HA_DOUBLE:
13456       return false;
13457     case HA_VECT64:
13458       return VT->getBitWidth() == 64;
13459     case HA_VECT128:
13460       return VT->getBitWidth() == 128;
13461     case HA_UNKNOWN:
13462       switch (VT->getBitWidth()) {
13463       case 64:
13464         Base = HA_VECT64;
13465         return true;
13466       case 128:
13467         Base = HA_VECT128;
13468         return true;
13469       default:
13470         return false;
13471       }
13472     }
13473   }
13474 
13475   return (Members > 0 && Members <= 4);
13476 }
13477 
13478 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
13479 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
13480 /// passing according to AAPCS rules.
13481 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
13482     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
13483   if (getEffectiveCallingConv(CallConv, isVarArg) !=
13484       CallingConv::ARM_AAPCS_VFP)
13485     return false;
13486 
13487   HABaseType Base = HA_UNKNOWN;
13488   uint64_t Members = 0;
13489   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
13490   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
13491 
13492   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
13493   return IsHA || IsIntArray;
13494 }
13495 
13496 unsigned ARMTargetLowering::getExceptionPointerRegister(
13497     const Constant *PersonalityFn) const {
13498   // Platforms which do not use SjLj EH may return values in these registers
13499   // via the personality function.
13500   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
13501 }
13502 
13503 unsigned ARMTargetLowering::getExceptionSelectorRegister(
13504     const Constant *PersonalityFn) const {
13505   // Platforms which do not use SjLj EH may return values in these registers
13506   // via the personality function.
13507   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
13508 }
13509 
13510 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13511   // Update IsSplitCSR in ARMFunctionInfo.
13512   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
13513   AFI->setIsSplitCSR(true);
13514 }
13515 
13516 void ARMTargetLowering::insertCopiesSplitCSR(
13517     MachineBasicBlock *Entry,
13518     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
13519   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
13520   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
13521   if (!IStart)
13522     return;
13523 
13524   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
13525   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
13526   MachineBasicBlock::iterator MBBI = Entry->begin();
13527   for (const MCPhysReg *I = IStart; *I; ++I) {
13528     const TargetRegisterClass *RC = nullptr;
13529     if (ARM::GPRRegClass.contains(*I))
13530       RC = &ARM::GPRRegClass;
13531     else if (ARM::DPRRegClass.contains(*I))
13532       RC = &ARM::DPRRegClass;
13533     else
13534       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13535 
13536     unsigned NewVR = MRI->createVirtualRegister(RC);
13537     // Create copy from CSR to a virtual register.
13538     // FIXME: this currently does not emit CFI pseudo-instructions, it works
13539     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13540     // nounwind. If we want to generalize this later, we may need to emit
13541     // CFI pseudo-instructions.
13542     assert(Entry->getParent()->getFunction()->hasFnAttribute(
13543                Attribute::NoUnwind) &&
13544            "Function should be nounwind in insertCopiesSplitCSR!");
13545     Entry->addLiveIn(*I);
13546     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
13547         .addReg(*I);
13548 
13549     // Insert the copy-back instructions right before the terminator.
13550     for (auto *Exit : Exits)
13551       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
13552               TII->get(TargetOpcode::COPY), *I)
13553           .addReg(NewVR);
13554   }
13555 }
13556